ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
55be3496-37ca-4495-9404-30bbf91e9b67
cpp
tensorflow/tensorflow
comparison_util
third_party/xla/xla/comparison_util.cc
third_party/xla/xla/comparison_util_test.cc
#include "xla/comparison_util.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/primitive_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace { bool IsValidComparison(xla::PrimitiveType type, Comparison::Order order) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return true; } if (primitive_util::IsIntegralType(type) || type == PRED) { return order == Comparison::Order::kTotal; } LOG(FATAL) << "Unsupported type: " << PrimitiveType_Name(type); } PrimitiveType DefaultPrimitiveType(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: case Comparison::Type::kFloatTotalOrder: return PrimitiveType::F32; case Comparison::Type::kSigned: return PrimitiveType::S32; case Comparison::Type::kUnsigned: return PrimitiveType::U32; } } Comparison::Order DefaultOrdering(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: return Comparison::Order::kPartial; case Comparison::Type::kFloatTotalOrder: case Comparison::Type::kSigned: case Comparison::Type::kUnsigned: return Comparison::Order::kTotal; } } Comparison::Order DefaultOrdering(PrimitiveType type) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return Comparison::Order::kPartial; } if (primitive_util::IsIntegralType(type) || type == PRED) { return Comparison::Order::kTotal; } LOG(FATAL) << "Unsupported type: " << PrimitiveType_Name(type); } Comparison::Direction Converse(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return Comparison::Direction::kEq; case Comparison::Direction::kNe: return Comparison::Direction::kNe; case Comparison::Direction::kGe: return Comparison::Direction::kLe; case Comparison::Direction::kGt: return Comparison::Direction::kLt; case Comparison::Direction::kLe: return Comparison::Direction::kGe; case Comparison::Direction::kLt: return Comparison::Direction::kGt; } } Comparison::Direction Inverse(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return Comparison::Direction::kNe; case Comparison::Direction::kNe: return Comparison::Direction::kEq; case Comparison::Direction::kGe: return Comparison::Direction::kLt; case Comparison::Direction::kGt: return Comparison::Direction::kLe; case Comparison::Direction::kLe: return Comparison::Direction::kGt; case Comparison::Direction::kLt: return Comparison::Direction::kGe; } } } std::string ComparisonDirectionToString(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return "EQ"; case Comparison::Direction::kNe: return "NE"; case Comparison::Direction::kGe: return "GE"; case Comparison::Direction::kGt: return "GT"; case Comparison::Direction::kLe: return "LE"; case Comparison::Direction::kLt: return "LT"; default: LOG(FATAL) << "Attempted to print uninitialized comparison direction"; } } std::string ComparisonTypeToString(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: return "FLOAT"; case Comparison::Type::kFloatTotalOrder: return "TOTALORDER"; case Comparison::Type::kSigned: return "SIGNED"; case Comparison::Type::kUnsigned: return "UNSIGNED"; } } absl::string_view ComparisonPrimitiveTypeToString(PrimitiveType type) { return PrimitiveType_Name(type); } absl::string_view ComparisonOrderToString(Comparison::Order order) { switch (order) { case Comparison::Order::kPartial: return "PARTIALORDER"; case Comparison::Order::kTotal: return "TOTALORDER"; } } absl::StatusOr<Comparison::Direction> StringToComparisonDirection( absl::string_view direction) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Direction>({ {"EQ", Comparison::Direction::kEq}, {"NE", Comparison::Direction::kNe}, {"GE", Comparison::Direction::kGe}, {"GT", Comparison::Direction::kGt}, {"LE", Comparison::Direction::kLe}, {"LT", Comparison::Direction::kLt}, }); auto it = map->find(direction); if (it == map->end()) { return InvalidArgument("Unknown comparison direction: %s", direction); } return it->second; } absl::StatusOr<Comparison::Order> StringToComparisonOrder( absl::string_view order) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Order>({ {"TOTALORDER", Comparison::Order::kTotal}, {"PARTIALORDER", Comparison::Order::kPartial}, }); auto it = map->find(order); if (it == map->end()) { return InvalidArgument("Unknown comparison type: %s", order); } return it->second; } absl::StatusOr<Comparison::Type> StringToComparisonType( absl::string_view comparison) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Type>({ {"FLOAT", Comparison::Type::kFloat}, {"TOTALORDER", Comparison::Type::kFloatTotalOrder}, {"SIGNED", Comparison::Type::kSigned}, {"UNSIGNED", Comparison::Type::kUnsigned}, }); auto it = map->find(comparison); if (it == map->end()) { return InvalidArgument("Unknown comparison type: %s", comparison); } return it->second; } Comparison::Type Comparison::DefaultComparisonType(PrimitiveType type) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return Type::kFloat; } if (primitive_util::IsSignedIntegralType(type)) { return Type::kSigned; } if (primitive_util::IsUnsignedIntegralType(type) || type == PRED) { return Type::kUnsigned; } LOG(FATAL) << "Unexpected: " << PrimitiveType_Name(type); } Comparison::Comparison(Direction dir, PrimitiveType type, Order order) : dir_(dir), primitive_type_(type), order_(order), type_(DefaultComparisonType(type)) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison::Comparison(Direction dir, PrimitiveType type) : dir_(dir), primitive_type_(type), order_(DefaultOrdering(type)), type_(DefaultComparisonType(type)) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison::Comparison(Direction dir, Type type) : dir_(dir), primitive_type_(DefaultPrimitiveType(type)), order_(DefaultOrdering(type)), type_(type) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison Comparison::Converse() const { return Comparison(xla::Converse(dir_), primitive_type_, order_); } std::optional<Comparison> Comparison::Inverse() const { if (IsPartialOrder()) { return std::nullopt; } if (primitive_util::IsArrayType(primitive_type_)) { return Comparison(xla::Inverse(dir_), primitive_type_, order_); } return std::nullopt; } bool Comparison::IsReflexive() const { switch (dir_) { case Direction::kEq: case Direction::kGe: case Direction::kLe: return IsTotalOrder(); case Direction::kNe: case Direction::kGt: case Direction::kLt: return false; } } bool Comparison::IsAntireflexive() const { switch (dir_) { case Direction::kNe: return IsTotalOrder(); case Direction::kGt: case Direction::kLt: return true; case Direction::kEq: case Direction::kGe: case Direction::kLe: return false; } } std::string Comparison::ToString(std::string prefix1, std::string prefix2, std::string prefix3) const { return absl::StrCat(prefix1, ComparisonDirectionToString(dir_), prefix2, ComparisonPrimitiveTypeToString(primitive_type_), prefix3, ComparisonOrderToString(order_)); } }
#include "xla/comparison_util.h" #include <cstdint> #include <limits> #include "xla/test.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ::testing::Eq; TEST(Comparison, FloatsDefaultToPartialOrder) { EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::BF16).GetOrder(), Comparison::Order::kPartial); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::F32).GetOrder(), Comparison::Order::kPartial); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::C64).GetOrder(), Comparison::Order::kPartial); } TEST(Comparison, IntegersDefaultToTotalOrder) { EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::S32).GetOrder(), Comparison::Order::kTotal); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::U8).GetOrder(), Comparison::Order::kTotal); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::PRED).GetOrder(), Comparison::Order::kTotal); } TEST(Comparison, LegacyConstructorDefaultsToX32) { EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kFloat) .GetPrimitiveType(), xla::PrimitiveType::F32); EXPECT_EQ( Comparison(Comparison::Direction::kGe, Comparison::Type::kFloatTotalOrder) .GetPrimitiveType(), xla::PrimitiveType::F32); EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kSigned) .GetPrimitiveType(), xla::PrimitiveType::S32); EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kUnsigned) .GetPrimitiveType(), xla::PrimitiveType::U32); } TEST(Comparison, PartialOrderReflexivity) { EXPECT_FALSE( Comparison(Comparison::Direction::kEq, PrimitiveType::F32).IsReflexive()); EXPECT_FALSE( Comparison(Comparison::Direction::kLe, PrimitiveType::F32).IsReflexive()); EXPECT_FALSE( Comparison(Comparison::Direction::kLt, PrimitiveType::S32).IsReflexive()); } TEST(Comparison, TotalOrderReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kLe, PrimitiveType::BF16, Comparison::Order::kTotal) .IsReflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kGe, PrimitiveType::F32, Comparison::Order::kTotal) .IsReflexive()); EXPECT_TRUE( Comparison(Comparison::Direction::kEq, PrimitiveType::S32).IsReflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kNe, PrimitiveType::F32, Comparison::Order::kTotal) .IsReflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::F64, Comparison::Order::kTotal) .IsReflexive()); } TEST(Comparison, PartialOrderAntiReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32) .IsAntireflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); } TEST(Comparison, TotalOrderAntiReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::BF16, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::S32) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLe, PrimitiveType::F64, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLe, PrimitiveType::S8) .IsAntireflexive()); } TEST(Comparison, Converse) { EXPECT_THAT( Comparison(Comparison::Direction::kLe, PrimitiveType::S8).Converse(), Eq(Comparison(Comparison::Direction::kGe, PrimitiveType::S8))); EXPECT_THAT( Comparison(Comparison::Direction::kEq, PrimitiveType::U16).Converse(), Eq(Comparison(Comparison::Direction::kEq, PrimitiveType::U16))); EXPECT_THAT( Comparison(Comparison::Direction::kGt, PrimitiveType::F32).Converse(), Eq(Comparison(Comparison::Direction::kLt, PrimitiveType::F32))); } TEST(Comparison, PartialOrderFloatsShouldNotHaveInverse) { EXPECT_FALSE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32) .Inverse() .has_value()); } TEST(Comparison, Inverse) { EXPECT_THAT( *Comparison(Comparison::Direction::kLe, PrimitiveType::S64).Inverse(), Eq(Comparison(Comparison::Direction::kGt, PrimitiveType::S64))); EXPECT_THAT( *Comparison(Comparison::Direction::kEq, PrimitiveType::U16).Inverse(), Eq(Comparison(Comparison::Direction::kNe, PrimitiveType::U16))); EXPECT_THAT(*Comparison(Comparison::Direction::kGt, PrimitiveType::F32, Comparison::Order::kTotal) .Inverse(), Eq(Comparison(Comparison::Direction::kLe, PrimitiveType::F32, Comparison::Order::kTotal))); } TEST(Comparison, ToString) { EXPECT_EQ( Comparison(Comparison::Direction::kLt, PrimitiveType::F32).ToString(), ".LT.F32.PARTIALORDER"); EXPECT_EQ( Comparison(Comparison::Direction::kEq, PrimitiveType::S8).ToString(), ".EQ.S8.TOTALORDER"); EXPECT_EQ(Comparison(Comparison::Direction::kGe, PrimitiveType::C128) .ToString("_1_", "_2_", "_3_"), "_1_GE_2_C128_3_PARTIALORDER"); } TEST(Comparison, TotalOrderFloatComparison) { EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN())); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(1.0f, 2.0f)); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity())); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(-0.0f, +0.0f)); EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(+0.0f, -0.0f)); EXPECT_FALSE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(-0.1f, 0.1f)); } TEST(Comparison, TotalOrderBfloat16Comparison) { EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>( std::numeric_limits<xla::bfloat16>::quiet_NaN(), std::numeric_limits<xla::bfloat16>::quiet_NaN())); EXPECT_TRUE( Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(1.0f), xla::bfloat16(2.0f))); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>( std::numeric_limits<xla::bfloat16>::infinity(), -std::numeric_limits<xla::bfloat16>::infinity())); EXPECT_TRUE( Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(-0.0f), xla::bfloat16(+0.0f))); EXPECT_TRUE( Comparison(Comparison::Direction::kGt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(+0.0f), xla::bfloat16(-0.0f))); EXPECT_FALSE( Comparison(Comparison::Direction::kGt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(-0.1f), xla::bfloat16(0.1f))); } TEST(Comparison, Compare) { EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32) .Compare<float>(1.0f, 2.0f)); EXPECT_TRUE( Comparison(Comparison::Direction::kGe, PrimitiveType::BF16) .Compare<xla::bfloat16>(xla::bfloat16(2.0f), xla::bfloat16(1.0f))); EXPECT_FALSE(Comparison(Comparison::Direction::kNe, PrimitiveType::S64) .Compare<int64_t>(1'000'000, 1'000'000)); EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::U8) .Compare<uint8_t>(63, 63)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/comparison_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/comparison_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9b3032c4-cbe2-4b9a-85fc-77dc67256bd2
cpp
google/cel-cpp
equality_functions
runtime/standard/equality_functions.cc
runtime/standard/equality_functions_test.cc
#include "runtime/standard/equality_functions.h" #include <cstdint> #include <functional> #include <optional> #include <type_traits> #include <utility> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "base/kind.h" #include "common/casting.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/number.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" #include "runtime/internal/errors.h" #include "runtime/register_function_helper.h" #include "runtime/runtime_options.h" namespace cel { namespace { using ::cel::Cast; using ::cel::InstanceOf; using ::cel::builtin::kEqual; using ::cel::builtin::kInequal; using ::cel::internal::Number; struct HomogenousEqualProvider { static constexpr bool kIsHeterogeneous = false; absl::StatusOr<absl::optional<bool>> operator()(ValueManager& value_factory, const Value& lhs, const Value& rhs) const; }; struct HeterogeneousEqualProvider { static constexpr bool kIsHeterogeneous = true; absl::StatusOr<absl::optional<bool>> operator()(ValueManager& value_factory, const Value& lhs, const Value& rhs) const; }; template <class Type> absl::optional<bool> Inequal(Type lhs, Type rhs) { return lhs != rhs; } template <> absl::optional<bool> Inequal(const StringValue& lhs, const StringValue& rhs) { return !lhs.Equals(rhs); } template <> absl::optional<bool> Inequal(const BytesValue& lhs, const BytesValue& rhs) { return !lhs.Equals(rhs); } template <> absl::optional<bool> Inequal(const NullValue&, const NullValue&) { return false; } template <> absl::optional<bool> Inequal(const TypeValue& lhs, const TypeValue& rhs) { return lhs.name() != rhs.name(); } template <class Type> absl::optional<bool> Equal(Type lhs, Type rhs) { return lhs == rhs; } template <> absl::optional<bool> Equal(const StringValue& lhs, const StringValue& rhs) { return lhs.Equals(rhs); } template <> absl::optional<bool> Equal(const BytesValue& lhs, const BytesValue& rhs) { return lhs.Equals(rhs); } template <> absl::optional<bool> Equal(const NullValue&, const NullValue&) { return true; } template <> absl::optional<bool> Equal(const TypeValue& lhs, const TypeValue& rhs) { return lhs.name() == rhs.name(); } template <typename EqualsProvider> absl::StatusOr<absl::optional<bool>> ListEqual(ValueManager& factory, const ListValue& lhs, const ListValue& rhs) { if (&lhs == &rhs) { return true; } CEL_ASSIGN_OR_RETURN(auto lhs_size, lhs.Size()); CEL_ASSIGN_OR_RETURN(auto rhs_size, rhs.Size()); if (lhs_size != rhs_size) { return false; } for (int i = 0; i < lhs_size; ++i) { CEL_ASSIGN_OR_RETURN(auto lhs_i, lhs.Get(factory, i)); CEL_ASSIGN_OR_RETURN(auto rhs_i, rhs.Get(factory, i)); CEL_ASSIGN_OR_RETURN(absl::optional<bool> eq, EqualsProvider()(factory, lhs_i, rhs_i)); if (!eq.has_value() || !*eq) { return eq; } } return true; } absl::StatusOr<absl::optional<bool>> OpaqueEqual(ValueManager& manager, const OpaqueValue& lhs, const OpaqueValue& rhs) { Value result; CEL_RETURN_IF_ERROR(lhs.Equal(manager, rhs, result)); if (auto bool_value = As<BoolValue>(result); bool_value) { return bool_value->NativeValue(); } return TypeConversionError(result.GetTypeName(), "bool").NativeValue(); } absl::optional<Number> NumberFromValue(const Value& value) { if (value.Is<IntValue>()) { return Number::FromInt64(value.GetInt().NativeValue()); } else if (value.Is<UintValue>()) { return Number::FromUint64(value.GetUint().NativeValue()); } else if (value.Is<DoubleValue>()) { return Number::FromDouble(value.GetDouble().NativeValue()); } return absl::nullopt; } absl::StatusOr<absl::optional<Value>> CheckAlternativeNumericType( ValueManager& value_factory, const Value& key, const MapValue& rhs) { absl::optional<Number> number = NumberFromValue(key); if (!number.has_value()) { return absl::nullopt; } if (!InstanceOf<IntValue>(key) && number->LosslessConvertibleToInt()) { Value entry; bool ok; CEL_ASSIGN_OR_RETURN( std::tie(entry, ok), rhs.Find(value_factory, value_factory.CreateIntValue(number->AsInt()))); if (ok) { return entry; } } if (!InstanceOf<UintValue>(key) && number->LosslessConvertibleToUint()) { Value entry; bool ok; CEL_ASSIGN_OR_RETURN(std::tie(entry, ok), rhs.Find(value_factory, value_factory.CreateUintValue( number->AsUint()))); if (ok) { return entry; } } return absl::nullopt; } template <typename EqualsProvider> absl::StatusOr<absl::optional<bool>> MapEqual(ValueManager& value_factory, const MapValue& lhs, const MapValue& rhs) { if (&lhs == &rhs) { return true; } if (lhs.Size() != rhs.Size()) { return false; } CEL_ASSIGN_OR_RETURN(auto iter, lhs.NewIterator(value_factory)); while (iter->HasNext()) { CEL_ASSIGN_OR_RETURN(auto lhs_key, iter->Next(value_factory)); Value rhs_value; bool rhs_ok; CEL_ASSIGN_OR_RETURN(std::tie(rhs_value, rhs_ok), rhs.Find(value_factory, lhs_key)); if (!rhs_ok && EqualsProvider::kIsHeterogeneous) { CEL_ASSIGN_OR_RETURN( auto maybe_rhs_value, CheckAlternativeNumericType(value_factory, lhs_key, rhs)); rhs_ok = maybe_rhs_value.has_value(); if (rhs_ok) { rhs_value = std::move(*maybe_rhs_value); } } if (!rhs_ok) { return false; } CEL_ASSIGN_OR_RETURN(auto lhs_value, lhs.Get(value_factory, lhs_key)); CEL_ASSIGN_OR_RETURN(absl::optional<bool> eq, EqualsProvider()(value_factory, lhs_value, rhs_value)); if (!eq.has_value() || !*eq) { return eq; } } return true; } template <typename Type, typename Op> std::function<Value(cel::ValueManager& factory, Type, Type)> WrapComparison( Op op, absl::string_view name) { return [op = std::move(op), name](cel::ValueManager& factory, Type lhs, Type rhs) -> Value { absl::optional<bool> result = op(lhs, rhs); if (result.has_value()) { return factory.CreateBoolValue(*result); } return factory.CreateErrorValue( cel::runtime_internal::CreateNoMatchingOverloadError(name)); }; } template <class Type> absl::Status RegisterEqualityFunctionsForType(cel::FunctionRegistry& registry) { using FunctionAdapter = cel::RegisterHelper<BinaryFunctionAdapter<Value, Type, Type>>; CEL_RETURN_IF_ERROR(FunctionAdapter::RegisterGlobalOverload( kInequal, WrapComparison<Type>(&Inequal<Type>, kInequal), registry)); CEL_RETURN_IF_ERROR(FunctionAdapter::RegisterGlobalOverload( kEqual, WrapComparison<Type>(&Equal<Type>, kEqual), registry)); return absl::OkStatus(); } template <typename Type, typename Op> auto ComplexEquality(Op&& op) { return [op = std::forward<Op>(op)](cel::ValueManager& f, const Type& t1, const Type& t2) -> absl::StatusOr<Value> { CEL_ASSIGN_OR_RETURN(absl::optional<bool> result, op(f, t1, t2)); if (!result.has_value()) { return f.CreateErrorValue( cel::runtime_internal::CreateNoMatchingOverloadError(kEqual)); } return f.CreateBoolValue(*result); }; } template <typename Type, typename Op> auto ComplexInequality(Op&& op) { return [op = std::forward<Op>(op)](cel::ValueManager& f, Type t1, Type t2) -> absl::StatusOr<Value> { CEL_ASSIGN_OR_RETURN(absl::optional<bool> result, op(f, t1, t2)); if (!result.has_value()) { return f.CreateErrorValue( cel::runtime_internal::CreateNoMatchingOverloadError(kInequal)); } return f.CreateBoolValue(!*result); }; } template <class Type> absl::Status RegisterComplexEqualityFunctionsForType( absl::FunctionRef<absl::StatusOr<absl::optional<bool>>(ValueManager&, Type, Type)> op, cel::FunctionRegistry& registry) { using FunctionAdapter = cel::RegisterHelper< BinaryFunctionAdapter<absl::StatusOr<Value>, Type, Type>>; CEL_RETURN_IF_ERROR(FunctionAdapter::RegisterGlobalOverload( kInequal, ComplexInequality<Type>(op), registry)); CEL_RETURN_IF_ERROR(FunctionAdapter::RegisterGlobalOverload( kEqual, ComplexEquality<Type>(op), registry)); return absl::OkStatus(); } absl::Status RegisterHomogenousEqualityFunctions( cel::FunctionRegistry& registry) { CEL_RETURN_IF_ERROR(RegisterEqualityFunctionsForType<bool>(registry)); CEL_RETURN_IF_ERROR(RegisterEqualityFunctionsForType<int64_t>(registry)); CEL_RETURN_IF_ERROR(RegisterEqualityFunctionsForType<uint64_t>(registry)); CEL_RETURN_IF_ERROR(RegisterEqualityFunctionsForType<double>(registry)); CEL_RETURN_IF_ERROR( RegisterEqualityFunctionsForType<const cel::StringValue&>(registry)); CEL_RETURN_IF_ERROR( RegisterEqualityFunctionsForType<const cel::BytesValue&>(registry)); CEL_RETURN_IF_ERROR( RegisterEqualityFunctionsForType<absl::Duration>(registry)); CEL_RETURN_IF_ERROR(RegisterEqualityFunctionsForType<absl::Time>(registry)); CEL_RETURN_IF_ERROR( RegisterEqualityFunctionsForType<const cel::NullValue&>(registry)); CEL_RETURN_IF_ERROR( RegisterEqualityFunctionsForType<const cel::TypeValue&>(registry)); CEL_RETURN_IF_ERROR( RegisterComplexEqualityFunctionsForType<const cel::ListValue&>( &ListEqual<HomogenousEqualProvider>, registry)); CEL_RETURN_IF_ERROR( RegisterComplexEqualityFunctionsForType<const cel::MapValue&>( &MapEqual<HomogenousEqualProvider>, registry)); return absl::OkStatus(); } absl::Status RegisterNullMessageEqualityFunctions(FunctionRegistry& registry) { CEL_RETURN_IF_ERROR( (cel::RegisterHelper< BinaryFunctionAdapter<bool, const StructValue&, const NullValue&>>:: RegisterGlobalOverload( kEqual, [](ValueManager&, const StructValue&, const NullValue&) { return false; }, registry))); CEL_RETURN_IF_ERROR( (cel::RegisterHelper< BinaryFunctionAdapter<bool, const NullValue&, const StructValue&>>:: RegisterGlobalOverload( kEqual, [](ValueManager&, const NullValue&, const StructValue&) { return false; }, registry))); CEL_RETURN_IF_ERROR( (cel::RegisterHelper< BinaryFunctionAdapter<bool, const StructValue&, const NullValue&>>:: RegisterGlobalOverload( kInequal, [](ValueManager&, const StructValue&, const NullValue&) { return true; }, registry))); return cel::RegisterHelper< BinaryFunctionAdapter<bool, const NullValue&, const StructValue&>>:: RegisterGlobalOverload( kInequal, [](ValueManager&, const NullValue&, const StructValue&) { return true; }, registry); } template <typename EqualsProvider> absl::StatusOr<absl::optional<bool>> HomogenousValueEqual(ValueManager& factory, const Value& v1, const Value& v2) { if (v1->kind() != v2->kind()) { return absl::nullopt; } static_assert(std::is_lvalue_reference_v<decltype(Cast<StringValue>(v1))>, "unexpected value copy"); switch (v1->kind()) { case ValueKind::kBool: return Equal<bool>(Cast<BoolValue>(v1).NativeValue(), Cast<BoolValue>(v2).NativeValue()); case ValueKind::kNull: return Equal<const NullValue&>(Cast<NullValue>(v1), Cast<NullValue>(v2)); case ValueKind::kInt: return Equal<int64_t>(Cast<IntValue>(v1).NativeValue(), Cast<IntValue>(v2).NativeValue()); case ValueKind::kUint: return Equal<uint64_t>(Cast<UintValue>(v1).NativeValue(), Cast<UintValue>(v2).NativeValue()); case ValueKind::kDouble: return Equal<double>(Cast<DoubleValue>(v1).NativeValue(), Cast<DoubleValue>(v2).NativeValue()); case ValueKind::kDuration: return Equal<absl::Duration>(Cast<DurationValue>(v1).NativeValue(), Cast<DurationValue>(v2).NativeValue()); case ValueKind::kTimestamp: return Equal<absl::Time>(Cast<TimestampValue>(v1).NativeValue(), Cast<TimestampValue>(v2).NativeValue()); case ValueKind::kCelType: return Equal<const TypeValue&>(Cast<TypeValue>(v1), Cast<TypeValue>(v2)); case ValueKind::kString: return Equal<const StringValue&>(Cast<StringValue>(v1), Cast<StringValue>(v2)); case ValueKind::kBytes: return Equal<const cel::BytesValue&>(v1.GetBytes(), v2.GetBytes()); case ValueKind::kList: return ListEqual<EqualsProvider>(factory, Cast<ListValue>(v1), Cast<ListValue>(v2)); case ValueKind::kMap: return MapEqual<EqualsProvider>(factory, Cast<MapValue>(v1), Cast<MapValue>(v2)); case ValueKind::kOpaque: return OpaqueEqual(factory, Cast<OpaqueValue>(v1), Cast<OpaqueValue>(v2)); default: return absl::nullopt; } } absl::StatusOr<Value> EqualOverloadImpl(ValueManager& factory, const Value& lhs, const Value& rhs) { CEL_ASSIGN_OR_RETURN(absl::optional<bool> result, runtime_internal::ValueEqualImpl(factory, lhs, rhs)); if (result.has_value()) { return factory.CreateBoolValue(*result); } return factory.CreateErrorValue( cel::runtime_internal::CreateNoMatchingOverloadError(kEqual)); } absl::StatusOr<Value> InequalOverloadImpl(ValueManager& factory, const Value& lhs, const Value& rhs) { CEL_ASSIGN_OR_RETURN(absl::optional<bool> result, runtime_internal::ValueEqualImpl(factory, lhs, rhs)); if (result.has_value()) { return factory.CreateBoolValue(!*result); } return factory.CreateErrorValue( cel::runtime_internal::CreateNoMatchingOverloadError(kInequal)); } absl::Status RegisterHeterogeneousEqualityFunctions( cel::FunctionRegistry& registry) { using Adapter = cel::RegisterHelper< BinaryFunctionAdapter<absl::StatusOr<Value>, const Value&, const Value&>>; CEL_RETURN_IF_ERROR( Adapter::RegisterGlobalOverload(kEqual, &EqualOverloadImpl, registry)); CEL_RETURN_IF_ERROR(Adapter::RegisterGlobalOverload( kInequal, &InequalOverloadImpl, registry)); return absl::OkStatus(); } absl::StatusOr<absl::optional<bool>> HomogenousEqualProvider::operator()( ValueManager& factory, const Value& lhs, const Value& rhs) const { return HomogenousValueEqual<HomogenousEqualProvider>(factory, lhs, rhs); } absl::StatusOr<absl::optional<bool>> HeterogeneousEqualProvider::operator()( ValueManager& factory, const Value& lhs, const Value& rhs) const { return runtime_internal::ValueEqualImpl(factory, lhs, rhs); } } namespace runtime_internal { absl::StatusOr<absl::optional<bool>> ValueEqualImpl(ValueManager& value_factory, const Value& v1, const Value& v2) { if (v1->kind() == v2->kind()) { if (InstanceOf<StructValue>(v1) && InstanceOf<StructValue>(v2)) { CEL_ASSIGN_OR_RETURN(Value result, Cast<StructValue>(v1).Equal(value_factory, v2)); if (InstanceOf<BoolValue>(result)) { return Cast<BoolValue>(result).NativeValue(); } return false; } return HomogenousValueEqual<HeterogeneousEqualProvider>(value_factory, v1, v2); } absl::optional<Number> lhs = NumberFromValue(v1); absl::optional<Number> rhs = NumberFromValue(v2); if (rhs.has_value() && lhs.has_value()) { return *lhs == *rhs; } if (InstanceOf<ErrorValue>(v1) || InstanceOf<UnknownValue>(v1) || InstanceOf<ErrorValue>(v2) || InstanceOf<UnknownValue>(v2)) { return absl::nullopt; } return false; } } absl::Status RegisterEqualityFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { if (options.enable_heterogeneous_equality) { CEL_RETURN_IF_ERROR(RegisterHeterogeneousEqualityFunctions(registry)); } else { CEL_RETURN_IF_ERROR(RegisterHomogenousEqualityFunctions(registry)); CEL_RETURN_IF_ERROR(RegisterNullMessageEqualityFunctions(registry)); } return absl::OkStatus(); } }
#include "runtime/standard/equality_functions.h" #include <vector> #include "base/builtins.h" #include "base/function_descriptor.h" #include "base/kind.h" #include "internal/testing.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel { namespace { using ::testing::UnorderedElementsAre; MATCHER_P3(MatchesDescriptor, name, receiver, expected_kinds, "") { const FunctionDescriptor& descriptor = *arg; const std::vector<Kind>& types = expected_kinds; return descriptor.name() == name && descriptor.receiver_style() == receiver && descriptor.types() == types; } TEST(RegisterEqualityFunctionsHomogeneous, RegistersEqualOperators) { FunctionRegistry registry; RuntimeOptions options; options.enable_heterogeneous_equality = false; ASSERT_OK(RegisterEqualityFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT( overloads[builtin::kEqual], UnorderedElementsAre( MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kList, Kind::kList}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kMap, Kind::kMap}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kBool, Kind::kBool}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kInt, Kind::kInt}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kUint, Kind::kUint}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kDouble, Kind::kDouble}), MatchesDescriptor( builtin::kEqual, false, std::vector<Kind>{Kind::kDuration, Kind::kDuration}), MatchesDescriptor( builtin::kEqual, false, std::vector<Kind>{Kind::kTimestamp, Kind::kTimestamp}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kBytes, Kind::kBytes}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kType, Kind::kType}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kStruct, Kind::kNullType}), MatchesDescriptor(builtin::kEqual, false, std::vector<Kind>{Kind::kNullType, Kind::kStruct}), MatchesDescriptor( builtin::kEqual, false, std::vector<Kind>{Kind::kNullType, Kind::kNullType}))); EXPECT_THAT( overloads[builtin::kInequal], UnorderedElementsAre( MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kList, Kind::kList}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kMap, Kind::kMap}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kBool, Kind::kBool}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kInt, Kind::kInt}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kUint, Kind::kUint}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kDouble, Kind::kDouble}), MatchesDescriptor( builtin::kInequal, false, std::vector<Kind>{Kind::kDuration, Kind::kDuration}), MatchesDescriptor( builtin::kInequal, false, std::vector<Kind>{Kind::kTimestamp, Kind::kTimestamp}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kBytes, Kind::kBytes}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kType, Kind::kType}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kStruct, Kind::kNullType}), MatchesDescriptor(builtin::kInequal, false, std::vector<Kind>{Kind::kNullType, Kind::kStruct}), MatchesDescriptor( builtin::kInequal, false, std::vector<Kind>{Kind::kNullType, Kind::kNullType}))); } TEST(RegisterEqualityFunctionsHeterogeneous, RegistersEqualOperators) { FunctionRegistry registry; RuntimeOptions options; options.enable_heterogeneous_equality = true; ASSERT_OK(RegisterEqualityFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT( overloads[builtin::kEqual], UnorderedElementsAre(MatchesDescriptor( builtin::kEqual, false, std::vector<Kind>{Kind::kAny, Kind::kAny}))); EXPECT_THAT(overloads[builtin::kInequal], UnorderedElementsAre(MatchesDescriptor( builtin::kInequal, false, std::vector<Kind>{Kind::kAny, Kind::kAny}))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/equality_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/equality_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
2b7b518f-026f-4331-bdbc-8e050845acbb
cpp
google/tensorstore
json_binding
tensorstore/internal/json_binding/json_binding.h
tensorstore/internal/json_binding/json_binding_test.cc
#ifndef TENSORSTORE_INTERNAL_JSON_BINDING_JSON_H_ #define TENSORSTORE_INTERNAL_JSON_BINDING_JSON_H_ #include <functional> #include <limits> #include <map> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json/same.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_json_binding { namespace empty_binder { constexpr inline auto EmptyBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { return absl::OkStatus(); }; } using empty_binder::EmptyBinder; namespace loose_value_as_binder { constexpr inline auto LooseValueAsBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { return internal_json::JsonRequireValueAs(*j, obj, false); } else { *j = *obj; return absl::OkStatus(); } }; } using loose_value_as_binder::LooseValueAsBinder; namespace value_as_binder { constexpr inline auto ValueAsBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { return internal_json::JsonRequireValueAs(*j, obj, true); } else { *j = *obj; return absl::OkStatus(); } }; } using value_as_binder::ValueAsBinder; template <> constexpr inline auto DefaultBinder<bool> = ValueAsBinder; template <> constexpr inline auto DefaultBinder<std::int64_t> = ValueAsBinder; template <> constexpr inline auto DefaultBinder<std::string> = ValueAsBinder; template <> constexpr inline auto DefaultBinder<uint64_t> = ValueAsBinder; template <> constexpr inline auto DefaultBinder<double> = ValueAsBinder; template <> constexpr inline auto DefaultBinder<std::nullptr_t> = ValueAsBinder; namespace loose_float_binder { constexpr inline auto LooseFloatBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { double x; auto status = internal_json::JsonRequireValueAs(*j, &x, false); if (status.ok()) *obj = x; return status; } else { *j = static_cast<double>(*obj); return absl::OkStatus(); } }; } using loose_float_binder::LooseFloatBinder; namespace float_binder { constexpr inline auto FloatBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { double x; auto status = internal_json::JsonRequireValueAs(*j, &x, true); if (status.ok()) *obj = x; return status; } else { *j = static_cast<double>(*obj); return absl::OkStatus(); } }; } using float_binder::FloatBinder; template <typename T> constexpr inline auto DefaultBinder<T, std::enable_if_t<std::is_floating_point_v<T>>> = FloatBinder; template <typename T> constexpr auto LooseInteger(T min = std::numeric_limits<T>::min(), T max = std::numeric_limits<T>::max()) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { return internal_json::JsonRequireInteger(*j, obj, false, min, max); } else { *j = *obj; return absl::OkStatus(); } }; } template <typename T> constexpr auto Integer(T min = std::numeric_limits<T>::min(), T max = std::numeric_limits<T>::max()) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { return internal_json::JsonRequireInteger(*j, obj, true, min, max); } else { *j = *obj; return absl::OkStatus(); } }; } template <typename T> constexpr inline auto DefaultBinder<T, std::enable_if_t<std::numeric_limits<T>::is_integer>> = Integer<T>(); namespace non_empty_string_binder { constexpr inline auto NonEmptyStringBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { return internal_json::JsonRequireValueAs( *j, obj, [](const std::string& value) { return !value.empty(); }, true); } else { *j = *obj; return absl::OkStatus(); } }; } using non_empty_string_binder::NonEmptyStringBinder; namespace copy_binder { constexpr inline auto CopyJsonBinder = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { *obj = std::move(*j); } else { *j = *obj; } return absl::OkStatus(); }; } using copy_binder::CopyJsonBinder; template <> constexpr inline auto DefaultBinder<::nlohmann::json> = CopyJsonBinder; namespace object_binder { constexpr inline auto CopyJsonObjectBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { if constexpr (is_loading) { if constexpr (std::is_same_v<decltype(j), ::nlohmann::json::object_t*>) { *obj = std::move(*j); } else { if (auto* j_obj = j->template get_ptr<::nlohmann::json::object_t*>()) { *obj = std::move(*j_obj); } else { return internal_json::ExpectedError(*j, "object"); } } } else { *j = *obj; } return absl::OkStatus(); }; } using object_binder::CopyJsonObjectBinder; template <> constexpr inline auto DefaultBinder<::nlohmann::json::object_t> = CopyJsonObjectBinder; template <typename GetValue> constexpr auto Constant(GetValue get_value) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { if constexpr (is_loading) { const auto& value = get_value(); if (!internal_json::JsonSame(*j, value)) { return internal_json::ExpectedError(*j, ::nlohmann::json(value).dump()); } } else { *j = get_value(); } return absl::OkStatus(); }; } template <typename Validator, typename Binder = decltype(DefaultBinder<>)> constexpr auto Validate(Validator validator, Binder binder = DefaultBinder<>) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { if constexpr (is_loading) { TENSORSTORE_RETURN_IF_ERROR(binder(is_loading, options, obj, j)); return internal::InvokeForStatus(validator, options, obj); } else { return binder(is_loading, options, obj, j); } }; } template <typename Initializer> constexpr auto Initialize(Initializer initializer) { return [=](auto is_loading, const auto& options, [[maybe_unused]] auto* obj, auto*) -> absl::Status { if constexpr (is_loading) { return internal::InvokeForStatus(initializer, obj); } else { return absl::OkStatus(); } }; } template <auto Proj, typename Binder = decltype(DefaultBinder<>)> constexpr auto Projection(Binder binder = DefaultBinder<>) { return [binder = std::move(binder)](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { auto&& projected = std::invoke(Proj, *obj); return binder(is_loading, options, &projected, j); }; } template <typename Proj, typename Binder = decltype(DefaultBinder<>)> constexpr auto Projection(Proj projection, Binder binder = DefaultBinder<>) { return [projection = std::move(projection), binder = std::move(binder)]( auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { auto&& projected = std::invoke(projection, *obj); return binder(is_loading, options, &projected, j); }; } template <typename T = void, typename Get, typename Set, typename Binder = decltype(DefaultBinder<>)> constexpr auto GetterSetter(Get get, Set set, Binder binder = DefaultBinder<>) { return [get = std::move(get), set = std::move(set), binder = std::move(binder)](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { if constexpr (is_loading) { using Projected = std::conditional_t< std::is_void_v<T>, absl::remove_cvref_t<std::invoke_result_t<Get, decltype(*obj)>>, T>; Projected projected; TENSORSTORE_RETURN_IF_ERROR(binder(is_loading, options, &projected, j)); return internal::InvokeForStatus(set, *obj, std::move(projected)); } else { auto&& projected = std::invoke(get, *obj); return binder(is_loading, options, &projected, j); } }; } template <typename LoadBinder = decltype(EmptyBinder), typename SaveBinder = decltype(EmptyBinder)> constexpr auto LoadSave(LoadBinder load_binder = EmptyBinder, SaveBinder save_binder = EmptyBinder) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { if constexpr (is_loading) { return load_binder(is_loading, options, obj, j); } else { return save_binder(is_loading, options, obj, j); } }; } enum IncludeDefaultsPolicy { kMaybeIncludeDefaults, kNeverIncludeDefaults, kAlwaysIncludeDefaults, }; template <IncludeDefaultsPolicy Policy = kMaybeIncludeDefaults, typename GetDefault, typename Binder = decltype(DefaultBinder<>)> constexpr auto DefaultValue(GetDefault get_default, Binder binder = DefaultBinder<>) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { using T = std::remove_const_t<std::remove_pointer_t<decltype(obj)>>; if constexpr (is_loading) { if (j->is_discarded()) { return internal::InvokeForStatus(get_default, obj); } return binder(is_loading, options, obj, j); } else { TENSORSTORE_RETURN_IF_ERROR(binder(is_loading, options, obj, j)); if constexpr (Policy == kAlwaysIncludeDefaults) { return absl::OkStatus(); } if constexpr (Policy == kMaybeIncludeDefaults) { IncludeDefaults include_defaults(options); if (include_defaults.include_defaults()) { return absl::OkStatus(); } } T default_obj; ::nlohmann::json default_j; if (internal::InvokeForStatus(get_default, &default_obj).ok() && binder(is_loading, options, &default_obj, &default_j).ok() && internal_json::JsonSame(default_j, *j)) { *j = ::nlohmann::json(::nlohmann::json::value_t::discarded); } return absl::OkStatus(); } }; } template <IncludeDefaultsPolicy DefaultsPolicy = kMaybeIncludeDefaults, typename Binder = decltype(DefaultBinder<>)> constexpr auto DefaultInitializedValue(Binder binder = DefaultBinder<>) { return internal_json_binding::DefaultValue<DefaultsPolicy>( [](auto* obj) { *obj = absl::remove_cvref_t<decltype(*obj)>{}; }, std::move(binder)); } template <IncludeDefaultsPolicy Policy = kMaybeIncludeDefaults, typename GetDefault, typename IsDefault, typename Binder = decltype(DefaultBinder<>)> constexpr auto DefaultPredicate(GetDefault get_default, IsDefault is_default, Binder binder = DefaultBinder<>) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { if (j->is_discarded()) { return internal::InvokeForStatus(get_default, obj); } return binder(is_loading, options, obj, j); } else { bool include_defaults_value = Policy == kAlwaysIncludeDefaults; if constexpr (Policy == kMaybeIncludeDefaults) { IncludeDefaults include_defaults(options); include_defaults_value = include_defaults.include_defaults(); } if (!include_defaults_value && is_default(obj)) { *j = ::nlohmann::json(::nlohmann::json::value_t::discarded); return absl::OkStatus(); } return binder(is_loading, options, obj, j); } }; } template <IncludeDefaultsPolicy Policy = kMaybeIncludeDefaults, typename IsDefault, typename Binder = decltype(DefaultBinder<>)> constexpr auto DefaultInitializedPredicate(IsDefault is_default, Binder binder = DefaultBinder<>) { return internal_json_binding::DefaultPredicate<Policy>( [](auto* obj) { *obj = absl::remove_cvref_t<decltype(*obj)>{}; }, std::move(is_default), std::move(binder)); } template <typename T, typename TransformedValueBinder, typename OriginalValueBinder = decltype(DefaultBinder<>)> constexpr auto Compose( TransformedValueBinder transformed_value_binder, OriginalValueBinder original_value_binder = DefaultBinder<>) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { T value; if constexpr (is_loading) { TENSORSTORE_RETURN_IF_ERROR( original_value_binder(is_loading, options, &value, j)); return transformed_value_binder(is_loading, options, obj, &value); } else { TENSORSTORE_RETURN_IF_ERROR( transformed_value_binder(is_loading, options, obj, &value)); return original_value_binder(is_loading, options, &value, j); } }; } template <typename GetBinder> constexpr auto Dependent(GetBinder get_binder) { return [=](auto is_loading, const auto& options, auto* obj, auto*... j) -> absl::Status { return get_binder(is_loading, options, obj, j...)(is_loading, options, obj, j...); }; } namespace sequence_impl { template <typename Loading, typename Options, typename Obj, typename J, typename... Binder> inline absl::Status invoke_reverse(Loading is_loading, Options& options, Obj* obj, J* j, Binder... binder) { absl::Status s; std::true_type right_to_left; right_to_left = (((s.ok() ? (void)(s = binder(is_loading, options, obj, j)) : (void)0), right_to_left) = ... = right_to_left); return s; } template <typename Loading, typename Options, typename Obj, typename J, typename... Binder> inline absl::Status invoke_forward(Loading is_loading, Options& options, Obj* obj, J* j, Binder... binder) { absl::Status s; [[maybe_unused]] bool ok = (((s = binder(is_loading, options, obj, j)).ok()) && ...); return s; } } template <typename... Binder> constexpr auto Sequence(Binder... binder) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { return sequence_impl::invoke_forward(is_loading, options, obj, j, binder...); } else { return sequence_impl::invoke_reverse(is_loading, options, obj, j, binder...); } }; } template <typename... MemberBinder> constexpr auto Object(MemberBinder... member_binder) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) -> absl::Status { ::nlohmann::json::object_t* j_obj; if constexpr (is_loading) { if constexpr (std::is_same_v<::nlohmann::json*, decltype(j)>) { j_obj = j->template get_ptr<::nlohmann::json::object_t*>(); if (!j_obj) { return internal_json::ExpectedError(*j, "object"); } } else { j_obj = j; } TENSORSTORE_RETURN_IF_ERROR(sequence_impl::invoke_forward( is_loading, options, obj, j_obj, member_binder...)); if (!j_obj->empty()) { return internal_json::JsonExtraMembersError(*j_obj); } return absl::OkStatus(); } else { if constexpr (std::is_same_v<::nlohmann::json*, decltype(j)>) { *j = ::nlohmann::json::object_t(); j_obj = j->template get_ptr<::nlohmann::json::object_t*>(); } else { j_obj = j; j_obj->clear(); } return sequence_impl::invoke_reverse(is_loading, options, obj, j_obj, member_binder...); } }; } template <bool kDropDiscarded, typename MemberName, typename Binder> struct MemberBinderImpl { MemberName name; Binder binder; template <typename Options, typename Obj> absl::Status operator()(std::true_type is_loading, const Options& options, Obj* obj, ::nlohmann::json::object_t* j_obj) const { ::nlohmann::json j_member = internal_json::JsonExtractMember(j_obj, name); if constexpr (kDropDiscarded) { if (j_member.is_discarded()) return absl::OkStatus(); } auto status = binder(is_loading, options, obj, &j_member); return status.ok() ? status : MaybeAnnotateStatus( status, tensorstore::StrCat("Error parsing object member ", QuoteString(name))); } template <typename Options, typename Obj> absl::Status operator()(std::false_type is_loading, const Options& options, Obj* obj, ::nlohmann::json::object_t* j_obj) const { ::nlohmann::json j_member(::nlohmann::json::value_t::discarded); TENSORSTORE_RETURN_IF_ERROR( binder(is_loading, options, obj, &j_member), MaybeAnnotateStatus( _, tensorstore::StrCat("Error converting object member ", QuoteString(name)))); if (!j_member.is_discarded()) { j_obj->emplace(name, std::move(j_member)); } return absl::OkStatus(); } }; template <typename MemberName, typename Binder = decltype(DefaultBinder<>)> constexpr auto Member(MemberName name, Binder binder = DefaultBinder<>) { return MemberBinderImpl<false, MemberName, Binder>{std::move(name), std::move(binder)}; } template <typename MemberName, typename Binder = decltype(DefaultBinder<>)> constexpr auto OptionalMember(MemberName name, Binder binder = DefaultBinder<>) { return MemberBinderImpl<true, MemberName, Binder>{std::move(name), std::move(binder)}; } template <typename... MemberName> constexpr auto AtMostOne(MemberName... names) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j) -> absl::Status { if constexpr (is_loading) { const auto has_member = [&](auto name) { return j->find(name) == j->end() ? 0 : 1; }; if ((has_member(names) + ...) > 1) { return absl::InvalidArgumentError(tensorstore::StrCat( "At most one of ", absl::StrJoin({QuoteString(std::string_view(names))...}, ", "), " members is allowed")); } } return absl::OkStatus(); }; } template <typename... MemberName> constexpr auto AtLeastOne(MemberName... names) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j) -> absl::Status { if constexpr (is_loading) { const auto has_member = [&](auto name) { return j->find(name) == j->end() ? 0 : 1; }; if ((has_member(names) + ...) == 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "At least one of ", absl::StrJoin( std::make_tuple(QuoteString(std::string_view(names))...), ", "), " members must be specified")); } } return absl::OkStatus(); }; } namespace discard_extra_members_binder { constexpr inline auto DiscardExtraMembers = [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j_obj) -> absl::Status { if constexpr (is_loading) { j_obj->clear(); } return absl::OkStatus(); }; } using discard_extra_members_binder::DiscardExtraMembers; } } #endif
#include "tensorstore/internal/json_binding/json_binding.h" #include <cstdint> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { namespace jb = tensorstore::internal_json_binding; using ::nlohmann::json; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::ParseJson; using ::tensorstore::internal_json::JsonParseArray; using ::tensorstore::internal_json::JsonValidateArrayLength; TEST(JsonTest, SimpleParse) { const char kArray[] = R"({ "foo": "bar" })"; auto x = ParseJson(""); EXPECT_TRUE(x.is_discarded()); auto y = ParseJson(kArray); EXPECT_FALSE(y.is_discarded()); auto one = ParseJson("1"); EXPECT_FALSE(one.is_discarded()); } TEST(JsonParseArrayTest, Basic) { bool size_received = false; std::vector<std::pair<::nlohmann::json, std::ptrdiff_t>> elements; EXPECT_EQ(absl::OkStatus(), JsonParseArray( ::nlohmann::json{1, 2, 3}, [&](std::ptrdiff_t s) { EXPECT_EQ(3, s); size_received = true; return JsonValidateArrayLength(s, 3); }, [&](const ::nlohmann::json& j, std::ptrdiff_t i) { EXPECT_TRUE(size_received); elements.emplace_back(j, i); return absl::OkStatus(); })); EXPECT_TRUE(size_received); EXPECT_THAT(elements, ::testing::ElementsAre(::testing::Pair(1, 0), ::testing::Pair(2, 1), ::testing::Pair(3, 2))); } TEST(JsonParseArrayTest, NotArray) { EXPECT_THAT(JsonParseArray( ::nlohmann::json(3), [&](std::ptrdiff_t s) { return absl::OkStatus(); }, [&](const ::nlohmann::json& j, std::ptrdiff_t i) { return absl::OkStatus(); }), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected array, but received: 3")); } TEST(JsonValidateArrayLength, Success) { EXPECT_EQ(absl::OkStatus(), JsonValidateArrayLength(3, 3)); } TEST(JsonValidateArrayLength, Failure) { EXPECT_THAT(JsonValidateArrayLength(3, 4), MatchesStatus(absl::StatusCode::kInvalidArgument, "Array has length 3 but should have length 4")); } TEST(JsonParseArrayTest, SizeCallbackError) { EXPECT_THAT( JsonParseArray( ::nlohmann::json{1, 2, 3}, [&](std::ptrdiff_t s) { return absl::UnknownError("size_callback"); }, [&](const ::nlohmann::json& j, std::ptrdiff_t i) { return absl::OkStatus(); }), MatchesStatus(absl::StatusCode::kUnknown, "size_callback")); } TEST(JsonParseArrayTest, ElementCallbackError) { EXPECT_THAT(JsonParseArray( ::nlohmann::json{1, 2, 3}, [&](std::ptrdiff_t s) { return absl::OkStatus(); }, [&](const ::nlohmann::json& j, std::ptrdiff_t i) { if (i == 0) return absl::OkStatus(); return absl::UnknownError("element"); }), MatchesStatus(absl::StatusCode::kUnknown, "Error parsing value at position 1: element")); } TEST(JsonBindingTest, Example) { struct Foo { int x; std::string y; std::optional<int> z; }; constexpr auto FooBinder = [] { return jb::Object( jb::Member("x", jb::Projection(&Foo::x)), jb::Member("y", jb::Projection(&Foo::y, jb::DefaultValue([](auto* y) { *y = "default"; }))), jb::Member("z", jb::Projection(&Foo::z))); }; EXPECT_EQ(::nlohmann::json({{"x", 3}}), jb::ToJson(Foo{3, "default", std::nullopt}, FooBinder(), tensorstore::IncludeDefaults{false})); auto value = jb::FromJson<Foo>({{"x", 3}, {"y", "value"}, {"z", 10}}, FooBinder()) .value(); EXPECT_EQ(3, value.x); EXPECT_EQ("value", value.y); EXPECT_EQ(10, value.z); } TEST(JsonBindingTest, SequenceOrder) { auto binder = jb::Sequence( [](auto is_loading, const auto& options, int* obj, auto* j) { *obj = 1; return absl::OkStatus(); }, [](auto is_loading, const auto& options, int* obj, auto* j) { *obj = 3; return absl::OkStatus(); }); int x = 0; ::nlohmann::json j({{"x", 3}}); EXPECT_TRUE(binder(std::true_type{}, jb::NoOptions{}, &x, &j).ok()); EXPECT_EQ(3, x); EXPECT_TRUE(binder(std::false_type{}, jb::NoOptions{}, &x, &j).ok()); EXPECT_EQ(1, x); } TEST(JsonBindingTest, ValueAsBinder) { tensorstore::TestJsonBinderRoundTrip<bool>( { {true, ::nlohmann::json(true)}, }, jb::ValueAsBinder); tensorstore::TestJsonBinderRoundTrip<std::int64_t>( { {3, ::nlohmann::json(3)}, }, jb::ValueAsBinder); tensorstore::TestJsonBinderRoundTrip<uint64_t>( { {4, ::nlohmann::json(4)}, }, jb::ValueAsBinder); tensorstore::TestJsonBinderRoundTrip<double>( { {5, ::nlohmann::json(5)}, {5.0, ::nlohmann::json(5.0)}, }, jb::ValueAsBinder); tensorstore::TestJsonBinderRoundTrip<std::string>( { {"a", ::nlohmann::json("a")}, {"", ::nlohmann::json("")}, }, jb::ValueAsBinder); } TEST(JsonBindingTest, LooseValueAsBinder) { using testing::Eq; tensorstore::TestJsonBinderFromJson<bool>( { {::nlohmann::json(true), Eq(true)}, {::nlohmann::json("true"), Eq(true)}, }, jb::LooseValueAsBinder); tensorstore::TestJsonBinderFromJson<std::int64_t>( { {::nlohmann::json(3), Eq(3)}, {::nlohmann::json(3.0), Eq(3)}, {::nlohmann::json("3"), Eq(3)}, }, jb::LooseValueAsBinder); tensorstore::TestJsonBinderFromJson<uint64_t>( { {::nlohmann::json(4), Eq(4)}, {::nlohmann::json(4.0), Eq(4)}, {::nlohmann::json("4"), Eq(4)}, }, jb::LooseValueAsBinder); tensorstore::TestJsonBinderFromJson<double>( { {::nlohmann::json(5.0), Eq(5.0)}, {::nlohmann::json(5), Eq(5.0)}, {::nlohmann::json("5"), Eq(5.0)}, }, jb::LooseValueAsBinder); tensorstore::TestJsonBinderRoundTrip<std::string>( { {"a", ::nlohmann::json("a")}, {"", ::nlohmann::json("")}, }, jb::LooseValueAsBinder); } TEST(JsonBindingTest, NonEmptyStringBinder) { using testing::Eq; tensorstore::TestJsonBinderRoundTrip<std::string>( { {"a", ::nlohmann::json("a")}, }, jb::NonEmptyStringBinder); tensorstore::TestJsonBinderFromJson<std::string>( { {"", MatchesStatus(absl::StatusCode::kInvalidArgument, "Validation of string failed, received: \"\"")}, }, jb::NonEmptyStringBinder); } TEST(JsonBindingTest, FloatBinders) { using testing::Eq; tensorstore::TestJsonBinderFromJson<float>( { {::nlohmann::json(5.0), Eq(5.0f)}, {::nlohmann::json(5), Eq(5.0f)}, }, jb::FloatBinder); tensorstore::TestJsonBinderFromJson<double>( { {::nlohmann::json(5.0), Eq(5.0)}, {::nlohmann::json(5), Eq(5.0)}, }, jb::FloatBinder); tensorstore::TestJsonBinderFromJson<float>( { {::nlohmann::json(5.0), Eq(5.0f)}, {::nlohmann::json(5), Eq(5.0f)}, {::nlohmann::json("5"), Eq(5.0f)}, }, jb::LooseFloatBinder); tensorstore::TestJsonBinderFromJson<double>( { {::nlohmann::json(5.0), Eq(5.0)}, {::nlohmann::json(5), Eq(5.0)}, {::nlohmann::json("5"), Eq(5.0)}, }, jb::LooseFloatBinder); } TEST(JsonBindingTest, DefaultValueDiscarded) { const auto binder = jb::DefaultValue([](auto* obj) { *obj = 3; }, jb::DefaultValue([](auto* obj) { *obj = 3; })); tensorstore::TestJsonBinderRoundTrip<int>( { {3, ::nlohmann::json(::nlohmann::json::value_t::discarded)}, {4, 4}, }, binder, tensorstore::IncludeDefaults{false}); tensorstore::TestJsonBinderRoundTrip<int>( { {3, 3}, {4, 4}, }, binder, tensorstore::IncludeDefaults{true}); } TEST(JsonBindingTest, GetterSetter) { struct Foo { int x; int get_x() const { return x; } void set_x(int value) { this->x = value; } }; const auto FooBinder = jb::Object(jb::Member("x", jb::GetterSetter(&Foo::get_x, &Foo::set_x))); EXPECT_EQ(::nlohmann::json({{"x", 3}}), jb::ToJson(Foo{3}, FooBinder)); auto value = jb::FromJson<Foo>({{"x", 3}}, FooBinder).value(); EXPECT_EQ(3, value.x); } TEST(JsonBindingTest, Constant) { const auto binder = jb::Constant([] { return 3; }); EXPECT_THAT(jb::ToJson("ignored", binder), ::testing::Optional(::nlohmann::json(3))); EXPECT_THAT(jb::FromJson<std::string>(::nlohmann::json(3), binder), ::testing::Optional(std::string{})); EXPECT_THAT(jb::FromJson<std::string>(::nlohmann::json(4), binder), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected 3, but received: 4")); } TEST(JsonBindingTest, ObjectMember) { tensorstore::TestJsonBinderRoundTrip<int>( { {3, ::nlohmann::json({{"x", 3}})}, }, jb::Object(jb::Member("x"))); } TEST(JsonBindingTest, ObjectOptionalMember) { struct Foo { int x = 1; }; const auto FooBinder = jb::Object(jb::OptionalMember("x", jb::Projection(&Foo::x)), jb::DiscardExtraMembers); EXPECT_EQ(::nlohmann::json({{"x", 3}}), jb::ToJson(Foo{3}, FooBinder)); { auto value = jb::FromJson<Foo>({{"x", 3}}, FooBinder).value(); EXPECT_EQ(3, value.x); } { auto value = jb::FromJson<Foo>({{"y", 3}}, FooBinder).value(); EXPECT_EQ(1, value.x); } } TEST(JsonBindingTest, StaticRankBox) { using Value = tensorstore::Box<3>; const auto binder = jb::Object( jb::Member("origin", jb::Projection([](auto& x) { return x.origin(); })), jb::Member("shape", jb::Projection([](auto& x) { return x.shape(); }))); tensorstore::TestJsonBinderRoundTrip<Value>( { {Value({1, 2, 3}, {4, 5, 6}), {{"origin", {1, 2, 3}}, {"shape", {4, 5, 6}}}}, }, binder); } TEST(JsonBindingTest, DynamicRankBox) { using Value = tensorstore::Box<>; const auto binder = jb::Object( jb::Member("rank", jb::GetterSetter( [](auto& x) { return x.rank(); }, [](auto& x, tensorstore::DimensionIndex rank) { x.set_rank(rank); }, jb::Integer(0))), jb::Member("origin", jb::Projection([](auto& x) { return x.origin(); })), jb::Member("shape", jb::Projection([](auto& x) { return x.shape(); }))); tensorstore::TestJsonBinderRoundTrip<Value>( { {Value({1, 2, 3}, {4, 5, 6}), {{"rank", 3}, {"origin", {1, 2, 3}}, {"shape", {4, 5, 6}}}}, }, binder); } TEST(JsonBindingTest, Null) { tensorstore::TestJsonBinderRoundTrip<std::nullptr_t>({ {nullptr, nullptr}, }); tensorstore::TestJsonBinderFromJson<std::nullptr_t>({ {42, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected null, but received: 42")}, }); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/json_binding.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/json_binding_test.cc
4f887a6430414cd6088e1743555015b10f116d50
54ed2f8c-feef-413a-849e-6f58a65a0f95
cpp
google/arolla
expr
arolla/expr/expr.cc
arolla/expr/expr_test.cc
#include "arolla/expr/expr.h" #include <algorithm> #include <cstddef> #include <initializer_list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/qtype_utils.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/util/status.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { absl::StatusOr<ExprNodePtr> ToLowerNode(const ExprNodePtr& node) { const auto& op = node->op(); if (op == nullptr) { return node; } ASSIGN_OR_RETURN(auto result, op->ToLowerLevel(node), _ << "while processing node " << GetDebugSnippet(node)); if (!node->attr().IsSubsetOf(result->attr())) { return absl::FailedPreconditionError(absl::StrFormat( "expression %s attributes changed in ToLower from %s to " "%s; this indicates incorrect InferAttributes() or GetOutputType() " "of the operator %s", GetDebugSnippet(node), absl::FormatStreamed(node->attr()), absl::FormatStreamed(result->attr()), op->display_name())); } return result; } absl::StatusOr<ExprNodePtr> ToLowest(const ExprNodePtr& expr) { return DeepTransform(expr, &ToLowerNode); } namespace { struct ExprNodeFormatter { void operator()(std::string* out, ExprNodePtr node) const { absl::StrAppend(out, GetDebugSnippet(node)); } }; bool AreExprAttributesTheSame(absl::Span<const ExprNodePtr> lexprs, absl::Span<const ExprNodePtr> rexprs) { if (lexprs.size() != rexprs.size()) { return false; } for (size_t i = 0; i != lexprs.size(); ++i) { if (!lexprs[i]->attr().IsIdenticalTo(rexprs[i]->attr())) { return false; } } return true; } } absl::StatusOr<ExprNodePtr> MakeOpNode(ExprOperatorPtr op, std::vector<ExprNodePtr> deps) { ASSIGN_OR_RETURN(auto output_attr, op->InferAttributes(GetExprAttrs(deps)), _ << "while calling " << op->display_name() << " with args {" << absl::StrJoin(deps, ", ", ExprNodeFormatter()) << "}"); return ExprNode::UnsafeMakeOperatorNode(std::move(op), std::move(deps), std::move(output_attr)); } absl::StatusOr<ExprNodePtr> BindOp( ExprOperatorPtr op, absl::Span<const ExprNodePtr> args, const absl::flat_hash_map<std::string, ExprNodePtr>& kwargs) { ASSIGN_OR_RETURN(auto signature, op->GetSignature()); ASSIGN_OR_RETURN( auto bound_args, BindArguments(signature, args, kwargs), _ << "while binding operator '" << op->display_name() << "'"); return MakeOpNode(std::move(op), std::move(bound_args)); } absl::StatusOr<ExprNodePtr> BindOp( absl::string_view op_name, absl::Span<const ExprNodePtr> args, const absl::flat_hash_map<std::string, ExprNodePtr>& kwargs) { ASSIGN_OR_RETURN(auto op, LookupOperator(op_name)); return BindOp(std::move(op), args, kwargs); } absl::StatusOr<ExprNodePtr> WithNewOperator(const ExprNodePtr& node, ExprOperatorPtr op) { if (!node->is_op()) { return absl::InvalidArgumentError( "WithNewOperator works only with operator nodes"); } return MakeOpNode(std::move(op), node->node_deps()); } absl::StatusOr<ExprNodePtr> WithNewDependencies(const ExprNodePtr& node, std::vector<ExprNodePtr> deps) { const auto& old_deps = node->node_deps(); if (absl::c_equal(old_deps, deps, [](const auto& lhs, const auto& rhs) { return lhs->fingerprint() == rhs->fingerprint(); })) { return node; } if (node->is_op()) { if (AreExprAttributesTheSame(old_deps, deps)) { return ExprNode::UnsafeMakeOperatorNode(ExprOperatorPtr(node->op()), std::move(deps), ExprAttributes(node->attr())); } else { return MakeOpNode(node->op(), std::move(deps)); } } if (!deps.empty()) { return absl::InvalidArgumentError( "only operator nodes can have dependencies"); } return node; } namespace { template <typename Strings> std::vector<std::string> SortedStrings(const Strings& strings) { std::vector<std::string> result; result.reserve(strings.size()); for (const auto& str : strings) { result.emplace_back(str); } std::sort(result.begin(), result.end()); return result; } } std::vector<std::string> GetLeafKeys(const ExprNodePtr& expr) { absl::flat_hash_set<absl::string_view> result; for (const auto& node : VisitorOrder(expr)) { if (node->is_leaf()) { result.emplace(node->leaf_key()); } } return SortedStrings(result); } std::vector<std::string> GetPlaceholderKeys(const ExprNodePtr& expr) { absl::flat_hash_set<absl::string_view> result; for (const auto& node : VisitorOrder(expr)) { if (node->is_placeholder()) { result.emplace(node->placeholder_key()); } } return SortedStrings(result); } absl::StatusOr<ExprNodePtr> CallOp( absl::StatusOr<ExprOperatorPtr> status_or_op, std::initializer_list<absl::StatusOr<ExprNodePtr>> status_or_args, std::initializer_list<std::pair<std::string, absl::StatusOr<ExprNodePtr>>> status_or_kwargs) { ASSIGN_OR_RETURN(auto op, std::move(status_or_op)); ASSIGN_OR_RETURN(std::vector<ExprNodePtr> args, LiftStatusUp(absl::Span<const absl::StatusOr<ExprNodePtr>>( status_or_args))); ASSIGN_OR_RETURN((absl::flat_hash_map<std::string, ExprNodePtr> kwargs), LiftStatusUp(status_or_kwargs)); return BindOp(op, args, kwargs); } absl::StatusOr<ExprNodePtr> CallOp( absl::StatusOr<ExprOperatorPtr> status_or_op, std::vector<absl::StatusOr<ExprNodePtr>> status_or_args, absl::flat_hash_map<std::string, absl::StatusOr<ExprNodePtr>> status_or_kwargs) { ASSIGN_OR_RETURN(auto op, std::move(status_or_op)); ASSIGN_OR_RETURN(auto args, LiftStatusUp(absl::Span<const absl::StatusOr<ExprNodePtr>>( status_or_args))); ASSIGN_OR_RETURN((absl::flat_hash_map<std::string, ExprNodePtr> kwargs), LiftStatusUp(status_or_kwargs)); return BindOp(op, args, kwargs); } absl::StatusOr<ExprNodePtr> CallOp( absl::string_view op_name, std::initializer_list<absl::StatusOr<ExprNodePtr>> status_or_args, std::initializer_list<std::pair<std::string, absl::StatusOr<ExprNodePtr>>> status_or_kwargs) { ASSIGN_OR_RETURN(auto args, LiftStatusUp(absl::Span<const absl::StatusOr<ExprNodePtr>>( status_or_args))); ASSIGN_OR_RETURN((absl::flat_hash_map<std::string, ExprNodePtr> kwargs), LiftStatusUp(status_or_kwargs)); return BindOp(op_name, args, kwargs); } absl::StatusOr<ExprNodePtr> CallOp( absl::string_view op_name, std::vector<absl::StatusOr<ExprNodePtr>> status_or_args, absl::flat_hash_map<std::string, absl::StatusOr<ExprNodePtr>> status_or_kwargs) { ASSIGN_OR_RETURN(auto args, LiftStatusUp(absl::Span<const absl::StatusOr<ExprNodePtr>>( status_or_args))); ASSIGN_OR_RETURN((absl::flat_hash_map<std::string, ExprNodePtr> kwargs), LiftStatusUp(status_or_kwargs)); return BindOp(op_name, args, kwargs); } }
#include "arolla/expr/expr.h" #include <cstdint> #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "arolla/expr/annotation_utils.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/testing/test_operators.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/bytes.h" #include "arolla/util/unit.h" namespace arolla::expr { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::EqualsExpr; using ::arolla::testing::WithNameAnnotation; using ::arolla::testing::WithQTypeAnnotation; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Not; TEST(ExprTest, CallOp) { ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("math.add")); EXPECT_TRUE(IsRegisteredOperator(op)); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("a"), Leaf("b")})); EXPECT_TRUE(expr->is_op()); EXPECT_TRUE(IsRegisteredOperator(expr->op())); ASSERT_OK_AND_ASSIGN(auto expected_expr, CallOp(op, {Leaf("a"), Leaf("b")})); EXPECT_THAT(expr, EqualsExpr(expected_expr)); } TEST(ExprTest, AdvancedCallOp) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); auto w = Leaf("w"); auto def = Literal(kUnit); absl::StatusOr<ExprNodePtr> x_or(x); absl::StatusOr<ExprNodePtr> y_or(y); absl::StatusOr<ExprNodePtr> z_or(z); absl::StatusOr<ExprNodePtr> w_or(w); ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("p0, p1=, *tail", kUnit)); const auto op = std::make_shared<testing::DummyOp>( "test.expr_test.advanced_callop.dummy_op", sig); EXPECT_THAT( CallOp(op, {}), StatusIs(absl::StatusCode::kInvalidArgument)); { ASSERT_OK_AND_ASSIGN(auto expected_expr, MakeOpNode(op, {x, def})); EXPECT_THAT(CallOp(op, {x_or}), IsOkAndHolds(EqualsExpr(expected_expr))); } { ASSERT_OK_AND_ASSIGN(auto expected_expr, MakeOpNode(op, {x, y})); EXPECT_THAT(CallOp(op, {x_or, y_or}), IsOkAndHolds(EqualsExpr(expected_expr))); } { ASSERT_OK_AND_ASSIGN(auto expected_expr, MakeOpNode(op, {x, y, z})); EXPECT_THAT(CallOp(op, {x_or, y_or, z_or}), IsOkAndHolds(EqualsExpr(expected_expr))); } { ASSERT_OK_AND_ASSIGN(auto expected_expr, MakeOpNode(op, {x, y, z, w})); EXPECT_THAT(CallOp(op, {x_or, y_or, z_or, w_or}), IsOkAndHolds(EqualsExpr(expected_expr))); } { ASSERT_OK_AND_ASSIGN(auto expected_expr, MakeOpNode(op, {x, y})); EXPECT_THAT(CallOp(op, {x_or}, {{"p1", y_or}}), IsOkAndHolds(EqualsExpr(expected_expr))); } } TEST(ExprTest, LiftStatus) { auto x = Leaf("x"); auto y = Leaf("y"); ASSERT_OK_AND_ASSIGN(auto expected_expr, CallOp("math.add", {x, y})); EXPECT_THAT(CallOp("math.add", {Leaf("x"), Leaf("y")}), IsOkAndHolds(EqualsExpr(expected_expr))); EXPECT_THAT( CallOp("math.add", {Leaf("x"), absl::InvalidArgumentError("error")}), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExprTest, Literal) { const Bytes bytes("a long string literal to ensure memory allocation"); const TypedValue qvalue = TypedValue::FromValue(bytes); { auto x = Literal(bytes); ASSERT_OK_AND_ASSIGN(Bytes x_bytes, x->qvalue()->As<Bytes>()); EXPECT_THAT(x_bytes, Eq(bytes)); } { auto x = Literal<Bytes>(bytes); ASSERT_OK_AND_ASSIGN(Bytes x_bytes, x->qvalue()->As<Bytes>()); EXPECT_THAT(x_bytes, Eq(bytes)); } { auto copy = bytes; auto *data_raw_ptr = absl::string_view(copy).data(); auto x = Literal(std::move(copy)); EXPECT_EQ(absl::string_view(x->qvalue()->UnsafeAs<Bytes>()).data(), data_raw_ptr); } { auto copy = bytes; auto *data_raw_ptr = absl::string_view(copy).data(); auto x = Literal<Bytes>(std::move(copy)); EXPECT_EQ(absl::string_view(x->qvalue()->UnsafeAs<Bytes>()).data(), data_raw_ptr); } { auto x = Literal(qvalue); EXPECT_EQ(x->qvalue()->GetType(), qvalue.GetType()); EXPECT_EQ(x->qvalue()->GetRawPointer(), qvalue.GetRawPointer()); } { auto fn = [&]() { return qvalue; }; auto x = Literal(fn()); EXPECT_EQ(x->qvalue()->GetType(), qvalue.GetType()); EXPECT_EQ(x->qvalue()->GetRawPointer(), qvalue.GetRawPointer()); } { auto x = Literal(TypedValue(qvalue)); EXPECT_EQ(x->qvalue()->GetType(), qvalue.GetType()); EXPECT_EQ(x->qvalue()->GetRawPointer(), qvalue.GetRawPointer()); } } TEST(ExprTest, LiteralHash) { auto x = Literal(1.0); auto x1 = Literal(1.0); auto y = Literal(2.0); auto z = Literal(1); EXPECT_THAT(x, EqualsExpr(x1)); EXPECT_THAT(x, Not(EqualsExpr(y))); EXPECT_THAT(x, Not(EqualsExpr(z))); } TEST(ExprTest, WithNewOperator) { ASSERT_OK_AND_ASSIGN(auto op1, LookupOperator("math.add")); ASSERT_OK_AND_ASSIGN(auto op2, LookupOperator("math.multiply")); ASSERT_OK_AND_ASSIGN(auto actual_value, CallOp(op1, {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN(actual_value, WithNewOperator(actual_value, op2)); ASSERT_OK_AND_ASSIGN(auto expected_value, CallOp(op2, {Leaf("x"), Leaf("y")})); EXPECT_THAT(actual_value, EqualsExpr(expected_value)); } TEST(ExprTest, WithName) { ASSERT_OK_AND_ASSIGN(auto named_literal, WithNameAnnotation(Literal(1.0), "a")); EXPECT_EQ(ReadNameAnnotation(named_literal), "a"); ASSERT_OK_AND_ASSIGN(auto named_leaf, WithNameAnnotation(Leaf("x"), "a")); EXPECT_EQ(ReadNameAnnotation(named_leaf), "a"); EXPECT_EQ(named_leaf->node_deps()[0]->leaf_key(), "x"); ASSERT_OK_AND_ASSIGN(auto named_placeholder, WithNameAnnotation(Placeholder("x"), "a")); EXPECT_EQ(ReadNameAnnotation(named_placeholder), "a"); EXPECT_EQ(named_placeholder->node_deps()[0]->placeholder_key(), "x"); } TEST(ExprTest, LeafHash) { auto x = Leaf("x"); auto x1 = Leaf("x"); auto y = Leaf("y"); ASSERT_OK_AND_ASSIGN(auto float_x, WithQTypeAnnotation(x, GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto float_x1, WithQTypeAnnotation(x1, GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto int_x, WithQTypeAnnotation(x, GetQType<int32_t>())); EXPECT_THAT(x, EqualsExpr(x1)); EXPECT_THAT(float_x, EqualsExpr(float_x1)); EXPECT_THAT(x, Not(EqualsExpr(y))); EXPECT_THAT(x, Not(EqualsExpr(float_x))); EXPECT_THAT(int_x, Not(EqualsExpr(float_x))); } TEST(ExprTest, PlaceholderHash) { auto x = Placeholder("x"); auto x1 = Placeholder("x"); auto y = Placeholder("y"); EXPECT_THAT(x, EqualsExpr(x1)); EXPECT_THAT(x, Not(EqualsExpr(y))); } TEST(ExprTest, GetLeafKeys) { auto l_a = Leaf("a"); auto l_b = Leaf("b"); auto p_a = Placeholder("a"); auto p_b = Placeholder("b"); { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {p_a, p_b})); EXPECT_THAT(GetLeafKeys(expr), ElementsAre()); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, p_b})); EXPECT_THAT(GetLeafKeys(expr), ElementsAre("a")); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {p_a, l_b})); EXPECT_THAT(GetLeafKeys(expr), ElementsAre("b")); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, l_b})); EXPECT_THAT(GetLeafKeys(expr), ElementsAre("a", "b")); } } TEST(ExprTest, GetPlaceholderKeys) { auto l_a = Leaf("a"); auto l_b = Leaf("b"); auto p_a = Placeholder("a"); auto p_b = Placeholder("b"); { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {p_a, p_b})); EXPECT_THAT(GetPlaceholderKeys(expr), ElementsAre("a", "b")); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, p_b})); EXPECT_THAT(GetPlaceholderKeys(expr), ElementsAre("b")); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {p_a, l_b})); EXPECT_THAT(GetPlaceholderKeys(expr), ElementsAre("a")); } { ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, l_b})); EXPECT_THAT(GetPlaceholderKeys(expr), ElementsAre()); } } TEST(ExprTest, WithNewDependencies) { auto l_a = Leaf("a"); auto p_b = Placeholder("b"); auto lit = Literal(3.14); ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, p_b})); EXPECT_THAT(WithNewDependencies(l_a, {}), IsOkAndHolds(EqualsExpr(l_a))); EXPECT_THAT(WithNewDependencies(p_b, {}), IsOkAndHolds(EqualsExpr(p_b))); EXPECT_THAT(WithNewDependencies(lit, {}), IsOkAndHolds(EqualsExpr(lit))); ASSERT_OK_AND_ASSIGN(const auto actual_expr, WithNewDependencies(expr, {p_b, l_a})); ASSERT_OK_AND_ASSIGN(const auto expected_expr, CallOp("math.add", {p_b, l_a})); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } TEST(ExprTest, WithNewDependenciesOptimizations) { auto l_a = Leaf("a"); auto l_b = Leaf("b"); auto l_a2 = Leaf("a"); ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, l_a})); ASSERT_OK_AND_ASSIGN(const auto expr2, WithNewDependencies(expr, {l_a2, l_a2})); EXPECT_EQ(expr.get(), expr2.get()); ASSERT_OK_AND_ASSIGN(const auto expr3, WithNewDependencies(expr, {l_b, l_a})); EXPECT_NE(expr.get(), expr3.get()); } TEST(ExprTest, WithNewDependenciesAttr) { auto l_a = Leaf("a"); ASSERT_OK_AND_ASSIGN( const auto l_a_int, CallOp("annotation.qtype", {l_a, Literal(GetQType<int>())})); ASSERT_OK_AND_ASSIGN(const auto expr, CallOp("math.add", {l_a, l_a})); EXPECT_TRUE(expr->attr().IsIdenticalTo(ExprAttributes{})); ASSERT_OK_AND_ASSIGN(const auto expr_int, WithNewDependencies(expr, {l_a_int, l_a_int})); EXPECT_TRUE(expr_int->attr().IsIdenticalTo(ExprAttributes(GetQType<int>()))); ASSERT_OK_AND_ASSIGN(const auto expr2, WithNewDependencies(expr_int, {l_a_int, l_a})); EXPECT_TRUE(expr2->attr().IsIdenticalTo(ExprAttributes{})); } TEST(ExprTest, RegisterOperatorAlias) { CHECK_OK(RegisterOperatorAlias("alias_test.add3", "test.add3").status()); CHECK_OK(RegisterOperatorAlias("alias_test.power", "test.power").status()); { ASSERT_OK_AND_ASSIGN(auto expr, CallOp("alias_test.power", {Leaf("x"), Leaf("y")})); EXPECT_THAT(ToLowerNode(expr), IsOkAndHolds(EqualsExpr(expr))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp("alias_test.add3", {Leaf("x"), Leaf("y"), Leaf("z")})); ASSERT_OK_AND_ASSIGN( auto expected_expr, CallOp("test.add3", {Leaf("x"), Leaf("y"), Leaf("z")})); ASSERT_OK_AND_ASSIGN(expected_expr, ToLowerNode(expected_expr)); EXPECT_THAT(ToLowerNode(expr), IsOkAndHolds(EqualsExpr(expected_expr))); } { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("alias_test.add3", {Literal(5), Literal(6), Literal(7)})); EXPECT_EQ(expr->qtype(), GetQType<int>()); } { ASSERT_OK_AND_ASSIGN(auto alias_op, LookupOperator("alias_test.add3")); ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("test.add3")); ASSERT_OK_AND_ASSIGN(auto actual_docstring, alias_op->GetDoc()); ASSERT_OK_AND_ASSIGN(auto expected_docstring, op->GetDoc()); EXPECT_EQ(actual_docstring, expected_docstring); ASSERT_OK_AND_ASSIGN(auto actual_signature, alias_op->GetSignature()); ASSERT_OK_AND_ASSIGN(auto expected_signature, op->GetSignature()); EXPECT_EQ(GetExprOperatorSignatureSpec(actual_signature), GetExprOperatorSignatureSpec(expected_signature)); } } TEST(ExprTest, ToLowerNode) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("test.add3", {x, y, z})); ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowerNode(expr)); ASSERT_OK_AND_ASSIGN(auto xy, CallOp("math.add", {x, y})); ASSERT_OK_AND_ASSIGN(auto expected_expr, CallOp("math.add", {xy, z})); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } TEST(ExprTest, ToLowest) { auto a = Leaf("a"); auto b = Leaf("b"); auto c = Leaf("c"); auto d = Leaf("d"); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("test.add4", {a, b, c, d})); ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(expr)); ASSERT_OK_AND_ASSIGN(auto ab, CallOp("math.add", {a, b})); ASSERT_OK_AND_ASSIGN(auto abc, CallOp("math.add", {ab, c})); ASSERT_OK_AND_ASSIGN(auto abcd, CallOp("math.add", {abc, d})); EXPECT_THAT(actual_expr, EqualsExpr(abcd)); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
84951f39-a11a-4836-802f-02491812829a
cpp
tensorflow/tensorflow
rgb_to_grayscale
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.cc
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rgb_to_grayscale { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline void ConvertRgbToGrayscale(dim_t batches, dim_t height, dim_t width, const float* input_data, float* output_data) { const dim_t output_num_pixels = batches * width * height; constexpr float kRgb2GrayscaleKernel[] = {0.2989f, 0.5870f, 0.1140f}; const float* src_ptr = input_data; float* dst_ptr = output_data; for (int i = 0; i < output_num_pixels; ++i) { *dst_ptr = kRgb2GrayscaleKernel[0] * src_ptr[0] + kRgb2GrayscaleKernel[1] * src_ptr[1] + kRgb2GrayscaleKernel[2] * src_ptr[2]; src_ptr += 3; dst_ptr++; } } void ComputeRgbToGrayscale(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t channels = img->Dims()[3]; TFLITE_DCHECK(channels == 3); MutableDataRef* output = outputs[0]; output->Resize({img_num_batches, img_height, img_width, 1}); float* output_data = reinterpret_cast<float*>(output->Data()); ConvertRgbToGrayscale(img_num_batches, img_height, img_width, img_data, output_data); } } const Algo* Impl_RgbToGrayscale() { static const Algo rgb_to_grayscale = {&ComputeRgbToGrayscale, nullptr}; return &rgb_to_grayscale; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rgb_to_grayscale { namespace { struct RgbToGrayscaleTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class RgbToGrayscaleTest : public ::testing::TestWithParam<RgbToGrayscaleTestParams> {}; TEST_P(RgbToGrayscaleTest, FloatPixelType) { const RgbToGrayscaleTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rgb_to_grayscale = Impl_RgbToGrayscale(); rgb_to_grayscale->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); constexpr float kAbsError = 0.1f; const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( RgbToGrayscaleTests, RgbToGrayscaleTest, testing::ValuesIn({ RgbToGrayscaleTestParams{{1, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {92.5f, 93.5f, 102.5f, 103.5f, 112.5f, 113.5f}, {1, 3, 2, 1}}, RgbToGrayscaleTestParams{{2, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232, 51, 311, 411, 52, 312, 412, 61, 321, 421, 62, 322, 422, 71, 331, 431, 72, 332, 432}, {92.5f, 93.5f, 102.5f, 103.5f, 112.5f, 113.5f, 244.7f, 245.7f, 254.7f, 255.7f, 264.7f, 265.7f}, {2, 3, 2, 1}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_grayscale_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
38da609b-05a2-4452-af29-1e55ce366fdc
cpp
tensorflow/tensorflow
iterator_range
tensorflow/core/lib/gtl/iterator_range.h
third_party/xla/xla/tsl/lib/gtl/iterator_range_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_ITERATOR_RANGE_H_ #define TENSORFLOW_CORE_LIB_GTL_ITERATOR_RANGE_H_ #include "xla/tsl/lib/gtl/iterator_range.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::iterator_range; using ::tsl::gtl::make_range; } } #endif
#include "xla/tsl/lib/gtl/iterator_range.h" #include <vector> #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { TEST(IteratorRange, WholeVector) { std::vector<int> v = {2, 3, 5, 7, 11, 13}; iterator_range<std::vector<int>::iterator> range(v.begin(), v.end()); int index = 0; for (int prime : range) { ASSERT_LT(index, v.size()); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(v.size(), index); } TEST(IteratorRange, VectorMakeRange) { std::vector<int> v = {2, 3, 5, 7, 11, 13}; auto range = make_range(v.begin(), v.end()); int index = 0; for (int prime : range) { ASSERT_LT(index, v.size()); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(v.size(), index); } TEST(IteratorRange, PartArray) { int v[] = {2, 3, 5, 7, 11, 13}; iterator_range<int*> range(&v[1], &v[4]); int index = 1; for (int prime : range) { ASSERT_LT(index, TF_ARRAYSIZE(v)); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(4, index); } TEST(IteratorRange, ArrayMakeRange) { int v[] = {2, 3, 5, 7, 11, 13}; auto range = make_range(&v[1], &v[4]); int index = 1; for (int prime : range) { ASSERT_LT(index, TF_ARRAYSIZE(v)); EXPECT_EQ(v[index], prime); ++index; } EXPECT_EQ(4, index); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/iterator_range.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/iterator_range_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8755924a-ced3-48b1-a66e-1a04454a738d
cpp
tensorflow/tensorflow
serial_device_batch_scheduler
tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h
tensorflow/core/kernels/batching_util/serial_device_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SERIAL_DEVICE_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_SERIAL_DEVICE_BATCH_SCHEDULER_H_ #include <algorithm> #include <functional> #include <memory> #include <random> #include <unordered_map> #include <vector> #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class SDBSBatch; template <typename TaskType> class SDBSQueue; } template <typename TaskType> class SerialDeviceBatchScheduler : public std::enable_shared_from_this< SerialDeviceBatchScheduler<TaskType>> { public: ~SerialDeviceBatchScheduler(); struct Options { string thread_pool_name = {"batch_threads"}; int64_t num_batch_threads = port::NumSchedulableCPUs(); int64_t full_batch_scheduling_boost_micros = 0; Env* env = Env::Default(); int64_t initial_in_flight_batches_limit = 3; std::function<int64()> get_pending_on_serial_device; double target_pending = 2; int64_t batches_to_average_over = 1000; }; static Status Create( const Options& options, std::shared_ptr<SerialDeviceBatchScheduler<TaskType>>* scheduler); struct QueueOptions { int max_batch_size = 1000; int max_enqueued_batches = 10; }; using BatchProcessor = std::function<void(std::unique_ptr<Batch<TaskType>>)>; Status AddQueue(const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); double in_flight_batches_limit() { mutex_lock l(mu_); return in_flight_batches_limit_; } double recent_low_traffic_ratio() { mutex_lock l(mu_); return recent_low_traffic_ratio_; } private: friend class internal::SDBSQueue<TaskType>; explicit SerialDeviceBatchScheduler(const Options& options); void ProcessBatches(); void AddBatch(const internal::SDBSBatch<TaskType>* batch); void RemoveQueue(const internal::SDBSQueue<TaskType>* queue); Env* env() const { return options_.env; } const Options options_; std::vector<const internal::SDBSBatch<TaskType>*> batches_ TF_GUARDED_BY(mu_); std::unordered_map<const internal::SDBSQueue<TaskType>*, BatchProcessor> queues_and_callbacks_ TF_GUARDED_BY(mu_); std::unique_ptr<thread::ThreadPool> batch_thread_pool_; int64_t in_flight_batches_limit_ TF_GUARDED_BY(mu_); int64_t processing_threads_ TF_GUARDED_BY(mu_) = 0; int64_t batch_count_ TF_GUARDED_BY(mu_) = 0; int64_t no_batch_count_ TF_GUARDED_BY(mu_) = 0; int64_t pending_sum_ = 0; int64_t batch_latency_sum_ = 0; int64_t batch_period_micros_ = 0; double recent_low_traffic_ratio_ = 0; mutex mu_; SerialDeviceBatchScheduler(const SerialDeviceBatchScheduler&) = delete; void operator=(const SerialDeviceBatchScheduler&) = delete; }; namespace internal { template <typename TaskType> class SDBSQueue : public BatchScheduler<TaskType> { public: using QueueOptions = typename SerialDeviceBatchScheduler<TaskType>::QueueOptions; SDBSQueue(std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler, const QueueOptions& options); ~SDBSQueue() override; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; void ReleaseBatch(const SDBSBatch<TaskType>* batch); size_t max_task_size() const override { return options_.max_batch_size; } private: std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler_; const QueueOptions options_; SDBSBatch<TaskType>* current_batch_ TF_GUARDED_BY(mu_) = nullptr; int64_t num_enqueued_batches_ TF_GUARDED_BY(mu_) = 0; int64_t num_enqueued_tasks_ TF_GUARDED_BY(mu_) = 0; mutable mutex mu_; SDBSQueue(const SDBSQueue&) = delete; void operator=(const SDBSQueue&) = delete; }; template <typename TaskType> class SDBSBatch : public Batch<TaskType> { public: SDBSBatch(SDBSQueue<TaskType>* queue, int64_t creation_time_micros) : queue_(queue), creation_time_micros_(creation_time_micros) {} ~SDBSBatch() override {} SDBSQueue<TaskType>* queue() const { return queue_; } int64_t creation_time_micros() const { return creation_time_micros_; } private: SDBSQueue<TaskType>* queue_; const int64_t creation_time_micros_; SDBSBatch(const SDBSBatch&) = delete; void operator=(const SDBSBatch&) = delete; }; } template <typename TaskType> Status SerialDeviceBatchScheduler<TaskType>::Create( const Options& options, std::shared_ptr<SerialDeviceBatchScheduler<TaskType>>* scheduler) { if (options.num_batch_threads < 1) { return errors::InvalidArgument("num_batch_threads must be positive; was ", options.num_batch_threads); } if (options.initial_in_flight_batches_limit < 1) { return errors::InvalidArgument( "initial_in_flight_batches_limit must be positive; was ", options.initial_in_flight_batches_limit); } if (options.initial_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, ") should not be larger than num_batch_threads (", options.num_batch_threads, ")"); } if (options.full_batch_scheduling_boost_micros < 0) { return errors::InvalidArgument( "full_batch_scheduling_boost_micros can't be negative; was ", options.full_batch_scheduling_boost_micros); } if (options.batches_to_average_over < 1) { return errors::InvalidArgument( "batches_to_average_over should be " "greater than or equal to 1; was ", options.batches_to_average_over); } if (options.target_pending <= 0) { return errors::InvalidArgument( "target_pending should be larger than zero; was ", options.target_pending); } if (!options.get_pending_on_serial_device) { return errors::InvalidArgument( "get_pending_on_serial_device must be " "specified"); } scheduler->reset(new SerialDeviceBatchScheduler<TaskType>(options)); return absl::OkStatus(); } template <typename TaskType> SerialDeviceBatchScheduler<TaskType>::SerialDeviceBatchScheduler( const Options& options) : options_(options), in_flight_batches_limit_(options.initial_in_flight_batches_limit), processing_threads_(options.initial_in_flight_batches_limit) { batch_thread_pool_.reset(new thread::ThreadPool( env(), options.thread_pool_name, options.num_batch_threads)); for (int i = 0; i < processing_threads_; i++) { batch_thread_pool_->Schedule( std::bind(&SerialDeviceBatchScheduler<TaskType>::ProcessBatches, this)); } } template <typename TaskType> SerialDeviceBatchScheduler<TaskType>::~SerialDeviceBatchScheduler() { { mutex_lock l(mu_); processing_threads_ = 0; } batch_thread_pool_.reset(); } template <typename TaskType> Status SerialDeviceBatchScheduler<TaskType>::AddQueue( const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { if (options.max_batch_size <= 0) { return errors::InvalidArgument("max_batch_size must be positive; was ", options.max_batch_size); } if (options.max_enqueued_batches <= 0) { return errors::InvalidArgument( "max_enqueued_batches must be positive; was ", options.max_enqueued_batches); } internal::SDBSQueue<TaskType>* SDBS_queue_raw; queue->reset(SDBS_queue_raw = new internal::SDBSQueue<TaskType>( this->shared_from_this(), options)); mutex_lock l(mu_); queues_and_callbacks_[SDBS_queue_raw] = process_batch_callback; return absl::OkStatus(); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::AddBatch( const internal::SDBSBatch<TaskType>* batch) { mutex_lock l(mu_); batches_.push_back(batch); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::RemoveQueue( const internal::SDBSQueue<TaskType>* queue) { mutex_lock l(mu_); queues_and_callbacks_.erase(queue); } template <typename TaskType> void SerialDeviceBatchScheduler<TaskType>::ProcessBatches() { const int64_t kIdleThreadSleepTimeMicros = 1000; const double kMaxNoBatchRatio = .1; const double kLowTrafficMovingAverageFactor = .1; for (;;) { mu_.lock(); if (processing_threads_ < 1 || processing_threads_ > in_flight_batches_limit_) { processing_threads_--; mu_.unlock(); break; } if (batches_.empty()) { no_batch_count_++; int64_t sleep_time = batch_period_micros_ ? batch_period_micros_ : kIdleThreadSleepTimeMicros; mu_.unlock(); env()->SleepForMicroseconds(sleep_time); continue; } auto best_it = batches_.begin(); double best_score = (*best_it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*best_it)->size() / static_cast<double>((*best_it)->queue()->max_task_size()); for (auto it = batches_.begin() + 1; it != batches_.end(); it++) { const double score = (*it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*it)->size() / static_cast<double>((*it)->queue()->max_task_size()); if (score < best_score) { best_score = score; best_it = it; } } const internal::SDBSBatch<TaskType>* batch = *best_it; batches_.erase(best_it); batch->queue()->ReleaseBatch(batch); auto callback = queues_and_callbacks_[batch->queue()]; mu_.unlock(); int64_t start_time = env()->NowMicros(); callback(std::unique_ptr<Batch<TaskType>>( const_cast<internal::SDBSBatch<TaskType>*>(batch))); int64_t end_time = env()->NowMicros(); mu_.lock(); batch_count_++; batch_latency_sum_ += end_time - start_time; pending_sum_ += options_.get_pending_on_serial_device(); if (batch_count_ == options_.batches_to_average_over) { recent_low_traffic_ratio_ *= (1 - kLowTrafficMovingAverageFactor); if (no_batch_count_ < kMaxNoBatchRatio * batch_count_) { double avg_pending = pending_sum_ / static_cast<double>(batch_count_); batch_period_micros_ = batch_latency_sum_ / batch_count_ / in_flight_batches_limit_; in_flight_batches_limit_ += std::round(options_.target_pending - avg_pending); in_flight_batches_limit_ = std::max(in_flight_batches_limit_, int64_t{1}); in_flight_batches_limit_ = std::min(in_flight_batches_limit_, options_.num_batch_threads); if (processing_threads_ > 0 && processing_threads_ < in_flight_batches_limit_) { int extra_threads = in_flight_batches_limit_ - processing_threads_; for (int i = 0; i < extra_threads; i++) { batch_thread_pool_->Schedule(std::bind( &SerialDeviceBatchScheduler<TaskType>::ProcessBatches, this)); } processing_threads_ = in_flight_batches_limit_; } } else { recent_low_traffic_ratio_ += kLowTrafficMovingAverageFactor; } batch_count_ = 0; no_batch_count_ = 0; pending_sum_ = 0; batch_latency_sum_ = 0; } mu_.unlock(); } } namespace internal { template <typename TaskType> SDBSQueue<TaskType>::SDBSQueue( std::shared_ptr<SerialDeviceBatchScheduler<TaskType>> scheduler, const QueueOptions& options) : scheduler_(scheduler), options_(options) {} template <typename TaskType> SDBSQueue<TaskType>::~SDBSQueue() { const int kSleepMicros = 1000; for (;;) { { mutex_lock l(mu_); if (num_enqueued_batches_ == 0) { break; } } scheduler_->env()->SleepForMicroseconds(kSleepMicros); } scheduler_->RemoveQueue(this); } template <typename TaskType> Status SDBSQueue<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { SDBSBatch<TaskType>* new_batch = nullptr; size_t size = (*task)->size(); if (size > options_.max_batch_size) { return errors::InvalidArgument("Task size ", size, " is larger than maximum batch size ", options_.max_batch_size); } { mutex_lock l(mu_); if (current_batch_ && current_batch_->size() + size > options_.max_batch_size) { if (num_enqueued_batches_ >= options_.max_enqueued_batches) { return errors::Unavailable("The batch scheduling queue is full"); } current_batch_->Close(); current_batch_ = nullptr; } if (!current_batch_) { num_enqueued_batches_++; current_batch_ = new_batch = new SDBSBatch<TaskType>(this, scheduler_->env()->NowMicros()); } current_batch_->AddTask(std::move(*task)); num_enqueued_tasks_++; } if (new_batch != nullptr) scheduler_->AddBatch(new_batch); return absl::OkStatus(); } template <typename TaskType> void SDBSQueue<TaskType>::ReleaseBatch(const SDBSBatch<TaskType>* batch) { mutex_lock l(mu_); num_enqueued_batches_--; num_enqueued_tasks_ -= batch->num_tasks(); if (batch == current_batch_) { current_batch_->Close(); current_batch_ = nullptr; } } template <typename TaskType> size_t SDBSQueue<TaskType>::NumEnqueuedTasks() const { mutex_lock l(mu_); return num_enqueued_tasks_; } template <typename TaskType> size_t SDBSQueue<TaskType>::SchedulingCapacity() const { mutex_lock l(mu_); const int current_batch_capacity = current_batch_ ? options_.max_batch_size - current_batch_->size() : 0; const int spare_batches = options_.max_enqueued_batches - num_enqueued_batches_; return spare_batches * options_.max_batch_size + current_batch_capacity; } } } } #endif
#include "tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace anonymous { class FakeTask : public BatchTask { public: explicit FakeTask(size_t size) : size_(size) {} ~FakeTask() override = default; size_t size() const override { return size_; } private: const size_t size_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler) { std::unique_ptr<FakeTask> task(new FakeTask(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } std::unique_ptr<Thread> CreateFakeClockAdvancerThread( test_util::FakeClockEnv* env, Notification* start, Notification* stop) { return std::unique_ptr<Thread>(Env::Default()->StartThread( {}, "FakeClockAdvancerThread", [env, start, stop] { start->WaitForNotification(); while (!stop->HasBeenNotified()) { env->AdvanceByMicroseconds(10); Env::Default()->SleepForMicroseconds(10); } })); } TEST(SerialDeviceBatchSchedulerTest, BadOptions) { using Scheduler = SerialDeviceBatchScheduler<FakeTask>; std::shared_ptr<Scheduler> scheduler; Scheduler::Options default_options; default_options.get_pending_on_serial_device = []() { return 0; }; Scheduler::Options options = default_options; options.num_batch_threads = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.initial_in_flight_batches_limit = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.num_batch_threads = 5; options.initial_in_flight_batches_limit = 8; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.batches_to_average_over = -5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = default_options; options.target_pending = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); } TEST(SerialDeviceBatchSchedulerTest, InFlightBatchesLimit) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.num_batch_threads = 3; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 2) { Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } if (batch_num == 3) { ASSERT_TRUE(finish_processing.HasBeenNotified()); } finish_processing.WaitForNotification(); }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; std::unique_ptr<BatchScheduler<FakeTask>> queue3; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue1)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue2)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue3)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); TF_ASSERT_OK(ScheduleTask(100, queue3.get())); } TEST(SerialDeviceBatchSchedulerTest, PendingOnSerialDevice) { mutex mu; int pending; SerialDeviceBatchScheduler<FakeTask>::Options options; options.num_batch_threads = 3; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1; options.target_pending = 3; options.get_pending_on_serial_device = [&mu, &pending]() { mutex_lock l(mu); return pending; }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); int processed_batches = 0; Notification start_processing; auto queue_callback = [&mu, &processed_batches, &start_processing, &pending, &scheduler](std::unique_ptr<Batch<FakeTask>> batch) { int batch_num; { mutex_lock l(mu); batch_num = ++processed_batches; } switch (batch_num) { case 1: start_processing.WaitForNotification(); { mutex_lock l(mu); pending = 3; } break; case 2: CHECK_EQ(scheduler->in_flight_batches_limit(), 1); { mutex_lock l(mu); pending = 1; } break; case 3: CHECK_EQ(scheduler->in_flight_batches_limit(), 3); { mutex_lock l(mu); pending = 3; } break; default: break; } }; std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 3; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } start_processing.Notify(); } TEST(SerialDeviceBatchSchedulerTest, FullBatchSchedulingBoostMicros) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { SerialDeviceBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 10; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(1000, batch->size()); break; case 2: EXPECT_EQ(100, batch->size()); break; case 3: EXPECT_EQ(80, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 3 batches"; } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); Env::Default()->SleepForMicroseconds(1000); SerialDeviceBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; std::unique_ptr<BatchScheduler<FakeTask>> queue3; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue3)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(3); TF_ASSERT_OK(ScheduleTask(1000, queue2.get())); env.AdvanceByMicroseconds(5); TF_ASSERT_OK(ScheduleTask(80, queue3.get())); env.AdvanceByMicroseconds(1000); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(SerialDeviceBatchSchedulerTest, DeleteQueue) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); finish_processing.WaitForNotification(); mu.lock(); processed_batches++; mu.unlock(); }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 2; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } std::unique_ptr<Thread> queue_deleter(Env::Default()->StartThread( {}, "QueueDeleterThread", [&queue, &mu, &processed_batches, scheduler]() mutable { queue.reset(); { mutex_lock l(mu); EXPECT_GT(processed_batches, 0); } scheduler.reset(); mutex_lock l(mu); EXPECT_EQ(processed_batches, 2); })); scheduler.reset(); Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } TEST(SerialDeviceBatchSchedulerTest, DeleteScheduler) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification start_processing; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &start_processing, &finish_processing](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); start_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; if (processed_batches == 2) { finish_processing.Notify(); } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); for (int i = 0; i < 2; i++) { TF_ASSERT_OK(ScheduleTask(800, queue.get())); } scheduler.reset(); start_processing.Notify(); finish_processing.WaitForNotification(); } TEST(SerialDeviceBatchSchedulerTest, QueueCapacityInfo) { SerialDeviceBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 1000; options.get_pending_on_serial_device = []() { return 0; }; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 1) { finish_processing.WaitForNotification(); } }; std::shared_ptr<SerialDeviceBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( SerialDeviceBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue1)); TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(800, queue1.get())); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 1); EXPECT_EQ(queue2->SchedulingCapacity(), 9 * 1000 + 900); TF_ASSERT_OK(ScheduleTask(100, queue2.get())); TF_ASSERT_OK(ScheduleTask(200, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 3); EXPECT_EQ(queue2->SchedulingCapacity(), 9 * 1000 + 600); TF_ASSERT_OK(ScheduleTask(700, queue2.get())); EXPECT_EQ(queue2->NumEnqueuedTasks(), 4); EXPECT_EQ(queue2->SchedulingCapacity(), 8 * 1000 + 300); finish_processing.Notify(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/serial_device_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/serial_device_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ff8b0f41-e158-42d4-9735-cdca12d747b8
cpp
abseil/abseil-cpp
string_view
absl/strings/string_view.cc
absl/strings/string_view_test.cc
#include "absl/strings/string_view.h" #ifndef ABSL_USES_STD_STRING_VIEW #include <algorithm> #include <climits> #include <cstring> #include <ostream> #include "absl/base/nullability.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace { absl::Nullable<const char*> memmatch(absl::Nullable<const char*> phaystack, size_t haylen, absl::Nullable<const char*> pneedle, size_t neelen) { if (0 == neelen) { return phaystack; } if (haylen < neelen) return nullptr; const char* match; const char* hayend = phaystack + haylen - neelen + 1; while ( (match = static_cast<const char*>(memchr( phaystack, pneedle[0], static_cast<size_t>(hayend - phaystack))))) { if (memcmp(match, pneedle, neelen) == 0) return match; else phaystack = match + 1; } return nullptr; } void WritePadding(std::ostream& o, size_t pad) { char fill_buf[32]; memset(fill_buf, o.fill(), sizeof(fill_buf)); while (pad) { size_t n = std::min(pad, sizeof(fill_buf)); o.write(fill_buf, static_cast<std::streamsize>(n)); pad -= n; } } class LookupTable { public: explicit LookupTable(string_view wanted) { for (char c : wanted) { table_[Index(c)] = true; } } bool operator[](char c) const { return table_[Index(c)]; } private: static unsigned char Index(char c) { return static_cast<unsigned char>(c); } bool table_[UCHAR_MAX + 1] = {}; }; } std::ostream& operator<<(std::ostream& o, string_view piece) { std::ostream::sentry sentry(o); if (sentry) { size_t lpad = 0; size_t rpad = 0; if (static_cast<size_t>(o.width()) > piece.size()) { size_t pad = static_cast<size_t>(o.width()) - piece.size(); if ((o.flags() & o.adjustfield) == o.left) { rpad = pad; } else { lpad = pad; } } if (lpad) WritePadding(o, lpad); o.write(piece.data(), static_cast<std::streamsize>(piece.size())); if (rpad) WritePadding(o, rpad); o.width(0); } return o; } string_view::size_type string_view::find(string_view s, size_type pos) const noexcept { if (empty() || pos > length_) { if (empty() && pos == 0 && s.empty()) return 0; return npos; } const char* result = memmatch(ptr_ + pos, length_ - pos, s.ptr_, s.length_); return result ? static_cast<size_type>(result - ptr_) : npos; } string_view::size_type string_view::find(char c, size_type pos) const noexcept { if (empty() || pos >= length_) { return npos; } const char* result = static_cast<const char*>(memchr(ptr_ + pos, c, length_ - pos)); return result != nullptr ? static_cast<size_type>(result - ptr_) : npos; } string_view::size_type string_view::rfind(string_view s, size_type pos) const noexcept { if (length_ < s.length_) return npos; if (s.empty()) return std::min(length_, pos); const char* last = ptr_ + std::min(length_ - s.length_, pos) + s.length_; const char* result = std::find_end(ptr_, last, s.ptr_, s.ptr_ + s.length_); return result != last ? static_cast<size_type>(result - ptr_) : npos; } string_view::size_type string_view::rfind(char c, size_type pos) const noexcept { if (empty()) return npos; for (size_type i = std::min(pos, length_ - 1);; --i) { if (ptr_[i] == c) { return i; } if (i == 0) break; } return npos; } string_view::size_type string_view::find_first_of( string_view s, size_type pos) const noexcept { if (empty() || s.empty()) { return npos; } if (s.length_ == 1) return find_first_of(s.ptr_[0], pos); LookupTable tbl(s); for (size_type i = pos; i < length_; ++i) { if (tbl[ptr_[i]]) { return i; } } return npos; } string_view::size_type string_view::find_first_not_of( string_view s, size_type pos) const noexcept { if (empty()) return npos; if (s.length_ == 1) return find_first_not_of(s.ptr_[0], pos); LookupTable tbl(s); for (size_type i = pos; i < length_; ++i) { if (!tbl[ptr_[i]]) { return i; } } return npos; } string_view::size_type string_view::find_first_not_of( char c, size_type pos) const noexcept { if (empty()) return npos; for (; pos < length_; ++pos) { if (ptr_[pos] != c) { return pos; } } return npos; } string_view::size_type string_view::find_last_of(string_view s, size_type pos) const noexcept { if (empty() || s.empty()) return npos; if (s.length_ == 1) return find_last_of(s.ptr_[0], pos); LookupTable tbl(s); for (size_type i = std::min(pos, length_ - 1);; --i) { if (tbl[ptr_[i]]) { return i; } if (i == 0) break; } return npos; } string_view::size_type string_view::find_last_not_of( string_view s, size_type pos) const noexcept { if (empty()) return npos; size_type i = std::min(pos, length_ - 1); if (s.empty()) return i; if (s.length_ == 1) return find_last_not_of(s.ptr_[0], pos); LookupTable tbl(s); for (;; --i) { if (!tbl[ptr_[i]]) { return i; } if (i == 0) break; } return npos; } string_view::size_type string_view::find_last_not_of( char c, size_type pos) const noexcept { if (empty()) return npos; size_type i = std::min(pos, length_ - 1); for (;; --i) { if (ptr_[i] != c) { return i; } if (i == 0) break; } return npos; } #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr string_view::size_type string_view::npos; constexpr string_view::size_type string_view::kMaxSize; #endif ABSL_NAMESPACE_END } #else #ifdef __APPLE__ namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { extern const char kAvoidEmptyStringViewLibraryWarning; const char kAvoidEmptyStringViewLibraryWarning = 0; } ABSL_NAMESPACE_END } #endif #endif
#include "absl/strings/string_view.h" #include <stdlib.h> #include <cstddef> #include <cstdlib> #include <cstring> #include <iomanip> #include <ios> #include <iterator> #include <limits> #include <map> #include <memory> #include <sstream> #include <string> #include <type_traits> #include <utility> #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/meta/type_traits.h" #if defined(ABSL_HAVE_STD_STRING_VIEW) || defined(__ANDROID__) #define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ EXPECT_DEATH_IF_SUPPORTED(statement, ".*") #else #define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ EXPECT_DEATH_IF_SUPPORTED(statement, regex) #endif namespace { static_assert(!absl::type_traits_internal::IsOwner<absl::string_view>::value && absl::type_traits_internal::IsView<absl::string_view>::value, "string_view is a view, not an owner"); static_assert(absl::type_traits_internal::IsLifetimeBoundAssignment< absl::string_view, std::string>::value, "lifetimebound assignment not detected"); template <typename T> struct Mallocator { typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; size_type max_size() const { return size_t(std::numeric_limits<size_type>::max()) / sizeof(value_type); } template <typename U> struct rebind { typedef Mallocator<U> other; }; Mallocator() = default; template <class U> Mallocator(const Mallocator<U>&) {} T* allocate(size_t n) { return static_cast<T*>(std::malloc(n * sizeof(T))); } void deallocate(T* p, size_t) { std::free(p); } }; template <typename T, typename U> bool operator==(const Mallocator<T>&, const Mallocator<U>&) { return true; } template <typename T, typename U> bool operator!=(const Mallocator<T>&, const Mallocator<U>&) { return false; } TEST(StringViewTest, Ctor) { { absl::string_view s10; EXPECT_TRUE(s10.data() == nullptr); EXPECT_EQ(0u, s10.length()); } { const char* hello = "hello"; absl::string_view s20(hello); EXPECT_TRUE(s20.data() == hello); EXPECT_EQ(5u, s20.length()); absl::string_view s21(hello, 4); EXPECT_TRUE(s21.data() == hello); EXPECT_EQ(4u, s21.length()); absl::string_view s22(hello, 6); EXPECT_TRUE(s22.data() == hello); EXPECT_EQ(6u, s22.length()); } { std::string hola = "hola"; absl::string_view s30(hola); EXPECT_TRUE(s30.data() == hola.data()); EXPECT_EQ(4u, s30.length()); hola.push_back('\0'); hola.append("h2"); hola.push_back('\0'); absl::string_view s31(hola); EXPECT_TRUE(s31.data() == hola.data()); EXPECT_EQ(8u, s31.length()); } { using mstring = std::basic_string<char, std::char_traits<char>, Mallocator<char>>; mstring str1("BUNGIE-JUMPING!"); const mstring str2("SLEEPING!"); absl::string_view s1(str1); s1.remove_prefix(strlen("BUNGIE-JUM")); absl::string_view s2(str2); s2.remove_prefix(strlen("SLEE")); EXPECT_EQ(s1, s2); EXPECT_EQ(s1, "PING!"); } } TEST(StringViewTest, Swap) { absl::string_view a("a"); absl::string_view b("bbb"); EXPECT_TRUE(noexcept(a.swap(b))); a.swap(b); EXPECT_EQ(a, "bbb"); EXPECT_EQ(b, "a"); a.swap(b); EXPECT_EQ(a, "a"); EXPECT_EQ(b, "bbb"); } TEST(StringViewTest, STLComparator) { std::string s1("foo"); std::string s2("bar"); std::string s3("baz"); absl::string_view p1(s1); absl::string_view p2(s2); absl::string_view p3(s3); typedef std::map<absl::string_view, int> TestMap; TestMap map; map.insert(std::make_pair(p1, 0)); map.insert(std::make_pair(p2, 1)); map.insert(std::make_pair(p3, 2)); EXPECT_EQ(map.size(), 3u); TestMap::const_iterator iter = map.begin(); EXPECT_EQ(iter->second, 1); ++iter; EXPECT_EQ(iter->second, 2); ++iter; EXPECT_EQ(iter->second, 0); ++iter; EXPECT_TRUE(iter == map.end()); TestMap::iterator new_iter = map.find("zot"); EXPECT_TRUE(new_iter == map.end()); new_iter = map.find("bar"); EXPECT_TRUE(new_iter != map.end()); map.erase(new_iter); EXPECT_EQ(map.size(), 2u); iter = map.begin(); EXPECT_EQ(iter->second, 2); ++iter; EXPECT_EQ(iter->second, 0); ++iter; EXPECT_TRUE(iter == map.end()); } #define COMPARE(result, op, x, y) \ EXPECT_EQ(result, absl::string_view((x)) op absl::string_view((y))); \ EXPECT_EQ(result, absl::string_view((x)).compare(absl::string_view((y))) op 0) TEST(StringViewTest, ComparisonOperators) { COMPARE(true, ==, "", ""); COMPARE(true, ==, "", absl::string_view()); COMPARE(true, ==, absl::string_view(), ""); COMPARE(true, ==, "a", "a"); COMPARE(true, ==, "aa", "aa"); COMPARE(false, ==, "a", ""); COMPARE(false, ==, "", "a"); COMPARE(false, ==, "a", "b"); COMPARE(false, ==, "a", "aa"); COMPARE(false, ==, "aa", "a"); COMPARE(false, !=, "", ""); COMPARE(false, !=, "a", "a"); COMPARE(false, !=, "aa", "aa"); COMPARE(true, !=, "a", ""); COMPARE(true, !=, "", "a"); COMPARE(true, !=, "a", "b"); COMPARE(true, !=, "a", "aa"); COMPARE(true, !=, "aa", "a"); COMPARE(true, <, "a", "b"); COMPARE(true, <, "a", "aa"); COMPARE(true, <, "aa", "b"); COMPARE(true, <, "aa", "bb"); COMPARE(false, <, "a", "a"); COMPARE(false, <, "b", "a"); COMPARE(false, <, "aa", "a"); COMPARE(false, <, "b", "aa"); COMPARE(false, <, "bb", "aa"); COMPARE(true, <=, "a", "a"); COMPARE(true, <=, "a", "b"); COMPARE(true, <=, "a", "aa"); COMPARE(true, <=, "aa", "b"); COMPARE(true, <=, "aa", "bb"); COMPARE(false, <=, "b", "a"); COMPARE(false, <=, "aa", "a"); COMPARE(false, <=, "b", "aa"); COMPARE(false, <=, "bb", "aa"); COMPARE(false, >=, "a", "b"); COMPARE(false, >=, "a", "aa"); COMPARE(false, >=, "aa", "b"); COMPARE(false, >=, "aa", "bb"); COMPARE(true, >=, "a", "a"); COMPARE(true, >=, "b", "a"); COMPARE(true, >=, "aa", "a"); COMPARE(true, >=, "b", "aa"); COMPARE(true, >=, "bb", "aa"); COMPARE(false, >, "a", "a"); COMPARE(false, >, "a", "b"); COMPARE(false, >, "a", "aa"); COMPARE(false, >, "aa", "b"); COMPARE(false, >, "aa", "bb"); COMPARE(true, >, "b", "a"); COMPARE(true, >, "aa", "a"); COMPARE(true, >, "b", "aa"); COMPARE(true, >, "bb", "aa"); } TEST(StringViewTest, ComparisonOperatorsByCharacterPosition) { std::string x; for (size_t i = 0; i < 256; i++) { x += 'a'; std::string y = x; COMPARE(true, ==, x, y); for (size_t j = 0; j < i; j++) { std::string z = x; z[j] = 'b'; COMPARE(false, ==, x, z); COMPARE(true, <, x, z); COMPARE(true, >, z, x); if (j + 1 < i) { z[j + 1] = 'A'; COMPARE(false, ==, x, z); COMPARE(true, <, x, z); COMPARE(true, >, z, x); z[j + 1] = 'z'; COMPARE(false, ==, x, z); COMPARE(true, <, x, z); COMPARE(true, >, z, x); } } } } #undef COMPARE template <typename T> struct is_type { template <typename U> static bool same(U) { return false; } static bool same(T) { return true; } }; TEST(StringViewTest, NposMatchesStdStringView) { EXPECT_EQ(absl::string_view::npos, std::string::npos); EXPECT_TRUE(is_type<size_t>::same(absl::string_view::npos)); EXPECT_FALSE(is_type<size_t>::same("")); char test[absl::string_view::npos & 1] = {0}; EXPECT_EQ(0, test[0]); } TEST(StringViewTest, STL1) { const absl::string_view a("abcdefghijklmnopqrstuvwxyz"); const absl::string_view b("abc"); const absl::string_view c("xyz"); const absl::string_view d("foobar"); const absl::string_view e; std::string temp("123"); temp += '\0'; temp += "456"; const absl::string_view f(temp); EXPECT_EQ(a[6], 'g'); EXPECT_EQ(b[0], 'a'); EXPECT_EQ(c[2], 'z'); EXPECT_EQ(f[3], '\0'); EXPECT_EQ(f[5], '5'); EXPECT_EQ(*d.data(), 'f'); EXPECT_EQ(d.data()[5], 'r'); EXPECT_TRUE(e.data() == nullptr); EXPECT_EQ(*a.begin(), 'a'); EXPECT_EQ(*(b.begin() + 2), 'c'); EXPECT_EQ(*(c.end() - 1), 'z'); EXPECT_EQ(*a.rbegin(), 'z'); EXPECT_EQ(*(b.rbegin() + 2), 'a'); EXPECT_EQ(*(c.rend() - 1), 'x'); EXPECT_TRUE(a.rbegin() + 26 == a.rend()); EXPECT_EQ(a.size(), 26u); EXPECT_EQ(b.size(), 3u); EXPECT_EQ(c.size(), 3u); EXPECT_EQ(d.size(), 6u); EXPECT_EQ(e.size(), 0u); EXPECT_EQ(f.size(), 7u); EXPECT_TRUE(!d.empty()); EXPECT_TRUE(d.begin() != d.end()); EXPECT_TRUE(d.begin() + 6 == d.end()); EXPECT_TRUE(e.empty()); EXPECT_TRUE(e.begin() == e.end()); char buf[4] = { '%', '%', '%', '%' }; EXPECT_EQ(a.copy(buf, 4), 4u); EXPECT_EQ(buf[0], a[0]); EXPECT_EQ(buf[1], a[1]); EXPECT_EQ(buf[2], a[2]); EXPECT_EQ(buf[3], a[3]); EXPECT_EQ(a.copy(buf, 3, 7), 3u); EXPECT_EQ(buf[0], a[7]); EXPECT_EQ(buf[1], a[8]); EXPECT_EQ(buf[2], a[9]); EXPECT_EQ(buf[3], a[3]); EXPECT_EQ(c.copy(buf, 99), 3u); EXPECT_EQ(buf[0], c[0]); EXPECT_EQ(buf[1], c[1]); EXPECT_EQ(buf[2], c[2]); EXPECT_EQ(buf[3], a[3]); #ifdef ABSL_HAVE_EXCEPTIONS EXPECT_THROW(a.copy(buf, 1, 27), std::out_of_range); #else ABSL_EXPECT_DEATH_IF_SUPPORTED(a.copy(buf, 1, 27), "absl::string_view::copy"); #endif } TEST(StringViewTest, STL2) { const absl::string_view a("abcdefghijklmnopqrstuvwxyz"); const absl::string_view b("abc"); const absl::string_view c("xyz"); absl::string_view d("foobar"); const absl::string_view e; const absl::string_view f( "123" "\0" "456", 7); d = absl::string_view(); EXPECT_EQ(d.size(), 0u); EXPECT_TRUE(d.empty()); EXPECT_TRUE(d.data() == nullptr); EXPECT_TRUE(d.begin() == d.end()); EXPECT_EQ(a.find(b), 0u); EXPECT_EQ(a.find(b, 1), absl::string_view::npos); EXPECT_EQ(a.find(c), 23u); EXPECT_EQ(a.find(c, 9), 23u); EXPECT_EQ(a.find(c, absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(b.find(c), absl::string_view::npos); EXPECT_EQ(b.find(c, absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(a.find(d), 0u); EXPECT_EQ(a.find(e), 0u); EXPECT_EQ(a.find(d, 12), 12u); EXPECT_EQ(a.find(e, 17), 17u); absl::string_view g("xx not found bb"); EXPECT_EQ(a.find(g), absl::string_view::npos); EXPECT_EQ(d.find(b), absl::string_view::npos); EXPECT_EQ(e.find(b), absl::string_view::npos); EXPECT_EQ(d.find(b, 4), absl::string_view::npos); EXPECT_EQ(e.find(b, 7), absl::string_view::npos); size_t empty_search_pos = std::string().find(std::string()); EXPECT_EQ(d.find(d), empty_search_pos); EXPECT_EQ(d.find(e), empty_search_pos); EXPECT_EQ(e.find(d), empty_search_pos); EXPECT_EQ(e.find(e), empty_search_pos); EXPECT_EQ(d.find(d, 4), std::string().find(std::string(), 4)); EXPECT_EQ(d.find(e, 4), std::string().find(std::string(), 4)); EXPECT_EQ(e.find(d, 4), std::string().find(std::string(), 4)); EXPECT_EQ(e.find(e, 4), std::string().find(std::string(), 4)); EXPECT_EQ(a.find('a'), 0u); EXPECT_EQ(a.find('c'), 2u); EXPECT_EQ(a.find('z'), 25u); EXPECT_EQ(a.find('$'), absl::string_view::npos); EXPECT_EQ(a.find('\0'), absl::string_view::npos); EXPECT_EQ(f.find('\0'), 3u); EXPECT_EQ(f.find('3'), 2u); EXPECT_EQ(f.find('5'), 5u); EXPECT_EQ(g.find('o'), 4u); EXPECT_EQ(g.find('o', 4), 4u); EXPECT_EQ(g.find('o', 5), 8u); EXPECT_EQ(a.find('b', 5), absl::string_view::npos); EXPECT_EQ(d.find('\0'), absl::string_view::npos); EXPECT_EQ(e.find('\0'), absl::string_view::npos); EXPECT_EQ(d.find('\0', 4), absl::string_view::npos); EXPECT_EQ(e.find('\0', 7), absl::string_view::npos); EXPECT_EQ(d.find('x'), absl::string_view::npos); EXPECT_EQ(e.find('x'), absl::string_view::npos); EXPECT_EQ(d.find('x', 4), absl::string_view::npos); EXPECT_EQ(e.find('x', 7), absl::string_view::npos); EXPECT_EQ(a.find(b.data(), 1, 0), 1u); EXPECT_EQ(a.find(c.data(), 9, 0), 9u); EXPECT_EQ(a.find(c.data(), absl::string_view::npos, 0), absl::string_view::npos); EXPECT_EQ(b.find(c.data(), absl::string_view::npos, 0), absl::string_view::npos); EXPECT_EQ(d.find(b.data(), 4, 0), absl::string_view::npos); EXPECT_EQ(e.find(b.data(), 7, 0), absl::string_view::npos); EXPECT_EQ(a.find(b.data(), 1), absl::string_view::npos); EXPECT_EQ(a.find(c.data(), 9), 23u); EXPECT_EQ(a.find(c.data(), absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(b.find(c.data(), absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(d.find(b.data(), 4), absl::string_view::npos); EXPECT_EQ(e.find(b.data(), 7), absl::string_view::npos); EXPECT_EQ(a.rfind(b), 0u); EXPECT_EQ(a.rfind(b, 1), 0u); EXPECT_EQ(a.rfind(c), 23u); EXPECT_EQ(a.rfind(c, 22), absl::string_view::npos); EXPECT_EQ(a.rfind(c, 1), absl::string_view::npos); EXPECT_EQ(a.rfind(c, 0), absl::string_view::npos); EXPECT_EQ(b.rfind(c), absl::string_view::npos); EXPECT_EQ(b.rfind(c, 0), absl::string_view::npos); EXPECT_EQ(a.rfind(d), std::string(a).rfind(std::string())); EXPECT_EQ(a.rfind(e), std::string(a).rfind(std::string())); EXPECT_EQ(a.rfind(d, 12), 12u); EXPECT_EQ(a.rfind(e, 17), 17u); EXPECT_EQ(a.rfind(g), absl::string_view::npos); EXPECT_EQ(d.rfind(b), absl::string_view::npos); EXPECT_EQ(e.rfind(b), absl::string_view::npos); EXPECT_EQ(d.rfind(b, 4), absl::string_view::npos); EXPECT_EQ(e.rfind(b, 7), absl::string_view::npos); EXPECT_EQ(d.rfind(d, 4), std::string().rfind(std::string())); EXPECT_EQ(e.rfind(d, 7), std::string().rfind(std::string())); EXPECT_EQ(d.rfind(e, 4), std::string().rfind(std::string())); EXPECT_EQ(e.rfind(e, 7), std::string().rfind(std::string())); EXPECT_EQ(d.rfind(d), std::string().rfind(std::string())); EXPECT_EQ(e.rfind(d), std::string().rfind(std::string())); EXPECT_EQ(d.rfind(e), std::string().rfind(std::string())); EXPECT_EQ(e.rfind(e), std::string().rfind(std::string())); EXPECT_EQ(g.rfind('o'), 8u); EXPECT_EQ(g.rfind('q'), absl::string_view::npos); EXPECT_EQ(g.rfind('o', 8), 8u); EXPECT_EQ(g.rfind('o', 7), 4u); EXPECT_EQ(g.rfind('o', 3), absl::string_view::npos); EXPECT_EQ(f.rfind('\0'), 3u); EXPECT_EQ(f.rfind('\0', 12), 3u); EXPECT_EQ(f.rfind('3'), 2u); EXPECT_EQ(f.rfind('5'), 5u); EXPECT_EQ(d.rfind('o'), absl::string_view::npos); EXPECT_EQ(e.rfind('o'), absl::string_view::npos); EXPECT_EQ(d.rfind('o', 4), absl::string_view::npos); EXPECT_EQ(e.rfind('o', 7), absl::string_view::npos); EXPECT_EQ(a.rfind(b.data(), 1, 0), 1u); EXPECT_EQ(a.rfind(c.data(), 22, 0), 22u); EXPECT_EQ(a.rfind(c.data(), 1, 0), 1u); EXPECT_EQ(a.rfind(c.data(), 0, 0), 0u); EXPECT_EQ(b.rfind(c.data(), 0, 0), 0u); EXPECT_EQ(d.rfind(b.data(), 4, 0), 0u); EXPECT_EQ(e.rfind(b.data(), 7, 0), 0u); } TEST(StringViewTest, STL2FindFirst) { const absl::string_view a("abcdefghijklmnopqrstuvwxyz"); const absl::string_view b("abc"); const absl::string_view c("xyz"); absl::string_view d("foobar"); const absl::string_view e; const absl::string_view f( "123" "\0" "456", 7); absl::string_view g("xx not found bb"); d = absl::string_view(); EXPECT_EQ(a.find_first_of(b), 0u); EXPECT_EQ(a.find_first_of(b, 0), 0u); EXPECT_EQ(a.find_first_of(b, 1), 1u); EXPECT_EQ(a.find_first_of(b, 2), 2u); EXPECT_EQ(a.find_first_of(b, 3), absl::string_view::npos); EXPECT_EQ(a.find_first_of(c), 23u); EXPECT_EQ(a.find_first_of(c, 23), 23u); EXPECT_EQ(a.find_first_of(c, 24), 24u); EXPECT_EQ(a.find_first_of(c, 25), 25u); EXPECT_EQ(a.find_first_of(c, 26), absl::string_view::npos); EXPECT_EQ(g.find_first_of(b), 13u); EXPECT_EQ(g.find_first_of(c), 0u); EXPECT_EQ(a.find_first_of(f), absl::string_view::npos); EXPECT_EQ(f.find_first_of(a), absl::string_view::npos); EXPECT_EQ(a.find_first_of(d), absl::string_view::npos); EXPECT_EQ(a.find_first_of(e), absl::string_view::npos); EXPECT_EQ(d.find_first_of(b), absl::string_view::npos); EXPECT_EQ(e.find_first_of(b), absl::string_view::npos); EXPECT_EQ(d.find_first_of(d), absl::string_view::npos); EXPECT_EQ(e.find_first_of(d), absl::string_view::npos); EXPECT_EQ(d.find_first_of(e), absl::string_view::npos); EXPECT_EQ(e.find_first_of(e), absl::string_view::npos); EXPECT_EQ(a.find_first_not_of(b), 3u); EXPECT_EQ(a.find_first_not_of(c), 0u); EXPECT_EQ(b.find_first_not_of(a), absl::string_view::npos); EXPECT_EQ(c.find_first_not_of(a), absl::string_view::npos); EXPECT_EQ(f.find_first_not_of(a), 0u); EXPECT_EQ(a.find_first_not_of(f), 0u); EXPECT_EQ(a.find_first_not_of(d), 0u); EXPECT_EQ(a.find_first_not_of(e), 0u); EXPECT_EQ(a.find_first_not_of(d), 0u); EXPECT_EQ(a.find_first_not_of(e), 0u); EXPECT_EQ(a.find_first_not_of(d, 1), 1u); EXPECT_EQ(a.find_first_not_of(e, 1), 1u); EXPECT_EQ(a.find_first_not_of(d, a.size() - 1), a.size() - 1); EXPECT_EQ(a.find_first_not_of(e, a.size() - 1), a.size() - 1); EXPECT_EQ(a.find_first_not_of(d, a.size()), absl::string_view::npos); EXPECT_EQ(a.find_first_not_of(e, a.size()), absl::string_view::npos); EXPECT_EQ(a.find_first_not_of(d, absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(a.find_first_not_of(e, absl::string_view::npos), absl::string_view::npos); EXPECT_EQ(d.find_first_not_of(a), absl::string_view::npos); EXPECT_EQ(e.find_first_not_of(a), absl::string_view::npos); EXPECT_EQ(d.find_first_not_of(d), absl::string_view::npos); EXPECT_EQ(e.find_first_not_of(d), absl::string_view::npos); EXPECT_EQ(d.find_first_not_of(e), absl::string_view::npos); EXPECT_EQ(e.find_first_not_of(e), absl::string_view::npos); absl::string_view h("===="); EXPECT_EQ(h.find_first_not_of('='), absl::string_view::npos); EXPECT_EQ(h.find_first_not_of('=', 3), absl::string_view::npos); EXPECT_EQ(h.find_first_not_of('\0'), 0u); EXPECT_EQ(g.find_first_not_of('x'), 2u); EXPECT_EQ(f.find_first_not_of('\0'), 0u); EXPECT_EQ(f.find_first_not_of('\0', 3), 4u); EXPECT_EQ(f.find_first_not_of('\0', 2), 2u); EXPECT_EQ(d.find_first_not_of('x'), absl::string_view::npos); EXPECT_EQ(e.find_first_not_of('x'), absl::string_view::npos); EXPECT_EQ(d.find_first_not_of('\0'), absl::string_view::npos); EXPECT_EQ(e.find_first_not_of('\0'), absl::string_view::npos); } TEST(StringViewTest, STL2FindLast) { const absl::string_view a("abcdefghijklmnopqrstuvwxyz"); const absl::string_view b("abc"); const absl::string_view c("xyz"); absl::string_view d("foobar"); const absl::string_view e; const absl::string_view f( "123" "\0" "456", 7); absl::string_view g("xx not found bb"); absl::string_view h("===="); absl::string_view i("56"); d = absl::string_view(); EXPECT_EQ(h.find_last_of(a), absl::string_view::npos); EXPECT_EQ(g.find_last_of(a), g.size() - 1); EXPECT_EQ(a.find_last_of(b), 2u); EXPECT_EQ(a.find_last_of(c), a.size() - 1); EXPECT_EQ(f.find_last_of(i), 6u); EXPECT_EQ(a.find_last_of('a'), 0u); EXPECT_EQ(a.find_last_of('b'), 1u); EXPECT_EQ(a.find_last_of('z'), 25u); EXPECT_EQ(a.find_last_of('a', 5), 0u); EXPECT_EQ(a.find_last_of('b', 5), 1u); EXPECT_EQ(a.find_last_of('b', 0), absl::string_view::npos); EXPECT_EQ(a.find_last_of('z', 25), 25u); EXPECT_EQ(a.find_last_of('z', 24), absl::string_view::npos); EXPECT_EQ(f.find_last_of(i, 5), 5u); EXPECT_EQ(f.find_last_of(i, 6), 6u); EXPECT_EQ(f.find_last_of(a, 4), absl::string_view::npos); EXPECT_EQ(f.find_last_of(d), absl::string_view::npos); EXPECT_EQ(f.find_last_of(e), absl::string_view::npos); EXPECT_EQ(f.find_last_of(d, 4), absl::string_view::npos); EXPECT_EQ(f.find_last_of(e, 4), absl::string_view::npos); EXPECT_EQ(d.find_last_of(d), absl::string_view::npos); EXPECT_EQ(d.find_last_of(e), absl::string_view::npos); EXPECT_EQ(e.find_last_of(d), absl::string_view::npos); EXPECT_EQ(e.find_last_of(e), absl::string_view::npos); EXPECT_EQ(d.find_last_of(f), absl::string_view::npos); EXPECT_EQ(e.find_last_of(f), absl::string_view::npos); EXPECT_EQ(d.find_last_of(d, 4), absl::string_view::npos); EXPECT_EQ(d.find_last_of(e, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_of(d, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_of(e, 4), absl::string_view::npos); EXPECT_EQ(d.find_last_of(f, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_of(f, 4), absl::string_view::npos); EXPECT_EQ(a.find_last_not_of(b), a.size() - 1); EXPECT_EQ(a.find_last_not_of(c), 22u); EXPECT_EQ(b.find_last_not_of(a), absl::string_view::npos); EXPECT_EQ(b.find_last_not_of(b), absl::string_view::npos); EXPECT_EQ(f.find_last_not_of(i), 4u); EXPECT_EQ(a.find_last_not_of(c, 24), 22u); EXPECT_EQ(a.find_last_not_of(b, 3), 3u); EXPECT_EQ(a.find_last_not_of(b, 2), absl::string_view::npos); EXPECT_EQ(f.find_last_not_of(d), f.size() - 1); EXPECT_EQ(f.find_last_not_of(e), f.size() - 1); EXPECT_EQ(f.find_last_not_of(d, 4), 4u); EXPECT_EQ(f.find_last_not_of(e, 4), 4u); EXPECT_EQ(d.find_last_not_of(d), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of(e), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(d), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(e), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of(f), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(f), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of(d, 4), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of(e, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(d, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(e, 4), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of(f, 4), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of(f, 4), absl::string_view::npos); EXPECT_EQ(h.find_last_not_of('x'), h.size() - 1); EXPECT_EQ(h.find_last_not_of('='), absl::string_view::npos); EXPECT_EQ(b.find_last_not_of('c'), 1u); EXPECT_EQ(h.find_last_not_of('x', 2), 2u); EXPECT_EQ(h.find_last_not_of('=', 2), absl::string_view::npos); EXPECT_EQ(b.find_last_not_of('b', 1), 0u); EXPECT_EQ(d.find_last_not_of('x'), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of('x'), absl::string_view::npos); EXPECT_EQ(d.find_last_not_of('\0'), absl::string_view::npos); EXPECT_EQ(e.find_last_not_of('\0'), absl::string_view::npos); } TEST(StringViewTest, STL2Substr) { const absl::string_view a("abcdefghijklmnopqrstuvwxyz"); const absl::string_view b("abc"); const absl::string_view c("xyz"); absl::string_view d("foobar"); const absl::string_view e; d = absl::string_view(); EXPECT_EQ(a.substr(0, 3), b); EXPECT_EQ(a.substr(23), c); EXPECT_EQ(a.substr(23, 3), c); EXPECT_EQ(a.substr(23, 99), c); EXPECT_EQ(a.substr(0), a); EXPECT_EQ(a.substr(), a); EXPECT_EQ(a.substr(3, 2), "de"); EXPECT_EQ(d.substr(0, 99), e); EXPECT_EQ(a.substr(0, absl::string_view::npos), a); EXPECT_EQ(a.substr(23, absl::string_view::npos), c); #ifdef ABSL_HAVE_EXCEPTIONS EXPECT_THROW((void)a.substr(99, 2), std::out_of_range); #else ABSL_EXPECT_DEATH_IF_SUPPORTED((void)a.substr(99, 2), "absl::string_view::substr"); #endif } TEST(StringViewTest, TruncSubstr) { const absl::string_view hi("hi"); EXPECT_EQ("", absl::ClippedSubstr(hi, 0, 0)); EXPECT_EQ("h", absl::ClippedSubstr(hi, 0, 1)); EXPECT_EQ("hi", absl::ClippedSubstr(hi, 0)); EXPECT_EQ("i", absl::ClippedSubstr(hi, 1)); EXPECT_EQ("", absl::ClippedSubstr(hi, 2)); EXPECT_EQ("", absl::ClippedSubstr(hi, 3)); EXPECT_EQ("", absl::ClippedSubstr(hi, 3, 2)); } TEST(StringViewTest, UTF8) { std::string utf8 = "\u00E1"; std::string utf8_twice = utf8 + " " + utf8; size_t utf8_len = strlen(utf8.data()); EXPECT_EQ(utf8_len, absl::string_view(utf8_twice).find_first_of(" ")); EXPECT_EQ(utf8_len, absl::string_view(utf8_twice).find_first_of(" \t")); } TEST(StringViewTest, FindConformance) { struct { std::string haystack; std::string needle; } specs[] = { {"", ""}, {"", "a"}, {"a", ""}, {"a", "a"}, {"a", "b"}, {"aa", ""}, {"aa", "a"}, {"aa", "b"}, {"ab", "a"}, {"ab", "b"}, {"abcd", ""}, {"abcd", "a"}, {"abcd", "d"}, {"abcd", "ab"}, {"abcd", "bc"}, {"abcd", "cd"}, {"abcd", "abcd"}, }; for (const auto& s : specs) { SCOPED_TRACE(s.haystack); SCOPED_TRACE(s.needle); std::string st = s.haystack; absl::string_view sp = s.haystack; for (size_t i = 0; i <= sp.size(); ++i) { size_t pos = (i == sp.size()) ? absl::string_view::npos : i; SCOPED_TRACE(pos); EXPECT_EQ(sp.find(s.needle, pos), st.find(s.needle, pos)); EXPECT_EQ(sp.rfind(s.needle, pos), st.rfind(s.needle, pos)); EXPECT_EQ(sp.find_first_of(s.needle, pos), st.find_first_of(s.needle, pos)); EXPECT_EQ(sp.find_first_not_of(s.needle, pos), st.find_first_not_of(s.needle, pos)); EXPECT_EQ(sp.find_last_of(s.needle, pos), st.find_last_of(s.needle, pos)); EXPECT_EQ(sp.find_last_not_of(s.needle, pos), st.find_last_not_of(s.needle, pos)); } } } TEST(StringViewTest, Remove) { absl::string_view a("foobar"); std::string s1("123"); s1 += '\0'; s1 += "456"; absl::string_view e; std::string s2; absl::string_view c(a); c.remove_prefix(3); EXPECT_EQ(c, "bar"); c = a; c.remove_prefix(0); EXPECT_EQ(c, a); c.remove_prefix(c.size()); EXPECT_EQ(c, e); c = a; c.remove_suffix(3); EXPECT_EQ(c, "foo"); c = a; c.remove_suffix(0); EXPECT_EQ(c, a); c.remove_suffix(c.size()); EXPECT_EQ(c, e); } TEST(StringViewTest, Set) { absl::string_view a("foobar"); absl::string_view empty; absl::string_view b; b = absl::string_view("foobar", 6); EXPECT_EQ(b, a); b = absl::string_view("foobar", 0); EXPECT_EQ(b, empty); b = absl::string_view("foobar", 7); EXPECT_NE(b, a); b = absl::string_view("foobar"); EXPECT_EQ(b, a); } TEST(StringViewTest, FrontBack) { static const char arr[] = "abcd"; const absl::string_view csp(arr, 4); EXPECT_EQ(&arr[0], &csp.front()); EXPECT_EQ(&arr[3], &csp.back()); } TEST(StringViewTest, FrontBackSingleChar) { static const char c = 'a'; const absl::string_view csp(&c, 1); EXPECT_EQ(&c, &csp.front()); EXPECT_EQ(&c, &csp.back()); } TEST(StringViewTest, FrontBackEmpty) { #ifndef ABSL_USES_STD_STRING_VIEW #if !defined(NDEBUG) || ABSL_OPTION_HARDENED absl::string_view sv; ABSL_EXPECT_DEATH_IF_SUPPORTED(sv.front(), ""); ABSL_EXPECT_DEATH_IF_SUPPORTED(sv.back(), ""); #endif #endif } #if !defined(ABSL_USES_STD_STRING_VIEW) || \ (!(defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 9) && \ !defined(_LIBCPP_VERSION) && !defined(_MSC_VER)) #define ABSL_HAVE_STRING_VIEW_FROM_NULLPTR 1 #endif TEST(StringViewTest, NULLInput) { absl::string_view s; EXPECT_EQ(s.data(), nullptr); EXPECT_EQ(s.size(), 0u); #ifdef ABSL_HAVE_STRING_VIEW_FROM_NULLPTR char* null_str = nullptr; s = absl::string_view(null_str); EXPECT_EQ(s.data(), nullptr); EXPECT_EQ(s.size(), 0u); EXPECT_EQ("", std::string(s)); #endif } TEST(StringViewTest, Comparisons2) { absl::string_view abc("abcdefghijklmnopqrstuvwxyz"); EXPECT_EQ(abc, absl::string_view("abcdefghijklmnopqrstuvwxyz")); EXPECT_EQ(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxyz")), 0); EXPECT_LT(abc, absl::string_view("abcdefghijklmnopqrstuvwxzz")); EXPECT_LT(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxzz")), 0); EXPECT_GT(abc, absl::string_view("abcdefghijklmnopqrstuvwxyy")); EXPECT_GT(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxyy")), 0); absl::string_view digits("0123456789"); auto npos = absl::string_view::npos; EXPECT_EQ(digits.compare(3, npos, absl::string_view("3456789")), 0); EXPECT_EQ(digits.compare(3, 4, absl::string_view("3456")), 0); EXPECT_EQ(digits.compare(10, 0, absl::string_view()), 0); EXPECT_EQ(digits.compare(3, 4, absl::string_view("0123456789"), 3, 4), 0); EXPECT_LT(digits.compare(3, 4, absl::string_view("0123456789"), 3, 5), 0); EXPECT_LT(digits.compare(0, npos, absl::string_view("0123456789"), 3, 5), 0); EXPECT_EQ(digits.compare(3, 4, "3456"), 0); EXPECT_EQ(digits.compare(3, npos, "3456789"), 0); EXPECT_EQ(digits.compare(10, 0, ""), 0); EXPECT_EQ(digits.compare(3, 4, "0123456789", 3, 4), 0); EXPECT_LT(digits.compare(3, 4, "0123456789", 3, 5), 0); EXPECT_LT(digits.compare(0, npos, "0123456789", 3, 5), 0); } TEST(StringViewTest, At) { absl::string_view abc = "abc"; EXPECT_EQ(abc.at(0), 'a'); EXPECT_EQ(abc.at(1), 'b'); EXPECT_EQ(abc.at(2), 'c'); #ifdef ABSL_HAVE_EXCEPTIONS EXPECT_THROW((void)abc.at(3), std::out_of_range); #else ABSL_EXPECT_DEATH_IF_SUPPORTED((void)abc.at(3), "absl::string_view::at"); #endif } #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L TEST(StringViewTest, StartsWith) { const absl::string_view a("foobar"); const absl::string_view b("123\0abc", 7); const absl::string_view e; EXPECT_TRUE(a.starts_with(a)); EXPECT_TRUE(a.starts_with("foo")); EXPECT_TRUE(a.starts_with('f')); EXPECT_TRUE(a.starts_with(e)); EXPECT_TRUE(b.starts_with(b)); EXPECT_TRUE(b.starts_with('1')); EXPECT_TRUE(b.starts_with(e)); EXPECT_TRUE(e.starts_with("")); EXPECT_FALSE(a.starts_with(b)); EXPECT_FALSE(b.starts_with(a)); EXPECT_FALSE(e.starts_with(a)); EXPECT_FALSE(a.starts_with('r')); EXPECT_FALSE(a.starts_with('\0')); EXPECT_FALSE(e.starts_with('r')); EXPECT_FALSE(e.starts_with('\0')); constexpr absl::string_view kFooBar("foobar"); constexpr absl::string_view kFoo("foo"); constexpr absl::string_view kBar("bar"); constexpr bool k1 = kFooBar.starts_with(kFoo); EXPECT_TRUE(k1); constexpr bool k2 = kFooBar.starts_with(kBar); EXPECT_FALSE(k2); constexpr bool k3 = kFooBar.starts_with('f'); EXPECT_TRUE(k3); constexpr bool k4 = kFooBar.starts_with("fo"); EXPECT_TRUE(k4); } TEST(StringViewTest, EndsWith) { const absl::string_view a("foobar"); const absl::string_view b("123\0abc", 7); const absl::string_view e; EXPECT_TRUE(a.ends_with(a)); EXPECT_TRUE(a.ends_with('r')); EXPECT_TRUE(a.ends_with("bar")); EXPECT_TRUE(a.ends_with(e)); EXPECT_TRUE(b.ends_with(b)); EXPECT_TRUE(b.ends_with('c')); EXPECT_TRUE(b.ends_with(e)); EXPECT_TRUE(e.ends_with("")); EXPECT_FALSE(a.ends_with(b)); EXPECT_FALSE(b.ends_with(a)); EXPECT_FALSE(e.ends_with(a)); EXPECT_FALSE(a.ends_with('f')); EXPECT_FALSE(a.ends_with('\0')); EXPECT_FALSE(e.ends_with('r')); EXPECT_FALSE(e.ends_with('\0')); constexpr absl::string_view kFooBar("foobar"); constexpr absl::string_view kFoo("foo"); constexpr absl::string_view kBar("bar"); constexpr bool k1 = kFooBar.ends_with(kFoo); EXPECT_FALSE(k1); constexpr bool k2 = kFooBar.ends_with(kBar); EXPECT_TRUE(k2); constexpr bool k3 = kFooBar.ends_with('r'); EXPECT_TRUE(k3); constexpr bool k4 = kFooBar.ends_with("ar"); EXPECT_TRUE(k4); } #endif struct MyCharAlloc : std::allocator<char> {}; TEST(StringViewTest, ExplicitConversionOperator) { absl::string_view sp = "hi"; EXPECT_EQ(sp, std::string(sp)); } TEST(StringViewTest, NullSafeStringView) { { absl::string_view s = absl::NullSafeStringView(nullptr); EXPECT_EQ(nullptr, s.data()); EXPECT_EQ(0u, s.size()); EXPECT_EQ(absl::string_view(), s); } { static const char kHi[] = "hi"; absl::string_view s = absl::NullSafeStringView(kHi); EXPECT_EQ(kHi, s.data()); EXPECT_EQ(strlen(kHi), s.size()); EXPECT_EQ(absl::string_view("hi"), s); } } TEST(StringViewTest, ConstexprNullSafeStringView) { { constexpr absl::string_view s = absl::NullSafeStringView(nullptr); EXPECT_EQ(nullptr, s.data()); EXPECT_EQ(0u, s.size()); EXPECT_EQ(absl::string_view(), s); } { static constexpr char kHi[] = "hi"; absl::string_view s = absl::NullSafeStringView(kHi); EXPECT_EQ(kHi, s.data()); EXPECT_EQ(strlen(kHi), s.size()); EXPECT_EQ(absl::string_view("hi"), s); } { constexpr absl::string_view s = absl::NullSafeStringView("hello"); EXPECT_EQ(s.size(), 5u); EXPECT_EQ("hello", s); } } TEST(StringViewTest, ConstexprCompiles) { constexpr absl::string_view sp; #if defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wnonnull" #endif #ifdef ABSL_HAVE_STRING_VIEW_FROM_NULLPTR constexpr absl::string_view cstr(nullptr); #endif #if defined(__clang__) #pragma clang diagnostic pop #endif constexpr absl::string_view cstr_len("cstr", 4); #if defined(ABSL_USES_STD_STRING_VIEW) #if !defined(__GLIBCXX__) #define ABSL_HAVE_CONSTEXPR_STRING_VIEW_FROM_CSTR 1 #endif #else #if ABSL_HAVE_BUILTIN(__builtin_strlen) || \ (defined(__GNUC__) && !defined(__clang__)) #define ABSL_HAVE_CONSTEXPR_STRING_VIEW_FROM_CSTR 1 #elif defined(__GNUC__) #error GCC/clang should have constexpr string_view. #endif #if defined(_MSC_VER) && _MSC_VER >= 1910 #define ABSL_HAVE_CONSTEXPR_STRING_VIEW_FROM_CSTR 1 #endif #endif #ifdef ABSL_HAVE_CONSTEXPR_STRING_VIEW_FROM_CSTR constexpr absl::string_view cstr_strlen("foo"); EXPECT_EQ(cstr_strlen.length(), 3u); constexpr absl::string_view cstr_strlen2 = "bar"; EXPECT_EQ(cstr_strlen2, "bar"); #if ABSL_HAVE_BUILTIN(__builtin_memcmp) || \ (defined(__GNUC__) && !defined(__clang__)) #define ABSL_HAVE_CONSTEXPR_STRING_VIEW_COMPARISON 1 #endif #ifdef ABSL_HAVE_CONSTEXPR_STRING_VIEW_COMPARISON constexpr absl::string_view foo = "foo"; constexpr absl::string_view bar = "bar"; constexpr bool foo_eq_bar = foo == bar; constexpr bool foo_ne_bar = foo != bar; constexpr bool foo_lt_bar = foo < bar; constexpr bool foo_le_bar = foo <= bar; constexpr bool foo_gt_bar = foo > bar; constexpr bool foo_ge_bar = foo >= bar; constexpr int foo_compare_bar = foo.compare(bar); EXPECT_FALSE(foo_eq_bar); EXPECT_TRUE(foo_ne_bar); EXPECT_FALSE(foo_lt_bar); EXPECT_FALSE(foo_le_bar); EXPECT_TRUE(foo_gt_bar); EXPECT_TRUE(foo_ge_bar); EXPECT_GT(foo_compare_bar, 0); #endif #endif #if !defined(__clang__) || 3 < __clang_major__ || \ (3 == __clang_major__ && 4 < __clang_minor__) constexpr absl::string_view::iterator const_begin_empty = sp.begin(); constexpr absl::string_view::iterator const_end_empty = sp.end(); EXPECT_EQ(const_begin_empty, const_end_empty); #ifdef ABSL_HAVE_STRING_VIEW_FROM_NULLPTR constexpr absl::string_view::iterator const_begin_nullptr = cstr.begin(); constexpr absl::string_view::iterator const_end_nullptr = cstr.end(); EXPECT_EQ(const_begin_nullptr, const_end_nullptr); #endif #endif constexpr absl::string_view::iterator const_begin = cstr_len.begin(); constexpr absl::string_view::iterator const_end = cstr_len.end(); constexpr absl::string_view::size_type const_size = cstr_len.size(); constexpr absl::string_view::size_type const_length = cstr_len.length(); static_assert(const_begin + const_size == const_end, "pointer arithmetic check"); static_assert(const_begin + const_length == const_end, "pointer arithmetic check"); #ifndef _MSC_VER EXPECT_EQ(const_begin + const_size, const_end); EXPECT_EQ(const_begin + const_length, const_end); #endif constexpr bool isempty = sp.empty(); EXPECT_TRUE(isempty); constexpr const char c = cstr_len[2]; EXPECT_EQ(c, 't'); constexpr const char cfront = cstr_len.front(); constexpr const char cback = cstr_len.back(); EXPECT_EQ(cfront, 'c'); EXPECT_EQ(cback, 'r'); constexpr const char* np = sp.data(); constexpr const char* cstr_ptr = cstr_len.data(); EXPECT_EQ(np, nullptr); EXPECT_NE(cstr_ptr, nullptr); constexpr size_t sp_npos = sp.npos; EXPECT_EQ(sp_npos, static_cast<size_t>(-1)); } constexpr char ConstexprMethodsHelper() { #if defined(__cplusplus) && __cplusplus >= 201402L absl::string_view str("123", 3); str.remove_prefix(1); str.remove_suffix(1); absl::string_view bar; str.swap(bar); return bar.front(); #else return '2'; #endif } TEST(StringViewTest, ConstexprMethods) { static_assert(ConstexprMethodsHelper() == '2', ""); constexpr absl::string_view foobar("foobar", 6); constexpr absl::string_view foo = foobar.substr(0, 3); constexpr absl::string_view bar = foobar.substr(3); EXPECT_EQ(foo, "foo"); EXPECT_EQ(bar, "bar"); } TEST(StringViewTest, Noexcept) { EXPECT_TRUE((std::is_nothrow_constructible<absl::string_view, const std::string&>::value)); EXPECT_TRUE((std::is_nothrow_constructible<absl::string_view, const std::string&>::value)); EXPECT_TRUE(std::is_nothrow_constructible<absl::string_view>::value); constexpr absl::string_view sp; EXPECT_TRUE(noexcept(sp.begin())); EXPECT_TRUE(noexcept(sp.end())); EXPECT_TRUE(noexcept(sp.cbegin())); EXPECT_TRUE(noexcept(sp.cend())); EXPECT_TRUE(noexcept(sp.rbegin())); EXPECT_TRUE(noexcept(sp.rend())); EXPECT_TRUE(noexcept(sp.crbegin())); EXPECT_TRUE(noexcept(sp.crend())); EXPECT_TRUE(noexcept(sp.size())); EXPECT_TRUE(noexcept(sp.length())); EXPECT_TRUE(noexcept(sp.empty())); EXPECT_TRUE(noexcept(sp.data())); EXPECT_TRUE(noexcept(sp.compare(sp))); EXPECT_TRUE(noexcept(sp.find(sp))); EXPECT_TRUE(noexcept(sp.find('f'))); EXPECT_TRUE(noexcept(sp.rfind(sp))); EXPECT_TRUE(noexcept(sp.rfind('f'))); EXPECT_TRUE(noexcept(sp.find_first_of(sp))); EXPECT_TRUE(noexcept(sp.find_first_of('f'))); EXPECT_TRUE(noexcept(sp.find_last_of(sp))); EXPECT_TRUE(noexcept(sp.find_last_of('f'))); EXPECT_TRUE(noexcept(sp.find_first_not_of(sp))); EXPECT_TRUE(noexcept(sp.find_first_not_of('f'))); EXPECT_TRUE(noexcept(sp.find_last_not_of(sp))); EXPECT_TRUE(noexcept(sp.find_last_not_of('f'))); } TEST(StringViewTest, BoundsCheck) { #ifndef ABSL_USES_STD_STRING_VIEW #if !defined(NDEBUG) || ABSL_OPTION_HARDENED absl::string_view h = "hello"; ABSL_EXPECT_DEATH_IF_SUPPORTED(h[5], ""); ABSL_EXPECT_DEATH_IF_SUPPORTED(h[static_cast<size_t>(-1)], ""); #endif #endif } TEST(ComparisonOpsTest, StringCompareNotAmbiguous) { EXPECT_EQ("hello", std::string("hello")); EXPECT_LT("hello", std::string("world")); } TEST(ComparisonOpsTest, HeterogeneousStringViewEquals) { EXPECT_EQ(absl::string_view("hello"), std::string("hello")); EXPECT_EQ("hello", absl::string_view("hello")); } TEST(FindOneCharTest, EdgeCases) { absl::string_view a("xxyyyxx"); a.remove_prefix(1); a.remove_suffix(1); EXPECT_EQ(0u, a.find('x')); EXPECT_EQ(0u, a.find('x', 0)); EXPECT_EQ(4u, a.find('x', 1)); EXPECT_EQ(4u, a.find('x', 4)); EXPECT_EQ(absl::string_view::npos, a.find('x', 5)); EXPECT_EQ(4u, a.rfind('x')); EXPECT_EQ(4u, a.rfind('x', 5)); EXPECT_EQ(4u, a.rfind('x', 4)); EXPECT_EQ(0u, a.rfind('x', 3)); EXPECT_EQ(0u, a.rfind('x', 0)); a.remove_prefix(1); a.remove_suffix(1); EXPECT_EQ(absl::string_view::npos, a.find('x')); EXPECT_EQ(absl::string_view::npos, a.rfind('x')); } #ifndef ABSL_HAVE_THREAD_SANITIZER TEST(HugeStringView, TwoPointTwoGB) { if (sizeof(size_t) <= 4) return; const size_t size = size_t{2200} * 1000 * 1000; std::string s(size, 'a'); absl::string_view sp(s); EXPECT_EQ(size, sp.length()); sp.remove_prefix(1); EXPECT_EQ(size - 1, sp.length()); sp.remove_suffix(2); EXPECT_EQ(size - 1 - 2, sp.length()); } #endif #if !defined(NDEBUG) && !defined(ABSL_USES_STD_STRING_VIEW) TEST(NonNegativeLenTest, NonNegativeLen) { ABSL_EXPECT_DEATH_IF_SUPPORTED( absl::string_view("xyz", static_cast<size_t>(-1)), "len <= kMaxSize"); } TEST(LenExceedsMaxSizeTest, LenExceedsMaxSize) { auto max_size = absl::string_view().max_size(); absl::string_view ok_view("", max_size); ABSL_EXPECT_DEATH_IF_SUPPORTED(absl::string_view("", max_size + 1), "len <= kMaxSize"); } #endif class StringViewStreamTest : public ::testing::Test { public: template <typename T> std::string Pad(const T& s, int width, char fill = 0) { std::ostringstream oss; if (fill != 0) { oss << std::setfill(fill); } if (width < 0) { width = -width; oss << std::right; } oss << std::setw(width) << s; return oss.str(); } }; TEST_F(StringViewStreamTest, Padding) { std::string s("hello"); absl::string_view sp(s); for (int w = -64; w < 64; ++w) { SCOPED_TRACE(w); EXPECT_EQ(Pad(s, w), Pad(sp, w)); } for (int w = -64; w < 64; ++w) { SCOPED_TRACE(w); EXPECT_EQ(Pad(s, w, '#'), Pad(sp, w, '#')); } } TEST_F(StringViewStreamTest, ResetsWidth) { std::string s = "hi"; absl::string_view sp = s; { std::ostringstream oss; oss << "[" << std::setfill('#') << std::setw(5) << s << "]"; ASSERT_EQ("[###hi]", oss.str()); } { std::ostringstream oss; oss << "[" << std::setfill('#') << std::setw(5) << sp << "]"; EXPECT_EQ("[###hi]", oss.str()); } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/string_view.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/string_view_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
d2483bbb-3d3a-4291-b99e-8aba17f70f7e
cpp
google/cel-cpp
field_backed_list_impl
eval/public/containers/field_backed_list_impl.h
eval/public/containers/field_backed_list_impl_test.cc
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_FIELD_BACKED_LIST_IMPL_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_FIELD_BACKED_LIST_IMPL_H_ #include "eval/public/cel_value.h" #include "eval/public/containers/internal_field_backed_list_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" namespace google { namespace api { namespace expr { namespace runtime { class FieldBackedListImpl : public internal::FieldBackedListImpl { public: FieldBackedListImpl(const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* descriptor, google::protobuf::Arena* arena) : internal::FieldBackedListImpl( message, descriptor, &CelProtoWrapper::InternalWrapMessage, arena) { } }; } } } } #endif
#include "eval/public/containers/field_backed_list_impl.h" #include <memory> #include <string> #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" #include "testutil/util.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { using ::testing::Eq; using ::testing::DoubleEq; using testutil::EqualsProto; std::unique_ptr<CelList> CreateList(const TestMessage* message, const std::string& field, google::protobuf::Arena* arena) { const google::protobuf::FieldDescriptor* field_desc = message->GetDescriptor()->FindFieldByName(field); return std::make_unique<FieldBackedListImpl>(message, field_desc, arena); } TEST(FieldBackedListImplTest, BoolDatatypeTest) { TestMessage message; message.add_bool_list(true); message.add_bool_list(false); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "bool_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].BoolOrDie(), true); EXPECT_EQ((*cel_list)[1].BoolOrDie(), false); } TEST(FieldBackedListImplTest, TestLength0) { TestMessage message; google::protobuf::Arena arena; auto cel_list = CreateList(&message, "int32_list", &arena); ASSERT_EQ(cel_list->size(), 0); } TEST(FieldBackedListImplTest, TestLength1) { TestMessage message; message.add_int32_list(1); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "int32_list", &arena); ASSERT_EQ(cel_list->size(), 1); EXPECT_EQ((*cel_list)[0].Int64OrDie(), 1); } TEST(FieldBackedListImplTest, TestLength100000) { TestMessage message; const int kLen = 100000; for (int i = 0; i < kLen; i++) { message.add_int32_list(i); } google::protobuf::Arena arena; auto cel_list = CreateList(&message, "int32_list", &arena); ASSERT_EQ(cel_list->size(), kLen); for (int i = 0; i < kLen; i++) { EXPECT_EQ((*cel_list)[i].Int64OrDie(), i); } } TEST(FieldBackedListImplTest, Int32DatatypeTest) { TestMessage message; message.add_int32_list(1); message.add_int32_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "int32_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].Int64OrDie(), 1); EXPECT_EQ((*cel_list)[1].Int64OrDie(), 2); } TEST(FieldBackedListImplTest, Int64DatatypeTest) { TestMessage message; message.add_int64_list(1); message.add_int64_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "int64_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].Int64OrDie(), 1); EXPECT_EQ((*cel_list)[1].Int64OrDie(), 2); } TEST(FieldBackedListImplTest, Uint32DatatypeTest) { TestMessage message; message.add_uint32_list(1); message.add_uint32_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "uint32_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].Uint64OrDie(), 1); EXPECT_EQ((*cel_list)[1].Uint64OrDie(), 2); } TEST(FieldBackedListImplTest, Uint64DatatypeTest) { TestMessage message; message.add_uint64_list(1); message.add_uint64_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "uint64_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].Uint64OrDie(), 1); EXPECT_EQ((*cel_list)[1].Uint64OrDie(), 2); } TEST(FieldBackedListImplTest, FloatDatatypeTest) { TestMessage message; message.add_float_list(1); message.add_float_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "float_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_THAT((*cel_list)[0].DoubleOrDie(), DoubleEq(1)); EXPECT_THAT((*cel_list)[1].DoubleOrDie(), DoubleEq(2)); } TEST(FieldBackedListImplTest, DoubleDatatypeTest) { TestMessage message; message.add_double_list(1); message.add_double_list(2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "double_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_THAT((*cel_list)[0].DoubleOrDie(), DoubleEq(1)); EXPECT_THAT((*cel_list)[1].DoubleOrDie(), DoubleEq(2)); } TEST(FieldBackedListImplTest, StringDatatypeTest) { TestMessage message; message.add_string_list("1"); message.add_string_list("2"); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "string_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].StringOrDie().value(), "1"); EXPECT_EQ((*cel_list)[1].StringOrDie().value(), "2"); } TEST(FieldBackedListImplTest, BytesDatatypeTest) { TestMessage message; message.add_bytes_list("1"); message.add_bytes_list("2"); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "bytes_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_EQ((*cel_list)[0].BytesOrDie().value(), "1"); EXPECT_EQ((*cel_list)[1].BytesOrDie().value(), "2"); } TEST(FieldBackedListImplTest, MessageDatatypeTest) { TestMessage message; TestMessage* msg1 = message.add_message_list(); TestMessage* msg2 = message.add_message_list(); msg1->set_string_value("1"); msg2->set_string_value("2"); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "message_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_THAT(*msg1, EqualsProto(*((*cel_list)[0].MessageOrDie()))); EXPECT_THAT(*msg2, EqualsProto(*((*cel_list)[1].MessageOrDie()))); } TEST(FieldBackedListImplTest, EnumDatatypeTest) { TestMessage message; message.add_enum_list(TestMessage::TEST_ENUM_1); message.add_enum_list(TestMessage::TEST_ENUM_2); google::protobuf::Arena arena; auto cel_list = CreateList(&message, "enum_list", &arena); ASSERT_EQ(cel_list->size(), 2); EXPECT_THAT((*cel_list)[0].Int64OrDie(), Eq(TestMessage::TEST_ENUM_1)); EXPECT_THAT((*cel_list)[1].Int64OrDie(), Eq(TestMessage::TEST_ENUM_2)); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/field_backed_list_impl.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/field_backed_list_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
f1b1e34e-ee3d-41fc-b951-2ce70275d5d5
cpp
google/libaddressinput
format_element
cpp/src/format_element.cc
cpp/test/format_element_test.cc
#include "format_element.h" #include <libaddressinput/address_field.h> #include <cassert> #include <ostream> #include <string> namespace i18n { namespace addressinput { FormatElement::FormatElement(AddressField field) : field_(field), literal_() {} FormatElement::FormatElement(const std::string& literal) : field_(COUNTRY), literal_(literal) { assert(!literal.empty()); } FormatElement::FormatElement() : field_(COUNTRY), literal_("\n") {} bool FormatElement::operator==(const FormatElement& other) const { return field_ == other.field_ && literal_ == other.literal_; } } } std::ostream& operator<<(std::ostream& o, const i18n::addressinput::FormatElement& element) { if (element.IsField()) { o << "Field: " << element.GetField(); } else if (element.IsNewline()) { o << "Newline"; } else { o << "Literal: " << element.GetLiteral(); } return o; }
#include "format_element.h" #include <libaddressinput/address_field.h> #include <sstream> #include <gtest/gtest.h> namespace { using i18n::addressinput::FormatElement; using i18n::addressinput::SORTING_CODE; TEST(FormatElementTest, StreamFunctionNewline) { std::ostringstream oss; oss << FormatElement(); EXPECT_EQ("Newline", oss.str()); } TEST(FormatElementTest, StreamFunctionLiteral) { std::ostringstream oss; oss << FormatElement("Text"); EXPECT_EQ("Literal: Text", oss.str()); } TEST(FormatElementTest, StreamFunctionField) { std::ostringstream oss; oss << FormatElement(SORTING_CODE); EXPECT_EQ("Field: SORTING_CODE", oss.str()); } TEST(FormatElementTest, IsNewline) { EXPECT_TRUE(FormatElement().IsNewline()); EXPECT_FALSE(FormatElement(" ").IsNewline()); EXPECT_FALSE(FormatElement(SORTING_CODE).IsNewline()); } TEST(FormatElementTest, IsField) { EXPECT_FALSE(FormatElement().IsField()); EXPECT_FALSE(FormatElement(" ").IsField()); EXPECT_TRUE(FormatElement(SORTING_CODE).IsField()); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/format_element.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/format_element_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
d5168485-2112-465c-ac4b-17cbb673ffaa
cpp
google/cel-cpp
internal_field_backed_map_impl
eval/public/containers/internal_field_backed_map_impl.cc
eval/public/containers/internal_field_backed_map_impl_test.cc
#include "eval/public/containers/internal_field_backed_map_impl.h" #include <limits> #include <memory> #include <string> #include <utility> #include "google/protobuf/descriptor.h" #include "google/protobuf/map_field.h" #include "google/protobuf/message.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "eval/public/cel_value.h" #include "eval/public/structs/field_access_impl.h" #include "eval/public/structs/protobuf_value_factory.h" #include "extensions/protobuf/internal/map_reflection.h" namespace google::api::expr::runtime::internal { namespace { using google::protobuf::Descriptor; using google::protobuf::FieldDescriptor; using google::protobuf::MapValueConstRef; using google::protobuf::Message; constexpr int kKeyTag = 1; constexpr int kValueTag = 2; class KeyList : public CelList { public: KeyList(const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* descriptor, const ProtobufValueFactory& factory, google::protobuf::Arena* arena) : message_(message), descriptor_(descriptor), reflection_(message_->GetReflection()), factory_(factory), arena_(arena) {} int size() const override { return reflection_->FieldSize(*message_, descriptor_); } CelValue operator[](int index) const override { const Message* entry = &reflection_->GetRepeatedMessage(*message_, descriptor_, index); if (entry == nullptr) { return CelValue::CreateNull(); } const Descriptor* entry_descriptor = entry->GetDescriptor(); const FieldDescriptor* key_desc = entry_descriptor->FindFieldByNumber(kKeyTag); absl::StatusOr<CelValue> key_value = CreateValueFromSingleField( entry, key_desc, ProtoWrapperTypeOptions::kUnsetProtoDefault, factory_, arena_); if (!key_value.ok()) { return CreateErrorValue(arena_, key_value.status()); } return *key_value; } private: const google::protobuf::Message* message_; const google::protobuf::FieldDescriptor* descriptor_; const google::protobuf::Reflection* reflection_; const ProtobufValueFactory& factory_; google::protobuf::Arena* arena_; }; bool MatchesMapKeyType(const FieldDescriptor* key_desc, const CelValue& key) { switch (key_desc->cpp_type()) { case google::protobuf::FieldDescriptor::CPPTYPE_BOOL: return key.IsBool(); case google::protobuf::FieldDescriptor::CPPTYPE_INT32: case google::protobuf::FieldDescriptor::CPPTYPE_INT64: return key.IsInt64(); case google::protobuf::FieldDescriptor::CPPTYPE_UINT32: case google::protobuf::FieldDescriptor::CPPTYPE_UINT64: return key.IsUint64(); case google::protobuf::FieldDescriptor::CPPTYPE_STRING: return key.IsString(); default: return false; } } absl::Status InvalidMapKeyType(absl::string_view key_type) { return absl::InvalidArgumentError( absl::StrCat("Invalid map key type: '", key_type, "'")); } } FieldBackedMapImpl::FieldBackedMapImpl( const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* descriptor, ProtobufValueFactory factory, google::protobuf::Arena* arena) : message_(message), descriptor_(descriptor), key_desc_(descriptor_->message_type()->FindFieldByNumber(kKeyTag)), value_desc_(descriptor_->message_type()->FindFieldByNumber(kValueTag)), reflection_(message_->GetReflection()), factory_(std::move(factory)), arena_(arena), key_list_( std::make_unique<KeyList>(message, descriptor, factory_, arena)) {} int FieldBackedMapImpl::size() const { return reflection_->FieldSize(*message_, descriptor_); } absl::StatusOr<const CelList*> FieldBackedMapImpl::ListKeys() const { return key_list_.get(); } absl::StatusOr<bool> FieldBackedMapImpl::Has(const CelValue& key) const { MapValueConstRef value_ref; return LookupMapValue(key, &value_ref); } absl::optional<CelValue> FieldBackedMapImpl::operator[](CelValue key) const { MapValueConstRef value_ref; auto lookup_result = LookupMapValue(key, &value_ref); if (!lookup_result.ok()) { return CreateErrorValue(arena_, lookup_result.status()); } if (!*lookup_result) { return absl::nullopt; } absl::StatusOr<CelValue> result = CreateValueFromMapValue( message_, value_desc_, &value_ref, factory_, arena_); if (!result.ok()) { return CreateErrorValue(arena_, result.status()); } return *result; } absl::StatusOr<bool> FieldBackedMapImpl::LookupMapValue( const CelValue& key, MapValueConstRef* value_ref) const { if (!MatchesMapKeyType(key_desc_, key)) { return InvalidMapKeyType(key_desc_->cpp_type_name()); } std::string map_key_string; google::protobuf::MapKey proto_key; switch (key_desc_->cpp_type()) { case google::protobuf::FieldDescriptor::CPPTYPE_BOOL: { bool key_value; key.GetValue(&key_value); proto_key.SetBoolValue(key_value); } break; case google::protobuf::FieldDescriptor::CPPTYPE_INT32: { int64_t key_value; key.GetValue(&key_value); if (key_value > std::numeric_limits<int32_t>::max() || key_value < std::numeric_limits<int32_t>::lowest()) { return absl::OutOfRangeError("integer overflow"); } proto_key.SetInt32Value(key_value); } break; case google::protobuf::FieldDescriptor::CPPTYPE_INT64: { int64_t key_value; key.GetValue(&key_value); proto_key.SetInt64Value(key_value); } break; case google::protobuf::FieldDescriptor::CPPTYPE_STRING: { CelValue::StringHolder key_value; key.GetValue(&key_value); map_key_string.assign(key_value.value().data(), key_value.value().size()); proto_key.SetStringValue(map_key_string); } break; case google::protobuf::FieldDescriptor::CPPTYPE_UINT32: { uint64_t key_value; key.GetValue(&key_value); if (key_value > std::numeric_limits<uint32_t>::max()) { return absl::OutOfRangeError("unsigned integer overlow"); } proto_key.SetUInt32Value(key_value); } break; case google::protobuf::FieldDescriptor::CPPTYPE_UINT64: { uint64_t key_value; key.GetValue(&key_value); proto_key.SetUInt64Value(key_value); } break; default: return InvalidMapKeyType(key_desc_->cpp_type_name()); } return cel::extensions::protobuf_internal::LookupMapValue( *reflection_, *message_, *descriptor_, proto_key, value_ref); } absl::StatusOr<bool> FieldBackedMapImpl::LegacyHasMapValue( const CelValue& key) const { auto lookup_result = LegacyLookupMapValue(key); if (!lookup_result.has_value()) { return false; } auto result = *lookup_result; if (result.IsError()) { return *(result.ErrorOrDie()); } return true; } absl::optional<CelValue> FieldBackedMapImpl::LegacyLookupMapValue( const CelValue& key) const { if (!MatchesMapKeyType(key_desc_, key)) { return CreateErrorValue(arena_, InvalidMapKeyType(key_desc_->cpp_type_name())); } int map_size = size(); for (int i = 0; i < map_size; i++) { const Message* entry = &reflection_->GetRepeatedMessage(*message_, descriptor_, i); if (entry == nullptr) continue; absl::StatusOr<CelValue> key_value = CreateValueFromSingleField( entry, key_desc_, ProtoWrapperTypeOptions::kUnsetProtoDefault, factory_, arena_); if (!key_value.ok()) { return CreateErrorValue(arena_, key_value.status()); } bool match = false; switch (key_desc_->cpp_type()) { case google::protobuf::FieldDescriptor::CPPTYPE_BOOL: match = key.BoolOrDie() == key_value->BoolOrDie(); break; case google::protobuf::FieldDescriptor::CPPTYPE_INT32: case google::protobuf::FieldDescriptor::CPPTYPE_INT64: match = key.Int64OrDie() == key_value->Int64OrDie(); break; case google::protobuf::FieldDescriptor::CPPTYPE_UINT32: case google::protobuf::FieldDescriptor::CPPTYPE_UINT64: match = key.Uint64OrDie() == key_value->Uint64OrDie(); break; case google::protobuf::FieldDescriptor::CPPTYPE_STRING: match = key.StringOrDie() == key_value->StringOrDie(); break; default: break; } if (match) { absl::StatusOr<CelValue> value_cel_value = CreateValueFromSingleField( entry, value_desc_, ProtoWrapperTypeOptions::kUnsetProtoDefault, factory_, arena_); if (!value_cel_value.ok()) { return CreateErrorValue(arena_, value_cel_value.status()); } return *value_cel_value; } } return {}; } }
#include "eval/public/containers/internal_field_backed_map_impl.h" #include <array> #include <limits> #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" namespace google::api::expr::runtime::internal { namespace { using ::absl_testing::StatusIs; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::UnorderedPointwise; class FieldBackedMapTestImpl : public FieldBackedMapImpl { public: FieldBackedMapTestImpl(const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* descriptor, google::protobuf::Arena* arena) : FieldBackedMapImpl(message, descriptor, &CelProtoWrapper::InternalWrapMessage, arena) {} using FieldBackedMapImpl::LegacyHasMapValue; using FieldBackedMapImpl::LegacyLookupMapValue; }; std::unique_ptr<FieldBackedMapTestImpl> CreateMap(const TestMessage* message, const std::string& field, google::protobuf::Arena* arena) { const google::protobuf::FieldDescriptor* field_desc = message->GetDescriptor()->FindFieldByName(field); return std::make_unique<FieldBackedMapTestImpl>(message, field_desc, arena); } TEST(FieldBackedMapImplTest, BadKeyTypeTest) { TestMessage message; google::protobuf::Arena arena; constexpr std::array<absl::string_view, 6> map_types = { "int64_int32_map", "uint64_int32_map", "string_int32_map", "bool_int32_map", "int32_int32_map", "uint32_uint32_map", }; for (auto map_type : map_types) { auto cel_map = CreateMap(&message, std::string(map_type), &arena); auto result = cel_map->Has(CelValue::CreateNull()); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kInvalidArgument)); result = cel_map->LegacyHasMapValue(CelValue::CreateNull()); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kInvalidArgument)); auto lookup = (*cel_map)[CelValue::CreateNull()]; EXPECT_TRUE(lookup.has_value()); EXPECT_TRUE(lookup->IsError()); EXPECT_THAT(lookup->ErrorOrDie()->code(), Eq(absl::StatusCode::kInvalidArgument)); lookup = cel_map->LegacyLookupMapValue(CelValue::CreateNull()); EXPECT_TRUE(lookup.has_value()); EXPECT_TRUE(lookup->IsError()); EXPECT_THAT(lookup->ErrorOrDie()->code(), Eq(absl::StatusCode::kInvalidArgument)); } } TEST(FieldBackedMapImplTest, Int32KeyTest) { TestMessage message; auto field_map = message.mutable_int32_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int32_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateInt64(1)).value_or(false)); EXPECT_TRUE( cel_map->LegacyHasMapValue(CelValue::CreateInt64(1)).value_or(false)); EXPECT_FALSE((*cel_map)[CelValue::CreateInt64(3)].has_value()); EXPECT_FALSE(cel_map->Has(CelValue::CreateInt64(3)).value_or(true)); EXPECT_FALSE( cel_map->LegacyHasMapValue(CelValue::CreateInt64(3)).value_or(true)); } TEST(FieldBackedMapImplTest, Int32KeyOutOfRangeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int32_int32_map", &arena); auto result = cel_map->Has( CelValue::CreateInt64(std::numeric_limits<int32_t>::max() + 1L)); EXPECT_THAT(result.status(), StatusIs(absl::StatusCode::kOutOfRange, HasSubstr("overflow"))); result = cel_map->Has( CelValue::CreateInt64(std::numeric_limits<int32_t>::lowest() - 1L)); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kOutOfRange)); } TEST(FieldBackedMapImplTest, Int64KeyTest) { TestMessage message; auto field_map = message.mutable_int64_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int64_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateInt64(1)).value_or(false)); EXPECT_EQ( cel_map->LegacyLookupMapValue(CelValue::CreateInt64(1))->Int64OrDie(), 2); EXPECT_TRUE( cel_map->LegacyHasMapValue(CelValue::CreateInt64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(3)].has_value(), false); } TEST(FieldBackedMapImplTest, BoolKeyTest) { TestMessage message; auto field_map = message.mutable_bool_int32_map(); (*field_map)[false] = 1; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "bool_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateBool(false)]->Int64OrDie(), 1); EXPECT_TRUE(cel_map->Has(CelValue::CreateBool(false)).value_or(false)); EXPECT_TRUE( cel_map->LegacyHasMapValue(CelValue::CreateBool(false)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateBool(true)].has_value(), false); (*field_map)[true] = 2; EXPECT_EQ((*cel_map)[CelValue::CreateBool(true)]->Int64OrDie(), 2); } TEST(FieldBackedMapImplTest, Uint32KeyTest) { TestMessage message; auto field_map = message.mutable_uint32_uint32_map(); (*field_map)[0] = 1u; (*field_map)[1] = 2u; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint32_uint32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(0)]->Uint64OrDie(), 1UL); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(1)]->Uint64OrDie(), 2UL); EXPECT_TRUE(cel_map->Has(CelValue::CreateUint64(1)).value_or(false)); EXPECT_TRUE( cel_map->LegacyHasMapValue(CelValue::CreateUint64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(3)].has_value(), false); EXPECT_EQ(cel_map->Has(CelValue::CreateUint64(3)).value_or(true), false); } TEST(FieldBackedMapImplTest, Uint32KeyOutOfRangeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint32_uint32_map", &arena); auto result = cel_map->Has( CelValue::CreateUint64(std::numeric_limits<uint32_t>::max() + 1UL)); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kOutOfRange)); } TEST(FieldBackedMapImplTest, Uint64KeyTest) { TestMessage message; auto field_map = message.mutable_uint64_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint64_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateUint64(1)).value_or(false)); EXPECT_TRUE( cel_map->LegacyHasMapValue(CelValue::CreateUint64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(3)].has_value(), false); } TEST(FieldBackedMapImplTest, StringKeyTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); (*field_map)["test0"] = 1; (*field_map)["test1"] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); std::string test0 = "test0"; std::string test1 = "test1"; std::string test_notfound = "test_notfound"; EXPECT_EQ((*cel_map)[CelValue::CreateString(&test0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateString(&test1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateString(&test1)).value_or(false)); EXPECT_TRUE(cel_map->LegacyHasMapValue(CelValue::CreateString(&test1)) .value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateString(&test_notfound)].has_value(), false); } TEST(FieldBackedMapImplTest, EmptySizeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); EXPECT_EQ(cel_map->size(), 0); } TEST(FieldBackedMapImplTest, RepeatedAddTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); (*field_map)["test0"] = 1; (*field_map)["test1"] = 2; (*field_map)["test0"] = 3; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); EXPECT_EQ(cel_map->size(), 2); } TEST(FieldBackedMapImplTest, KeyListTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); std::vector<std::string> keys; std::vector<std::string> keys1; for (int i = 0; i < 100; i++) { keys.push_back(absl::StrCat("test", i)); (*field_map)[keys.back()] = i; } google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); const CelList* key_list = cel_map->ListKeys().value(); EXPECT_EQ(key_list->size(), 100); for (int i = 0; i < key_list->size(); i++) { keys1.push_back(std::string((*key_list)[i].StringOrDie().value())); } EXPECT_THAT(keys, UnorderedPointwise(Eq(), keys1)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/internal_field_backed_map_impl.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/internal_field_backed_map_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b2c41507-2889-4121-a7a6-29ab6b433e18
cpp
google/arolla
lifting
arolla/qexpr/lifting.h
arolla/qexpr/lifting_test.cc
#ifndef AROLLA_QEXPR_LIFTING_H_ #define AROLLA_QEXPR_LIFTING_H_ #include <cstdint> #include <tuple> #include <type_traits> #include "absl/base/attributes.h" #include "arolla/util/meta.h" namespace arolla { template <class T> struct DoNotLiftTag { using type = T; }; template <class T> using DecayDoNotLiftTag = meta::strip_template_t<DoNotLiftTag, T>; template <template <class> class Lifted, class T> using LiftedType = std::conditional_t<meta::is_wrapped_with_v<DoNotLiftTag, T>, DecayDoNotLiftTag<T>, Lifted<T>>; namespace lifting_internal { template <class ArgTypeList> struct CallOnLiftedArgsImpl; template <> struct CallOnLiftedArgsImpl<meta::type_list<>> { template <class Fn, class... Ts> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()(Fn&& fn, Ts&&... args) const { return std::forward<Fn>(fn)(std::forward<Ts>(args)...); } }; template <class LeftArg, class... LeftArgs> struct CallOnLiftedArgsImpl<meta::type_list<LeftArg, LeftArgs...>> { template <class Fn, class T, class... Ts> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()(Fn&& fn, T&& arg, Ts&&... args) const { if constexpr (meta::is_wrapped_with_v<DoNotLiftTag, LeftArg>) { return CallOnLiftedArgsImpl<meta::type_list<LeftArgs...>>{}( std::forward<Fn>(fn), std::forward<Ts>(args)...); } else { return CallOnLiftedArgsImpl<meta::type_list<LeftArgs...>>{}( std::forward<Fn>(fn), std::forward<Ts>(args)..., std::forward<T>(arg)); } } }; template <uint64_t kDontLiftMask, class ScalarArgsList, class LiftedArgsList, class MergedArgsList> struct CallShuffledArgsFn; template <class... LiftedArgs, class... MergedArgs> struct CallShuffledArgsFn<0, meta::type_list<>, meta::type_list<LiftedArgs...>, meta::type_list<MergedArgs...>> { template <class SctrictFn> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()( const SctrictFn& fn, const LiftedArgs&... lifted_args, const MergedArgs&... merged_args) const { return fn(merged_args..., lifted_args...); } }; template <uint64_t kDontLiftMask, class... ScalarArgs, class... MergedArgs> struct CallShuffledArgsFn<kDontLiftMask, meta::type_list<ScalarArgs...>, meta::type_list<>, meta::type_list<MergedArgs...>> { static_assert(kDontLiftMask == (1ull << sizeof...(ScalarArgs)) - 1); template <class SctrictFn> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()( const SctrictFn& fn, const ScalarArgs&... scalar_args, const MergedArgs&... merged_args) const { return fn(merged_args..., scalar_args...); } }; template <class... MergedArgs> struct CallShuffledArgsFn<0, meta::type_list<>, meta::type_list<>, meta::type_list<MergedArgs...>> { template <class SctrictFn> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()( const SctrictFn& fn, const MergedArgs&... merged_args) const { return fn(merged_args...); } }; template <uint64_t kDontLiftMask, class ScalarArg, class... ScalarArgs, class LiftedArg, class... LiftedArgs, class... MergedArgs> struct CallShuffledArgsFn< kDontLiftMask, meta::type_list<ScalarArg, ScalarArgs...>, meta::type_list<LiftedArg, LiftedArgs...>, meta::type_list<MergedArgs...>> { template <class SctrictFn> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()( const SctrictFn& fn, const ScalarArg& scalar_arg, const ScalarArgs&... scalar_args, const LiftedArg& lifted_arg, const LiftedArgs&... lifted_args, MergedArgs... merged_args) const { if constexpr (kDontLiftMask % 2 == 1) { return CallShuffledArgsFn<kDontLiftMask / 2, meta::type_list<ScalarArgs...>, meta::type_list<LiftedArg, LiftedArgs...>, meta::type_list<MergedArgs..., ScalarArg>>()( fn, scalar_args..., lifted_arg, lifted_args..., merged_args..., scalar_arg); } else { return CallShuffledArgsFn<kDontLiftMask / 2, meta::type_list<ScalarArg, ScalarArgs...>, meta::type_list<LiftedArgs...>, meta::type_list<MergedArgs..., LiftedArg>>()( fn, scalar_arg, scalar_args..., lifted_args..., merged_args..., lifted_arg); } } }; template <template <typename> class LiftedViewType, class ArgsToProcessList, class LiftedArgList, uint64_t kDontLiftMask> struct CaptureDontLift; template <template <typename> class LiftedViewType, uint64_t kDontLiftMask, class LeftArg, class... LeftArgs, class... LiftedArgs> struct CaptureDontLift<LiftedViewType, meta::type_list<LeftArg, LeftArgs...>, meta::type_list<LiftedArgs...>, kDontLiftMask> { template <class Fn, class T, class... Ts> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()(const Fn& fn, const T& arg, const Ts&... args) const { if constexpr (meta::is_wrapped_with_v<DoNotLiftTag, LeftArg>) { constexpr uint64_t total_arg_count = 1 + sizeof...(Ts) + sizeof...(LiftedArgs); constexpr uint64_t arg_id = total_arg_count - (sizeof...(LeftArgs) + 1); return CaptureDontLift<LiftedViewType, meta::type_list<LeftArgs...>, meta::type_list<LiftedArgs...>, kDontLiftMask + (1ull << arg_id)>{}(fn, args..., arg); } else { return CaptureDontLift<LiftedViewType, meta::type_list<LeftArgs...>, meta::type_list<LiftedArgs..., LeftArg>, kDontLiftMask>{}(fn, args...); } } }; template <template <typename> class LiftedViewType, uint64_t kDontLiftMask, class... LiftedArgs> struct CaptureDontLift<LiftedViewType, meta::type_list<>, meta::type_list<LiftedArgs...>, kDontLiftMask> { template <class Fn, class... Ts> ABSL_ATTRIBUTE_ALWAYS_INLINE auto operator()(const Fn& fn, const Ts&... args) const { return [fn, &args...](LiftedViewType<LiftedArgs>... view_args) ABSL_ATTRIBUTE_ALWAYS_INLINE { return CallShuffledArgsFn< kDontLiftMask, meta::type_list<Ts...>, meta::type_list<LiftedViewType<LiftedArgs>...>, meta::type_list<>>()(fn, args..., view_args...); }; } }; template <class ArgList> struct LiftableArgs; template <> struct LiftableArgs<meta::type_list<>> { using type = meta::type_list<>; }; template <class T, class... Ts> struct LiftableArgs<meta::type_list<T, Ts...>> { using type = meta::concat_t<meta::type_list<T>, typename LiftableArgs<meta::type_list<Ts...>>::type>; }; template <class T, class... Ts> struct LiftableArgs<meta::type_list<DoNotLiftTag<T>, Ts...>> { using type = typename LiftableArgs<meta::type_list<Ts...>>::type; }; } template <class... Args> class LiftingTools { static_assert(sizeof...(Args) <= 64, "Arg count limit is 64"); public: using LiftableArgs = typename lifting_internal::LiftableArgs<meta::type_list<Args...>>::type; static constexpr bool kAllLiftable = std::tuple_size_v<typename LiftableArgs::tuple> == sizeof...(Args); template <template <typename> class LiftedViewType, class Fn, class... Ts> static auto CreateFnWithDontLiftCaptured(const Fn& fn, const Ts&... args) { static_assert(sizeof...(Args) == sizeof...(Ts)); if constexpr (kAllLiftable) { return [fn](LiftedViewType<Args>... largs) { return fn(largs...); }; } else { return lifting_internal::CaptureDontLift< LiftedViewType, meta::type_list<Args...>, meta::type_list<>, 0>{}( fn, args...); } } template <class Fn, class... Ts> ABSL_ATTRIBUTE_ALWAYS_INLINE static auto CallOnLiftedArgs(Fn&& fn, Ts&&... args) { static_assert(sizeof...(Args) == sizeof...(Ts)); if constexpr (kAllLiftable) { return std::forward<Fn>(fn)(std::forward<Ts>(args)...); } else { return lifting_internal::CallOnLiftedArgsImpl<meta::type_list<Args...>>{}( std::forward<Fn>(fn), std::forward<Ts>(args)...); } } }; } #endif
#include "arolla/qexpr/lifting.h" #include <cstddef> #include <memory> #include <string> #include <type_traits> #include "gtest/gtest.h" #include "arolla/memory/optional_value.h" #include "arolla/util/meta.h" namespace arolla { namespace { TEST(Lifting, DoNotLiftTag) { static_assert(std::is_same_v<int, DoNotLiftTag<int>::type>); static_assert(std::is_same_v<OptionalValue<int>, DoNotLiftTag<OptionalValue<int>>::type>); } TEST(LiftingTools, LiftableArgs) { static_assert( std::is_same_v<LiftingTools<>::LiftableArgs, meta::type_list<>>); static_assert( std::is_same_v<LiftingTools<int>::LiftableArgs, meta::type_list<int>>); static_assert(std::is_same_v<LiftingTools<DoNotLiftTag<int>>::LiftableArgs, meta::type_list<>>); static_assert( std::is_same_v<LiftingTools<int, DoNotLiftTag<float>>::LiftableArgs, meta::type_list<int>>); static_assert( std::is_same_v<LiftingTools<DoNotLiftTag<float>, int>::LiftableArgs, meta::type_list<int>>); static_assert( std::is_same_v< LiftingTools<std::string, DoNotLiftTag<float>, int>::LiftableArgs, meta::type_list<std::string, int>>); static_assert( std::is_same_v<LiftingTools<std::string, DoNotLiftTag<float>, int, DoNotLiftTag<char>, DoNotLiftTag<std::string>, double>::LiftableArgs, meta::type_list<std::string, int, double>>); } template <class T> struct MyView { using type = T; T value; }; TEST(LiftingTools, CreateFnWithDontLiftCaptured) { { using Tools = LiftingTools<int>; auto fn = Tools::CreateFnWithDontLiftCaptured<MyView>( [](MyView<int> x) { return x.value; }, nullptr); EXPECT_EQ(fn(MyView<int>{5}), 5); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, MyView<int>{5}), 5); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<MyView<int>>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } const int& kFive = 5; { using Tools = LiftingTools<DoNotLiftTag<int>>; auto fn = Tools::CreateFnWithDontLiftCaptured<MyView>( [](int x) { return x; }, kFive); EXPECT_EQ(fn(), 5); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, nullptr), 5); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } { using Tools = LiftingTools<DoNotLiftTag<int>, float, DoNotLiftTag<std::string>>; auto lambda = [](int x, MyView<float> y, std::string z) { if (x != 5 || y.value != 2.0f || z != "a") { return 0; } return 1; }; auto fn = Tools::CreateFnWithDontLiftCaptured<MyView>(lambda, kFive, nullptr, "a"); EXPECT_EQ(fn(MyView<float>{2.0f}), 1); EXPECT_EQ( Tools::CallOnLiftedArgs(fn, nullptr, MyView<float>{2.0f}, nullptr), 1); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<MyView<float>>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } { using Tools = LiftingTools<char, DoNotLiftTag<int>, float, DoNotLiftTag<std::string>>; auto lambda = [](MyView<char> q, int x, MyView<float> y, std::string z) { if (q.value != 'Q' || x != 5 || y.value != 2.0f || z != "a") { return 0; } return 1; }; std::string kA = "a"; auto fn = Tools::CreateFnWithDontLiftCaptured<MyView>(lambda, nullptr, kFive, nullptr, kA); EXPECT_EQ(fn(MyView<char>{'Q'}, MyView<float>{2.0f}), 1); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, MyView<char>{'Q'}, nullptr, MyView<float>{2.0f}, nullptr), 1); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<MyView<char>, MyView<float>>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } } TEST(LiftingTools, CallOnLiftedArgsWithADifferentFunction) { using Tools = LiftingTools<char, DoNotLiftTag<int>, float, DoNotLiftTag<std::string>>; auto fn = [](float x, std::string z) { if (x != 1.0f || z != "z") { return 0; } return 1; }; EXPECT_EQ(Tools::CallOnLiftedArgs(fn, 1.0f, nullptr, "z", nullptr), 1); } TEST(LiftingTools, CaptureNonCopiable) { using Tools = LiftingTools<DoNotLiftTag<std::unique_ptr<int>>>; const auto ptr = std::make_unique<int>(5); auto fn = Tools::CreateFnWithDontLiftCaptured<MyView>( [](const std::unique_ptr<int>& x) { return x == nullptr ? -1 : *x; }, ptr); EXPECT_EQ(fn(), 5); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, MyView<int>{-7}), 5); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } template <class T> using ConstRef = const T&; TEST(LiftingTools, CallNonCopiable) { using Tools = LiftingTools<std::unique_ptr<int>>; auto fn = Tools::CreateFnWithDontLiftCaptured<ConstRef>( [](const std::unique_ptr<int>& x) { return x == nullptr ? -1 : *x; }, MyView<int>{-13}); EXPECT_EQ(fn(std::make_unique<int>(5)), 5); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, std::make_unique<int>(5)), 5); static_assert(std::is_same_v<meta::function_traits<decltype(fn)>::arg_types, meta::type_list<const std::unique_ptr<int>&>>); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, int>); } TEST(LiftingTools, CreateFnWithDontLiftCaptured64Args) { using Tools = LiftingTools< DoNotLiftTag<int>, int, int, int, DoNotLiftTag<int>, int, int, int, DoNotLiftTag<int>, DoNotLiftTag<int>, int, int, int, int, int, int, DoNotLiftTag<int>, int, int, int, DoNotLiftTag<int>, int, int, int, int, DoNotLiftTag<int>, int, int, int, int, DoNotLiftTag<int>, int, int, int, int, DoNotLiftTag<int>, int, DoNotLiftTag<int>, int, int, int, int, int, DoNotLiftTag<int>, DoNotLiftTag<int>, int, int, int, int, DoNotLiftTag<int>, DoNotLiftTag<int>, int, int, int, int, int, int, DoNotLiftTag<int>, int, int, int, int, int, DoNotLiftTag<int> >; const int x = -1; #define TEST_ARGS_8 x, x, x, x, x, x, x, x #define TEST_ARGS_32 TEST_ARGS_8, TEST_ARGS_8, TEST_ARGS_8, TEST_ARGS_8 #define TEST_ARGS_64 TEST_ARGS_32, TEST_ARGS_32 auto fn = Tools::CreateFnWithDontLiftCaptured<ConstRef>( [](auto... args) { return sizeof...(args); }, TEST_ARGS_64); EXPECT_EQ(Tools::CallOnLiftedArgs(fn, TEST_ARGS_64), 64); static_assert( std::is_same_v<meta::function_traits<decltype(fn)>::return_type, size_t>); #undef TEST_ARGS_8 #undef TEST_ARGS_32 #undef TEST_ARGS_64 } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/lifting.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/lifting_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
13692b9c-e863-4fa0-8eed-e55cea52b26f
cpp
google/arolla
bytes
arolla/util/bytes.cc
arolla/util/bytes_test.cc
#include "arolla/util/bytes.h" #include <cstddef> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "arolla/util/repr.h" namespace arolla { ReprToken ReprTraits<Bytes>::operator()(const Bytes& value) const { constexpr size_t kBytesAbbrevLimit = 120; ReprToken result; absl::string_view bytes = value; if (bytes.size() <= kBytesAbbrevLimit) { result.str = absl::StrCat("b'", absl::CHexEscape(bytes), "'"); } else { result.str = absl::StrCat("b'", absl::CHexEscape(bytes.substr(0, kBytesAbbrevLimit)), "... (", bytes.size(), " bytes total)'"); } return result; } }
#include "arolla/util/bytes.h" #include <string> #include <type_traits> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/string_view.h" #include "arolla/util/repr.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla { namespace { using ::arolla::testing::ReprTokenEq; using ::testing::Eq; using ::testing::MatchesRegex; TEST(BytesTest, Constructor) { EXPECT_THAT(Bytes("Hello"), Eq("Hello")); std::string hello = "Hello"; EXPECT_THAT(Bytes(hello), Eq("Hello")); absl::string_view hello_view = hello; EXPECT_THAT(Bytes(hello_view), Eq("Hello")); } TEST(BytesTest, CopyAndMoveConstructors) { static_assert(std::is_nothrow_move_constructible<Bytes>::value); Bytes src("Google"); Bytes copied(src); EXPECT_THAT(copied, Eq(src)); Bytes moved(std::move(src)); EXPECT_THAT(moved, Eq(copied)); } TEST(BytesTest, CopyAndMoveAssignment) { static_assert(std::is_nothrow_move_assignable<Bytes>::value); Bytes src("Google"); Bytes copied = src; EXPECT_THAT(copied, Eq(src)); Bytes moved = std::move(src); EXPECT_THAT(moved, Eq(copied)); } TEST(BytesTest, AssignmentFromString) { std::string google = "Google"; { Bytes val("x"); val = "Google"; EXPECT_THAT(val, Eq(google)); } { Bytes val("x"); val = google; EXPECT_THAT(val, Eq(google)); } { absl::string_view google_view = google; Bytes val("x"); val = google_view; EXPECT_THAT(val, Eq("Google")); } { Bytes val("x"); val = std::move(google); EXPECT_THAT(val, Eq("Google")); } } TEST(BytesTest, Repr) { EXPECT_THAT(GenReprToken(Bytes("G'\"\t\xff")), ReprTokenEq(R"(b'G\'\"\t\xff')")); EXPECT_THAT(Repr(Bytes(std::string(1024, 'x'))), MatchesRegex(R"(b'x{120}[.]{3} \(1024 bytes total\)')")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/bytes.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/bytes_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
6f7e1c3b-f30a-4c73-bbc3-a36012a5b579
cpp
tensorflow/tensorflow
gcs_dns_cache
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_dns_cache.cc
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_dns_cache_test.cc
#include "tsl/platform/cloud/gcs_dns_cache.h" #include <cstring> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tsl/platform/errors.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status.h" #ifndef _WIN32 #include <arpa/inet.h> #include <netdb.h> #include <netinet/in.h> #include <sys/socket.h> #else #include <Windows.h> #include <winsock2.h> #include <ws2tcpip.h> #endif #include <sys/types.h> namespace tsl { namespace { const std::vector<string>& kCachedDomainNames = *new std::vector<string>{"www.googleapis.com", "storage.googleapis.com"}; inline void print_getaddrinfo_error(const string& name, absl::Status return_status) { LOG(ERROR) << "Error resolving " << name << ": " << return_status; } template <typename T> const T& SelectRandomItemUniform(std::default_random_engine* random, const std::vector<T>& items) { CHECK_GT(items.size(), 0); std::uniform_int_distribution<size_t> distribution(0u, items.size() - 1u); size_t choice_index = distribution(*random); return items[choice_index]; } } GcsDnsCache::GcsDnsCache(Env* env, int64_t refresh_rate_secs) : env_(env), refresh_rate_secs_(refresh_rate_secs) {} void GcsDnsCache::AnnotateRequest(HttpRequest* request) { mutex_lock l(mu_); if (!started_) { VLOG(1) << "Starting GCS DNS cache."; DCHECK(!worker_) << "Worker thread already exists!"; addresses_ = ResolveNames(kCachedDomainNames); worker_.reset(env_->StartThread({}, "gcs_dns_worker", [this]() { return WorkerThread(); })); started_ = true; } CHECK_EQ(kCachedDomainNames.size(), addresses_.size()); for (size_t i = 0; i < kCachedDomainNames.size(); ++i) { const string& name = kCachedDomainNames[i]; const std::vector<string>& addresses = addresses_[i]; if (!addresses.empty()) { const string& chosen_address = SelectRandomItemUniform(&random_, addresses); request->AddResolveOverride(name, 443, chosen_address); VLOG(1) << "Annotated DNS mapping: " << name << " --> " << chosen_address; } else { LOG(WARNING) << "No IP addresses available for " << name; } } } std::vector<string> GcsDnsCache::ResolveName(const string& name) { VLOG(1) << "Resolving DNS name: " << name; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; addrinfo* result = nullptr; RetryConfig retryConfig( 5000, 50 * 1000 * 5000, 5); const absl::Status getaddrinfo_status = RetryingUtils::CallWithRetries( [&name, &hints, &result]() { int return_code = getaddrinfo(name.c_str(), nullptr, &hints, &result); absl::Status return_status; switch (return_code) { case 0: return_status = absl::OkStatus(); break; #ifndef _WIN32 case EAI_ADDRFAMILY: case EAI_SERVICE: case EAI_SOCKTYPE: case EAI_NONAME: return_status = absl::FailedPreconditionError( absl::StrCat("System in invalid state for getaddrinfo call: ", gai_strerror(return_code))); break; case EAI_AGAIN: case EAI_NODATA: return_status = absl::UnavailableError(absl::StrCat( "Resolving ", name, " is temporarily unavailable")); break; case EAI_BADFLAGS: case EAI_FAMILY: return_status = absl::InvalidArgumentError(absl::StrCat( "Bad arguments for getaddrinfo: ", gai_strerror(return_code))); break; case EAI_FAIL: return_status = absl::NotFoundError( absl::StrCat("Permanent failure resolving ", name, ": ", gai_strerror(return_code))); break; case EAI_MEMORY: return_status = absl::ResourceExhaustedError("Out of memory"); break; case EAI_SYSTEM: default: return_status = absl::UnknownError(strerror(return_code)); #else case WSATYPE_NOT_FOUND: case WSAESOCKTNOSUPPORT: case WSAHOST_NOT_FOUND: return_status = absl::FailedPreconditionError( absl::StrCat("System in invalid state for getaddrinfo call: ", gai_strerror(return_code))); break; case WSATRY_AGAIN: return_status = absl::UnavailableError(absl::StrCat( "Resolving ", name, " is temporarily unavailable")); break; case WSAEINVAL: case WSAEAFNOSUPPORT: return_status = absl::InvalidArgumentError(absl::StrCat( "Bad arguments for getaddrinfo: ", gai_strerror(return_code))); break; case WSANO_RECOVERY: return_status = absl::NotFoundError( absl::StrCat("Permanent failure resolving ", name, ": ", gai_strerror(return_code))); break; case WSA_NOT_ENOUGH_MEMORY: return_status = absl::ResourceExhaustedError("Out of memory"); break; default: return_status = absl::UnknownError(strerror(return_code)); #endif } return absl::Status(return_status); }, retryConfig); std::vector<string> output; if (getaddrinfo_status.ok()) { for (const addrinfo* i = result; i != nullptr; i = i->ai_next) { if (i->ai_family != AF_INET || i->ai_addr->sa_family != AF_INET) { LOG(WARNING) << "Non-IPv4 address returned. ai_family: " << i->ai_family << ". sa_family: " << i->ai_addr->sa_family << "."; continue; } char buf[INET_ADDRSTRLEN]; void* address_ptr = &(reinterpret_cast<sockaddr_in*>(i->ai_addr)->sin_addr); const char* formatted = nullptr; if ((formatted = inet_ntop(i->ai_addr->sa_family, address_ptr, buf, INET_ADDRSTRLEN)) == nullptr) { LOG(ERROR) << "Error converting response to IP address for " << name << ": " << strerror(errno); } else { output.emplace_back(buf); VLOG(1) << "... address: " << buf; } } } else { print_getaddrinfo_error(name, getaddrinfo_status); } if (result != nullptr) { freeaddrinfo(result); } return output; } std::vector<std::vector<string>> GcsDnsCache::ResolveNames( const std::vector<string>& names) { std::vector<std::vector<string>> all_addresses; all_addresses.reserve(names.size()); for (const string& name : names) { all_addresses.push_back(ResolveName(name)); } return all_addresses; } void GcsDnsCache::WorkerThread() { while (true) { { mutex_lock l(mu_); if (cancelled_) return; cond_var_.wait_for(l, std::chrono::seconds(refresh_rate_secs_)); if (cancelled_) return; } auto new_addresses = ResolveNames(kCachedDomainNames); { mutex_lock l(mu_); addresses_.swap(new_addresses); } } } }
#include "tsl/platform/cloud/gcs_dns_cache.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { class TestHttpRequest : public HttpRequest { public: void SetUri(const string& uri) override {} void SetRange(uint64 start, uint64 end) override {} void AddHeader(const string& name, const string& value) override {} void AddResolveOverride(const string& hostname, int64_t port, const string& ip_addr) override { EXPECT_EQ(port, 443) << "Unexpected port set for hostname: " << hostname; auto itr = resolve_overrides_.find(hostname); EXPECT_EQ(itr, resolve_overrides_.end()) << "Hostname " << hostname << "already in map: " << itr->second; resolve_overrides_.insert( std::map<string, string>::value_type(hostname, ip_addr)); } void AddAuthBearerHeader(const string& auth_token) override {} void SetRequestStats(HttpRequest::RequestStats* stats) override {} void SetDeleteRequest() override {} absl::Status SetPutFromFile(const string& body_filepath, size_t offset) override { return absl::OkStatus(); } void SetPutEmptyBody() override {} void SetPostFromBuffer(const char* buffer, size_t size) override {} void SetPostEmptyBody() override {} void SetResultBuffer(std::vector<char>* out_buffer) override {} void SetResultBufferDirect(char* buffer, size_t size) override {} size_t GetResultBufferDirectBytesTransferred() override { return 0; } string GetResponseHeader(const string& name) const override { return ""; } uint64 GetResponseCode() const override { return 0; } absl::Status Send() override { return absl::OkStatus(); } string EscapeString(const string& str) override { return ""; } void SetTimeouts(uint32 connection, uint32 inactivity, uint32 total) override {} std::map<string, string> resolve_overrides_; }; class GcsDnsCacheTest : public ::testing::Test { protected: void ResolveNameTest() { auto response = GcsDnsCache::ResolveName("www.googleapis.com"); EXPECT_LT(1, response.size()) << absl::StrJoin(response, ", "); } void AnnotateRequestTest() { GcsDnsCache d; { mutex_lock l(d.mu_); d.started_ = true; d.addresses_ = {{"192.168.1.1"}, {"172.134.1.1"}}; } TestHttpRequest req; d.AnnotateRequest(&req); EXPECT_EQ("192.168.1.1", req.resolve_overrides_["www.googleapis.com"]); EXPECT_EQ("172.134.1.1", req.resolve_overrides_["storage.googleapis.com"]); } void SuccessfulCleanupTest() { GcsDnsCache d; TestHttpRequest req; d.AnnotateRequest(&req); } }; TEST_F(GcsDnsCacheTest, AnnotateRequest) { AnnotateRequestTest(); } TEST_F(GcsDnsCacheTest, SuccessfulCleanup) { SuccessfulCleanupTest(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_dns_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_dns_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a3080d71-6a4e-44ac-b11e-7ca949bc2bb5
cpp
tensorflow/tensorflow
example_parser_configuration
tensorflow/core/example/example_parser_configuration.cc
tensorflow/core/example/example_parser_configuration_test.cc
#include "tensorflow/core/example/example_parser_configuration.h" #include <vector> #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { Status FindNodeIndexByName(const tensorflow::GraphDef& graph, const string& node_name, int* node_idx) { for (int i = 0; i < graph.node_size(); ++i) { const auto& node = graph.node(i); if (node.name() == node_name) { *node_idx = i; return absl::OkStatus(); } } return errors::InvalidArgument(node_name, " not found in GraphDef"); } Status ExtractExampleParserConfiguration( const tensorflow::GraphDef& graph, const string& node_name, tensorflow::Session* session, std::vector<FixedLenFeature>* fixed_len_features, std::vector<VarLenFeature>* var_len_features) { int node_idx; TF_RETURN_IF_ERROR(FindNodeIndexByName(graph, node_name, &node_idx)); const auto& node = graph.node(node_idx); if (node.op() != "ParseExample") { return errors::InvalidArgument(node_name, " node is not a ParseExample op"); } auto& attr_map = node.attr(); auto num_sparse = attr_map.at("Nsparse").i(); auto num_dense = attr_map.at("Ndense").i(); fixed_len_features->resize(num_dense); var_len_features->resize(num_sparse); auto tdense = attr_map.at("Tdense"); auto dense_shapes = attr_map.at("dense_shapes"); auto sparse_types = attr_map.at("sparse_types"); if (tdense.list().type_size() != num_dense) { return errors::InvalidArgument("Node attr Tdense has ", tdense.list().type_size(), " elements != Ndense attr: ", num_dense); } if (dense_shapes.list().shape_size() != num_dense) { return errors::InvalidArgument("Node attr dense_shapes has ", dense_shapes.list().shape_size(), " elements != Ndense attr: ", num_dense); } if (sparse_types.list().type_size() != num_sparse) { return errors::InvalidArgument("Node attr sparse_types has ", sparse_types.list().type_size(), " elements != NSparse attr: ", num_sparse); } for (int i = 0; i < tdense.list().type_size(); ++i) { (*fixed_len_features)[i].dtype = tdense.list().type(i); (*fixed_len_features)[i].shape = TensorShape(dense_shapes.list().shape(i)); } for (int i = 0; i < sparse_types.list().type_size(); ++i) { (*var_len_features)[i].dtype = sparse_types.list().type(i); } std::vector<string> fetch_names(node.input_size() - 1); for (int i = 1; i < node.input_size(); ++i) { fetch_names[i - 1] = node.input(i); } std::vector<Tensor> op_input_tensors; TF_RETURN_IF_ERROR(session->Run({}, fetch_names, {}, &op_input_tensors)); int sparse_keys_start = 1; int dense_keys_start = sparse_keys_start + num_sparse; int dense_defaults_start = dense_keys_start + num_dense; for (int i = 0; i < num_sparse; ++i) { int input_idx = sparse_keys_start + i; (*var_len_features)[i].key = op_input_tensors[input_idx].scalar<tstring>()(); } for (int i = 0; i < num_dense; ++i) { FixedLenFeature& config = (*fixed_len_features)[i]; int dense_keys_offset = dense_keys_start + i; config.key = op_input_tensors[dense_keys_offset].scalar<tstring>()(); int defaults_offset = dense_defaults_start + i; config.default_value = op_input_tensors[defaults_offset]; } int sparse_indices_output_start = 0; int sparse_values_output_start = sparse_indices_output_start + num_sparse; int sparse_shapes_output_start = sparse_values_output_start + num_sparse; int dense_values_output_start = sparse_shapes_output_start + num_sparse; string node_output_prefix = strings::StrCat(node_name, ":"); for (int i = 0; i < num_sparse; ++i) { VarLenFeature& config = (*var_len_features)[i]; int indices_offset = sparse_indices_output_start + i; config.indices_output_tensor_name = strings::StrCat(node_output_prefix, indices_offset); int values_offset = sparse_values_output_start + i; config.values_output_tensor_name = strings::StrCat(node_output_prefix, values_offset); int shapes_offset = sparse_shapes_output_start + i; config.shapes_output_tensor_name = strings::StrCat(node_output_prefix, shapes_offset); } for (int i = 0; i < num_dense; ++i) { int output_idx = dense_values_output_start + i; (*fixed_len_features)[i].values_output_tensor_name = strings::StrCat(node_output_prefix, output_idx); } return absl::OkStatus(); } Status ExampleParserConfigurationProtoToFeatureVectors( const ExampleParserConfiguration& config_proto, std::vector<FixedLenFeature>* fixed_len_features, std::vector<VarLenFeature>* var_len_features) { const auto& feature_map = config_proto.feature_map(); for (auto it = feature_map.cbegin(); it != feature_map.cend(); ++it) { string key = it->first; const auto& config = it->second; if (config.has_fixed_len_feature()) { const auto& fixed_config = config.fixed_len_feature(); FixedLenFeature f; f.key = key; f.dtype = fixed_config.dtype(); f.shape = TensorShape(fixed_config.shape()); Tensor default_value(f.dtype, f.shape); if (!default_value.FromProto(fixed_config.default_value())) { return errors::InvalidArgument( "Invalid default_value in config proto ", fixed_config.default_value().DebugString()); } f.default_value = default_value; f.values_output_tensor_name = fixed_config.values_output_tensor_name(); fixed_len_features->push_back(f); } else { const auto& var_len_config = config.var_len_feature(); VarLenFeature v; v.key = key; v.dtype = var_len_config.dtype(); v.values_output_tensor_name = var_len_config.values_output_tensor_name(); v.indices_output_tensor_name = var_len_config.indices_output_tensor_name(); v.shapes_output_tensor_name = var_len_config.shapes_output_tensor_name(); var_len_features->push_back(v); } } return absl::OkStatus(); } }
#include "tensorflow/core/example/example_parser_configuration.h" #include <memory> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/example_proto_helper.h" namespace tensorflow { namespace { void ReadFileToStringOrDie(Env* env, const string& filename, string* output) { TF_CHECK_OK(ReadFileToString(env, filename, output)); } std::unique_ptr<Session> CreateSession() { SessionOptions options; (*options.config.mutable_device_count())["CPU"] = 2; return std::unique_ptr<Session>(NewSession(options)); } class ExtractExampleParserConfigurationTest : public ::testing::Test { protected: void SetUp() override { string proto_string; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), "core/example/testdata/parse_example_graph_def.pbtxt"); ReadFileToStringOrDie(Env::Default(), filename, &proto_string); protobuf::TextFormat::ParseFromString(proto_string, &graph_def_); session_ = CreateSession(); TF_CHECK_OK(session_->Create(graph_def_)); } NodeDef* parse_example_node() { for (auto& node : *graph_def_.mutable_node()) { if (node.name() == "ParseExample/ParseExample") { return &node; } } return nullptr; } GraphDef graph_def_; std::unique_ptr<Session> session_; }; TEST_F(ExtractExampleParserConfigurationTest, OpNotFound) { std::vector<FixedLenFeature> dense_vec; std::vector<VarLenFeature> sparse_vec; Status status = ExtractExampleParserConfiguration( graph_def_, "BlarseExample/ParseExample", session_.get(), &dense_vec, &sparse_vec); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); } TEST_F(ExtractExampleParserConfigurationTest, InconsistentAttrNsparse) { std::vector<FixedLenFeature> dense_vec; std::vector<VarLenFeature> sparse_vec; NodeDef* node = parse_example_node(); auto mutable_attr = node->mutable_attr(); (*mutable_attr)["Nsparse"].set_i(3); Status status = ExtractExampleParserConfiguration( graph_def_, "ParseExample/ParseExample", session_.get(), &dense_vec, &sparse_vec); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); } TEST_F(ExtractExampleParserConfigurationTest, InconsistentAttrNdense) { std::vector<FixedLenFeature> dense_vec; std::vector<VarLenFeature> sparse_vec; NodeDef* node = parse_example_node(); auto mutable_attr = node->mutable_attr(); (*mutable_attr)["Ndense"].set_i(2); Status status = ExtractExampleParserConfiguration( graph_def_, "ParseExample/ParseExample", session_.get(), &dense_vec, &sparse_vec); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); } TEST_F(ExtractExampleParserConfigurationTest, Basic) { std::vector<FixedLenFeature> dense_vec; std::vector<VarLenFeature> sparse_vec; Status status = ExtractExampleParserConfiguration( graph_def_, "ParseExample/ParseExample", session_.get(), &dense_vec, &sparse_vec); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(2, sparse_vec.size()); EXPECT_EQ(3, dense_vec.size()); EXPECT_EQ("sf0", sparse_vec[0].key); EXPECT_EQ(DT_STRING, sparse_vec[0].dtype); EXPECT_EQ("ParseExample/ParseExample:0", sparse_vec[0].indices_output_tensor_name); EXPECT_EQ("ParseExample/ParseExample:2", sparse_vec[0].values_output_tensor_name); EXPECT_EQ("ParseExample/ParseExample:4", sparse_vec[0].shapes_output_tensor_name); EXPECT_EQ("sf1", sparse_vec[1].key); EXPECT_EQ(DT_STRING, sparse_vec[1].dtype); EXPECT_EQ("ParseExample/ParseExample:1", sparse_vec[1].indices_output_tensor_name); EXPECT_EQ("ParseExample/ParseExample:3", sparse_vec[1].values_output_tensor_name); EXPECT_EQ("ParseExample/ParseExample:5", sparse_vec[1].shapes_output_tensor_name); EXPECT_EQ("x", dense_vec[0].key); EXPECT_EQ(DT_FLOAT, dense_vec[0].dtype); EXPECT_EQ("ParseExample/ParseExample:6", dense_vec[0].values_output_tensor_name); EXPECT_EQ("y", dense_vec[1].key); EXPECT_EQ(DT_FLOAT, dense_vec[1].dtype); EXPECT_EQ("ParseExample/ParseExample:7", dense_vec[1].values_output_tensor_name); EXPECT_EQ("z", dense_vec[2].key); EXPECT_EQ(DT_FLOAT, dense_vec[2].dtype); EXPECT_EQ("ParseExample/ParseExample:8", dense_vec[2].values_output_tensor_name); } static const char kExampleParseConfigurationProto[] = R"( feature_map { key: "x" value { fixed_len_feature { dtype: DT_FLOAT shape { dim { size: 1 } } default_value { dtype: DT_FLOAT tensor_shape { dim { size: 1 } } float_val: 33.0 } values_output_tensor_name: "ParseExample/ParseExample:3" } } } feature_map { key: "y" value { var_len_feature { dtype: DT_STRING values_output_tensor_name: "ParseExample/ParseExample:1" indices_output_tensor_name: "ParseExample/ParseExample:0" shapes_output_tensor_name: "ParseExample/ParseExample:2" } } } )"; class ExampleParserConfigurationProtoToFeatureVectorsTest : public ::testing::Test { protected: void SetUp() override { CHECK(protobuf::TextFormat::ParseFromString(kExampleParseConfigurationProto, &config_proto_)); } ExampleParserConfiguration config_proto_; }; TEST_F(ExampleParserConfigurationProtoToFeatureVectorsTest, Basic) { std::vector<FixedLenFeature> fixed_len_features; std::vector<VarLenFeature> var_len_features; TF_ASSERT_OK(ExampleParserConfigurationProtoToFeatureVectors( config_proto_, &fixed_len_features, &var_len_features)); ASSERT_EQ(1, fixed_len_features.size()); ASSERT_EQ(1, var_len_features.size()); const FixedLenFeature& f = fixed_len_features[0]; ASSERT_EQ(DT_FLOAT, f.dtype); ASSERT_EQ("x", f.key); ASSERT_EQ("ParseExample/ParseExample:3", f.values_output_tensor_name); TensorShape expected_shape({1}); ASSERT_EQ(expected_shape.dims(), f.shape.dims()); ASSERT_EQ(1, f.shape.dim_size(0)); Tensor expected_default(DT_FLOAT, TensorShape({1})); test::FillIota<float>(&expected_default, 33.0); test::ExpectTensorEqual<float>(expected_default, f.default_value); const VarLenFeature& v = var_len_features[0]; ASSERT_EQ(DT_STRING, v.dtype); ASSERT_EQ("ParseExample/ParseExample:0", v.indices_output_tensor_name); ASSERT_EQ("ParseExample/ParseExample:1", v.values_output_tensor_name); ASSERT_EQ("ParseExample/ParseExample:2", v.shapes_output_tensor_name); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/example/example_parser_configuration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/example/example_parser_configuration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a516fea-af24-401e-b978-de5e7f147671
cpp
tensorflow/tensorflow
tensor_dataset_op
tensorflow/core/kernels/data/tensor_dataset_op.cc
tensorflow/core/kernels/data/tensor_dataset_op_test.cc
#include "tensorflow/core/kernels/data/tensor_dataset_op.h" #include <string> #include <utility> #include "absl/status/status.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const TensorDatasetOp::kDatasetType; constexpr const char* const TensorDatasetOp::kComponents; constexpr const char* const TensorDatasetOp::kToutput_types; constexpr const char* const TensorDatasetOp::kOutputShapes; constexpr char kFromTensor[] = "FromTensor"; constexpr char kProduced[] = "produced"; class TensorDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, std::vector<Tensor> tensors) : DatasetBase(DatasetContext(ctx)), tensors_(std::move(tensors)) { dtypes_.reserve(tensors_.size()); shapes_.reserve(tensors_.size()); for (const Tensor& t : tensors_) { dtypes_.push_back(t.dtype()); shapes_.emplace_back(t.shape().dim_sizes()); } } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kFromTensor, prefix)}); } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { split_providers->push_back(std::make_unique<IndexSplitProvider>(1)); return absl::OkStatus(); } const DataTypeVector& output_dtypes() const override { return dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { return 1LL; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { return Get(AnyContext(ctx), index, out_tensors); } Status Get(AnyContext ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); *out_tensors = tensors_; return absl::OkStatus(); } absl::Status RandomIndexingCompatible() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { std::vector<Node*> components; components.reserve(tensors_.size()); for (const Tensor& t : tensors_) { Node* node; if (!ctx->is_graph_rewrite()) { TF_RETURN_IF_ERROR(b->AddDatasetOrTensor(ctx, t, &node)); } else { TF_RETURN_IF_ERROR(b->AddPlaceholder(t, &node)); DCHECK_NE(ctx->input_list(), nullptr); ctx->input_list()->emplace_back(node->name(), t); } components.emplace_back(node); } AttrValue dtypes; b->BuildAttrValue(dtypes_, &dtypes); TF_RETURN_IF_ERROR(b->AddDataset(this, {}, {{0, components}}, {{kToutput_types, dtypes}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), produced_(false), global_shuffle_iterator_(dataset()) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { if (!ctx->split_providers().empty()) { TF_ASSIGN_OR_RETURN(split_provider_, GetSingleSplitProvider(ctx, dataset())); } return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { if (ctx->index_mapper() != nullptr) { return global_shuffle_iterator_.GetNext(ctx, out_tensors, end_of_sequence); } mutex_lock l(mu_); if (split_provider_) { bool end_of_splits; Tensor split; TF_RETURN_IF_ERROR(split_provider_->GetNext(&split, &end_of_splits)); if (end_of_splits) { produced_ = true; } } if (!produced_) { *out_tensors = dataset()->tensors_; produced_ = true; *end_of_sequence = false; return absl::OkStatus(); } else { *end_of_sequence = true; return absl::OkStatus(); } } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeSourceNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kProduced, static_cast<int64_t>(produced_))); TF_RETURN_IF_ERROR(global_shuffle_iterator_.Save(prefix(), ctx, writer)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { if (ctx->restored_element_count().has_value()) { return global_shuffle_iterator_.Restore(prefix(), ctx, reader); } mutex_lock l(mu_); int64_t produced; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kProduced, &produced)); produced_ = static_cast<bool>(produced); return absl::OkStatus(); } private: mutex mu_; std::shared_ptr<SplitProvider> split_provider_; bool produced_ TF_GUARDED_BY(mu_); GlobalShuffleIterator global_shuffle_iterator_; }; const std::vector<Tensor> tensors_; DataTypeVector dtypes_; std::vector<PartialTensorShape> shapes_; }; TensorDatasetOp::TensorDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kToutput_types, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void TensorDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { OpInputList inputs; OP_REQUIRES_OK(ctx, ctx->input_list(kComponents, &inputs)); std::vector<Tensor> components(inputs.begin(), inputs.end()); *output = new Dataset(ctx, std::move(components)); OP_REQUIRES_OK(ctx, VerifyTypesMatch((*output)->output_dtypes(), output_types_)); OP_REQUIRES_OK( ctx, VerifyShapesCompatible((*output)->output_shapes(), output_shapes_)); } namespace { REGISTER_KERNEL_BUILDER(Name("TensorDataset").Device(DEVICE_CPU), TensorDatasetOp); } } }
#include "tensorflow/core/kernels/data/tensor_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "tensor_dataset"; class TensorDatasetParams : public DatasetParams { public: TensorDatasetParams(std::vector<Tensor> components, string node_name) : DatasetParams(TensorDtypes(components), TensorShapes(components), std::move(node_name)), components_(std::move(components)) {} std::vector<Tensor> GetInputTensors() const override { return components_; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->reserve(components_.size()); for (int i = 0; i < components_.size(); ++i) { input_names->emplace_back( absl::StrCat(TensorDatasetOp::kComponents, "_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"Toutput_types", output_dtypes_}, {"output_shapes", output_shapes_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return TensorDatasetOp::kDatasetType; } private: DataTypeVector TensorDtypes(const std::vector<Tensor>& input_components) { DataTypeVector dtypes; for (const auto& component : input_components) { dtypes.emplace_back(component.dtype()); } return dtypes; } std::vector<PartialTensorShape> TensorShapes( const std::vector<Tensor>& input_components) { std::vector<PartialTensorShape> shapes; for (const auto& component : input_components) { shapes.emplace_back(component.shape()); } return shapes; } public: std::vector<Tensor> components_; }; class TensorDatasetOpTest : public DatasetOpsTestBase {}; std::vector<Tensor> PlainTensors() { return {CreateTensor<int64_t>(TensorShape({}), {1}), CreateTensor<int64_t>(TensorShape({1, 3}), {1, 2, 3}), CreateTensor<double>(TensorShape({}), {37.0}), CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}; } TensorDatasetParams PlainTensorDatasetParams() { return {PlainTensors(), kNodeName}; } TensorDatasetParams NestedTensorDatasetParams() { return { {CreateTensor<Variant>(TensorShape({}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({1, 3}), {1, 2, 3})}, kNodeName}; } std::vector<GetNextTestCase<TensorDatasetParams>> GetNextTestCases() { return {{PlainTensorDatasetParams(), PlainTensors()}, {NestedTensorDatasetParams(), {CreateTensor<Variant>(TensorShape({}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({1, 3}), {1, 2, 3})}}}; } class ParameterizedGetNextTest : public TensorDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<TensorDatasetParams>> {}; TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); ASSERT_FALSE(end_of_sequence); EXPECT_EQ(out_tensors.size(), test_case.expected_outputs.size()); for (int i = 0; i < out_tensors.size(); ++i) { if (out_tensors[i].dtype() == DT_VARIANT) { const Tensor* output = out_tensors[i].scalar<Variant>()().get<Tensor>(); const Tensor* expected_output = test_case.expected_outputs[i].scalar<Variant>()().get<Tensor>(); TF_EXPECT_OK(ExpectEqual(*output, *expected_output)); } else { TF_EXPECT_OK(ExpectEqual(out_tensors[i], test_case.expected_outputs[i])); } } TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); EXPECT_TRUE(end_of_sequence); EXPECT_TRUE(out_tensors.empty()); } INSTANTIATE_TEST_CASE_P(TensorDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn(GetNextTestCases())); TEST_F(TensorDatasetOpTest, DatasetTypeString) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(TensorDatasetOp::kDatasetType))); } TEST_F(TensorDatasetOpTest, DatasetNodeName) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(TensorDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes(dataset_params.output_dtypes())); } TEST_F(TensorDatasetOpTest, DatasetOutputShapes) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes(dataset_params.output_shapes())); } TEST_F(TensorDatasetOpTest, Cardinality) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetCardinality(1)); } TEST_F(TensorDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes(dataset_params.output_dtypes())); } TEST_F(TensorDatasetOpTest, IteratorOutputShapes) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes(dataset_params.output_shapes())); } TEST_F(TensorDatasetOpTest, IteratorOutputPrefix) { auto dataset_params = PlainTensorDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( "FromTensor", dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<TensorDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{PlainTensorDatasetParams(), {0, 1, 2}, PlainTensors()}, {NestedTensorDatasetParams(), {0, 1, 2}, {CreateTensor<Variant>(TensorShape({}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({1, 3}), {1, 2, 3})}}}; } class ParameterizedIteratorSaveAndRestoreTest : public TensorDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<TensorDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, SaveAndRestore) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; int cur_iteration = 0; const std::vector<int>& breakpoints = test_case.breakpoints; int cardinality = 1; for (int breakpoint : breakpoints) { VariantTensorDataWriter writer; TF_EXPECT_OK(iterator_->Save(serialization_ctx.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, test_case.dataset_params.iterator_prefix(), *dataset_, &iterator_)); while (cur_iteration <= breakpoint) { std::vector<Tensor> next; TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); out_tensors.insert(out_tensors.end(), next.begin(), next.end()); cur_iteration++; } if (breakpoint >= cardinality) { EXPECT_TRUE(end_of_sequence); } else { EXPECT_FALSE(end_of_sequence); } } EXPECT_EQ(out_tensors.size(), test_case.expected_outputs.size()); for (int i = 0; i < out_tensors.size(); ++i) { if (out_tensors[i].dtype() == DT_VARIANT) { const Tensor* output = out_tensors[i].scalar<Variant>()().get<Tensor>(); const Tensor* expected_output = test_case.expected_outputs[i].scalar<Variant>()().get<Tensor>(); TF_EXPECT_OK(ExpectEqual(*output, *expected_output)); } else { TF_EXPECT_OK(ExpectEqual(out_tensors[i], test_case.expected_outputs[i])); } } } INSTANTIATE_TEST_CASE_P(TensorDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); TEST_F(TensorDatasetOpTest, Splitting) { auto params = PlainTensorDatasetParams(); TF_ASSERT_OK(InitializeRuntime(params)); TF_EXPECT_OK(CheckSplitProviderFullIteration( params, PlainTensors())); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 3, 2, CreateTensors<int64_t>(TensorShape({}), {}))); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 3, 0, PlainTensors())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/tensor_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/tensor_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aad3ff49-0c47-43f8-9f0d-aa4acb4eee14
cpp
google/arolla
restricted_operator
arolla/expr/operators/restricted_operator.cc
arolla/expr/operators/restricted_operator_test.cc
#include "arolla/expr/operators/restricted_operator.h" #include <memory> #include <utility> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/qtype_utils.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprAttributes; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperator; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::GetAttrQTypes; using ::arolla::expr::HasAllAttrQTypes; using ::arolla::expr::WithNewOperator; class RestrictedOp final : public ExprOperator { public: RestrictedOp(ExprOperatorPtr wrapped_op, type_meta::Strategy restriction) : ExprOperator(wrapped_op->display_name(), FingerprintHasher("::arolla::expr_operators::RestrictedOp") .Combine(wrapped_op) .Finish()), wrapped_op_(std::move(wrapped_op)), restriction_(std::move(restriction)) {} absl::StatusOr<ExprOperatorSignature> GetSignature() const final { return wrapped_op_->GetSignature(); } absl::StatusOr<ExprNodePtr> ToLowerLevel( const ExprNodePtr& node) const final { if (!node->qtype()) { return node; } ASSIGN_OR_RETURN(auto unwrapped_node, WithNewOperator(node, wrapped_op_)); return wrapped_op_->ToLowerLevel(unwrapped_node); } absl::StatusOr<ExprAttributes> InferAttributes( absl::Span<const ExprAttributes> inputs) const final { if (!HasAllAttrQTypes(inputs)) { return ExprAttributes{}; } RETURN_IF_ERROR(restriction_(GetAttrQTypes(inputs)).status()) << "in restriction for " << display_name() << " operator"; return wrapped_op_->InferAttributes(inputs); } private: ExprOperatorPtr wrapped_op_; type_meta::Strategy restriction_; }; } ExprOperatorPtr RestrictOperator(ExprOperatorPtr wrapped_op, type_meta::Strategy restriction) { return std::make_shared<RestrictedOp>(std::move(wrapped_op), std::move(restriction)); } absl::StatusOr<ExprOperatorPtr> RestrictOperator( absl::StatusOr<ExprOperatorPtr> wrapped_op, absl::StatusOr<type_meta::Strategy> restriction) { RETURN_IF_ERROR(wrapped_op.status()); RETURN_IF_ERROR(restriction.status()); return RestrictOperator(*wrapped_op, *restriction); } }
#include "arolla/expr/operators/restricted_operator.h" #include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/overloaded_expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/testing/qtype.h" namespace arolla::expr_operators { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::expr::CallOp; using ::arolla::expr::Literal; using ::arolla::expr_operators::type_meta::Floating; using ::arolla::expr_operators::type_meta::Integral; using ::arolla::testing::InvokeExprOperator; using ::arolla::testing::TypedValueWith; using ::testing::Eq; using ::testing::HasSubstr; TEST(RestrictedOperatorTest, RestrictSimpleOperator) { ASSERT_OK_AND_ASSIGN( auto add_ints_op, RestrictOperator(expr::LookupOperator("math.add"), Integral)); ASSERT_OK_AND_ASSIGN( auto add_ints, CallOp(add_ints_op, {Literal<int64_t>(50), Literal<int64_t>(7)})); EXPECT_THAT(add_ints->qtype(), Eq(GetQType<int64_t>())); EXPECT_THAT(expr::Invoke(add_ints, {}), IsOkAndHolds(TypedValueWith<int64_t>(57))); EXPECT_THAT( CallOp(add_ints_op, {Literal<float>(50), Literal<float>(7)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr( "expected all arguments to be integral, but got FLOAT32 for " "0-th argument; in restriction for math.add operator"))); } TEST(RestrictedOperatorTest, WorksWithOverloadedOperator) { ASSERT_OK_AND_ASSIGN( auto add_or_mul, expr::MakeOverloadedOperator( "test.add_or_mul", RestrictOperator(expr::LookupOperator("math.add"), Integral), RestrictOperator(expr::LookupOperator("math.multiply"), Floating))); EXPECT_THAT(InvokeExprOperator<int32_t>(add_or_mul, 50, 7), IsOkAndHolds(57)); EXPECT_THAT(InvokeExprOperator<float>(add_or_mul, 3.f, 19.f), IsOkAndHolds(57.f)); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/restricted_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/restricted_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
5e3dedee-df81-4a6a-9c4f-321c9ec535fd
cpp
tensorflow/tensorflow
abs
tensorflow/lite/experimental/shlo/ops/abs.cc
tensorflow/lite/delegates/xnnpack/abs_test.cc
#include "tensorflow/lite/experimental/shlo/ops/abs.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Abs { template <class T> T operator()(const T& val) { return val < static_cast<T>(0) ? static_cast<T>(-val) : val; } }; AbsOp Create(typename AbsOp::Attributes) { return AbsOp{}; } absl::Status Prepare(AbsOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("abs"), input, IsSignedIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("abs"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(AbsOp& op, const Tensor& input, Tensor& output) { Abs abs; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), abs, input, output) } else if (IsSignedIntTensor(input) || IsFloatTensor(input)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), abs, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Abs, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } TEST(Abs, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ABS, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/abs.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/abs_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5df7aab9-5757-4f4b-8261-a448a8554408
cpp
tensorflow/tensorflow
indexing_map
third_party/xla/xla/service/gpu/model/indexing_map.cc
third_party/xla/xla/service/gpu/model/indexing_map_test.cc
#include "xla/service/gpu/model/indexing_map.h" #include <algorithm> #include <cassert> #include <cstdint> #include <limits> #include <numeric> #include <optional> #include <ostream> #include <sstream> #include <string> #include <string_view> #include <tuple> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/log/check.h" #include "absl/numeric/int128.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { using llvm::ArrayRef; using llvm::SmallBitVector; using llvm::SmallVector; using mlir::AffineBinaryOpExpr; using mlir::AffineConstantExpr; using mlir::AffineDimExpr; using mlir::AffineExpr; using mlir::AffineExprKind; using mlir::AffineMap; using mlir::AffineSymbolExpr; using mlir::getAffineConstantExpr; using mlir::getAffineDimExpr; using mlir::MLIRContext; AffineExpr GetLhs(AffineExpr e) { return mlir::cast<AffineBinaryOpExpr>(e).getLHS(); } AffineExpr GetRhs(AffineExpr e) { return mlir::cast<AffineBinaryOpExpr>(e).getRHS(); } template <typename Fn> AffineExpr MapSummands(AffineExpr expr, const Fn& fn) { if (expr.getKind() == AffineExprKind::Add) { auto add = mlir::cast<AffineBinaryOpExpr>(expr); auto lhs = MapSummands(add.getLHS(), fn); auto rhs = MapSummands(add.getRHS(), fn); if (lhs == add.getLHS() && rhs == add.getRHS()) { return add; } return lhs + rhs; } return fn(expr); } template <typename Fn> void VisitSummands(mlir::AffineExpr expr, const Fn& visit) { if (expr.getKind() == AffineExprKind::Add) { VisitSummands(GetLhs(expr), visit); VisitSummands(GetRhs(expr), visit); } else { visit(expr); } } class AffineExprSimplifier { public: explicit AffineExprSimplifier(RangeEvaluator* range_evaluator) : range_evaluator_(range_evaluator), zero_(getAffineConstantExpr(0, range_evaluator_->GetMLIRContext())) {} mlir::AffineMap Simplify(mlir::AffineMap affine_map); mlir::AffineExpr Simplify(mlir::AffineExpr expr); bool SimplifyConstraintExprs(IndexingMap& map); bool SimplifyConstraintRanges(IndexingMap& map); private: std::optional<int64_t> GetConstantRhs(mlir::AffineExpr expr, AffineExprKind kind); std::pair<mlir::AffineExpr, int64_t> ExtractMultiplier( mlir::AffineExpr expr) { if (auto mul = GetConstantRhs(expr, AffineExprKind::Mul)) { return {GetLhs(expr), *mul}; } return {expr, 1}; } mlir::AffineExpr RewriteMod(mlir::AffineBinaryOpExpr mod); mlir::AffineExpr RewriteFloorDiv(mlir::AffineBinaryOpExpr div); AffineExpr SimplifyModDiv(AffineExpr dividend, int64_t divisor); AffineExpr SimplifyDivDiv(AffineExpr dividend, int64_t divisor); AffineExpr SimplifySumDiv(AffineExpr dividend, int64_t divisor); mlir::AffineExpr RewriteMul(mlir::AffineBinaryOpExpr mul); mlir::AffineExpr RewriteSum(mlir::AffineBinaryOpExpr sum); mlir::AffineExpr SimplifyOnce(mlir::AffineExpr expr); mlir::AffineExpr SimplifyWithMlir(mlir::AffineExpr expr, int num_dims, int num_symbols); bool SimplifyConstraintRangeOnce(AffineExpr* expr, Interval* range); bool SimplifyConstraintRange(AffineExpr* expr, Interval* range); bool SimplifyAddConstraint(AffineExpr* add, Interval* range); std::tuple<AffineExpr , int64_t , AffineExpr > SplitSumByGcd( AffineExpr sum); RangeEvaluator* range_evaluator_; AffineExpr zero_; }; AffineExpr AffineExprSimplifier::RewriteMod(AffineBinaryOpExpr mod) { auto rhs = range_evaluator_->ComputeExpressionRange(mod.getRHS()); if (!rhs.IsPoint()) { return mod; } int64_t m = rhs.lower; if (m == 0) { return zero_; } auto lhs_simplified = SimplifyOnce(mod.getLHS()); auto lhs = range_evaluator_->ComputeExpressionRange(lhs_simplified); int64_t offset = llvm::divideFloorSigned(lhs.lower, m) * -m; if (lhs.upper + offset < m) { return lhs_simplified + offset; } if (auto mul = GetConstantRhs(lhs_simplified, AffineExprKind::Mul); mul && *mul > 0 && (m % *mul == 0)) { return (GetLhs(lhs_simplified) % (m / *mul)) * *mul; } int64_t extracted_constant = 0; auto new_lhs = MapSummands(lhs_simplified, [&](AffineExpr expr) { if (auto cst = mlir::dyn_cast<AffineConstantExpr>(expr)) { extracted_constant += cst.getValue(); return zero_; } if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul); multiplier && (*multiplier % m == 0)) { return zero_; } return expr; }); if (extracted_constant % m != 0) { new_lhs = new_lhs + (extracted_constant % m); } auto [multiplied, multiplier_gcd, not_multiplied] = SplitSumByGcd(new_lhs); if (multiplier_gcd != 1 && m % multiplier_gcd == 0) { auto not_multiplied_range = range_evaluator_->ComputeExpressionRange(not_multiplied); if (not_multiplied_range == Interval{0, 0}) { int64_t multiplier_mod_gcd = std::gcd(multiplier_gcd, m); if (multiplier_mod_gcd == multiplier_gcd) { new_lhs = multiplied; } else if (multiplier_mod_gcd > 1) { new_lhs = MapSummands( multiplied, [&, multiplier_gcd = multiplier_gcd](AffineExpr expr) { return expr * (multiplier_gcd / multiplier_mod_gcd); }); } return (new_lhs % (m / multiplier_mod_gcd)) * multiplier_mod_gcd; } else if (Interval{0, multiplier_gcd - 1}.Contains(not_multiplied_range)) { new_lhs = multiplied * multiplier_gcd; return new_lhs % mod.getRHS() + not_multiplied; } } return new_lhs == mod.getLHS() ? mod : (new_lhs % m); } AffineExpr AffineExprSimplifier::SimplifyModDiv(AffineExpr dividend, int64_t divisor) { if (auto mod = GetConstantRhs(dividend, AffineExprKind::Mod); mod && (*mod % divisor == 0)) { return GetLhs(dividend).floorDiv(divisor) % (*mod / divisor); } return nullptr; } AffineExpr AffineExprSimplifier::SimplifyDivDiv(AffineExpr dividend, int64_t divisor) { if (auto inner_divisor = GetConstantRhs(dividend, AffineExprKind::FloorDiv)) { return GetLhs(dividend).floorDiv(divisor * *inner_divisor); } return nullptr; } AffineExpr AffineExprSimplifier::SimplifySumDiv(AffineExpr dividend, int64_t divisor) { AffineExpr extracted = zero_; auto new_dividend = MapSummands(dividend, [&](AffineExpr expr) { if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul)) { if (*multiplier % divisor == 0) { int64_t factor = *multiplier / divisor; extracted = extracted + GetLhs(expr) * factor; return zero_; } } return expr; }); auto [multiplied, multiplier_gcd, not_multiplied] = SplitSumByGcd(new_dividend); int64_t multiplier_divisor_gcd = std::gcd(divisor, multiplier_gcd); auto no_multiplier_range = range_evaluator_->ComputeExpressionRange(not_multiplied); if (multiplier_divisor_gcd != 1 && Interval{0, multiplier_divisor_gcd - 1}.Contains(no_multiplier_range)) { new_dividend = multiplied * (multiplier_gcd / multiplier_divisor_gcd); divisor /= multiplier_divisor_gcd; } else if (no_multiplier_range.IsPoint() && no_multiplier_range.lower != 0) { multiplier_divisor_gcd = std::gcd(no_multiplier_range.lower, multiplier_divisor_gcd); if (multiplier_divisor_gcd != 1) { new_dividend = multiplied * (multiplier_gcd / multiplier_divisor_gcd) + (no_multiplier_range.lower / multiplier_divisor_gcd); divisor /= multiplier_divisor_gcd; } } std::optional<int64_t> inner_divisor = std::nullopt; int num_inner_divisors = 0; VisitSummands(new_dividend, [&](AffineExpr summand) { if (auto divisor = GetConstantRhs(summand, AffineExprKind::FloorDiv)) { inner_divisor = divisor; ++num_inner_divisors; } }); if (num_inner_divisors == 1) { new_dividend = MapSummands(new_dividend, [&](AffineExpr summand) { if (auto inner_divisor = GetConstantRhs(summand, AffineExprKind::FloorDiv)) { return GetLhs(summand); } return summand * *inner_divisor; }); divisor *= *inner_divisor; } if (new_dividend != dividend) { return new_dividend.floorDiv(divisor) + extracted; } return nullptr; } AffineExpr AffineExprSimplifier::RewriteFloorDiv(AffineBinaryOpExpr div) { auto rhs_range = range_evaluator_->ComputeExpressionRange(div.getRHS()); auto lhs_simplified = SimplifyOnce(div.getLHS()); if (!rhs_range.IsPoint()) { return lhs_simplified.floorDiv(SimplifyOnce(div.getRHS())); } int64_t d = rhs_range.lower; if (d > 1) { if (auto result = SimplifyModDiv(lhs_simplified, d)) { return result; } if (auto result = SimplifyDivDiv(lhs_simplified, d)) { return result; } if (auto result = SimplifySumDiv(lhs_simplified, d)) { return result; } } return lhs_simplified != div.getLHS() ? lhs_simplified.floorDiv(d) : div; } mlir::AffineExpr AffineExprSimplifier::RewriteMul( mlir::AffineBinaryOpExpr mul) { auto rhs_range = range_evaluator_->ComputeExpressionRange(mul.getRHS()); if (!rhs_range.IsPoint()) { return mul; } int64_t multiplier = rhs_range.lower; auto lhs = SimplifyOnce(mul.getLHS()); if (lhs.getKind() == AffineExprKind::Add) { return MapSummands( lhs, [&](AffineExpr summand) { return summand * rhs_range.lower; }); } if (multiplier == 1) { return lhs; } if (lhs == mul.getLHS()) { return mul; } return lhs * multiplier; } std::optional<int64_t> AffineExprSimplifier::GetConstantRhs( AffineExpr expr, AffineExprKind kind) { if (expr.getKind() != kind) { return std::nullopt; } auto bound = range_evaluator_->ComputeExpressionRange( mlir::cast<AffineBinaryOpExpr>(expr).getRHS()); if (!bound.IsPoint()) { return std::nullopt; } return bound.lower; } int CompareExprs(AffineExpr a, AffineExpr b) { if ((b.getKind() == AffineExprKind::Constant) != (a.getKind() == AffineExprKind::Constant)) { return a.getKind() == AffineExprKind::Constant ? 1 : -1; } if (a.getKind() < b.getKind()) { return -1; } if (a.getKind() > b.getKind()) { return 1; } assert(a.getKind() == b.getKind()); int64_t a_value = 0; int64_t b_value = 0; switch (a.getKind()) { case AffineExprKind::Add: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mul: case AffineExprKind::Mod: { auto lhs = CompareExprs(GetLhs(a), GetLhs(b)); if (lhs != 0) { return lhs; } return CompareExprs(GetRhs(a), GetRhs(b)); } case AffineExprKind::Constant: { a_value = mlir::cast<AffineConstantExpr>(a).getValue(); b_value = mlir::cast<AffineConstantExpr>(b).getValue(); break; } case AffineExprKind::SymbolId: { a_value = mlir::cast<AffineSymbolExpr>(a).getPosition(); b_value = mlir::cast<AffineSymbolExpr>(b).getPosition(); break; } case AffineExprKind::DimId: { a_value = mlir::cast<AffineDimExpr>(a).getPosition(); b_value = mlir::cast<AffineDimExpr>(b).getPosition(); break; } } return a_value < b_value ? -1 : (a_value > b_value ? 1 : 0); } mlir::AffineExpr AffineExprSimplifier::RewriteSum( mlir::AffineBinaryOpExpr sum) { SmallVector<std::pair<AffineExpr, int64_t >> mods; SmallVector<std::pair<AffineExpr, int64_t >> divs; llvm::SmallDenseMap<AffineExpr, int64_t > summands; VisitSummands(sum, [&](AffineExpr expr) { AffineExpr simplified = SimplifyOnce(expr); auto [lhs, multiplier] = ExtractMultiplier(simplified); if (lhs.getKind() == AffineExprKind::Mod) { mods.push_back({lhs, multiplier}); } else if (lhs.getKind() == AffineExprKind::FloorDiv) { divs.push_back({lhs, multiplier}); } else { summands[lhs] += multiplier; } }); if (mods.size() * divs.size() >= 100) { std::string s; llvm::raw_string_ostream ss(s); ss << sum; LOG(WARNING) << "Unexpectedly large number of mods and divs in " << s << ". Please open an issue on GitHub at " << "https: } if (!divs.empty()) { for (int mod_i = 0; mod_i < mods.size(); ++mod_i) { auto [mod, mod_mul] = mods[mod_i]; auto mod_c = GetConstantRhs(mod, AffineExprKind::Mod); if (!mod_c) continue; AffineExpr simplified_mod = Simplify(GetLhs(mod).floorDiv(*mod_c)); for (int div_i = 0; div_i < divs.size(); ++div_i) { auto [div, div_mul] = divs[div_i]; if (simplified_mod != div) continue; if ((div_mul % mod_mul) || (div_mul / mod_mul) != mod_c) continue; summands[GetLhs(mod)] += mod_mul; divs[div_i].first = nullptr; mods[mod_i].first = nullptr; break; } } for (int div_i = 0; div_i < divs.size(); ++div_i) { auto [div, div_mul] = divs[div_i]; if (!div || div_mul > 0) continue; auto div_c = GetConstantRhs(div, AffineExprKind::FloorDiv); if (!div_c || *div_c < 0 || (div_mul % *div_c)) continue; int64_t b = div_mul / *div_c; auto x = GetLhs(div); VisitSummands(x, [&](AffineExpr summand) { summands[summand] += b; }); mods.push_back({x % *div_c, -b}); divs[div_i].first = nullptr; } } for (auto [expr, mul] : mods) { if (expr) { summands[expr] += mul; } } for (auto [expr, mul] : divs) { if (expr) { summands[expr] += mul; } } SmallVector<AffineExpr, 4> expanded_summands; for (auto [expr, mul] : summands) { expanded_summands.push_back(expr * mul); } llvm::sort(expanded_summands, [](AffineExpr a, AffineExpr b) { return CompareExprs(a, b) < 0; }); AffineExpr result = zero_; for (auto expr : expanded_summands) { result = result + expr; } return result; } AffineExpr AffineExprSimplifier::SimplifyOnce(AffineExpr expr) { if (expr.getKind() == AffineExprKind::Constant) { return expr; } auto bounds = range_evaluator_->ComputeExpressionRange(expr); if (bounds.IsPoint()) { return getAffineConstantExpr(bounds.lower, range_evaluator_->GetMLIRContext()); } switch (expr.getKind()) { case AffineExprKind::Mul: return RewriteMul(mlir::cast<AffineBinaryOpExpr>(expr)); case AffineExprKind::Add: return RewriteSum(mlir::cast<AffineBinaryOpExpr>(expr)); case AffineExprKind::Mod: return RewriteMod(mlir::cast<AffineBinaryOpExpr>(expr)); case AffineExprKind::FloorDiv: return RewriteFloorDiv(mlir::cast<AffineBinaryOpExpr>(expr)); default: return expr; } } AffineExpr AffineExprSimplifier::Simplify(AffineExpr expr) { while (true) { auto simplified = SimplifyOnce(expr); if (simplified == expr) { return expr; } expr = simplified; } } AffineMap AffineExprSimplifier::Simplify(AffineMap affine_map) { SmallVector<AffineExpr, 4> results; results.reserve(affine_map.getNumResults()); for (AffineExpr expr : affine_map.getResults()) { results.push_back(Simplify(expr)); } return AffineMap::get(affine_map.getNumDims(), affine_map.getNumSymbols(), results, affine_map.getContext()); } bool AffineExprSimplifier::SimplifyAddConstraint(AffineExpr* add, Interval* range) { if (add->getKind() != AffineExprKind::Add) { return false; } auto rhs_range = range_evaluator_->ComputeExpressionRange(GetRhs(*add)); if (rhs_range.IsPoint()) { *add = GetLhs(*add); range->lower -= rhs_range.lower; range->upper -= rhs_range.lower; return true; } if (range->lower != 0) { return false; } auto [multiplied, multiplier_gcd, not_multiplied] = SplitSumByGcd(*add); if (multiplier_gcd == 1) { return false; } Interval difference_range = Interval{range->upper, range->upper} - range_evaluator_->ComputeExpressionRange(not_multiplied); if (!difference_range.FloorDiv(multiplier_gcd).IsPoint()) { return false; } *add = multiplied * multiplier_gcd; return true; } bool AffineExprSimplifier::SimplifyConstraintRangeOnce(AffineExpr* expr, Interval* range) { switch (expr->getKind()) { case AffineExprKind::DimId: case AffineExprKind::SymbolId: case AffineExprKind::Constant: { return false; } case AffineExprKind::Add: return SimplifyAddConstraint(expr, range); default: { auto binary_op = mlir::cast<AffineBinaryOpExpr>(*expr); CHECK(binary_op); auto lhs = binary_op.getLHS(); auto rhs_range = range_evaluator_->ComputeExpressionRange(GetRhs(*expr)); if (!rhs_range.IsPoint()) { return false; } int64_t rhs_cst = rhs_range.lower; switch (expr->getKind()) { case AffineExprKind::Mul: { int64_t factor = rhs_cst; if (factor < 0) { factor *= -1; range->lower *= -1; range->upper *= -1; std::swap(range->lower, range->upper); } range->lower = llvm::divideCeilSigned(range->lower, factor); range->upper = llvm::divideFloorSigned(range->upper, factor); *expr = lhs; return true; } case AffineExprKind::FloorDiv: { int64_t divisor = rhs_cst; if (divisor < 0) { divisor *= -1; range->lower *= -1; range->upper *= -1; std::swap(range->lower, range->upper); } range->lower *= divisor; range->upper = (range->upper + 1) * divisor - 1; *expr = lhs; return true; } default: { return false; } } } } } bool AffineExprSimplifier::SimplifyConstraintRange(AffineExpr* expr, Interval* range) { bool is_simplified = false; while (SimplifyConstraintRangeOnce(expr, range)) { is_simplified = true; } return is_simplified; } SmallVector<AffineExpr, 4> GetComposedSymbolsPermutationToCorrectOrder( const IndexingMap& first, const IndexingMap& second) { if (second.GetRTVarsCount() == 0) { return {}; } SmallVector<AffineExpr, 4> symbol_replacements; MLIRContext* mlir_context = first.GetMLIRContext(); for (int id = 0; id < second.GetRangeVarsCount(); ++id) { symbol_replacements.push_back(getAffineSymbolExpr(id, mlir_context)); } int64_t first_range_vars_count = first.GetRangeVarsCount(); int64_t second_range_vars_count = second.GetRangeVarsCount(); int64_t first_rt_vars_count = first.GetRTVarsCount(); int64_t second_rt_vars_count = second.GetRTVarsCount(); int64_t rt_vars_second_start = first_range_vars_count + second_range_vars_count; for (int64_t id = 0; id < second_rt_vars_count; ++id) { symbol_replacements.push_back( getAffineSymbolExpr(rt_vars_second_start++, mlir_context)); } int64_t range_vars_first_start = second_range_vars_count; for (int64_t id = 0; id < first_range_vars_count; ++id) { symbol_replacements.push_back( getAffineSymbolExpr(range_vars_first_start++, mlir_context)); } int64_t rt_vars_first_start = first_range_vars_count + second_range_vars_count + second_rt_vars_count; for (int64_t id = 0; id < first_rt_vars_count; ++id) { symbol_replacements.push_back( getAffineSymbolExpr(rt_vars_first_start++, mlir_context)); } return symbol_replacements; } SmallVector<AffineExpr, 4> MapSymbolsToComposedSymbolsList( const IndexingMap& map, const IndexingMap& composed) { SmallVector<AffineExpr, 4> symbol_replacements; MLIRContext* mlir_context = map.GetMLIRContext(); int64_t range_vars_start = composed.GetRangeVarsCount() - map.GetRangeVarsCount(); for (int64_t id = 0; id < map.GetRangeVarsCount(); ++id) { symbol_replacements.push_back( getAffineSymbolExpr(range_vars_start++, mlir_context)); } int64_t rt_vars_start = composed.GetSymbolCount() - map.GetRTVarsCount(); for (int64_t id = 0; id < map.GetRTVarsCount(); ++id) { symbol_replacements.push_back( getAffineSymbolExpr(rt_vars_start++, mlir_context)); } return symbol_replacements; } } static constexpr std::string_view kVarKindDefault = "default"; static constexpr std::string_view kVarKindThreadX = "th_x"; static constexpr std::string_view kVarKindThreadY = "th_y"; static constexpr std::string_view kVarKindThreadZ = "th_z"; static constexpr std::string_view kVarKindBlockX = "bl_x"; static constexpr std::string_view kVarKindBlockY = "bl_y"; static constexpr std::string_view kVarKindBlockZ = "bl_z"; static constexpr std::string_view kVarKindWarp = "warp"; static constexpr std::string_view kVarKindWarpThread = "th_w"; std::string_view ToVariableName(VariableKind var_kind) { switch (var_kind) { case VariableKind::kDefault: return kVarKindDefault; case VariableKind::kThreadX: return kVarKindThreadX; case VariableKind::kThreadY: return kVarKindThreadY; case VariableKind::kThreadZ: return kVarKindThreadZ; case VariableKind::kBlockX: return kVarKindBlockX; case VariableKind::kBlockY: return kVarKindBlockY; case VariableKind::kBlockZ: return kVarKindBlockZ; case VariableKind::kWarp: return kVarKindWarp; case VariableKind::kWarpThread: return kVarKindWarpThread; } llvm_unreachable("Unknown VariableType"); } VariableKind ToVariableType(std::string_view var_name) { if (var_name == kVarKindThreadX) return VariableKind::kThreadX; if (var_name == kVarKindThreadY) return VariableKind::kThreadY; if (var_name == kVarKindThreadZ) return VariableKind::kThreadZ; if (var_name == kVarKindBlockX) return VariableKind::kBlockX; if (var_name == kVarKindBlockY) return VariableKind::kBlockY; if (var_name == kVarKindBlockZ) return VariableKind::kBlockZ; if (var_name == kVarKindWarp) return VariableKind::kWarp; if (var_name == kVarKindWarpThread) return VariableKind::kWarpThread; return VariableKind::kDefault; } std::ostream& operator<<(std::ostream& out, VariableKind var_type) { out << ToVariableName(var_type); return out; } std::ostream& operator<<(std::ostream& out, const Interval& interval) { out << absl::StrFormat("[%d, %d]", interval.lower, interval.upper); return out; } std::string Interval::ToString() const { std::stringstream ss; ss << *this; return ss.str(); } inline llvm::raw_ostream& operator<<(llvm::raw_ostream& os, const Interval& interval) { os << absl::StrFormat("[%d, %d]", interval.lower, interval.upper); return os; } int64_t Interval::GetLoopTripCount() const { if (!IsFeasible()) { return 0; } DCHECK((static_cast<absl::int128>(upper) - lower + 1) <= std::numeric_limits<int64_t>::max()); return upper - lower + 1; } Interval::ComparisonResult Interval::Gt(const Interval& b) const { if (!IsFeasible() || !b.IsFeasible()) { return {std::nullopt}; } if (lower > b.upper) { return {true}; } if (upper <= b.lower) { return {false}; } return {std::nullopt}; } Interval::ComparisonResult Interval::Eq(const Interval& b) const { Interval intersection = Intersect(b); if (!intersection.IsFeasible()) return {false}; if (intersection.IsPoint() && IsPoint() && b.IsPoint()) { return {true}; } return {std::nullopt}; } Interval Interval::operator+(const Interval& rhs) const { int64_t out_lower; int64_t out_upper; constexpr int64_t kMin = std::numeric_limits<int64_t>::min(); constexpr int64_t kMax = std::numeric_limits<int64_t>::max(); bool lower_overflow = llvm::AddOverflow(lower, rhs.lower, out_lower); bool upper_overflow = llvm::AddOverflow(upper, rhs.upper, out_upper); if (lower_overflow || lower == kMin || rhs.lower == kMin) { if (lower < 0 || rhs.lower < 0) { out_lower = kMin; } else { out_lower = kMax; out_upper = kMax; } } if (upper_overflow || upper == kMax || rhs.upper == kMax) { if (upper > 0 || rhs.upper > 0) { out_upper = kMax; } else { out_upper = kMin; out_lower = kMin; } } return {out_lower, out_upper}; } Interval Interval::operator*(const Interval& rhs) const { constexpr int64_t kMin = std::numeric_limits<int64_t>::min(); constexpr int64_t kMax = std::numeric_limits<int64_t>::max(); auto mul = [&](int64_t p) { int64_t l = lower; int64_t u = upper; if (p < 0) { std::swap(l, u); } int64_t out_lower; int64_t out_upper; if (llvm::MulOverflow(l, p, out_lower) || (p == -1 && l == kMax)) { out_lower = kMin; } if (llvm::MulOverflow(u, p, out_upper)) { out_upper = kMax; } return Interval{out_lower, out_upper}; }; return mul(rhs.lower).Union(mul(rhs.upper)); } Interval Interval::operator-() const { int64_t ub = lower == std::numeric_limits<int64_t>::min() ? std::numeric_limits<int64_t>::max() : -lower; int64_t lb = upper == std::numeric_limits<int64_t>::max() ? std::numeric_limits<int64_t>::min() : -upper; return Interval{lb, ub}; } Interval Interval::FloorDiv(int64_t rhs) const { auto saturate_div = [](int64_t lhs, int64_t rhs) { constexpr int64_t kMin = std::numeric_limits<int64_t>::min(); constexpr int64_t kMax = std::numeric_limits<int64_t>::max(); if (lhs == kMin) { return rhs > 0 ? kMin : kMax; } if (lhs == kMax) { return rhs > 0 ? kMax : kMin; } return llvm::divideFloorSigned(lhs, rhs); }; int64_t a = saturate_div(lower, rhs); int64_t b = saturate_div(upper, rhs); return {std::min(a, b), std::max(a, b)}; } bool operator==(const IndexingMap::Variable& lhs, const IndexingMap::Variable& rhs) { return lhs.bounds == rhs.bounds; } std::vector<IndexingMap::Variable> DimVarsFromTensorSizes( absl::Span<const int64_t> tensor_sizes) { std::vector<IndexingMap::Variable> ranges; ranges.reserve(tensor_sizes.size()); for (int64_t size : tensor_sizes) { ranges.push_back(IndexingMap::Variable{0, size - 1}); } return ranges; } std::vector<IndexingMap::Variable> DimVarsFromGPUGrid( absl::Span<const int64_t> grid_sizes) { CHECK_EQ(grid_sizes.size(), 6) << "Grid must be 6-dimensional (th_x, th_y, th_z, bl_x, bl_y, bl_z)"; return { IndexingMap::Variable{0, grid_sizes[0] - 1, kVarKindThreadX}, IndexingMap::Variable{0, grid_sizes[1] - 1, kVarKindThreadY}, IndexingMap::Variable{0, grid_sizes[2] - 1, kVarKindThreadZ}, IndexingMap::Variable{0, grid_sizes[3] - 1, kVarKindBlockX}, IndexingMap::Variable{0, grid_sizes[4] - 1, kVarKindBlockY}, IndexingMap::Variable{0, grid_sizes[5] - 1, kVarKindBlockZ}, }; } std::vector<IndexingMap::Variable> RangeVarsFromTensorSizes( absl::Span<const int64_t> tensor_sizes) { std::vector<IndexingMap::Variable> ranges; ranges.reserve(tensor_sizes.size()); for (int64_t size : tensor_sizes) { ranges.push_back({IndexingMap::Variable{0, size - 1}}); } return ranges; } IndexingMap::IndexingMap( AffineMap affine_map, std::vector<IndexingMap::Variable> dimensions, std::vector<IndexingMap::Variable> range_vars, std::vector<IndexingMap::Variable> rt_vars, absl::Span<std::pair<AffineExpr, Interval> const> constraints) : affine_map_(affine_map), dim_vars_(std::move(dimensions)), range_vars_(std::move(range_vars)), rt_vars_(std::move(rt_vars)) { if (!VerifyVariableIntervals()) { ResetToKnownEmpty(); return; } for (const auto& [expr, range] : constraints) { AddConstraint(expr, range); } } IndexingMap::IndexingMap( AffineMap affine_map, std::vector<IndexingMap::Variable> dimensions, std::vector<IndexingMap::Variable> range_vars, std::vector<IndexingMap::Variable> rt_vars, const llvm::DenseMap<AffineExpr, Interval>& constraints) : affine_map_(affine_map), dim_vars_(std::move(dimensions)), range_vars_(std::move(range_vars)), rt_vars_(std::move(rt_vars)), constraints_(constraints) { if (!VerifyVariableIntervals() || !VerifyConstraintIntervals()) { ResetToKnownEmpty(); return; } } IndexingMap IndexingMap::FromTensorSizes( AffineMap affine_map, absl::Span<const int64_t> dim_upper_bounds, absl::Span<const int64_t> symbol_upper_bounds) { return IndexingMap{affine_map, DimVarsFromTensorSizes(dim_upper_bounds), RangeVarsFromTensorSizes(symbol_upper_bounds), {}}; } RangeEvaluator IndexingMap::GetRangeEvaluator() const { return RangeEvaluator(*this, GetMLIRContext()); } const Interval& IndexingMap::GetDimensionBound(int64_t dim_id) const { return dim_vars_[dim_id].bounds; } Interval& IndexingMap::GetMutableDimensionBound(int64_t dim_id) { return dim_vars_[dim_id].bounds; } std::vector<Interval> IndexingMap::GetDimensionBounds() const { std::vector<Interval> bounds; bounds.reserve(affine_map_.getNumDims()); for (const auto& dim : dim_vars_) { bounds.push_back(dim.bounds); } return bounds; } const Interval& IndexingMap::GetSymbolBound(int64_t symbol_id) const { int64_t range_var_count = GetRangeVarsCount(); return symbol_id < range_var_count ? range_vars_[symbol_id].bounds : rt_vars_[symbol_id - range_var_count].bounds; } Interval& IndexingMap::GetMutableSymbolBound(int64_t symbol_id) { int64_t range_var_count = GetRangeVarsCount(); return symbol_id < range_var_count ? range_vars_[symbol_id].bounds : rt_vars_[symbol_id - range_var_count].bounds; } std::vector<Interval> IndexingMap::GetSymbolBounds() const { std::vector<Interval> bounds; bounds.reserve(affine_map_.getNumSymbols()); for (const auto& range_var : range_vars_) { bounds.push_back(range_var.bounds); } for (const auto& rt_var : rt_vars_) { bounds.push_back(rt_var.bounds); } return bounds; } void IndexingMap::AddConstraint(mlir::AffineExpr expr, Interval range) { if (IsKnownEmpty()) { return; } if (!range.IsFeasible()) { ResetToKnownEmpty(); return; } if (auto dim_expr = mlir::dyn_cast<AffineDimExpr>(expr)) { Interval& current_range = GetMutableDimensionBound(dim_expr.getPosition()); current_range = current_range.Intersect(range); if (!current_range.IsFeasible()) ResetToKnownEmpty(); return; } if (auto symbol_expr = mlir::dyn_cast<AffineSymbolExpr>(expr)) { Interval& current_range = GetMutableSymbolBound(symbol_expr.getPosition()); current_range = current_range.Intersect(range); if (!current_range.IsFeasible()) ResetToKnownEmpty(); return; } if (auto constant_expr = mlir::dyn_cast<AffineConstantExpr>(expr)) { if (!range.Contains(constant_expr.getValue())) { ResetToKnownEmpty(); } return; } auto [it, inserted] = constraints_.insert({expr, range}); if (!inserted) { it->second = it->second.Intersect(range); if (!it->second.IsFeasible()) { ResetToKnownEmpty(); } } } void IndexingMap::EraseConstraint(mlir::AffineExpr expr) { constraints_.erase(expr); } bool IndexingMap::ConstraintsSatisfied( ArrayRef<AffineExpr> dim_const_exprs, ArrayRef<AffineExpr> symbol_const_exprs) const { CHECK(dim_const_exprs.size() == affine_map_.getNumDims()); CHECK(symbol_const_exprs.size() == affine_map_.getNumSymbols()); if (IsKnownEmpty()) { return false; } for (auto& [expr, range] : constraints_) { int64_t expr_value = mlir::cast<AffineConstantExpr>( expr.replaceDimsAndSymbols(dim_const_exprs, symbol_const_exprs)) .getValue(); if (expr_value < range.lower || expr_value > range.upper) { return false; } } return true; } SmallVector<int64_t, 4> IndexingMap::Evaluate( ArrayRef<AffineExpr> dim_const_exprs, ArrayRef<AffineExpr> symbol_const_exprs) const { CHECK(dim_const_exprs.size() == GetDimensionCount()); CHECK(symbol_const_exprs.size() == GetSymbolCount()); AffineMap eval = affine_map_.replaceDimsAndSymbols( dim_const_exprs, symbol_const_exprs, dim_const_exprs.size(), symbol_const_exprs.size()); return eval.getConstantResults(); } bool IndexingMap::IsSymbolConstrained(int64_t symbol_id) const { for (const auto& [expr, _] : constraints_) { bool result = false; expr.walk([&](mlir::AffineExpr leaf) { auto sym = mlir::dyn_cast<mlir::AffineSymbolExpr>(leaf); if (sym && sym.getPosition() == symbol_id) { result = true; } }); if (result) return true; } return false; } RangeEvaluator::RangeEvaluator(const IndexingMap& indexing_map, MLIRContext* mlir_context, bool use_constraints) : mlir_context_(mlir_context), indexing_map_(indexing_map), use_constraints_(use_constraints) {} bool RangeEvaluator::IsAlwaysPositiveOrZero(mlir::AffineExpr expr) { return ComputeExpressionRange(expr).lower >= 0; } bool RangeEvaluator::IsAlwaysNegativeOrZero(mlir::AffineExpr expr) { return ComputeExpressionRange(expr).upper <= 0; } Interval RangeEvaluator::ComputeExpressionRange(AffineExpr expr) { switch (expr.getKind()) { case AffineExprKind::Constant: { int64_t value = mlir::cast<AffineConstantExpr>(expr).getValue(); return Interval{value, value}; } case AffineExprKind::DimId: return indexing_map_.GetDimensionBound( mlir::cast<AffineDimExpr>(expr).getPosition()); case AffineExprKind::SymbolId: return indexing_map_.GetSymbolBound( mlir::cast<AffineSymbolExpr>(expr).getPosition()); default: break; } auto binary_op = mlir::dyn_cast<AffineBinaryOpExpr>(expr); CHECK(binary_op); auto lhs = ComputeExpressionRange(binary_op.getLHS()); auto rhs = ComputeExpressionRange(binary_op.getRHS()); Interval result; switch (expr.getKind()) { case AffineExprKind::Add: result = lhs + rhs; break; case AffineExprKind::Mul: result = lhs * rhs; break; case AffineExprKind::Mod: { CHECK(rhs.IsPoint()) << "RHS of mod must be a constant"; int64_t m = rhs.lower; if (0 <= lhs.lower && lhs.upper < m) { result = lhs; } else { result = {0, m - 1}; } break; } case AffineExprKind::FloorDiv: { CHECK(rhs.IsPoint()) << "RHS of floor_div must be a constant"; int64_t d = rhs.lower; int64_t a = llvm::divideFloorSigned(lhs.lower, d); int64_t b = llvm::divideFloorSigned(lhs.upper, d); result = {std::min(a, b), std::max(a, b)}; break; } default: LOG(FATAL) << "Unsupported expression"; } if (use_constraints_) { auto constraint = indexing_map_.GetConstraints().find(expr); if (constraint != indexing_map_.GetConstraints().end()) { return result.Intersect(constraint->second); } } return result; } MLIRContext* IndexingMap::GetMLIRContext() const { return IsUndefined() ? nullptr : affine_map_.getContext(); } bool operator==(const IndexingMap& lhs, const IndexingMap& rhs) { return lhs.GetAffineMap() == rhs.GetAffineMap() && lhs.GetDimVars() == rhs.GetDimVars() && lhs.GetRangeVars() == rhs.GetRangeVars() && lhs.GetRTVars() == rhs.GetRTVars() && lhs.GetConstraints() == rhs.GetConstraints(); } IndexingMap operator*(const IndexingMap& lhs, const IndexingMap& rhs) { return ComposeIndexingMaps(lhs, rhs); } bool IndexingMap::Verify(std::ostream& out) const { if (IsUndefined()) { return true; } if (affine_map_.getNumDims() != dim_vars_.size()) { out << "dim size must match the number of dimensions in " "the affine map"; return false; } if (affine_map_.getNumSymbols() != range_vars_.size() + rt_vars_.size()) { out << "range vars size + rt var size must match the number of " "symbols in the affine map"; return false; } return true; } bool IndexingMap::Simplify() { if (IsUndefined() || IsKnownEmpty()) return false; bool constraints_were_simplified = false; RangeEvaluator constraint_range_evaluator(*this, GetMLIRContext(), false); AffineExprSimplifier constraint_simplifier(&constraint_range_evaluator); while (true) { bool did_simplify = false; did_simplify |= constraint_simplifier.SimplifyConstraintExprs(*this); did_simplify |= constraint_simplifier.SimplifyConstraintRanges(*this); if (!did_simplify) { break; } constraints_were_simplified = true; } constraints_were_simplified |= MergeModConstraints(); RangeEvaluator range_evaluator(*this, GetMLIRContext(), true); AffineMap simplified_affine_map = AffineExprSimplifier(&range_evaluator).Simplify(affine_map_); bool affine_map_was_simplified = simplified_affine_map != affine_map_; if (affine_map_was_simplified) { affine_map_ = simplified_affine_map; } return affine_map_was_simplified || constraints_were_simplified; } bool AffineExprSimplifier::SimplifyConstraintExprs(IndexingMap& map) { std::vector<AffineExpr> to_remove; std::vector<std::pair<AffineExpr, Interval>> to_add; for (const auto& [expr, range] : map.GetConstraints()) { AffineExpr simplified = Simplify(expr); Interval evaluated_range = range_evaluator_->ComputeExpressionRange(simplified); if (evaluated_range.upper <= range.upper && evaluated_range.lower >= range.lower) { to_remove.push_back(expr); continue; } if (simplified == expr) continue; to_add.push_back({simplified, range}); to_remove.push_back(expr); } for (const auto& expr : to_remove) { map.EraseConstraint(expr); } for (const auto& [expr, range] : to_add) { map.AddConstraint(expr, range); } return !to_add.empty(); } bool AffineExprSimplifier::SimplifyConstraintRanges(IndexingMap& map) { std::vector<AffineExpr> to_remove; std::vector<std::pair<AffineExpr, Interval>> to_add; for (const auto& [expr, range] : map.GetConstraints()) { AffineExpr simplified_expr = expr; Interval simplified_range = range; if (SimplifyConstraintRange(&simplified_expr, &simplified_range)) { to_add.push_back({simplified_expr, simplified_range}); to_remove.push_back(expr); } } for (const auto& expr : to_remove) { map.EraseConstraint(expr); } for (const auto& [expr, range] : to_add) { map.AddConstraint(expr, range); } return !to_add.empty(); } std::tuple<AffineExpr, int64_t, AffineExpr> AffineExprSimplifier::SplitSumByGcd( AffineExpr sum) { std::optional<int64_t> multiplier_gcd = std::nullopt; AffineExpr no_multiplier = zero_; VisitSummands(sum, [&](AffineExpr expr) { if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul)) { if (multiplier_gcd.has_value()) { multiplier_gcd = std::gcd(*multiplier_gcd, *multiplier); } else { multiplier_gcd = *multiplier; } } }); if (multiplier_gcd.value_or(1) == 1) { return {zero_, 1, sum}; } auto scaled = MapSummands(sum, [&](AffineExpr expr) { if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul)) { return GetLhs(expr) * (*multiplier / *multiplier_gcd); } no_multiplier = no_multiplier + expr; return zero_; }); return {scaled, *multiplier_gcd, no_multiplier}; } namespace { struct UsedParameters { llvm::DenseSet<int64_t> dimension_ids; llvm::DenseSet<int64_t> symbol_ids; }; void GetUsedParametersImpl(const AffineExpr& expr, UsedParameters& used_parameters) { if (auto dim_expr = mlir::dyn_cast<AffineDimExpr>(expr)) { used_parameters.dimension_ids.insert(dim_expr.getPosition()); return; } if (auto symbol_expr = mlir::dyn_cast<AffineSymbolExpr>(expr)) { used_parameters.symbol_ids.insert(symbol_expr.getPosition()); return; } if (auto binary_expr = mlir::dyn_cast<AffineBinaryOpExpr>(expr)) { GetUsedParametersImpl(binary_expr.getLHS(), used_parameters); GetUsedParametersImpl(binary_expr.getRHS(), used_parameters); } } UsedParameters GetUsedParameters(const mlir::AffineExpr& expr) { UsedParameters used_parameters; GetUsedParametersImpl(expr, used_parameters); return used_parameters; } bool IsFunctionOfUnusedVarsOnly(const UsedParameters& used_parameters, const SmallBitVector& unused_dims_bit_vector, const SmallBitVector& unused_symbols_bit_vector, bool removing_dims, bool removing_symbols) { if (!used_parameters.dimension_ids.empty() && !removing_dims) { return false; } if (!used_parameters.symbol_ids.empty() && !removing_symbols) { return false; } for (int64_t dim_id : used_parameters.dimension_ids) { if (!unused_dims_bit_vector[dim_id]) return false; } for (int64_t symbol_id : used_parameters.symbol_ids) { if (!unused_symbols_bit_vector[symbol_id]) return false; } return true; } struct UnusedVariables { SmallBitVector unused_dims; SmallBitVector unused_symbols; SmallVector<AffineExpr> constraints_with_unused_vars_only; }; UnusedVariables DetectUnusedVariables(const IndexingMap& indexing_map, bool removing_dims, bool removing_symbols) { AffineMap affine_map = indexing_map.GetAffineMap(); UnusedVariables unused_vars; unused_vars.unused_dims = mlir::getUnusedDimsBitVector({affine_map}); unused_vars.unused_symbols = mlir::getUnusedSymbolsBitVector({affine_map}); SmallVector<std::pair<AffineExpr, UsedParameters>, 2> unused_constraints_candidates; for (const auto& [expr, range] : indexing_map.GetConstraints()) { UsedParameters used_parameters = GetUsedParameters(expr); if (IsFunctionOfUnusedVarsOnly(used_parameters, unused_vars.unused_dims, unused_vars.unused_symbols, removing_dims, removing_symbols)) { unused_constraints_candidates.push_back({expr, used_parameters}); continue; } for (int64_t dim_id : used_parameters.dimension_ids) { unused_vars.unused_dims[dim_id] = false; } for (int64_t symbol_id : used_parameters.symbol_ids) { unused_vars.unused_symbols[symbol_id] = false; } } for (const auto& [expr, used_parameters] : unused_constraints_candidates) { if (IsFunctionOfUnusedVarsOnly(used_parameters, unused_vars.unused_dims, unused_vars.unused_symbols, removing_dims, removing_symbols)) { unused_vars.constraints_with_unused_vars_only.push_back(expr); } } return unused_vars; } SmallBitVector ConcatenateBitVectors(const SmallBitVector& lhs, const SmallBitVector& rhs) { SmallBitVector concat(lhs.size() + rhs.size(), false); int id = 0; for (int i = 0; i < lhs.size(); ++i, ++id) { concat[id] = lhs[i]; } for (int i = 0; i < rhs.size(); ++i, ++id) { concat[id] = rhs[i]; } return concat; } } bool IndexingMap::CompressVars(const llvm::SmallBitVector& unused_dims, const llvm::SmallBitVector& unused_symbols) { MLIRContext* mlir_context = GetMLIRContext(); bool num_dims_changed = unused_dims.count() > 0; bool num_symbols_changed = unused_symbols.count() > 0; if (!num_dims_changed && !num_symbols_changed) return false; unsigned num_dims_before = GetDimensionCount(); unsigned num_symbols_before = GetSymbolCount(); SmallVector<AffineExpr, 2> dim_replacements; if (num_dims_changed) { affine_map_ = mlir::compressDims(affine_map_, unused_dims); std::vector<IndexingMap::Variable> compressed_dim_vars; dim_replacements = SmallVector<AffineExpr, 2>( num_dims_before, getAffineConstantExpr(0, mlir_context)); int64_t used_dims_count = 0; for (int i = 0; i < unused_dims.size(); ++i) { if (!unused_dims[i]) { compressed_dim_vars.push_back(dim_vars_[i]); dim_replacements[i] = getAffineDimExpr(used_dims_count++, mlir_context); } } dim_vars_ = std::move(compressed_dim_vars); } SmallVector<AffineExpr, 2> symbol_replacements; if (num_symbols_changed) { affine_map_ = mlir::compressSymbols(affine_map_, unused_symbols); symbol_replacements = SmallVector<AffineExpr, 2>( num_symbols_before, getAffineConstantExpr(0, mlir_context)); std::vector<IndexingMap::Variable> compressed_range_vars; std::vector<IndexingMap::Variable> compressed_rt_vars; MLIRContext* mlir_context = GetMLIRContext(); int64_t used_symbols_count = 0; auto range_vars_count = range_vars_.size(); for (int i = 0; i < unused_symbols.size(); ++i) { if (!unused_symbols[i]) { if (i < range_vars_count) { compressed_range_vars.push_back(range_vars_[i]); } else { compressed_rt_vars.push_back(rt_vars_[i - range_vars_count]); } symbol_replacements[i] = getAffineSymbolExpr(used_symbols_count++, mlir_context); } } range_vars_ = std::move(compressed_range_vars); rt_vars_ = std::move(compressed_rt_vars); } std::vector<AffineExpr> to_remove; std::vector<std::pair<AffineExpr, Interval>> to_add; for (const auto& [expr, range] : constraints_) { auto updated_expr = expr.replaceDimsAndSymbols(dim_replacements, symbol_replacements); if (updated_expr == expr) continue; to_add.push_back({updated_expr, range}); to_remove.push_back(expr); } for (const auto& expr : to_remove) { constraints_.erase(expr); } for (const auto& [expr, range] : to_add) { AddConstraint(expr, range); } return true; } SmallBitVector IndexingMap::RemoveUnusedSymbols() { if (IsUndefined()) return {}; if (GetSymbolCount() == 0) return {}; UnusedVariables unused_vars = DetectUnusedVariables( *this, false, true); for (AffineExpr expr : unused_vars.constraints_with_unused_vars_only) { constraints_.erase(expr); } if (!CompressVars({}, unused_vars.unused_symbols)) { return {}; } return std::move(unused_vars.unused_symbols); } void IndexingMap::ResetToKnownEmpty() { auto zero = getAffineConstantExpr(0, GetMLIRContext()); affine_map_ = AffineMap::get( affine_map_.getNumDims(), affine_map_.getNumSymbols(), llvm::SmallVector<AffineExpr>(affine_map_.getNumResults(), zero), GetMLIRContext()); for (auto& dim_var : dim_vars_) { dim_var.bounds = Interval{0, -1}; } for (auto& range_var : range_vars_) { range_var.bounds = Interval{0, -1}; } constraints_.clear(); is_known_empty_ = true; } bool IndexingMap::VerifyVariableIntervals() { return llvm::all_of(dim_vars_, [](const IndexingMap::Variable& dim_var) { return dim_var.bounds.IsFeasible(); }) && llvm::all_of(range_vars_, [](const IndexingMap::Variable& range_var) { return range_var.bounds.IsFeasible(); }) && llvm::all_of(rt_vars_, [](const IndexingMap::Variable& rt_var) { return rt_var.bounds.IsFeasible(); }); } bool IndexingMap::VerifyConstraintIntervals() { return llvm::all_of(constraints_, [](const auto& constraint) { return constraint.second.IsFeasible(); }); } SmallBitVector IndexingMap::RemoveUnusedVars() { if (IsUndefined()) return {}; UnusedVariables unused_vars = DetectUnusedVariables( *this, true, true); for (AffineExpr expr : unused_vars.constraints_with_unused_vars_only) { constraints_.erase(expr); } if (!CompressVars(unused_vars.unused_dims, unused_vars.unused_symbols)) { return {}; } return ConcatenateBitVectors(unused_vars.unused_dims, unused_vars.unused_symbols); } bool IndexingMap::MergeModConstraints() { RangeEvaluator range_evaluator(*this, GetMLIRContext(), false); bool did_simplify = false; llvm::DenseMap<AffineExpr, llvm::SmallVector<AffineBinaryOpExpr, 2>> grouped_constraints; for (const auto& [expr, _] : constraints_) { if (expr.getKind() != AffineExprKind::Mod) continue; auto binop = mlir::cast<AffineBinaryOpExpr>(expr); grouped_constraints[binop.getLHS()].push_back(binop); } for (const auto& [lhs, binops] : grouped_constraints) { llvm::DenseMap<int64_t, llvm::SmallVector<AffineBinaryOpExpr, 2>> mod_groups; for (const auto& binop : binops) { Interval mod_result = constraints_[binop]; if (mod_result.IsPoint()) { mod_groups[mod_result.lower].push_back(binop); } } if (mod_groups.empty()) continue; Interval* interval_to_update = nullptr; if (lhs.getKind() == AffineExprKind::DimId) { interval_to_update = &GetMutableDimensionBound( mlir::cast<AffineDimExpr>(lhs).getPosition()); } else if (lhs.getKind() == AffineExprKind::SymbolId) { interval_to_update = &GetMutableSymbolBound( mlir::cast<AffineSymbolExpr>(lhs).getPosition()); } for (const auto& [res, ops] : mod_groups) { int64_t div = 1; for (const auto& op : ops) { int64_t rhs_value = range_evaluator.ComputeExpressionRange(op.getRHS()).lower; div = std::lcm(div, rhs_value); } if (ops.size() > 1) { for (const auto& op : ops) { constraints_.erase(op); } constraints_[lhs % div] = Interval{res, res}; did_simplify = true; } if (interval_to_update != nullptr) { Interval old = *interval_to_update; int64_t l = (interval_to_update->lower / div) * div + res; interval_to_update->lower = l >= interval_to_update->lower ? l : l + div; int64_t h = (interval_to_update->upper / div) * div + res; interval_to_update->upper = h <= interval_to_update->upper ? h : h - div; if (*interval_to_update != old) { did_simplify = true; } } } } return did_simplify; } IndexingMap ComposeIndexingMaps(const IndexingMap& first, const IndexingMap& second) { if (second.IsUndefined() || first.IsUndefined()) { return IndexingMap::GetUndefined(); } MLIRContext* mlir_context = first.GetMLIRContext(); AffineMap producer_affine_map = second.GetAffineMap(); AffineMap composed_map = producer_affine_map.compose(first.GetAffineMap()); std::vector<IndexingMap::Variable> combined_range_vars; combined_range_vars.reserve(second.GetRangeVarsCount() + first.GetRangeVarsCount()); for (const IndexingMap::Variable& range_var : llvm::concat<const IndexingMap::Variable>(second.GetRangeVars(), first.GetRangeVars())) { combined_range_vars.push_back(range_var); } std::vector<IndexingMap::Variable> combined_rt_vars; combined_rt_vars.reserve(second.GetRTVarsCount() + first.GetRTVarsCount()); for (const IndexingMap::Variable& rt_var : llvm::concat<const IndexingMap::Variable>(second.GetRTVars(), first.GetRTVars())) { combined_rt_vars.push_back(rt_var); } SmallVector<AffineExpr, 4> symbol_replacements = GetComposedSymbolsPermutationToCorrectOrder(first, second); if (!symbol_replacements.empty()) { composed_map = composed_map.replaceDimsAndSymbols( {}, symbol_replacements, composed_map.getNumDims(), composed_map.getNumSymbols()); } IndexingMap composed_indexing_map(composed_map, first.GetDimVars(), std::move(combined_range_vars), std::move(combined_rt_vars)); std::vector<AffineExpr> constraints; std::vector<Interval> constraints_ranges; for (const auto& [expr, range] : second.GetConstraints()) { constraints.push_back(expr); constraints_ranges.push_back(range); } auto constraints_map = AffineMap::get(producer_affine_map.getNumDims(), producer_affine_map.getNumSymbols(), constraints, mlir_context); auto remapped_constraints = constraints_map.compose(first.GetAffineMap()) .replaceDimsAndSymbols({}, symbol_replacements, composed_indexing_map.GetDimensionCount(), composed_indexing_map.GetSymbolCount()); for (const auto& [expr, range] : llvm::zip(remapped_constraints.getResults(), constraints_ranges)) { composed_indexing_map.AddConstraint(expr, range); } SmallVector<AffineExpr, 4> first_map_symbols_to_composed_symbols = MapSymbolsToComposedSymbolsList(first, composed_indexing_map); for (const auto& [expr, range] : first.GetConstraints()) { composed_indexing_map.AddConstraint( expr.replaceSymbols(first_map_symbols_to_composed_symbols), range); } for (auto [index, expr] : llvm::enumerate(first.GetAffineMap().getResults())) { Interval producer_dim_range = second.GetDimensionBound(static_cast<int64_t>(index)); composed_indexing_map.AddConstraint( expr.replaceSymbols(first_map_symbols_to_composed_symbols), producer_dim_range); } return composed_indexing_map; } bool IndexingMap::RescaleSymbols() { MergeModConstraints(); llvm::DenseSet<AffineExpr> to_delete; llvm::DenseMap<AffineExpr, AffineExpr> to_replace; for (const auto& [expr, range] : constraints_) { if (range.lower != range.upper) continue; auto shift_value = range.lower; if (expr.getKind() != AffineExprKind::Mod) continue; auto mod_expr = mlir::cast<AffineBinaryOpExpr>(expr); auto constant_expr = mlir::dyn_cast<AffineConstantExpr>(mod_expr.getRHS()); if (!constant_expr) continue; if (constant_expr.getValue() <= 0) continue; auto scaling_factor = constant_expr.getValue(); if (mod_expr.getLHS().getKind() != AffineExprKind::SymbolId) continue; auto symbol_expr = mlir::cast<AffineSymbolExpr>(mod_expr.getLHS()); if (to_replace.contains(symbol_expr)) { continue; } to_replace[symbol_expr] = constant_expr * symbol_expr + shift_value; to_delete.insert(expr); affine_map_ = affine_map_.replace( symbol_expr, constant_expr * symbol_expr + shift_value, affine_map_.getNumDims(), affine_map_.getNumSymbols()); auto& symbol_range = range_vars_[symbol_expr.getPosition()].bounds; symbol_range.lower = (symbol_range.lower - shift_value) / scaling_factor; symbol_range.upper = (symbol_range.upper - shift_value) / scaling_factor; } llvm::DenseMap<mlir::AffineExpr, Interval> new_constraints; for (const auto& [expr, range] : constraints_) { if (!to_delete.contains(expr)) { new_constraints[expr.replace(to_replace)] = range; } } constraints_ = std::move(new_constraints); return !to_delete.empty(); } bool IndexingMap::IsRangeVarSymbol(mlir::AffineSymbolExpr symbol) const { unsigned int position = symbol.getPosition(); CHECK_LE(position, GetSymbolCount()); return position < range_vars_.size(); } bool IndexingMap::IsRTVarSymbol(mlir::AffineSymbolExpr symbol) const { unsigned int position = symbol.getPosition(); CHECK_LE(position, GetSymbolCount()); return position >= range_vars_.size(); } IndexingMap IndexingMap::ConvertSymbolsToDimensions() const { int num_symbols = GetSymbolCount(); if (IsUndefined() || IsKnownEmpty() || num_symbols == 0) { return *this; } int num_dims = GetDimensionCount(); MLIRContext* mlir_context = GetMLIRContext(); int64_t num_vars = num_dims + num_symbols; std::vector<IndexingMap::Variable> new_dim_vars; new_dim_vars.reserve(num_vars); llvm::append_range(new_dim_vars, GetDimVars()); SmallVector<AffineExpr> syms_replacements; int64_t symbol_id = num_dims; for (const IndexingMap::Variable& var : llvm::concat<const IndexingMap::Variable>(range_vars_, rt_vars_)) { syms_replacements.push_back(getAffineDimExpr(symbol_id++, mlir_context)); new_dim_vars.push_back(IndexingMap::Variable{var.bounds}); } SmallVector<std::pair<AffineExpr, Interval>, 4> new_constraints; for (const auto& [expr, range] : constraints_) { new_constraints.push_back( std::make_pair(expr.replaceSymbols(syms_replacements), range)); } AffineMap canonical_map = affine_map_.replaceDimsAndSymbols({}, syms_replacements, num_vars, 0); IndexingMap new_indexing_map(canonical_map, new_dim_vars, {}, {}, new_constraints); return new_indexing_map; } } }
#include "xla/service/gpu/model/indexing_map.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <sstream> #include <tuple> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/model/indexing_map_serialization.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineMap; using ::testing::AnyOf; using ::testing::ElementsAre; class IndexingMapTest : public HloTestBase { public: IndexingMap Parse(absl::string_view indexing_map_str) { auto indexing_map = ParseIndexingMap(indexing_map_str, &mlir_context_); EXPECT_TRUE(indexing_map.has_value()); return *indexing_map; } mlir::MLIRContext mlir_context_; }; std::vector<bool> ConvertToSTL(const llvm::SmallBitVector& bit_vector) { std::vector<bool> result; result.reserve(bit_vector.size()); for (int i = 0; i < bit_vector.size(); ++i) { result.push_back(bit_vector[i]); } return result; } TEST_F(IndexingMapTest, VariableKind) { EXPECT_EQ(ToVariableType("default"), VariableKind::kDefault); EXPECT_EQ(ToVariableType("th_x"), VariableKind::kThreadX); EXPECT_EQ(ToVariableType("th_y"), VariableKind::kThreadY); EXPECT_EQ(ToVariableType("th_z"), VariableKind::kThreadZ); EXPECT_EQ(ToVariableType("bl_x"), VariableKind::kBlockX); EXPECT_EQ(ToVariableType("bl_y"), VariableKind::kBlockY); EXPECT_EQ(ToVariableType("bl_z"), VariableKind::kBlockZ); EXPECT_EQ(ToVariableType("warp"), VariableKind::kWarp); EXPECT_EQ(ToVariableType("th_w"), VariableKind::kWarpThread); EXPECT_EQ(ToVariableName(VariableKind::kDefault), "default"); EXPECT_EQ(ToVariableName(VariableKind::kThreadX), "th_x"); EXPECT_EQ(ToVariableName(VariableKind::kThreadY), "th_y"); EXPECT_EQ(ToVariableName(VariableKind::kThreadZ), "th_z"); EXPECT_EQ(ToVariableName(VariableKind::kBlockX), "bl_x"); EXPECT_EQ(ToVariableName(VariableKind::kBlockY), "bl_y"); EXPECT_EQ(ToVariableName(VariableKind::kBlockZ), "bl_z"); EXPECT_EQ(ToVariableName(VariableKind::kWarp), "warp"); EXPECT_EQ(ToVariableName(VariableKind::kWarpThread), "th_w"); } TEST_F(IndexingMapTest, VerifyDimensions) { auto indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {10, 10}, {}); std::stringstream ss; EXPECT_FALSE(indexing_map.Verify(ss)); EXPECT_EQ(ss.str(), "dim size must match the number of dimensions in the affine map"); } TEST_F(IndexingMapTest, VerifySymbols) { auto indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {10}, {10}); std::stringstream ss; EXPECT_FALSE(indexing_map.Verify(ss)); EXPECT_EQ(ss.str(), "range vars size + rt var size must match the number of symbols in " "the affine map"); } TEST_F(IndexingMapTest, RTVar) { IndexingMap indexing_map( ParseAffineMap("(d0, d1)[range, rt0, rt1] -> (d1, d0, range + rt0, rt1)", &mlir_context_), {IndexingMap::Variable{0, 99, "d0"}, IndexingMap::Variable{0, 43, "d1"}}, {IndexingMap::Variable{-99, 99, "range"}}, {IndexingMap::Variable{Interval{0, 2}}, IndexingMap::Variable({Interval{0, 7}})}); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1)[range, rt0, rt1] -> (d1, d0, range + rt0, rt1), domain: d0 in [0, 99], d1 in [0, 43], range in [-99, 99], rt0 in [0, 2], rt1 in [0, 7] )")); } TEST_F(IndexingMapTest, Evaluation) { IndexingMap indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 3], d1 in [0, 3], s0 in [0, 1], s1 in [0, 1] )"); auto results = indexing_map.Evaluate( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({3, 4}, &mlir_context_)); EXPECT_THAT(results, ElementsAre(2, 1, 4, 3)); auto feasible = indexing_map.ConstraintsSatisfied( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({3, 4}, &mlir_context_)); EXPECT_TRUE(feasible); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 4", &mlir_context_), Interval{0, 0}); auto infeasible = indexing_map.ConstraintsSatisfied( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({5, 4}, &mlir_context_)); EXPECT_FALSE(infeasible); } TEST_F(IndexingMapTest, Composition_Permutation) { IndexingMap producer = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 3], d1 in [0, 3], s0 in [0, 1], s1 in [0, 1] )"); IndexingMap consumer = Parse(R"( (d0)[s0] -> (d0, s0), domain: d0 in [0, 3], s0 in [0, 3] )"); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 1], s1 in [0, 1], s2 in [0, 3] )")); } TEST_F(IndexingMapTest, Composition_RestrictedInterval) { IndexingMap producer = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 4], d1 in [0, 5], s0 in [0, 6], s1 in [0, 1] )"); IndexingMap consumer = Parse(R"( (d0)[s0] -> (d0, s0), domain: d0 in [0, 9], s0 in [0, 7] )"); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 4], s0 in [0, 6], s1 in [0, 1], s2 in [0, 5] )")); } TEST_F(IndexingMapTest, Composition_ProducerAndConsumerHaveConstraints) { IndexingMap producer = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], d0 mod 8 in [0, 0], s0 mod 3 in [1, 1] )"); IndexingMap consumer = Parse(R"( (d0)[s0] -> (d0, s0), domain: d0 in [0, 9], s0 in [0, 7], d0 + s0 in [0, 20], s0 mod 4 in [0, 0] )"); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 9], s0 in [0, 69], s1 in [0, 19], s2 in [0, 7], d0 + s2 in [0, 20], d0 mod 8 in [0, 0], s0 mod 3 in [1, 1], s2 mod 4 in [0, 0] )")); EXPECT_TRUE(composed.Simplify()); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 8], s0 in [1, 67], s1 in [0, 19], s2 in [0, 4], d0 mod 8 in [0, 0], s0 mod 3 in [1, 1], s2 mod 4 in [0, 0] )")); } TEST_F(IndexingMapTest, Composition_RTVar) { std::vector<IndexingMap::Variable> rt_vars{ IndexingMap::Variable{Interval{0, 0}}, IndexingMap::Variable({Interval{0, 1}}), IndexingMap::Variable({Interval{0, 226}})}; IndexingMap producer( ParseAffineMap( "(d0, d1, d2)[rt0, rt1, rt2] -> (d0 + rt0, d1 + rt1, d2 + rt2)", &mlir_context_), {IndexingMap::Variable{{0, 0}}, IndexingMap::Variable{{0, 1}}, IndexingMap::Variable{{0, 226}}}, {}, std::move(rt_vars)); IndexingMap consumer( ParseAffineMap("(d0, d1)[s] -> (0, d1, s)", &mlir_context_), {IndexingMap::Variable{0, 0}, IndexingMap::Variable{0, 1}}, {IndexingMap::Variable{0, 31, "s"}}, {}); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(ToString(composed), MatchIndexingString(R"( (d0, d1)[s, rt0, rt1, rt2] -> (rt0, d1 + rt1, s + rt2), domain: d0 in [0, 0], d1 in [0, 1], s in [0, 31], rt0 in [0, 0], rt1 in [0, 1], rt2 in [0, 226] )")); } TEST_F(IndexingMapTest, Composition_OnlyRTVars) { IndexingMap producer( ParseAffineMap("(d0, d1)[s0, s1] -> (d0 + s0, d1 + 4 * s1)", &mlir_context_), {IndexingMap::Variable{0, 24}, IndexingMap::Variable{0, 15}}, {}, {IndexingMap::Variable{Interval{0, 2}, "ps_0"}, IndexingMap::Variable{Interval{0, 1}, "ps_1"}}); std::vector<IndexingMap::Variable> consumer_rt_vars; IndexingMap consumer( ParseAffineMap("(d0, d1)[s0, s1] -> (d0 + 2 * s0, d1 + 3 * s1)", &mlir_context_), {IndexingMap::Variable{0, 24}, IndexingMap::Variable{0, 15}}, {}, {IndexingMap::Variable{Interval{0, 25}, "cs_0"}, IndexingMap::Variable{Interval{0, 16}, "cs_1"}}); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(ToString(composed), MatchIndexingString(R"( (d0, d1)[ps_0, ps_1, cs_0, cs_1] -> (d0 + cs_0 * 2 + ps_0, d1 + cs_1 * 3 + ps_1 * 4), domain: d0 in [0, 24], d1 in [0, 15], ps_0 in [0, 2], ps_1 in [0, 1], cs_0 in [0, 25], cs_1 in [0, 16], d0 + cs_0 * 2 in [0, 24], d1 + cs_1 * 3 in [0, 15] )")); } TEST_F(IndexingMapTest, RemoveUnusedVars_ConstraintUsesDim) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d1, s0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], d0 + s0 in [1, 100], s0 mod 3 in [0, 0] )"); indexing_map.RemoveUnusedVars(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d1, s0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], d0 + s0 in [1, 100], s0 mod 3 in [0, 0] )")); } TEST_F(IndexingMapTest, RemoveUnusedVars_ConstraintUsesUnusedDim) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (s0, d1, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], d0 mod 3 in [0, 0] )"); indexing_map.RemoveUnusedVars(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, s1] -> (s0, d0, s1), domain: d0 in [0, 59], s0 in [0, 69], s1 in [0, 19] )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintUsesOnlyUnusedSym) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d0, d1, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], s0 mod 3 in [0, 0] )"); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0] -> (d0, d1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 19] )")); } TEST_F(IndexingMapTest, RemoveUnusedVars_ConstraintsWithManyDims) { auto indexing_map = Parse(R"( (d0, d1, d2, d3, d4)[s0, s1, s2] -> (s0 * 4 + d1 + d3 - 42), domain: d0 in [0, 0], d1 in [0, 1], d2 in [0, 2], d3 in [0, 3], d4 in [0, 4], s0 in [0, 31], s1 in [0, 63], s2 in [0, 95], s0 * 4 + d1 + d3 in [24, 459], s0 + s2 in [0, 512] )"); auto unused_vars = indexing_map.RemoveUnusedVars(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 + s0 * 4 + d1 - 42), domain: d0 in [0, 1], d1 in [0, 3], s0 in [0, 31], s1 in [0, 95], d0 + s0 * 4 + d1 in [24, 459], s0 + s1 in [0, 512] )")); EXPECT_THAT(ConvertToSTL(unused_vars), ::testing::ElementsAreArray( {true, false, true, false, true, false, true, false})); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintUsesSymbol) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], s0 + s1 in [1, 100], s0 mod 3 in [0, 0] )"); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d1, d0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], s0 + s1 in [1, 100], s0 mod 3 in [0, 0] )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintUsesOnlyUnusedSymbols) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], s0 mod 3 in [0, 0] )"); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0] -> (d1, d0, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 19] )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintIsAConstantWithinRange) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, 49], 0 in [-10, 5] )"); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0) -> (d0), domain: d0 in [0, 49] )")); } TEST_F(IndexingMapTest, KnownEmpty_CreatingIndexingMapWithInfeasibleRange) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, -2] )"); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, KnownEmpty_AddingConstraintOutOfRange) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, 49], 0 in [10, 15] )"); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, KnownEmpty_Composition) { auto indexing_map = Parse("(d0) -> (d0), domain: d0 in [0, 49]"); auto known_empty = Parse("(d0) -> (d0), domain: d0 in [0, -1]"); EXPECT_THAT(known_empty, MatchIndexingMap("KNOWN EMPTY")); EXPECT_THAT(indexing_map * known_empty, MatchIndexingMap("KNOWN EMPTY")); EXPECT_THAT(known_empty * indexing_map, MatchIndexingMap("KNOWN EMPTY")); EXPECT_EQ((indexing_map * known_empty).GetAffineMap().getNumResults(), 1); EXPECT_EQ((known_empty * indexing_map).GetAffineMap().getNumResults(), 1); } TEST_F(IndexingMapTest, KnownEmpty_AddingConstraintOutOfRangeAfterSimplification) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 19], s1 floordiv 20 in [2, 2] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintsWithManySymbols) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42), domain: d0 in [0, 31], s0 in [0, 0], s1 in [0, 1], s2 in [0, 2], s3 in [0, 3], s4 in [0, 4], d0 * 4 + s1 + s3 in [24, 459] )"); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, s1] -> (d0 * 4 + s0 + s1 - 42), domain: d0 in [0, 31], s0 in [0, 1], s1 in [0, 3], d0 * 4 + s0 + s1 in [24, 459] )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintsWithRTVars) { IndexingMap indexing_map( ParseAffineMap("(d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42)", &mlir_context_), {IndexingMap::Variable{{0, 31}}}, {IndexingMap::Variable{{0, 0}}, IndexingMap::Variable{{0, 1}}, IndexingMap::Variable{{0, 2}}}, {IndexingMap::Variable{Interval{0, 3}}, IndexingMap::Variable{Interval{0, 4}}}); indexing_map.AddConstraint( ParseAffineExpr("d0 * 4 + s1 + s3", &mlir_context_), Interval{24, 459}); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, rt0] -> (d0 * 4 + s0 + rt0 - 42), domain: d0 in [0, 31], s0 in [0, 1], rt0 in [0, 3], d0 * 4 + s0 + rt0 in [24, 459] )")); }; TEST_F(IndexingMapTest, ConvertSymbolsToDimensions) { IndexingMap indexing_map( ParseAffineMap( "(d0)[s0, s1, s2, s3] -> (d0 * 4 + s0 + s1 + 2 * s2 + 3 * s3 - 42)", &mlir_context_), {IndexingMap::Variable{{0, 31}}}, {IndexingMap::Variable{{0, 0}}, IndexingMap::Variable{{0, 1}}}, {IndexingMap::Variable{Interval{0, 3}}, IndexingMap::Variable{Interval{0, 4}}}); indexing_map.AddConstraint( ParseAffineExpr("d0 * 4 + s0 + 2 * s2", &mlir_context_), Interval{24, 459}); EXPECT_THAT(indexing_map.ConvertSymbolsToDimensions(), MatchIndexingMap(R"( (d0, d1, d2, d3, d4) -> (d0 * 4 + d1 + d2 + d3 * 2 + d4 * 3 - 42), domain: d0 in [0, 31], d1 in [0, 0], d2 in [0, 1], d3 in [0, 3], d4 in [0, 4], d0 * 4 + d1 + d3 * 2 in [24, 459] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_Sum) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, 99], d0 mod 8 + 5 in [50, 54] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (d0), domain: d0 in [0, 99], d0 mod 8 in [45, 49] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_Sum_IndependentOfSymbol) { auto indexing_map = Parse(R"( (d0)[s0, s1] -> (d0 * 6 + s0 * 3 + s1), domain: d0 in [0, 1999], s0 in [0, 1], s1 in [0, 2], d0 * 6 + s0 * 3 + s1 in [0, 599] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1] -> (d0 * 6 + s0 * 3 + s1), domain: d0 in [0, 99], s0 in [0, 1], s1 in [0, 2] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_Sum_NotIndependentOfSymbol) { auto indexing_map = Parse(R"( (d0)[s0, s1] -> (d0 * 6 + s0 * 3 + s1), domain: d0 in [0, 1999], s0 in [0, 1], s1 in [0, 2], d0 * 6 + s0 * 3 + s1 in [0, 598] )"); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_Sum_GcdGreaterOne) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0 * 6 + s0 * 3), domain: d0 in [0, 1999], s0 in [0, 1], d0 * 6 + s0 * 3 in [0, 599] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0 * 6 + s0 * 3), domain: d0 in [0, 99], s0 in [0, 1] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivPositiveDivisorPositiveBounds) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, 99], d0 floordiv 8 in [5, 11] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (d0), domain: d0 in [40, 95] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivPositiveDivisorNegativeBounds) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-99, 99], s0 floordiv 3 in [-11, -5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-33, -13] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivNegativeDivisorNegativeBounds) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-99, 99], s0 floordiv -3 in [-11, -5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [15, 35] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulPositiveMultiplierPositiveBounds) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [0, 99], d0 * 8 in [14, 33] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (d0), domain: d0 in [2, 4] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulPositiveMultiplierNegativeBounds) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-99, 99], s0 * 3 in [-11, -5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-3, -2] )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulNegativeMultiplierNegativeBounds) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [-99, 99], s0 * -3 in [-11, -5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0), domain: d0 in [0, 99], s0 in [2, 3] )")); } TEST_F(IndexingMapTest, ConstraintMerge_Mod) { auto indexing_map = Parse(R"( (d0)[s0, s1] -> (d0, s1, s0), domain: d0 in [0, 3], s0 in [-21, -2], s1 in [0, 10], d0 mod 3 in [0, 0], s0 mod 2 in [0, 0], s0 mod 3 in [0, 0], s1 mod 5 in [1, 1] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1] -> (d0, s1, s0), domain: d0 in [0, 3], s0 in [-18, -6], s1 in [1, 6], d0 mod 3 in [0, 0], s0 mod 6 in [0, 0], s1 mod 5 in [1, 1] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ConstantDims) { auto indexing_map = Parse(R"( (d0) -> (d0), domain: d0 in [5, 5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (5), domain: d0 in [5, 5] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SumOrderRegression) { auto indexing_map = Parse(R"( (d0, d1)[s0, s1] -> (((((d0 + (d0 mod 3)) floordiv 3) + (s0 + ((s0 + s0) mod 3))) + (((d0 + s0) mod 3) + 0))), domain: d0 in [0, 9], d1 in [0, 19], s0 in [0, 29], s1 in [0, 39] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_SumOrderRegression2) { auto indexing_map = Parse(R"( (d0)[s0] -> ((((s0 + d0) + d0) floordiv 2)), domain: d0 in [0, 9], s0 in [0, 19] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_FloorDivRegression) { auto indexing_map = Parse(R"( (d0, d1) -> (((d0 floordiv 3) * 3 + d1 floordiv 2) floordiv 6), domain: d0 in [0, 11], d1 in [0, 5] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0 floordiv 6), domain: d0 in [0, 11], d1 in [0, 5] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ModIsSub) { auto indexing_map = Parse(R"( (d0) -> (d0 mod 42), domain: d0 in [53, 71] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (d0 - 42), domain: d0 in [53, 71] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ModIsAdd) { auto indexing_map = Parse(R"( (d0) -> (d0 mod 5), domain: d0 in [-5, -1] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> (d0 + 5), domain: d0 in [-5, -1] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ModIsNotAdd) { auto indexing_map1 = Parse("(d0) -> (d0 mod 5), domain: d0 in [-4, 0]"); EXPECT_FALSE(indexing_map1.Simplify()); auto indexing_map2 = Parse("(d0) -> (d0 mod 5), domain: d0 in [-6, -1]"); EXPECT_FALSE(indexing_map2.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_SubIsMod) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0 - (s0 floordiv 3) * 3 + s0), domain: d0 in [0, 1], s0 in [0, 3] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0 + s0 mod 3), domain: d0 in [0, 1], s0 in [0, 3] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SubIsModMultiplied) { auto indexing_map = Parse(R"( (d0)[s0] -> (d0 - (s0 floordiv 3) * 12 + s0 * 7), domain: d0 in [0, 1], s0 in [0, 3] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0 + (s0 mod 3) * 4 + s0 * 3), domain: d0 in [0, 1], s0 in [0, 3] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SubIsModSum) { auto indexing_map = Parse(R"( (d0)[s0] -> (1 + d0 - ((s0 + 1) floordiv 3) * 3 + s0), domain: d0 in [0, 1], s0 in [0, 3] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0] -> (d0 + (s0 + 1) mod 3), domain: d0 in [0, 1], s0 in [0, 3] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsIfSmallerThanDivisor) { auto indexing_map = Parse(R"( (d0, d1) -> (d0 + d1 floordiv 16, d1 mod 16), domain: d0 in [0, 7], d1 in [0, 15] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0, d1), domain: d0 in [0, 7], d1 in [0, 15] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithMultipliers) { auto indexing_map = Parse(R"( (d0, d1, d2) -> ((d0 * 100 + d1 * 10 + d2) floordiv 100, ((d0 * 100 + d1 * 10 + d2) mod 100) floordiv 10, d2 mod 10), domain: d0 in [0, 8], d1 in [0, 8], d2 in [0, 8] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1, d2) -> (d0, d1, d2), domain: d0 in [0, 8], d1 in [0, 8], d2 in [0, 8] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithDivisibleMultipliers) { auto indexing_map = Parse(R"( (d0, d1, d2) -> ((d0 * 16 + d1 * 4 + d2) floordiv 8, (d0 * 16 + d1 * 4 + d2) mod 8), domain: d0 in [0, 9], d1 in [0, 9], d2 in [0, 9] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1, d2) -> (d0 * 2 + (d1 * 4 + d2) floordiv 8, (d1 * 4 + d2) mod 8), domain: d0 in [0, 9], d1 in [0, 9], d2 in [0, 9] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithReverse) { auto indexing_map = Parse(R"( (d0, d1) -> (-((d0 * -11 - d1 + 109) floordiv 11) + 9, d0 * 11 + d1 + ((d0 * -11 - d1 + 109) floordiv 11) * 11 - 99), domain: d0 in [0, 7], d1 in [0, 8] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0, d1), domain: d0 in [0, 7], d1 in [0, 8] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape) { auto indexing_map = Parse(R"( ()[s0] -> ((s0 * 128) mod 715 + ((s0 * 128) floordiv 715) * 715), domain: s0 in [0, 127] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0] -> (s0 * 128), domain: s0 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape2) { auto indexing_map = Parse(R"( (d0, d1) -> ((d0 mod 8) * 128 + d1 + (d0 floordiv 8) * 1024), domain: d0 in [0, 1023], d1 in [0, 127] )"); ; EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0 * 128 + d1), domain: d0 in [0, 1023], d1 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape3) { auto indexing_map = Parse(R"( (d0, d1) -> (((d1 * 2 + d0 floordiv 64) mod 3) * 256 + (d0 mod 64) * 4 + ((d1 * 128 + d0) floordiv 192) * 768), domain: d0 in [0, 127], d1 in [0, 3071] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0 * 4 + d1 * 512), domain: d0 in [0, 127], d1 in [0, 3071] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ModWithNegativeMultiplerDoesNotGetSimplified) { auto indexing_map = Parse(R"( (d0) -> ((-d0) mod 2), domain: d0 in [0, 127] )"); EXPECT_FALSE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0) -> ((-d0) mod 2), domain: d0 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyBitcastAndBack) { auto indexing_map = Parse(R"( (d0, d1) -> ((d0 floordiv 1536) * 786432 + (((d0 * 2 + d1 floordiv 64) floordiv 3) mod 1024) * 768 + ((d0 * 2 + d1 floordiv 64) mod 3) * 256 + (d1 mod 64) * 4), domain: d0 in [0, 3071], d1 in [0, 127] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0, d1) -> (d0 * 512 + d1 * 4), domain: d0 in [0, 3071], d1 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape_Regression) { auto indexing_map = Parse(R"( ()[s0] -> ((s0 * 128) mod 715 + ((s0 * 64) floordiv 715) * 715), domain: s0 in [0, 127] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0] -> (((s0 * 64) floordiv 715) * 715 + (s0 * 128) mod 715), domain: s0 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsInSequence) { auto indexing_map = Parse(R"( ()[s0] -> (s0 - ((s0 floordiv 2) floordiv 7) * 14 + (s0 floordiv 14) * 14), domain: s0 in [0, 1233] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0] -> (s0), domain: s0 in [0, 1233] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivDiv) { auto indexing_map = Parse(R"( ()[s0, s1] -> ((s0 * 2 + s1 floordiv 64) floordiv 3), domain: s0 in [0, 1233], s1 in [0, 127] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0, s1] -> ((s0 * 128 + s1) floordiv 192), domain: s0 in [0, 1233], s1 in [0, 127] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivSumConstant) { auto indexing_map = Parse(R"( ()[s0] -> ((s0 * 6 + 9) floordiv 18), domain: s0 in [0, 1233] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0] -> ((s0 * 2 + 3) floordiv 6), domain: s0 in [0, 1233] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivSumDiv) { auto indexing_map = Parse(R"( ()[s0, s1] -> ((s0 floordiv 3 + s1 floordiv 3) floordiv 6), domain: s0 in [0, 1233], s1 in [0, 127] )"); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_NegativeDiv) { auto indexing_map = Parse(R"( ()[s0] -> ((s0 floordiv 2) floordiv -7), domain: s0 in [0, 1233] )"); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_ExtractFromMod) { auto indexing_map = Parse(R"( ()[s0, s1, s2, s3] -> ((s0 * 458752 + s1 + s2 * 4 + s3 * 512) mod 20000), domain: s0 in [0, 871], s1 in [0, 3], s2 in [0, 127], s3 in [0, 895] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0, s1, s2, s3] -> ( ((s0 * 114688 + s3 * 128 + s2) mod 5000) * 4 + s1 ), domain: s0 in [0, 871], s1 in [0, 3], s2 in [0, 127], s3 in [0, 895] )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ExtractFromDiv_NegativeMultiplier) { auto indexing_map = Parse(R"( ()[s0, s1] -> ((s0 * 16 - (s1 floordiv 4) floordiv 2 + (s1 floordiv 8) * 2) floordiv 4), domain: s0 in [0, 1], s1 in [0, 127] )"); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( ()[s0, s1] -> ( s0 * 4 + s1 floordiv 32 ), domain: s0 in [0, 1], s1 in [0, 127] )")); } TEST_F(IndexingMapTest, RescaleSymbols_Simple) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0 floordiv 6), domain: d0 in [0, 3], s0 in [0, 6], s1 in [0, 1], s2 in [0, 5], s0 mod 6 in [0, 0] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 1], s1 in [0, 1], s2 in [0, 5] )")); } TEST_F(IndexingMapTest, RescaleSymbols_WithShift) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 41], s1 in [0, 1], s2 in [0, 5], s0 mod 6 in [3, 3] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0 * 6 + 3), domain: d0 in [0, 3], s0 in [0, 6], s1 in [0, 1], s2 in [0, 5] )")); } TEST_F(IndexingMapTest, RescaleSymbols_TwoModConstraints) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0 floordiv 6), domain: d0 in [0, 3], s0 in [0, 7], s1 in [0, 1], s2 in [0, 5], s0 mod 2 in [0, 0], s0 mod 3 in [0, 0] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 1], s1 in [0, 1], s2 in [0, 5] )")); } TEST_F(IndexingMapTest, RescaleSymbols_RescaledSymbolInOtherNonModConstraint) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 9], s1 in [0, 1], s2 in [0, 5], s0 * s2 in [0, 28], s0 mod 6 in [3, 3] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); EXPECT_THAT(ToString(indexing_map), MatchIndexingString(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0 * 6 + 3), domain: d0 in [0, 3], s0 in [0, 1], s1 in [0, 1], s2 in [0, 5], (s0 * 6 + 3) * s2 in [0, 28] )")); } TEST_F(IndexingMapTest, RescaleSymbols_TwoModConstraintsForTheSameSymbolWhichCannotBeMerged) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0), domain: d0 in [0, 3], s0 in [0, 99], s1 in [0, 1], s2 in [0, 5], s0 mod 6 in [3, 3], s0 mod 7 in [5, 5] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); const mlir::AffineExpr result3 = indexing_map.GetAffineMap().getResult(3); ASSERT_THAT(indexing_map.GetConstraints(), ::testing::SizeIs(1)); const mlir::AffineExpr constraint_expr = indexing_map.GetConstraints().begin()->first; const Interval constraint_interval = indexing_map.GetConstraints().begin()->second; EXPECT_THAT( std::make_tuple(result3, constraint_expr, constraint_interval), AnyOf( std::make_tuple(ParseAffineExpr("s0 * 6 + 3", &mlir_context_), ParseAffineExpr("(s0 * 6 + 3) mod 7", &mlir_context_), Interval{5, 5}), std::make_tuple(ParseAffineExpr("s0 * 7 + 5", &mlir_context_), ParseAffineExpr("(s0 * 7 + 5) mod 6", &mlir_context_), Interval{3, 3}))); } TEST_F(IndexingMapTest, RescaleSymbolsKeepsHashmapConsistent) { auto indexing_map = Parse(R"( (d0)[s0, s1, s2] -> (s2, d0, s0, s0 floordiv 6), domain: d0 in [0, 3], s0 in [0, 6], s1 in [0, 1], s2 in [0, 5], s0 mod 6 in [0, 0], s0 * s1 in [0, 100] )"); EXPECT_TRUE(indexing_map.RescaleSymbols()); for (auto& [expr, interval] : indexing_map.GetConstraints()) { EXPECT_TRUE(indexing_map.GetConstraints().contains(expr)) << "Don't modify the *keys* of the hashmap."; } } TEST_F(IndexingMapTest, RangeEvaluatorTest) { auto indexing_map = Parse(R"( (d0, d1, d2, d3)[] -> (0), domain: d0 in [0, 9], d1 in [-10, -1], d2 in [-1, 2], d3 in [0, 0] )"); RangeEvaluator range_evaluator(indexing_map, &mlir_context_); mlir::AffineExpr d0, d1, d2, d3; bindDims(&mlir_context_, d0, d1, d2, d3); EXPECT_TRUE(range_evaluator.IsAlwaysPositiveOrZero(d0)); EXPECT_FALSE(range_evaluator.IsAlwaysNegativeOrZero(d0)); EXPECT_FALSE(range_evaluator.IsAlwaysPositiveOrZero(d1)); EXPECT_TRUE(range_evaluator.IsAlwaysNegativeOrZero(d1)); EXPECT_FALSE(range_evaluator.IsAlwaysPositiveOrZero(d2)); EXPECT_FALSE(range_evaluator.IsAlwaysNegativeOrZero(d2)); EXPECT_TRUE(range_evaluator.IsAlwaysPositiveOrZero(d3)); EXPECT_TRUE(range_evaluator.IsAlwaysNegativeOrZero(d3)); } TEST(IntervalComparisonTest, PointComparisons) { Interval interval{12, 64}; auto point = [](int64_t n) { return Interval{n, n}; }; EXPECT_EQ(interval.Gt(point(11)), true); EXPECT_EQ(interval.Gt(point(12)), std::nullopt); EXPECT_EQ(interval.Gt(point(65)), false); EXPECT_EQ(interval.Lt(point(65)), true); EXPECT_EQ(interval.Lt(point(64)), std::nullopt); EXPECT_EQ(interval.Lt(point(10)), false); EXPECT_EQ(interval.Eq(point(11)), false); EXPECT_EQ(interval.Eq(point(12)), std::nullopt); EXPECT_EQ(interval.Eq(point(15)), std::nullopt); EXPECT_EQ(interval.Eq(point(65)), false); EXPECT_EQ(interval.Ne(point(11)), true); EXPECT_EQ(interval.Ne(point(15)), std::nullopt); EXPECT_EQ(interval.Ne(point(65)), true); EXPECT_EQ(interval.Ge(point(12)), true); EXPECT_EQ(interval.Ge(point(64)), std::nullopt); EXPECT_EQ(interval.Ge(point(65)), false); EXPECT_EQ(interval.Le(point(11)), false); EXPECT_EQ(interval.Le(point(64)), true); EXPECT_EQ(interval.Le(point(63)), std::nullopt); EXPECT_EQ(interval.Le(point(65)), true); EXPECT_EQ(point(15).Eq(point(15)), true); EXPECT_EQ(point(15).Eq(point(16)), false); EXPECT_EQ(point(15).Ne(point(15)), false); EXPECT_EQ(point(15).Ne(point(16)), true); } TEST(IntervalComparisonTest, RangeComparisons) { Interval interval{12, 64}; auto range = [](int64_t l, int64_t u) { return Interval{l, u}; }; EXPECT_EQ(interval.Gt(range(-10, 11)), true); EXPECT_EQ(interval.Gt(range(-10, 12)), std::nullopt); EXPECT_EQ(interval.Gt(interval), std::nullopt); EXPECT_EQ(interval.Gt(range(10, 20)), std::nullopt); EXPECT_EQ(interval.Gt(range(50, 60)), std::nullopt); EXPECT_EQ(interval.Gt(range(64, 100)), false); EXPECT_EQ(interval.Gt(range(65, 100)), false); EXPECT_EQ(interval.Lt(range(65, 100)), true); EXPECT_EQ(interval.Lt(range(64, 100)), std::nullopt); EXPECT_EQ(interval.Lt(interval), std::nullopt); EXPECT_EQ(interval.Lt(range(50, 60)), std::nullopt); EXPECT_EQ(interval.Lt(range(10, 20)), std::nullopt); EXPECT_EQ(interval.Lt(range(-10, 12)), false); EXPECT_EQ(interval.Lt(range(-10, 11)), false); EXPECT_EQ(interval.Eq(interval), std::nullopt); EXPECT_EQ(interval.Eq(range(65, 100)), false); EXPECT_EQ(interval.Eq(range(0, 11)), false); } MATCHER_P(IntervalIs, interval, "") { std::pair<int64_t, int64_t> arg_pair{arg.lower, arg.upper}; return ::testing::ExplainMatchResult( ::testing::Pair(interval.lower, interval.upper), arg_pair, result_listener); } TEST(IntervalMathTest, Addition) { Interval a{12, 64}; Interval b{-100, 120}; Interval sum{12 - 100, 64 + 120}; EXPECT_THAT(a + b, IntervalIs(sum)); } TEST(IntervalMathTest, AdditionSaturating) { Interval a{12, 64}; Interval b{-100, 120}; Interval c{100, std::numeric_limits<int64_t>::max() - 80}; Interval any{std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max()}; Interval positive{0, std::numeric_limits<int64_t>::max()}; Interval negative{std::numeric_limits<int64_t>::min(), 0}; auto range = [](int64_t l, int64_t u) { return Interval{l, u}; }; EXPECT_THAT(positive + negative, IntervalIs(any)); EXPECT_THAT(any + any, IntervalIs(any)); EXPECT_THAT(b + any, IntervalIs(any)); EXPECT_THAT(c + any, IntervalIs(any)); EXPECT_THAT(c + positive, IntervalIs(range(100, std::numeric_limits<int64_t>::max()))); Interval c_plus_negative{negative.lower, c.upper}; EXPECT_THAT(c + negative, IntervalIs(c_plus_negative)); Interval a_plus_c{112, std::numeric_limits<int64_t>::max() - 16}; EXPECT_THAT(a + c, IntervalIs(a_plus_c)); Interval b_plus_c{0, std::numeric_limits<int64_t>::max()}; EXPECT_THAT(b + c, IntervalIs(b_plus_c)); } TEST(IntervalMathTest, Multiplication) { Interval pos{10, 100}; Interval neg{-10, -1}; Interval both_small{-5, 6}; Interval both_large{-20, 1000}; auto range = [](int64_t l, int64_t u) { return Interval{l, u}; }; EXPECT_THAT(pos * neg, IntervalIs(range(-1000, -10))); EXPECT_THAT(pos * both_small, IntervalIs(range(-500, 600))); EXPECT_THAT(pos * both_large, IntervalIs(range(-2000, 100000))); EXPECT_THAT(neg * both_small, IntervalIs(range(-60, 50))); EXPECT_THAT(neg * both_large, IntervalIs(range(-10000, 200))); EXPECT_THAT(both_small * both_large, IntervalIs(range(-5000, 6000))); } TEST(IntervalMathTest, MultiplicationSaturating) { Interval any{std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max()}; Interval bit33{42, std::numeric_limits<uint32_t>::max()}; Interval bit33_sq{42 * 42, std::numeric_limits<int64_t>::max()}; EXPECT_THAT(bit33 * bit33, IntervalIs(bit33_sq)); EXPECT_THAT(any * any, IntervalIs(any)); Interval greater_41{42, std::numeric_limits<int64_t>::max()}; Interval neg_one{-1, -1}; Interval less_neg_41{std::numeric_limits<int64_t>::min(), -42}; EXPECT_THAT(greater_41 * neg_one, IntervalIs(less_neg_41)); EXPECT_THAT(less_neg_41 * neg_one, IntervalIs(greater_41)); EXPECT_THAT(any * neg_one, IntervalIs(any)); } template <typename T> void ExpectSupportsAbslHashAndEqAndNe(absl::Span<const T> values) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(values)); for (const T& a : values) { for (const T& b : values) { EXPECT_EQ(a != b, !(a == b)); } } } TEST_F(IndexingMapTest, IntervalSupportsAbslHashAndEqAndNe) { ExpectSupportsAbslHashAndEqAndNe<Interval>( {Interval{1, 1}, Interval{0, 1}, Interval{1, 2}}); } TEST_F(IndexingMapTest, IntervalSupportsLlvmStyleHashingAndEqAndNe) { auto check_consistent = [](const Interval& a, const Interval& b) { if (a == b) { EXPECT_EQ(hash_value(a), hash_value(b)); } if (hash_value(a) != hash_value(b)) { EXPECT_NE(a, b); } EXPECT_EQ(a != b, !(a == b)); }; std::vector<Interval> intervals = {Interval{1, 1}, Interval{0, 1}, Interval{1, 2}}; for (const auto& a : intervals) { for (const auto& b : intervals) { check_consistent(a, b); } } } TEST_F(IndexingMapTest, DimVarSupportsAbslHashAndEqAndNe) { ExpectSupportsAbslHashAndEqAndNe<IndexingMap::Variable>( {IndexingMap::Variable{1, 1}, IndexingMap::Variable{0, 1}, IndexingMap::Variable{1, 2}}); } TEST_F(IndexingMapTest, RangeVarSupportsAbslHashAndEqAndNe) { ExpectSupportsAbslHashAndEqAndNe<IndexingMap::Variable>( {IndexingMap::Variable{1, 1}, IndexingMap::Variable{0, 1}, IndexingMap::Variable{1, 2}}); } TEST_F(IndexingMapTest, RTVarSupportsAbslHashAndEqAndNe) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> hlo_module, ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { ROOT %constant = s64[] constant(42) } )")); ASSERT_NE(hlo_module, nullptr); ExpectSupportsAbslHashAndEqAndNe<IndexingMap::Variable>( {IndexingMap::Variable{Interval{1, 1}}, IndexingMap::Variable{Interval{1, 2}}, IndexingMap::Variable{Interval{1, 2}}, IndexingMap::Variable{Interval{1, 2}}}); } TEST_F(IndexingMapTest, IndexingMapSupportsAbslHashAndEqAndNe) { ExpectSupportsAbslHashAndEqAndNe<IndexingMap>( {Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79] )"), Parse(R"( (d0, d1)[s0, s1] -> (d1 * 2, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79] )"), Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 50], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79] )"), Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79] )"), Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79], d0 mod 8 in [0, 0], d0 mod 16 in [0, 0] )"), Parse(R"( (d0, d1)[s0, s1] -> (d1, d0, s1, s0), domain: d0 in [0, 49], d1 in [0, 59], s0 in [0, 69], s1 in [0, 79], d0 mod 8 in [0, 0], d0 mod 32 in [0, 0] )"), IndexingMap( ParseAffineMap("(d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42)", &mlir_context_), {IndexingMap::Variable{{0, 31}}}, {IndexingMap::Variable{{0, 0}}, IndexingMap::Variable{{0, 1}}, IndexingMap::Variable{{0, 2}}}, {IndexingMap::Variable{Interval{0, 3}}, IndexingMap::Variable{Interval{0, 4}}}), IndexingMap( ParseAffineMap("(d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42)", &mlir_context_), {IndexingMap::Variable{{0, 31}}}, {IndexingMap::Variable{{0, 0}}, IndexingMap::Variable{{0, 1}}, IndexingMap::Variable{{0, 2}}}, {IndexingMap::Variable{Interval{0, 3}}, IndexingMap::Variable{Interval{0, 5}}})}); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/indexing_map.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/indexing_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0a557562-a4da-4ac0-a621-6c54bbdd406d
cpp
tensorflow/tensorflow
all_reduce_blueconnect
third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect.cc
third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect_test.cc
#include "xla/service/gpu/transforms/all_reduce_blueconnect.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::vector<HloInstruction*> GetOutputs(HloInstruction& instruction) { if (!instruction.shape().IsTuple()) { return {&instruction}; } std::vector<HloInstruction*> outputs; outputs.reserve(instruction.shape().tuple_shapes_size()); HloComputation& computation = *instruction.parent(); for (int i = 0; i < instruction.shape().tuple_shapes_size(); ++i) { outputs.push_back(computation.AddInstruction( HloInstruction::CreateGetTupleElement(&instruction, i))); } return outputs; } struct DecomposedReplicaGroups { std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; }; std::optional<GlobalDeviceId> TryConvertingReplicaIdToDeviceId( int64_t replica_id, const DeviceAssignment& device_assignment, CollectiveOpGroupMode collective_group_mode) { if (collective_group_mode == CollectiveOpGroupMode::kCrossReplica) { if (device_assignment.computation_count() != 1) { return std::nullopt; } return GlobalDeviceId{device_assignment(replica_id, 0)}; } else if (collective_group_mode == CollectiveOpGroupMode::kFlattenedID) { int partition_count = device_assignment.computation_count(); int64_t actual_replica_id = replica_id / partition_count; int64_t partition_id = replica_id % partition_count; return GlobalDeviceId{device_assignment(actual_replica_id, partition_id)}; } VLOG(1) << "Skip AllReduceBlueConnect because of unsupported " "CollectiveOpGroupMode " << CollectiveOpGroupModeToString(collective_group_mode); return std::nullopt; } absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroup( const ReplicaGroup& replica_group, const DeviceAssignment& device_assignment, size_t num_devices_per_host, CollectiveOpGroupMode collective_group_mode) { int group_size = replica_group.replica_ids_size(); TF_RET_CHECK(group_size > 0); absl::btree_map<int, std::vector<int64_t>> replica_ids_by_host; for (int64_t replica_id : replica_group.replica_ids()) { std::optional<GlobalDeviceId> device_id = TryConvertingReplicaIdToDeviceId( replica_id, device_assignment, collective_group_mode); if (!device_id.has_value()) { return {std::nullopt}; } TF_RET_CHECK(*device_id >= 0); int host_id = device_id->value() / num_devices_per_host; replica_ids_by_host[host_id].push_back(replica_id); } size_t num_local_devices = replica_ids_by_host.begin()->second.size(); bool same_num_devices_on_each_host = absl::c_all_of(replica_ids_by_host, [&](const auto& entry) { return entry.second.size() == num_local_devices; }); if (!same_num_devices_on_each_host) { return {std::nullopt}; } std::vector<int64_t> sorted_replica_group; sorted_replica_group.reserve(group_size); for (const auto& entry : replica_ids_by_host) { absl::c_copy(entry.second, std::back_inserter(sorted_replica_group)); } size_t scatter_group_size = std::max(num_local_devices, size_t(2)); size_t num_scatter_groups = group_size / scatter_group_size; if ((group_size % scatter_group_size != 0) || (num_scatter_groups < 2)) { return {std::nullopt}; } std::vector<ReplicaGroup> scatter_gather_groups(num_scatter_groups); std::vector<ReplicaGroup> new_all_reduce_groups(scatter_group_size); for (size_t i = 0; i < group_size; ++i) { int64_t replica_id = sorted_replica_group[i]; scatter_gather_groups[i / scatter_group_size].add_replica_ids(replica_id); new_all_reduce_groups[i % scatter_group_size].add_replica_ids(replica_id); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroups(const HloAllReduceInstruction& all_reduce, size_t num_devices_per_host) { const DeviceAssignment& device_assignment = all_reduce.GetModule()->config().static_device_assignment(); absl::Span<const ReplicaGroup> replica_groups = all_reduce.replica_groups(); ReplicaGroup all_replicas; if (replica_groups.empty()) { for (int i = 0; i < device_assignment.replica_count(); ++i) { all_replicas.add_replica_ids(i); } replica_groups = absl::MakeSpan(&all_replicas, 1); } TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode collective_op_group_mode, GetCollectiveOpGroupMode(all_reduce.channel_id().has_value(), all_reduce.use_global_device_ids())); std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; for (const ReplicaGroup& replica_group : replica_groups) { TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroup(replica_group, device_assignment, num_devices_per_host, collective_op_group_mode)); if (!decomposed_groups) return {std::nullopt}; int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); if (scatter_gather_groups.empty()) { for (const HloInstruction* operand : all_reduce.operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); if (num_elements % scatter_group_size != 0) { return {std::nullopt}; } } scatter_gather_groups.reserve( replica_groups.size() * decomposed_groups->scatter_gather_groups.size()); new_all_reduce_groups.reserve( replica_groups.size() * decomposed_groups->new_all_reduce_groups.size()); } else if (scatter_group_size != scatter_gather_groups[0].replica_ids_size()) { return {std::nullopt}; } absl::c_move(decomposed_groups->scatter_gather_groups, std::back_inserter(scatter_gather_groups)); absl::c_move(decomposed_groups->new_all_reduce_groups, std::back_inserter(new_all_reduce_groups)); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<bool> TryDecomposeAllReduce(HloAllReduceInstruction* all_reduce, size_t num_devices_per_host) { TF_RET_CHECK(all_reduce); TF_RET_CHECK(!all_reduce->has_sharding()); HloComputation& computation = *all_reduce->parent(); PrimitiveType element_type = all_reduce->operand(0)->shape().element_type(); TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroups(*all_reduce, num_devices_per_host)); if (!decomposed_groups) return false; std::vector<HloInstruction*> flat_operands; flat_operands.reserve(all_reduce->operand_count()); std::vector<Shape> flat_shapes; flat_shapes.reserve(all_reduce->operand_count()); std::vector<Shape> scattered_shapes; scattered_shapes.reserve(all_reduce->operand_count()); int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); for (HloInstruction* operand : all_reduce->operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flat_shape = ShapeUtil::MakeShape(element_type, {num_elements}); flat_operands.push_back(computation.AddInstruction( HloInstruction::CreateBitcast(flat_shape, operand))); flat_shapes.push_back(std::move(flat_shape)); scattered_shapes.push_back(ShapeUtil::MakeShape( element_type, {num_elements / scatter_group_size})); } Shape reduce_scatter_shape = ShapeUtil::MakeMaybeTupleShape(scattered_shapes); int64_t next_channel_id = hlo_query::NextChannelId(*computation.parent()); auto get_channel_id = [&]() -> std::optional<int64_t> { if (all_reduce->channel_id().has_value()) { return next_channel_id++; } return std::nullopt; }; HloInstruction* reduce_scatter = computation.AddInstruction(HloInstruction::CreateReduceScatter( reduce_scatter_shape, flat_operands, all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, get_channel_id(), all_reduce->use_global_device_ids(), 0)); HloInstruction* new_all_reduce = computation.AddInstruction(HloInstruction::CreateAllReduce( reduce_scatter_shape, GetOutputs(*reduce_scatter), all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->new_all_reduce_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); HloInstruction* all_gather = computation.AddInstruction(HloInstruction::CreateAllGather( ShapeUtil::MakeMaybeTupleShape(flat_shapes), GetOutputs(*new_all_reduce), 0, CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, get_channel_id(), all_reduce->use_global_device_ids())); std::vector<HloInstruction*> outputs = GetOutputs(*all_gather); for (int64_t i = 0; i < outputs.size(); ++i) { outputs[i] = computation.AddInstruction(HloInstruction::CreateBitcast( all_reduce->operand(i)->shape(), outputs[i])); } HloInstruction* replacement = MaybeMakeTuple(outputs); TF_RETURN_IF_ERROR( all_reduce->CopyAllControlDepsTo(reduce_scatter, replacement)); TF_RETURN_IF_ERROR(all_reduce->DropAllControlDeps()); TF_RETURN_IF_ERROR(computation.ReplaceInstruction(all_reduce, replacement)); TF_RETURN_IF_ERROR( TryDecomposeAllReduce(Cast<HloAllReduceInstruction>(new_all_reduce), num_devices_per_host) .status()); return true; } } absl::StatusOr<bool> AllReduceBlueConnect::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllReduceBlueConnect"; if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceBlueConnect because the module contains all-reduce " "with constrained layouts"; return false; } if (!module->config().has_static_device_assignment()) { VLOG(1) << "Skip AllReduceBlueConnect because the module doesn't have static " "device assignment"; return false; } std::vector<HloAllReduceInstruction*> all_reduces; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kAllReduce) { all_reduces.push_back(Cast<HloAllReduceInstruction>(instruction)); } } } bool changed = false; for (HloAllReduceInstruction* all_reduce : all_reduces) { TF_ASSIGN_OR_RETURN( bool all_reduce_changed, TryDecomposeAllReduce(all_reduce, num_devices_per_host_)); changed |= all_reduce_changed; } return changed; } }
#include "xla/service/gpu/transforms/all_reduce_blueconnect.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/computation_placer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::IsOkAndHolds; namespace m = ::xla::match; using AllReduceBlueConnectTest = HloTestBase; HloPredicate MatchChannelId(std::optional<int64_t> channel_id) { return [channel_id](const HloInstruction* instruction) { return instruction->channel_id() == channel_id; }; } void SetModuleConfig(HloModuleConfig* module_config, size_t replica_count, size_t partition_count = 1) { DeviceAssignment device_assignment(replica_count, partition_count); device_assignment.FillIota(0); module_config->set_replica_count(replica_count); module_config->set_num_partitions(partition_count); module_config->set_static_device_assignment(device_assignment); } void SetModuleConfig(HloModule& module, size_t replica_count, size_t partition_count = 1) { SetModuleConfig(&module.mutable_config(), replica_count, partition_count); } TEST_F(AllReduceBlueConnectTest, OneStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(bitcast) .WithShape(F32, {4}) .WithReplicaGroups(scatter_gather_groups) .WithPredicate(MatchChannelId(std::nullopt)); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups) .WithPredicate(MatchChannelId(std::nullopt)); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups) .WithPredicate(MatchChannelId(std::nullopt)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> outer_scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}; std::vector<std::vector<int64_t>> inner_scatter_gather_groups = { {0, 4}, {8, 12}, {1, 5}, {9, 13}, {2, 6}, {10, 14}, {3, 7}, {11, 15}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 8}, {4, 12}, {1, 9}, {5, 13}, {2, 10}, {6, 14}, {3, 11}, {7, 15}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter0 = m::ReduceScatter(bitcast0).WithShape(F32, {4}).WithReplicaGroups( outer_scatter_gather_groups); auto bitcast1 = m::Bitcast(reduce_scatter0).WithShape(F32, {4}); auto reduce_scatter1 = m::ReduceScatter(bitcast1).WithShape(F32, {2}).WithReplicaGroups( inner_scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter1) .WithShape(F32, {2}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather0 = m::AllGather(all_reduce) .WithShape(F32, {4}) .WithReplicaGroups(inner_scatter_gather_groups); auto bitcast2 = m::Bitcast(all_gather0).WithShape(F32, {4}); auto all_gather1 = m::AllGather(bitcast2).WithShape(F32, {16}).WithReplicaGroups( outer_scatter_gather_groups); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather1).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoOperands) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4,2] parameter(1) ROOT crs = (f32[4,4], f32[4,4,2]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto bitcast1 = m::Bitcast(m::Parameter(1)).WithShape(F32, {32}); Shape expected0 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {4}), ShapeUtil::MakeShape(F32, {8})}); Shape expected1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {16}), ShapeUtil::MakeShape(F32, {32})}); auto reduce_scatter = m::ReduceScatter(bitcast0, bitcast1) .WithShapeEqualTo(&expected0) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(m::GetTupleElement(reduce_scatter, 0), m::GetTupleElement(reduce_scatter, 1)) .WithShapeEqualTo(&expected0) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(m::GetTupleElement(all_reduce, 0), m::GetTupleElement(all_reduce, 1)) .WithShapeEqualTo(&expected1) .WithReplicaGroups(scatter_gather_groups); auto bitcast2 = m::Bitcast(m::GetTupleElement(all_gather, 0)).WithShape(F32, {4, 4}); auto bitcast3 = m::Bitcast(m::GetTupleElement(all_gather, 1)).WithShape(F32, {4, 4, 2}); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(bitcast2, bitcast3))); } TEST_F(AllReduceBlueConnectTest, MultiplePartitionsFilecheck) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[8,8] parameter(0) ROOT crs = f32[8,8] all-reduce(p0), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, use_global_device_ids=true, to_apply=add })"; HloModuleConfig module_config; SetModuleConfig(&module_config, 1, 8); AllReduceBlueConnect pass(4); RunAndFilecheckHloRewrite(hlo_string, std::move(pass), R"( CHECK: %p0 = f32[8,8]{1,0} parameter(0) CHECK-NEXT: [[bitcast:%[^ ]+]] = f32[64]{0} bitcast(%p0) CHECK-NEXT: [[reduce_scatter:%[^ ]+]] = f32[16]{0} reduce-scatter([[bitcast]]), channel_id=2, replica_groups={{..0,1,2,3.,.4,5,6,7..}}, use_global_device_ids=true, dimensions={0}, to_apply=%add CHECK-NEXT: [[all_reduce:%[^ ]+]] = f32[16]{0} all-reduce([[reduce_scatter]]), channel_id=1, replica_groups={{..0,4.,.1,5.,.2,6.,.3,7..}}, use_global_device_ids=true, to_apply=%add CHECK-NEXT: [[all_gather:%[^ ]+]] = f32[64]{0} all-gather([[all_reduce]]), channel_id=3, replica_groups={{..0,1,2,3.,.4,5,6,7..}}, dimensions={0}, use_global_device_ids=true CHECK-NEXT: ROOT [[output:%[^ ]+]] = f32[8,8]{1,0} bitcast([[all_gather]]) } )", nullptr, &module_config); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesWithinReplicaGroup) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,2,7},{3,4,5,6}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesAcrossReplicaGroups) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,4,5},{2,3,6,7},{8,9,10,11},{12,13,14,15}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, OperandIndivisible) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[9] parameter(1) ROOT crs = (f32[4,4], f32[9]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, ControlDeps) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4] parameter(1) add = f32[4,4] add(p0, p1) crs = f32[4,4] all-reduce(p0), to_apply=add, control-predecessors={add} ROOT add1 = f32[4,4] add(crs, add), control-predecessors={crs} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); const HloInstruction* ar = module->entry_computation()->root_instruction()->operand(0); auto expected_preds = ar->control_predecessors(); auto expected_succs = ar->control_successors(); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; const HloInstruction *matched_rs, *matched_bitcast; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(&matched_rs, bitcast) .WithShape(F32, {4}) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Add())); EXPECT_THAT( root->operand(0), GmockMatch( m::Bitcast(&matched_bitcast, all_gather).WithShape(F32, {4, 4}))); EXPECT_THAT(matched_rs, GmockMatch(m::Op().WithControlDeps( absl::MakeSpan(expected_preds), {}))); EXPECT_THAT(matched_bitcast, GmockMatch(m::Op().WithControlDeps( {}, absl::MakeSpan(expected_succs)))); } TEST_F(AllReduceBlueConnectTest, ReduceScatterUnchanged) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[8,4] parameter(0) ROOT crs = f32[1,4] reduce-scatter(p0), dimensions={0}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7159b4fd-095b-4682-92bb-0b9ec2944fde
cpp
abseil/abseil-cpp
salted_seed_seq
absl/random/internal/salted_seed_seq.h
absl/random/internal/salted_seed_seq_test.cc
#ifndef ABSL_RANDOM_INTERNAL_SALTED_SEED_SEQ_H_ #define ABSL_RANDOM_INTERNAL_SALTED_SEED_SEQ_H_ #include <cstdint> #include <cstdlib> #include <initializer_list> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/meta/type_traits.h" #include "absl/random/internal/seed_material.h" #include "absl/types/optional.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { template <typename SSeq> class SaltedSeedSeq { public: using inner_sequence_type = SSeq; using result_type = typename SSeq::result_type; SaltedSeedSeq() : seq_(absl::make_unique<SSeq>()) {} template <typename Iterator> SaltedSeedSeq(Iterator begin, Iterator end) : seq_(absl::make_unique<SSeq>(begin, end)) {} template <typename T> SaltedSeedSeq(std::initializer_list<T> il) : SaltedSeedSeq(il.begin(), il.end()) {} SaltedSeedSeq(const SaltedSeedSeq&) = delete; SaltedSeedSeq& operator=(const SaltedSeedSeq&) = delete; SaltedSeedSeq(SaltedSeedSeq&&) = default; SaltedSeedSeq& operator=(SaltedSeedSeq&&) = default; template <typename RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end) { using U = typename std::iterator_traits<RandomAccessIterator>::value_type; using TagType = absl::conditional_t< (std::is_same<U, uint32_t>::value && (std::is_pointer<RandomAccessIterator>::value || std::is_same<RandomAccessIterator, typename std::vector<U>::iterator>::value)), ContiguousAndUint32Tag, DefaultTag>; if (begin != end) { generate_impl(TagType{}, begin, end, std::distance(begin, end)); } } template <typename OutIterator> void param(OutIterator out) const { seq_->param(out); } size_t size() const { return seq_->size(); } private: struct ContiguousAndUint32Tag {}; struct DefaultTag {}; template <typename Contiguous> void generate_impl(ContiguousAndUint32Tag, Contiguous begin, Contiguous end, size_t n) { seq_->generate(begin, end); const uint32_t salt = absl::random_internal::GetSaltMaterial().value_or(0); auto span = absl::Span<uint32_t>(&*begin, n); MixIntoSeedMaterial(absl::MakeConstSpan(&salt, 1), span); } template <typename RandomAccessIterator> void generate_impl(DefaultTag, RandomAccessIterator begin, RandomAccessIterator, size_t n) { absl::InlinedVector<uint32_t, 8> data(n, 0); generate_impl(ContiguousAndUint32Tag{}, data.begin(), data.end(), n); std::copy(data.begin(), data.end(), begin); } std::unique_ptr<SSeq> seq_; }; template <typename T, typename = void> struct is_salted_seed_seq : public std::false_type {}; template <typename T> struct is_salted_seed_seq< T, typename std::enable_if<std::is_same< T, SaltedSeedSeq<typename T::inner_sequence_type>>::value>::type> : public std::true_type {}; template < typename SSeq, typename EnableIf = absl::enable_if_t<is_salted_seed_seq<SSeq>::value>> SSeq MakeSaltedSeedSeq(SSeq&& seq) { return SSeq(std::forward<SSeq>(seq)); } template < typename SSeq, typename EnableIf = absl::enable_if_t<!is_salted_seed_seq<SSeq>::value>> SaltedSeedSeq<typename std::decay<SSeq>::type> MakeSaltedSeedSeq(SSeq&& seq) { using sseq_type = typename std::decay<SSeq>::type; using result_type = typename sseq_type::result_type; absl::InlinedVector<result_type, 8> data; seq.param(std::back_inserter(data)); return SaltedSeedSeq<sseq_type>(data.begin(), data.end()); } } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/salted_seed_seq.h" #include <iterator> #include <random> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" using absl::random_internal::GetSaltMaterial; using absl::random_internal::MakeSaltedSeedSeq; using absl::random_internal::SaltedSeedSeq; using testing::Eq; using testing::Pointwise; namespace { template <typename Sseq> void ConformsToInterface() { { Sseq default_constructed_seq; } { uint32_t init_array[] = {1, 3, 5, 7, 9}; Sseq iterator_constructed_seq(std::begin(init_array), std::end(init_array)); } { Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13}; } { uint32_t init_array[] = {1, 2, 3, 4, 5}; Sseq seq(std::begin(init_array), std::end(init_array)); EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array)); std::vector<uint32_t> state_vector; seq.param(std::back_inserter(state_vector)); EXPECT_EQ(state_vector.size(), ABSL_ARRAYSIZE(init_array)); for (int i = 0; i < state_vector.size(); i++) { EXPECT_EQ(state_vector[i], i + 1); } } { Sseq seq; uint32_t seeds[5]; seq.generate(std::begin(seeds), std::end(seeds)); } } TEST(SaltedSeedSeq, CheckInterfaces) { ConformsToInterface<std::seed_seq>(); ConformsToInterface<SaltedSeedSeq<std::seed_seq>>(); } TEST(SaltedSeedSeq, CheckConstructingFromOtherSequence) { std::vector<uint32_t> seed_values(10, 1); std::seed_seq seq(seed_values.begin(), seed_values.end()); auto salted_seq = MakeSaltedSeedSeq(std::move(seq)); EXPECT_EQ(seq.size(), salted_seq.size()); std::vector<uint32_t> param_result; seq.param(std::back_inserter(param_result)); EXPECT_EQ(seed_values, param_result); } TEST(SaltedSeedSeq, SaltedSaltedSeedSeqIsNotDoubleSalted) { uint32_t init[] = {1, 3, 5, 7, 9}; std::seed_seq seq(std::begin(init), std::end(init)); SaltedSeedSeq<std::seed_seq> salted_seq = MakeSaltedSeedSeq(std::move(seq)); uint32_t a[16]; salted_seq.generate(std::begin(a), std::end(a)); SaltedSeedSeq<std::seed_seq> salted_salted_seq = MakeSaltedSeedSeq(std::move(salted_seq)); uint32_t b[16]; salted_salted_seq.generate(std::begin(b), std::end(b)); EXPECT_THAT(b, Pointwise(Eq(), a)) << "a[0] " << a[0]; } TEST(SaltedSeedSeq, SeedMaterialIsSalted) { const size_t kNumBlocks = 16; uint32_t seed_material[kNumBlocks]; std::random_device urandom{"/dev/urandom"}; for (uint32_t& seed : seed_material) { seed = urandom(); } std::seed_seq seq(std::begin(seed_material), std::end(seed_material)); SaltedSeedSeq<std::seed_seq> salted_seq(std::begin(seed_material), std::end(seed_material)); bool salt_is_available = GetSaltMaterial().has_value(); if (salt_is_available) { uint32_t outputs[kNumBlocks]; uint32_t salted_outputs[kNumBlocks]; seq.generate(std::begin(outputs), std::end(outputs)); salted_seq.generate(std::begin(salted_outputs), std::end(salted_outputs)); EXPECT_THAT(outputs, Pointwise(testing::Ne(), salted_outputs)); } } TEST(SaltedSeedSeq, GenerateAcceptsDifferentTypes) { const size_t kNumBlocks = 4; SaltedSeedSeq<std::seed_seq> seq({1, 2, 3}); uint32_t expected[kNumBlocks]; seq.generate(std::begin(expected), std::end(expected)); { unsigned long seed_material[kNumBlocks]; seq.generate(std::begin(seed_material), std::end(seed_material)); EXPECT_THAT(seed_material, Pointwise(Eq(), expected)); } { unsigned int seed_material[kNumBlocks]; seq.generate(std::begin(seed_material), std::end(seed_material)); EXPECT_THAT(seed_material, Pointwise(Eq(), expected)); } { uint64_t seed_material[kNumBlocks]; seq.generate(std::begin(seed_material), std::end(seed_material)); EXPECT_THAT(seed_material, Pointwise(Eq(), expected)); } { int64_t seed_material[kNumBlocks]; seq.generate(std::begin(seed_material), std::end(seed_material)); EXPECT_THAT(seed_material, Pointwise(Eq(), expected)); } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/salted_seed_seq.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/salted_seed_seq_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
d6039166-212e-4c5c-a02a-ee5b64913499
cpp
google/leveldb
memenv
helpers/memenv/memenv.cc
helpers/memenv/memenv_test.cc
#include "helpers/memenv/memenv.h" #include <cstring> #include <limits> #include <map> #include <string> #include <vector> #include "leveldb/env.h" #include "leveldb/status.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/mutexlock.h" namespace leveldb { namespace { class FileState { public: FileState() : refs_(0), size_(0) {} FileState(const FileState&) = delete; FileState& operator=(const FileState&) = delete; void Ref() { MutexLock lock(&refs_mutex_); ++refs_; } void Unref() { bool do_delete = false; { MutexLock lock(&refs_mutex_); --refs_; assert(refs_ >= 0); if (refs_ <= 0) { do_delete = true; } } if (do_delete) { delete this; } } uint64_t Size() const { MutexLock lock(&blocks_mutex_); return size_; } void Truncate() { MutexLock lock(&blocks_mutex_); for (char*& block : blocks_) { delete[] block; } blocks_.clear(); size_ = 0; } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { MutexLock lock(&blocks_mutex_); if (offset > size_) { return Status::IOError("Offset greater than file size."); } const uint64_t available = size_ - offset; if (n > available) { n = static_cast<size_t>(available); } if (n == 0) { *result = Slice(); return Status::OK(); } assert(offset / kBlockSize <= std::numeric_limits<size_t>::max()); size_t block = static_cast<size_t>(offset / kBlockSize); size_t block_offset = offset % kBlockSize; size_t bytes_to_copy = n; char* dst = scratch; while (bytes_to_copy > 0) { size_t avail = kBlockSize - block_offset; if (avail > bytes_to_copy) { avail = bytes_to_copy; } std::memcpy(dst, blocks_[block] + block_offset, avail); bytes_to_copy -= avail; dst += avail; block++; block_offset = 0; } *result = Slice(scratch, n); return Status::OK(); } Status Append(const Slice& data) { const char* src = data.data(); size_t src_len = data.size(); MutexLock lock(&blocks_mutex_); while (src_len > 0) { size_t avail; size_t offset = size_ % kBlockSize; if (offset != 0) { avail = kBlockSize - offset; } else { blocks_.push_back(new char[kBlockSize]); avail = kBlockSize; } if (avail > src_len) { avail = src_len; } std::memcpy(blocks_.back() + offset, src, avail); src_len -= avail; src += avail; size_ += avail; } return Status::OK(); } private: enum { kBlockSize = 8 * 1024 }; ~FileState() { Truncate(); } port::Mutex refs_mutex_; int refs_ GUARDED_BY(refs_mutex_); mutable port::Mutex blocks_mutex_; std::vector<char*> blocks_ GUARDED_BY(blocks_mutex_); uint64_t size_ GUARDED_BY(blocks_mutex_); }; class SequentialFileImpl : public SequentialFile { public: explicit SequentialFileImpl(FileState* file) : file_(file), pos_(0) { file_->Ref(); } ~SequentialFileImpl() override { file_->Unref(); } Status Read(size_t n, Slice* result, char* scratch) override { Status s = file_->Read(pos_, n, result, scratch); if (s.ok()) { pos_ += result->size(); } return s; } Status Skip(uint64_t n) override { if (pos_ > file_->Size()) { return Status::IOError("pos_ > file_->Size()"); } const uint64_t available = file_->Size() - pos_; if (n > available) { n = available; } pos_ += n; return Status::OK(); } private: FileState* file_; uint64_t pos_; }; class RandomAccessFileImpl : public RandomAccessFile { public: explicit RandomAccessFileImpl(FileState* file) : file_(file) { file_->Ref(); } ~RandomAccessFileImpl() override { file_->Unref(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { return file_->Read(offset, n, result, scratch); } private: FileState* file_; }; class WritableFileImpl : public WritableFile { public: WritableFileImpl(FileState* file) : file_(file) { file_->Ref(); } ~WritableFileImpl() override { file_->Unref(); } Status Append(const Slice& data) override { return file_->Append(data); } Status Close() override { return Status::OK(); } Status Flush() override { return Status::OK(); } Status Sync() override { return Status::OK(); } private: FileState* file_; }; class NoOpLogger : public Logger { public: void Logv(const char* format, std::va_list ap) override {} }; class InMemoryEnv : public EnvWrapper { public: explicit InMemoryEnv(Env* base_env) : EnvWrapper(base_env) {} ~InMemoryEnv() override { for (const auto& kvp : file_map_) { kvp.second->Unref(); } } Status NewSequentialFile(const std::string& fname, SequentialFile** result) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { *result = nullptr; return Status::IOError(fname, "File not found"); } *result = new SequentialFileImpl(file_map_[fname]); return Status::OK(); } Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { *result = nullptr; return Status::IOError(fname, "File not found"); } *result = new RandomAccessFileImpl(file_map_[fname]); return Status::OK(); } Status NewWritableFile(const std::string& fname, WritableFile** result) override { MutexLock lock(&mutex_); FileSystem::iterator it = file_map_.find(fname); FileState* file; if (it == file_map_.end()) { file = new FileState(); file->Ref(); file_map_[fname] = file; } else { file = it->second; file->Truncate(); } *result = new WritableFileImpl(file); return Status::OK(); } Status NewAppendableFile(const std::string& fname, WritableFile** result) override { MutexLock lock(&mutex_); FileState** sptr = &file_map_[fname]; FileState* file = *sptr; if (file == nullptr) { file = new FileState(); file->Ref(); } *result = new WritableFileImpl(file); return Status::OK(); } bool FileExists(const std::string& fname) override { MutexLock lock(&mutex_); return file_map_.find(fname) != file_map_.end(); } Status GetChildren(const std::string& dir, std::vector<std::string>* result) override { MutexLock lock(&mutex_); result->clear(); for (const auto& kvp : file_map_) { const std::string& filename = kvp.first; if (filename.size() >= dir.size() + 1 && filename[dir.size()] == '/' && Slice(filename).starts_with(Slice(dir))) { result->push_back(filename.substr(dir.size() + 1)); } } return Status::OK(); } void RemoveFileInternal(const std::string& fname) EXCLUSIVE_LOCKS_REQUIRED(mutex_) { if (file_map_.find(fname) == file_map_.end()) { return; } file_map_[fname]->Unref(); file_map_.erase(fname); } Status RemoveFile(const std::string& fname) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { return Status::IOError(fname, "File not found"); } RemoveFileInternal(fname); return Status::OK(); } Status CreateDir(const std::string& dirname) override { return Status::OK(); } Status RemoveDir(const std::string& dirname) override { return Status::OK(); } Status GetFileSize(const std::string& fname, uint64_t* file_size) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { return Status::IOError(fname, "File not found"); } *file_size = file_map_[fname]->Size(); return Status::OK(); } Status RenameFile(const std::string& src, const std::string& target) override { MutexLock lock(&mutex_); if (file_map_.find(src) == file_map_.end()) { return Status::IOError(src, "File not found"); } RemoveFileInternal(target); file_map_[target] = file_map_[src]; file_map_.erase(src); return Status::OK(); } Status LockFile(const std::string& fname, FileLock** lock) override { *lock = new FileLock; return Status::OK(); } Status UnlockFile(FileLock* lock) override { delete lock; return Status::OK(); } Status GetTestDirectory(std::string* path) override { *path = "/test"; return Status::OK(); } Status NewLogger(const std::string& fname, Logger** result) override { *result = new NoOpLogger; return Status::OK(); } private: typedef std::map<std::string, FileState*> FileSystem; port::Mutex mutex_; FileSystem file_map_ GUARDED_BY(mutex_); }; } Env* NewMemEnv(Env* base_env) { return new InMemoryEnv(base_env); } }
#include "helpers/memenv/memenv.h" #include <string> #include <vector> #include "gtest/gtest.h" #include "db/db_impl.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "util/testutil.h" namespace leveldb { class MemEnvTest : public testing::Test { public: MemEnvTest() : env_(NewMemEnv(Env::Default())) {} ~MemEnvTest() { delete env_; } Env* env_; }; TEST_F(MemEnvTest, Basics) { uint64_t file_size; WritableFile* writable_file; std::vector<std::string> children; ASSERT_LEVELDB_OK(env_->CreateDir("/dir")); ASSERT_TRUE(!env_->FileExists("/dir/non_existent")); ASSERT_TRUE(!env_->GetFileSize("/dir/non_existent", &file_size).ok()); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(0, children.size()); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(0, file_size); delete writable_file; ASSERT_TRUE(env_->FileExists("/dir/f")); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(0, file_size); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(1, children.size()); ASSERT_EQ("f", children[0]); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("abc")); delete writable_file; ASSERT_LEVELDB_OK(env_->NewAppendableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(3, file_size); ASSERT_LEVELDB_OK(writable_file->Append("hello")); delete writable_file; ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(8, file_size); ASSERT_TRUE(!env_->RenameFile("/dir/non_existent", "/dir/g").ok()); ASSERT_LEVELDB_OK(env_->RenameFile("/dir/f", "/dir/g")); ASSERT_TRUE(!env_->FileExists("/dir/f")); ASSERT_TRUE(env_->FileExists("/dir/g")); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/g", &file_size)); ASSERT_EQ(8, file_size); SequentialFile* seq_file; RandomAccessFile* rand_file; ASSERT_TRUE(!env_->NewSequentialFile("/dir/non_existent", &seq_file).ok()); ASSERT_TRUE(!seq_file); ASSERT_TRUE(!env_->NewRandomAccessFile("/dir/non_existent", &rand_file).ok()); ASSERT_TRUE(!rand_file); ASSERT_TRUE(!env_->RemoveFile("/dir/non_existent").ok()); ASSERT_LEVELDB_OK(env_->RemoveFile("/dir/g")); ASSERT_TRUE(!env_->FileExists("/dir/g")); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(0, children.size()); ASSERT_LEVELDB_OK(env_->RemoveDir("/dir")); } TEST_F(MemEnvTest, ReadWrite) { WritableFile* writable_file; SequentialFile* seq_file; RandomAccessFile* rand_file; Slice result; char scratch[100]; ASSERT_LEVELDB_OK(env_->CreateDir("/dir")); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("hello ")); ASSERT_LEVELDB_OK(writable_file->Append("world")); delete writable_file; ASSERT_LEVELDB_OK(env_->NewSequentialFile("/dir/f", &seq_file)); ASSERT_LEVELDB_OK(seq_file->Read(5, &result, scratch)); ASSERT_EQ(0, result.compare("hello")); ASSERT_LEVELDB_OK(seq_file->Skip(1)); ASSERT_LEVELDB_OK(seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.compare("world")); ASSERT_LEVELDB_OK( seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.size()); ASSERT_LEVELDB_OK(seq_file->Skip(100)); ASSERT_LEVELDB_OK(seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.size()); delete seq_file; ASSERT_LEVELDB_OK(env_->NewRandomAccessFile("/dir/f", &rand_file)); ASSERT_LEVELDB_OK(rand_file->Read(6, 5, &result, scratch)); ASSERT_EQ(0, result.compare("world")); ASSERT_LEVELDB_OK(rand_file->Read(0, 5, &result, scratch)); ASSERT_EQ(0, result.compare("hello")); ASSERT_LEVELDB_OK(rand_file->Read(10, 100, &result, scratch)); ASSERT_EQ(0, result.compare("d")); ASSERT_TRUE(!rand_file->Read(1000, 5, &result, scratch).ok()); delete rand_file; } TEST_F(MemEnvTest, Locks) { FileLock* lock; ASSERT_LEVELDB_OK(env_->LockFile("some file", &lock)); ASSERT_LEVELDB_OK(env_->UnlockFile(lock)); } TEST_F(MemEnvTest, Misc) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); ASSERT_TRUE(!test_dir.empty()); WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile("/a/b", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Sync()); ASSERT_LEVELDB_OK(writable_file->Flush()); ASSERT_LEVELDB_OK(writable_file->Close()); delete writable_file; } TEST_F(MemEnvTest, LargeWrite) { const size_t kWriteSize = 300 * 1024; char* scratch = new char[kWriteSize * 2]; std::string write_data; for (size_t i = 0; i < kWriteSize; ++i) { write_data.append(1, static_cast<char>(i)); } WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("foo")); ASSERT_LEVELDB_OK(writable_file->Append(write_data)); delete writable_file; SequentialFile* seq_file; Slice result; ASSERT_LEVELDB_OK(env_->NewSequentialFile("/dir/f", &seq_file)); ASSERT_LEVELDB_OK(seq_file->Read(3, &result, scratch)); ASSERT_EQ(0, result.compare("foo")); size_t read = 0; std::string read_data; while (read < kWriteSize) { ASSERT_LEVELDB_OK(seq_file->Read(kWriteSize - read, &result, scratch)); read_data.append(result.data(), result.size()); read += result.size(); } ASSERT_TRUE(write_data == read_data); delete seq_file; delete[] scratch; } TEST_F(MemEnvTest, OverwriteOpenFile) { const char kWrite1Data[] = "Write #1 data"; const size_t kFileDataLen = sizeof(kWrite1Data) - 1; const std::string kTestFileName = testing::TempDir() + "leveldb-TestFile.dat"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, kWrite1Data, kTestFileName)); RandomAccessFile* rand_file; ASSERT_LEVELDB_OK(env_->NewRandomAccessFile(kTestFileName, &rand_file)); const char kWrite2Data[] = "Write #2 data"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, kWrite2Data, kTestFileName)); Slice result; char scratch[kFileDataLen]; ASSERT_LEVELDB_OK(rand_file->Read(0, kFileDataLen, &result, scratch)); ASSERT_EQ(0, result.compare(kWrite2Data)); delete rand_file; } TEST_F(MemEnvTest, DBTest) { Options options; options.create_if_missing = true; options.env = env_; DB* db; const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")}; const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")}; ASSERT_LEVELDB_OK(DB::Open(options, "/dir/db", &db)); for (size_t i = 0; i < 3; ++i) { ASSERT_LEVELDB_OK(db->Put(WriteOptions(), keys[i], vals[i])); } for (size_t i = 0; i < 3; ++i) { std::string res; ASSERT_LEVELDB_OK(db->Get(ReadOptions(), keys[i], &res)); ASSERT_TRUE(res == vals[i]); } Iterator* iterator = db->NewIterator(ReadOptions()); iterator->SeekToFirst(); for (size_t i = 0; i < 3; ++i) { ASSERT_TRUE(iterator->Valid()); ASSERT_TRUE(keys[i] == iterator->key()); ASSERT_TRUE(vals[i] == iterator->value()); iterator->Next(); } ASSERT_TRUE(!iterator->Valid()); delete iterator; DBImpl* dbi = reinterpret_cast<DBImpl*>(db); ASSERT_LEVELDB_OK(dbi->TEST_CompactMemTable()); for (size_t i = 0; i < 3; ++i) { std::string res; ASSERT_LEVELDB_OK(db->Get(ReadOptions(), keys[i], &res)); ASSERT_TRUE(res == vals[i]); } delete db; } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/helpers/memenv/memenv.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/helpers/memenv/memenv_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
e0bafeec-b8dc-4bfa-840f-87c8a06e09cc
cpp
tensorflow/tensorflow
collective_permute_valid_iteration_annotator
third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.cc
third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator_test.cc
#include "xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/while_loop_analysis.h" namespace xla { static const HloInstruction* NonConstantOperand(const HloInstruction* instr) { const HloInstruction* result = nullptr; for (const HloInstruction* operand : instr->operands()) { if (!operand->IsConstant()) { if (result != nullptr) { CHECK_EQ(result, operand); } result = operand; } } CHECK_NE(result, nullptr); return result; } std::optional<int64_t> GetStep(HloInstruction* while_inst) { std::optional<int64_t> indvar_tuple_idx = GetLoopInductionVarTupleIdx(while_inst); if (!indvar_tuple_idx) { return std::nullopt; }; auto* while_body_indvar_update = while_inst->while_body()->root_instruction()->mutable_operand( *indvar_tuple_idx); auto* while_body_indvar = NonConstantOperand(while_body_indvar_update); HloInstruction* trip_count_increase_step_instr = nullptr; if (!Match(while_body_indvar_update, match::AddAnyOrder(match::Op().Is(while_body_indvar), match::Op(&trip_count_increase_step_instr)))) { return std::nullopt; } return LiteralUtil::LiteralAsScalarInt64( trip_count_increase_step_instr->literal()); } absl::StatusOr<bool> CollectivePermuteValidIterationAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* inst : comp->instructions()) { if (inst->opcode() != HloOpcode::kCollectivePermute) { continue; } if (inst->frontend_attributes().map().find(kSendRecvValidationAttr) != inst->frontend_attributes().map().end()) { continue; } auto sourceTargetPairs = inst->source_target_pairs(); if (!IsForwardCycle(sourceTargetPairs) && !IsBackwardCycle(sourceTargetPairs)) { continue; } VLOG(2) << "Collective permute with cycle: " << inst->ToString(); int64_t max_device_num = -1; for (auto [source, target] : sourceTargetPairs) { max_device_num = std::max(std::max(source, target), max_device_num); } int64_t num_devices = max_device_num + 1; HloInstruction* whileOp = inst->parent()->WhileCallInstruction(); if (whileOp == nullptr) { VLOG(2) << "No surrounding while op found. Ignoring " << inst->name(); continue; } if (!whileOp->frontend_attributes().map().contains( "is_pipelined_while_loop")) continue; TF_ASSIGN_OR_RETURN(WhileLoopBackendConfig config, whileOp->backend_config<WhileLoopBackendConfig>()); if (!config.has_known_trip_count()) { VLOG(2) << "Trip count for while loop (" << whileOp->name() << "): unknown"; continue; } int64_t trip_count = config.known_trip_count().n(); std::optional<int64_t> step = GetStep(whileOp); VLOG(2) << "Trip count for while loop (" << whileOp->name() << "): " << trip_count; if (!step) { VLOG(2) << "Could not find step for while operation"; continue; } VLOG(2) << "Step for while loop (" << whileOp->name() << "): " << *step; if (*step != 1) { VLOG(2) << "Step is not 1. Skipping..."; continue; } int64_t offset = trip_count - num_devices; std::vector<std::pair<int64_t, int64_t>> sendRecvValidation( sourceTargetPairs.size()); for (size_t currIdx = 0; currIdx < sourceTargetPairs.size(); currIdx++) { sendRecvValidation[currIdx] = {currIdx, currIdx + offset}; } if (IsBackwardCycle(sourceTargetPairs)) { std::reverse(sendRecvValidation.begin(), sendRecvValidation.end()); } xla::FrontendAttributes attributes; std::string iteration_instances = "{" + absl::StrJoin(sendRecvValidation, ",", [](std::string* out, std::pair<int64_t, int64_t> item) { absl::StrAppend(out, "{", item.first, ",", item.second, "}"); }) + "}"; (*attributes.mutable_map())[kSendRecvValidationAttr] = iteration_instances; inst->add_frontend_attributes(attributes); VLOG(1) << "Adding " << kSendRecvValidationAttr << " to " << inst->name() << ": " << iteration_instances; changed = true; } } return changed; } }
#include "xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/while_loop_trip_count_annotator.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { using CollectivePermuteValidIterationAnnotatorTest = HloTestBase; TEST_F(CollectivePermuteValidIterationAnnotatorTest, NoChange) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %permute) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_FALSE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_EQ(sendRecvValidationIt, cp->frontend_attributes().map().end()); } TEST_F(CollectivePermuteValidIterationAnnotatorTest, ForwardCycle) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %i_plus_one) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body, frontend_attributes={is_pipelined_while_loop="true"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_NE(sendRecvValidationIt, cp->frontend_attributes().map().end()); std::string sendRecvValidationAttr = sendRecvValidationIt->second; EXPECT_EQ(sendRecvValidationAttr, "{{0,6},{1,7},{2,8},{3,9}}"); } TEST_F(CollectivePermuteValidIterationAnnotatorTest, BackwardCycle) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,3},{1,0},{2,1},{3,2}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %i_plus_one) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body, frontend_attributes={is_pipelined_while_loop="true"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_NE(sendRecvValidationIt, cp->frontend_attributes().map().end()); std::string sendRecvValidationAttr = sendRecvValidationIt->second; EXPECT_EQ(sendRecvValidationAttr, "{{3,9},{2,8},{1,7},{0,6}}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ad69ddc5-0993-4550-bcd1-c25e14d6bb5e
cpp
tensorflow/tensorflow
path_utils
tensorflow/core/data/service/snapshot/path_utils.cc
tensorflow/core/data/service/snapshot/path_utils_test.cc
#include "tensorflow/core/data/service/snapshot/path_utils.h" #include <cstdint> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tsl/platform/path.h" namespace tensorflow { namespace data { namespace { constexpr const char kDoneFileName[] = "DONE"; constexpr const char kErrorFileName[] = "ERROR"; constexpr const char kWorkerFileName[] = "owner_worker"; constexpr const char kSnapshotMetadataFileName[] = "snapshot.metadata"; constexpr const char kDatasetDefFileName[] = "dataset_def.proto"; constexpr const char kDatasetSpecFileName[] = "dataset_spec.pb"; constexpr const char kStreamsDirectoryName[] = "streams"; constexpr const char kSplitsDirectoryName[] = "splits"; constexpr const char kCheckpointsDirectoryName[] = "checkpoints"; constexpr const char kCommittedChunksDirectoryName[] = "chunks"; constexpr const char kUncommittedChunksDirectoryName[] = "uncommitted_chunks"; constexpr int64_t kUnknownNumElements = -1; } std::string StreamsDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kStreamsDirectoryName); } std::string StreamDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamsDirectory(snapshot_path), absl::StrCat("stream_", stream_index)); } std::string SplitsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kSplitsDirectoryName); } std::string SourceDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index) { return tsl::io::JoinPath(SplitsDirectory(snapshot_path, stream_index), absl::StrCat("source_", source_index)); } std::string RepetitionDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index) { return tsl::io::JoinPath( SourceDirectory(snapshot_path, stream_index, source_index), absl::StrCat("repetition_", repetition_index)); } std::string SplitPath(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, int64_t local_index, int64_t global_index) { return tsl::io::JoinPath( RepetitionDirectory(snapshot_path, stream_index, source_index, repetition_index), absl::StrCat("split_", local_index, "_", global_index)); } absl::StatusOr<int64_t> ParseStreamDirectoryName( absl::string_view stream_directory_name) { std::vector<std::string> tokens = absl::StrSplit(stream_directory_name, '_'); int64_t stream_index = 0; if (tokens.size() != 2 || tokens[0] != "stream" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid stream directory name: ", stream_directory_name, ". Expected stream_<stream_index>.")); } return stream_index; } absl::StatusOr<int64_t> ParseSourceDirectoryName( absl::string_view source_directory_name) { std::vector<std::string> tokens = absl::StrSplit(source_directory_name, '_'); int64_t source_index = 0; if (tokens.size() != 2 || tokens[0] != "source" || !absl::SimpleAtoi(tokens[1], &source_index) || source_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid source directory name: ", source_directory_name, ". Expected source_<source_index>.")); } return source_index; } absl::StatusOr<int64_t> ParseRepetitionDirectoryName( absl::string_view repetition_directory_name) { std::vector<std::string> tokens = absl::StrSplit(repetition_directory_name, '_'); int64_t repetition_index = 0; if (tokens.size() != 2 || tokens[0] != "repetition" || !absl::SimpleAtoi(tokens[1], &repetition_index) || repetition_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid repetition directory name: ", repetition_directory_name, ". Expected repetition_<repetition_index>.")); } return repetition_index; } absl::StatusOr<std::pair<int64_t, int64_t>> ParseSplitFilename( absl::string_view split_filename) { std::vector<std::string> tokens = absl::StrSplit(tsl::io::Basename(split_filename), '_'); int64_t local_split_index = 0, global_split_index = 0; if (tokens.size() != 3 || tokens[0] != "split" || !absl::SimpleAtoi(tokens[1], &local_split_index) || local_split_index < 0 || !absl::SimpleAtoi(tokens[2], &global_split_index) || global_split_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". Expected split_<local_split_index>_<global_split_index>.")); } if (local_split_index > global_split_index) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". The local split index ", local_split_index, " exceeds the global split index ", global_split_index, ".")); } return std::make_pair(local_split_index, global_split_index); } absl::StatusOr<std::pair<int64_t, int64_t>> ParseCheckpointFilename( absl::string_view checkpoint_filename) { std::vector<std::string> tokens = absl::StrSplit(checkpoint_filename, '_'); int64_t checkpoint_index = 0, checkpoint_num_elements = 0; if (tokens.size() != 3 || tokens[0] != "checkpoint" || !absl::SimpleAtoi(tokens[1], &checkpoint_index) || checkpoint_index < 0 || !absl::SimpleAtoi(tokens[2], &checkpoint_num_elements) || (checkpoint_num_elements < 0 && checkpoint_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid checkpoint file name: ", checkpoint_filename, ". Expected checkpoint_<checkpoint_index>_<checkpoint_num_elements>.")); } return std::make_pair(checkpoint_index, checkpoint_num_elements); } absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> ParseChunkFilename( absl::string_view chunk_filename) { std::vector<std::string> tokens = absl::StrSplit(chunk_filename, '_'); int64_t stream_index = 0, stream_chunk_index = 0, chunk_num_elements = 0; if (tokens.size() != 4 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0 || !absl::SimpleAtoi(tokens[2], &stream_chunk_index) || stream_chunk_index < 0 || !absl::SimpleAtoi(tokens[3], &chunk_num_elements) || (chunk_num_elements < 0 && chunk_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid chunk file name: ", chunk_filename, ". Expected " "chunk_<stream_index>_<stream_chunk_index>_<chunk_num_elements>.")); } return std::make_tuple(stream_index, stream_chunk_index, chunk_num_elements); } std::string SnapshotMetadataFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kSnapshotMetadataFileName); } std::string DatasetDefFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetDefFileName); } std::string DatasetSpecFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetSpecFileName); } std::string StreamDoneFilePath(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kDoneFileName); } std::string StreamWorkerFilePath(absl::string_view snapshot_path, int64_t stream_index) { return StreamWorkerFilePath(StreamDirectory(snapshot_path, stream_index)); } std::string StreamWorkerFilePath(absl::string_view stream_path) { return tsl::io::JoinPath(stream_path, kWorkerFileName); } std::string SnapshotDoneFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kDoneFileName); } std::string SnapshotErrorFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kErrorFileName); } std::string CheckpointsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kCheckpointsDirectoryName); } std::string CommittedChunksDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kCommittedChunksDirectoryName); } std::string UncommittedChunksDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kUncommittedChunksDirectoryName); } } }
#include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::FieldsAre; using ::testing::HasSubstr; using ::testing::MatchesRegex; using ::testing::Pair; using tsl::testing::IsOkAndHolds; using tsl::testing::StatusIs; TEST(PathUtilsTest, StreamsDirectory) { EXPECT_THAT(StreamsDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.streams")); } TEST(PathUtilsTest, StreamDirectory) { EXPECT_THAT(StreamDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0")); } TEST(PathUtilsTest, SplitsDirectory) { EXPECT_THAT(SplitsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.splits")); } TEST(PathUtilsTest, SourceDirectory) { EXPECT_THAT( SourceDirectory("/path/to/snapshot", 0, 1), MatchesRegex("/path/to/snapshot.streams.stream_0.splits.source_1")); } TEST(PathUtilsTest, RepetitionDirectory) { EXPECT_THAT( RepetitionDirectory("/path/to/snapshot", 0, 1, 2), MatchesRegex( "/path/to/snapshot.streams.stream_0.splits.source_1.repetition_2")); } TEST(PathUtilsTest, SplitPath) { EXPECT_THAT( SplitPath("/path/to/snapshot", 0, 1, 2, 3, 4), MatchesRegex( "/path/to/" "snapshot.streams.stream_0.splits.source_1.repetition_2.split_3_4")); } TEST(PathUtilsTest, ParseStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName("stream_1"), IsOkAndHolds(1)); } TEST(PathUtilsTest, ParseSourceDirectoryName) { EXPECT_THAT(ParseSourceDirectoryName("source_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseSourceDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("source_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); } TEST(PathUtilsTest, ParseRepetitionDirectoryName) { EXPECT_THAT(ParseRepetitionDirectoryName("repetition_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseRepetitionDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("repetition_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); } TEST(PathUtilsTest, InvalidStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("stream_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); } TEST(PathUtilsTest, ParseSplitFilename) { EXPECT_THAT(ParseSplitFilename("split_0_1"), IsOkAndHolds(Pair(0, 1))); } TEST(PathUtilsTest, InvalidSplitFilename) { EXPECT_THAT( ParseSplitFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_5_0"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "The local split index 5 exceeds the global split index 0"))); } TEST(PathUtilsTest, ParseCheckpointFilename) { EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_1"), IsOkAndHolds(Pair(0, 1))); EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_-1"), IsOkAndHolds(Pair(0, -1))); } TEST(PathUtilsTest, InvalidCheckpointFilename) { EXPECT_THAT( ParseCheckpointFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); } TEST(PathUtilsTest, ParseChunkFilename) { EXPECT_THAT(ParseChunkFilename("chunk_0_1_2"), IsOkAndHolds(FieldsAre(0, 1, 2))); EXPECT_THAT(ParseChunkFilename("chunk_0_1_-1"), IsOkAndHolds(FieldsAre(0, 1, -1))); } TEST(PathUtilsTest, InvalidChunkFilename) { EXPECT_THAT(ParseChunkFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_123_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_-1_(-1)_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("split_1_2_3"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); } TEST(PathUtilsTest, StreamDoneFilePath) { EXPECT_THAT(StreamDoneFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.DONE")); } TEST(PathUtilsTest, StreamWorkerFilePath) { EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot/streams/stream_0"), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); } TEST(PathUtilsTest, SnapshotDoneFilePath) { EXPECT_THAT(SnapshotDoneFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.DONE")); } TEST(PathUtilsTest, SnapshotErrorFilePath) { EXPECT_THAT(SnapshotErrorFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.ERROR")); } TEST(PathUtilsTest, SnapshotMetadataFilePath) { EXPECT_THAT(SnapshotMetadataFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.snapshot.metadata")); } TEST(PathUtilsTest, DatasetDefFilePath) { EXPECT_THAT(DatasetDefFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_def.proto")); } TEST(PathUtilsTest, DatasetSpefFilePath) { EXPECT_THAT(DatasetSpecFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_spec.pb")); } TEST(PathUtilsTest, CheckpointsDirectory) { EXPECT_THAT(CheckpointsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.checkpoints")); } TEST(PathUtilsTest, CommittedChunksDirectory) { EXPECT_THAT(CommittedChunksDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.chunks")); } TEST(PathUtilsTest, UncommittedChunksDirectory) { EXPECT_THAT( UncommittedChunksDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.uncommitted_chunks")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/path_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/path_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
86af0dfd-9e9d-4348-8772-56caee98f0d0
cpp
tensorflow/tensorflow
simple_tf_op
tensorflow/lite/kernels/shim/test_op/simple_tf_op.cc
tensorflow/lite/kernels/shim/test_op/simple_tf_op_test.cc
#include "tensorflow/lite/kernels/shim/test_op/simple_tf_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/lite/kernels/shim/tf_op_shim.h" namespace tflite { namespace shim { REGISTER_TF_OP_SHIM(SimpleOpKernel); REGISTER_KERNEL_BUILDER( Name(SimpleOpKernel::OpName()).Device(::tensorflow::DEVICE_CPU), SimpleOpKernel); } }
#include <cstdint> #include <gtest/gtest.h> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/tstring.h" namespace tflite { namespace shim { namespace { using ::tensorflow::DT_INT64; using ::tensorflow::DT_STRING; using ::tensorflow::FakeInput; using ::tensorflow::NodeDefBuilder; using ::tensorflow::TensorShape; using ::tensorflow::tstring; using ::tensorflow::test::AsTensor; using ::tensorflow::test::ExpectTensorEqual; class SimpleOpTfTest : public ::tensorflow::OpsTestBase {}; TEST_F(SimpleOpTfTest, Output1Size_5_N_2) { TF_ASSERT_OK(NodeDefBuilder("simple_op", "SimpleOperation") .Attr("output1_size", 5) .Attr("output2_suffix", "foo") .Attr("N", 2) .Input(FakeInput(DT_STRING)) .Input(FakeInput(2, DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<tstring>(TensorShape({}), {"abc"}); AddInputFromArray<int64_t>(TensorShape({}), {123}); AddInputFromArray<int64_t>(TensorShape({2}), {456, 789}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<int>(*GetOutput(0), AsTensor<int>({0, 1, 2, 3, 4}, {5})); ExpectTensorEqual<float>( *GetOutput(1), AsTensor<float>({0, 0.5, 1., 1.5, 2.}, {5})); ExpectTensorEqual<tstring>( *GetOutput(2), AsTensor<tstring>({"0", "1", "2", "foo"}, {4})); ExpectTensorEqual<int64_t>(*GetOutput(3), AsTensor<int64_t>({124}, {})); ExpectTensorEqual<int64_t>(*GetOutput(4), AsTensor<int64_t>({457, 790}, {2})); } TEST_F(SimpleOpTfTest, Output1Size_3_N_0) { TF_ASSERT_OK(NodeDefBuilder("simple_op", "SimpleOperation") .Attr("output1_size", 3) .Attr("output2_suffix", "foo") .Attr("N", 0) .Input(FakeInput(DT_STRING)) .Input(FakeInput(0, DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<tstring>(TensorShape({}), {"abcde"}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<int>(*GetOutput(0), AsTensor<int>({0, 1, 2, 3, 4}, {5})); ExpectTensorEqual<float>(*GetOutput(1), AsTensor<float>({0, 0.5, 1.}, {3})); ExpectTensorEqual<tstring>( *GetOutput(2), AsTensor<tstring>({"0", "1", "2", "3", "4", "foo"}, {6})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/shim/test_op/simple_tf_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/shim/test_op/simple_tf_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c8a63f1d-c176-4b51-8f7a-1bb28e6cba6d
cpp
tensorflow/tensorflow
permuter
tensorflow/core/common_runtime/permuter.cc
tensorflow/core/common_runtime/permuter_test.cc
#include "tensorflow/core/common_runtime/permuter.h" #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_util.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { Permuter::Permuter() : col_ctx_(nullptr), col_params_(nullptr), done_(nullptr), counter_(0) {} StatusCallback Permuter::CheckCounterAndCallDone() { return [this](const Status& s) { mu_.lock(); status_.Update(s); int counter = ++counter_; Status status = status_; mu_.unlock(); if (counter == 2) done_(status); }; } Status Permuter::InitializeCollectiveContext( std::shared_ptr<CollectiveContext> col_ctx) { DCHECK(col_ctx->dev_mgr); col_ctx_ = col_ctx; col_params_ = col_ctx->col_params.get(); return collective_util::InitializeDeviceAndLocality( col_ctx->dev_mgr, col_ctx->device_name, &col_ctx->device, &col_ctx->device_locality); } void Permuter::Run(StatusCallback done) { if (col_params_->instance.permutation.size() != col_params_->instance.devices.size()) { done(errors::Internal("Permutation must be the same size as devices")); } done_ = std::move(done); DispatchSend(col_params_->default_rank, col_params_->instance.permutation[col_params_->default_rank], col_ctx_->input, CheckCounterAndCallDone()); for (int i = 0; i < col_params_->instance.permutation.size(); ++i) { if (col_params_->default_rank == col_params_->instance.permutation[i]) { DispatchRecv(i, col_params_->instance.permutation[i], col_ctx_->output, CheckCounterAndCallDone()); } } } void Permuter::DispatchSend(int src_rank, int target_rank, const Tensor* tensor, const StatusCallback& done) { string send_buf_key = strings::StrCat(col_ctx_->exec_key, src_rank, target_rank); VLOG(1) << "DispatchSend " << send_buf_key << " from_device " << col_ctx_->device_name << " to_device " << col_params_->instance.devices[target_rank] << " target_rank=" << target_rank << " src_rank=" << src_rank; col_ctx_->col_exec->remote_access()->PostToPeer( col_params_->instance.devices[target_rank], col_params_->group.members[target_rank].task, send_buf_key, col_ctx_->device, col_ctx_->op_ctx->op_device_context(), col_ctx_->op_ctx->output_alloc_attr(0), tensor, col_ctx_->device_locality, col_ctx_->op_ctx->cancellation_manager(), done); } void Permuter::DispatchRecv(int src_rank, int target_rank, Tensor* tensor, const StatusCallback& done) { string recv_buf_key = strings::StrCat(col_ctx_->exec_key, src_rank, target_rank); VLOG(1) << "DispatchRecv " << recv_buf_key << " to_device " << col_ctx_->device_name << " from_device " << col_params_->instance.devices[src_rank] << " target_rank=" << target_rank << " src_rank=" << src_rank; col_ctx_->col_exec->remote_access()->RecvFromPeer( col_params_->instance.devices[src_rank], col_params_->group.members[src_rank].task, col_params_->group.members[src_rank].is_local, recv_buf_key, col_ctx_->device, col_ctx_->op_ctx->op_device_context(), col_ctx_->op_ctx->output_alloc_attr(0), tensor, col_ctx_->device_locality, 0, col_ctx_->op_ctx->cancellation_manager(), done); } namespace { REGISTER_COLLECTIVE(Permute, Permuter); } }
#include "tensorflow/core/common_runtime/permuter.h" #include <algorithm> #include "absl/memory/memory.h" #include "absl/types/span.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_resolver_local.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/test_collective_executor_mgr.h" #include "tensorflow/core/common_runtime/threadpool_device.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/unbounded_work_queue.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { class PermuterTest : public ::testing::Test { protected: void Init(int num_workers, int num_devices, const std::vector<int>& permutation, DataType dtype, const TensorShape& shape, const DeviceType& device_type, int fail_after) { test_env_ = CreateCollectiveTestEnv(num_workers, num_devices, device_type); test_env_->remote_access->set_fail_after(fail_after); for (int wi = 0; wi < num_workers; ++wi) { for (int di = 0; di < num_devices; ++di) { int rank = wi * num_devices + di; instances_.push_back(std::make_unique<DeviceInstance>( rank, permutation, dtype, shape, test_env_.get())); } } } typedef std::function<void(Tensor*)> InitFunc; void Permute(int fail_after) { std::atomic<int> done(0); for (auto& di : instances_) { SchedClosure([&di, &done] { di->DoPermute(); ++done; }); if (fail_after > 0) { Env::Default()->SleepForMicroseconds(100); } } while (done < instances_.size()) { Env::Default()->SleepForMicroseconds(1000); } } template <typename T> void RunTest(DataType dtype, const DeviceType& device_type, int num_workers, int num_devices, int tensor_len, int fail_after) { std::vector<int> permutation(num_workers * num_devices); std::iota(permutation.begin(), permutation.end(), 0); for (int i = 0; i < permutation.size(); i += 2) { if (permutation.size() == i + 1) { std::swap(permutation[i], permutation[0]); continue; } std::next_permutation(permutation.begin() + i, permutation.begin() + i + 2); } Init(num_workers, num_devices, permutation, dtype, TensorShape({tensor_len}), device_type, fail_after); gtl::InlinedVector<T, 4> expected(tensor_len * num_devices * num_workers, 0.0); for (int di = 0; di < instances_.size(); ++di) { instances_[di]->InitTensor( [&permutation, &expected, di, tensor_len](Tensor* t) { for (size_t i = 0; i < t->NumElements(); ++i) { float value = pow(10, static_cast<double>(di)) * i; t->flat<T>()(i) = value; expected[permutation[di] * tensor_len + i] = value; } }); } Permute(fail_after); for (int di = 0; di < instances_.size(); ++di) { if (!instances_[di]->status_.ok()) { ASSERT_GT(fail_after, 0); ASSERT_NE(instances_[di]->status_.message().find("Deliberate failure"), string::npos); continue; } TF_EXPECT_OK(instances_[di]->status_); test::ExpectTensorEqual<T>( test::AsTensor<T>( absl::MakeSpan(expected).subspan(di * tensor_len, tensor_len)), instances_[di]->output_tensor_); } } class DeviceInstance { public: DeviceInstance(int rank, std::vector<int> permutation, DataType dtype, const TensorShape& shape, CollectiveTestEnv* test_env) : test_env_(test_env), input_tensor_(dtype, shape), output_tensor_(dtype, shape) { col_params_ = CreateCollectiveParams(*test_env_, rank, "Permute", PERMUTE_COLLECTIVE, dtype, shape); col_params_->instance.permutation = std::move(permutation); for (const CollGroupMember& member : col_params_->group.members) { col_params_->instance.devices.push_back(member.device.name()); } string dev_name = col_params_->group.members[rank].device.name(); TF_CHECK_OK(test_env_->device_mgr->LookupDevice(dev_name, &device_)) << "Couldn't find device " << dev_name << " existing devices: " << test_env_->device_mgr->DebugString(); } void InitTensor(const InitFunc& f) { f(&input_tensor_); } void DoPermute() { status_ = RunCollective(test_env_, col_params_.get(), device_, &input_tensor_, &output_tensor_); } CollectiveTestEnv* test_env_; Tensor input_tensor_; Tensor output_tensor_; Device* device_; core::RefCountPtr<CollectiveParams> col_params_; Status status_; }; std::unique_ptr<CollectiveTestEnv> test_env_; std::vector<std::unique_ptr<DeviceInstance>> instances_; }; #define DEF_TEST(B, T, W, D, L, A) \ TEST_F(PermuterTest, \ DaTy##B##_DevTy##T##_Wkr##W##_Dev##D##_Len##L##_Abrt##A) { \ DataType dtype = DT_##B; \ switch (dtype) { \ case DT_BOOL: { \ RunTest<bool>(dtype, DEVICE_##T, W, D, L, A); \ } break; \ case DT_FLOAT: { \ RunTest<float>(dtype, DEVICE_##T, W, D, L, A); \ } break; \ case DT_DOUBLE: { \ RunTest<double>(dtype, DEVICE_##T, W, D, L, A); \ } break; \ case DT_INT32: { \ RunTest<int32>(dtype, DEVICE_##T, W, D, L, A); \ } break; \ case DT_INT64: { \ RunTest<int64_t>(dtype, DEVICE_##T, W, D, L, A); \ } break; \ default: \ LOG(FATAL) << "Unimplemented"; \ } \ } #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) DEF_TEST(FLOAT, CPU, 1, 2, 1, 0) DEF_TEST(FLOAT, CPU, 1, 3, 3, 0) DEF_TEST(FLOAT, CPU, 1, 7, 3, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1001, 0) DEF_TEST(FLOAT, CPU, 2, 2, 3, 0) DEF_TEST(FLOAT, CPU, 2, 1, 128, 0) DEF_TEST(FLOAT, CPU, 2, 4, 128, 0) DEF_TEST(FLOAT, CPU, 2, 8, 4095, 0) DEF_TEST(FLOAT, CPU, 4, 4, 1045991, 0) DEF_TEST(BOOL, CPU, 1, 4, 1, 0) DEF_TEST(BOOL, CPU, 2, 4, 1, 0) DEF_TEST(BOOL, CPU, 2, 4, 1001, 0) DEF_TEST(DOUBLE, CPU, 2, 4, 128, 0) DEF_TEST(INT32, CPU, 2, 4, 128, 0) DEF_TEST(INT64, CPU, 2, 4, 128, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 1) DEF_TEST(FLOAT, CPU, 2, 4, 128, 1) DEF_TEST(FLOAT, CPU, 2, 4, 128, 5) #endif #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM DEF_TEST(FLOAT, GPU, 1, 2, 1, 0) DEF_TEST(FLOAT, GPU, 1, 7, 3, 0) DEF_TEST(FLOAT, GPU, 1, 2, 33, 0) DEF_TEST(FLOAT, GPU, 1, 3, 64, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 4095, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1045991, 0) DEF_TEST(BOOL, GPU, 1, 4, 1, 0) DEF_TEST(BOOL, GPU, 1, 4, 1001, 0) DEF_TEST(DOUBLE, GPU, 1, 8, 1001, 0) DEF_TEST(INT64, GPU, 1, 8, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 128, 6) #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/permuter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/permuter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3426a9d7-9880-4064-a001-25e5ea338033
cpp
tensorflow/tensorflow
stderr_reporter
tensorflow/lite/stderr_reporter.cc
tensorflow/lite/stderr_reporter_test.cc
#include "tensorflow/lite/stderr_reporter.h" #include <stdarg.h> #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { int StderrReporter::Report(const char* format, va_list args) { logging_internal::MinimalLogger::LogFormatted(TFLITE_LOG_ERROR, format, args); return 0; } ErrorReporter* DefaultErrorReporter() { static StderrReporter* error_reporter = new StderrReporter; return error_reporter; } }
#include "tensorflow/lite/stderr_reporter.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/api/error_reporter.h" namespace tflite { namespace { void CheckWritesToStderr(ErrorReporter *error_reporter) { #ifndef TF_LITE_STRIP_ERROR_STRINGS testing::internal::CaptureStderr(); #endif TF_LITE_REPORT_ERROR(error_reporter, "Test: %d", 42); #ifndef TF_LITE_STRIP_ERROR_STRINGS EXPECT_EQ("ERROR: Test: 42\n", testing::internal::GetCapturedStderr()); #endif } TEST(StderrReporterTest, DefaultErrorReporter_WritesToStderr) { CheckWritesToStderr(DefaultErrorReporter()); } TEST(StderrReporterTest, StderrReporter_WritesToStderr) { StderrReporter stderr_reporter; CheckWritesToStderr(&stderr_reporter); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/stderr_reporter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/stderr_reporter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5485af59-308f-45e1-9106-bff86bd14755
cpp
abseil/abseil-cpp
status_matchers
absl/status/internal/status_matchers.cc
absl/status/status_matchers_test.cc
#include "absl/status/internal/status_matchers.h" #include <ostream> #include <string> #include "gmock/gmock.h" #include "absl/base/config.h" #include "absl/status/status.h" namespace absl_testing { ABSL_NAMESPACE_BEGIN namespace status_internal { void StatusIsMatcherCommonImpl::DescribeTo(std::ostream* os) const { *os << ", has a status code that "; code_matcher_.DescribeTo(os); *os << ", and has an error message that "; message_matcher_.DescribeTo(os); } void StatusIsMatcherCommonImpl::DescribeNegationTo(std::ostream* os) const { *os << ", or has a status code that "; code_matcher_.DescribeNegationTo(os); *os << ", or has an error message that "; message_matcher_.DescribeNegationTo(os); } bool StatusIsMatcherCommonImpl::MatchAndExplain( const ::absl::Status& status, ::testing::MatchResultListener* result_listener) const { ::testing::StringMatchResultListener inner_listener; if (!code_matcher_.MatchAndExplain(status.code(), &inner_listener)) { *result_listener << (inner_listener.str().empty() ? "whose status code is wrong" : "which has a status code " + inner_listener.str()); return false; } if (!message_matcher_.Matches(std::string(status.message()))) { *result_listener << "whose error message is wrong"; return false; } return true; } } ABSL_NAMESPACE_END }
#include "absl/status/status_matchers.h" #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::Gt; TEST(StatusMatcherTest, StatusIsOk) { EXPECT_THAT(absl::OkStatus(), IsOk()); } TEST(StatusMatcherTest, StatusOrIsOk) { absl::StatusOr<int> ok_int = {0}; EXPECT_THAT(ok_int, IsOk()); } TEST(StatusMatcherTest, StatusIsNotOk) { absl::Status error = absl::UnknownError("Smigla"); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(error, IsOk()), "Smigla"); } TEST(StatusMatcherTest, StatusOrIsNotOk) { absl::StatusOr<int> error = absl::UnknownError("Smigla"); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(error, IsOk()), "Smigla"); } TEST(StatusMatcherTest, IsOkAndHolds) { absl::StatusOr<int> ok_int = {4}; absl::StatusOr<absl::string_view> ok_str = {"text"}; EXPECT_THAT(ok_int, IsOkAndHolds(4)); EXPECT_THAT(ok_int, IsOkAndHolds(Gt(0))); EXPECT_THAT(ok_str, IsOkAndHolds("text")); } TEST(StatusMatcherTest, IsOkAndHoldsFailure) { absl::StatusOr<int> ok_int = {502}; absl::StatusOr<int> error = absl::UnknownError("Smigla"); absl::StatusOr<absl::string_view> ok_str = {"actual"}; EXPECT_NONFATAL_FAILURE(EXPECT_THAT(ok_int, IsOkAndHolds(0)), "502"); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(error, IsOkAndHolds(0)), "Smigla"); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(ok_str, IsOkAndHolds("expected")), "actual"); } TEST(StatusMatcherTest, StatusIs) { absl::Status unknown = absl::UnknownError("unbekannt"); absl::Status invalid = absl::InvalidArgumentError("ungueltig"); EXPECT_THAT(absl::OkStatus(), StatusIs(absl::StatusCode::kOk)); EXPECT_THAT(absl::OkStatus(), StatusIs(0)); EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kUnknown)); EXPECT_THAT(unknown, StatusIs(2)); EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kUnknown, "unbekannt")); EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(invalid, StatusIs(3)); EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kInvalidArgument, "ungueltig")); } TEST(StatusMatcherTest, StatusOrIs) { absl::StatusOr<int> ok = {42}; absl::StatusOr<int> unknown = absl::UnknownError("unbekannt"); absl::StatusOr<absl::string_view> invalid = absl::InvalidArgumentError("ungueltig"); EXPECT_THAT(ok, StatusIs(absl::StatusCode::kOk)); EXPECT_THAT(ok, StatusIs(0)); EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kUnknown)); EXPECT_THAT(unknown, StatusIs(2)); EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kUnknown, "unbekannt")); EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(invalid, StatusIs(3)); EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kInvalidArgument, "ungueltig")); } TEST(StatusMatcherTest, StatusIsFailure) { absl::Status unknown = absl::UnknownError("unbekannt"); absl::Status invalid = absl::InvalidArgumentError("ungueltig"); EXPECT_NONFATAL_FAILURE( EXPECT_THAT(absl::OkStatus(), StatusIs(absl::StatusCode::kInvalidArgument)), "OK"); EXPECT_NONFATAL_FAILURE( EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kCancelled)), "UNKNOWN"); EXPECT_NONFATAL_FAILURE( EXPECT_THAT(unknown, StatusIs(absl::StatusCode::kUnknown, "inconnu")), "unbekannt"); EXPECT_NONFATAL_FAILURE( EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kOutOfRange)), "INVALID"); EXPECT_NONFATAL_FAILURE( EXPECT_THAT(invalid, StatusIs(absl::StatusCode::kInvalidArgument, "invalide")), "ungueltig"); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/status/internal/status_matchers.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/status/status_matchers_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
cabe3974-40bd-4f00-8029-9f686f21bb85
cpp
tensorflow/tensorflow
hlo_phi_graph
third_party/xla/xla/service/hlo_phi_graph.cc
third_party/xla/xla/service/hlo_phi_graph_test.cc
#include "xla/service/hlo_phi_graph.h" #include <queue> namespace xla { HloValue::Id PhiGraph::GetOptimizedId(const HloValue& value) { Node* node = value_id_to_node_[value.id()]; CHECK(!node->mark_as_dead); return node->value_id; } bool PhiGraph::InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs) { auto iter = value_id_to_node_.find(value.id()); CHECK(iter != value_id_to_node_.end()); absl::flat_hash_set<HloValue::Id> existing_set; for (Node* operand : iter->second->operands) { existing_set.insert(operand->value_id); } absl::flat_hash_set<HloValue::Id> new_set; for (const HloValue* input : inputs) { new_set.insert(input->id()); } return existing_set == new_set; } HloValue::Id PhiGraph::FindOptimizedValue(const HloValue::Id id) { auto iter = value_id_to_node_.find(id); CHECK(iter != value_id_to_node_.end()); CHECK(!iter->second->mark_as_dead); return iter->second->value_id; } PhiGraph::Node* PhiGraph::CreateOrReuseNode(const HloValue& value) { auto iter = value_id_to_node_.find(value.id()); if (iter == value_id_to_node_.end()) { node_storage_.emplace_back(std::make_unique<Node>()); Node* node = node_storage_.back().get(); node->value_id = value.id(); value_id_to_node_[value.id()] = node; node_to_value_id_[node].push_back(value.id()); return node; } else { CHECK_NE(iter->second, nullptr); CHECK_EQ(iter->second->value_id, value.id()); return iter->second; } } void PhiGraph::ReplaceNodeWith(PhiGraph::Node* node, PhiGraph::Node* replace) { CHECK(node->is_phi); if (node->mark_as_dead) { return; } if (replace->mark_as_dead) { auto iter = value_id_to_node_.find(replace->value_id); CHECK(iter != value_id_to_node_.end()); return ReplaceNodeWith(node, iter->second); } CHECK(!replace->mark_as_dead); for (Node* user : node->users) { absl::c_replace(user->operands, node, replace); } for (Node* operand : node->operands) { absl::c_replace(operand->users, node, replace); } for (HloValue::Id value_id : node_to_value_id_[node]) { CHECK(value_id_to_node_.contains(value_id)); value_id_to_node_[value_id] = replace; } absl::c_copy(node_to_value_id_[node], std::back_inserter(node_to_value_id_[replace])); node_to_value_id_[node].clear(); node->mark_as_dead = true; } void PhiGraph::RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs) { Node* node = CreateOrReuseNode(value); CHECK(value.is_phi()); node->is_phi = true; node->operands.clear(); for (auto input : inputs) { CHECK(input != nullptr); Node* input_node = CreateOrReuseNode(*input); node->operands.push_back(input_node); } } std::string PhiGraph::ToString() { std::string out = "PhiGraph: \n"; for (auto& node : node_storage_) { absl::StrAppend(&out, node->value_id); if (node->is_phi) { absl::StrAppend(&out, ", phi"); } if (node->mark_as_dead) { absl::StrAppend(&out, ", dead", ":\n"); } for (Node* input : node->operands) { absl::StrAppend(&out, " ", input->value_id, "\n"); } } return out; } void PhiGraph::Optimize() { VLOG(2) << "Optimizing phi graph:"; XLA_VLOG_LINES(2, ToString()); for (auto& node : node_storage_) { for (Node* input : node->operands) { input->users.push_back(node.get()); } } bool changed = true; while (changed) { changed = false; absl::flat_hash_set<Node*> checked_for_closure; for (auto& node : node_storage_) { if (!node->is_phi) { continue; } if (node->mark_as_dead) { continue; } Node* node_ptr = node.get(); VLOG(2) << "Optimizing: " << node_ptr->value_id; CHECK_GE(node_ptr->operands.size(), 1); auto it = absl::c_find(node_ptr->operands, node_ptr); while (it != node_ptr->operands.end()) { node_ptr->operands.erase(it); it = absl::c_find(node_ptr->operands, node_ptr); } it = absl::c_find(node_ptr->users, node_ptr); while (it != node_ptr->users.end()) { node_ptr->users.erase(it); it = absl::c_find(node_ptr->users, node_ptr); } CHECK_GE(node_ptr->operands.size(), 1); bool all_inputs_are_same = absl::c_all_of( node_ptr->operands, [&](Node* elem) { return elem == node_ptr->operands[0]; }); if (all_inputs_are_same) { VLOG(1) << "All inputs to node " << node_ptr->value_id << " are the same, replacing it with " << node_ptr->operands[0]->value_id; ReplaceNodeWith(node_ptr, node_ptr->operands[0]); changed = true; continue; } if (checked_for_closure.contains(node_ptr)) { continue; } absl::flat_hash_set<Node*> workset; std::queue<Node*> worklist; Node* non_phi = nullptr; worklist.push(node_ptr); while (!worklist.empty()) { Node* todo = worklist.front(); worklist.pop(); if (workset.contains(todo)) { continue; } checked_for_closure.insert(todo); workset.insert(todo); for (Node* operand : todo->operands) { worklist.push(operand); } if (!todo->is_phi) { if (non_phi != nullptr && non_phi != todo) { non_phi = nullptr; break; } else { non_phi = todo; } } } if (non_phi != nullptr) { for (Node* node : workset) { if (!node->is_phi) { CHECK_EQ(node, non_phi); continue; } VLOG(1) << "Replace node " << node->value_id << " in the closure with node " << non_phi->value_id; ReplaceNodeWith(node, non_phi); changed = true; } } } } } }
#include "xla/service/hlo_phi_graph.h" #include "xla/literal_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class PhiGraphTest : public ::testing::Test { protected: HloValue NewHloValue(bool is_phi) { static int64_t id = 0; return HloValue(id++, dummy_inst_.get(), {}, is_phi); } void SetUp() override { dummy_inst_ = HloInstruction::CreateConstant(LiteralUtil::CreateR0(0.0f)); } std::unique_ptr<HloInstruction> dummy_inst_; }; TEST_F(PhiGraphTest, SelfReferencingPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, PhiWithSameInputs) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &A}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, CircularPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&D, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); } TEST_F(PhiGraphTest, NestedPhiReduction) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); HloValue E = NewHloValue(true); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&E, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.RegisterPhi(E, {&D, &D}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(E.id())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_phi_graph.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_phi_graph_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1157f66a-b3ed-4eb8-96c5-4f7828a45e7f
cpp
tensorflow/tensorflow
variant_add_n
tensorflow/lite/kernels/variants/list_kernels/variant_add_n.cc
tensorflow/lite/kernels/variants/list_kernels/variant_add_n_test.cc
#include <algorithm> #include <cstring> #include <utility> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/portable_tensor.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace ops { namespace add_n { namespace { using ::tflite::variants::TensorArray; constexpr int kInputTensor1 = 0; constexpr int kOutputTensor = 0; struct OpData { int scratch_tensor_index; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, 1, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, NumInputs(node) >= 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(1); node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* scratch_tensor; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 0, &scratch_tensor)); scratch_tensor->type = kTfLiteNoType; scratch_tensor->allocation_type = kTfLiteDynamic; for (int i = kInputTensor1 + 1; i < NumInputs(node); ++i) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input)); TF_LITE_ENSURE_EQ(context, input->type, kTfLiteVariant); } output->type = kTfLiteVariant; output->allocation_type = kTfLiteVariantObject; return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { CpuBackendContext* cpu_backend_context = CpuBackendContext::GetFromContext(context); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TfLiteTensor* scratch_tensor; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &scratch_tensor)); const TensorArray* const arr = reinterpret_cast<const TensorArray*>(input1->data.data); const int num_elements = arr->NumElements(); const TfLiteType t = arr->ElementType(); const int num_inputs = NumInputs(node); IntArrayUniquePtr merged_shape = BuildTfLiteArray(*arr->ElementShape()); std::vector<const TensorArray*> input_arrs; input_arrs.reserve(num_inputs); input_arrs.push_back(arr); for (int i = 1; i < num_inputs; ++i) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input)); const TensorArray* const arr_i = reinterpret_cast<const TensorArray*>(input->data.data); TF_LITE_ENSURE_EQ(context, num_elements, arr_i->NumElements()); TF_LITE_ENSURE_EQ(context, t, arr_i->ElementType()); merged_shape = variants::MergeShapesOrNull( std::move(merged_shape), BuildTfLiteArray(*arr_i->ElementShape())); TF_LITE_ENSURE(context, merged_shape != nullptr); input_arrs.push_back(arr_i); } TF_LITE_ENSURE_OK(context, TfLiteTensorVariantRealloc<TensorArray>( output, t, BuildTfLiteArray(0))); TensorArray* const output_arr = reinterpret_cast<TensorArray*>(output->data.data); output_arr->Resize(num_elements); for (int i = 0; i < num_elements; ++i) { TfLiteIntArray* row_shape = nullptr; std::vector<TfLiteTensor*> row_tensors; for (const auto* array : input_arrs) { const TfLiteTensor* at = array->At(i); if (!at) continue; if (!row_shape) row_shape = at->dims; else TF_LITE_ENSURE(context, TfLiteIntArrayEqual(row_shape, at->dims)); row_tensors.push_back(const_cast<TfLiteTensor*>(at)); } if (row_shape == nullptr) { TF_LITE_ENSURE(context, variants::IsShapeFullyDefined(*merged_shape.get())); TensorUniquePtr row_output = BuildTfLiteTensor( t, BuildTfLiteArray(*merged_shape.get()), kTfLiteDynamic); memset(row_output->data.data, 0, row_output->bytes); output_arr->Set(i, std::move(row_output)); continue; } TensorUniquePtr row_output = BuildTfLiteTensor(t, BuildTfLiteArray(*row_shape), kTfLiteDynamic); if (row_tensors.size() < 2) { TfLiteTensorCopy(row_tensors[0], row_output.get()); output_arr->Set(i, std::move(row_output)); continue; } const int num_inputs_for_row = static_cast<int>(row_tensors.size()); const int thread_count = std::min(std::max(1, static_cast<int>(num_inputs_for_row) / 2), cpu_backend_context->max_num_threads()); IntArrayUniquePtr scratch_shape = BuildTfLiteArray( {thread_count * static_cast<int>(NumElements(row_tensors[0]))}); scratch_tensor->type = t; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, scratch_tensor, BuildTfLiteArray(*row_shape).release())); const RuntimeShape row_runtime_shape(row_shape->size, row_shape->data); if (t == kTfLiteInt32) { VectorOfTensors<int> tensors(row_tensors); optimized_ops::AddN<int>(row_runtime_shape, num_inputs, tensors.data(), GetTensorData<int>(row_output.get()), GetTensorData<int>(scratch_tensor), cpu_backend_context); } else if (t == kTfLiteFloat32) { VectorOfTensors<float> tensors(row_tensors); optimized_ops::AddN<float>(row_runtime_shape, num_inputs, tensors.data(), GetTensorData<float>(row_output.get()), GetTensorData<float>(scratch_tensor), cpu_backend_context); } else { TF_LITE_KERNEL_LOG(context, "Subtype is not supported for variant addn."); return kTfLiteError; } TF_LITE_ENSURE(context, output_arr->Set(i, std::move(row_output))); } return kTfLiteOk; } } } TfLiteRegistration* Register_VARIANT_ADD_N() { static TfLiteRegistration r = {add_n::Init, add_n::Free, add_n::Prepare, add_n::Eval}; return &r; } } } }
#include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/portable_type_to_tflitetype.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace variants { namespace ops { namespace { using ::testing::AllOf; class ListAddNModel : public ListOpModel { public: explicit ListAddNModel(int num_inputs) { std::vector<std::vector<int>> input_shapes(num_inputs, std::vector<int>{}); for (int i = 0; i < num_inputs; ++i) { input_inds_.push_back(AddInput({TensorType_VARIANT, {}})); } output_ind_ = AddOutput({TensorType_VARIANT, {}}); SetCustomOp("VariantAddN", {}, Register_VARIANT_ADD_N); BuildInterpreter(input_shapes); } const TensorArray* GetOutput() { TfLiteTensor* tensor = interpreter_->tensor(output_ind_); TFLITE_CHECK(tensor != nullptr && tensor->type == kTfLiteVariant && tensor->allocation_type == kTfLiteVariantObject); return static_cast<const TensorArray*>( static_cast<const VariantData*>(tensor->data.data)); } int GetIndOfInput(int input) { return input_inds_[input]; } private: std::vector<int> input_inds_; int output_ind_; }; template <typename T> class ListAddNTest : public ::testing::Test {}; TYPED_TEST_SUITE_P(ListAddNTest); TYPED_TEST_P(ListAddNTest, TwoInputs_AllItemsPresent_AllSameShape) { TfLiteType tfl_type = typeToTfLiteType<TypeParam>(); std::optional<TensorType> tensor_type = TflToTensorType(tfl_type); ASSERT_TRUE(tensor_type.has_value()); ListAddNModel m(2); for (const int i : {0, 1}) { const int list_ind = m.GetIndOfInput(i); m.PopulateListTensor(list_ind, {}, 2, tfl_type); m.ListSetItem(list_ind, 0, {2, 2}, tfl_type, std::vector<TypeParam>(4, 1).data()); m.ListSetItem(list_ind, 1, {2, 2}, tfl_type, std::vector<TypeParam>(4, 1).data()); } ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* const arr = m.GetOutput(); ASSERT_EQ(arr->NumElements(), 2); ASSERT_EQ(arr->ElementType(), tfl_type); EXPECT_THAT(arr->At(0), AllOf(IsAllocatedAs(tfl_type), DimsAre({2, 2}), FilledWith<TypeParam>(2))); EXPECT_THAT(arr->At(1), AllOf(IsAllocatedAs(tfl_type), DimsAre({2, 2}), FilledWith<TypeParam>(2))); } TYPED_TEST_P(ListAddNTest, TwoInputs_AllItemsPresent_ListsContainMixedShapes) { TfLiteType tfl_type = typeToTfLiteType<TypeParam>(); std::optional<TensorType> tensor_type = TflToTensorType(tfl_type); ASSERT_TRUE(tensor_type.has_value()); ListAddNModel m(2); for (const int i : {0, 1}) { const int list_ind = m.GetIndOfInput(i); m.PopulateListTensor(list_ind, {}, 2, tfl_type); m.ListSetItem(list_ind, 0, {2, 2}, tfl_type, std::vector<TypeParam>(4, 1).data()); m.ListSetItem(list_ind, 1, {3, 3}, tfl_type, std::vector<TypeParam>(9, 1).data()); } ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* const arr = m.GetOutput(); ASSERT_EQ(arr->NumElements(), 2); ASSERT_EQ(arr->ElementType(), tfl_type); EXPECT_THAT(arr->At(0), AllOf(IsAllocatedAs(tfl_type), DimsAre({2, 2}), FilledWith<TypeParam>(2))); EXPECT_THAT(arr->At(1), AllOf(IsAllocatedAs(tfl_type), DimsAre({3, 3}), FilledWith<TypeParam>(2))); } TYPED_TEST_P(ListAddNTest, TwoInputs_NoItemsPresent_ListShapesMerge) { TfLiteType tfl_type = typeToTfLiteType<TypeParam>(); std::optional<TensorType> tensor_type = TflToTensorType(tfl_type); ASSERT_TRUE(tensor_type.has_value()); ListAddNModel m(2); m.PopulateListTensor(m.GetIndOfInput(0), {2, -1}, 1, tfl_type); m.PopulateListTensor(m.GetIndOfInput(1), {-1, 2}, 1, tfl_type); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* const arr = m.GetOutput(); ASSERT_EQ(arr->NumElements(), 1); ASSERT_EQ(arr->ElementType(), tfl_type); EXPECT_THAT(arr->At(0), AllOf(IsAllocatedAs(tfl_type), DimsAre({2, 2}), FilledWith<TypeParam>(0))); } TYPED_TEST_P(ListAddNTest, TwoInputs_NoItemsPresent_ListShapesUndefinedError) { TfLiteType tfl_type = typeToTfLiteType<TypeParam>(); std::optional<TensorType> tensor_type = TflToTensorType(tfl_type); ASSERT_TRUE(tensor_type.has_value()); ListAddNModel m(2); m.PopulateListTensor(m.GetIndOfInput(0), {2, -1}, 1, tfl_type); m.PopulateListTensor(m.GetIndOfInput(1), {-1, -1}, 1, tfl_type); ASSERT_EQ(m.Invoke(), kTfLiteError); } TYPED_TEST_P(ListAddNTest, TwoInputs_SomeItemsPresent_UsesElementShape) { TfLiteType tfl_type = typeToTfLiteType<TypeParam>(); std::optional<TensorType> tensor_type = TflToTensorType(tfl_type); ASSERT_TRUE(tensor_type.has_value()); ListAddNModel m(2); m.PopulateListTensor(m.GetIndOfInput(0), {}, 1, tfl_type); m.PopulateListTensor(m.GetIndOfInput(1), {}, 1, tfl_type); m.ListSetItem(m.GetIndOfInput(0), 0, {3, 3}, tfl_type, std::vector<TypeParam>(9, 1).data()); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* const arr = m.GetOutput(); ASSERT_EQ(arr->NumElements(), 1); ASSERT_EQ(arr->ElementType(), tfl_type); EXPECT_THAT(arr->At(0), AllOf(IsAllocatedAs(tfl_type), DimsAre({3, 3}), FilledWith<TypeParam>(1))); } REGISTER_TYPED_TEST_SUITE_P(ListAddNTest, TwoInputs_AllItemsPresent_AllSameShape, TwoInputs_AllItemsPresent_ListsContainMixedShapes, TwoInputs_NoItemsPresent_ListShapesMerge, TwoInputs_SomeItemsPresent_UsesElementShape, TwoInputs_NoItemsPresent_ListShapesUndefinedError); using ValidTypes = ::testing::Types<int, float>; INSTANTIATE_TYPED_TEST_SUITE_P(ListAddNTests, ListAddNTest, ValidTypes); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/variant_add_n.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/variant_add_n_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3501a4c3-1526-4991-a582-faa2a95b8622
cpp
tensorflow/tensorflow
perception_ops_utils
tensorflow/compiler/mlir/lite/utils/perception_ops_utils.cc
tensorflow/compiler/mlir/lite/utils/perception_ops_utils_test.cc
#include "tensorflow/compiler/mlir/lite/utils/perception_ops_utils.h" #include <string> #include "flatbuffers/base.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/lite/core/c/builtin_op_data.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" namespace mlir { namespace TFL { namespace { constexpr char kTFImplements[] = "tf._implements"; constexpr char kMaxUnpooling[] = "MaxUnpooling2D"; constexpr char kImageWarping[] = "DenseImageWarp"; inline ConstBytesAttr CustomOption(OpBuilder* builder, const std::string& content) { return ConstBytesAttr::get(builder->getContext(), StringRef(content.data(), content.size())); } inline LogicalResult HasIntegerArrayWithSize(func::FuncOp* func, const DictionaryAttr& attrs, const std::string& attr_name, int N) { ArrayAttr array_attr = mlir::dyn_cast_or_null<ArrayAttr>(attrs.get(attr_name)); if (array_attr == nullptr || array_attr.size() != N) { return func->emitWarning() << "'" << attr_name << "' attribute for " << kMaxUnpooling << " must be set and has size of " << N; } for (Attribute integer_attr : array_attr.getValue()) { IntegerAttr value = mlir::dyn_cast<IntegerAttr>(integer_attr); if (!value) { return func->emitWarning() << "'" << attr_name << "' attribute for " << kMaxUnpooling << " does not contain integer values"; } } return success(); } inline LogicalResult GetIntegerArraySafe( func::FuncOp* func, const DictionaryAttr& attrs, const std::string& attr_name, llvm::SmallVectorImpl<int32_t>* results, int N) { ArrayAttr array_attr = mlir::dyn_cast_or_null<ArrayAttr>(attrs.get(attr_name)); if (array_attr == nullptr || array_attr.size() != N) { return func->emitError() << "'" << attr_name << "' attribute for " << kMaxUnpooling << " must be set and has size of " << N; } results->reserve(N); for (Attribute integer_attr : array_attr.getValue()) { IntegerAttr value = mlir::dyn_cast<IntegerAttr>(integer_attr); if (!value) { return func->emitError() << "'" << attr_name << "' attribute for " << kMaxUnpooling << " does not contain integer values"; } results->push_back(value.getInt()); } return success(); } } LogicalResult ConvertMaxUnpoolingFunc::RewriteFunc() { func_.eraseBody(); func_.addEntryBlock(); func_->setAttr(kTFImplements, StringAttr::get(func_.getContext(), kMaxUnpooling)); OpBuilder builder(func_.getBody()); std::string custom_option_buffer; if (failed(CreateCustomOptions(custom_option_buffer))) { return failure(); } auto op = builder.create<CustomOp>( func_.getLoc(), func_.getFunctionType().getResults(), func_.getArguments(), kMaxUnpooling, CustomOption(&builder, custom_option_buffer)); builder.create<func::ReturnOp>(func_.getLoc(), op.getResults()); return success(); } LogicalResult ConvertMaxUnpoolingFunc::VerifySignature() { if (func_.getNumArguments() != 2) { return func_.emitWarning() << "Invalid number of arguments to " << kMaxUnpooling << ": " << func_.getNumArguments(); } if (func_.getFunctionType().getNumResults() != 1) { return func_.emitWarning() << "Invalid number of results from " << kMaxUnpooling << ": " << func_.getFunctionType().getNumResults(); } auto attrs = attr_.getAttrs(); if (failed(HasIntegerArrayWithSize(&func_, attrs, "pool_size", 2))) { return failure(); } if (failed(HasIntegerArrayWithSize(&func_, attrs, "strides", 2))) { return failure(); } auto padding = mlir::dyn_cast_or_null<StringAttr>(attrs.get("padding")); if (!padding) { return func_.emitWarning() << "'padding' attribute for " << kMaxUnpooling << " is not set or not a string"; } if (padding.getValue() != "VALID" && padding.getValue() != "SAME") { return func_.emitWarning() << "Padding for " << kMaxUnpooling << " must be 'SAME' or 'VALID'"; } return success(); } LogicalResult ConvertMaxUnpoolingFunc::CreateCustomOptions( std::string& custom_option_buffer) { auto attrs = attr_.getAttrs(); TfLitePoolParams pool_params; llvm::SmallVector<int32_t, 2> pool_size; if (failed(GetIntegerArraySafe(&func_, attrs, "pool_size", &pool_size, 2))) { return failure(); } pool_params.filter_height = pool_size[0]; pool_params.filter_width = pool_size[1]; llvm::SmallVector<int32_t, 2> strides; if (failed(GetIntegerArraySafe(&func_, attrs, "strides", &strides, 2))) { return failure(); } pool_params.stride_height = strides[0]; pool_params.stride_width = strides[1]; auto padding = mlir::dyn_cast_or_null<StringAttr>(attrs.get("padding")); if (!padding) { return func_.emitError() << "'padding' attribute for " << kMaxUnpooling << " is not set or not a string"; } if (padding.getValue() == "VALID") { pool_params.padding = kTfLitePaddingValid; } else if (padding.getValue() == "SAME") { pool_params.padding = kTfLitePaddingSame; } else { return func_.emitError() << "Padding for " << kMaxUnpooling << " must be 'SAME' or 'VALID'"; } pool_params.activation = kTfLiteActNone; pool_params.computed.padding = TfLitePaddingValues{0, 0, 0, 0}; #if FLATBUFFERS_LITTLEENDIAN == 0 int32_t* p = reinterpret_cast<int32_t*>(&pool_params); for (size_t i = 0; i < sizeof(TfLitePoolParams) / 4; i++, p++) *p = flatbuffers::EndianSwap(*p); #endif custom_option_buffer.assign(reinterpret_cast<char*>(&pool_params), sizeof(TfLitePoolParams)); return success(); } LogicalResult ConvertDenseImageWarpFunc::RewriteFunc() { func_.eraseBody(); func_.addEntryBlock(); func_->setAttr(kTFImplements, StringAttr::get(func_.getContext(), kImageWarping)); OpBuilder builder(func_.getBody()); auto op = builder.create<CustomOp>(func_.getLoc(), func_.getFunctionType().getResults(), func_.getArguments(), kImageWarping, CustomOption(&builder, "")); builder.create<func::ReturnOp>(func_.getLoc(), op.getResults()); return success(); } LogicalResult ConvertDenseImageWarpFunc::VerifySignature() { if (func_.getNumArguments() != 2) { return func_.emitWarning() << "Invalid number of arguments to " << kImageWarping << ": " << func_.getNumArguments(); } if (func_.getFunctionType().getNumResults() != 1) { return func_.emitWarning() << "Invalid number of results from " << kImageWarping << ": " << func_.getFunctionType().getNumResults(); } auto image_type = mlir::dyn_cast_or_null<RankedTensorType>( func_.getFunctionType().getInput(0)); if (!image_type || !image_type.getElementType().isF32() || image_type.getRank() != 4) { return func_.emitWarning() << "Image should be a 4D float tensor"; } auto flow_type = mlir::dyn_cast_or_null<RankedTensorType>( func_.getFunctionType().getInput(1)); if (!flow_type || !flow_type.getElementType().isF32() || flow_type.getRank() != 4) { return func_.emitWarning() << "Flow should be a 4D float tensor"; } auto output_type = mlir::dyn_cast_or_null<RankedTensorType>( func_.getFunctionType().getResult(0)); if (!output_type || !output_type.getElementType().isF32() || output_type.getRank() != 4) { return func_.emitWarning() << "Output should be a 4D float tensor"; } return success(); } } }
#include "tensorflow/compiler/mlir/lite/utils/perception_ops_utils.h" #include <memory> #include <string> #include <vector> #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace TFL { namespace { template <int NInput, int NOutput> func::FuncOp createMaxUnpoolingFunc( mlir::Builder* builder, const SmallVector<mlir::Type, NInput>& input_types, const SmallVector<mlir::Type, NOutput>& output_types) { auto func_type = builder->getFunctionType(input_types, output_types); auto func = func::FuncOp::create( mlir::NameLoc::get(builder->getStringAttr("fused_func")), "fused_func", func_type, {}); func.addEntryBlock(); mlir::StringAttr attr_value = builder->getStringAttr("MaxUnpooling2D"); func->setAttr("tf._implements", attr_value); return func; } func::FuncOp createMaxUnpoolingFunc( mlir::Builder* builder, const SmallVector<int64_t, 4>& input_shape, const SmallVector<int64_t, 4>& output_shape) { auto input_type = RankedTensorType::get(input_shape, builder->getF32Type()); auto indices_type = RankedTensorType::get(input_shape, builder->getI64Type()); auto output_type = RankedTensorType::get(output_shape, builder->getF32Type()); SmallVector<mlir::Type, 2> input_types{input_type, indices_type}; SmallVector<mlir::Type, 1> output_types{output_type}; return createMaxUnpoolingFunc<2, 1>(builder, input_types, output_types); } template <int N> ArrayAttr createInt32Array(mlir::Builder* builder, mlir::MLIRContext* context, const SmallVector<int32_t, N>& values) { SmallVector<Attribute, N> ret; for (int32_t value : values) { ret.push_back(builder->getI32IntegerAttr(value)); } return ArrayAttr::get(context, ret); } template <int N> ArrayAttr createInt64Array(mlir::Builder* builder, mlir::MLIRContext* context, const SmallVector<int64_t, N>& values) { SmallVector<Attribute, N> ret; for (int64_t value : values) { ret.push_back(builder->getI64IntegerAttr(value)); } return ArrayAttr::get(context, ret); } mlir::TF::FuncAttr createMaxUnpoolingAttr(mlir::MLIRContext* context, const std::string& padding, const ArrayAttr& pool_size, const ArrayAttr& strides) { SmallVector<::mlir::NamedAttribute, 3> fields; auto padding_id = ::mlir::StringAttr::get(context, "padding"); fields.emplace_back(padding_id, StringAttr::get(context, padding)); auto pool_size_id = ::mlir::StringAttr::get(context, "pool_size"); fields.emplace_back(pool_size_id, pool_size); auto strides_id = ::mlir::StringAttr::get(context, "strides"); fields.emplace_back(strides_id, strides); DictionaryAttr dict = DictionaryAttr::get(context, fields); return TF::FuncAttr::get(context, "MaxUnpooling2D", dict); } } class PerceptionUtilsTest : public ::testing::Test { protected: PerceptionUtilsTest() {} void SetUp() override { context_ = std::make_unique<mlir::MLIRContext>(); context_->loadDialect<mlir::arith::ArithDialect, mlir::func::FuncDialect, mlir::TF::TensorFlowDialect, TensorFlowLiteDialect>(); builder_ = std::make_unique<mlir::Builder>(context_.get()); fused_max_unpooling_func_ = createMaxUnpoolingFunc(builder_.get(), {2, 4, 4, 2}, {2, 2, 2, 2}); func_attr_ = createMaxUnpoolingAttr( context_.get(), "SAME", createInt32Array<2>(builder_.get(), context_.get(), {2, 2}), createInt32Array<2>(builder_.get(), context_.get(), {2, 2})); } void TearDown() override { fused_max_unpooling_func_.erase(); builder_.reset(); } func::FuncOp fused_max_unpooling_func_; mlir::TF::FuncAttr func_attr_; std::unique_ptr<mlir::MLIRContext> context_; std::unique_ptr<mlir::Builder> builder_; }; TEST_F(PerceptionUtilsTest, VerifySignatureValid) { mlir::TFL::ConvertMaxUnpoolingFunc convert(fused_max_unpooling_func_, func_attr_); EXPECT_FALSE(failed(convert.VerifySignature())); } TEST_F(PerceptionUtilsTest, VerifySignatureInvalid) { auto input_type = RankedTensorType::get({1, 2, 2, 1}, builder_->getF32Type()); auto output_type = RankedTensorType::get({1, 2, 1, 1}, builder_->getF32Type()); SmallVector<mlir::Type, 1> input_types{input_type}; SmallVector<mlir::Type, 1> output_types{output_type}; auto max_unpooling_func = createMaxUnpoolingFunc<1, 1>(builder_.get(), input_types, output_types); mlir::TFL::ConvertMaxUnpoolingFunc convert(max_unpooling_func, func_attr_); EXPECT_TRUE(failed(convert.VerifySignature())); max_unpooling_func->erase(); } TEST_F(PerceptionUtilsTest, RewriteValid) { mlir::TFL::ConvertMaxUnpoolingFunc convert(fused_max_unpooling_func_, func_attr_); EXPECT_FALSE(failed(convert.RewriteFunc())); } TEST_F(PerceptionUtilsTest, RewriteWrongPadding) { auto func_attr = createMaxUnpoolingAttr( context_.get(), "INVALID", createInt32Array<2>(builder_.get(), context_.get(), {2, 2}), createInt32Array<2>(builder_.get(), context_.get(), {2, 2})); mlir::TFL::ConvertMaxUnpoolingFunc convert(fused_max_unpooling_func_, func_attr); EXPECT_TRUE(failed(convert.RewriteFunc())); } TEST_F(PerceptionUtilsTest, RewriteWrongFilter) { auto func_attr = createMaxUnpoolingAttr( context_.get(), "VALID", createInt32Array<2>(builder_.get(), context_.get(), {2, 2, 2}), createInt32Array<2>(builder_.get(), context_.get(), {2, 2})); mlir::TFL::ConvertMaxUnpoolingFunc convert(fused_max_unpooling_func_, func_attr); EXPECT_TRUE(failed(convert.RewriteFunc())); } TEST_F(PerceptionUtilsTest, RewriteWrongStrides) { auto func_attr = createMaxUnpoolingAttr( context_.get(), "VALID", createInt32Array<2>(builder_.get(), context_.get(), {2, 2}), createInt32Array<2>(builder_.get(), context_.get(), {2, 2, 0})); mlir::TFL::ConvertMaxUnpoolingFunc convert(fused_max_unpooling_func_, func_attr); EXPECT_TRUE(failed(convert.RewriteFunc())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/utils/perception_ops_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/utils/perception_ops_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4f642d61-6d96-4e9c-995b-78264081631f
cpp
tensorflow/tensorflow
crc32c
third_party/xla/xla/tsl/lib/hash/crc32c.cc
third_party/xla/xla/tsl/lib/hash/crc32c_test.cc
#include "xla/tsl/lib/hash/crc32c.h" #include <stdint.h> #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { #if defined(TF_CORD_SUPPORT) uint32 Extend(uint32 crc, const absl::Cord &cord) { for (absl::string_view fragment : cord.Chunks()) { crc = Extend(crc, fragment.data(), fragment.size()); } return crc; } #endif } }
#include "xla/tsl/lib/hash/crc32c.h" #include <string> #include "absl/strings/cord.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace crc32c { TEST(CRC, StandardResults) { char buf[32]; memset(buf, 0, sizeof(buf)); ASSERT_EQ(0x8a9136aa, Value(buf, sizeof(buf))); memset(buf, 0xff, sizeof(buf)); ASSERT_EQ(0x62a8ab43, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = i; } ASSERT_EQ(0x46dd794e, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = 31 - i; } ASSERT_EQ(0x113fdb5c, Value(buf, sizeof(buf))); unsigned char data[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; ASSERT_EQ(0xd9963a56, Value(reinterpret_cast<char*>(data), sizeof(data))); ASSERT_EQ(0xdd1b19be, Value(reinterpret_cast<char*>(data), sizeof(data) - 7)); ASSERT_EQ(0x4930c4b1, Value(reinterpret_cast<char*>(data) + 1, sizeof(data) - 4)); } TEST(CRC, Values) { ASSERT_NE(Value("a", 1), Value("foo", 3)); } TEST(CRC, Extend) { ASSERT_EQ(Value("hello world", 11), Extend(Value("hello ", 6), "world", 5)); } TEST(CRC, Mask) { uint32 crc = Value("foo", 3); ASSERT_NE(crc, Mask(crc)); ASSERT_NE(crc, Mask(Mask(crc))); ASSERT_EQ(crc, Unmask(Mask(crc))); ASSERT_EQ(crc, Unmask(Unmask(Mask(Mask(crc))))); } #if defined(PLATFORM_GOOGLE) TEST(CRC, ValuesWithCord) { ASSERT_NE(Value(absl::Cord("a")), Value(absl::Cord("foo"))); } TEST(CRC, ExtendWithCord) { ASSERT_EQ(Value(absl::Cord("hello world")), Extend(Value(absl::Cord("hello ")), absl::Cord("world"))); } #endif static void BM_CRC(::testing::benchmark::State& state) { int len = state.range(0); std::string input(len, 'x'); uint32 h = 0; for (auto s : state) { h = Extend(h, input.data() + 1, len - 1); } state.SetBytesProcessed(state.iterations() * len); VLOG(1) << h; } BENCHMARK(BM_CRC)->Range(1, 256 * 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/hash/crc32c.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/hash/crc32c_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
84a69cff-dda7-4779-a36a-8b037048acc0
cpp
google/tensorstore
murmurhash3
tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include <cstdint> namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { constexpr uint32_t MurmurHash3_x86_128Mix(uint32_t h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } constexpr uint32_t RotateLeft(uint32_t x, int r) { return (x << r) | (x >> (32 - r)); } } void MurmurHash3_x86_128Hash64Bits(uint64_t input, uint32_t h[4]) { uint64_t h1 = h[0], h2 = h[1], h3 = h[2], h4 = h[3]; const uint32_t c1 = 0x239b961b; const uint32_t c2 = 0xab0e9789; const uint32_t c3 = 0x38b34ae5; const uint32_t low = static_cast<uint32_t>(input); const uint32_t high = input >> 32; uint32_t k2 = high * c2; k2 = RotateLeft(k2, 16); k2 *= c3; h2 ^= k2; uint32_t k1 = low * c1; k1 = RotateLeft(k1, 15); k1 *= c2; h1 ^= k1; const uint32_t len = 8; h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len; h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; h1 = MurmurHash3_x86_128Mix(h1); h2 = MurmurHash3_x86_128Mix(h2); h3 = MurmurHash3_x86_128Mix(h3); h4 = MurmurHash3_x86_128Mix(h4); h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; h[0] = h1; h[1] = h2; h[2] = h3; h[3] = h4; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::neuroglancer_uint64_sharded::MurmurHash3_x86_128Hash64Bits; TEST(MurmurHash3Test, Basic) { uint32_t h[4]; h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000e028ae41, 0x000000004772b084, 0x000000004772b084, 0x000000004772b084)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000005ad58a7e, 0x0000000054337108, 0x0000000054337108, 0x0000000054337108)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x0000000064010da2, 0x0000000062e8bc17, 0x0000000062e8bc17, 0x0000000062e8bc17)); h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x0000000016d4ce9a, 0x00000000e8bd67d6, 0x00000000e8bd67d6, 0x00000000e8bd67d6)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000004b7ab8c6, 0x00000000eb555955, 0x00000000eb555955, 0x00000000eb555955)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000eb2301be, 0x0000000048e12494, 0x0000000048e12494, 0x0000000048e12494)); h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000005119f47a, 0x00000000c20b94f9, 0x00000000c20b94f9, 0x00000000c20b94f9)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000d6b51bca, 0x00000000a25ad86b, 0x00000000a25ad86b, 0x00000000a25ad86b)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000002d83d9c7, 0x00000000082115eb, 0x00000000082115eb, 0x00000000082115eb)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f0a397fc-dd5d-4fcd-9a26-2967c72f8146
cpp
tensorflow/tensorflow
map_and_batch_fusion
tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.cc
tensorflow/core/grappler/optimizers/data/map_and_batch_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kFusedOpName[] = "MapAndBatchDataset"; constexpr char kParallelMap[] = "ParallelMapDataset"; constexpr char kParallelMapV2[] = "ParallelMapDatasetV2"; bool IsParallelMap(const NodeDef& node) { return node.op() == kParallelMap || node.op() == kParallelMapV2; } NodeDef MakeMapAndBatchNode(const NodeDef& map_node, const NodeDef& batch_node, MutableGraphView* graph) { NodeDef new_node; new_node.set_op(kFusedOpName); graph_utils::SetUniqueGraphNodeName(kFusedOpName, graph->graph(), &new_node); new_node.add_input(map_node.input(0)); int num_other_args; if (IsParallelMap(map_node)) { num_other_args = map_node.input_size() - 2; } else { num_other_args = map_node.input_size() - 1; } for (int i = 0; i < num_other_args; i++) { new_node.add_input(map_node.input(i + 1)); } new_node.add_input(batch_node.input(1)); if (map_node.op() == kParallelMap) { NodeDef* v = graph->GetNode(map_node.input(map_node.input_size() - 1)); NodeDef* tmp = graph_utils::AddScalarConstNode<int64_t>( v->attr().at("value").tensor().int_val(0), graph); new_node.add_input(tmp->name()); } else if (map_node.op() == kParallelMapV2) { new_node.add_input(map_node.input(map_node.input_size() - 1)); } else { NodeDef* tmp = graph_utils::AddScalarConstNode<int64_t>(1, graph); new_node.add_input(tmp->name()); } if (batch_node.op() == "BatchDatasetV2") { new_node.add_input(batch_node.input(2)); } else { NodeDef* tmp = graph_utils::AddScalarConstNode<bool>(false, graph); new_node.add_input(tmp->name()); } for (auto key : {"f", "Targuments"}) { graph_utils::CopyAttribute(key, map_node, &new_node); } graph_utils::CopyShapesAndTypesAttrs(batch_node, &new_node); for (auto key : {"preserve_cardinality"}) { if (gtl::FindOrNull(map_node.attr(), key)) { graph_utils::CopyAttribute(key, map_node, &new_node); } } graph_utils::MaybeSetFusedMetadata(map_node, batch_node, &new_node); return new_node; } } Status MapAndBatchFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; for (const NodeDef& node : item.graph.node()) { if (node.op() != "BatchDataset" && node.op() != "BatchDatasetV2") { continue; } const NodeDef& batch_node = node; NodeDef* node2 = graph_utils::GetInputNode(batch_node, graph); if (node2->op() != "MapDataset" && !IsParallelMap(*node2)) { continue; } if (node2->attr().find("use_unbounded_threadpool") != node2->attr().end() && node2->attr().at("use_unbounded_threadpool").b()) { continue; } NodeDef* map_node = node2; auto* new_node = graph.AddNode(MakeMapAndBatchNode(*map_node, batch_node, &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(batch_node.name(), new_node->name())); nodes_to_delete.insert(map_node->name()); nodes_to_delete.insert(batch_node.name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MapAndBatchFusion, "map_and_batch_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(MapAndBatchFusionTest, FuseMapAndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *map_node; { std::vector<string> map_inputs(2); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "MapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node.attr().at("value").tensor().int64_val(0), 1); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseMapAndBatchV2NodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *map_node; { std::vector<string> map_inputs(2); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "MapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *drop_remainder_node = graph_utils::AddScalarConstNode<bool>(true, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(3); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); batch_inputs[2] = drop_remainder_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDatasetV2", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node.attr().at("value").tensor().int64_val(0), 1); EXPECT_EQ(map_and_batch_node.input(4), batch_node->input(2)); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseParallelMapAndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "ParallelMapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node2 = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node2.attr().at("value").tensor().int64_val(0), 2); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseParallelMapV2AndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int64_t>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "ParallelMapDatasetV2", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node2 = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node2.attr().at("value").tensor().int64_val(0), 2); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, NoChange) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); std::vector<string> batch_inputs(2); batch_inputs[0] = range_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } TEST(MapAndBatchFusionTest, NoChange_UnboundedThreadpoolParallelMap) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(3); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); AttrValue use_unbounded_threadpool_attr; SetAttrValue(true, &use_unbounded_threadpool_attr); map_attrs[2] = std::make_pair("use_unbounded_threadpool", use_unbounded_threadpool_attr); map_node = graph_utils::AddNode("", "ParallelMapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_batch_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
749cf212-4dad-46a0-ab63-46bc108d5073
cpp
tensorflow/tensorflow
quantized_reshape_op
tensorflow/core/kernels/quantized_reshape_op.cc
tensorflow/core/kernels/quantized_reshape_op_test.cc
#include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/reshape_op.h" namespace tensorflow { class QuantizedReshapeOp : public ReshapeOp { public: explicit QuantizedReshapeOp(OpKernelConstruction* c) : ReshapeOp(c) {} void Compute(OpKernelContext* ctx) override { ReshapeOp::Compute(ctx); if (!ctx->status().ok()) { return; } const auto& input_min_float_tensor = ctx->input(2); const auto& input_min_float_shape = input_min_float_tensor.shape(); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(input_min_float_shape) || (TensorShapeUtils::IsVector(input_min_float_shape) && (input_min_float_shape.dim_size(0) == 1)), errors::InvalidArgument( "input_min must be a scalar or a vector of 1 element")); const float input_min_float = input_min_float_tensor.flat<float>()(0); const auto& input_max_float_tensor = ctx->input(3); const auto& input_max_float_shape = input_max_float_tensor.shape(); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(input_max_float_shape) || (TensorShapeUtils::IsVector(input_max_float_shape) && (input_max_float_shape.dim_size(0) == 1)), errors::InvalidArgument( "input_max must be a scalar or a vector of 1 element")); const float input_max_float = input_max_float_tensor.flat<float>()(0); Tensor* output_min = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(1, TensorShape({}), &output_min)); output_min->flat<float>()(0) = input_min_float; Tensor* output_max = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(2, TensorShape({}), &output_max)); output_max->flat<float>()(0) = input_max_float; } }; #define REGISTER_CPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("QuantizedReshape") \ .Device(DEVICE_CPU) \ .HostMemory("shape") \ .TypeConstraint<type>("T"), \ QuantizedReshapeOp) REGISTER_CPU_KERNEL(::tensorflow::quint8); REGISTER_CPU_KERNEL(::tensorflow::qint32); #undef REGISTER_CPU_KERNEL }
#include <functional> #include <memory> #include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { class QuantizedReshapeTest : public OpsTestBase { protected: QuantizedReshapeTest() {} }; TEST_F(QuantizedReshapeTest, Reshape) { TF_ASSERT_OK(NodeDefBuilder("quantized_reshape", "QuantizedReshape") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); Tensor input(DT_QUINT8, {10, 20}); Tensor expected(DT_QUINT8, {5, 10, 4}); for (int i = 0; i < input.shape().num_elements(); ++i) { input.flat<quint8>()(i) = quint8(i); expected.flat<quint8>()(i) = quint8(i); } AddInputFromArray<quint8>(input.shape(), input.flat<quint8>()); AddInputFromList<int32>({3}, {5, 10, 4}); AddInputFromArray<float>(TensorShape({1}), {-10}); AddInputFromArray<float>(TensorShape({1}), {20}); TF_ASSERT_OK(RunOpKernel()); EXPECT_EQ(-10, GetOutput(1)->flat<float>()(0)); EXPECT_EQ(20, GetOutput(2)->flat<float>()(0)); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_reshape_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_reshape_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
228440bd-1351-4db5-9e28-9f82e36e1b7b
cpp
google/cel-cpp
struct
extensions/protobuf/internal/struct.cc
extensions/protobuf/internal/struct_test.cc
#include "extensions/protobuf/internal/struct.h" #include <string> #include <type_traits> #include <utility> #include "google/protobuf/struct.pb.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/functional/overload.h" #include "absl/log/absl_check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/variant.h" #include "common/json.h" #include "extensions/protobuf/internal/is_generated_message.h" #include "extensions/protobuf/internal/is_message_lite.h" #include "extensions/protobuf/internal/map_reflection.h" #include "extensions/protobuf/internal/struct_lite.h" #include "internal/status_macros.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/map_field.h" #include "google/protobuf/message.h" #include "google/protobuf/reflection.h" namespace cel::extensions::protobuf_internal { namespace { template <typename T> std::enable_if_t<NotMessageLite<T>, google::protobuf::Message*> UpCastMessage( T* message) { return message; } template <typename T> std::enable_if_t<IsMessageLite<T>, google::protobuf::Message*> UpCastMessage(T* message); absl::StatusOr<absl::Nonnull<const google::protobuf::Descriptor*>> GetDescriptor( const google::protobuf::Message& message) { const auto* descriptor = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } return descriptor; } absl::StatusOr<absl::Nonnull<const google::protobuf::Reflection*>> GetReflection( const google::protobuf::Message& message) { const auto* reflection = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflection == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } return reflection; } absl::StatusOr<absl::Nonnull<const google::protobuf::FieldDescriptor*>> FindFieldByNumber( absl::Nonnull<const google::protobuf::Descriptor*> descriptor, int number) { const auto* field = descriptor->FindFieldByNumber(number); if (ABSL_PREDICT_FALSE(field == nullptr)) { return absl::InternalError( absl::StrCat(descriptor->full_name(), " missing descriptor for field number: ", number)); } return field; } absl::StatusOr<absl::Nonnull<const google::protobuf::OneofDescriptor*>> FindOneofByName( absl::Nonnull<const google::protobuf::Descriptor*> descriptor, absl::string_view name) { const auto* oneof = descriptor->FindOneofByName(name); if (ABSL_PREDICT_FALSE(oneof == nullptr)) { return absl::InternalError(absl::StrCat( descriptor->full_name(), " missing descriptor for oneof: ", name)); } return oneof; } absl::Status CheckFieldType(absl::Nonnull<const google::protobuf::FieldDescriptor*> field, google::protobuf::FieldDescriptor::CppType type) { if (ABSL_PREDICT_FALSE(field->cpp_type() != type)) { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected type: ", field->cpp_type_name())); } return absl::OkStatus(); } absl::Status CheckFieldSingular( absl::Nonnull<const google::protobuf::FieldDescriptor*> field) { if (ABSL_PREDICT_FALSE(field->is_repeated() || field->is_map())) { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected cardinality: REPEATED")); } return absl::OkStatus(); } absl::Status CheckFieldRepeated( absl::Nonnull<const google::protobuf::FieldDescriptor*> field) { if (ABSL_PREDICT_FALSE(!field->is_repeated() && !field->is_map())) { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected cardinality: SINGULAR")); } return absl::OkStatus(); } absl::Status CheckFieldMap( absl::Nonnull<const google::protobuf::FieldDescriptor*> field) { if (ABSL_PREDICT_FALSE(!field->is_map())) { if (field->is_repeated()) { return absl::InternalError( absl::StrCat(field->full_name(), " has unexpected type: ", field->cpp_type_name())); } else { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected cardinality: SINGULAR")); } } return absl::OkStatus(); } absl::Status CheckFieldEnumType( absl::Nonnull<const google::protobuf::FieldDescriptor*> field, absl::string_view name) { CEL_RETURN_IF_ERROR( CheckFieldType(field, google::protobuf::FieldDescriptor::CPPTYPE_ENUM)); if (ABSL_PREDICT_FALSE(field->enum_type()->full_name() != name)) { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected type: ", field->enum_type()->full_name())); } return absl::OkStatus(); } absl::Status CheckFieldMessageType( absl::Nonnull<const google::protobuf::FieldDescriptor*> field, absl::string_view name) { CEL_RETURN_IF_ERROR( CheckFieldType(field, google::protobuf::FieldDescriptor::CPPTYPE_MESSAGE)); if (ABSL_PREDICT_FALSE(field->message_type()->full_name() != name)) { return absl::InternalError(absl::StrCat( field->full_name(), " has unexpected type: ", field->message_type()->full_name())); } return absl::OkStatus(); } } absl::StatusOr<Json> DynamicValueProtoToJson(const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(message)) { return GeneratedValueProtoToJson( google::protobuf::DownCastMessage<google::protobuf::Value>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); CEL_ASSIGN_OR_RETURN(const auto* kind_desc, FindOneofByName(desc, "kind")); const auto* value_desc = reflection->GetOneofFieldDescriptor(message, kind_desc); if (value_desc == nullptr) { return kJsonNull; } switch (value_desc->number()) { case google::protobuf::Value::kNullValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldEnumType(value_desc, "google.protobuf.NullValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return kJsonNull; case google::protobuf::Value::kNumberValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldType(value_desc, google::protobuf::FieldDescriptor::CPPTYPE_DOUBLE)); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return reflection->GetDouble(message, value_desc); case google::protobuf::Value::kStringValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldType(value_desc, google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return reflection->GetCord(message, value_desc); case google::protobuf::Value::kBoolValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldType(value_desc, google::protobuf::FieldDescriptor::CPPTYPE_BOOL)); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return reflection->GetBool(message, value_desc); case google::protobuf::Value::kStructValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldMessageType(value_desc, "google.protobuf.Struct")); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return DynamicStructProtoToJson( reflection->GetMessage(message, value_desc)); case google::protobuf::Value::kListValueFieldNumber: CEL_RETURN_IF_ERROR( CheckFieldMessageType(value_desc, "google.protobuf.ListValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(value_desc)); return DynamicListValueProtoToJson( reflection->GetMessage(message, value_desc)); default: return absl::InternalError( absl::StrCat(value_desc->full_name(), " has unexpected number: ", value_desc->number())); } } absl::StatusOr<Json> DynamicListValueProtoToJson( const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.ListValue"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::ListValue>) { if (IsGeneratedMessage(message)) { return GeneratedListValueProtoToJson( google::protobuf::DownCastMessage<google::protobuf::ListValue>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); CEL_ASSIGN_OR_RETURN( const auto* values_field, FindFieldByNumber(desc, google::protobuf::ListValue::kValuesFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldMessageType(values_field, "google.protobuf.Value")); CEL_RETURN_IF_ERROR(CheckFieldRepeated(values_field)); const auto& repeated_field_ref = reflection->GetRepeatedFieldRef<google::protobuf::Message>(message, values_field); JsonArrayBuilder builder; builder.reserve(repeated_field_ref.size()); for (const auto& element : repeated_field_ref) { CEL_ASSIGN_OR_RETURN(auto value, DynamicValueProtoToJson(element)); builder.push_back(std::move(value)); } return std::move(builder).Build(); } absl::StatusOr<Json> DynamicStructProtoToJson(const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Struct"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::Struct>) { if (IsGeneratedMessage(message)) { return GeneratedStructProtoToJson( google::protobuf::DownCastMessage<google::protobuf::Struct>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); CEL_ASSIGN_OR_RETURN( const auto* fields_field, FindFieldByNumber(desc, google::protobuf::Struct::kFieldsFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldMap(fields_field)); CEL_RETURN_IF_ERROR(CheckFieldType(fields_field->message_type()->map_key(), google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldMessageType( fields_field->message_type()->map_value(), "google.protobuf.Value")); auto map_begin = protobuf_internal::MapBegin(*reflection, message, *fields_field); auto map_end = protobuf_internal::MapEnd(*reflection, message, *fields_field); JsonObjectBuilder builder; builder.reserve( protobuf_internal::MapSize(*reflection, message, *fields_field)); for (; map_begin != map_end; ++map_begin) { CEL_ASSIGN_OR_RETURN( auto value, DynamicValueProtoToJson(map_begin.GetValueRef().GetMessageValue())); builder.insert_or_assign(absl::Cord(map_begin.GetKey().GetStringValue()), std::move(value)); } return std::move(builder).Build(); } absl::Status DynamicValueProtoFromJson(const Json& json, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(message)) { return GeneratedValueProtoFromJson( json, google::protobuf::DownCastMessage<google::protobuf::Value>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); return absl::visit( absl::Overload( [&message, &desc, &reflection](JsonNull) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* null_value_field, FindFieldByNumber( desc, google::protobuf::Value::kNullValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldEnumType( null_value_field, "google.protobuf.NullValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(null_value_field)); reflection->SetEnumValue(&message, null_value_field, 0); return absl::OkStatus(); }, [&message, &desc, &reflection](JsonBool value) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* bool_value_field, FindFieldByNumber( desc, google::protobuf::Value::kBoolValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldType( bool_value_field, google::protobuf::FieldDescriptor::CPPTYPE_BOOL)); CEL_RETURN_IF_ERROR(CheckFieldSingular(bool_value_field)); reflection->SetBool(&message, bool_value_field, value); return absl::OkStatus(); }, [&message, &desc, &reflection](JsonNumber value) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* number_value_field, FindFieldByNumber( desc, google::protobuf::Value::kNumberValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldType( number_value_field, google::protobuf::FieldDescriptor::CPPTYPE_DOUBLE)); CEL_RETURN_IF_ERROR(CheckFieldSingular(number_value_field)); reflection->SetDouble(&message, number_value_field, value); return absl::OkStatus(); }, [&message, &desc, &reflection](const JsonString& value) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* string_value_field, FindFieldByNumber( desc, google::protobuf::Value::kStringValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldType( string_value_field, google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldSingular(string_value_field)); reflection->SetString(&message, string_value_field, static_cast<std::string>(value)); return absl::OkStatus(); }, [&message, &desc, &reflection](const JsonArray& value) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* list_value_field, FindFieldByNumber( desc, google::protobuf::Value::kListValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldMessageType( list_value_field, "google.protobuf.ListValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(list_value_field)); return DynamicListValueProtoFromJson( value, *reflection->MutableMessage(&message, list_value_field)); }, [&message, &desc, &reflection](const JsonObject& value) -> absl::Status { CEL_ASSIGN_OR_RETURN( const auto* struct_value_field, FindFieldByNumber( desc, google::protobuf::Value::kStructValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldMessageType( struct_value_field, "google.protobuf.Struct")); CEL_RETURN_IF_ERROR(CheckFieldSingular(struct_value_field)); return DynamicStructProtoFromJson( value, *reflection->MutableMessage(&message, struct_value_field)); }), json); } absl::Status DynamicListValueProtoFromJson(const JsonArray& json, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.ListValue"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::ListValue>) { if (IsGeneratedMessage(message)) { return GeneratedListValueProtoFromJson( json, google::protobuf::DownCastMessage<google::protobuf::ListValue>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); CEL_ASSIGN_OR_RETURN( const auto* values_field, FindFieldByNumber(desc, google::protobuf::ListValue::kValuesFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldMessageType(values_field, "google.protobuf.Value")); CEL_RETURN_IF_ERROR(CheckFieldRepeated(values_field)); auto repeated_field_ref = reflection->GetMutableRepeatedFieldRef<google::protobuf::Message>(&message, values_field); repeated_field_ref.Clear(); for (const auto& element : json) { auto scratch = absl::WrapUnique(repeated_field_ref.NewMessage()); CEL_RETURN_IF_ERROR(DynamicValueProtoFromJson(element, *scratch)); repeated_field_ref.Add(*scratch); } return absl::OkStatus(); } absl::Status DynamicStructProtoFromJson(const JsonObject& json, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Struct"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(message)); if constexpr (NotMessageLite<google::protobuf::Struct>) { if (IsGeneratedMessage(message)) { return GeneratedStructProtoFromJson( json, google::protobuf::DownCastMessage<google::protobuf::Struct>(message)); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(message)); CEL_ASSIGN_OR_RETURN( const auto* fields_field, FindFieldByNumber(desc, google::protobuf::Struct::kFieldsFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldMap(fields_field)); CEL_RETURN_IF_ERROR(CheckFieldType(fields_field->message_type()->map_key(), google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldMessageType( fields_field->message_type()->map_value(), "google.protobuf.Value")); for (const auto& entry : json) { std::string map_key_string = static_cast<std::string>(entry.first); google::protobuf::MapKey map_key; map_key.SetStringValue(map_key_string); google::protobuf::MapValueRef map_value; protobuf_internal::InsertOrLookupMapValue( *reflection, &message, *fields_field, map_key, &map_value); CEL_RETURN_IF_ERROR(DynamicValueProtoFromJson( entry.second, *map_value.MutableMessageValue())); } return absl::OkStatus(); } absl::Status DynamicValueProtoSetNullValue(google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(*message)) { GeneratedValueProtoSetNullValue( google::protobuf::DownCastMessage<google::protobuf::Value>(message)); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* null_value_field, FindFieldByNumber(desc, google::protobuf::Value::kNullValueFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldEnumType(null_value_field, "google.protobuf.NullValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(null_value_field)); reflection->SetEnumValue(message, null_value_field, 0); return absl::OkStatus(); } absl::Status DynamicValueProtoSetBoolValue(bool value, google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(*message)) { GeneratedValueProtoSetBoolValue( value, google::protobuf::DownCastMessage<google::protobuf::Value>(message)); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* bool_value_field, FindFieldByNumber(desc, google::protobuf::Value::kBoolValueFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldType(bool_value_field, google::protobuf::FieldDescriptor::CPPTYPE_BOOL)); CEL_RETURN_IF_ERROR(CheckFieldSingular(bool_value_field)); reflection->SetBool(message, bool_value_field, value); return absl::OkStatus(); } absl::Status DynamicValueProtoSetNumberValue(double value, google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(*message)) { GeneratedValueProtoSetNumberValue( value, google::protobuf::DownCastMessage<google::protobuf::Value>(message)); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* number_value_field, FindFieldByNumber(desc, google::protobuf::Value::kNumberValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldType(number_value_field, google::protobuf::FieldDescriptor::CPPTYPE_DOUBLE)); CEL_RETURN_IF_ERROR(CheckFieldSingular(number_value_field)); reflection->SetDouble(message, number_value_field, value); return absl::OkStatus(); } absl::Status DynamicValueProtoSetStringValue(absl::string_view value, google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value>) { if (IsGeneratedMessage(*message)) { GeneratedValueProtoSetStringValue( value, google::protobuf::DownCastMessage<google::protobuf::Value>(message)); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* string_value_field, FindFieldByNumber(desc, google::protobuf::Value::kStringValueFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldType(string_value_field, google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldSingular(string_value_field)); reflection->SetString(message, string_value_field, static_cast<std::string>(value)); return absl::OkStatus(); } absl::StatusOr<google::protobuf::Message*> DynamicValueProtoMutableListValue( google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value> && NotMessageLite<google::protobuf::ListValue>) { if (IsGeneratedMessage(*message)) { return UpCastMessage(GeneratedValueProtoMutableListValue( google::protobuf::DownCastMessage<google::protobuf::Value>(message))); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* list_value_field, FindFieldByNumber(desc, google::protobuf::Value::kListValueFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldMessageType(list_value_field, "google.protobuf.ListValue")); CEL_RETURN_IF_ERROR(CheckFieldSingular(list_value_field)); return reflection->MutableMessage(message, list_value_field); } absl::StatusOr<google::protobuf::Message*> DynamicValueProtoMutableStructValue( google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Value"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Value> && NotMessageLite<google::protobuf::Struct>) { if (IsGeneratedMessage(*message)) { return UpCastMessage(GeneratedValueProtoMutableStructValue( google::protobuf::DownCastMessage<google::protobuf::Value>(message))); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* struct_value_field, FindFieldByNumber(desc, google::protobuf::Value::kStructValueFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldMessageType(struct_value_field, "google.protobuf.Struct")); CEL_RETURN_IF_ERROR(CheckFieldSingular(struct_value_field)); return reflection->MutableMessage(message, struct_value_field); } absl::StatusOr<google::protobuf::Message*> DynamicListValueProtoAddElement( google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.ListValue"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::ListValue>) { if (IsGeneratedMessage(*message)) { return UpCastMessage(GeneratedListValueProtoAddElement( google::protobuf::DownCastMessage<google::protobuf::ListValue>(message))); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* element_field, FindFieldByNumber(desc, google::protobuf::ListValue::kValuesFieldNumber)); CEL_RETURN_IF_ERROR( CheckFieldMessageType(element_field, "google.protobuf.Value")); CEL_RETURN_IF_ERROR(CheckFieldRepeated(element_field)); return reflection->AddMessage(message, element_field); } absl::StatusOr<google::protobuf::Message*> DynamicStructValueProtoAddField( absl::string_view name, google::protobuf::Message* message) { ABSL_DCHECK_EQ(message->GetTypeName(), "google.protobuf.Struct"); CEL_ASSIGN_OR_RETURN(const auto* desc, GetDescriptor(*message)); if constexpr (NotMessageLite<google::protobuf::Struct>) { if (IsGeneratedMessage(*message)) { return UpCastMessage(GeneratedStructValueProtoAddField( name, google::protobuf::DownCastMessage<google::protobuf::Struct>(message))); } } CEL_ASSIGN_OR_RETURN(const auto* reflection, GetReflection(*message)); CEL_ASSIGN_OR_RETURN( const auto* map_field, FindFieldByNumber(desc, google::protobuf::Struct::kFieldsFieldNumber)); CEL_RETURN_IF_ERROR(CheckFieldMap(map_field)); CEL_RETURN_IF_ERROR(CheckFieldType(map_field->message_type()->map_key(), google::protobuf::FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldMessageType( map_field->message_type()->map_value(), "google.protobuf.Value")); std::string key_string = std::string(name); google::protobuf::MapKey key; key.SetStringValue(key_string); google::protobuf::MapValueRef value; InsertOrLookupMapValue(*reflection, message, *map_field, key, &value); return value.MutableMessageValue(); } }
#include "extensions/protobuf/internal/struct.h" #include <memory> #include "google/protobuf/struct.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/log/absl_check.h" #include "absl/memory/memory.h" #include "common/json.h" #include "extensions/protobuf/internal/struct_lite.h" #include "internal/testing.h" #include "testutil/util.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/descriptor_database.h" #include "google/protobuf/dynamic_message.h" #include "google/protobuf/text_format.h" namespace cel::extensions::protobuf_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::google::api::expr::testutil::EqualsProto; using ::testing::IsEmpty; using ::testing::VariantWith; template <typename T> T ParseTextOrDie(absl::string_view text) { T proto; ABSL_CHECK(google::protobuf::TextFormat::ParseFromString(text, &proto)); return proto; } std::unique_ptr<google::protobuf::Message> ParseTextOrDie( absl::string_view text, const google::protobuf::Message& prototype) { auto message = absl::WrapUnique(prototype.New()); ABSL_CHECK(google::protobuf::TextFormat::ParseFromString(text, message.get())); return message; } TEST(Value, Generated) { google::protobuf::Value proto; EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonNull>(kJsonNull))); proto.set_null_value(google::protobuf::NULL_VALUE); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonNull>(kJsonNull))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(null_value: 0)pb"))); proto.set_bool_value(true); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonBool>(true))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(true), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(bool_value: true)pb"))); proto.set_number_value(1.0); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonNumber>(1.0))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(1.0), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(number_value: 1.0)pb"))); proto.set_string_value("foo"); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonString>(JsonString("foo")))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(JsonString("foo")), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(string_value: "foo")pb"))); proto.mutable_list_value(); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonArray>(IsEmpty()))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(JsonArray()), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(list_value: {})pb"))); proto.mutable_struct_value(); EXPECT_THAT(GeneratedValueProtoToJson(proto), IsOkAndHolds(VariantWith<JsonObject>(IsEmpty()))); proto.Clear(); EXPECT_OK(GeneratedValueProtoFromJson(Json(JsonObject()), proto)); EXPECT_THAT(proto, EqualsProto(ParseTextOrDie<google::protobuf::Value>( R"pb(struct_value: {})pb"))); } TEST(Value, Dynamic) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Value::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); std::unique_ptr<google::protobuf::Message> proto = absl::WrapUnique( factory.GetPrototype(pool.FindMessageTypeByName("google.protobuf.Value")) ->New()); const auto* reflection = proto->GetReflection(); const auto* descriptor = proto->GetDescriptor(); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonNull>(kJsonNull))); reflection->SetEnumValue(proto.get(), descriptor->FindFieldByName("null_value"), 0); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonNull>(kJsonNull))); proto->Clear(); EXPECT_OK(DynamicValueProtoFromJson(Json(), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(null_value: 0)pb", *proto))); reflection->SetBool(proto.get(), descriptor->FindFieldByName("bool_value"), true); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonBool>(true))); proto->Clear(); EXPECT_OK(DynamicValueProtoFromJson(Json(true), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(bool_value: true)pb", *proto))); reflection->SetDouble(proto.get(), descriptor->FindFieldByName("number_value"), 1.0); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonNumber>(1.0))); proto->Clear(); EXPECT_OK(DynamicValueProtoFromJson(Json(1.0), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(number_value: 1.0)pb", *proto))); reflection->SetString(proto.get(), descriptor->FindFieldByName("string_value"), "foo"); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonString>(JsonString("foo")))); proto->Clear(); EXPECT_OK(DynamicValueProtoFromJson(Json(JsonString("foo")), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(string_value: "foo")pb", *proto))); reflection->MutableMessage( proto.get(), descriptor->FindFieldByName("list_value"), &factory); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonArray>(IsEmpty()))); proto->Clear(); EXPECT_OK(DynamicValueProtoFromJson(Json(JsonArray()), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(list_value: {})pb", *proto))); reflection->MutableMessage( proto.get(), descriptor->FindFieldByName("struct_value"), &factory); EXPECT_THAT(DynamicValueProtoToJson(*proto), IsOkAndHolds(VariantWith<JsonObject>(IsEmpty()))); EXPECT_OK(DynamicValueProtoFromJson(Json(JsonObject()), *proto)); EXPECT_THAT(*proto, EqualsProto(*ParseTextOrDie(R"pb(struct_value: {})pb", *proto))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/struct.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/struct_test.cc
4552db5798fb0853b131b783d8875794334fae7f
0b50e74e-6281-418c-afaa-2bc9ca84c7fd
cpp
google/quiche
quic_crypto_client_config
quiche/quic/core/crypto/quic_crypto_client_config.cc
quiche/quic/core/crypto/quic_crypto_client_config_test.cc
#include "quiche/quic/core/crypto/quic_crypto_client_config.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/memory/memory.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "openssl/ssl.h" #include "quiche/quic/core/crypto/cert_compressor.h" #include "quiche/quic/core/crypto/chacha20_poly1305_encrypter.h" #include "quiche/quic/core/crypto/crypto_framer.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/crypto_utils.h" #include "quiche/quic/core/crypto/curve25519_key_exchange.h" #include "quiche/quic/core/crypto/key_exchange.h" #include "quiche/quic/core/crypto/p256_key_exchange.h" #include "quiche/quic/core/crypto/proof_verifier.h" #include "quiche/quic/core/crypto/quic_encrypter.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/crypto/tls_client_connection.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_client_stats.h" #include "quiche/quic/platform/api/quic_hostname_utils.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { void RecordInchoateClientHelloReason( QuicCryptoClientConfig::CachedState::ServerConfigState state) { QUIC_CLIENT_HISTOGRAM_ENUM( "QuicInchoateClientHelloReason", state, QuicCryptoClientConfig::CachedState::SERVER_CONFIG_COUNT, ""); } void RecordDiskCacheServerConfigState( QuicCryptoClientConfig::CachedState::ServerConfigState state) { QUIC_CLIENT_HISTOGRAM_ENUM( "QuicServerInfo.DiskCacheState", state, QuicCryptoClientConfig::CachedState::SERVER_CONFIG_COUNT, ""); } } QuicCryptoClientConfig::QuicCryptoClientConfig( std::unique_ptr<ProofVerifier> proof_verifier) : QuicCryptoClientConfig(std::move(proof_verifier), nullptr) {} QuicCryptoClientConfig::QuicCryptoClientConfig( std::unique_ptr<ProofVerifier> proof_verifier, std::shared_ptr<SessionCache> session_cache) : proof_verifier_(std::move(proof_verifier)), session_cache_(std::move(session_cache)), ssl_ctx_(TlsClientConnection::CreateSslCtx( !GetQuicFlag(quic_disable_client_tls_zero_rtt))) { QUICHE_DCHECK(proof_verifier_.get()); SetDefaults(); } QuicCryptoClientConfig::~QuicCryptoClientConfig() {} QuicCryptoClientConfig::CachedState::CachedState() : server_config_valid_(false), expiration_time_(QuicWallTime::Zero()), generation_counter_(0) {} QuicCryptoClientConfig::CachedState::~CachedState() {} bool QuicCryptoClientConfig::CachedState::IsComplete(QuicWallTime now) const { if (server_config_.empty()) { RecordInchoateClientHelloReason(SERVER_CONFIG_EMPTY); return false; } if (!server_config_valid_) { RecordInchoateClientHelloReason(SERVER_CONFIG_INVALID); return false; } const CryptoHandshakeMessage* scfg = GetServerConfig(); if (!scfg) { RecordInchoateClientHelloReason(SERVER_CONFIG_CORRUPTED); QUICHE_DCHECK(false); return false; } if (now.IsBefore(expiration_time_)) { return true; } QUIC_CLIENT_HISTOGRAM_TIMES( "QuicClientHelloServerConfig.InvalidDuration", QuicTime::Delta::FromSeconds(now.ToUNIXSeconds() - expiration_time_.ToUNIXSeconds()), QuicTime::Delta::FromSeconds(60), QuicTime::Delta::FromSeconds(20 * 24 * 3600), 50, ""); RecordInchoateClientHelloReason(SERVER_CONFIG_EXPIRED); return false; } bool QuicCryptoClientConfig::CachedState::IsEmpty() const { return server_config_.empty(); } const CryptoHandshakeMessage* QuicCryptoClientConfig::CachedState::GetServerConfig() const { if (server_config_.empty()) { return nullptr; } if (!scfg_) { scfg_ = CryptoFramer::ParseMessage(server_config_); QUICHE_DCHECK(scfg_.get()); } return scfg_.get(); } QuicCryptoClientConfig::CachedState::ServerConfigState QuicCryptoClientConfig::CachedState::SetServerConfig( absl::string_view server_config, QuicWallTime now, QuicWallTime expiry_time, std::string* error_details) { const bool matches_existing = server_config == server_config_; std::unique_ptr<CryptoHandshakeMessage> new_scfg_storage; const CryptoHandshakeMessage* new_scfg; if (!matches_existing) { new_scfg_storage = CryptoFramer::ParseMessage(server_config); new_scfg = new_scfg_storage.get(); } else { new_scfg = GetServerConfig(); } if (!new_scfg) { *error_details = "SCFG invalid"; return SERVER_CONFIG_INVALID; } if (expiry_time.IsZero()) { uint64_t expiry_seconds; if (new_scfg->GetUint64(kEXPY, &expiry_seconds) != QUIC_NO_ERROR) { *error_details = "SCFG missing EXPY"; return SERVER_CONFIG_INVALID_EXPIRY; } expiration_time_ = QuicWallTime::FromUNIXSeconds(expiry_seconds); } else { expiration_time_ = expiry_time; } if (now.IsAfter(expiration_time_)) { *error_details = "SCFG has expired"; return SERVER_CONFIG_EXPIRED; } if (!matches_existing) { server_config_ = std::string(server_config); SetProofInvalid(); scfg_ = std::move(new_scfg_storage); } return SERVER_CONFIG_VALID; } void QuicCryptoClientConfig::CachedState::InvalidateServerConfig() { server_config_.clear(); scfg_.reset(); SetProofInvalid(); } void QuicCryptoClientConfig::CachedState::SetProof( const std::vector<std::string>& certs, absl::string_view cert_sct, absl::string_view chlo_hash, absl::string_view signature) { bool has_changed = signature != server_config_sig_ || chlo_hash != chlo_hash_ || certs_.size() != certs.size(); if (!has_changed) { for (size_t i = 0; i < certs_.size(); i++) { if (certs_[i] != certs[i]) { has_changed = true; break; } } } if (!has_changed) { return; } SetProofInvalid(); certs_ = certs; cert_sct_ = std::string(cert_sct); chlo_hash_ = std::string(chlo_hash); server_config_sig_ = std::string(signature); } void QuicCryptoClientConfig::CachedState::Clear() { server_config_.clear(); source_address_token_.clear(); certs_.clear(); cert_sct_.clear(); chlo_hash_.clear(); server_config_sig_.clear(); server_config_valid_ = false; proof_verify_details_.reset(); scfg_.reset(); ++generation_counter_; } void QuicCryptoClientConfig::CachedState::ClearProof() { SetProofInvalid(); certs_.clear(); cert_sct_.clear(); chlo_hash_.clear(); server_config_sig_.clear(); } void QuicCryptoClientConfig::CachedState::SetProofValid() { server_config_valid_ = true; } void QuicCryptoClientConfig::CachedState::SetProofInvalid() { server_config_valid_ = false; ++generation_counter_; } bool QuicCryptoClientConfig::CachedState::Initialize( absl::string_view server_config, absl::string_view source_address_token, const std::vector<std::string>& certs, const std::string& cert_sct, absl::string_view chlo_hash, absl::string_view signature, QuicWallTime now, QuicWallTime expiration_time) { QUICHE_DCHECK(server_config_.empty()); if (server_config.empty()) { RecordDiskCacheServerConfigState(SERVER_CONFIG_EMPTY); return false; } std::string error_details; ServerConfigState state = SetServerConfig(server_config, now, expiration_time, &error_details); RecordDiskCacheServerConfigState(state); if (state != SERVER_CONFIG_VALID) { QUIC_DVLOG(1) << "SetServerConfig failed with " << error_details; return false; } chlo_hash_.assign(chlo_hash.data(), chlo_hash.size()); server_config_sig_.assign(signature.data(), signature.size()); source_address_token_.assign(source_address_token.data(), source_address_token.size()); certs_ = certs; cert_sct_ = cert_sct; return true; } const std::string& QuicCryptoClientConfig::CachedState::server_config() const { return server_config_; } const std::string& QuicCryptoClientConfig::CachedState::source_address_token() const { return source_address_token_; } const std::vector<std::string>& QuicCryptoClientConfig::CachedState::certs() const { return certs_; } const std::string& QuicCryptoClientConfig::CachedState::cert_sct() const { return cert_sct_; } const std::string& QuicCryptoClientConfig::CachedState::chlo_hash() const { return chlo_hash_; } const std::string& QuicCryptoClientConfig::CachedState::signature() const { return server_config_sig_; } bool QuicCryptoClientConfig::CachedState::proof_valid() const { return server_config_valid_; } uint64_t QuicCryptoClientConfig::CachedState::generation_counter() const { return generation_counter_; } const ProofVerifyDetails* QuicCryptoClientConfig::CachedState::proof_verify_details() const { return proof_verify_details_.get(); } void QuicCryptoClientConfig::CachedState::set_source_address_token( absl::string_view token) { source_address_token_ = std::string(token); } void QuicCryptoClientConfig::CachedState::set_cert_sct( absl::string_view cert_sct) { cert_sct_ = std::string(cert_sct); } void QuicCryptoClientConfig::CachedState::SetProofVerifyDetails( ProofVerifyDetails* details) { proof_verify_details_.reset(details); } void QuicCryptoClientConfig::CachedState::InitializeFrom( const QuicCryptoClientConfig::CachedState& other) { QUICHE_DCHECK(server_config_.empty()); QUICHE_DCHECK(!server_config_valid_); server_config_ = other.server_config_; source_address_token_ = other.source_address_token_; certs_ = other.certs_; cert_sct_ = other.cert_sct_; chlo_hash_ = other.chlo_hash_; server_config_sig_ = other.server_config_sig_; server_config_valid_ = other.server_config_valid_; expiration_time_ = other.expiration_time_; if (other.proof_verify_details_ != nullptr) { proof_verify_details_.reset(other.proof_verify_details_->Clone()); } ++generation_counter_; } void QuicCryptoClientConfig::SetDefaults() { kexs = {kC255, kP256}; if (EVP_has_aes_hardware() == 1) { aead = {kAESG, kCC20}; } else { aead = {kCC20, kAESG}; } } QuicCryptoClientConfig::CachedState* QuicCryptoClientConfig::LookupOrCreate( const QuicServerId& server_id) { auto it = cached_states_.find(server_id); if (it != cached_states_.end()) { return it->second.get(); } CachedState* cached = new CachedState; cached_states_.insert(std::make_pair(server_id, absl::WrapUnique(cached))); bool cache_populated = PopulateFromCanonicalConfig(server_id, cached); QUIC_CLIENT_HISTOGRAM_BOOL( "QuicCryptoClientConfig.PopulatedFromCanonicalConfig", cache_populated, ""); return cached; } void QuicCryptoClientConfig::ClearCachedStates(const ServerIdFilter& filter) { for (auto it = cached_states_.begin(); it != cached_states_.end(); ++it) { if (filter.Matches(it->first)) it->second->Clear(); } } void QuicCryptoClientConfig::FillInchoateClientHello( const QuicServerId& server_id, const ParsedQuicVersion preferred_version, const CachedState* cached, QuicRandom* rand, bool demand_x509_proof, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params, CryptoHandshakeMessage* out) const { out->set_tag(kCHLO); out->set_minimum_size(1); if (QuicHostnameUtils::IsValidSNI(server_id.host())) { out->SetStringPiece(kSNI, server_id.host()); } out->SetVersion(kVER, preferred_version); if (!user_agent_id_.empty()) { out->SetStringPiece(kUAID, user_agent_id_); } if (!alpn_.empty()) { out->SetStringPiece(kALPN, alpn_); } const CryptoHandshakeMessage* scfg = cached->GetServerConfig(); if (scfg != nullptr) { absl::string_view scid; if (scfg->GetStringPiece(kSCID, &scid)) { out->SetStringPiece(kSCID, scid); } } if (!cached->source_address_token().empty()) { out->SetStringPiece(kSourceAddressTokenTag, cached->source_address_token()); } if (!demand_x509_proof) { return; } char proof_nonce[32]; rand->RandBytes(proof_nonce, ABSL_ARRAYSIZE(proof_nonce)); out->SetStringPiece( kNONP, absl::string_view(proof_nonce, ABSL_ARRAYSIZE(proof_nonce))); out->SetVector(kPDMD, QuicTagVector{kX509}); out->SetStringPiece(kCertificateSCTTag, ""); const std::vector<std::string>& certs = cached->certs(); out_params->cached_certs = certs; if (!certs.empty()) { std::vector<uint64_t> hashes; hashes.reserve(certs.size()); for (auto i = certs.begin(); i != certs.end(); ++i) { hashes.push_back(QuicUtils::FNV1a_64_Hash(*i)); } out->SetVector(kCCRT, hashes); } } QuicErrorCode QuicCryptoClientConfig::FillClientHello( const QuicServerId& server_id, QuicConnectionId connection_id, const ParsedQuicVersion preferred_version, const ParsedQuicVersion actual_version, const CachedState* cached, QuicWallTime now, QuicRandom* rand, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params, CryptoHandshakeMessage* out, std::string* error_details) const { QUICHE_DCHECK(error_details != nullptr); QUIC_BUG_IF(quic_bug_12943_2, !QuicUtils::IsConnectionIdValidForVersion( connection_id, preferred_version.transport_version)) << "FillClientHello: attempted to use connection ID " << connection_id << " which is invalid with version " << preferred_version; FillInchoateClientHello(server_id, preferred_version, cached, rand, true, out_params, out); out->set_minimum_size(1); const CryptoHandshakeMessage* scfg = cached->GetServerConfig(); if (!scfg) { *error_details = "Handshake not ready"; return QUIC_CRYPTO_INTERNAL_ERROR; } absl::string_view scid; if (!scfg->GetStringPiece(kSCID, &scid)) { *error_details = "SCFG missing SCID"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } out->SetStringPiece(kSCID, scid); out->SetStringPiece(kCertificateSCTTag, ""); QuicTagVector their_aeads; QuicTagVector their_key_exchanges; if (scfg->GetTaglist(kAEAD, &their_aeads) != QUIC_NO_ERROR || scfg->GetTaglist(kKEXS, &their_key_exchanges) != QUIC_NO_ERROR) { *error_details = "Missing AEAD or KEXS"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } size_t key_exchange_index; if (!FindMutualQuicTag(aead, their_aeads, &out_params->aead, nullptr) || !FindMutualQuicTag(kexs, their_key_exchanges, &out_params->key_exchange, &key_exchange_index)) { *error_details = "Unsupported AEAD or KEXS"; return QUIC_CRYPTO_NO_SUPPORT; } out->SetVector(kAEAD, QuicTagVector{out_params->aead}); out->SetVector(kKEXS, QuicTagVector{out_params->key_exchange}); absl::string_view public_value; if (scfg->GetNthValue24(kPUBS, key_exchange_index, &public_value) != QUIC_NO_ERROR) { *error_details = "Missing public value"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } absl::string_view orbit; if (!scfg->GetStringPiece(kORBT, &orbit) || orbit.size() != kOrbitSize) { *error_details = "SCFG missing OBIT"; return QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND; } CryptoUtils::GenerateNonce(now, rand, orbit, &out_params->client_nonce); out->SetStringPiece(kNONC, out_params->client_nonce); if (!out_params->server_nonce.empty()) { out->SetStringPiece(kServerNonceTag, out_params->server_nonce); } switch (out_params->key_exchange) { case kC255: out_params->client_key_exchange = Curve25519KeyExchange::New( Curve25519KeyExchange::NewPrivateKey(rand)); break; case kP256: out_params->client_key_exchange = P256KeyExchange::New(P256KeyExchange::NewPrivateKey()); break; default: QUICHE_DCHECK(false); *error_details = "Configured to support an unknown key exchange"; return QUIC_CRYPTO_INTERNAL_ERROR; } if (!out_params->client_key_exchange->CalculateSharedKeySync( public_value, &out_params->initial_premaster_secret)) { *error_details = "Key exchange failure"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } out->SetStringPiece(kPUBS, out_params->client_key_exchange->public_value()); const std::vector<std::string>& certs = cached->certs(); if (certs.empty()) { *error_details = "No certs to calculate XLCT"; return QUIC_CRYPTO_INTERNAL_ERROR; } out->SetValue(kXLCT, CryptoUtils::ComputeLeafCertHash(certs[0])); out_params->hkdf_input_suffix.clear(); out_params->hkdf_input_suffix.append(connection_id.data(), connection_id.length()); const QuicData& client_hello_serialized = out->GetSerialized(); out_params->hkdf_input_suffix.append(client_hello_serialized.data(), client_hello_serialized.length()); out_params->hkdf_input_suffix.append(cached->server_config()); if (certs.empty()) { *error_details = "No certs found to include in KDF"; return QUIC_CRYPTO_INTERNAL_ERROR; } out_params->hkdf_input_suffix.append(certs[0]); std::string hkdf_input; const size_t label_len = strlen(QuicCryptoConfig::kInitialLabel) + 1; hkdf_input.reserve(label_len + out_params->hkdf_input_suffix.size()); hkdf_input.append(QuicCryptoConfig::kInitialLabel, label_len); hkdf_input.append(out_params->hkdf_input_suffix); std::string* subkey_secret = &out_params->initial_subkey_secret; if (!CryptoUtils::DeriveKeys( actual_version, out_params->initial_premaster_secret, out_params->aead, out_params->client_nonce, out_params->server_nonce, pre_shared_key_, hkdf_input, Perspective::IS_CLIENT, CryptoUtils::Diversification::Pending(), &out_params->initial_crypters, subkey_secret)) { *error_details = "Symmetric key setup failed"; return QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED; } return QUIC_NO_ERROR; } QuicErrorCode QuicCryptoClientConfig::CacheNewServerConfig( const CryptoHandshakeMessage& message, QuicWallTime now, QuicTransportVersion , absl::string_view chlo_hash, const std::vector<std::string>& cached_certs, CachedState* cached, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); absl::string_view scfg; if (!message.GetStringPiece(kSCFG, &scfg)) { *error_details = "Missing SCFG"; return QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND; } QuicWallTime expiration_time = QuicWallTime::Zero(); uint64_t expiry_seconds; if (message.GetUint64(kSTTL, &expiry_seconds) == QUIC_NO_ERROR) { expiration_time = now.Add(QuicTime::Delta::FromSeconds( std::min(expiry_seconds, kNumSecondsPerWeek))); } CachedState::ServerConfigState state = cached->SetServerConfig(scfg, now, expiration_time, error_details); if (state == CachedState::SERVER_CONFIG_EXPIRED) { return QUIC_CRYPTO_SERVER_CONFIG_EXPIRED; } if (state != CachedState::SERVER_CONFIG_VALID) { return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } absl::string_view token; if (message.GetStringPiece(kSourceAddressTokenTag, &token)) { cached->set_source_address_token(token); } absl::string_view proof, cert_bytes, cert_sct; bool has_proof = message.GetStringPiece(kPROF, &proof); bool has_cert = message.GetStringPiece(kCertificateTag, &cert_bytes); if (has_proof && has_cert) { std::vector<std::string> certs; if (!CertCompressor::DecompressChain(cert_bytes, cached_certs, &certs)) { *error_details = "Certificate data invalid"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } message.GetStringPiece(kCertificateSCTTag, &cert_sct); cached->SetProof(certs, cert_sct, chlo_hash, proof); } else { cached->ClearProof(); if (has_proof && !has_cert) { *error_details = "Certificate missing"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } if (!has_proof && has_cert) { *error_details = "Proof missing"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } } return QUIC_NO_ERROR; } QuicErrorCode QuicCryptoClientConfig::ProcessRejection( const CryptoHandshakeMessage& rej, QuicWallTime now, const QuicTransportVersion version, absl::string_view chlo_hash, CachedState* cached, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); if (rej.tag() != kREJ) { *error_details = "Message is not REJ"; return QUIC_CRYPTO_INTERNAL_ERROR; } QuicErrorCode error = CacheNewServerConfig(rej, now, version, chlo_hash, out_params->cached_certs, cached, error_details); if (error != QUIC_NO_ERROR) { return error; } absl::string_view nonce; if (rej.GetStringPiece(kServerNonceTag, &nonce)) { out_params->server_nonce = std::string(nonce); } return QUIC_NO_ERROR; } QuicErrorCode QuicCryptoClientConfig::ProcessServerHello( const CryptoHandshakeMessage& server_hello, QuicConnectionId , ParsedQuicVersion version, const ParsedQuicVersionVector& negotiated_versions, CachedState* cached, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); QuicErrorCode valid = CryptoUtils::ValidateServerHello( server_hello, negotiated_versions, error_details); if (valid != QUIC_NO_ERROR) { return valid; } absl::string_view token; if (server_hello.GetStringPiece(kSourceAddressTokenTag, &token)) { cached->set_source_address_token(token); } absl::string_view shlo_nonce; if (!server_hello.GetStringPiece(kServerNonceTag, &shlo_nonce)) { *error_details = "server hello missing server nonce"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } absl::string_view public_value; if (!server_hello.GetStringPiece(kPUBS, &public_value)) { *error_details = "server hello missing forward secure public value"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } if (!out_params->client_key_exchange->CalculateSharedKeySync( public_value, &out_params->forward_secure_premaster_secret)) { *error_details = "Key exchange failure"; return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER; } std::string hkdf_input; const size_t label_len = strlen(QuicCryptoConfig::kForwardSecureLabel) + 1; hkdf_input.reserve(label_len + out_params->hkdf_input_suffix.size()); hkdf_input.append(QuicCryptoConfig::kForwardSecureLabel, label_len); hkdf_input.append(out_params->hkdf_input_suffix); if (!CryptoUtils::DeriveKeys( version, out_params->forward_secure_premaster_secret, out_params->aead, out_params->client_nonce, shlo_nonce.empty() ? out_params->server_nonce : shlo_nonce, pre_shared_key_, hkdf_input, Perspective::IS_CLIENT, CryptoUtils::Diversification::Never(), &out_params->forward_secure_crypters, &out_params->subkey_secret)) { *error_details = "Symmetric key setup failed"; return QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED; } return QUIC_NO_ERROR; } QuicErrorCode QuicCryptoClientConfig::ProcessServerConfigUpdate( const CryptoHandshakeMessage& server_config_update, QuicWallTime now, const QuicTransportVersion version, absl::string_view chlo_hash, CachedState* cached, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); if (server_config_update.tag() != kSCUP) { *error_details = "ServerConfigUpdate must have kSCUP tag."; return QUIC_INVALID_CRYPTO_MESSAGE_TYPE; } return CacheNewServerConfig(server_config_update, now, version, chlo_hash, out_params->cached_certs, cached, error_details); } ProofVerifier* QuicCryptoClientConfig::proof_verifier() const { return proof_verifier_.get(); } SessionCache* QuicCryptoClientConfig::session_cache() const { return session_cache_.get(); } void QuicCryptoClientConfig::set_session_cache( std::shared_ptr<SessionCache> session_cache) { session_cache_ = std::move(session_cache); } ClientProofSource* QuicCryptoClientConfig::proof_source() const { return proof_source_.get(); } void QuicCryptoClientConfig::set_proof_source( std::unique_ptr<ClientProofSource> proof_source) { proof_source_ = std::move(proof_source); } SSL_CTX* QuicCryptoClientConfig::ssl_ctx() const { return ssl_ctx_.get(); } void QuicCryptoClientConfig::InitializeFrom( const QuicServerId& server_id, const QuicServerId& canonical_server_id, QuicCryptoClientConfig* canonical_crypto_config) { CachedState* canonical_cached = canonical_crypto_config->LookupOrCreate(canonical_server_id); if (!canonical_cached->proof_valid()) { return; } CachedState* cached = LookupOrCreate(server_id); cached->InitializeFrom(*canonical_cached); } void QuicCryptoClientConfig::AddCanonicalSuffix(const std::string& suffix) { canonical_suffixes_.push_back(suffix); } bool QuicCryptoClientConfig::PopulateFromCanonicalConfig( const QuicServerId& server_id, CachedState* cached) { QUICHE_DCHECK(cached->IsEmpty()); size_t i = 0; for (; i < canonical_suffixes_.size(); ++i) { if (absl::EndsWithIgnoreCase(server_id.host(), canonical_suffixes_[i])) { break; } } if (i == canonical_suffixes_.size()) { return false; } QuicServerId suffix_server_id(canonical_suffixes_[i], server_id.port()); auto it = canonical_server_map_.lower_bound(suffix_server_id); if (it == canonical_server_map_.end() || it->first != suffix_server_id) { canonical_server_map_.insert( it, std::make_pair(std::move(suffix_server_id), std::move(server_id))); return false; } const QuicServerId& canonical_server_id = it->second; CachedState* canonical_state = cached_states_[canonical_server_id].get(); if (!canonical_state->proof_valid()) { return false; } it->second = server_id; cached->InitializeFrom(*canonical_state); return true; } }
#include "quiche/quic/core/crypto/quic_crypto_client_config.h" #include <string> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/proof_verifier.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/mock_random.h" #include "quiche/quic/test_tools/quic_test_utils.h" using testing::StartsWith; namespace quic { namespace test { namespace { class TestProofVerifyDetails : public ProofVerifyDetails { ~TestProofVerifyDetails() override {} ProofVerifyDetails* Clone() const override { return new TestProofVerifyDetails; } }; class OneServerIdFilter : public QuicCryptoClientConfig::ServerIdFilter { public: explicit OneServerIdFilter(const QuicServerId* server_id) : server_id_(*server_id) {} bool Matches(const QuicServerId& server_id) const override { return server_id == server_id_; } private: const QuicServerId server_id_; }; class AllServerIdsFilter : public QuicCryptoClientConfig::ServerIdFilter { public: bool Matches(const QuicServerId& ) const override { return true; } }; } class QuicCryptoClientConfigTest : public QuicTest {}; TEST_F(QuicCryptoClientConfigTest, CachedState_IsEmpty) { QuicCryptoClientConfig::CachedState state; EXPECT_TRUE(state.IsEmpty()); } TEST_F(QuicCryptoClientConfigTest, CachedState_IsComplete) { QuicCryptoClientConfig::CachedState state; EXPECT_FALSE(state.IsComplete(QuicWallTime::FromUNIXSeconds(0))); } TEST_F(QuicCryptoClientConfigTest, CachedState_GenerationCounter) { QuicCryptoClientConfig::CachedState state; EXPECT_EQ(0u, state.generation_counter()); state.SetProofInvalid(); EXPECT_EQ(1u, state.generation_counter()); } TEST_F(QuicCryptoClientConfigTest, CachedState_SetProofVerifyDetails) { QuicCryptoClientConfig::CachedState state; EXPECT_TRUE(state.proof_verify_details() == nullptr); ProofVerifyDetails* details = new TestProofVerifyDetails; state.SetProofVerifyDetails(details); EXPECT_EQ(details, state.proof_verify_details()); } TEST_F(QuicCryptoClientConfigTest, CachedState_InitializeFrom) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig::CachedState other; state.set_source_address_token("TOKEN"); other.InitializeFrom(state); EXPECT_EQ(state.server_config(), other.server_config()); EXPECT_EQ(state.source_address_token(), other.source_address_token()); EXPECT_EQ(state.certs(), other.certs()); EXPECT_EQ(1u, other.generation_counter()); } TEST_F(QuicCryptoClientConfigTest, InchoateChlo) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.set_user_agent_id("quic-tester"); config.set_alpn("hq"); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); CryptoHandshakeMessage msg; QuicServerId server_id("www.google.com", 443); MockRandom rand; config.FillInchoateClientHello(server_id, QuicVersionMax(), &state, &rand, true, params, &msg); QuicVersionLabel cver; EXPECT_THAT(msg.GetVersionLabel(kVER, &cver), IsQuicNoError()); EXPECT_EQ(CreateQuicVersionLabel(QuicVersionMax()), cver); absl::string_view proof_nonce; EXPECT_TRUE(msg.GetStringPiece(kNONP, &proof_nonce)); EXPECT_EQ(std::string(32, 'r'), proof_nonce); absl::string_view user_agent_id; EXPECT_TRUE(msg.GetStringPiece(kUAID, &user_agent_id)); EXPECT_EQ("quic-tester", user_agent_id); absl::string_view alpn; EXPECT_TRUE(msg.GetStringPiece(kALPN, &alpn)); EXPECT_EQ("hq", alpn); EXPECT_EQ(msg.minimum_size(), 1u); } TEST_F(QuicCryptoClientConfigTest, InchoateChloIsNotPadded) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.set_pad_inchoate_hello(false); config.set_user_agent_id("quic-tester"); config.set_alpn("hq"); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); CryptoHandshakeMessage msg; QuicServerId server_id("www.google.com", 443); MockRandom rand; config.FillInchoateClientHello(server_id, QuicVersionMax(), &state, &rand, true, params, &msg); EXPECT_EQ(msg.minimum_size(), 1u); } TEST_F(QuicCryptoClientConfigTest, PreferAesGcm) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); if (EVP_has_aes_hardware() == 1) { EXPECT_EQ(kAESG, config.aead[0]); } else { EXPECT_EQ(kCC20, config.aead[0]); } } TEST_F(QuicCryptoClientConfigTest, InchoateChloSecure) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); CryptoHandshakeMessage msg; QuicServerId server_id("www.google.com", 443); MockRandom rand; config.FillInchoateClientHello(server_id, QuicVersionMax(), &state, &rand, true, params, &msg); QuicTag pdmd; EXPECT_THAT(msg.GetUint32(kPDMD, &pdmd), IsQuicNoError()); EXPECT_EQ(kX509, pdmd); absl::string_view scid; EXPECT_FALSE(msg.GetStringPiece(kSCID, &scid)); } TEST_F(QuicCryptoClientConfigTest, InchoateChloSecureWithSCIDNoEXPY) { QuicCryptoClientConfig::CachedState state; CryptoHandshakeMessage scfg; scfg.set_tag(kSCFG); scfg.SetStringPiece(kSCID, "12345678"); std::string details; QuicWallTime now = QuicWallTime::FromUNIXSeconds(1); QuicWallTime expiry = QuicWallTime::FromUNIXSeconds(2); state.SetServerConfig(scfg.GetSerialized().AsStringPiece(), now, expiry, &details); EXPECT_FALSE(state.IsEmpty()); QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); CryptoHandshakeMessage msg; QuicServerId server_id("www.google.com", 443); MockRandom rand; config.FillInchoateClientHello(server_id, QuicVersionMax(), &state, &rand, true, params, &msg); absl::string_view scid; EXPECT_TRUE(msg.GetStringPiece(kSCID, &scid)); EXPECT_EQ("12345678", scid); } TEST_F(QuicCryptoClientConfigTest, InchoateChloSecureWithSCID) { QuicCryptoClientConfig::CachedState state; CryptoHandshakeMessage scfg; scfg.set_tag(kSCFG); uint64_t future = 1; scfg.SetValue(kEXPY, future); scfg.SetStringPiece(kSCID, "12345678"); std::string details; state.SetServerConfig(scfg.GetSerialized().AsStringPiece(), QuicWallTime::FromUNIXSeconds(1), QuicWallTime::FromUNIXSeconds(0), &details); EXPECT_FALSE(state.IsEmpty()); QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); CryptoHandshakeMessage msg; QuicServerId server_id("www.google.com", 443); MockRandom rand; config.FillInchoateClientHello(server_id, QuicVersionMax(), &state, &rand, true, params, &msg); absl::string_view scid; EXPECT_TRUE(msg.GetStringPiece(kSCID, &scid)); EXPECT_EQ("12345678", scid); } TEST_F(QuicCryptoClientConfigTest, FillClientHello) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); QuicConnectionId kConnectionId = TestConnectionId(1234); std::string error_details; MockRandom rand; CryptoHandshakeMessage chlo; QuicServerId server_id("www.google.com", 443); config.FillClientHello(server_id, kConnectionId, QuicVersionMax(), QuicVersionMax(), &state, QuicWallTime::Zero(), &rand, params, &chlo, &error_details); QuicVersionLabel cver; EXPECT_THAT(chlo.GetVersionLabel(kVER, &cver), IsQuicNoError()); EXPECT_EQ(CreateQuicVersionLabel(QuicVersionMax()), cver); } TEST_F(QuicCryptoClientConfigTest, FillClientHelloNoPadding) { QuicCryptoClientConfig::CachedState state; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.set_pad_full_hello(false); quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params( new QuicCryptoNegotiatedParameters); QuicConnectionId kConnectionId = TestConnectionId(1234); std::string error_details; MockRandom rand; CryptoHandshakeMessage chlo; QuicServerId server_id("www.google.com", 443); config.FillClientHello(server_id, kConnectionId, QuicVersionMax(), QuicVersionMax(), &state, QuicWallTime::Zero(), &rand, params, &chlo, &error_details); QuicVersionLabel cver; EXPECT_THAT(chlo.GetVersionLabel(kVER, &cver), IsQuicNoError()); EXPECT_EQ(CreateQuicVersionLabel(QuicVersionMax()), cver); EXPECT_EQ(chlo.minimum_size(), 1u); } TEST_F(QuicCryptoClientConfigTest, ProcessServerDowngradeAttack) { ParsedQuicVersionVector supported_versions = AllSupportedVersions(); if (supported_versions.size() == 1) { return; } ParsedQuicVersionVector supported_version_vector; for (size_t i = supported_versions.size(); i > 0; --i) { supported_version_vector.push_back(supported_versions[i - 1]); } CryptoHandshakeMessage msg; msg.set_tag(kSHLO); msg.SetVersionVector(kVER, supported_version_vector); QuicCryptoClientConfig::CachedState cached; quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params(new QuicCryptoNegotiatedParameters); std::string error; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); EXPECT_THAT(config.ProcessServerHello( msg, EmptyQuicConnectionId(), supported_versions.front(), supported_versions, &cached, out_params, &error), IsError(QUIC_VERSION_NEGOTIATION_MISMATCH)); EXPECT_THAT(error, StartsWith("Downgrade attack detected: ServerVersions")); } TEST_F(QuicCryptoClientConfigTest, InitializeFrom) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); QuicServerId canonical_server_id("www.google.com", 443); QuicCryptoClientConfig::CachedState* state = config.LookupOrCreate(canonical_server_id); state->set_source_address_token("TOKEN"); state->SetProofValid(); QuicServerId other_server_id("mail.google.com", 443); config.InitializeFrom(other_server_id, canonical_server_id, &config); QuicCryptoClientConfig::CachedState* other = config.LookupOrCreate(other_server_id); EXPECT_EQ(state->server_config(), other->server_config()); EXPECT_EQ(state->source_address_token(), other->source_address_token()); EXPECT_EQ(state->certs(), other->certs()); EXPECT_EQ(1u, other->generation_counter()); } TEST_F(QuicCryptoClientConfigTest, Canonical) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.AddCanonicalSuffix(".google.com"); QuicServerId canonical_id1("www.google.com", 443); QuicServerId canonical_id2("mail.google.com", 443); QuicCryptoClientConfig::CachedState* state = config.LookupOrCreate(canonical_id1); state->set_source_address_token("TOKEN"); state->SetProofValid(); QuicCryptoClientConfig::CachedState* other = config.LookupOrCreate(canonical_id2); EXPECT_TRUE(state->IsEmpty()); EXPECT_EQ(state->server_config(), other->server_config()); EXPECT_EQ(state->source_address_token(), other->source_address_token()); EXPECT_EQ(state->certs(), other->certs()); EXPECT_EQ(1u, other->generation_counter()); QuicServerId different_id("mail.google.org", 443); EXPECT_TRUE(config.LookupOrCreate(different_id)->IsEmpty()); } TEST_F(QuicCryptoClientConfigTest, CanonicalNotUsedIfNotValid) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.AddCanonicalSuffix(".google.com"); QuicServerId canonical_id1("www.google.com", 443); QuicServerId canonical_id2("mail.google.com", 443); QuicCryptoClientConfig::CachedState* state = config.LookupOrCreate(canonical_id1); state->set_source_address_token("TOKEN"); EXPECT_TRUE(config.LookupOrCreate(canonical_id2)->IsEmpty()); } TEST_F(QuicCryptoClientConfigTest, ClearCachedStates) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); struct TestCase { TestCase(const std::string& host, QuicCryptoClientConfig* config) : server_id(host, 443), state(config->LookupOrCreate(server_id)) { CryptoHandshakeMessage scfg; scfg.set_tag(kSCFG); uint64_t future = 1; scfg.SetValue(kEXPY, future); scfg.SetStringPiece(kSCID, "12345678"); std::string details; state->SetServerConfig(scfg.GetSerialized().AsStringPiece(), QuicWallTime::FromUNIXSeconds(0), QuicWallTime::FromUNIXSeconds(future), &details); std::vector<std::string> certs(1); certs[0] = "Hello Cert for " + host; state->SetProof(certs, "cert_sct", "chlo_hash", "signature"); state->set_source_address_token("TOKEN"); state->SetProofValid(); EXPECT_EQ(2u, state->generation_counter()); } QuicServerId server_id; QuicCryptoClientConfig::CachedState* state; } test_cases[] = {TestCase("www.google.com", &config), TestCase("www.example.com", &config)}; for (const TestCase& test_case : test_cases) { QuicCryptoClientConfig::CachedState* other = config.LookupOrCreate(test_case.server_id); EXPECT_EQ(test_case.state, other); EXPECT_EQ(2u, other->generation_counter()); } OneServerIdFilter google_com_filter(&test_cases[0].server_id); config.ClearCachedStates(google_com_filter); QuicCryptoClientConfig::CachedState* cleared_cache = config.LookupOrCreate(test_cases[0].server_id); EXPECT_EQ(test_cases[0].state, cleared_cache); EXPECT_FALSE(cleared_cache->proof_valid()); EXPECT_TRUE(cleared_cache->server_config().empty()); EXPECT_TRUE(cleared_cache->certs().empty()); EXPECT_TRUE(cleared_cache->cert_sct().empty()); EXPECT_TRUE(cleared_cache->signature().empty()); EXPECT_EQ(3u, cleared_cache->generation_counter()); QuicCryptoClientConfig::CachedState* existing_cache = config.LookupOrCreate(test_cases[1].server_id); EXPECT_EQ(test_cases[1].state, existing_cache); EXPECT_TRUE(existing_cache->proof_valid()); EXPECT_FALSE(existing_cache->server_config().empty()); EXPECT_FALSE(existing_cache->certs().empty()); EXPECT_FALSE(existing_cache->cert_sct().empty()); EXPECT_FALSE(existing_cache->signature().empty()); EXPECT_EQ(2u, existing_cache->generation_counter()); AllServerIdsFilter all_server_ids; config.ClearCachedStates(all_server_ids); cleared_cache = config.LookupOrCreate(test_cases[1].server_id); EXPECT_EQ(test_cases[1].state, cleared_cache); EXPECT_FALSE(cleared_cache->proof_valid()); EXPECT_TRUE(cleared_cache->server_config().empty()); EXPECT_TRUE(cleared_cache->certs().empty()); EXPECT_TRUE(cleared_cache->cert_sct().empty()); EXPECT_TRUE(cleared_cache->signature().empty()); EXPECT_EQ(3u, cleared_cache->generation_counter()); } TEST_F(QuicCryptoClientConfigTest, ProcessReject) { CryptoHandshakeMessage rej; crypto_test_utils::FillInDummyReject(&rej); QuicCryptoClientConfig::CachedState cached; quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params(new QuicCryptoNegotiatedParameters); std::string error; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); EXPECT_THAT( config.ProcessRejection( rej, QuicWallTime::FromUNIXSeconds(0), AllSupportedVersionsWithQuicCrypto().front().transport_version, "", &cached, out_params, &error), IsQuicNoError()); } TEST_F(QuicCryptoClientConfigTest, ProcessRejectWithLongTTL) { CryptoHandshakeMessage rej; crypto_test_utils::FillInDummyReject(&rej); QuicTime::Delta one_week = QuicTime::Delta::FromSeconds(kNumSecondsPerWeek); int64_t long_ttl = 3 * one_week.ToSeconds(); rej.SetValue(kSTTL, long_ttl); QuicCryptoClientConfig::CachedState cached; quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params(new QuicCryptoNegotiatedParameters); std::string error; QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); EXPECT_THAT( config.ProcessRejection( rej, QuicWallTime::FromUNIXSeconds(0), AllSupportedVersionsWithQuicCrypto().front().transport_version, "", &cached, out_params, &error), IsQuicNoError()); cached.SetProofValid(); EXPECT_FALSE(cached.IsComplete(QuicWallTime::FromUNIXSeconds(long_ttl))); EXPECT_FALSE( cached.IsComplete(QuicWallTime::FromUNIXSeconds(one_week.ToSeconds()))); EXPECT_TRUE(cached.IsComplete( QuicWallTime::FromUNIXSeconds(one_week.ToSeconds() - 1))); } TEST_F(QuicCryptoClientConfigTest, ServerNonceinSHLO) { CryptoHandshakeMessage msg; msg.set_tag(kSHLO); ParsedQuicVersionVector supported_versions; ParsedQuicVersion version = AllSupportedVersions().front(); supported_versions.push_back(version); msg.SetVersionVector(kVER, supported_versions); QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); QuicCryptoClientConfig::CachedState cached; quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> out_params(new QuicCryptoNegotiatedParameters); std::string error_details; EXPECT_THAT(config.ProcessServerHello(msg, EmptyQuicConnectionId(), version, supported_versions, &cached, out_params, &error_details), IsError(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER)); EXPECT_EQ("server hello missing server nonce", error_details); } TEST_F(QuicCryptoClientConfigTest, MultipleCanonicalEntries) { QuicCryptoClientConfig config(crypto_test_utils::ProofVerifierForTesting()); config.AddCanonicalSuffix(".google.com"); QuicServerId canonical_server_id1("www.google.com", 443); QuicCryptoClientConfig::CachedState* state1 = config.LookupOrCreate(canonical_server_id1); CryptoHandshakeMessage scfg; scfg.set_tag(kSCFG); scfg.SetStringPiece(kSCID, "12345678"); std::string details; QuicWallTime now = QuicWallTime::FromUNIXSeconds(1); QuicWallTime expiry = QuicWallTime::FromUNIXSeconds(2); state1->SetServerConfig(scfg.GetSerialized().AsStringPiece(), now, expiry, &details); state1->set_source_address_token("TOKEN"); state1->SetProofValid(); EXPECT_FALSE(state1->IsEmpty()); QuicServerId canonical_server_id2("mail.google.com", 443); QuicCryptoClientConfig::CachedState* state2 = config.LookupOrCreate(canonical_server_id2); EXPECT_FALSE(state2->IsEmpty()); const CryptoHandshakeMessage* const scfg2 = state2->GetServerConfig(); ASSERT_TRUE(scfg2); EXPECT_EQ(kSCFG, scfg2->tag()); config.AddCanonicalSuffix(".example.com"); QuicServerId canonical_server_id3("www.example.com", 443); QuicCryptoClientConfig::CachedState* state3 = config.LookupOrCreate(canonical_server_id3); EXPECT_TRUE(state3->IsEmpty()); const CryptoHandshakeMessage* const scfg3 = state3->GetServerConfig(); EXPECT_FALSE(scfg3); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_crypto_client_config.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_crypto_client_config_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
6e92a8e9-0fdc-4b80-93d8-bd223b973557
cpp
tensorflow/tensorflow
gpu_cost_model_stats_collection
third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection.cc
third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection_test.cc
#include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { absl::StatusOr<bool> GpuCostModelStatsCollection::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (auto* computation : module->MakeComputationPostOrder()) { TF_CHECK_OK(computation->Accept(&cost_analysis_)); for (auto* fusion_instr : computation->instructions()) { if (fusion_instr->opcode() != HloOpcode::kFusion) continue; GpuPerformanceModel::RecordEstimatedRunTime( fusion_instr, device_info_, &cost_analysis_, GpuPerformanceModelOptions::ForModule(module)); } } return false; } } }
#include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include <stdint.h> #include <memory> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class GpuCostModelStatsCollectionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: GpuCostModelStatsCollection cost_model_stats_{ TestGpuDeviceInfo::RTXA6000DeviceInfo(), GpuHloCostAnalysis::Options{ShapeSizeBytesFunction(), {}, {}, true}}; }; TEST_F(GpuCostModelStatsCollectionTest, FusinInEntryComputation) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } ENTRY main { %p0 = f32[16384] parameter(0) ROOT %res = f32[16384]{0} fusion(p0), kind=kInput, calls=log } )")); EXPECT_FALSE(cost_model_stats_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, root->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); EXPECT_TRUE(backend_config.has_reification_cost()); EXPECT_GT(backend_config.reification_cost().end_to_end_cycles(), 0); } TEST_F(GpuCostModelStatsCollectionTest, FusinInWhileComputation) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module cond { p = f32[16384]{0} parameter(0) ROOT %constant.2 = pred[] constant(true) } log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } loop { %p0 = f32[16384] parameter(0) ROOT %res = f32[16384]{0} fusion(p0), kind=kInput, calls=log } ENTRY main { %p0 = f32[16384] parameter(0) ROOT %while = f32[16384] while(%p0), body=%loop, condition=%cond })")); EXPECT_FALSE(cost_model_stats_.Run(module.get()).value()); HloInstruction* root = module->entry_computation() ->root_instruction() ->while_body() ->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, root->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); EXPECT_TRUE(backend_config.has_reification_cost()); EXPECT_GT(backend_config.reification_cost().end_to_end_cycles(), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b3ef2df2-c7c5-4ea3-a7ab-56928ca266f3
cpp
google/tensorstore
dtype
tensorstore/driver/zarr/dtype.cc
tensorstore/driver/zarr/dtype_test.cc
#include "tensorstore/driver/zarr/dtype.h" #include <stddef.h> #include "absl/base/optimization.h" #include "tensorstore/data_type.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr { constexpr char kDtypeBfloat16[] = "bfloat16"; constexpr char kDtypeFloat8e4m3fn[] = "float8_e4m3fn"; constexpr char kDtypeFloat8e4m3fnuz[] = "float8_e4m3fnuz"; constexpr char kDtypeFloat8e4m3b11fnuz[] = "float8_e4m3b11fnuz"; constexpr char kDtypeFloat8e5m2[] = "float8_e5m2"; constexpr char kDtypeFloat8e5m2fnuz[] = "float8_e5m2fnuz"; constexpr char kDtypeInt4[] = "int4"; Result<ZarrDType::BaseDType> ParseBaseDType(std::string_view dtype) { using D = ZarrDType::BaseDType; if (dtype == kDtypeBfloat16) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::bfloat16_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3fn) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3fn_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3fnuz_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3b11fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3b11fnuz_t>, endian::little}; } if (dtype == kDtypeFloat8e5m2) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e5m2_t>, endian::little}; } if (dtype == kDtypeFloat8e5m2fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e5m2fnuz_t>, endian::little}; } if (dtype == kDtypeInt4) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::int4_t>, endian::little}; } if (dtype.size() < 3) goto error; { const char endian_indicator = dtype[0]; const char type_indicator = dtype[1]; const std::string_view suffix = dtype.substr(2); endian endian_value; switch (endian_indicator) { case '<': endian_value = endian::little; break; case '>': endian_value = endian::big; break; case '|': endian_value = endian::native; break; default: goto error; } switch (type_indicator) { case 'b': if (suffix != "1") goto error; ABSL_FALLTHROUGH_INTENDED; case 'S': case 'V': endian_value = endian::native; break; case 'i': case 'u': if (endian_indicator == '|') { if (suffix != "1") goto error; endian_value = endian::native; break; } else if (suffix == "1") { endian_value = endian::native; break; } [[fallthrough]]; case 'f': case 'c': case 'm': case 'M': if (endian_indicator == '|') { goto error; } break; } switch (type_indicator) { case 'b': return D{std::string(dtype), dtype_v<bool>, endian::native}; case 'i': if (suffix == "1") { return D{std::string(dtype), dtype_v<int8_t>, endian_value}; } if (suffix == "2") { return D{std::string(dtype), dtype_v<int16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<int32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<int64_t>, endian_value}; } goto error; case 'u': if (suffix == "1") { return D{std::string(dtype), dtype_v<uint8_t>, endian_value}; } if (suffix == "2") { return D{std::string(dtype), dtype_v<uint16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<uint32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<uint64_t>, endian_value}; } goto error; case 'f': if (suffix == "2") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float64_t>, endian_value}; } goto error; case 'c': if (suffix == "8") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::complex64_t>, endian_value}; } if (suffix == "16") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::complex128_t>, endian_value}; } goto error; case 'S': case 'V': { Index num_elements = 0; for (char c : suffix) { if (internal::MulOverflow(num_elements, Index(10), &num_elements)) goto error; if (c < '0' || c > '9') goto error; if (internal::AddOverflow(num_elements, Index(c - '0'), &num_elements)) goto error; } return D{std::string(dtype), (type_indicator == 'S') ? DataType(dtype_v<::tensorstore::dtypes::char_t>) : DataType(dtype_v<::tensorstore::dtypes::byte_t>), endian::native, {num_elements}}; } } } error: return absl::InvalidArgumentError( tensorstore::StrCat("Unsupported zarr dtype: ", QuoteString(dtype))); } namespace { Result<ZarrDType> ParseDTypeNoDerived(const nlohmann::json& value) { ZarrDType out; if (value.is_string()) { out.has_fields = false; out.fields.resize(1); TENSORSTORE_ASSIGN_OR_RETURN( static_cast<ZarrDType::BaseDType&>(out.fields[0]), ParseBaseDType(value.get<std::string>())); return out; } out.has_fields = true; auto parse_result = internal_json::JsonParseArray( value, [&](std::ptrdiff_t size) { out.fields.resize(size); return absl::OkStatus(); }, [&](const ::nlohmann::json& x, std::ptrdiff_t field_i) { auto& field = out.fields[field_i]; return internal_json::JsonParseArray( x, [&](std::ptrdiff_t size) { if (size < 2 || size > 3) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected array of size 2 or 3, but received: ", x.dump())); } return absl::OkStatus(); }, [&](const ::nlohmann::json& v, std::ptrdiff_t i) { switch (i) { case 0: if (internal_json::JsonRequireValueAs(v, &field.name).ok()) { if (!field.name.empty()) return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected non-empty string, but received: ", v.dump())); case 1: { std::string dtype_string; TENSORSTORE_RETURN_IF_ERROR( internal_json::JsonRequireValueAs(v, &dtype_string)); TENSORSTORE_ASSIGN_OR_RETURN( static_cast<ZarrDType::BaseDType&>(field), ParseBaseDType(dtype_string)); return absl::OkStatus(); } case 2: { return internal_json::JsonParseArray( v, [&](std::ptrdiff_t size) { field.outer_shape.resize(size); return absl::OkStatus(); }, [&](const ::nlohmann::json& x, std::ptrdiff_t j) { return internal_json::JsonRequireInteger( x, &field.outer_shape[j], true, 1, kInfIndex); }); } default: ABSL_UNREACHABLE(); } }); }); if (!parse_result.ok()) return parse_result; return out; } } absl::Status ValidateDType(ZarrDType& dtype) { dtype.bytes_per_outer_element = 0; for (size_t field_i = 0; field_i < dtype.fields.size(); ++field_i) { auto& field = dtype.fields[field_i]; if (std::any_of( dtype.fields.begin(), dtype.fields.begin() + field_i, [&](const ZarrDType::Field& f) { return f.name == field.name; })) { return absl::InvalidArgumentError(tensorstore::StrCat( "Field name ", QuoteString(field.name), " occurs more than once")); } field.field_shape.resize(field.flexible_shape.size() + field.outer_shape.size()); std::copy(field.flexible_shape.begin(), field.flexible_shape.end(), std::copy(field.outer_shape.begin(), field.outer_shape.end(), field.field_shape.begin())); field.num_inner_elements = ProductOfExtents(span(field.field_shape)); if (field.num_inner_elements == std::numeric_limits<Index>::max()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Product of dimensions ", span(field.field_shape), " is too large")); } if (internal::MulOverflow(field.num_inner_elements, static_cast<Index>(field.dtype->size), &field.num_bytes)) { return absl::InvalidArgumentError("Field size in bytes is too large"); } field.byte_offset = dtype.bytes_per_outer_element; if (internal::AddOverflow(dtype.bytes_per_outer_element, field.num_bytes, &dtype.bytes_per_outer_element)) { return absl::InvalidArgumentError( "Total number of bytes per outer array element is too large"); } } return absl::OkStatus(); } Result<ZarrDType> ParseDType(const nlohmann::json& value) { TENSORSTORE_ASSIGN_OR_RETURN(ZarrDType dtype, ParseDTypeNoDerived(value)); TENSORSTORE_RETURN_IF_ERROR(ValidateDType(dtype)); return dtype; } void to_json(::nlohmann::json& out, const ZarrDType::Field& field) { using array_t = ::nlohmann::json::array_t; if (field.outer_shape.empty()) { out = array_t{field.name, field.encoded_dtype}; } else { out = array_t{field.name, field.encoded_dtype, field.outer_shape}; } } void to_json(::nlohmann::json& out, const ZarrDType& dtype) { if (!dtype.has_fields) { out = dtype.fields[0].encoded_dtype; } else { out = dtype.fields; } } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ZarrDType, [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { TENSORSTORE_ASSIGN_OR_RETURN(*obj, ParseDType(*j)); } else { to_json(*j, *obj); } return absl::OkStatus(); }) char EndianIndicator(tensorstore::endian e) { return e == tensorstore::endian::little ? '<' : '>'; } Result<ZarrDType::BaseDType> ChooseBaseDType(DataType dtype) { ZarrDType::BaseDType base_dtype; base_dtype.endian = endian::native; base_dtype.dtype = dtype; const auto set_typestr = [&](std::string_view typestr, int size) { if (size > 1) { base_dtype.encoded_dtype = tensorstore::StrCat( EndianIndicator(base_dtype.endian), typestr, size); } else { base_dtype.encoded_dtype = tensorstore::StrCat("|", typestr, size); } }; switch (dtype.id()) { case DataTypeId::bool_t: set_typestr("b", 1); break; case DataTypeId::uint8_t: set_typestr("u", 1); break; case DataTypeId::uint16_t: set_typestr("u", 2); break; case DataTypeId::uint32_t: set_typestr("u", 4); break; case DataTypeId::uint64_t: set_typestr("u", 8); break; case DataTypeId::int4_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeInt4; break; case DataTypeId::int8_t: set_typestr("i", 1); break; case DataTypeId::int16_t: set_typestr("i", 2); break; case DataTypeId::int32_t: set_typestr("i", 4); break; case DataTypeId::int64_t: set_typestr("i", 8); break; case DataTypeId::float8_e4m3fn_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3fn; break; case DataTypeId::float8_e4m3fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3fnuz; break; case DataTypeId::float8_e4m3b11fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3b11fnuz; break; case DataTypeId::float8_e5m2_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e5m2; break; case DataTypeId::float8_e5m2fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e5m2fnuz; break; case DataTypeId::float16_t: set_typestr("f", 2); break; case DataTypeId::bfloat16_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeBfloat16; break; case DataTypeId::float32_t: set_typestr("f", 4); break; case DataTypeId::float64_t: set_typestr("f", 8); break; case DataTypeId::complex64_t: set_typestr("c", 8); break; case DataTypeId::complex128_t: set_typestr("c", 16); break; default: return absl::InvalidArgumentError( tensorstore::StrCat("Data type not supported: ", dtype)); } return base_dtype; } } }
#include "tensorstore/driver/zarr/dtype.h" #include <stdint.h> #include <cstddef> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr/metadata_testutil.h" #include "tensorstore/index.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DataType; using ::tensorstore::dtype_v; using ::tensorstore::endian; using ::tensorstore::Index; using ::tensorstore::kInfIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr::ChooseBaseDType; using ::tensorstore::internal_zarr::ParseBaseDType; using ::tensorstore::internal_zarr::ParseDType; using ::tensorstore::internal_zarr::ZarrDType; void CheckBaseDType(std::string dtype, DataType r, endian e, std::vector<Index> flexible_shape) { EXPECT_THAT(ParseBaseDType(dtype), ::testing::Optional(ZarrDType::BaseDType{ dtype, r, e, flexible_shape})) << dtype; } TEST(ParseBaseDType, Success) { CheckBaseDType("|b1", dtype_v<bool>, endian::native, {}); CheckBaseDType("<b1", dtype_v<bool>, endian::native, {}); CheckBaseDType(">b1", dtype_v<bool>, endian::native, {}); CheckBaseDType("|S150", dtype_v<char>, endian::native, {150}); CheckBaseDType(">S150", dtype_v<char>, endian::native, {150}); CheckBaseDType("<S150", dtype_v<char>, endian::native, {150}); CheckBaseDType("|S9223372036854775807", dtype_v<char>, endian::native, {9223372036854775807}); CheckBaseDType("|V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType("<V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType(">V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType("|i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType("<i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType(">i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType("|u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType("<u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType(">u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType("<i2", dtype_v<std::int16_t>, endian::little, {}); CheckBaseDType("<i4", dtype_v<std::int32_t>, endian::little, {}); CheckBaseDType("<i8", dtype_v<std::int64_t>, endian::little, {}); CheckBaseDType("<u2", dtype_v<std::uint16_t>, endian::little, {}); CheckBaseDType("<u4", dtype_v<std::uint32_t>, endian::little, {}); CheckBaseDType("<u8", dtype_v<std::uint64_t>, endian::little, {}); CheckBaseDType(">i2", dtype_v<std::int16_t>, endian::big, {}); CheckBaseDType(">i4", dtype_v<std::int32_t>, endian::big, {}); CheckBaseDType(">i8", dtype_v<std::int64_t>, endian::big, {}); CheckBaseDType(">u2", dtype_v<std::uint16_t>, endian::big, {}); CheckBaseDType(">u4", dtype_v<std::uint32_t>, endian::big, {}); CheckBaseDType(">u8", dtype_v<std::uint64_t>, endian::big, {}); CheckBaseDType("float8_e4m3fn", dtype_v<tensorstore::dtypes::float8_e4m3fn_t>, endian::little, {}); CheckBaseDType("float8_e4m3fnuz", dtype_v<tensorstore::dtypes::float8_e4m3fnuz_t>, endian::little, {}); CheckBaseDType("float8_e4m3b11fnuz", dtype_v<tensorstore::dtypes::float8_e4m3b11fnuz_t>, endian::little, {}); CheckBaseDType("float8_e5m2", dtype_v<tensorstore::dtypes::float8_e5m2_t>, endian::little, {}); CheckBaseDType("float8_e5m2fnuz", dtype_v<tensorstore::dtypes::float8_e5m2fnuz_t>, endian::little, {}); CheckBaseDType("<f2", dtype_v<tensorstore::dtypes::float16_t>, endian::little, {}); CheckBaseDType("bfloat16", dtype_v<tensorstore::dtypes::bfloat16_t>, endian::little, {}); CheckBaseDType("<f4", dtype_v<tensorstore::dtypes::float32_t>, endian::little, {}); CheckBaseDType("<f8", dtype_v<tensorstore::dtypes::float64_t>, endian::little, {}); CheckBaseDType(">f2", dtype_v<tensorstore::dtypes::float16_t>, endian::big, {}); CheckBaseDType(">f4", dtype_v<tensorstore::dtypes::float32_t>, endian::big, {}); CheckBaseDType(">f8", dtype_v<tensorstore::dtypes::float64_t>, endian::big, {}); CheckBaseDType("<c8", dtype_v<tensorstore::dtypes::complex64_t>, endian::little, {}); CheckBaseDType("<c16", dtype_v<tensorstore::dtypes::complex128_t>, endian::little, {}); CheckBaseDType(">c8", dtype_v<tensorstore::dtypes::complex64_t>, endian::big, {}); CheckBaseDType(">c16", dtype_v<tensorstore::dtypes::complex128_t>, endian::big, {}); } TEST(ParseBaseDType, Failure) { EXPECT_THAT(ParseBaseDType(""), MatchesStatus(absl::StatusCode::kInvalidArgument, "Unsupported zarr dtype: \"\"")); EXPECT_THAT(ParseBaseDType("|f4"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|f8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|c8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|c16"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|b2"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|i2"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<i9"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<u9"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<S"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S999999999999999999999999999"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S9223372036854775808"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|Sa"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S "), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<f5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<c5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<m8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<M8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<X5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); } void CheckDType(const ::nlohmann::json& json, const ZarrDType& expected) { SCOPED_TRACE(json.dump()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto dtype, ParseDType(json)); EXPECT_EQ(expected, dtype); EXPECT_EQ(json, ::nlohmann::json(dtype)); } TEST(ParseDType, SimpleStringBool) { CheckDType("|b1", ZarrDType{ false, { {{ "|b1", dtype_v<bool>, endian::native, {}, }, {}, "", {}, 1, 0, 1}, }, 1, }); } TEST(ParseDType, SingleNamedFieldChar) { CheckDType(::nlohmann::json::array_t{{"x", "|S10"}}, ZarrDType{ true, { {{ "|S10", dtype_v<char>, endian::native, {10}, }, {}, "x", {10}, 10, 0, 10}, }, 10, }); } TEST(ParseDType, TwoNamedFieldsCharAndInt) { CheckDType( ::nlohmann::json::array_t{{"x", "|S10", {2, 3}}, {"y", "<i2", {5}}}, ZarrDType{ true, { {{ "|S10", dtype_v<char>, endian::native, {10}, }, {2, 3}, "x", {2, 3, 10}, 10 * 2 * 3, 0, 10 * 2 * 3}, {{ "<i2", dtype_v<std::int16_t>, endian::little, {}, }, {5}, "y", {5}, 5, 10 * 2 * 3, 2 * 5}, }, 10 * 2 * 3 + 2 * 5, }); } TEST(ParseDType, FieldSpecTooShort) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x"}}), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Expected array of size 2 or 3, but received: \\[\"x\"\\]")); } TEST(ParseDType, FieldSpecTooLong) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<i2", {2, 3}, 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Expected array of size 2 or 3, but received: " "\\[\"x\",\"<i2\",\\[2,3\\],5\\]")); } TEST(ParseDType, InvalidFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{3, "<i2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 0: " "Expected non-empty string, but received: 3")); } TEST(ParseDType, EmptyFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"", "<i2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 0: " "Expected non-empty string, but received: \"\"")); } TEST(ParseDType, DuplicateFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<i2"}, {"x", "<u2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Field name \"x\" occurs more than once")); } TEST(ParseDType, NonStringFieldBaseDType) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 1: " "Expected string, but received: 3")); } TEST(ParseDType, InvalidFieldBaseDType) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<X2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 1: " "Unsupported zarr dtype: \"<X2\"")); } TEST(ParseDType, ProductOfDimensionsOverflow) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{ {"x", "|i1", {kInfIndex, kInfIndex}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Product of dimensions .* is too large")); } TEST(ParseDType, FieldSizeInBytesOverflow) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<f8", {kInfIndex}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Field size in bytes is too large")); } TEST(ParseDType, BytesPerOuterElementOverflow) { EXPECT_THAT( ParseDType(::nlohmann::json::array_t{{"x", "<i2", {kInfIndex}}, {"y", "<i2", {kInfIndex}}}), MatchesStatus( absl::StatusCode::kInvalidArgument, "Total number of bytes per outer array element is too large")); } TEST(ChooseBaseDTypeTest, RoundTrip) { constexpr tensorstore::DataType kSupportedDataTypes[] = { dtype_v<bool>, dtype_v<uint8_t>, dtype_v<uint16_t>, dtype_v<uint32_t>, dtype_v<uint64_t>, dtype_v<int8_t>, dtype_v<int16_t>, dtype_v<int32_t>, dtype_v<int64_t>, dtype_v<::tensorstore::dtypes::float8_e4m3fn_t>, dtype_v<::tensorstore::dtypes::float8_e4m3fnuz_t>, dtype_v<::tensorstore::dtypes::float8_e4m3b11fnuz_t>, dtype_v<::tensorstore::dtypes::float8_e5m2_t>, dtype_v<::tensorstore::dtypes::float8_e5m2fnuz_t>, dtype_v<::tensorstore::dtypes::float16_t>, dtype_v<::tensorstore::dtypes::bfloat16_t>, dtype_v<::tensorstore::dtypes::float32_t>, dtype_v<::tensorstore::dtypes::float64_t>, dtype_v<::tensorstore::dtypes::complex64_t>, dtype_v<::tensorstore::dtypes::complex128_t>, }; for (auto dtype : kSupportedDataTypes) { SCOPED_TRACE(tensorstore::StrCat("dtype=", dtype)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_zarr_dtype, ChooseBaseDType(dtype)); EXPECT_EQ(dtype, base_zarr_dtype.dtype); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto parsed, ParseBaseDType(base_zarr_dtype.encoded_dtype)); EXPECT_EQ(dtype, parsed.dtype); EXPECT_EQ(base_zarr_dtype.endian, parsed.endian); EXPECT_EQ(base_zarr_dtype.flexible_shape, parsed.flexible_shape); EXPECT_EQ(base_zarr_dtype.encoded_dtype, parsed.encoded_dtype); } } TEST(ChooseBaseDTypeTest, Invalid) { struct X {}; EXPECT_THAT(ChooseBaseDType(dtype_v<X>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type not supported: .*")); EXPECT_THAT(ChooseBaseDType(dtype_v<::tensorstore::dtypes::string_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type not supported: string")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/zarr/dtype.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/zarr/dtype_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c0ebcd67-aa31-4bde-8d1d-ac3a89a6019f
cpp
tensorflow/tensorflow
adaptive_shared_batch_scheduler
tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h
tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_ADAPTIVE_SHARED_BATCH_SCHEDULER_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_ADAPTIVE_SHARED_BATCH_SCHEDULER_H_ #include <algorithm> #include <atomic> #include <functional> #include <memory> #include <random> #include <unordered_map> #include <vector> #include "absl/types/optional.h" #include "tensorflow/core/kernels/batching_util/batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/periodic_function.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" namespace tensorflow { namespace serving { namespace internal { template <typename TaskType> class ASBSBatch; template <typename TaskType> class ASBSQueue; } template <typename TaskType> class AdaptiveSharedBatchScheduler : public std::enable_shared_from_this< AdaptiveSharedBatchScheduler<TaskType>> { public: ~AdaptiveSharedBatchScheduler() { if (owned_batch_thread_pool_) { delete batch_thread_pool_; } } struct Options { string thread_pool_name = {"batch_threads"}; int64_t num_batch_threads = port::MaxParallelism(); thread::ThreadPool* thread_pool = nullptr; int64_t min_in_flight_batches_limit = 1; int64_t full_batch_scheduling_boost_micros = 0; Env* env = Env::Default(); double initial_in_flight_batches_limit = 3; int64_t batches_to_average_over = 1000; bool fifo_scheduling = false; }; static Status Create( const Options& options, std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>>* scheduler); struct QueueOptions { int max_batch_size = 1000; absl::optional<int> max_input_task_size = absl::nullopt; absl::optional<int> max_tasks_per_batch = absl::nullopt; int max_enqueued_batches = 10; int64_t batch_timeout_micros = 0; std::function<Status(std::unique_ptr<TaskType>* input_task, int first_size, int max_batch_size, std::vector<std::unique_ptr<TaskType>>* output_tasks)> split_input_task_func; bool disable_padding = false; }; using BatchProcessor = std::function<void(std::unique_ptr<Batch<TaskType>>)>; Status AddQueue(const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue); double in_flight_batches_limit() { mutex_lock l(mu_); return in_flight_batches_limit_; } private: friend class internal::ASBSQueue<TaskType>; explicit AdaptiveSharedBatchScheduler(const Options& options); void CallbackWrapper(const internal::ASBSBatch<TaskType>* batch, BatchProcessor callback, bool is_express); void MaybeScheduleNextBatch() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleNextBatchFIFO() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleClosedBatches(); void MaybeScheduleClosedBatchesLocked() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeScheduleClosedBatchesLockedFIFO() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void MaybeAdjustInflightLimit() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void AddBatch(const internal::ASBSBatch<TaskType>* batch); void RemoveQueue(const internal::ASBSQueue<TaskType>* queue); Env* GetEnv() const { return options_.env; } const Options options_; std::vector<const internal::ASBSBatch<TaskType>*> batches_ TF_GUARDED_BY(mu_); std::deque<const internal::ASBSBatch<TaskType>*> fifo_batches_ TF_GUARDED_BY(mu_); std::unordered_map<const internal::ASBSQueue<TaskType>*, BatchProcessor> queues_and_callbacks_ TF_GUARDED_BY(mu_); mutex mu_; thread::ThreadPool* batch_thread_pool_; bool owned_batch_thread_pool_ = false; double in_flight_batches_limit_ TF_GUARDED_BY(mu_); int64_t in_flight_batches_ TF_GUARDED_BY(mu_) = 0; int64_t in_flight_express_batches_ TF_GUARDED_BY(mu_) = 0; std::default_random_engine rand_engine_; std::uniform_real_distribution<double> rand_double_; int64_t batch_count_ TF_GUARDED_BY(mu_) = 0; struct DelayStats { int64_t batch_latency_sum = 0; double last_avg_latency_ms = 0; bool last_latency_decreased = false; int step_direction = 1; }; DelayStats batch_delay_stats_ TF_GUARDED_BY(mu_); constexpr static double kMaxStepSizeMultiplier = 0.125; constexpr static double kMinStepSizeMultiplier = 0.0078125; double step_size_multiplier_ TF_GUARDED_BY(mu_) = kMaxStepSizeMultiplier; AdaptiveSharedBatchScheduler(const AdaptiveSharedBatchScheduler&) = delete; void operator=(const AdaptiveSharedBatchScheduler&) = delete; }; namespace internal { template <typename TaskType> class ASBSQueue : public BatchScheduler<TaskType> { public: using QueueOptions = typename AdaptiveSharedBatchScheduler<TaskType>::QueueOptions; ASBSQueue(std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler, const QueueOptions& options); ~ASBSQueue() override; Status Schedule(std::unique_ptr<TaskType>* task) override; size_t NumEnqueuedTasks() const override; size_t SchedulingCapacity() const override; void ReleaseBatch(const ASBSBatch<TaskType>* batch); size_t max_task_size() const override { return options_.max_batch_size; } private: size_t SchedulingCapacityLocked() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); static uint64 NewTraceMeContextIdForBatch(); std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler_; const QueueOptions options_; ASBSBatch<TaskType>* current_batch_ TF_GUARDED_BY(mu_) = nullptr; int64_t num_enqueued_batches_ TF_GUARDED_BY(mu_) = 0; int64_t num_enqueued_tasks_ TF_GUARDED_BY(mu_) = 0; mutable mutex mu_; ASBSQueue(const ASBSQueue&) = delete; void operator=(const ASBSQueue&) = delete; }; template <typename TaskType> class ASBSBatch : public Batch<TaskType> { public: ASBSBatch(ASBSQueue<TaskType>* queue, int64_t creation_time_micros, int64_t batch_timeout_micros, uint64 traceme_context_id) : queue_(queue), creation_time_micros_(creation_time_micros), schedulable_time_micros_(creation_time_micros + batch_timeout_micros), traceme_context_id_(traceme_context_id) {} ~ASBSBatch() override {} ASBSQueue<TaskType>* queue() const { return queue_; } int64_t creation_time_micros() const { return creation_time_micros_; } int64_t schedulable_time_micros() const { return schedulable_time_micros_; } uint64 traceme_context_id() const { return traceme_context_id_; } private: ASBSQueue<TaskType>* queue_; const int64_t creation_time_micros_; const int64_t schedulable_time_micros_; const uint64 traceme_context_id_; ASBSBatch(const ASBSBatch&) = delete; void operator=(const ASBSBatch&) = delete; }; } template <typename TaskType> constexpr double AdaptiveSharedBatchScheduler<TaskType>::kMaxStepSizeMultiplier; template <typename TaskType> constexpr double AdaptiveSharedBatchScheduler<TaskType>::kMinStepSizeMultiplier; template <typename TaskType> Status AdaptiveSharedBatchScheduler<TaskType>::Create( const Options& options, std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>>* scheduler) { if (options.num_batch_threads < 1) { return errors::InvalidArgument("num_batch_threads must be positive; was ", options.num_batch_threads); } if (options.min_in_flight_batches_limit < 1) { return errors::InvalidArgument( "min_in_flight_batches_limit must be >= 1; was ", options.min_in_flight_batches_limit); } if (options.min_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "min_in_flight_batches_limit (", options.min_in_flight_batches_limit, ") must be <= num_batch_threads (", options.num_batch_threads, ")"); } if (options.full_batch_scheduling_boost_micros < 0) { return errors::InvalidArgument( "full_batch_scheduling_boost_micros can't be negative; was ", options.full_batch_scheduling_boost_micros); } if (options.initial_in_flight_batches_limit > options.num_batch_threads) { return errors::InvalidArgument( "initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, ") should not be larger than num_batch_threads (", options.num_batch_threads, ")"); } if (options.initial_in_flight_batches_limit < options.min_in_flight_batches_limit) { return errors::InvalidArgument("initial_in_flight_batches_limit (", options.initial_in_flight_batches_limit, "must be >= min_in_flight_batches_limit (", options.min_in_flight_batches_limit, ")"); } if (options.batches_to_average_over < 1) { return errors::InvalidArgument( "batches_to_average_over should be " "greater than or equal to 1; was ", options.batches_to_average_over); } scheduler->reset(new AdaptiveSharedBatchScheduler<TaskType>(options)); return absl::OkStatus(); } template <typename TaskType> AdaptiveSharedBatchScheduler<TaskType>::AdaptiveSharedBatchScheduler( const Options& options) : options_(options), in_flight_batches_limit_(options.initial_in_flight_batches_limit), rand_double_(0.0, 1.0) { std::random_device device; rand_engine_.seed(device()); if (options.thread_pool == nullptr) { owned_batch_thread_pool_ = true; batch_thread_pool_ = new thread::ThreadPool( GetEnv(), options.thread_pool_name, options.num_batch_threads); } else { owned_batch_thread_pool_ = false; batch_thread_pool_ = options.thread_pool; } } template <typename TaskType> Status AdaptiveSharedBatchScheduler<TaskType>::AddQueue( const QueueOptions& options, BatchProcessor process_batch_callback, std::unique_ptr<BatchScheduler<TaskType>>* queue) { if (options.max_batch_size <= 0) { return errors::InvalidArgument("max_batch_size must be positive; was ", options.max_batch_size); } if (options.max_enqueued_batches <= 0) { return errors::InvalidArgument( "max_enqueued_batches must be positive; was ", options.max_enqueued_batches); } if (options.max_input_task_size.has_value()) { if (options.max_input_task_size.value() < options.max_batch_size) { return errors::InvalidArgument( "max_input_task_size must be larger than or equal to max_batch_size;" "got max_input_task_size as ", options.max_input_task_size.value(), " and max_batch_size as ", options.max_batch_size); } } internal::ASBSQueue<TaskType>* asbs_queue_raw; queue->reset(asbs_queue_raw = new internal::ASBSQueue<TaskType>( this->shared_from_this(), options)); mutex_lock l(mu_); queues_and_callbacks_[asbs_queue_raw] = process_batch_callback; return absl::OkStatus(); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::AddBatch( const internal::ASBSBatch<TaskType>* batch) { mutex_lock l(mu_); if (options_.fifo_scheduling) { fifo_batches_.push_back(batch); } else { batches_.push_back(batch); } int64_t delay_micros = batch->schedulable_time_micros() - GetEnv()->NowMicros(); if (delay_micros <= 0) { MaybeScheduleNextBatch(); return; } GetEnv()->SchedClosureAfter( delay_micros, [this, lifetime_preserver = this->shared_from_this()] { mutex_lock l(mu_); MaybeScheduleNextBatch(); }); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::RemoveQueue( const internal::ASBSQueue<TaskType>* queue) { mutex_lock l(mu_); queues_and_callbacks_.erase(queue); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleNextBatchFIFO() { const internal::ASBSBatch<TaskType>* batch = *fifo_batches_.begin(); if (batch->schedulable_time_micros() > GetEnv()->NowMicros()) { return; } fifo_batches_.pop_front(); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule(std::bind( &AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], false )); in_flight_batches_++; } template <typename TaskType> void AdaptiveSharedBatchScheduler< TaskType>::MaybeScheduleClosedBatchesLockedFIFO() { int available_threads = static_cast<int>(options_.num_batch_threads - in_flight_batches_ - in_flight_express_batches_); for (auto it = fifo_batches_.begin(); it != fifo_batches_.end() && available_threads > 0; it = fifo_batches_.begin()) { if ((*it)->IsClosed()) { const internal::ASBSBatch<TaskType>* batch = *it; fifo_batches_.pop_front(); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], true)); in_flight_express_batches_++; available_threads--; } else { break; } } } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleNextBatch() { bool batch_empty = options_.fifo_scheduling ? fifo_batches_.empty() : batches_.empty(); if (batch_empty || in_flight_batches_ >= in_flight_batches_limit_) return; if (in_flight_batches_limit_ - in_flight_batches_ < 1 && rand_double_(rand_engine_) > in_flight_batches_limit_ - in_flight_batches_) { return; } if (options_.fifo_scheduling) { MaybeScheduleNextBatchFIFO(); return; } auto best_it = batches_.end(); double best_score = (std::numeric_limits<double>::max)(); int64_t now_micros = GetEnv()->NowMicros(); for (auto it = batches_.begin(); it != batches_.end(); it++) { if ((*it)->schedulable_time_micros() > now_micros) continue; const double score = (*it)->creation_time_micros() - options_.full_batch_scheduling_boost_micros * (*it)->size() / static_cast<double>((*it)->queue()->max_task_size()); if (best_it == batches_.end() || score < best_score) { best_score = score; best_it = it; } } if (best_it == batches_.end()) return; const internal::ASBSBatch<TaskType>* batch = *best_it; batches_.erase(best_it); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], false)); in_flight_batches_++; } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeScheduleClosedBatches() { mutex_lock l(mu_); MaybeScheduleClosedBatchesLocked(); } template <typename TaskType> void AdaptiveSharedBatchScheduler< TaskType>::MaybeScheduleClosedBatchesLocked() { if (options_.fifo_scheduling) { MaybeScheduleClosedBatchesLockedFIFO(); return; } int available_threads = static_cast<int>(options_.num_batch_threads - in_flight_batches_ - in_flight_express_batches_); for (auto it = batches_.begin(); it != batches_.end() && available_threads > 0;) { if ((*it)->IsClosed()) { const internal::ASBSBatch<TaskType>* batch = *it; it = batches_.erase(it); batch->queue()->ReleaseBatch(batch); batch_thread_pool_->Schedule( std::bind(&AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper, this, batch, queues_and_callbacks_[batch->queue()], true)); in_flight_express_batches_++; available_threads--; } else { ++it; } } } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::CallbackWrapper( const internal::ASBSBatch<TaskType>* batch, AdaptiveSharedBatchScheduler<TaskType>::BatchProcessor callback, bool is_express) { tsl::profiler::TraceMeConsumer trace_me( [&] { return profiler::TraceMeEncode( "ProcessBatch", {{"batch_size_before_padding", batch->size()}, {"_r", 2} }); }, tsl::profiler::ContextType::kAdaptiveSharedBatchScheduler, batch->traceme_context_id()); const int64_t start_time = batch->creation_time_micros(); callback(std::unique_ptr<Batch<TaskType>>( const_cast<internal::ASBSBatch<TaskType>*>(batch))); int64_t end_time = GetEnv()->NowMicros(); mutex_lock l(mu_); if (is_express) { in_flight_express_batches_--; MaybeScheduleClosedBatchesLocked(); return; } in_flight_batches_--; batch_count_++; batch_delay_stats_.batch_latency_sum += end_time - start_time; MaybeAdjustInflightLimit(); MaybeScheduleNextBatch(); } template <typename TaskType> void AdaptiveSharedBatchScheduler<TaskType>::MaybeAdjustInflightLimit() { if (batch_count_ == options_.batches_to_average_over) { double current_avg_latency_ms = (batch_delay_stats_.batch_latency_sum / 1000.) / batch_count_; bool current_latency_decreased = current_avg_latency_ms < batch_delay_stats_.last_avg_latency_ms; if (current_latency_decreased) { step_size_multiplier_ *= (batch_delay_stats_.last_latency_decreased ? 2 : 0.5); step_size_multiplier_ = std::min(step_size_multiplier_, kMaxStepSizeMultiplier); step_size_multiplier_ = std::max(step_size_multiplier_, kMinStepSizeMultiplier); } else { batch_delay_stats_.step_direction = -batch_delay_stats_.step_direction; } in_flight_batches_limit_ += batch_delay_stats_.step_direction * in_flight_batches_limit_ * step_size_multiplier_; in_flight_batches_limit_ = std::min(in_flight_batches_limit_, static_cast<double>(options_.num_batch_threads)); in_flight_batches_limit_ = std::max(in_flight_batches_limit_, static_cast<double>(options_.min_in_flight_batches_limit)); batch_delay_stats_.last_avg_latency_ms = current_avg_latency_ms; batch_delay_stats_.last_latency_decreased = current_latency_decreased; batch_count_ = 0; batch_delay_stats_.batch_latency_sum = 0; } } namespace internal { template <typename TaskType> ASBSQueue<TaskType>::ASBSQueue( std::shared_ptr<AdaptiveSharedBatchScheduler<TaskType>> scheduler, const QueueOptions& options) : scheduler_(scheduler), options_(options) {} template <typename TaskType> ASBSQueue<TaskType>::~ASBSQueue() { const int kSleepMicros = 1000; for (;;) { { mutex_lock l(mu_); if (num_enqueued_batches_ == 0) { break; } } scheduler_->GetEnv()->SleepForMicroseconds(kSleepMicros); } scheduler_->RemoveQueue(this); } template <typename TaskType> Status ASBSQueue<TaskType>::Schedule(std::unique_ptr<TaskType>* task) { size_t size = (*task)->size(); if (options_.split_input_task_func == nullptr && size > options_.max_batch_size) { return errors::InvalidArgument("Task size ", size, " is larger than maximum batch size ", options_.max_batch_size); } if (options_.max_input_task_size.has_value() && (size > options_.max_input_task_size.value())) { return errors::InvalidArgument("Task size ", size, " is larger than max input task size ", options_.max_input_task_size.value()); } std::vector<std::unique_ptr<TaskType>> tasks_to_schedule; std::vector<ASBSBatch<TaskType>*> new_batches; bool closed_batch = false; { mutex_lock l(mu_); if (size > SchedulingCapacityLocked()) { return errors::Unavailable("The batch scheduling queue is full"); } int remaining_batch_size = current_batch_ == nullptr ? options_.max_batch_size : options_.max_batch_size - current_batch_->size(); if (options_.split_input_task_func == nullptr || size <= remaining_batch_size) { tasks_to_schedule.push_back(std::move(*task)); } else { TF_RETURN_IF_ERROR(options_.split_input_task_func( task, remaining_batch_size, options_.max_batch_size, &tasks_to_schedule)); } for (auto& task : tasks_to_schedule) { if (current_batch_ && current_batch_->size() + task->size() > options_.max_batch_size) { current_batch_->Close(); closed_batch = true; current_batch_ = nullptr; } if (!current_batch_) { num_enqueued_batches_++; current_batch_ = new ASBSBatch<TaskType>( this, scheduler_->GetEnv()->NowMicros(), options_.batch_timeout_micros, NewTraceMeContextIdForBatch()); new_batches.push_back(current_batch_); } tsl::profiler::TraceMeProducer trace_me( [task_size = task->size()] { return profiler::TraceMeEncode( "ASBSQueue::Schedule", {{"batching_input_task_size", task_size}}); }, tsl::profiler::ContextType::kAdaptiveSharedBatchScheduler, this->current_batch_->traceme_context_id()); current_batch_->AddTask(std::move(task)); num_enqueued_tasks_++; bool reached_max_tasks = (options_.max_tasks_per_batch.has_value() && current_batch_->num_tasks() >= options_.max_tasks_per_batch.value()); if (current_batch_->size() == options_.max_batch_size || reached_max_tasks) { current_batch_->Close(); closed_batch = true; current_batch_ = nullptr; } } } for (auto* batch : new_batches) { scheduler_->AddBatch(batch); } if (closed_batch) { scheduler_->MaybeScheduleClosedBatches(); } return absl::OkStatus(); } template <typename TaskType> void ASBSQueue<TaskType>::ReleaseBatch(const ASBSBatch<TaskType>* batch) { mutex_lock l(mu_); num_enqueued_batches_--; num_enqueued_tasks_ -= batch->num_tasks(); if (batch == current_batch_) { current_batch_->Close(); current_batch_ = nullptr; } } template <typename TaskType> size_t ASBSQueue<TaskType>::NumEnqueuedTasks() const { mutex_lock l(mu_); return num_enqueued_tasks_; } template <typename TaskType> size_t ASBSQueue<TaskType>::SchedulingCapacity() const { mutex_lock l(mu_); return SchedulingCapacityLocked(); } template <typename TaskType> size_t ASBSQueue<TaskType>::SchedulingCapacityLocked() const { const int current_batch_capacity = current_batch_ ? options_.max_batch_size - current_batch_->size() : 0; const int spare_batches = options_.max_enqueued_batches - num_enqueued_batches_; return spare_batches * options_.max_batch_size + current_batch_capacity; } template <typename TaskType> uint64 ASBSQueue<TaskType>::NewTraceMeContextIdForBatch() { static std::atomic<uint64> traceme_context_id(0); return traceme_context_id.fetch_add(1, std::memory_order_relaxed); } } } } #endif
#include "tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h" #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace anonymous { class FakeTask : public BatchTask { public: explicit FakeTask(size_t size) : size_(size) {} ~FakeTask() override = default; size_t size() const override { return size_; } void set_size(size_t size) { size_ = size; } private: size_t size_; FakeTask(const FakeTask&) = delete; void operator=(const FakeTask&) = delete; }; Status ScheduleTask(size_t task_size, BatchScheduler<FakeTask>* scheduler) { std::unique_ptr<FakeTask> task(new FakeTask(task_size)); Status status = scheduler->Schedule(&task); CHECK_EQ(status.ok(), task == nullptr); return status; } std::unique_ptr<Thread> CreateFakeClockAdvancerThread( test_util::FakeClockEnv* env, Notification* start, Notification* stop) { return std::unique_ptr<Thread>(Env::Default()->StartThread( {}, "FakeClockAdvancerThread", [env, start, stop] { start->WaitForNotification(); while (!stop->HasBeenNotified()) { env->AdvanceByMicroseconds(10); Env::Default()->SleepForMicroseconds(10); } })); } TEST(AdaptiveSharedBatchSchedulerTest, BadOptions) { using Scheduler = AdaptiveSharedBatchScheduler<FakeTask>; std::shared_ptr<Scheduler> scheduler; Scheduler::Options options; options.num_batch_threads = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.initial_in_flight_batches_limit = 0.5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.num_batch_threads = 5; options.initial_in_flight_batches_limit = 8; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.batches_to_average_over = -5; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.min_in_flight_batches_limit = 0; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.min_in_flight_batches_limit = 5; options.num_batch_threads = 3; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); options = Scheduler::Options(); options.initial_in_flight_batches_limit = 1; options.min_in_flight_batches_limit = 2; options.num_batch_threads = 3; EXPECT_FALSE(Scheduler::Create(options, &scheduler).ok()); } TEST(AdaptiveSharedBatchSchedulerTest, InFlightBatchesLimit) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 2) { Env::Default()->SleepForMicroseconds(1000); finish_processing.Notify(); } if (batch_num == 3) { ASSERT_TRUE(finish_processing.HasBeenNotified()); } finish_processing.WaitForNotification(); }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); } TEST(AdaptiveSharedBatchSchedulerTest, InFlightBatchesLimitTuning) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 2; options.batches_to_average_over = 1; auto queue_callback = [&env](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); switch (batch->size()) { case 0: env.AdvanceByMicroseconds(10); break; case 1: env.AdvanceByMicroseconds(15); break; case 2: env.AdvanceByMicroseconds(10); break; case 3: env.AdvanceByMicroseconds(11); break; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(0, queue.get())); double in_flight_batches_limit = 2; while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_LT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(1, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_GT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(2, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_GT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); in_flight_batches_limit = scheduler->in_flight_batches_limit(); TF_ASSERT_OK(ScheduleTask(3, queue.get())); while (scheduler->in_flight_batches_limit() == in_flight_batches_limit) { } EXPECT_LT(scheduler->in_flight_batches_limit(), in_flight_batches_limit); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FullBatchSchedulingBoostMicros) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 100; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); finish_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(100, batch->size()); break; case 2: EXPECT_EQ(50, batch->size()); break; case 3: EXPECT_EQ(900, batch->size()); break; case 4: EXPECT_EQ(200, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 4 batches"; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); while (queue1->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(50, queue2.get())); env.AdvanceByMicroseconds(45); TF_ASSERT_OK(ScheduleTask(900, queue1.get())); finish_processing.Notify(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FIFO) { test_util::FakeClockEnv env(Env::Default()); Notification start_teardown, stop_teardown; std::unique_ptr<Thread> teardown_thread = CreateFakeClockAdvancerThread(&env, &start_teardown, &stop_teardown); { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.env = &env; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; options.full_batch_scheduling_boost_micros = 0; options.fifo_scheduling = true; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); finish_processing.WaitForNotification(); mutex_lock l(mu); processed_batches++; switch (processed_batches) { case 1: EXPECT_EQ(100, batch->size()); break; case 2: EXPECT_EQ(200, batch->size()); break; case 3: EXPECT_EQ(50, batch->size()); break; case 4: EXPECT_EQ(900, batch->size()); break; default: EXPECT_TRUE(false) << "Should only have 4 batches"; } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; std::unique_ptr<BatchScheduler<FakeTask>> queue1; std::unique_ptr<BatchScheduler<FakeTask>> queue2; queue_options.max_batch_size = 1000; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue1)); queue_options.max_batch_size = 100; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue2)); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(30); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(100, queue1.get())); env.AdvanceByMicroseconds(10); TF_ASSERT_OK(ScheduleTask(50, queue2.get())); env.AdvanceByMicroseconds(45); TF_ASSERT_OK(ScheduleTask(900, queue1.get())); finish_processing.Notify(); start_teardown.Notify(); } stop_teardown.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, DeleteQueue) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.num_batch_threads = 1; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); finish_processing.WaitForNotification(); mu.lock(); processed_batches++; mu.unlock(); }; auto processed_checker = gtl::MakeCleanup([&mu, &processed_batches] { mutex_lock l(mu); EXPECT_EQ(processed_batches, 2); }); std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); Env::Default()->SchedClosureAfter( 1000, [&finish_processing] { finish_processing.Notify(); }); } TEST(AdaptiveSharedBatchSchedulerTest, QueueCapacityInfo) { AdaptiveSharedBatchScheduler<FakeTask>::Options options; options.initial_in_flight_batches_limit = 1; options.batches_to_average_over = 1000; mutex mu; int processed_batches = 0; Notification finish_processing; auto queue_callback = [&mu, &processed_batches, &finish_processing]( std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); EXPECT_GT(batch->num_tasks(), 0); mu.lock(); int batch_num = ++processed_batches; mu.unlock(); if (batch_num == 1) { finish_processing.WaitForNotification(); } }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK( AdaptiveSharedBatchScheduler<FakeTask>::Create(options, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue({}, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); while (queue->NumEnqueuedTasks() > 0) { } TF_ASSERT_OK(ScheduleTask(100, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 900); TF_ASSERT_OK(ScheduleTask(100, queue.get())); TF_ASSERT_OK(ScheduleTask(200, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 3); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 600); TF_ASSERT_OK(ScheduleTask(700, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); EXPECT_EQ(queue->SchedulingCapacity(), 9 * 1000 + 300); finish_processing.Notify(); } TEST(AdaptiveSharedBatchSchedulerTest, FullBatches) { std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); auto queue_callback = [](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); }; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000000000; std::unique_ptr<BatchScheduler<FakeTask>> queue; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(100, queue.get())); } TEST(AdaptiveSharedBatchSchedulerTest, TruncateBatches) { mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); ++processed_batches; }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000; queue_options.split_input_task_func = [](std::unique_ptr<FakeTask>* input_task, int first_size, int max_size, std::vector<std::unique_ptr<FakeTask>>* output_tasks) { EXPECT_EQ(first_size, 70); output_tasks->push_back(std::move(*input_task)); int remaining_size = output_tasks->back()->size() - first_size; output_tasks->back()->set_size(first_size); while (remaining_size > 0) { int task_size = std::min(remaining_size, max_size); output_tasks->emplace_back(new FakeTask(task_size)); remaining_size -= task_size; } return absl::OkStatus(); }; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(30, queue.get())); TF_ASSERT_OK(ScheduleTask(350, queue.get())); while (true) { mutex_lock l(mu); if (processed_batches == 4) break; } } TEST(AdaptiveSharedBatchSchedulerTest, MaxTasksPerBatch) { mutex mu; int processed_batches = 0; auto queue_callback = [&mu, &processed_batches](std::unique_ptr<Batch<FakeTask>> batch) { ASSERT_TRUE(batch->IsClosed()); mutex_lock l(mu); ++processed_batches; }; std::shared_ptr<AdaptiveSharedBatchScheduler<FakeTask>> scheduler; TF_ASSERT_OK(AdaptiveSharedBatchScheduler<FakeTask>::Create({}, &scheduler)); std::unique_ptr<BatchScheduler<FakeTask>> queue; AdaptiveSharedBatchScheduler<FakeTask>::QueueOptions queue_options; queue_options.max_batch_size = 100; queue_options.batch_timeout_micros = 1000000; queue_options.max_tasks_per_batch = 2; TF_ASSERT_OK(scheduler->AddQueue(queue_options, queue_callback, &queue)); TF_ASSERT_OK(ScheduleTask(10, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 1); TF_ASSERT_OK(ScheduleTask(10, queue.get())); EXPECT_EQ(queue->NumEnqueuedTasks(), 0); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); TF_ASSERT_OK(ScheduleTask(10, queue.get())); while (true) { mutex_lock l(mu); if (processed_batches == 3) break; } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/adaptive_shared_batch_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a69130c5-914d-471f-85d3-3c9c8caa6645
cpp
google/tensorstore
open_mode
tensorstore/open_mode.cc
tensorstore/open_mode_test.cc
#include "tensorstore/open_mode.h" #include <ostream> #include "absl/status/status.h" namespace tensorstore { std::string_view to_string(ReadWriteMode mode) { switch (mode) { case ReadWriteMode::dynamic: return "dynamic"; case ReadWriteMode::read: return "read"; case ReadWriteMode::write: return "write"; case ReadWriteMode::read_write: return "read_write"; default: return "<unknown>"; } } std::ostream& operator<<(std::ostream& os, ReadWriteMode mode) { return os << to_string(mode); } std::ostream& operator<<(std::ostream& os, OpenMode mode) { const char* sep = ""; constexpr const char* kSep = "|"; if (!!(mode & OpenMode::open)) { os << "open"; sep = kSep; } if (!!(mode & OpenMode::create)) { os << sep << "create"; sep = kSep; } if (!!(mode & OpenMode::delete_existing)) { os << sep << "delete_existing"; sep = kSep; } if (!!(mode & OpenMode::assume_metadata)) { os << sep << "assume_metadata"; sep = kSep; } return os; } namespace internal { absl::Status ValidateSupportsRead(ReadWriteMode mode) { return !(mode & ReadWriteMode::read) ? absl::InvalidArgumentError("Source does not support reading.") : absl::Status(); } absl::Status ValidateSupportsWrite(ReadWriteMode mode) { return !(mode & ReadWriteMode::write) ? absl::InvalidArgumentError( "Destination does not support writing.") : absl::Status(); } absl::Status ValidateSupportsModes(ReadWriteMode mode, ReadWriteMode required_modes) { if ((mode & required_modes) != required_modes) { if (!!(required_modes & ReadWriteMode::read) && !(mode & ReadWriteMode::read)) { return absl::InvalidArgumentError("Read mode not supported"); } if (!!(required_modes & ReadWriteMode::write) && !(mode & ReadWriteMode::write)) { return absl::InvalidArgumentError("Write mode not supported"); } } return absl::OkStatus(); } } }
#include "tensorstore/open_mode.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::OpenMode; using ::tensorstore::ReadWriteMode; using ::tensorstore::StrCat; static_assert(ReadWriteMode::read_write == (ReadWriteMode::read | ReadWriteMode::write)); static_assert((ReadWriteMode::read_write & ReadWriteMode::read) == ReadWriteMode::read); static_assert(!ReadWriteMode::dynamic); static_assert(tensorstore::internal::StaticReadWriteMask(ReadWriteMode::read) == ReadWriteMode::read); static_assert(tensorstore::internal::StaticReadWriteMask( ReadWriteMode::write) == ReadWriteMode::write); static_assert(tensorstore::internal::StaticReadWriteMask( ReadWriteMode::dynamic) == ReadWriteMode::read_write); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::read)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::write)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::dynamic, ReadWriteMode::dynamic)); static_assert(!tensorstore::internal::IsModePossible( ReadWriteMode::read, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::read)); static_assert(!tensorstore::internal::IsModePossible( ReadWriteMode::write, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::read)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::write)); TEST(ReadWriteModeTest, PrintToOstream) { EXPECT_EQ("dynamic", StrCat(ReadWriteMode::dynamic)); EXPECT_EQ("read", StrCat(ReadWriteMode::read)); EXPECT_EQ("write", StrCat(ReadWriteMode::write)); EXPECT_EQ("read_write", StrCat(ReadWriteMode::read_write)); EXPECT_EQ("<unknown>", StrCat(static_cast<ReadWriteMode>(10))); } TEST(OpenTest, PrintToOstream) { EXPECT_EQ("", StrCat(OpenMode{})); EXPECT_EQ("open", StrCat(OpenMode::open)); EXPECT_EQ("create", StrCat(OpenMode::create)); EXPECT_EQ("open|create", StrCat(OpenMode::open | OpenMode::create)); EXPECT_EQ("open|assume_metadata", StrCat(OpenMode::open | OpenMode::assume_metadata)); EXPECT_EQ("create|delete_existing", StrCat(OpenMode::create | OpenMode::delete_existing)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/open_mode.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/open_mode_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e27221c5-0b3b-45d4-8e65-4e62b0ab5c84
cpp
tensorflow/tensorflow
fuzzy_matcher
third_party/xla/xla/service/fuzzy_matcher.h
third_party/xla/xla/service/fuzzy_matcher_test.cc
#ifndef XLA_SERVICE_FUZZY_MATCHER_H_ #define XLA_SERVICE_FUZZY_MATCHER_H_ #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" namespace xla { namespace fm { template <typename Pattern> auto OptConvert(Pattern pattern) { auto shared = match::SharedSubpattern(pattern); return match::AnyOf<HloInstruction>(match::Convert(shared), shared); } #define XLA_FUZZY_UNOP_PATTERN(NAME) \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return OptConvert(match::Op(matched_inst).WithOpcode(HloOpcode::k##NAME)); \ } \ \ template <typename Arg> \ inline auto NAME(Arg&& arg) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg))); \ } \ \ template <typename HloInstructionType, typename Arg> \ inline auto NAME(HloInstructionType** matched_inst, Arg&& arg) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg))); \ } XLA_FUZZY_UNOP_PATTERN(Tanh) XLA_FUZZY_UNOP_PATTERN(Exp) XLA_FUZZY_UNOP_PATTERN(Broadcast) #undef XLA_FUZZY_UNOP_PATTERN #define XLA_FUZZY_BINOP_PATTERN(NAME) \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs))); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs))); \ } XLA_FUZZY_BINOP_PATTERN(Dot) XLA_FUZZY_BINOP_PATTERN(Divide) XLA_FUZZY_BINOP_PATTERN(Subtract) XLA_FUZZY_BINOP_PATTERN(Multiply) XLA_FUZZY_BINOP_PATTERN(Reduce) #undef XLA_FUZZY_BINOP_PATTERN #define XLA_FUZZY_TERNOP_PATTERN(NAME) \ template <typename Arg0, typename Arg1, typename Arg2> \ inline auto NAME(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { \ return OptConvert(match::Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2))); \ } \ \ template <typename HloInstructionType, typename Arg0, typename Arg1, \ typename Arg2> \ inline auto NAME(HloInstructionType** matched_inst, Arg0&& arg0, \ Arg1&& arg1, Arg2&& arg2) { \ return OptConvert(match::Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2))); \ } XLA_FUZZY_TERNOP_PATTERN(Select); #undef XLA_FUZZY_TERNOP_PATTERN } } #endif
#include "xla/service/fuzzy_matcher.h" #include <gtest/gtest.h> #include "xla/service/pattern_matcher.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using FuzzyMatcherTest = HloTestBase; TEST_F(FuzzyMatcherTest, IgnoreConvert) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { x = f16[8,3] parameter(0) y = f16[8,3] parameter(1) div = f16[8,3] divide(x, y) ROOT convert = f32[8,3] convert(div) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, fm::Divide(match::Parameter(0), match::Parameter(1)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fuzzy_matcher.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fuzzy_matcher_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d7178847-5f31-485b-8ced-289d86dd036a
cpp
google/tensorstore
absl_time
tensorstore/serialization/absl_time.cc
tensorstore/internal/json_binding/absl_time_test.cc
#include "tensorstore/serialization/absl_time.h" #include <cstdint> #include <limits> #include "absl/time/time.h" #include "tensorstore/serialization/serialization.h" namespace tensorstore { namespace serialization { bool Serializer<absl::Duration>::Encode(EncodeSink& sink, const absl::Duration& value) { int64_t rep_hi = absl::time_internal::GetRepHi(value); uint32_t rep_lo = absl::time_internal::GetRepLo(value); return serialization::EncodeTuple(sink, rep_hi, rep_lo); } bool Serializer<absl::Duration>::Decode(DecodeSource& source, absl::Duration& value) { int64_t rep_hi; uint32_t rep_lo; using absl::time_internal::kTicksPerSecond; if (!serialization::DecodeTuple(source, rep_hi, rep_lo)) return false; if (rep_lo >= kTicksPerSecond && (rep_lo != std::numeric_limits<uint32_t>::max() || (rep_hi != std::numeric_limits<int64_t>::min() && rep_hi != std::numeric_limits<int64_t>::max()))) { source.Fail(serialization::DecodeError("Invalid time representation")); return false; } value = absl::time_internal::MakeDuration(rep_hi, rep_lo); return true; } bool Serializer<absl::Time>::Encode(EncodeSink& sink, const absl::Time& value) { return serialization::Encode(sink, value - absl::UnixEpoch()); } bool Serializer<absl::Time>::Decode(DecodeSource& source, absl::Time& value) { absl::Duration d; if (!serialization::Decode(source, d)) return false; value = absl::UnixEpoch() + d; return true; } } }
#include "tensorstore/internal/json_binding/absl_time.h" #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/time/civil_time.h" #include "absl/time/time.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" namespace jb = tensorstore::internal_json_binding; namespace { TEST(AbslTimeJsonBinder, Roundtrips) { const absl::TimeZone utc = absl::UTCTimeZone(); const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6); tensorstore::TestJsonBinderRoundTrip<absl::Time>( { {absl::FromCivil(cs, utc), "2015-02-03T04:05:06+00:00"}, {absl::FromCivil(absl::CivilMinute(cs), utc), "2015-02-03T04:05:00+00:00"}, {absl::FromCivil(absl::CivilHour(cs), utc), "2015-02-03T04:00:00+00:00"}, {absl::FromCivil(absl::CivilDay(cs), utc), "2015-02-03T00:00:00+00:00"}, {absl::FromCivil(absl::CivilMonth(cs), utc), "2015-02-01T00:00:00+00:00"}, {absl::FromCivil(absl::CivilYear(cs), utc), "2015-01-01T00:00:00+00:00"}, }, jb::Rfc3339TimeBinder); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/absl_time.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/absl_time_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4eeac038-fc93-4cc4-828c-47132cc75b65
cpp
tensorflow/tensorflow
collective_order
tensorflow/core/graph/collective_order.cc
tensorflow/core/graph/collective_order_test.cc
#include "tensorflow/core/graph/collective_order.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/graph/algorithm.h" namespace tensorflow { namespace { Status DiscoverDataDependencies( const Graph* graph, std::vector<Node*>* collective_nodes, std::vector<int32>* instance_keys, absl::flat_hash_map<Node*, absl::flat_hash_set<int32>>* data_dependencies) { Status s; auto node_leave = [collective_nodes, instance_keys, data_dependencies, &s](Node* node) { int32_t instance_key; bool enter_node = node->IsCollective() && node->type_string() == "CollectiveReduce"; if (enter_node) { Status get_attr_status = GetNodeAttr(node->attrs(), "instance_key", &instance_key); s.Update(get_attr_status); collective_nodes->push_back(node); instance_keys->push_back(instance_key); VLOG(2) << "collective node " << node->DebugString(); } data_dependencies->reserve(data_dependencies->size() + 1 + node->out_edges().size()); const auto& node_deps = (*data_dependencies)[node]; for (const Edge* out_edge : node->out_edges()) { auto& child_deps = (*data_dependencies)[out_edge->dst()]; child_deps.insert(node_deps.begin(), node_deps.end()); if (enter_node && s.ok()) { child_deps.insert(instance_key); } } }; ReverseDFS(*graph, nullptr, node_leave); return s; } Status CreateControlDependencies( const std::vector<Node*>& collective_nodes, const std::vector<int32>& instance_keys, absl::flat_hash_map<Node*, absl::flat_hash_set<int32>>* data_dependencies, absl::flat_hash_map<Node*, absl::flat_hash_set<Node*>>* dependency_edges) { absl::flat_hash_map<Node*, absl::flat_hash_set<Node*>> all_paths; for (int i = 0; i < collective_nodes.size() - 1; i++) { if (!collective_nodes[i]->IsCollective() || collective_nodes[i]->type_string() != "CollectiveReduce") { return errors::Internal("Unexpected node ", collective_nodes[i]->DebugString()); } const auto& deps_i = (*data_dependencies)[collective_nodes[i]]; for (int j = i + 1; j < collective_nodes.size(); j++) { if (collective_nodes[i]->requested_device() != collective_nodes[j]->requested_device()) { continue; } if (instance_keys[i] == instance_keys[j]) { return errors::Internal("Unexpected same instance_key ", instance_keys[i], " on 2 nodes with the same device ", collective_nodes[i]->requested_device()); } const auto& deps_j = (*data_dependencies)[collective_nodes[j]]; if (deps_i.find(instance_keys[j]) == deps_i.end() && deps_j.find(instance_keys[i]) == deps_j.end()) { int src_idx = instance_keys[i] > instance_keys[j] ? i : j; int dst_idx = instance_keys[i] > instance_keys[j] ? j : i; Node* src_node = collective_nodes[src_idx]; Node* dst_node = collective_nodes[dst_idx]; VLOG(1) << "Adding control dependency from node " << src_node->name() << " instance " << instance_keys[src_idx] << " to node " << dst_node->name() << " instance " << instance_keys[dst_idx]; (*dependency_edges)[src_node].insert(dst_node); auto& src_paths = all_paths[src_node]; src_paths.insert(dst_node); for (Node* downstream_node : all_paths[dst_node]) { src_paths.insert(downstream_node); } } } } for (int i = 0; i < collective_nodes.size(); ++i) { Node* node = collective_nodes[i]; auto& neighbor_set = (*dependency_edges)[node]; std::vector<Node*> neighbor_list(neighbor_set.begin(), neighbor_set.end()); for (int j = 0; j < neighbor_list.size(); ++j) { Node* n1 = neighbor_list[j]; if (n1 == nullptr) continue; auto& n1_paths = all_paths[n1]; for (int k = 0; k < neighbor_list.size(); ++k) { Node* n2 = neighbor_list[k]; if (j == k || n2 == nullptr) continue; if (n1_paths.find(n2) != n1_paths.end()) { neighbor_set.erase(n2); neighbor_list[k] = nullptr; } } } } return absl::OkStatus(); } Status InsertControlDependencies( Graph* graph, GraphCollectiveOrder order_type, const absl::flat_hash_map<Node*, absl::flat_hash_set<Node*>>& dependency_edges) { if (order_type == GraphCollectiveOrder::kEdges) { for (const auto& pair : dependency_edges) { Node* src_node = pair.first; for (Node* dst_node : pair.second) { graph->AddControlEdge(src_node, dst_node); } } } else if (order_type == GraphCollectiveOrder::kAttrs) { absl::flat_hash_map<Node*, absl::flat_hash_set<int32>> wait_for; for (const auto& pair : dependency_edges) { int32_t src_instance; TF_RETURN_IF_ERROR( GetNodeAttr(pair.first->attrs(), "instance_key", &src_instance)); for (Node* dst_node : pair.second) { wait_for[dst_node].insert(src_instance); } } for (const auto& pair : wait_for) { std::vector<int32> wait_for_list(pair.second.begin(), pair.second.end()); pair.first->ClearAttr("wait_for"); pair.first->AddAttr("wait_for", wait_for_list); } } else { return errors::Internal("Unexpected GraphCollectiveOrder type ", static_cast<int>(order_type)); } return absl::OkStatus(); } } Status OrderCollectives(Graph* graph, GraphCollectiveOrder order_type) { std::vector<Node*> collective_nodes; std::vector<int32> instance_keys; absl::flat_hash_map<Node*, absl::flat_hash_set<int32>> data_dependencies; TF_RETURN_IF_ERROR(DiscoverDataDependencies( graph, &collective_nodes, &instance_keys, &data_dependencies)); if (collective_nodes.empty()) return absl::OkStatus(); absl::flat_hash_map<Node*, absl::flat_hash_set<Node*>> dependency_edges; TF_RETURN_IF_ERROR(CreateControlDependencies( collective_nodes, instance_keys, &data_dependencies, &dependency_edges)); return InsertControlDependencies(graph, order_type, dependency_edges); } }
#include "tensorflow/core/graph/collective_order.h" #include <gmock/gmock.h> #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::testing::UnorderedElementsAreArray; REGISTER_OP("TestParams").Output("o: float"); void VerifyGraph(const Graph& graph, const std::vector<string>& expected_collective_nodes, const std::vector<std::pair<string, string>>& expected_collective_control_edges) { std::vector<string> actual_collective_nodes; std::vector<std::pair<string, string>> actual_collective_control_edges; for (const Node* src : graph.nodes()) { if (!src->IsCollective()) { continue; } actual_collective_nodes.push_back(src->name()); for (const Edge* edge : src->out_edges()) { VLOG(2) << "collective edge " << edge->src()->name() << " -> " << edge->dst()->name(); if (!edge->IsControlEdge() || edge->dst()->name() == "_SINK") { continue; } actual_collective_control_edges.emplace_back(src->name(), edge->dst()->name()); } } EXPECT_THAT(actual_collective_nodes, UnorderedElementsAreArray(expected_collective_nodes)); EXPECT_THAT(actual_collective_control_edges, UnorderedElementsAreArray(expected_collective_control_edges)); } void VerifyAttrs( const Graph& graph, const std::unordered_map<string, std::vector<int32>> wait_for_map) { for (const Node* node : graph.nodes()) { if (node->IsCollective() || wait_for_map.find(node->name()) == wait_for_map.end()) { continue; } std::vector<int32> wait_for_actual; TF_EXPECT_OK(GetNodeAttr(node->attrs(), "wait_for", &wait_for_actual)); auto wait_for_expected = wait_for_map.at(node->name()); EXPECT_THAT(wait_for_actual, UnorderedElementsAreArray(wait_for_expected)); } } Node* CollectiveReduceNode(GraphDefBuilder* builder, Node* input, const string& name, const string& device, int instance_key) { Node* collective_node = ops::UnaryOp("CollectiveReduce", input, builder->opts() .WithName(name) .WithDevice(device) .WithAttr("T", DT_FLOAT) .WithAttr("group_size", 2) .WithAttr("group_key", 1) .WithAttr("instance_key", instance_key) .WithAttr("merge_op", "Add") .WithAttr("final_op", "Id") .WithAttr("subdiv_offsets", {1})); return collective_node; } std::unique_ptr<Graph> InitGraph() { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); const string dev0 = "/job:localhost/replica:0/task:0/device:CPU:0"; const string dev1 = "/job:localhost/replica:0/task:0/device:CPU:1"; Node* a = ops::SourceOp("TestParams", builder.opts().WithName("a").WithDevice(dev0)); Node* b = ops::SourceOp("TestParams", builder.opts().WithName("b").WithDevice(dev1)); Node* c1_0 = CollectiveReduceNode(&builder, a, "c1_0", dev0, 1); Node* c1_1 = CollectiveReduceNode(&builder, b, "c1_1", dev1, 1); Node* id0 = ops::UnaryOp( "Identity", c1_0, builder.opts().WithName("id0").WithDevice(dev0).WithAttr("T", DT_FLOAT)); Node* id1 = ops::UnaryOp( "Identity", c1_1, builder.opts().WithName("id1").WithDevice(dev1).WithAttr("T", DT_FLOAT)); CollectiveReduceNode(&builder, id0, "c2_0", dev0, 2); CollectiveReduceNode(&builder, id1, "c2_1", dev1, 2); CollectiveReduceNode(&builder, id0, "c3_0", dev0, 3); CollectiveReduceNode(&builder, id1, "c3_1", dev1, 3); std::unique_ptr<Graph> graph = absl::make_unique<Graph>(OpRegistry::Global()); Status s = GraphDefBuilderToGraph(builder, graph.get()); if (!s.ok()) { LOG(FATAL) << "Error building graph " << s; } return graph; } TEST(CollectiveOrderTest, SimpleOrder) { std::unique_ptr<Graph> graph = InitGraph(); TF_EXPECT_OK(OrderCollectives(graph.get(), GraphCollectiveOrder::kEdges)); VerifyGraph(*graph, {"c1_0", "c1_1", "c2_0", "c2_1", "c3_0", "c3_1"}, {{"c3_0", "c2_0"}, {"c3_1", "c2_1"}}); } TEST(CollectiveOrderTest, SimpleOrderAttr) { std::unique_ptr<Graph> graph = InitGraph(); TF_EXPECT_OK(OrderCollectives(graph.get(), GraphCollectiveOrder::kAttrs)); VerifyAttrs(*graph, {{"c2_0", {3}}, {"c2_1", {3}}}); } std::unique_ptr<Graph> InitGraph2() { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); const string dev0 = "/job:localhost/replica:0/task:0/device:CPU:0"; Node* a = ops::SourceOp("TestParams", builder.opts().WithName("a").WithDevice(dev0)); Node* c1 = CollectiveReduceNode(&builder, a, "c1", dev0, 1); CollectiveReduceNode(&builder, c1, "c4", dev0, 4); Node* id = ops::UnaryOp( "Identity", c1, builder.opts().WithName("id").WithDevice(dev0).WithAttr("T", DT_FLOAT)); CollectiveReduceNode(&builder, id, "c2", dev0, 2); CollectiveReduceNode(&builder, id, "c3", dev0, 3); std::unique_ptr<Graph> graph = absl::make_unique<Graph>(OpRegistry::Global()); Status s = GraphDefBuilderToGraph(builder, graph.get()); if (!s.ok()) { LOG(FATAL) << "Error building graph " << s; } return graph; } TEST(CollectiveOrderTest, SimpleOrder2) { std::unique_ptr<Graph> graph = InitGraph2(); TF_EXPECT_OK(OrderCollectives(graph.get(), GraphCollectiveOrder::kEdges)); VerifyGraph(*graph, {"c1", "c2", "c3", "c4"}, {{"c4", "c3"}, {"c3", "c2"}}); } std::unique_ptr<Graph> InitGraphForPruning() { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); const string dev0 = "/job:localhost/replica:0/task:0/device:CPU:0"; Node* w = ops::SourceOp("TestParams", builder.opts().WithName("w").WithDevice(dev0)); Node* x = ops::SourceOp("TestParams", builder.opts().WithName("x").WithDevice(dev0)); Node* y = ops::SourceOp("TestParams", builder.opts().WithName("y").WithDevice(dev0)); Node* z = ops::SourceOp("TestParams", builder.opts().WithName("z").WithDevice(dev0)); CollectiveReduceNode(&builder, w, "c1", dev0, 1); CollectiveReduceNode(&builder, x, "c2", dev0, 2); CollectiveReduceNode(&builder, y, "c3", dev0, 3); CollectiveReduceNode(&builder, z, "c4", dev0, 4); std::unique_ptr<Graph> graph = absl::make_unique<Graph>(OpRegistry::Global()); Status s = GraphDefBuilderToGraph(builder, graph.get()); if (!s.ok()) { LOG(FATAL) << "Error building graph " << s; } return graph; } TEST(CollectiveOrderTest, Pruning) { std::unique_ptr<Graph> graph = InitGraphForPruning(); TF_EXPECT_OK(OrderCollectives(graph.get(), GraphCollectiveOrder::kAttrs)); VerifyAttrs(*graph, {{"c3", {4}}, {"c2", {3}}, {"c1", {2}}}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/collective_order.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/collective_order_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c6920cc-3aba-4b4e-867d-febd43cab405
cpp
tensorflow/tensorflow
llvm_compiler
third_party/xla/xla/service/llvm_compiler.cc
third_party/xla/xla/tests/llvm_compiler_test.cc
#include "xla/service/llvm_compiler.h" #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/service/executable.h" #include "xla/service/stream_pool.h" #include "tsl/platform/denormal.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" #ifdef __FAST_MATH__ #error "Don't build XLA with -ffast-math" #endif namespace xla { absl::StatusOr<std::vector<std::unique_ptr<Executable>>> LLVMCompiler::Compile( std::unique_ptr<HloModuleGroup> module_group, std::vector<std::vector<se::StreamExecutor*>> stream_execs, const CompileOptions& options) { tsl::port::ScopedDontFlushDenormal dont_flush_denormals; std::vector<std::unique_ptr<Executable>> result; std::vector<std::unique_ptr<HloModule>> modules = module_group->ConsumeModules(); for (size_t i = 0; i < modules.size(); i++) { tsl::profiler::ScopedAnnotation annotation{[&] { return absl::StrFormat("XlaCompile:#module=%s,program_id=%d#", modules[i]->name(), modules[i]->unique_id()); }}; TF_ASSIGN_OR_RETURN(modules[i], RunHloPasses(std::move(modules[i]), stream_execs[i][0], options)); TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> executable, RunBackend(std::move(modules[i]), stream_execs[i][0], options)); result.push_back(std::move(executable)); } return std::move(result); } }
#include "xla/service/llvm_compiler.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "llvm/IR/Module.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/literal_util.h" #include "xla/service/backend.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/stream_executor.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/casts.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { using LLVMCompilerTest = HloTestBase; const char* const kHloText = R"( HloModule Add ENTRY main { constant.0 = f32[] constant(42.0) constant.1 = f32[] constant(43.0) ROOT add.0 = f32[] add(constant.0, constant.1) } )"; TEST_F(LLVMCompilerTest, HooksTest) { int pre_opt_hook_call_count = 0; int post_opt_hook_call_count = 0; auto pre_opt_hook = [&pre_opt_hook_call_count](const llvm::Module&) { ++pre_opt_hook_call_count; return absl::OkStatus(); }; auto post_opt_hook = [&post_opt_hook_call_count](const llvm::Module&) { ++post_opt_hook_call_count; return absl::OkStatus(); }; auto hlo_module = ParseAndReturnVerifiedModule(kHloText).value(); LLVMCompiler* compiler = tensorflow::down_cast<xla::LLVMCompiler*>(backend().compiler()); compiler->SetPreOptimizationHook(pre_opt_hook); compiler->SetPostOptimizationHook(post_opt_hook); ASSERT_TRUE(compiler ->RunBackend(std::move(hlo_module), backend().default_stream_executor(), nullptr) .ok()); EXPECT_EQ(1, pre_opt_hook_call_count); EXPECT_EQ(1, post_opt_hook_call_count); } TEST_F(LLVMCompilerTest, DISABLED_MultiModuleCompilation) { auto hlo_module = ParseAndReturnVerifiedModule(kHloText).value(); auto hlo_module2 = ParseAndReturnVerifiedModule(kHloText).value(); std::vector<std::unique_ptr<HloModule>> modules; modules.push_back(std::move(hlo_module)); modules.push_back(std::move(hlo_module2)); auto module_group = std::make_unique<HloModuleGroup>("test_module_group", std::move(modules)); std::vector<std::vector<se::StreamExecutor*>> executors; executors.push_back({backend().default_stream_executor()}); executors.push_back({backend().default_stream_executor()}); EXPECT_IS_OK(backend().compiler()->Compile(std::move(module_group), std::move(executors), backend().memory_allocator())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/llvm_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/llvm_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
335f1012-0c74-4c51-87eb-9de4ab987744
cpp
google/cel-cpp
expr
base/ast_internal/expr.cc
base/ast_internal/expr_test.cc
#include "base/ast_internal/expr.h" #include <memory> #include <vector> #include "absl/base/no_destructor.h" #include "absl/functional/overload.h" #include "absl/types/variant.h" namespace cel::ast_internal { namespace { const Type& default_type() { static absl::NoDestructor<Type> type; return *type; } TypeKind CopyImpl(const TypeKind& other) { return absl::visit(absl::Overload( [](const std::unique_ptr<Type>& other) -> TypeKind { return std::make_unique<Type>(*other); }, [](const auto& other) -> TypeKind { return other; }), other); } } const Extension::Version& Extension::Version::DefaultInstance() { static absl::NoDestructor<Version> instance; return *instance; } const Extension& Extension::DefaultInstance() { static absl::NoDestructor<Extension> instance; return *instance; } Extension::Extension(const Extension& other) : id_(other.id_), affected_components_(other.affected_components_), version_(std::make_unique<Version>(*other.version_)) {} Extension& Extension::operator=(const Extension& other) { id_ = other.id_; affected_components_ = other.affected_components_; version_ = std::make_unique<Version>(*other.version_); return *this; } const Type& ListType::elem_type() const { if (elem_type_ != nullptr) { return *elem_type_; } return default_type(); } bool ListType::operator==(const ListType& other) const { return elem_type() == other.elem_type(); } const Type& MapType::key_type() const { if (key_type_ != nullptr) { return *key_type_; } return default_type(); } const Type& MapType::value_type() const { if (value_type_ != nullptr) { return *value_type_; } return default_type(); } bool MapType::operator==(const MapType& other) const { return key_type() == other.key_type() && value_type() == other.value_type(); } const Type& FunctionType::result_type() const { if (result_type_ != nullptr) { return *result_type_; } return default_type(); } bool FunctionType::operator==(const FunctionType& other) const { return result_type() == other.result_type() && arg_types_ == other.arg_types_; } const Type& Type::type() const { auto* value = absl::get_if<std::unique_ptr<Type>>(&type_kind_); if (value != nullptr) { if (*value != nullptr) return **value; } return default_type(); } Type::Type(const Type& other) : type_kind_(CopyImpl(other.type_kind_)) {} Type& Type::operator=(const Type& other) { type_kind_ = CopyImpl(other.type_kind_); return *this; } FunctionType::FunctionType(const FunctionType& other) : result_type_(std::make_unique<Type>(other.result_type())), arg_types_(other.arg_types()) {} FunctionType& FunctionType::operator=(const FunctionType& other) { result_type_ = std::make_unique<Type>(other.result_type()); arg_types_ = other.arg_types(); return *this; } }
#include "base/ast_internal/expr.h" #include <memory> #include <string> #include <utility> #include "absl/types/variant.h" #include "common/expr.h" #include "internal/testing.h" namespace cel { namespace ast_internal { namespace { TEST(AstTest, ListTypeMutableConstruction) { ListType type; type.mutable_elem_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.elem_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, MapTypeMutableConstruction) { MapType type; type.mutable_key_type() = Type(PrimitiveType::kBool); type.mutable_value_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.key_type().type_kind()), PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.value_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, MapTypeComparatorKeyType) { MapType type; type.mutable_key_type() = Type(PrimitiveType::kBool); EXPECT_FALSE(type == MapType()); } TEST(AstTest, MapTypeComparatorValueType) { MapType type; type.mutable_value_type() = Type(PrimitiveType::kBool); EXPECT_FALSE(type == MapType()); } TEST(AstTest, FunctionTypeMutableConstruction) { FunctionType type; type.mutable_result_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.result_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, FunctionTypeComparatorArgTypes) { FunctionType type; type.mutable_arg_types().emplace_back(Type()); EXPECT_FALSE(type == FunctionType()); } TEST(AstTest, ListTypeDefaults) { EXPECT_EQ(ListType().elem_type(), Type()); } TEST(AstTest, MapTypeDefaults) { EXPECT_EQ(MapType().key_type(), Type()); EXPECT_EQ(MapType().value_type(), Type()); } TEST(AstTest, FunctionTypeDefaults) { EXPECT_EQ(FunctionType().result_type(), Type()); } TEST(AstTest, TypeDefaults) { EXPECT_EQ(Type().null(), nullptr); EXPECT_EQ(Type().primitive(), PrimitiveType::kPrimitiveTypeUnspecified); EXPECT_EQ(Type().wrapper(), PrimitiveType::kPrimitiveTypeUnspecified); EXPECT_EQ(Type().well_known(), WellKnownType::kWellKnownTypeUnspecified); EXPECT_EQ(Type().list_type(), ListType()); EXPECT_EQ(Type().map_type(), MapType()); EXPECT_EQ(Type().function(), FunctionType()); EXPECT_EQ(Type().message_type(), MessageType()); EXPECT_EQ(Type().type_param(), ParamType()); EXPECT_EQ(Type().type(), Type()); EXPECT_EQ(Type().error_type(), ErrorType()); EXPECT_EQ(Type().abstract_type(), AbstractType()); } TEST(AstTest, TypeComparatorTest) { Type type; type.set_type_kind(std::make_unique<Type>(PrimitiveType::kBool)); EXPECT_TRUE(type == Type(std::make_unique<Type>(PrimitiveType::kBool))); EXPECT_FALSE(type == Type(PrimitiveType::kBool)); EXPECT_FALSE(type == Type(std::unique_ptr<Type>())); EXPECT_FALSE(type == Type(std::make_unique<Type>(PrimitiveType::kInt64))); } TEST(AstTest, ExprMutableConstruction) { Expr expr; expr.mutable_const_expr().set_bool_value(true); ASSERT_TRUE(expr.has_const_expr()); EXPECT_TRUE(expr.const_expr().bool_value()); expr.mutable_ident_expr().set_name("expr"); ASSERT_TRUE(expr.has_ident_expr()); EXPECT_FALSE(expr.has_const_expr()); EXPECT_EQ(expr.ident_expr().name(), "expr"); expr.mutable_select_expr().set_field("field"); ASSERT_TRUE(expr.has_select_expr()); EXPECT_FALSE(expr.has_ident_expr()); EXPECT_EQ(expr.select_expr().field(), "field"); expr.mutable_call_expr().set_function("function"); ASSERT_TRUE(expr.has_call_expr()); EXPECT_FALSE(expr.has_select_expr()); EXPECT_EQ(expr.call_expr().function(), "function"); expr.mutable_list_expr(); EXPECT_TRUE(expr.has_list_expr()); EXPECT_FALSE(expr.has_call_expr()); expr.mutable_struct_expr().set_name("name"); ASSERT_TRUE(expr.has_struct_expr()); EXPECT_EQ(expr.struct_expr().name(), "name"); EXPECT_FALSE(expr.has_list_expr()); expr.mutable_comprehension_expr().set_accu_var("accu_var"); ASSERT_TRUE(expr.has_comprehension_expr()); EXPECT_FALSE(expr.has_list_expr()); EXPECT_EQ(expr.comprehension_expr().accu_var(), "accu_var"); } TEST(AstTest, ReferenceConstantDefaultValue) { Reference reference; EXPECT_EQ(reference.value(), Constant()); } TEST(AstTest, TypeCopyable) { Type type = Type(PrimitiveType::kBool); Type type2 = type; EXPECT_TRUE(type2.has_primitive()); EXPECT_EQ(type2, type); type = Type(ListType(std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; EXPECT_TRUE(type2.has_list_type()); EXPECT_EQ(type2, type); type = Type(MapType(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; EXPECT_TRUE(type2.has_map_type()); EXPECT_EQ(type2, type); type = Type(FunctionType(std::make_unique<Type>(PrimitiveType::kBool), {})); type2 = type; EXPECT_TRUE(type2.has_function()); EXPECT_EQ(type2, type); type = Type(AbstractType("optional", {Type(PrimitiveType::kBool)})); type2 = type; EXPECT_TRUE(type2.has_abstract_type()); EXPECT_EQ(type2, type); } TEST(AstTest, TypeMoveable) { Type type = Type(PrimitiveType::kBool); Type type2 = type; Type type3 = std::move(type); EXPECT_TRUE(type2.has_primitive()); EXPECT_EQ(type2, type3); type = Type(ListType(std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_list_type()); EXPECT_EQ(type2, type3); type = Type(MapType(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_map_type()); EXPECT_EQ(type2, type3); type = Type(FunctionType(std::make_unique<Type>(PrimitiveType::kBool), {})); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_function()); EXPECT_EQ(type2, type3); type = Type(AbstractType("optional", {Type(PrimitiveType::kBool)})); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_abstract_type()); EXPECT_EQ(type2, type3); } TEST(AstTest, NestedTypeKindCopyAssignable) { ListType list_type(std::make_unique<Type>(PrimitiveType::kBool)); ListType list_type2; list_type2 = list_type; EXPECT_EQ(list_type2, list_type); MapType map_type(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool)); MapType map_type2; map_type2 = map_type; AbstractType abstract_type( "abstract", {Type(PrimitiveType::kBool), Type(PrimitiveType::kBool)}); AbstractType abstract_type2; abstract_type2 = abstract_type; EXPECT_EQ(abstract_type2, abstract_type); FunctionType function_type( std::make_unique<Type>(PrimitiveType::kBool), {Type(PrimitiveType::kBool), Type(PrimitiveType::kBool)}); FunctionType function_type2; function_type2 = function_type; EXPECT_EQ(function_type2, function_type); } TEST(AstTest, ExtensionSupported) { SourceInfo source_info; source_info.mutable_extensions().push_back( Extension("constant_folding", nullptr, {})); EXPECT_EQ(source_info.extensions()[0], Extension("constant_folding", nullptr, {})); } TEST(AstTest, ExtensionEquality) { Extension extension1("constant_folding", nullptr, {}); EXPECT_EQ(extension1, Extension("constant_folding", nullptr, {})); EXPECT_NE(extension1, Extension("constant_folding", std::make_unique<Extension::Version>(1, 0), {})); EXPECT_NE(extension1, Extension("constant_folding", nullptr, {Extension::Component::kRuntime})); EXPECT_EQ(extension1, Extension("constant_folding", std::make_unique<Extension::Version>(0, 0), {})); } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/base/ast_internal/expr.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/base/ast_internal/expr_test.cc
4552db5798fb0853b131b783d8875794334fae7f
51f65671-4b5c-44ae-919f-d1b236832132
cpp
google/arolla
generic_operator_overload_condition
arolla/expr/operator_loader/generic_operator_overload_condition.cc
arolla/expr/operator_loader/generic_operator_overload_condition_test.cc
#include "arolla/expr/operator_loader/generic_operator_overload_condition.h" #include <cstdint> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/eval/model_executor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/tuple_expr_operator.h" #include "arolla/io/wildcard_input_loader.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { using ::arolla::expr::BindOp; using ::arolla::expr::CompileModelExecutor; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::MakeTupleOperator; using ::arolla::expr::ModelEvaluationOptions; absl::StatusOr<GenericOperatorOverloadConditionFn> MakeGenericOperatorOverloadConditionFn( absl::Span<const ExprNodePtr> prepared_condition_exprs) { ASSIGN_OR_RETURN(auto expr, BindOp(MakeTupleOperator::Make(), prepared_condition_exprs, {})); auto accessor = [](QTypePtr input_tuple_qtype, absl::string_view) { return input_tuple_qtype; }; ASSIGN_OR_RETURN(auto input_loader, WildcardInputLoader<QTypePtr>::Build(accessor)); ASSIGN_OR_RETURN(auto model_executor, CompileModelExecutor<TypedValue>(expr, *input_loader)); const auto test_input_qtype = MakeTupleQType({}); const auto expected_output_qtype = MakeTupleQType( std::vector(prepared_condition_exprs.size(), GetQType<OptionalUnit>())); ASSIGN_OR_RETURN( auto actual_output, model_executor.ExecuteOnHeap(ModelEvaluationOptions{}, test_input_qtype)); if (actual_output.GetType() != expected_output_qtype) { return absl::FailedPreconditionError(absl::StrFormat( "unexpected return qtype: expected %s, got %s", expected_output_qtype->name(), actual_output.GetType()->name())); } return [model_executor = std::move(model_executor)]( QTypePtr input_tuple_qtype) -> absl::StatusOr<std::vector<bool>> { ASSIGN_OR_RETURN(auto qvalue, model_executor.ExecuteOnHeap(ModelEvaluationOptions{}, input_tuple_qtype)); const int64_t n = qvalue.GetFieldCount(); std::vector<bool> result(n); for (int64_t i = 0; i < n; ++i) { result[i] = qvalue.GetField(i).UnsafeAs<OptionalUnit>().present; } return result; }; } }
#include "arolla/expr/operator_loader/generic_operator_overload_condition.h" #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/unit.h" namespace arolla::operator_loader { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::expr::CallOp; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; class GenericOperatorOverloadConditionTest : public ::testing::Test { protected: static absl::StatusOr<ExprNodePtr> Arg(int n) { return CallOp("qtype.get_field_qtype", {Leaf("input_tuple_qtype"), Literal(n)}); } static absl::StatusOr<ExprNodePtr> Equal(absl::StatusOr<ExprNodePtr> lhs, absl::StatusOr<ExprNodePtr> rhs) { return CallOp("core.equal", {lhs, rhs}); } static absl::StatusOr<ExprNodePtr> NotEqual(absl::StatusOr<ExprNodePtr> lhs, absl::StatusOr<ExprNodePtr> rhs) { return CallOp("core.not_equal", {lhs, rhs}); } static absl::StatusOr<ExprNodePtr> And(absl::StatusOr<ExprNodePtr> lhs, absl::StatusOr<ExprNodePtr> rhs) { return CallOp("core.presence_and", {lhs, rhs}); } }; TEST_F(GenericOperatorOverloadConditionTest, Empty) { ASSERT_OK_AND_ASSIGN(auto condition_fn, MakeGenericOperatorOverloadConditionFn({})); EXPECT_THAT(condition_fn(MakeTupleQType({})), IsOkAndHolds(std::vector<bool>())); } TEST_F(GenericOperatorOverloadConditionTest, SingleCondition) { ASSERT_OK_AND_ASSIGN(auto condition_expr, NotEqual(Arg(0), Literal(GetNothingQType()))); ASSERT_OK_AND_ASSIGN( auto condition_fn, MakeGenericOperatorOverloadConditionFn({condition_expr})); EXPECT_THAT(condition_fn(MakeTupleQType({})), IsOkAndHolds(std::vector({false}))); EXPECT_THAT(condition_fn(MakeTupleQType({GetNothingQType()})), IsOkAndHolds(std::vector({false}))); EXPECT_THAT(condition_fn(MakeTupleQType({GetQType<Unit>()})), IsOkAndHolds(std::vector({true}))); } TEST_F(GenericOperatorOverloadConditionTest, MultipleConditions) { ASSERT_OK_AND_ASSIGN(auto condition_expr_1, And(And(NotEqual(Arg(0), Literal(GetNothingQType())), NotEqual(Arg(1), Literal(GetNothingQType()))), NotEqual(Arg(0), Arg(1)))); ASSERT_OK_AND_ASSIGN(auto condition_expr_2, And(And(NotEqual(Arg(0), Literal(GetNothingQType())), NotEqual(Arg(1), Literal(GetNothingQType()))), Equal(Arg(0), Arg(1)))); ASSERT_OK_AND_ASSIGN(auto condition_fn, MakeGenericOperatorOverloadConditionFn( {condition_expr_1, condition_expr_2})); EXPECT_THAT(condition_fn(MakeTupleQType({})), IsOkAndHolds(std::vector({false, false}))); EXPECT_THAT(condition_fn(MakeTupleQType({GetNothingQType()})), IsOkAndHolds(std::vector({false, false}))); EXPECT_THAT( condition_fn(MakeTupleQType({GetQType<Unit>(), GetQType<Unit>()})), IsOkAndHolds(std::vector({false, true}))); EXPECT_THAT(condition_fn(MakeTupleQType({GetQType<Unit>(), GetQType<int>()})), IsOkAndHolds(std::vector({true, false}))); } TEST_F(GenericOperatorOverloadConditionTest, UnexpectedReturnQType) { ASSERT_OK_AND_ASSIGN(auto condition_expr_1, NotEqual(Arg(0), Literal(GetNothingQType()))); ASSERT_OK_AND_ASSIGN(auto condition_expr_2, Arg(1)); EXPECT_THAT(MakeGenericOperatorOverloadConditionFn( {condition_expr_1, condition_expr_2}), StatusIs(absl::StatusCode::kFailedPrecondition, "unexpected return qtype: expected " "tuple<OPTIONAL_UNIT,OPTIONAL_UNIT>, got " "tuple<OPTIONAL_UNIT,QTYPE>")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/generic_operator_overload_condition.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/generic_operator_overload_condition_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
d31ea08a-dfb2-4f54-8dcb-90625354d274
cpp
tensorflow/tensorflow
internal
tensorflow/lite/delegates/gpu/common/memory_management/internal.cc
tensorflow/lite/delegates/gpu/common/memory_management/internal_test.cc
#include "tensorflow/lite/delegates/gpu/common/memory_management/internal.h" #include <algorithm> #include <cstddef> #include <vector> #include "tensorflow/lite/delegates/gpu/common/memory_management/types.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { bool CompareBySize(const TensorUsageWithIndex<size_t>& first, const TensorUsageWithIndex<size_t>& second) { return first.usage_record->tensor_size > second.usage_record->tensor_size; } bool IsCoveringObject(const uint2& first_object, const uint2& second_object) { return first_object.x >= second_object.x && first_object.y >= second_object.y; } bool IsCoveringObject(const uint3& first_object, const uint3& second_object) { return first_object.x >= second_object.x && first_object.y >= second_object.y && first_object.z >= second_object.z; } size_t AbsDiffInElements(const size_t first_size, const size_t second_size) { return first_size >= second_size ? first_size - second_size : second_size - first_size; } size_t AbsDiffInElements(const uint2& first_size, const uint2& second_size) { const size_t first_elements_cnt = first_size.y * first_size.x; const size_t second_elements_cnt = second_size.y * second_size.x; return first_elements_cnt >= second_elements_cnt ? first_elements_cnt - second_elements_cnt : second_elements_cnt - first_elements_cnt; } size_t AbsDiffInElements(const uint3& first_size, const uint3& second_size) { const size_t first_elements_cnt = first_size.z * first_size.y * first_size.x; const size_t second_elements_cnt = second_size.z * second_size.y * second_size.x; return first_elements_cnt >= second_elements_cnt ? first_elements_cnt - second_elements_cnt : second_elements_cnt - first_elements_cnt; } std::vector<TaskProfile> CalculateTaskProfiles( const std::vector<TensorUsageRecord<size_t>>& usage_records) { TaskId num_tasks = 0; for (size_t i = 0; i < usage_records.size(); ++i) { num_tasks = std::max(num_tasks, usage_records[i].last_task + 1); } std::vector<TaskProfile> task_profiles(num_tasks); for (size_t rec_id = 0; rec_id < usage_records.size(); ++rec_id) { for (TaskId task_id = usage_records[rec_id].first_task; task_id <= usage_records[rec_id].last_task; ++task_id) { task_profiles[task_id].emplace_back(&usage_records[rec_id], rec_id); } } for (auto& task_profile : task_profiles) { std::stable_sort(task_profile.begin(), task_profile.end(), CompareBySize); } return task_profiles; } std::vector<size_t> CalculatePositionalMaximums( const std::vector<TensorUsageRecord<size_t>>& usage_records) { std::vector<TaskProfile> task_profiles = CalculateTaskProfiles(usage_records); std::vector<size_t> positional_max; for (const auto& task_profile : task_profiles) { size_t i = 0; for (; i < task_profile.size() && i < positional_max.size(); ++i) { positional_max[i] = std::max(positional_max[i], task_profile[i].usage_record->tensor_size); } for (; i < task_profile.size(); ++i) { positional_max.push_back(task_profile[i].usage_record->tensor_size); } } return positional_max; } } }
#include "tensorflow/lite/delegates/gpu/common/memory_management/internal.h" #include <cstddef> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/memory_management/types.h" namespace tflite { namespace gpu { namespace { using ::testing::ElementsAre; TEST(TaskProfileTest, EmptyRecords) { std::vector<TaskProfile> task_profiles = CalculateTaskProfiles({}); EXPECT_TRUE(task_profiles.empty()); std::vector<size_t> positional_max = CalculatePositionalMaximums({}); EXPECT_TRUE(positional_max.empty()); } TEST(TaskProfileTest, OneRecord) { std::vector<TensorUsageRecord<size_t>> usage_records{ {16, 0, 1}}; const std::vector<std::vector<size_t>> correct_idx = {{0}, {0}}; std::vector<TaskProfile> task_profiles = CalculateTaskProfiles(usage_records); ASSERT_EQ(task_profiles.size(), correct_idx.size()); for (size_t i = 0; i < task_profiles.size(); ++i) { ASSERT_EQ(task_profiles[i].size(), correct_idx[i].size()); for (size_t j = 0; j < task_profiles[i].size(); ++j) { ASSERT_EQ(task_profiles[i][j].usage_record, &usage_records[correct_idx[i][j]]); ASSERT_EQ(task_profiles[i][j].idx, correct_idx[i][j]); } } std::vector<size_t> positional_max = CalculatePositionalMaximums(usage_records); EXPECT_THAT(positional_max, ElementsAre(16)); } TEST(TaskProfileTest, ChainRecords) { std::vector<TensorUsageRecord<size_t>> usage_records{ {16, 0, 1}, {8, 1, 2}, {64, 2, 3}, {32, 3, 4}, {8, 4, 5}, }; const std::vector<std::vector<size_t>> correct_idx = {{0}, {0, 1}, {2, 1}, {2, 3}, {3, 4}, {4}}; std::vector<TaskProfile> task_profiles = CalculateTaskProfiles(usage_records); ASSERT_EQ(task_profiles.size(), correct_idx.size()); for (size_t i = 0; i < task_profiles.size(); ++i) { ASSERT_EQ(task_profiles[i].size(), correct_idx[i].size()); for (size_t j = 0; j < task_profiles[i].size(); ++j) { ASSERT_EQ(task_profiles[i][j].usage_record, &usage_records[correct_idx[i][j]]); ASSERT_EQ(task_profiles[i][j].idx, correct_idx[i][j]); } } std::vector<size_t> positional_max = CalculatePositionalMaximums(usage_records); EXPECT_THAT(positional_max, ElementsAre(64, 32)); } TEST(TaskProfileTest, ComplexRecords) { std::vector<TensorUsageRecord<size_t>> usage_records{ {32, 0, 1}, {32, 1, 4}, {8, 2, 5}, {16, 3, 5}, {8, 4, 5}, {64, 5, 7}, {8, 6, 8}, {8, 7, 8}, {16, 8, 9}}; const std::vector<std::vector<size_t>> correct_idx = { {0}, {0, 1}, {1, 2}, {1, 3, 2}, {1, 3, 2, 4}, {5, 3, 2, 4}, {5, 6}, {5, 6, 7}, {8, 6, 7}, {8}}; std::vector<TaskProfile> task_profiles = CalculateTaskProfiles(usage_records); ASSERT_EQ(task_profiles.size(), correct_idx.size()); for (size_t i = 0; i < task_profiles.size(); ++i) { ASSERT_EQ(task_profiles[i].size(), correct_idx[i].size()); for (size_t j = 0; j < task_profiles[i].size(); ++j) { ASSERT_EQ(task_profiles[i][j].usage_record, &usage_records[correct_idx[i][j]]); ASSERT_EQ(task_profiles[i][j].idx, correct_idx[i][j]); } } std::vector<size_t> positional_max = CalculatePositionalMaximums(usage_records); EXPECT_THAT(positional_max, ElementsAre(64, 32, 8, 8)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/memory_management/internal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/memory_management/internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
91e75353-5a71-453d-bbaa-606e96f59b4f
cpp
tensorflow/tensorflow
cc_op_gen
tensorflow/cc/framework/cc_op_gen.cc
tensorflow/cc/framework/cc_op_gen_test.cc
#include "tensorflow/cc/framework/cc_op_gen.h" #include <memory> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/strings/escaping.h" #include "tensorflow/cc/framework/cc_op_gen_util.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace cc_op { namespace { const int kRightMargin = 79; string GetConstructorDecl(const OpInfo& op_info, StringPiece op_name_prefix, bool include_attr) { const string prefix = strings::StrCat(op_name_prefix, op_info.op_name, "("); string c_decl; for (int i = 0; i < op_info.arg_types.size(); ++i) { if (i > 0) strings::StrAppend(&c_decl, ", "); strings::StrAppend(&c_decl, op_info.arg_types[i], " ", op_info.arg_names[i]); } if (include_attr && op_info.has_optional_attrs) { strings::StrAppend(&c_decl, ", const ", op_info.op_name, "::Attrs& attrs"); } strings::StrAppend(&c_decl, ")"); return WordWrap(prefix, c_decl, kRightMargin); } void WriteClassDecl(const OpInfo& op_info, WritableFile* h) { string class_decl = op_info.comment; strings::StrAppend(&class_decl, "class ", op_info.op_name, " {\n"); strings::StrAppend(&class_decl, " public:\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, op_info.GetOpAttrStruct()); } strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", false), ";\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", true), ";\n"); } if (op_info.output_types.empty()) { strings::StrAppend(&class_decl, " operator ::tensorflow::Operation() const { " "return operation; }\n"); } else if (op_info.output_types.size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(&class_decl, " ::tensorflow::Output operator[](size_t index) " "const { return ", op_info.output_names[0], "[index]; }\n\n"); } else { strings::StrAppend(&class_decl, " operator ::tensorflow::Output() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " operator ::tensorflow::Input() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " ::tensorflow::Node* node() const { return ", op_info.output_names[0], ".node(); }\n"); } } if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, "\n"); for (int i = 0; i < op_info.graph_op_def.attr_size(); ++i) { const auto& attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if ((op_info.inferred_input_attrs.find(attr.name()) != op_info.inferred_input_attrs.end()) || !api_def_attr.has_default_value()) { continue; } const auto entry = AttrTypeName(attr.type()); const auto attr_type_name = entry.first; const bool use_const = entry.second; const string camel_case_name = ToCamelCase(api_def_attr.rename_to()); const string suffix = (camel_case_name == op_info.op_name || camel_case_name == "Attrs") ? "_" : ""; const string attr_func_def = strings::StrCat( camel_case_name, suffix, "(", use_const ? "const " : "", attr_type_name, use_const ? "&" : ""); strings::StrAppend(&class_decl, " static Attrs ", attr_func_def, " x) {\n"); strings::StrAppend(&class_decl, " return Attrs().", camel_case_name, suffix, "(x);\n"); strings::StrAppend(&class_decl, " }\n"); } } strings::StrAppend(&class_decl, "\n Operation operation;\n"); for (int i = 0; i < op_info.output_types.size(); ++i) { strings::StrAppend(&class_decl, " ", op_info.output_types[i], " ", op_info.output_names[i], ";\n"); } strings::StrAppend(&class_decl, "};\n"); if (!op_info.aliases.empty()) { for (const auto& alias : op_info.aliases) { strings::StrAppend(&class_decl, "typedef ", op_info.op_name, " ", alias, ";\n"); } } strings::StrAppend(&class_decl, "\n"); TF_CHECK_OK(h->Append(class_decl)); } void GetOutput(const OpInfo& op_info, string* out) { const string scope_str = op_info.arg_names[0]; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(out, " this->operation = Operation(ret);\n"); if (op_info.graph_op_def.output_arg_size() == 0) { strings::StrAppend(out, " return;\n"); return; } if (op_info.graph_op_def.output_arg_size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(out, " for (int32 i = 0; i < ret->num_outputs(); ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[0], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[0], " = Output(ret, 0);\n"); } return; } strings::StrAppend(out, " ::tensorflow::NameRangeMap _outputs_range;\n"); strings::StrAppend(out, " ::tensorflow::Status _status_ = " "::tensorflow::NameRangesForNode(*ret, ret->op_def(), " "nullptr, &_outputs_range);\n"); strings::StrAppend(out, " if (!_status_.ok()) {\n", " ", scope_str, ".UpdateStatus(_status_);\n", " return;\n"); strings::StrAppend(out, " }\n\n"); for (int i = 0; i < op_info.graph_op_def.output_arg_size(); ++i) { const string arg_range = strings::StrCat( "_outputs_range[\"", op_info.graph_op_def.output_arg(i).name(), "\"]"); if (op_info.is_list_output[i]) { strings::StrAppend(out, " for (int32 i = ", arg_range, ".first; i < ", arg_range, ".second; ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[i], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[i], " = Output(ret, ", arg_range, ".first);\n"); } } } string GetConstructorBody(const OpInfo& op_info) { const string scope_str = op_info.arg_names[0]; string body; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(&body, " ", return_on_error, "\n"); for (int i = 0; i < op_info.graph_op_def.input_arg_size(); ++i) { const auto& arg(op_info.graph_op_def.input_arg(i)); const auto& api_def_arg(op_info.api_def.in_arg(i)); strings::StrAppend( &body, " auto _", api_def_arg.rename_to(), " = ::tensorflow::ops::", ArgIsList(arg) ? "AsNodeOutList" : "AsNodeOut", "(", scope_str, ", ", AvoidCPPKeywords(api_def_arg.rename_to()), ");\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); } strings::StrAppend(&body, " ::tensorflow::Node* ret;\n"); strings::StrAppend(&body, " const auto unique_name = ", scope_str, ".GetUniqueNameForOp(\"", op_info.op_name, "\");\n"); strings::StrAppend( &body, " auto builder = ::tensorflow::NodeBuilder(unique_name, \"", op_info.graph_op_def.name(), "\")\n"); const string spaces = " "; for (int i = 0; i < op_info.api_def.in_arg_size(); ++i) { const auto& arg(op_info.api_def.in_arg(i)); strings::StrAppend(&body, spaces, ".Input(_", arg.rename_to(), ")\n"); } for (int i = 0; i < op_info.api_def.attr_size(); ++i) { const auto& graph_attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if (op_info.inferred_input_attrs.find(api_def_attr.name()) != op_info.inferred_input_attrs.end()) { continue; } const string attr_name = api_def_attr.has_default_value() ? strings::StrCat("attrs.", api_def_attr.rename_to(), "_") : AvoidCPPKeywords(api_def_attr.rename_to()); strings::StrAppend(&body, spaces, ".Attr(\"", graph_attr.name(), "\", ", attr_name, ")\n"); } strings::StrAppend(&body, " ;\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateBuilder(&builder);\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(builder.Finalize(", scope_str, ".graph(), &ret));\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(", scope_str, ".DoShapeInference(ret));\n"); GetOutput(op_info, &body); return body; } void WriteClassDef(const OpInfo& op_info, WritableFile* cc) { string class_def; strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), true), " {\n"); strings::StrAppend(&class_def, GetConstructorBody(op_info)); strings::StrAppend(&class_def, "}\n\n"); if (op_info.has_optional_attrs) { strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), false)); strings::StrAppend(&class_def, "\n : ", op_info.op_name, "("); int i = 0; for (; i < op_info.arg_names.size(); ++i) { if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.arg_names[i]); } if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.op_name, "::Attrs()"); strings::StrAppend(&class_def, ") {}\n\n"); } TF_CHECK_OK(cc->Append(class_def)); } void WriteCCOp(const OpDef& graph_op_def, const ApiDef& api_def, const std::vector<string>& aliases, WritableFile* h, WritableFile* cc) { OpInfo op_info(graph_op_def, api_def, aliases); WriteClassDecl(op_info, h); WriteClassDef(op_info, cc); } void StartFiles(bool internal, const string& dot_h_fname, WritableFile* h, WritableFile* cc, string* op_header_guard) { const string header = R"header( #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" )header"; const string namespace_begin = internal ? R"namespace( namespace tensorflow { namespace ops { namespace internal { )namespace" : R"namespace( namespace tensorflow { namespace ops { )namespace"; const string op_header = GetPath(dot_h_fname); *op_header_guard = ToGuard(op_header); const string cc_header = strings::StrCat( R"include( #include "tensorflow/cc/ops/const_op.h" )include", "#include \"", op_header, "\"\n", namespace_begin); const string filename = GetFilename(dot_h_fname); const string doxygen = strings::StrCat(" ToTitle(filename), "\n", " TF_CHECK_OK(h->Append( strings::StrCat(" "#ifndef ", *op_header_guard, "\n" "#define ", *op_header_guard, "\n\n"))); TF_CHECK_OK(h->Append(header)); TF_CHECK_OK(h->Append(namespace_begin)); TF_CHECK_OK(h->Append(doxygen)); TF_CHECK_OK(cc->Append(cc_header)); } void FinishFiles(bool internal, WritableFile* h, WritableFile* cc, const string& op_header_guard) { const string footer = internal ? R"footer(} } } )footer" : R"footer( } } )footer"; TF_CHECK_OK(h->Append(footer)); TF_CHECK_OK( h->Append(strings::StrCat("\n#endif ", " TF_CHECK_OK(cc->Append(footer)); TF_CHECK_OK(cc->Close()); TF_CHECK_OK(h->Close()); } string MakeInternal(const string& fname) { auto dot_pos = fname.rfind('.'); if (dot_pos == string::npos) { return strings::StrCat(fname, "_internal"); } else { return strings::StrCat(fname.substr(0, dot_pos), "_internal", fname.substr(dot_pos)); } } } void WriteCCOps(const OpList& ops, const ApiDefMap& api_def_map, const string& dot_h_fname, const string& dot_cc_fname) { Env* env = Env::Default(); std::unique_ptr<WritableFile> h = nullptr; std::unique_ptr<WritableFile> cc = nullptr; TF_CHECK_OK(env->NewWritableFile(dot_h_fname, &h)); TF_CHECK_OK(env->NewWritableFile(dot_cc_fname, &cc)); string op_header_guard; StartFiles(false, dot_h_fname, h.get(), cc.get(), &op_header_guard); std::unique_ptr<WritableFile> internal_h = nullptr; std::unique_ptr<WritableFile> internal_cc = nullptr; const string internal_dot_h_fname = MakeInternal(dot_h_fname); TF_CHECK_OK(env->NewWritableFile(internal_dot_h_fname, &internal_h)); TF_CHECK_OK(env->NewWritableFile(MakeInternal(dot_cc_fname), &internal_cc)); string internal_op_header_guard; StartFiles(true , internal_dot_h_fname, internal_h.get(), internal_cc.get(), &internal_op_header_guard); for (const auto& graph_op_def : ops.op()) { if (graph_op_def.has_deprecation() && graph_op_def.deprecation().version() <= TF_GRAPH_DEF_VERSION) { continue; } if (graph_op_def.name() == "Const") continue; const auto* api_def = api_def_map.GetApiDef(graph_op_def.name()); std::vector<string> aliases; if (api_def->visibility() == ApiDef::SKIP) continue; for (int endpoint_i = 1; endpoint_i < api_def->endpoint_size(); ++endpoint_i) { aliases.push_back(api_def->endpoint(endpoint_i).name()); } if (api_def->visibility() == ApiDef::HIDDEN) { WriteCCOp(graph_op_def, *api_def, aliases, internal_h.get(), internal_cc.get()); continue; } WriteCCOp(graph_op_def, *api_def, aliases, h.get(), cc.get()); } FinishFiles(false, h.get(), cc.get(), op_header_guard); FinishFiles(true , internal_h.get(), internal_cc.get(), internal_op_header_guard); } } }
#include "tensorflow/cc/framework/cc_op_gen.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr char kBaseOpDef[] = R"( op { name: "Foo" input_arg { name: "images" description: "Images to process." } input_arg { name: "dim" description: "Description for dim." type: DT_FLOAT } output_arg { name: "output" description: "Description for output." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for images" allowed_values { list { type: DT_UINT8 type: DT_INT8 } } default_value { i: 1 } } summary: "Summary for op Foo." description: "Description for op Foo." } )"; void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } void ExpectDoesNotHaveSubstr(StringPiece s, StringPiece expected) { EXPECT_FALSE(absl::StrContains(s, expected)) << "'" << s << "' contains '" << expected << "'"; } void ExpectSubstrOrder(const string& s, const string& before, const string& after) { int before_pos = s.find(before); int after_pos = s.find(after); ASSERT_NE(std::string::npos, before_pos); ASSERT_NE(std::string::npos, after_pos); EXPECT_LT(before_pos, after_pos) << before << " is not before " << after << " in " << s; } void GenerateCcOpFiles(Env* env, const OpList& ops, const ApiDefMap& api_def_map, string* h_file_text, string* internal_h_file_text) { const string& tmpdir = testing::TmpDir(); const auto h_file_path = io::JoinPath(tmpdir, "test.h"); const auto cc_file_path = io::JoinPath(tmpdir, "test.cc"); const auto internal_h_file_path = io::JoinPath(tmpdir, "test_internal.h"); const auto internal_cc_file_path = io::JoinPath(tmpdir, "test_internal.cc"); cc_op::WriteCCOps(ops, api_def_map, h_file_path, cc_file_path); TF_ASSERT_OK(ReadFileToString(env, h_file_path, h_file_text)); TF_ASSERT_OK( ReadFileToString(env, internal_h_file_path, internal_h_file_text)); } TEST(CcOpGenTest, TestVisibilityChangedToHidden) { const string api_def = R"( op { graph_op_name: "Foo" visibility: HIDDEN } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string h_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(internal_h_file_text, "class Foo"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(internal_h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo"); } TEST(CcOpGenTest, TestArgNameChanges) { const string api_def = R"( op { graph_op_name: "Foo" arg_order: "dim" arg_order: "images" } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input images", "Input dim"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input dim", "Input images"); } TEST(CcOpGenTest, TestEndpoints) { const string api_def = R"( op { graph_op_name: "Foo" endpoint { name: "Foo1" } endpoint { name: "Foo2" } } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo {"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo1"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo2"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo1"); ExpectHasSubstr(h_file_text, "typedef Foo1 Foo2"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo {"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/framework/cc_op_gen.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/framework/cc_op_gen_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04d8e833-ef24-4c6a-94a9-6f57be904037
cpp
google/arolla
ops_util
arolla/array/ops_util.h
arolla/array/ops_util_test.cc
#ifndef AROLLA_ARRAY_OPS_UTIL_H_ #define AROLLA_ARRAY_OPS_UTIL_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <tuple> #include <type_traits> #include <utility> #include "absl/log/check.h" #include "arolla/array/array.h" #include "arolla/array/id_filter.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/ops/util.h" #include "arolla/memory/optional_value.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/util/meta.h" #include "arolla/util/view_types.h" namespace arolla::array_ops_internal { inline void empty_missing_fn(int64_t, int64_t) {} template <bool ConvertToDense, class ArgList> class ArrayOpsUtil; template <bool ConvertToDense, class... Ts> class ArrayOpsUtil<ConvertToDense, meta::type_list<Ts...>> { public: explicit ArrayOpsUtil(int64_t size, const AsArray<Ts>&... args, RawBufferFactory* buf_factory = GetHeapBufferFactory()) : size_(size) { DCHECK(((size == args.size()) && ... && true)); if constexpr (ConvertToDense) { dense_ = std::make_tuple(args.ToDenseForm(buf_factory).dense_data()...); } else { default_valid_ = !(BoundsValidIds<Ts>(args) || ...); if (default_valid_) { default_values_ = std::make_tuple( MaybeUnwrapOptional<Ts>(args.missing_id_value())...); } if (IsSameIdFilter(args...)) { ids_ = First(args...).id_filter(); dense_ = std::make_tuple(args.dense_data()...); } else { if (!default_valid_) { IdFilter full(IdFilter::kFull); ids_ = IdFilter::UpperBoundIntersect( (BoundsValidIds<Ts>(args) ? args.id_filter() : full)...); } else { ids_ = IdFilter::UpperBoundMerge(First(args...).size(), buf_factory, args.id_filter()...); } dense_ = std::make_tuple( args.WithIds(ids_, args.missing_id_value(), buf_factory) .dense_data()...); } } } template <class Fn, class RepeatedFn, class MissedFn> void Iterate(int64_t from, int64_t to, Fn&& fn, MissedFn&& missing_fn, RepeatedFn&& repeated_fn) const { return Iterate(std::forward<Fn>(fn), std::forward<RepeatedFn>(repeated_fn), std::forward<MissedFn>(missing_fn), std::index_sequence_for<Ts...>{}, from, to); } template <class Fn, class MissedFn> void Iterate(int64_t from, int64_t to, Fn&& fn, MissedFn&& missing_fn) const { auto repeated_fn = [&](int64_t id, int64_t count, view_type_t<Ts>... args) { for (int64_t i = 0; i < count; ++i) fn(id + i, args...); }; return Iterate(fn, std::move(repeated_fn), std::forward<MissedFn>(missing_fn), std::index_sequence_for<Ts...>{}, from, to); } template <class Fn> void Iterate(int64_t from, int64_t to, Fn&& fn) const { Iterate(from, to, std::forward<Fn>(fn), empty_missing_fn); } template <class Fn> void IterateSimple(Fn&& fn) const { return IterateSimple(std::forward<Fn>(fn), std::index_sequence_for<Ts...>{}); } int64_t size() const { return size_; } int64_t PresentCountUpperEstimate() const { if (ids_.type() == IdFilter::kFull || default_valid_) { return size_; } else { return ids_.ids().size(); } } private: using DenseUtil = dense_ops_internal::DenseOpsUtil<meta::type_list<Ts...>>; template <class Fn, class RepeatedFn, class MissedFn, size_t... Is> void Iterate(Fn&& fn, RepeatedFn&& repeated_fn, MissedFn&& missing_fn, std::index_sequence<Is...>, uint64_t from, uint64_t to) const { DCHECK_GE(from, 0); DCHECK_GE(to, from); if (ids_.type() == IdFilter::kFull) { DenseUtil::Iterate( [&](int64_t id, bool valid, view_type_t<Ts>... args) { if (valid) { fn(id, args...); } else { missing_fn(id, 1); } }, from, to, std::get<Is>(dense_)...); return; } DCHECK(!ConvertToDense) << "If ConvertToDense=true, `ids_` must be full"; if constexpr (!ConvertToDense) { auto defaultFn = [&](int64_t id, int64_t row_count) { if (default_valid_) { repeated_fn(id, row_count, std::get<Is>(default_values_)...); } else { missing_fn(id, row_count); } }; auto ids_iter = std::lower_bound(ids_.ids().begin(), ids_.ids().end(), from + ids_.ids_offset()); int64_t offset_from = std::distance(ids_.ids().begin(), ids_iter); auto iter_to = std::lower_bound(ids_.ids().begin(), ids_.ids().end(), to + ids_.ids_offset()); int64_t offset_to = std::distance(ids_.ids().begin(), iter_to); int64_t id = from; const int64_t* ids = ids_.ids().begin(); DenseUtil::Iterate( [&](int64_t offset, bool valid, view_type_t<Ts>... args) { int64_t new_id = ids[offset] - ids_.ids_offset(); if (id < new_id) defaultFn(id, new_id - id); if (valid) { fn(new_id, args...); } else { missing_fn(new_id, 1); } id = new_id + 1; }, offset_from, offset_to, std::get<Is>(dense_)...); if (id < to) defaultFn(id, to - id); } } template <class Fn, size_t... Is> void IterateSimple(Fn&& fn, std::index_sequence<Is...>) const { if (ids_.type() == IdFilter::kFull) { DenseUtil::IterateFromZero( [&](int64_t id, bool valid, view_type_t<Ts>... args) { if (valid) fn(id, args...); }, size_, std::get<Is>(dense_)...); return; } DCHECK(!ConvertToDense) << "If ConvertToDense=true, `ids_` must be full"; if constexpr (!ConvertToDense) { int64_t id = 0; const int64_t* ids = ids_.ids().begin(); DenseUtil::IterateFromZero( [&](int64_t offset, bool valid, view_type_t<Ts>... args) { int64_t new_id = ids[offset] - ids_.ids_offset(); if (default_valid_ && id < new_id) { while (id < new_id) { fn(id++, std::get<Is>(default_values_)...); } } if (valid) fn(new_id, args...); id = new_id + 1; }, ids_.ids().size(), std::get<Is>(dense_)...); if (default_valid_) { while (id < size_) { fn(id++, std::get<Is>(default_values_)...); } } } } template <class Arg, class A> static bool BoundsValidIds(const A& arg) { return !is_optional_v<Arg> && !arg.HasMissingIdValue(); } template <class A, class... As> static bool IsSameIdFilter(const A& a, const As&... as) { return ((a.id_filter().IsSame(as.id_filter()) && ... && true)); } template <class A, class... As> static const A& First(const A& a, const As&...) { return a; } template <class To, class From> static const To& MaybeUnwrapOptional(const OptionalValue<From>& v) { if constexpr (!is_optional_v<To>) { DCHECK(v.present); return v.value; } else { return v; } } int64_t size_; IdFilter ids_{IdFilter::kFull}; std::tuple<AsDenseArray<Ts>...> dense_; bool default_valid_; std::tuple<Ts...> default_values_; }; template <bool ConvertToDense> class ArrayOpsUtil<ConvertToDense, meta::type_list<>> { public: explicit ArrayOpsUtil(int64_t size, RawBufferFactory* = nullptr) : size_(size) {} template <class Fn, class RepeatedFn, class MissedFn> void Iterate(int64_t from, int64_t to, Fn&&, MissedFn&&, RepeatedFn&& repeated_fn) const { repeated_fn(from, to - from); } template <class Fn, class MissedFn> void Iterate(int64_t from, int64_t to, Fn&& fn, MissedFn&&) const { for (int64_t i = from; i < to; ++i) fn(i); } template <class Fn> void Iterate(int64_t from, int64_t to, Fn&& fn) const { for (int64_t i = from; i < to; ++i) fn(i); } template <class Fn> void IterateSimple(Fn&& fn) const { for (int64_t i = 0; i < size_; ++i) fn(i); } int64_t size() const { return size_; } int64_t PresentCountUpperEstimate() const { return size_; } private: int64_t size_; }; template <class OptionalityList, class TypeList> struct ApplyOptionalityToTypes; template <class... Os, class... Ts> struct ApplyOptionalityToTypes<meta::type_list<Os...>, meta::type_list<Ts...>> { using types = meta::type_list<std::conditional_t<is_optional_v<Os>, ::arolla::OptionalValue<Ts>, Ts>...>; }; } namespace arolla { template <class Fn, class T, class... Ts> void ArraysIterate(Fn&& fn, const Array<T>& first_array, const Array<Ts>&... arrays) { static_assert(meta::function_traits<Fn>::arity == sizeof...(arrays) + 2); using arg_list = typename array_ops_internal::ApplyOptionalityToTypes< meta::tail_t<typename meta::function_traits<Fn>::arg_types>, meta::type_list<T, Ts...>>::types; array_ops_internal::ArrayOpsUtil<false, arg_list> util( first_array.size(), first_array, arrays...); util.IterateSimple(std::forward<Fn>(fn)); } template <class Fn, class T, class... Ts> void ArraysIterateDense(Fn&& fn, const Array<T>& first_array, const Array<Ts>&... arrays) { static_assert(meta::function_traits<Fn>::arity == sizeof...(arrays) + 2); using arg_list = typename array_ops_internal::ApplyOptionalityToTypes< meta::tail_t<typename meta::function_traits<Fn>::arg_types>, meta::type_list<T, Ts...>>::types; array_ops_internal::ArrayOpsUtil<true, arg_list> util(first_array.size(), first_array, arrays...); util.IterateSimple(std::forward<Fn>(fn)); } } #endif
#include "arolla/array/ops_util.h" #include <cstdint> #include <optional> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "arolla/array/array.h" #include "arolla/array/id_filter.h" #include "arolla/dense_array/dense_array.h" #include "arolla/memory/buffer.h" #include "arolla/memory/optional_value.h" #include "arolla/util/bytes.h" #include "arolla/util/meta.h" #include "arolla/util/text.h" using ::testing::ElementsAre; namespace arolla::array_ops_internal { TEST(ArrayOpsUtilTest, IterateConst) { ArrayOpsUtil<false, meta::type_list<int, int>> util(6, Array<int>(6, 3), Array<int>(6, 7)); { std::vector<int64_t> ids; std::vector<int> vx; std::vector<int> vy; util.Iterate(1, 4, [&](int64_t id, int x, int y) { ids.push_back(id); vx.push_back(x); vy.push_back(y); }); EXPECT_THAT(ids, ElementsAre(1, 2, 3)); EXPECT_THAT(vx, ElementsAre(3, 3, 3)); EXPECT_THAT(vy, ElementsAre(7, 7, 7)); } { int fn_count = 0; int missing_fn_count = 0; int repeated_fn_count = 0; auto fn = [&](int64_t, int, int) { fn_count++; }; auto missing_fn = [&](int64_t, int64_t) { missing_fn_count++; }; auto repeated_fn = [&](int64_t first_id, int64_t count, int x, int y) { EXPECT_EQ(first_id, 1); EXPECT_EQ(count, 3); EXPECT_EQ(x, 3); EXPECT_EQ(y, 7); repeated_fn_count++; }; util.Iterate(1, 4, fn, missing_fn, repeated_fn); EXPECT_EQ(fn_count, 0); EXPECT_EQ(missing_fn_count, 0); EXPECT_EQ(repeated_fn_count, 1); } } TEST(ArrayOpsUtilTest, IterateSparse) { auto q1 = CreateArray<int>(20, {3, 7, 8, 10}, {1, 2, 3, 4}); auto q2 = CreateArray<int>(20, {4, 8, 10, 11}, {1, 2, 3, 4}); std::vector<std::string> res; auto fn = [&](int64_t id, int x, int y) { res.push_back(absl::StrFormat("single(%d, %d, %d)", id, x, y)); }; auto missing_fn = [&](int64_t id, int64_t count) { res.push_back(absl::StrFormat("missing(%d, %d)", id, count)); }; auto repeated_fn = [&](int64_t id, int64_t count, int x, int y) { res.push_back(absl::StrFormat("repeated(%d, %d, %d, %d)", id, count, x, y)); }; ArrayOpsUtil<false, meta::type_list<int, int>> util(20, q1, q2); util.Iterate(0, 15, fn, missing_fn, repeated_fn); EXPECT_THAT( res, ElementsAre("missing(0, 4)", "missing(4, 1)", "missing(5, 3)", "single(8, 3, 2)", "missing(9, 1)", "single(10, 4, 3)", "missing(11, 1)", "missing(12, 3)")); } TEST(ArrayOpsUtilTest, IterateSparseWithMissedIdValue) { Array<int> q1(20, IdFilter(20, CreateBuffer<int64_t>({3, 7, 8, 10})), CreateDenseArray<int>({1, 2, 3, 4}), 9); auto q2 = CreateArray<int>(20, {4, 8, 10, 11}, {1, 2, 3, 4}); std::vector<std::string> res; auto fn = [&](int64_t id, int x, OptionalValue<int> y) { if (y.present) { res.push_back(absl::StrFormat("single(%d, %d, %d)", id, x, y.value)); } else { res.push_back(absl::StrFormat("single(%d, %d, NA)", id, x)); } }; auto missing_fn = [&](int64_t id, int64_t count) { res.push_back(absl::StrFormat("missing(%d, %d)", id, count)); }; auto repeated_fn = [&](int64_t id, int64_t count, int x, OptionalValue<int> y) { if (y.present) { res.push_back( absl::StrFormat("repeated(%d, %d, %d, %d)", id, count, x, y.value)); } else { res.push_back(absl::StrFormat("repeated(%d, %d, %d, NA)", id, count, x)); } }; ArrayOpsUtil<false, meta::type_list<int, OptionalValue<int>>> util(20, q1, q2); util.Iterate(0, 15, fn, missing_fn, repeated_fn); EXPECT_THAT(res, ElementsAre("repeated(0, 3, 9, NA)", "single(3, 1, NA)", "single(4, 9, 1)", "repeated(5, 2, 9, NA)", "single(7, 2, NA)", "single(8, 3, 2)", "repeated(9, 1, 9, NA)", "single(10, 4, 3)", "single(11, 9, 4)", "repeated(12, 3, 9, NA)")); } TEST(ArrayOpsUtilTest, ArraysIterate) { Array<int> array_x = CreateArray<int>({5, 4, std::nullopt, 2, 1}); Array<int> array_y = CreateArray<int>({3, std::nullopt, 3, 1, 3}).ToSparseForm(); std::vector<int64_t> ids; std::vector<OptionalValue<int>> vx; std::vector<int> vy; ArraysIterate( [&](int64_t id, OptionalValue<int> x, int y) { ids.push_back(id); vx.push_back(x); vy.push_back(y); }, array_x, array_y); EXPECT_THAT(ids, ElementsAre(0, 2, 3, 4)); EXPECT_THAT(vx, ElementsAre(5, std::nullopt, 2, 1)); EXPECT_THAT(vy, ElementsAre(3, 3, 1, 3)); } TEST(ArrayOpsUtilTest, ArraysIterateDense) { Array<int> array_x = CreateArray<int>({5, 4, std::nullopt, 2, 1}); Array<int> array_y = CreateArray<int>({3, std::nullopt, 3, 1, 3}).ToSparseForm(); std::vector<int64_t> ids; std::vector<OptionalValue<int>> vx; std::vector<int> vy; ArraysIterateDense( [&](int64_t id, OptionalValue<int> x, int y) { ids.push_back(id); vx.push_back(x); vy.push_back(y); }, array_x, array_y); EXPECT_THAT(ids, ElementsAre(0, 2, 3, 4)); EXPECT_THAT(vx, ElementsAre(5, std::nullopt, 2, 1)); EXPECT_THAT(vy, ElementsAre(3, 3, 1, 3)); } TEST(ArrayOpsUtilTest, ArraysIterateStrings) { Array<Text> array_x = CreateArray<Text>( {Text("5"), Text("4"), std::nullopt, Text("2"), Text("1")}); Array<Bytes> array_y = CreateArray<Bytes>( {Bytes("3"), std::nullopt, Bytes("3"), Bytes("1"), Bytes("3")}) .ToSparseForm(); std::vector<int64_t> ids; std::vector<OptionalValue<absl::string_view>> vx; std::vector<absl::string_view> vy; ArraysIterate( [&](int64_t id, OptionalValue<absl::string_view> x, absl::string_view y) { ids.push_back(id); vx.push_back(x); vy.push_back(y); }, array_x, array_y); EXPECT_THAT(ids, ElementsAre(0, 2, 3, 4)); EXPECT_THAT(vx, ElementsAre("5", std::nullopt, "2", "1")); EXPECT_THAT(vy, ElementsAre("3", "3", "1", "3")); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/ops_util.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/ops_util_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
436d8490-15c6-4601-8e7a-e454d6599354
cpp
tensorflow/tensorflow
xla_compiler_options_util
tensorflow/compiler/jit/xla_compiler_options_util.cc
tensorflow/compiler/jit/xla_compiler_options_util_test.cc
#include "tensorflow/compiler/jit/xla_compiler_options_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tsl/framework/device_id_utils.h" #include "tensorflow/core/framework/function.h" namespace tensorflow { namespace { using XlaDeviceCompiler = DeviceCompiler<xla::LocalExecutable, xla::LocalClient>; using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; inline void LogOptions(const XlaCompiler::Options& options) { VLOG(2) << "XlaCompiler::Options[device_type=" << options.device_type << ",device_ordinal=" << options.device_ordinal << ",client=" << options.client << ",flib_def=" << options.flib_def << ",graph_def_version=" << options.graph_def_version << ",options.shape_determination_fns.layout_preference_fn?=" << (options.shape_determination_fns.layout_preference_fn != nullptr) << ",options.shape_determination_fns.shape_representation_fn?=" << (options.shape_determination_fns.shape_representation_fn != nullptr) << ",allow_cpu_custom_calls=" << options.allow_cpu_custom_calls << ",populate_resource_manager=" << options.populate_resource_manager << ",alias_passthrough_params=" << options.alias_passthrough_params << ",detailed_logging=" << options.detailed_logging << "]"; } } XlaCompiler::Options GenerateCompilerOptions( const XlaDeviceCompiler& xla_device_compiler, const FunctionLibraryRuntime& function_library, DeviceBase* device, se::Stream* stream, const XlaPlatformInfo& platform_info, bool has_ref_vars) { XlaCompiler::Options options; options.client = static_cast<xla::LocalClient*>(xla_device_compiler.client()); if (stream != nullptr) { options.device_ordinal = stream->parent()->device_ordinal(); } options.device_type = xla_device_compiler.device_type(); options.flib_def = function_library.GetFunctionLibraryDefinition(); options.graph_def_version = function_library.graph_def_version(); options.allow_cpu_custom_calls = (platform_info.platform_id() == se::host::kHostPlatformId); options.device_allocator = GetAllocator(device, stream, platform_info); if (platform_info.xla_device_metadata()) { options.shape_determination_fns = platform_info.xla_device_metadata()->default_shape_determination_fns(); } options.alias_passthrough_params = !has_ref_vars && !platform_info.is_on_xla_device(); LogOptions(options); return options; } XlaCompiler::Options GenerateCompilerOptionsForTfrtTpu( const XlaDeviceCompiler& xla_device_compiler, const FunctionLibraryRuntime& function_library) { XlaCompiler::Options options; options.device_type = xla_device_compiler.device_type(); options.flib_def = function_library.GetFunctionLibraryDefinition(); options.graph_def_version = function_library.graph_def_version(); options.allow_cpu_custom_calls = false; options.alias_passthrough_params = false; return options; } XlaCompiler::Options GenerateCompilerOptionsForPjRt( const FunctionLibraryRuntime& function_library, const DeviceBase* device_base, const XlaPlatformInfo& platform_info, const DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>* pjrt_device_compiler) { return GenerateCompilerOptionsForPjRt( function_library.GetFunctionLibraryDefinition(), function_library.graph_def_version(), device_base, platform_info, pjrt_device_compiler); } XlaCompiler::Options GenerateCompilerOptionsForPjRt( const FunctionLibraryDefinition* function_library_def, int graph_def_version, const DeviceBase* device_base, const XlaPlatformInfo& platform_info, const PjRtDeviceCompiler* pjrt_device_compiler) { XlaCompiler::Options options; absl::StatusOr<int> platform_device_id = tsl::GetPlatformDeviceIdFromDeviceParsedName( device_base->parsed_name(), DeviceType(tensorflow::down_cast<const Device*>(device_base) ->device_type())); if (platform_device_id.ok()) { options.device_ordinal = *platform_device_id; } else { options.device_ordinal = device_base->parsed_name().id; } options.flib_def = function_library_def; options.graph_def_version = graph_def_version; if (const auto* metadata = platform_info.xla_device_metadata(); metadata != nullptr) { options.device_type = metadata->jit_device_type(); options.shape_determination_fns = metadata->default_shape_determination_fns(); } else if (const auto* metadata = platform_info.pjrt_device_metadata(); metadata != nullptr) { options.device_type = metadata->jit_device_type(); options.shape_determination_fns = metadata->default_shape_determination_fns(); } else if (pjrt_device_compiler != nullptr) { options.device_type = pjrt_device_compiler->device_type(); } options.allow_cpu_custom_calls = false; options.alias_passthrough_params = false; LogOptions(options); return options; } XlaCompiler::CompileOptions GenerateCompileOptions( bool has_ref_vars, bool may_alias_resource_update) { XlaCompiler::CompileOptions compile_options; compile_options.is_entry_computation = true; compile_options.always_return_tuple = false; compile_options.alias_resource_update = !has_ref_vars && may_alias_resource_update; return compile_options; } }
#include "tensorflow/compiler/jit/xla_compiler_options_util.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/pjrt_device_compiler_client.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/compiler/jit/xla_platform_info.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/client_library.h" #include "xla/pjrt/pjrt_client.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tpu/tpu_defs.h" namespace tensorflow { namespace { using XlaDeviceCompiler = DeviceCompiler<xla::LocalExecutable, xla::LocalClient>; using XlaDeviceExecutablePersistor = DeviceExecutablePersistor<xla::LocalExecutable, xla::LocalClient>; using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; using PjRtDeviceExecutablePersistor = DeviceExecutablePersistor<xla::PjRtLoadedExecutable, xla::PjRtClient>; XlaDeviceCompiler* CreateXlaDeviceCompiler(DeviceType device_type, xla::LocalClient* local_client) { auto persistor = std::make_unique<XlaDeviceExecutablePersistor>( XlaDeviceExecutablePersistor::Config(), device_type); auto compiler_client = std::make_unique<XlaDeviceCompilerClient>(local_client); return new XlaDeviceCompiler(std::move(persistor), std::move(compiler_client)); } PjRtDeviceCompiler* CreatePjRtDeviceCompiler(DeviceType device_type, xla::PjRtClient* pjrt_client) { auto persistor = std::make_unique<PjRtDeviceExecutablePersistor>( PjRtDeviceExecutablePersistor::Config(), device_type); auto compiler_client = std::make_unique<PjRtDeviceCompilerClient>(pjrt_client); return new PjRtDeviceCompiler(std::move(persistor), std::move(compiler_client)); } std::vector<XlaShapeLayoutHelpers::ShapeDeterminationFns> GetShapeDeterminationFns() { XlaHelpers::ShapeRepresentationFn shape_representation_fn = [](const TensorShape&, DataType, bool, XlaLayoutPreference) { return xla::Shape(); }; XlaShapeLayoutHelpers::LayoutPreferenceFn layout_preference_fn = [](const TensorShape&, DataType, std::optional<XlaArgument::Kind>) { return tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout; }; return {XlaShapeLayoutHelpers::ShapeDeterminationFns{ layout_preference_fn, shape_representation_fn}}; } std::unique_ptr<XlaDevice::Metadata> CreateXlaDeviceMetadata( DeviceType compilation_device_type) { return std::make_unique<XlaDevice::Metadata>( 0, nullptr, compilation_device_type, GetShapeDeterminationFns(), XlaDevice::PaddedShapeFn(), false); } std::unique_ptr<PjRtBaseDevice::Metadata> CreatePjRtDeviceMetadata( DeviceType compilation_device_type) { return std::make_unique<PjRtBaseDevice::Metadata>(compilation_device_type, GetShapeDeterminationFns()); } class XlaCompilerOptionsTest : public ::testing::Test { protected: void SetUp() override { tensorflow::GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; } DeviceSetup device_setup_; }; TEST_F(XlaCompilerOptionsTest, PjRtOptionsXlaDevice) { device_setup_.AddDevicesAndSetUp({DEVICE_XLA_GPU}); Device* device = device_setup_.GetDevice(DEVICE_XLA_GPU); DeviceType compilation_device_type = DeviceType(DEVICE_GPU_XLA_JIT); se::Platform::Id platform_id = nullptr; auto xla_device_metadata = CreateXlaDeviceMetadata(compilation_device_type); std::shared_ptr<se::DeviceMemoryAllocator> custom_allocator; XlaPlatformInfo platform_info( compilation_device_type, platform_id, xla_device_metadata.get(), nullptr, custom_allocator); XlaCompiler::Options options = GenerateCompilerOptionsForPjRt( *device_setup_.flr(), device, platform_info, nullptr); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_EQ(options.device_ordinal, 0); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_FALSE(options.allow_cpu_custom_calls); EXPECT_FALSE(options.alias_passthrough_params); TF_ASSERT_OK_AND_ASSIGN( auto shape, options.shape_determination_fns.shape_representation_fn( TensorShape(), DT_FLOAT, false, tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout)); EXPECT_EQ(shape, xla::Shape()); EXPECT_EQ(options.shape_determination_fns.layout_preference_fn( TensorShape(), DT_FLOAT, std::nullopt), tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout); } TEST_F(XlaCompilerOptionsTest, PjRtOptionsPjRtBaseDevice) { device_setup_.AddDevicesAndSetUp({DEVICE_CPU}); Device* device = device_setup_.GetDevice(DEVICE_CPU); DeviceType compilation_device_type = DeviceType(DEVICE_CPU_XLA_JIT); auto pjrt_device_metadata = CreatePjRtDeviceMetadata(compilation_device_type); XlaPlatformInfo platform_info( compilation_device_type, nullptr, nullptr, pjrt_device_metadata.get(), nullptr); XlaCompiler::Options options = GenerateCompilerOptionsForPjRt( *device_setup_.flr(), device, platform_info, nullptr); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_EQ(options.device_ordinal, 0); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_FALSE(options.allow_cpu_custom_calls); EXPECT_FALSE(options.alias_passthrough_params); TF_ASSERT_OK_AND_ASSIGN( auto shape, options.shape_determination_fns.shape_representation_fn( TensorShape(), DT_FLOAT, false, tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout)); EXPECT_EQ(shape, xla::Shape()); EXPECT_EQ(options.shape_determination_fns.layout_preference_fn( TensorShape(), DT_FLOAT, std::nullopt), tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout); } TEST_F(XlaCompilerOptionsTest, PjRtOptionsNonXlaDevice) { device_setup_.AddDevicesAndSetUp({DEVICE_CPU}); Device* device = device_setup_.GetDevice(DEVICE_CPU); DeviceType compilation_device_type = DeviceType(DEVICE_CPU_XLA_JIT); XlaPlatformInfo platform_info(compilation_device_type, nullptr, nullptr, nullptr, nullptr); auto pjrt_device_compiler = CreatePjRtDeviceCompiler(compilation_device_type, nullptr); core::ScopedUnref pjrt_device_compiler_ref(pjrt_device_compiler); XlaCompiler::Options options = GenerateCompilerOptionsForPjRt( *device_setup_.flr(), device, platform_info, pjrt_device_compiler); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_EQ(options.device_ordinal, 0); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_FALSE(options.allow_cpu_custom_calls); EXPECT_FALSE(options.alias_passthrough_params); TF_ASSERT_OK_AND_ASSIGN( auto shape, options.shape_determination_fns.shape_representation_fn( TensorShape(), DT_FLOAT, false, tensorflow::XlaLayoutPreference::kNoPreference)); xla::ShapeProto shape_proto; shape_proto.set_element_type(xla::PrimitiveType::F32); shape_proto.mutable_layout(); EXPECT_EQ(shape, xla::Shape(shape_proto)); EXPECT_EQ(options.shape_determination_fns.layout_preference_fn( TensorShape(), DT_FLOAT, std::nullopt), tensorflow::XlaLayoutPreference::kNoPreference); } TEST_F(XlaCompilerOptionsTest, XlaOptions) { device_setup_.AddDevicesAndSetUp({DEVICE_XLA_GPU}); Device* device = device_setup_.GetDevice(DEVICE_XLA_GPU); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); DeviceType device_type = DeviceType(DEVICE_XLA_GPU); DeviceType compilation_device_type = DeviceType(DEVICE_GPU_XLA_JIT); auto xla_device_compiler = CreateXlaDeviceCompiler(compilation_device_type, client); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); se::Platform::Id platform_id = se::host::kHostPlatformId; auto xla_device_metadata = CreateXlaDeviceMetadata(compilation_device_type); std::shared_ptr<se::DeviceMemoryAllocator> custom_allocator; XlaPlatformInfo platform_info( device_type, platform_id, xla_device_metadata.get(), nullptr, custom_allocator); XlaCompiler::Options options = GenerateCompilerOptions(*xla_device_compiler, *device_setup_.flr(), device, nullptr, platform_info, false); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_TRUE(options.allow_cpu_custom_calls); EXPECT_NE(options.device_allocator, nullptr); EXPECT_FALSE(options.alias_passthrough_params); TF_ASSERT_OK_AND_ASSIGN( auto shape, options.shape_determination_fns.shape_representation_fn( TensorShape(), DT_FLOAT, false, tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout)); EXPECT_EQ(shape, xla::Shape()); EXPECT_EQ(options.shape_determination_fns.layout_preference_fn( TensorShape(), DT_FLOAT, std::nullopt), tensorflow::XlaLayoutPreference::kTpuPreferLinearLayout); } TEST_F(XlaCompilerOptionsTest, XlaOptionsHasRefVarsNoXlaDeviceMetadata) { device_setup_.AddDevicesAndSetUp({DEVICE_CPU}); Device* device = device_setup_.GetDevice(DEVICE_CPU); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); DeviceType device_type = DeviceType(DEVICE_CPU); DeviceType compilation_device_type = DeviceType(DEVICE_CPU_XLA_JIT); auto xla_device_compiler = CreateXlaDeviceCompiler(compilation_device_type, client); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); se::Platform::Id platform_id = se::host::kHostPlatformId; std::shared_ptr<se::DeviceMemoryAllocator> custom_allocator; XlaPlatformInfo platform_info( device_type, platform_id, nullptr, nullptr, custom_allocator); XlaCompiler::Options options = GenerateCompilerOptions(*xla_device_compiler, *device_setup_.flr(), device, nullptr, platform_info, false); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_TRUE(options.allow_cpu_custom_calls); EXPECT_NE(options.device_allocator, nullptr); EXPECT_TRUE(options.alias_passthrough_params); TF_ASSERT_OK_AND_ASSIGN( auto shape, options.shape_determination_fns.shape_representation_fn( TensorShape(), DT_FLOAT, false, tensorflow::XlaLayoutPreference::kNoPreference)); xla::ShapeProto shape_proto; shape_proto.set_element_type(xla::PrimitiveType::F32); shape_proto.mutable_layout(); EXPECT_EQ(shape, xla::Shape(shape_proto)); EXPECT_EQ(options.shape_determination_fns.layout_preference_fn( TensorShape(), DT_FLOAT, std::nullopt), tensorflow::XlaLayoutPreference::kNoPreference); } TEST_F(XlaCompilerOptionsTest, TfRtTpuOptions) { device_setup_.AddDevicesAndSetUp({DEVICE_TPU_NODE}); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); DeviceType compilation_device_type = DeviceType(DEVICE_TPU_XLA_JIT); auto xla_device_compiler = CreateXlaDeviceCompiler(compilation_device_type, client); core::ScopedUnref xla_device_compiler_ref(xla_device_compiler); XlaCompiler::Options options = GenerateCompilerOptionsForTfrtTpu( *xla_device_compiler, *device_setup_.flr()); EXPECT_EQ(options.device_type, compilation_device_type); EXPECT_NE(options.flib_def, nullptr); EXPECT_EQ(options.graph_def_version, TF_GRAPH_DEF_VERSION); EXPECT_FALSE(options.allow_cpu_custom_calls); EXPECT_FALSE(options.alias_passthrough_params); } TEST_F(XlaCompilerOptionsTest, GenerateCompileOptions) { XlaCompiler::CompileOptions option1 = GenerateCompileOptions( false, false); EXPECT_TRUE(option1.is_entry_computation); EXPECT_FALSE(option1.always_return_tuple); EXPECT_FALSE(option1.alias_resource_update); XlaCompiler::CompileOptions option2 = GenerateCompileOptions( false, true); EXPECT_TRUE(option2.alias_resource_update); XlaCompiler::CompileOptions option3 = GenerateCompileOptions( true, false); EXPECT_FALSE(option3.alias_resource_update); XlaCompiler::CompileOptions option4 = GenerateCompileOptions( true, true); EXPECT_FALSE(option4.alias_resource_update); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_compiler_options_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_compiler_options_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
42871c5d-e2a7-4409-b141-155d8cd6cb8c
cpp
tensorflow/tensorflow
batched_gather_scatter_normalizer
third_party/xla/xla/service/batched_gather_scatter_normalizer.cc
third_party/xla/xla/service/batched_gather_scatter_normalizer_test.cc
#include "xla/service/batched_gather_scatter_normalizer.h" #include <cstdint> #include <iterator> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { bool IsBatchGather(const HloGatherInstruction* gather) { const auto& dims = gather->gather_dimension_numbers(); return !dims.operand_batching_dims().empty(); } bool IsBatchScatter(const HloScatterInstruction* scatter) { const auto& dims = scatter->scatter_dimension_numbers(); return !dims.input_batching_dims().empty(); } PrimitiveType PromoteTypeForSize(PrimitiveType type, int64_t size) { if (!primitive_util::IsIntegralType(type) || primitive_util::FitsInIntegralType(size, type)) { return type; } if (primitive_util::FitsInIntegralType(size, PrimitiveType::S32)) { return PrimitiveType::S32; } return PrimitiveType::S64; } bool GetUpdatedIndicesAreSorted(bool indices_are_sorted, absl::Span<const int64_t> indices_batching_dims, absl::Span<const int64_t> updated_index_map) { return indices_are_sorted && absl::c_is_sorted(indices_batching_dims) && absl::c_is_sorted(updated_index_map); } HloInstruction* CreateConcatIndices( HloInstruction* inst, HloInstruction* indices, int64_t index_vector_dim, absl::Span<const int64_t> indices_batching_dims, BatchedGatherScatterNormalizer* normalizer) { PrimitiveType element_type = indices->shape().element_type(); for (int64_t indices_batching_dim : indices_batching_dims) { element_type = PromoteTypeForSize( element_type, indices->shape().dimensions(indices_batching_dim)); } if (element_type != indices->shape().element_type()) { Shape indices_shape = indices->shape(); indices_shape.set_element_type(element_type); indices = inst->parent()->AddInstruction( HloInstruction::CreateConvert(indices_shape, indices)); } Shape iota_shape = indices->shape(); const bool index_vector_dim_on_last_dim = index_vector_dim == iota_shape.rank(); if (index_vector_dim_on_last_dim) { std::vector<int64_t> dimensions(iota_shape.dimensions().begin(), iota_shape.dimensions().end()); dimensions.push_back(1); iota_shape = ShapeUtil::MakeShape(element_type, dimensions); indices = inst->AddInstruction( HloInstruction::CreateReshape(iota_shape, indices)); } iota_shape.set_dimensions(index_vector_dim, 1); normalizer->UpdateLayout(&iota_shape); std::vector<HloInstruction*> indices_to_concat; indices_to_concat.reserve(indices_batching_dims.size() + 1); for (int64_t indices_batching_dim : indices_batching_dims) { indices_to_concat.push_back(inst->parent()->AddInstruction( HloInstruction::CreateIota(iota_shape, indices_batching_dim))); } indices_to_concat.push_back(indices); Shape concat_shape = iota_shape; concat_shape.set_dimensions( index_vector_dim, indices_batching_dims.size() + (index_vector_dim_on_last_dim ? 1 : indices->shape().dimensions(index_vector_dim))); normalizer->UpdateLayout(&concat_shape); return inst->AddInstruction(HloInstruction::CreateConcatenate( concat_shape, indices_to_concat, index_vector_dim)); } absl::StatusOr<HloInstruction*> NormalizeBatchGather( HloGatherInstruction* gather, BatchedGatherScatterNormalizer* normalizer) { HloInstruction* gather_operand = gather->mutable_operand(0); HloInstruction* gather_indices = gather->mutable_operand(1); const auto& dims = gather->gather_dimension_numbers(); CHECK_EQ(dims.operand_batching_dims_size(), dims.start_indices_batching_dims_size()); std::vector<int64_t> start_index_map(dims.operand_batching_dims().begin(), dims.operand_batching_dims().end()); absl::c_copy(dims.start_index_map(), std::back_inserter(start_index_map)); gather_indices = CreateConcatIndices(gather, gather_indices, dims.index_vector_dim(), dims.start_indices_batching_dims(), normalizer); std::vector<int64_t> collapsed_slice_dims(dims.collapsed_slice_dims().begin(), dims.collapsed_slice_dims().end()); absl::c_copy(dims.operand_batching_dims(), std::back_inserter(collapsed_slice_dims)); absl::c_sort(collapsed_slice_dims); GatherDimensionNumbers updated_dims = HloGatherInstruction::MakeGatherDimNumbers( dims.offset_dims(), collapsed_slice_dims, start_index_map, dims.index_vector_dim()); return gather->AddInstruction(HloInstruction::CreateGather( gather->shape(), gather_operand, gather_indices, updated_dims, gather->gather_slice_sizes(), GetUpdatedIndicesAreSorted(gather->indices_are_sorted(), dims.start_indices_batching_dims(), start_index_map))); } absl::StatusOr<HloInstruction*> NormalizeBatchScatter( HloScatterInstruction* scatter, BatchedGatherScatterNormalizer* normalizer) { auto scatter_operands = scatter->scatter_operands(); HloInstruction* scatter_indices = scatter->scatter_indices(); auto scatter_updates = scatter->scatter_updates(); const auto& dims = scatter->scatter_dimension_numbers(); CHECK_EQ(dims.input_batching_dims_size(), dims.scatter_indices_batching_dims_size()); std::vector<int64_t> scatter_dims_to_operand_dims( dims.input_batching_dims().begin(), dims.input_batching_dims().end()); absl::c_copy(dims.scatter_dims_to_operand_dims(), std::back_inserter(scatter_dims_to_operand_dims)); scatter_indices = CreateConcatIndices(scatter, scatter_indices, dims.index_vector_dim(), dims.scatter_indices_batching_dims(), normalizer); std::vector<int64_t> inserted_window_dims(dims.inserted_window_dims().begin(), dims.inserted_window_dims().end()); absl::c_copy(dims.input_batching_dims(), std::back_inserter(inserted_window_dims)); absl::c_sort(inserted_window_dims); ScatterDimensionNumbers updated_dims = HloScatterInstruction::MakeScatterDimNumbers( dims.update_window_dims(), inserted_window_dims, scatter_dims_to_operand_dims, dims.index_vector_dim()); return scatter->AddInstruction(HloInstruction::CreateScatter( scatter->shape(), scatter_operands, scatter_indices, scatter_updates, scatter->to_apply(), updated_dims, GetUpdatedIndicesAreSorted(scatter->indices_are_sorted(), dims.scatter_indices_batching_dims(), scatter_dims_to_operand_dims), scatter->unique_indices())); } } absl::StatusOr<HloInstruction*> BatchedGatherScatterNormalizer::ExpandInstruction(HloInstruction* inst) { if (inst->opcode() == HloOpcode::kGather) { auto* gather = DynCast<HloGatherInstruction>(inst); return NormalizeBatchGather(gather, this); } if (inst->opcode() == HloOpcode::kScatter) { auto* scatter = DynCast<HloScatterInstruction>(inst); return NormalizeBatchScatter(scatter, this); } return absl::InvalidArgumentError(absl::StrFormat( "Instruction: %s is not a batch gather or scatter.", inst->ToString())); } bool BatchedGatherScatterNormalizer::InstructionMatchesPattern( HloInstruction* inst) { if (inst->opcode() == HloOpcode::kGather) { auto* gather = DynCast<HloGatherInstruction>(inst); return IsBatchGather(gather); } if (inst->opcode() == HloOpcode::kScatter) { auto* scatter = DynCast<HloScatterInstruction>(inst); return IsBatchScatter(scatter); } return false; } }
#include "xla/service/batched_gather_scatter_normalizer.h" #include <optional> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class BatchedGatherScatterNormalizerTest : public HloTestBase {}; TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGather) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46,512], start_indices: s64[10,9,8,7,5,512]) -> f32[10,9,8,7,30,29,28,27,26,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, operand_batching_dims={5}, start_indices_batching_dims={5}, index_vector_dim=4, slice_sizes={30,29,28,27,26,1} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA:.*]] = s64[10,9,8,7,1,512]{{.*}} iota(), iota_dimension=5 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,6,512]{{.*}} concatenate(%[[IOTA]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[10,9,8,7,30,29,28,27,26,512]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={4,5,6,7,8}, CHECK-SAME: collapsed_slice_dims={5}, CHECK-SAME: start_index_map={5,0,1,2,3,4}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: slice_sizes={30,29,28,27,26,1} )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGather2) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0}, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26,512,1024]{10,9,8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46,512,1024,100], start_indices: s64[10,9,8,7,6,512,1024]) -> f32[10,9,8,7,30,29,28,27,26,512,1024] { %input_tensor = f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26,512,1024]{10,9,8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={7}, start_index_map={0,1,2,3,4,7}, operand_batching_dims={5,6}, start_indices_batching_dims={5,6}, index_vector_dim=4, slice_sizes={30,29,28,27,26,1,1,1} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[10,9,8,7,1,512,1024]{{.*}} iota(), iota_dimension=5 CHECK: %[[IOTA2:.*]] = s64[10,9,8,7,1,512,1024]{{.*}} iota(), iota_dimension=6 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,8,512,1024]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[10,9,8,7,30,29,28,27,26,512,1024]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={4,5,6,7,8}, CHECK-SAME: collapsed_slice_dims={5,6,7}, CHECK-SAME: start_index_map={5,6,0,1,2,3,4,7}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: slice_sizes={30,29,28,27,26,1,1,1} )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGatherIndicesBecomeUnsorted) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,3,4,512]{3,2,1,0}, s64[3,4,1]{2,1,0})->f32[3,4,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,3,4,512], start_indices: s64[3,4,1]) -> f32[3,4,5] { %input_tensor = f32[2,3,4,512]{3,2,1,0} parameter(0) %start_indices = s64[3,4,1]{2,1,0} parameter(1) ROOT %gather = f32[3,4,5]{2,1,0} gather(f32[2,3,4,512]{3,2,1,0} %input_tensor, s64[3,4,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={1}, start_index_map={1}, operand_batching_dims={0,2}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,1,5}, indices_are_sorted=true })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[3,4,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s64[3,4,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[INDICES_CONCAT:.*]] = s64[3,4,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[3,4,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1,2}, CHECK-SAME: start_index_map={0,2,1}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,1,5} CHECK-NOT: indices_are_sorted )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGatherIndicesBecomeUnsorted2) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,3,4,512]{3,2,1,0}, s64[3,2,1]{2,1,0})->f32[3,2,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,3,4,512], start_indices: s64[3,2,1]) -> f32[3,2,5] { %input_tensor = f32[2,3,4,512]{3,2,1,0} parameter(0) %start_indices = s64[3,2,1]{2,1,0} parameter(1) ROOT %gather = f32[3,2,5]{2,1,0} gather(f32[2,3,4,512]{3,2,1,0} %input_tensor, s64[3,2,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={2}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={1,0}, index_vector_dim=2, slice_sizes={1,1,1,5}, indices_are_sorted=true })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[3,2,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[IOTA2:.*]] = s64[3,2,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[INDICES_CONCAT:.*]] = s64[3,2,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[3,2,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1,2}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,1,5} CHECK-NOT: indices_are_sorted )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGatherIndicesRemainSorted) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,3,4,512]{3,2,1,0}, s64[2,3,1]{2,1,0})->f32[2,3,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,3,4,512], start_indices: s64[2,3,1]) -> f32[2,3,5] { %input_tensor = f32[2,3,4,512]{3,2,1,0} parameter(0) %start_indices = s64[2,3,1]{2,1,0} parameter(1) ROOT %gather = f32[2,3,5]{2,1,0} gather(f32[2,3,4,512]{3,2,1,0} %input_tensor, s64[2,3,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={2}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,1,5}, indices_are_sorted=true })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[INDICES_CONCAT:.*]] = s64[2,3,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[2,3,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1,2}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,1,5} CHECK-SAME: indices_are_sorted=true )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGatherIndicesRemainUnsorted) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,3,4,512]{3,2,1,0}, s64[2,3,1]{2,1,0})->f32[2,3,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,3,4,512], start_indices: s64[2,3,1]) -> f32[2,3,5] { %input_tensor = f32[2,3,4,512]{3,2,1,0} parameter(0) %start_indices = s64[2,3,1]{2,1,0} parameter(1) ROOT %gather = f32[2,3,5]{2,1,0} gather(f32[2,3,4,512]{3,2,1,0} %input_tensor, s64[2,3,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={2}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,1,5}, indices_are_sorted=false })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[INDICES_CONCAT:.*]] = s64[2,3,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[2,3,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1,2}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,1,5} CHECK-NOT: indices_are_sorted )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchGatherDimSizeZero) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46,0]{5,4,3,2,1,0}, s64[10,9,8,7,5,0]{5,4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26,0]{9,8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46,0], start_indices: s64[10,9,8,7,5,0]) -> f32[10,9,8,7,30,29,28,27,26,0] { %input_tensor = f32[50,49,48,47,46,0]{5,4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5,0]{5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26,0]{9,8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46,0]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,0]{5,4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, operand_batching_dims={5}, start_indices_batching_dims={5}, index_vector_dim=4, slice_sizes={30,29,28,27,26,0} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA:.*]] = s64[10,9,8,7,1,0]{{.*}} iota(), iota_dimension=5 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,6,0]{{.*}} concatenate(%[[IOTA]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[10,9,8,7,30,29,28,27,26,0]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={4,5,6,7,8}, CHECK-SAME: collapsed_slice_dims={5}, CHECK-SAME: start_index_map={5,0,1,2,3,4}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: slice_sizes={30,29,28,27,26,0} )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchScatter) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46,512]{5,4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46,512], scatter_indices: s64[10,9,8,7,5,512], updates: f32[10,9,8,7,30,29,28,27,26,512]) -> f32[50,49,48,47,46,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46,512]{5,4,3,2,1,0} scatter( f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, input_batching_dims={5}, scatter_indices_batching_dims={5}, index_vector_dim=4, to_apply=%add_F32.v3 })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA:.*]] = s64[10,9,8,7,1,512]{{.*}} iota(), iota_dimension=5 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,6,512]{{.*}} concatenate(%[[IOTA]], %scatter_indices) CHECK: ROOT %[[SCATTER:.*]] = f32[50,49,48,47,46,512]{{.*}} scatter( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]], %updates), CHECK-SAME: update_window_dims={4,5,6,7,8}, CHECK-SAME: inserted_window_dims={5}, CHECK-SAME: scatter_dims_to_operand_dims={5,0,1,2,3,4}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: to_apply=%add_F32.v3 )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchScatter2) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0}, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26,512,1024]{10,9,8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46,512,1024,100], scatter_indices: s64[10,9,8,7,6,512,1024], updates: f32[10,9,8,7,30,29,28,27,26,512,1024]) -> f32[50,49,48,47,46,512,1024,100] { %input_tensor = f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26,512,1024]{10,9,8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0} scatter( f32[50,49,48,47,46,512,1024,100]{7,6,5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26,512,1024]{10,9,8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={7}, scatter_dims_to_operand_dims={0,1,2,3,4,7}, input_batching_dims={5,6}, scatter_indices_batching_dims={5,6}, index_vector_dim=4, to_apply=%add_F32.v3 })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[10,9,8,7,1,512,1024]{{.*}} iota(), iota_dimension=5 CHECK: %[[IOTA2:.*]] = s64[10,9,8,7,1,512,1024]{{.*}} iota(), iota_dimension=6 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,8,512,1024]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %scatter_indices) CHECK: ROOT %[[SCATTER:.*]] = f32[50,49,48,47,46,512,1024,100]{{.*}} scatter( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]], %updates), CHECK-SAME: update_window_dims={4,5,6,7,8}, CHECK-SAME: inserted_window_dims={5,6,7}, CHECK-SAME: scatter_dims_to_operand_dims={5,6,0,1,2,3,4,7}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: to_apply=%add_F32.v3 )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchScatterIndicesRemainSorted) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyScatter, entry_computation_layout={(f32[2,3,4,512]{3,2,1,0}, s64[2,3,1]{2,1,0}, f32[2,3,5]{2,1,0})->f32[2,3,4,512]{3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[2,3,4,512], scatter_indices: s64[2,3,1], updates: f32[2,3,5]) -> f32[2,3,4,512] { %input_tensor = f32[2,3,4,512]{3,2,1,0} parameter(0) %scatter_indices = s64[2,3,1]{2,1,0} parameter(1) %updates = f32[2,3,5]{2,1,0} parameter(2) ROOT %scatter = f32[2,3,4,512]{3,2,1,0} scatter(f32[2,3,4,512]{3,2,1,0} %input_tensor, s64[2,3,1]{2,1,0} %scatter_indices, f32[2,3,5]{2,1,0} %updates), update_window_dims={2}, inserted_window_dims={2}, scatter_dims_to_operand_dims={2}, input_batching_dims={0,1}, scatter_indices_batching_dims={0,1}, index_vector_dim=2, indices_are_sorted=true, to_apply=%add_F32.v3 })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s64[2,3,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[INDICES_CONCAT:.*]] = s64[2,3,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %scatter_indices) CHECK: ROOT %[[SCATTER:.*]] = f32[2,3,4,512]{{.*}} scatter( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]], %updates), CHECK-SAME: update_window_dims={2}, CHECK-SAME: inserted_window_dims={0,1,2}, CHECK-SAME: scatter_dims_to_operand_dims={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: indices_are_sorted=true CHECK-SAME: to_apply=%add_F32.v3 )"); } TEST_F(BatchedGatherScatterNormalizerTest, NormalizeBatchScatterDimSizeZero) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46,0]{5,4,3,2,1,0}, s64[10,9,8,7,5,0]{5,4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26,0]{9,8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46,0]{5,4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46,0], scatter_indices: s64[10,9,8,7,5,0], updates: f32[10,9,8,7,30,29,28,27,26,0]) -> f32[50,49,48,47,46,0] { %input_tensor = f32[50,49,48,47,46,0]{5,4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5,0]{5,4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26,0]{9,8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46,0]{5,4,3,2,1,0} scatter( f32[50,49,48,47,46,0]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,0]{5,4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26,0]{9,8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, input_batching_dims={5}, scatter_indices_batching_dims={5}, index_vector_dim=4, to_apply=%add_F32.v3 })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA:.*]] = s64[10,9,8,7,1,0]{{.*}} iota(), iota_dimension=5 CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,6,0]{{.*}} concatenate(%[[IOTA]], %scatter_indices) CHECK: ROOT %[[SCATTER:.*]] = f32[50,49,48,47,46,0]{{.*}} scatter( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]], %updates), CHECK-SAME: update_window_dims={4,5,6,7,8}, CHECK-SAME: inserted_window_dims={5}, CHECK-SAME: scatter_dims_to_operand_dims={5,0,1,2,3,4}, CHECK-SAME: index_vector_dim=4, CHECK-SAME: to_apply=%add_F32.v3 )"); } TEST_F(BatchedGatherScatterNormalizerTest, IndexVectorDimOnLastDim) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[50,512,1024]{2,1,0}, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0})->f32[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,512,1024], start_indices: s64[10,9,8,7,6,512,1024]) -> f32[10,9,8,7,6,512,1024] { %input_tensor = f32[50,512,1024]{2,1,0} parameter(0) %start_indices = s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} gather(f32[50,512,1024]{2,1,0} %input_tensor, s64[10,9,8,7,6,512,1024]{6,5,4,3,2,1,0} %start_indices), offset_dims={}, collapsed_slice_dims={0}, start_index_map={0}, operand_batching_dims={1,2}, start_indices_batching_dims={5,6}, index_vector_dim=7, slice_sizes={1,1,1} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[10,9,8,7,6,512,1024,1]{{.*}} iota(), iota_dimension=5 CHECK: %[[IOTA2:.*]] = s64[10,9,8,7,6,512,1024,1]{{.*}} iota(), iota_dimension=6 CHECK: %[[RESHAPE:.*]] = s64[10,9,8,7,6,512,1024,1]{{.*}} reshape(%start_indices) CHECK: %[[INDICES_CONCAT:.*]] = s64[10,9,8,7,6,512,1024,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %[[RESHAPE]]) CHECK: ROOT %[[GATHER:.*]] = f32[10,9,8,7,6,512,1024]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={}, CHECK-SAME: collapsed_slice_dims={0,1,2}, CHECK-SAME: start_index_map={1,2,0}, CHECK-SAME: index_vector_dim=7, CHECK-SAME: slice_sizes={1,1,1} )"); } TEST_F(BatchedGatherScatterNormalizerTest, BatchingDimSizeDoesNotOverflowIndicesType) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,127,512]{2,1,0}, s8[2,127,1]{2,1,0})->f32[2,127,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,127,512], start_indices: s8[2,127,1]) -> f32[2,127,5] { %input_tensor = f32[2,127,512]{2,1,0} parameter(0) %start_indices = s8[2,127,1]{2,1,0} parameter(1) ROOT %gather = f32[2,127,5]{2,1,0} gather(f32[2,127,512]{2,1,0} %input_tensor, s8[2,127,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,5} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s8[2,127,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s8[2,127,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[INDICES_CONCAT:.*]] = s8[2,127,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %start_indices) CHECK: ROOT %[[GATHER:.*]] = f32[2,127,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,5} )"); } TEST_F(BatchedGatherScatterNormalizerTest, BatchingDimSizeOverflowsIndicesType) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,128,512]{2,1,0}, s8[2,128,1]{2,1,0})->f32[2,128,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,128,512], start_indices: s8[2,128,1]) -> f32[2,128,5] { %input_tensor = f32[2,128,512]{2,1,0} parameter(0) %start_indices = s8[2,128,1]{2,1,0} parameter(1) ROOT %gather = f32[2,128,5]{2,1,0} gather(f32[2,128,512]{2,1,0} %input_tensor, s8[2,128,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,5} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s32[2,128,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s32[2,128,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[CONVERT:.*]] = s32[2,128,1]{{.*}} convert(%start_indices) CHECK: %[[INDICES_CONCAT:.*]] = s32[2,128,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %[[CONVERT]]) CHECK: ROOT %[[GATHER:.*]] = f32[2,128,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,5} )"); } TEST_F(BatchedGatherScatterNormalizerTest, BatchingDimSizeOverflowsIndicesTypeAndS32) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2147483648,2,512]{2,1,0}, s8[2147483648,2,1]{2,1,0})->f32[2147483648,2,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2147483648,2,512], start_indices: s8[2147483648,2,1]) -> f32[2147483648,2,5] { %input_tensor = f32[2147483648,2,512]{2,1,0} parameter(0) %start_indices = s8[2147483648,2,1]{2,1,0} parameter(1) ROOT %gather = f32[2147483648,2,5]{2,1,0} gather(f32[2147483648,2,512]{2,1,0} %input_tensor, s8[2147483648,2,1]{2,1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,5} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s64[2147483648,2,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s64[2147483648,2,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[CONVERT:.*]] = s64[2147483648,2,1]{{.*}} convert(%start_indices) CHECK: %[[INDICES_CONCAT:.*]] = s64[2147483648,2,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %[[CONVERT]]) CHECK: ROOT %[[GATHER:.*]] = f32[2147483648,2,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,5} )"); } TEST_F(BatchedGatherScatterNormalizerTest, BatchingDimSizeOverflowsAndIndexVectorDimOnLastDim) { constexpr absl::string_view kModuleStr = R"( HloModule StringifyGather, entry_computation_layout={(f32[2,128,512]{2,1,0}, s8[2,128]{1,0})->f32[2,128,5]{2,1,0}} ENTRY %Gather (input_tensor: f32[2,128,512], start_indices: s8[2,128]) -> f32[2,128,5] { %input_tensor = f32[2,128,512]{2,1,0} parameter(0) %start_indices = s8[2,128]{1,0} parameter(1) ROOT %gather = f32[2,128,5]{2,1,0} gather(f32[2,128,512]{2,1,0} %input_tensor, s8[2,128]{1,0} %start_indices), offset_dims={2}, collapsed_slice_dims={}, start_index_map={2}, operand_batching_dims={0,1}, start_indices_batching_dims={0,1}, index_vector_dim=2, slice_sizes={1,1,5} })"; RunAndFilecheckHloRewrite(kModuleStr, BatchedGatherScatterNormalizer(), R"( CHECK: %[[IOTA1:.*]] = s32[2,128,1]{{.*}} iota(), iota_dimension=0 CHECK: %[[IOTA2:.*]] = s32[2,128,1]{{.*}} iota(), iota_dimension=1 CHECK: %[[CONVERT:.*]] = s32[2,128]{{.*}} convert(%start_indices) CHECK: %[[RESHAPE:.*]] = s32[2,128,1]{{.*}} reshape(%[[CONVERT]]) CHECK: %[[INDICES_CONCAT:.*]] = s32[2,128,3]{{.*}} concatenate(%[[IOTA1]], %[[IOTA2]], %[[RESHAPE]]) CHECK: ROOT %[[GATHER:.*]] = f32[2,128,5]{{.*}} gather( CHECK-SAME: %input_tensor, %[[INDICES_CONCAT]]), CHECK-SAME: offset_dims={2}, CHECK-SAME: collapsed_slice_dims={0,1}, CHECK-SAME: start_index_map={0,1,2}, CHECK-SAME: index_vector_dim=2, CHECK-SAME: slice_sizes={1,1,5} )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/batched_gather_scatter_normalizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/batched_gather_scatter_normalizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6abba2e5-bea3-4193-8a00-66c00e7ee71b
cpp
tensorflow/tensorflow
subtract
tensorflow/lite/experimental/shlo/ops/subtract.cc
tensorflow/lite/experimental/shlo/ops/subtract_test.cc
#include "tensorflow/lite/experimental/shlo/ops/subtract.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Subtract : std::minus<void> {}; SubtractOp Create(SubtractOp::Attributes) { return {}; } absl::Status Prepare(SubtractOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("subtract"), lhs, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("subtract"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("subtract"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(SubtractOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Subtract subtract; if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), subtract, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), subtract, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.subtract: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/subtract.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<SubtractOp> { static std::string Get() { return "Subtract"; } }; struct Subtract : std::minus<void> {}; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Subtract, BinaryElementwiseOpShapePropagationTest, SubtractOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< SubtractOp, ConcatTypes<BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Subtract, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<SubtractOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Subtract, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<ArithmeticTestTypes>; template <class T> struct SubtractTest : ::testing::Test {}; TYPED_TEST_SUITE(SubtractTest, ArithmeticTypes, TestParamNames); TYPED_TEST(SubtractTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Subtract()); auto op = Create(SubtractOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedSubtractTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedSubtractTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedSubtractTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(2); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Subtract()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(SubtractOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/subtract.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/subtract_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
439b36a0-6382-423f-8d8b-44e0b13c9471
cpp
google/cel-cpp
string_functions
runtime/standard/string_functions.cc
runtime/standard/string_functions_test.cc
#include "runtime/standard/string_functions.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" namespace cel { namespace { absl::StatusOr<StringValue> ConcatString(ValueManager& factory, const StringValue& value1, const StringValue& value2) { return factory.CreateUncheckedStringValue( absl::StrCat(value1.ToString(), value2.ToString())); } absl::StatusOr<BytesValue> ConcatBytes(ValueManager& factory, const BytesValue& value1, const BytesValue& value2) { return factory.CreateBytesValue( absl::StrCat(value1.ToString(), value2.ToString())); } bool StringContains(ValueManager&, const StringValue& value, const StringValue& substr) { return absl::StrContains(value.ToString(), substr.ToString()); } bool StringEndsWith(ValueManager&, const StringValue& value, const StringValue& suffix) { return absl::EndsWith(value.ToString(), suffix.ToString()); } bool StringStartsWith(ValueManager&, const StringValue& value, const StringValue& prefix) { return absl::StartsWith(value.ToString(), prefix.ToString()); } absl::Status RegisterSizeFunctions(FunctionRegistry& registry) { auto size_func = [](ValueManager& value_factory, const StringValue& value) -> int64_t { return value.Size(); }; using StrSizeFnAdapter = UnaryFunctionAdapter<int64_t, const StringValue&>; CEL_RETURN_IF_ERROR(StrSizeFnAdapter::RegisterGlobalOverload( cel::builtin::kSize, size_func, registry)); CEL_RETURN_IF_ERROR(StrSizeFnAdapter::RegisterMemberOverload( cel::builtin::kSize, size_func, registry)); auto bytes_size_func = [](ValueManager&, const BytesValue& value) -> int64_t { return value.Size(); }; using BytesSizeFnAdapter = UnaryFunctionAdapter<int64_t, const BytesValue&>; CEL_RETURN_IF_ERROR(BytesSizeFnAdapter::RegisterGlobalOverload( cel::builtin::kSize, bytes_size_func, registry)); return BytesSizeFnAdapter::RegisterMemberOverload(cel::builtin::kSize, bytes_size_func, registry); } absl::Status RegisterConcatFunctions(FunctionRegistry& registry) { using StrCatFnAdapter = BinaryFunctionAdapter<absl::StatusOr<StringValue>, const StringValue&, const StringValue&>; CEL_RETURN_IF_ERROR(StrCatFnAdapter::RegisterGlobalOverload( cel::builtin::kAdd, &ConcatString, registry)); using BytesCatFnAdapter = BinaryFunctionAdapter<absl::StatusOr<BytesValue>, const BytesValue&, const BytesValue&>; return BytesCatFnAdapter::RegisterGlobalOverload(cel::builtin::kAdd, &ConcatBytes, registry); } } absl::Status RegisterStringFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { for (bool receiver_style : {true, false}) { auto status = BinaryFunctionAdapter<bool, const StringValue&, const StringValue&>:: Register(cel::builtin::kStringContains, receiver_style, StringContains, registry); CEL_RETURN_IF_ERROR(status); status = BinaryFunctionAdapter<bool, const StringValue&, const StringValue&>:: Register(cel::builtin::kStringEndsWith, receiver_style, StringEndsWith, registry); CEL_RETURN_IF_ERROR(status); status = BinaryFunctionAdapter<bool, const StringValue&, const StringValue&>:: Register(cel::builtin::kStringStartsWith, receiver_style, StringStartsWith, registry); CEL_RETURN_IF_ERROR(status); } if (options.enable_string_concat) { CEL_RETURN_IF_ERROR(RegisterConcatFunctions(registry)); } return RegisterSizeFunctions(registry); } }
#include "runtime/standard/string_functions.h" #include <vector> #include "base/builtins.h" #include "base/function_descriptor.h" #include "internal/testing.h" namespace cel { namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; enum class CallStyle { kFree, kReceiver }; MATCHER_P3(MatchesDescriptor, name, call_style, expected_kinds, "") { bool receiver_style; switch (call_style) { case CallStyle::kFree: receiver_style = false; break; case CallStyle::kReceiver: receiver_style = true; break; } const FunctionDescriptor& descriptor = *arg; const std::vector<Kind>& types = expected_kinds; return descriptor.name() == name && descriptor.receiver_style() == receiver_style && descriptor.types() == types; } TEST(RegisterStringFunctions, FunctionsRegistered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterStringFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT( overloads[builtin::kAdd], UnorderedElementsAre( MatchesDescriptor(builtin::kAdd, CallStyle::kFree, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kAdd, CallStyle::kFree, std::vector<Kind>{Kind::kBytes, Kind::kBytes}))); EXPECT_THAT(overloads[builtin::kSize], UnorderedElementsAre( MatchesDescriptor(builtin::kSize, CallStyle::kFree, std::vector<Kind>{Kind::kString}), MatchesDescriptor(builtin::kSize, CallStyle::kFree, std::vector<Kind>{Kind::kBytes}), MatchesDescriptor(builtin::kSize, CallStyle::kReceiver, std::vector<Kind>{Kind::kString}), MatchesDescriptor(builtin::kSize, CallStyle::kReceiver, std::vector<Kind>{Kind::kBytes}))); EXPECT_THAT( overloads[builtin::kStringContains], UnorderedElementsAre( MatchesDescriptor(builtin::kStringContains, CallStyle::kFree, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kStringContains, CallStyle::kReceiver, std::vector<Kind>{Kind::kString, Kind::kString}))); EXPECT_THAT( overloads[builtin::kStringStartsWith], UnorderedElementsAre( MatchesDescriptor(builtin::kStringStartsWith, CallStyle::kFree, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kStringStartsWith, CallStyle::kReceiver, std::vector<Kind>{Kind::kString, Kind::kString}))); EXPECT_THAT( overloads[builtin::kStringEndsWith], UnorderedElementsAre( MatchesDescriptor(builtin::kStringEndsWith, CallStyle::kFree, std::vector<Kind>{Kind::kString, Kind::kString}), MatchesDescriptor(builtin::kStringEndsWith, CallStyle::kReceiver, std::vector<Kind>{Kind::kString, Kind::kString}))); } TEST(RegisterStringFunctions, ConcatSkippedWhenDisabled) { FunctionRegistry registry; RuntimeOptions options; options.enable_string_concat = false; ASSERT_OK(RegisterStringFunctions(registry, options)); auto overloads = registry.ListFunctions(); EXPECT_THAT(overloads[builtin::kAdd], IsEmpty()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/string_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/string_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e497c608-fa1c-48c5-bcd4-388e26ca95a6
cpp
abseil/abseil-cpp
str_join
absl/strings/str_join.h
absl/strings/str_join_test.cc
#ifndef ABSL_STRINGS_STR_JOIN_H_ #define ABSL_STRINGS_STR_JOIN_H_ #include <cstdio> #include <cstring> #include <initializer_list> #include <iterator> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "absl/base/macros.h" #include "absl/strings/internal/str_join_internal.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN inline strings_internal::AlphaNumFormatterImpl AlphaNumFormatter() { return strings_internal::AlphaNumFormatterImpl(); } inline strings_internal::StreamFormatterImpl StreamFormatter() { return strings_internal::StreamFormatterImpl(); } template <typename FirstFormatter, typename SecondFormatter> inline strings_internal::PairFormatterImpl<FirstFormatter, SecondFormatter> PairFormatter(FirstFormatter f1, absl::string_view sep, SecondFormatter f2) { return strings_internal::PairFormatterImpl<FirstFormatter, SecondFormatter>( std::move(f1), sep, std::move(f2)); } inline strings_internal::PairFormatterImpl< strings_internal::AlphaNumFormatterImpl, strings_internal::AlphaNumFormatterImpl> PairFormatter(absl::string_view sep) { return PairFormatter(AlphaNumFormatter(), sep, AlphaNumFormatter()); } template <typename Formatter> strings_internal::DereferenceFormatterImpl<Formatter> DereferenceFormatter( Formatter&& f) { return strings_internal::DereferenceFormatterImpl<Formatter>( std::forward<Formatter>(f)); } inline strings_internal::DereferenceFormatterImpl< strings_internal::AlphaNumFormatterImpl> DereferenceFormatter() { return strings_internal::DereferenceFormatterImpl< strings_internal::AlphaNumFormatterImpl>(AlphaNumFormatter()); } template <typename Iterator, typename Formatter> std::string StrJoin(Iterator start, Iterator end, absl::string_view sep, Formatter&& fmt) { return strings_internal::JoinAlgorithm(start, end, sep, fmt); } template <typename Range, typename Formatter> std::string StrJoin(const Range& range, absl::string_view separator, Formatter&& fmt) { return strings_internal::JoinRange(range, separator, fmt); } template <typename T, typename Formatter, typename = typename std::enable_if< !std::is_convertible<T, absl::string_view>::value>::type> std::string StrJoin(std::initializer_list<T> il, absl::string_view separator, Formatter&& fmt) { return strings_internal::JoinRange(il, separator, fmt); } template <typename Formatter> inline std::string StrJoin(std::initializer_list<absl::string_view> il, absl::string_view separator, Formatter&& fmt) { return strings_internal::JoinRange(il, separator, fmt); } template <typename... T, typename Formatter> std::string StrJoin(const std::tuple<T...>& value, absl::string_view separator, Formatter&& fmt) { return strings_internal::JoinAlgorithm(value, separator, fmt); } template <typename Iterator> std::string StrJoin(Iterator start, Iterator end, absl::string_view separator) { return strings_internal::JoinRange(start, end, separator); } template <typename Range> std::string StrJoin(const Range& range, absl::string_view separator) { return strings_internal::JoinRange(range, separator); } template <typename T, typename = typename std::enable_if<!std::is_convertible< T, absl::string_view>::value>::type> std::string StrJoin(std::initializer_list<T> il, absl::string_view separator) { return strings_internal::JoinRange(il, separator); } inline std::string StrJoin(std::initializer_list<absl::string_view> il, absl::string_view separator) { return strings_internal::JoinRange(il, separator); } template <typename... T> std::string StrJoin(const std::tuple<T...>& value, absl::string_view separator) { return strings_internal::JoinTuple(value, separator, std::index_sequence_for<T...>{}); } ABSL_NAMESPACE_END } #endif
#include "absl/strings/str_join.h" #include <cstddef> #include <cstdint> #include <cstdio> #include <functional> #include <initializer_list> #include <iterator> #include <map> #include <memory> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #include "gtest/gtest.h" #include "absl/base/macros.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" namespace { TEST(StrJoin, APIExamples) { { std::vector<std::string> v = {"foo", "bar", "baz"}; EXPECT_EQ("foo-bar-baz", absl::StrJoin(v, "-")); } { std::vector<absl::string_view> v = {"foo", "bar", "baz"}; EXPECT_EQ("foo-bar-baz", absl::StrJoin(v, "-")); } { std::vector<const char*> v = {"foo", "bar", "baz"}; EXPECT_EQ("foo-bar-baz", absl::StrJoin(v, "-")); } { std::string a = "foo", b = "bar", c = "baz"; std::vector<char*> v = {&a[0], &b[0], &c[0]}; EXPECT_EQ("foo-bar-baz", absl::StrJoin(v, "-")); } { std::vector<int> v = {1, 2, 3, -4}; EXPECT_EQ("1-2-3--4", absl::StrJoin(v, "-")); } { std::string s = absl::StrJoin({"a", "b", "c"}, "-"); EXPECT_EQ("a-b-c", s); } { std::string s = absl::StrJoin(std::make_tuple(123, "abc", 0.456), "-"); EXPECT_EQ("123-abc-0.456", s); } { std::vector<std::unique_ptr<int>> v; v.emplace_back(new int(1)); v.emplace_back(new int(2)); v.emplace_back(new int(3)); EXPECT_EQ("1-2-3", absl::StrJoin(v, "-")); } { const int a[] = {1, 2, 3, -4}; EXPECT_EQ("1-2-3--4", absl::StrJoin(a, a + ABSL_ARRAYSIZE(a), "-")); } { int x = 1, y = 2, z = 3; std::vector<int*> v = {&x, &y, &z}; EXPECT_EQ("1-2-3", absl::StrJoin(v, "-")); } { int x = 1, y = 2, z = 3; int *px = &x, *py = &y, *pz = &z; std::vector<int**> v = {&px, &py, &pz}; EXPECT_EQ("1-2-3", absl::StrJoin(v, "-")); } { std::string a("a"), b("b"); std::vector<std::string*> v = {&a, &b}; EXPECT_EQ("a-b", absl::StrJoin(v, "-")); } { std::map<std::string, int> m = {{"a", 1}, {"b", 2}, {"c", 3}}; EXPECT_EQ("a=1,b=2,c=3", absl::StrJoin(m, ",", absl::PairFormatter("="))); } { const std::string s = "a=b=c=d"; EXPECT_EQ("a-b-c-d", absl::StrJoin(absl::StrSplit(s, "="), "-")); } { std::vector<std::string> v; EXPECT_EQ("", absl::StrJoin(v, "-")); } { std::vector<std::string> v = {"foo"}; EXPECT_EQ("foo", absl::StrJoin(v, "-")); } { std::vector<std::string> v = {""}; EXPECT_EQ("", absl::StrJoin(v, "-")); } { std::vector<std::string> v = {"a", ""}; EXPECT_EQ("a-", absl::StrJoin(v, "-")); } { std::vector<std::string> v = {"", ""}; EXPECT_EQ("-", absl::StrJoin(v, "-")); } { std::vector<bool> v = {true, false, true}; EXPECT_EQ("1-0-1", absl::StrJoin(v, "-")); } } TEST(StrJoin, CustomFormatter) { std::vector<std::string> v{"One", "Two", "Three"}; { std::string joined = absl::StrJoin(v, "", [](std::string* out, const std::string& in) { absl::StrAppend(out, "(", in, ")"); }); EXPECT_EQ("(One)(Two)(Three)", joined); } { class ImmovableFormatter { public: void operator()(std::string* out, const std::string& in) { absl::StrAppend(out, "(", in, ")"); } ImmovableFormatter() {} ImmovableFormatter(const ImmovableFormatter&) = delete; }; EXPECT_EQ("(One)(Two)(Three)", absl::StrJoin(v, "", ImmovableFormatter())); } { class OverloadedFormatter { public: void operator()(std::string* out, const std::string& in) { absl::StrAppend(out, "(", in, ")"); } void operator()(std::string* out, const std::string& in) const { absl::StrAppend(out, "[", in, "]"); } }; EXPECT_EQ("(One)(Two)(Three)", absl::StrJoin(v, "", OverloadedFormatter())); const OverloadedFormatter fmt = {}; EXPECT_EQ("[One][Two][Three]", absl::StrJoin(v, "", fmt)); } } TEST(AlphaNumFormatter, FormatterAPI) { auto f = absl::AlphaNumFormatter(); std::string s; f(&s, "Testing: "); f(&s, static_cast<int>(1)); f(&s, static_cast<int16_t>(2)); f(&s, static_cast<int64_t>(3)); f(&s, static_cast<float>(4)); f(&s, static_cast<double>(5)); f(&s, static_cast<unsigned>(6)); f(&s, static_cast<size_t>(7)); f(&s, absl::string_view(" OK")); EXPECT_EQ("Testing: 1234567 OK", s); } TEST(AlphaNumFormatter, VectorOfBool) { auto f = absl::AlphaNumFormatter(); std::string s; std::vector<bool> v = {true, false, true}; f(&s, *v.cbegin()); f(&s, *v.begin()); f(&s, v[1]); EXPECT_EQ("110", s); } TEST(AlphaNumFormatter, AlphaNum) { auto f = absl::AlphaNumFormatter(); std::string s; f(&s, absl::AlphaNum("hello")); EXPECT_EQ("hello", s); } struct StreamableType { std::string contents; }; inline std::ostream& operator<<(std::ostream& os, const StreamableType& t) { os << "Streamable:" << t.contents; return os; } TEST(StreamFormatter, FormatterAPI) { auto f = absl::StreamFormatter(); std::string s; f(&s, "Testing: "); f(&s, static_cast<int>(1)); f(&s, static_cast<int16_t>(2)); f(&s, static_cast<int64_t>(3)); f(&s, static_cast<float>(4)); f(&s, static_cast<double>(5)); f(&s, static_cast<unsigned>(6)); f(&s, static_cast<size_t>(7)); f(&s, absl::string_view(" OK ")); StreamableType streamable = {"object"}; f(&s, streamable); EXPECT_EQ("Testing: 1234567 OK Streamable:object", s); } struct TestingParenFormatter { template <typename T> void operator()(std::string* s, const T& t) { absl::StrAppend(s, "(", t, ")"); } }; TEST(PairFormatter, FormatterAPI) { { const auto f = absl::PairFormatter("="); std::string s; f(&s, std::make_pair("a", "b")); f(&s, std::make_pair(1, 2)); EXPECT_EQ("a=b1=2", s); } { auto f = absl::PairFormatter(TestingParenFormatter(), "=", TestingParenFormatter()); std::string s; f(&s, std::make_pair("a", "b")); f(&s, std::make_pair(1, 2)); EXPECT_EQ("(a)=(b)(1)=(2)", s); } } TEST(DereferenceFormatter, FormatterAPI) { { const absl::strings_internal::DereferenceFormatterImpl< absl::strings_internal::AlphaNumFormatterImpl> f; int x = 1, y = 2, z = 3; std::string s; f(&s, &x); f(&s, &y); f(&s, &z); EXPECT_EQ("123", s); } { absl::strings_internal::DereferenceFormatterImpl< absl::strings_internal::DefaultFormatter<std::string>::Type> f; std::string x = "x"; std::string y = "y"; std::string z = "z"; std::string s; f(&s, &x); f(&s, &y); f(&s, &z); EXPECT_EQ(s, "xyz"); } { auto f = absl::DereferenceFormatter(TestingParenFormatter()); int x = 1, y = 2, z = 3; std::string s; f(&s, &x); f(&s, &y); f(&s, &z); EXPECT_EQ("(1)(2)(3)", s); } { absl::strings_internal::DereferenceFormatterImpl< absl::strings_internal::AlphaNumFormatterImpl> f; auto x = std::unique_ptr<int>(new int(1)); auto y = std::unique_ptr<int>(new int(2)); auto z = std::unique_ptr<int>(new int(3)); std::string s; f(&s, x); f(&s, y); f(&s, z); EXPECT_EQ("123", s); } } TEST(StrJoin, PublicAPIOverloads) { std::vector<std::string> v = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(v.begin(), v.end(), "-", absl::AlphaNumFormatter())); EXPECT_EQ("a-b-c", absl::StrJoin(v, "-", absl::AlphaNumFormatter())); EXPECT_EQ("a-b-c", absl::StrJoin(v.begin(), v.end(), "-")); EXPECT_EQ("a-b-c", absl::StrJoin(v, "-")); } TEST(StrJoin, Array) { const absl::string_view a[] = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(a, "-")); } TEST(StrJoin, InitializerList) { { EXPECT_EQ("a-b-c", absl::StrJoin({"a", "b", "c"}, "-")); } { auto a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(a, "-")); } { std::initializer_list<const char*> a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(a, "-")); } { std::initializer_list<std::string> a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(a, "-")); } { std::initializer_list<absl::string_view> a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(a, "-")); } { auto a = {"a", "b", "c"}; TestingParenFormatter f; EXPECT_EQ("(a)-(b)-(c)", absl::StrJoin(a, "-", f)); } { EXPECT_EQ("1-2-3", absl::StrJoin({1, 2, 3}, "-")); } { auto a = {1, 2, 3}; TestingParenFormatter f; EXPECT_EQ("(1)-(2)-(3)", absl::StrJoin(a, "-", f)); } } TEST(StrJoin, StringViewInitializerList) { { std::string b = "b"; EXPECT_EQ("a-b-c", absl::StrJoin({"a", b, "c"}, "-")); } { TestingParenFormatter f; std::string b = "b"; EXPECT_EQ("(a)-(b)-(c)", absl::StrJoin({"a", b, "c"}, "-", f)); } class NoCopy { public: explicit NoCopy(absl::string_view view) : view_(view) {} NoCopy(const NoCopy&) = delete; operator absl::string_view() { return view_; } private: absl::string_view view_; }; { EXPECT_EQ("a-b-c", absl::StrJoin({NoCopy("a"), NoCopy("b"), NoCopy("c")}, "-")); } { TestingParenFormatter f; EXPECT_EQ("(a)-(b)-(c)", absl::StrJoin({NoCopy("a"), NoCopy("b"), NoCopy("c")}, "-", f)); } } TEST(StrJoin, Tuple) { EXPECT_EQ("", absl::StrJoin(std::make_tuple(), "-")); EXPECT_EQ("hello", absl::StrJoin(std::make_tuple("hello"), "-")); int x(10); std::string y("hello"); double z(3.14); EXPECT_EQ("10-hello-3.14", absl::StrJoin(std::make_tuple(x, y, z), "-")); EXPECT_EQ("10-hello-3.14", absl::StrJoin(std::make_tuple(x, std::cref(y), z), "-")); struct TestFormatter { char buffer[128]; void operator()(std::string* out, int v) { snprintf(buffer, sizeof(buffer), "%#.8x", v); out->append(buffer); } void operator()(std::string* out, double v) { snprintf(buffer, sizeof(buffer), "%#.0f", v); out->append(buffer); } void operator()(std::string* out, const std::string& v) { snprintf(buffer, sizeof(buffer), "%.4s", v.c_str()); out->append(buffer); } }; EXPECT_EQ("0x0000000a-hell-3.", absl::StrJoin(std::make_tuple(x, y, z), "-", TestFormatter())); EXPECT_EQ( "0x0000000a-hell-3.", absl::StrJoin(std::make_tuple(x, std::cref(y), z), "-", TestFormatter())); EXPECT_EQ("0x0000000a-hell-3.", absl::StrJoin(std::make_tuple(&x, &y, &z), "-", absl::DereferenceFormatter(TestFormatter()))); EXPECT_EQ("0x0000000a-hell-3.", absl::StrJoin(std::make_tuple(absl::make_unique<int>(x), absl::make_unique<std::string>(y), absl::make_unique<double>(z)), "-", absl::DereferenceFormatter(TestFormatter()))); EXPECT_EQ("0x0000000a-hell-3.", absl::StrJoin(std::make_tuple(absl::make_unique<int>(x), &y, &z), "-", absl::DereferenceFormatter(TestFormatter()))); } class TestValue { public: TestValue(const char* data, size_t size) : data_(data), size_(size) {} const char* data() const { return data_; } size_t size() const { return size_; } private: const char* data_; size_t size_; }; template <typename ValueT> class TestIterator { public: using iterator_category = std::forward_iterator_tag; using value_type = ValueT; using pointer = void; using reference = const value_type&; using difference_type = int; static TestIterator begin(const std::vector<absl::string_view>& data) { return TestIterator(&data, 0); } static TestIterator end(const std::vector<absl::string_view>& data) { return TestIterator(nullptr, data.size()); } bool operator==(const TestIterator& other) const { return pos_ == other.pos_; } bool operator!=(const TestIterator& other) const { return pos_ != other.pos_; } value_type operator*() const { return ValueT((*data_)[pos_].data(), (*data_)[pos_].size()); } TestIterator& operator++() { ++pos_; return *this; } TestIterator operator++(int) { TestIterator result = *this; ++(*this); return result; } TestIterator& operator--() { --pos_; return *this; } TestIterator operator--(int) { TestIterator result = *this; --(*this); return result; } private: TestIterator(const std::vector<absl::string_view>* data, size_t pos) : data_(data), pos_(pos) {} const std::vector<absl::string_view>* data_; size_t pos_; }; template <typename ValueT> class TestIteratorRange { public: explicit TestIteratorRange(const std::vector<absl::string_view>& data) : begin_(TestIterator<ValueT>::begin(data)), end_(TestIterator<ValueT>::end(data)) {} const TestIterator<ValueT>& begin() const { return begin_; } const TestIterator<ValueT>& end() const { return end_; } private: TestIterator<ValueT> begin_; TestIterator<ValueT> end_; }; TEST(StrJoin, TestIteratorRequirementsNoFormatter) { const std::vector<absl::string_view> a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(TestIteratorRange<absl::string_view>(a), "-")); } TEST(StrJoin, TestIteratorRequirementsCustomFormatter) { const std::vector<absl::string_view> a = {"a", "b", "c"}; EXPECT_EQ("a-b-c", absl::StrJoin(TestIteratorRange<TestValue>(a), "-", [](std::string* out, const TestValue& value) { absl::StrAppend( out, absl::string_view(value.data(), value.size())); })); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/str_join.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/str_join_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f5f7b9eb-13c0-4e83-beba-fbe9edad6cf3
cpp
tensorflow/tensorflow
device_event_mgr
tensorflow/core/common_runtime/device/device_event_mgr.cc
tensorflow/core/common_runtime/device/device_event_mgr_test.cc
#include "tensorflow/core/common_runtime/device/device_event_mgr.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/core/platform/stacktrace.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace { static const int kNumThreads = 2; } namespace device_event_mgr { class ThreadLabel { public: static const char* GetValue() { return value_; } static void SetValue(const char* v) { value_ = v; } private: static thread_local const char* value_; }; thread_local const char* ThreadLabel::value_ = ""; void WarnIfInCallback(std::function<void()> f) { const char* label = ThreadLabel::GetValue(); if (label && !strcmp(label, "device_event_mgr")) { if (f) { f(); } else { LOG(WARNING) << "Executing inside EventMgr callback thread: " << CurrentStackTrace(); } } } void InitThreadpoolLabels(thread::ThreadPool* threadpool) { static const char* label = "device_event_mgr"; mutex mu; int init_count = 0; condition_variable all_initialized; int exit_count = 0; condition_variable ready_to_exit; const int num_threads = threadpool->NumThreads(); for (int i = 0; i < num_threads; ++i) { threadpool->Schedule([num_threads, &mu, &init_count, &all_initialized, &exit_count, &ready_to_exit]() { device_event_mgr::ThreadLabel::SetValue(label); mutex_lock l(mu); ++init_count; if (init_count == num_threads) { all_initialized.notify_all(); } while (init_count < num_threads) { all_initialized.wait(l); } if (++exit_count == num_threads) { ready_to_exit.notify_all(); } }); } { mutex_lock l(mu); while (exit_count < num_threads) { ready_to_exit.wait(l); } } } } EventMgr::EventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) : exec_(se), polling_active_delay_usecs_(gpu_options.polling_active_delay_usecs() ? gpu_options.polling_active_delay_usecs() : 10), threadpool_(Env::Default(), "Device_Event_Manager", kNumThreads) { device_event_mgr::InitThreadpoolLabels(&threadpool_); StartPollingLoop(); } EventMgr::~EventMgr() { StopPollingLoop(); for (auto& [stream, stream_callbacks] : callbacks_) { for (auto& [event, callback] : stream_callbacks) { threadpool_.Schedule(std::move(callback)); } } } void EventMgr::StartPollingLoop() { CHECK(polling_stopped_ == nullptr); { mutex_lock l(mu_); stop_polling_ = false; } polling_stopped_ = std::make_unique<Notification>(); threadpool_.Schedule([this]() { PollLoop(); }); } void EventMgr::StopPollingLoop() { if (polling_stopped_) { { mutex_lock l(mu_); stop_polling_ = true; events_pending_.notify_all(); } polling_stopped_->WaitForNotification(); polling_stopped_.reset(nullptr); } } void EventMgr::PollLoop() { ToFreeVector to_free; while (true) { bool events_still_pending; { mutex_lock l(mu_); if (stop_polling_) { break; } if (callbacks_.empty()) { events_pending_.wait(l); } PollEvents(nullptr, &to_free); events_still_pending = !callbacks_.empty(); } FreeMemory(to_free); to_free.clear(); if (events_still_pending) { Env::Default()->SleepForMicroseconds(polling_active_delay_usecs_); } } polling_stopped_->Notify(); } void EventMgr::EnqueueCallback(se::Stream* stream, std::function<void()> func) { VLOG(2) << "EnqueueCallback with one or more callbacks pending on " << callbacks_.size() << " streams and " << free_events_.size() << " unused event objects."; if (free_events_.empty()) { free_events_.emplace_back(exec_->CreateEvent().value()); } std::unique_ptr<se::Event> e = std::move(free_events_.back()); free_events_.pop_back(); stream->RecordEvent(e.get()).IgnoreError(); bool was_empty = callbacks_.empty(); callbacks_[stream].push_back({std::move(e), std::move(func)}); if (was_empty) { events_pending_.notify_all(); } } void EventMgr::PollEvents(se::Stream* stream, absl::InlinedVector<InUse, 4UL>* to_free) { VLOG(2) << "PollEvents with one or more callbacks pending on " << callbacks_.size() << " streams and " << free_events_.size() << " unused event objects."; auto poll_events_for_stream_it = [&](auto& stream_it) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto& stream_callbacks = stream_it->second; auto it = stream_callbacks.begin(); while (it != stream_callbacks.end()) { auto& [event, callback] = *it; se::Event::Status s = event->PollForStatus(); bool keep_looping = true; switch (s) { case se::Event::Status::kUnknown: case se::Event::Status::kError: LOG(FATAL) << "Unexpected Event status: " << static_cast<int>(s); break; case se::Event::Status::kPending: keep_looping = false; break; case se::Event::Status::kComplete: free_events_.push_back(std::move(event)); to_free->push_back({nullptr, std::move(callback)}); ++it; break; } if (!keep_looping) { break; } } stream_callbacks.erase(stream_callbacks.begin(), it); if (stream_callbacks.empty()) { callbacks_.erase(stream_it++); } else { stream_it++; } }; if (stream != nullptr) { auto stream_it = callbacks_.find(stream); if (stream_it != callbacks_.end()) { poll_events_for_stream_it(stream_it); } } else { for (auto stream_it = callbacks_.begin(); stream_it != callbacks_.end();) { poll_events_for_stream_it(stream_it); } } } EventMgrFactory* EventMgrFactory::Singleton() { static EventMgrFactory* instance = new EventMgrFactory; return instance; } EventMgr* EventMgrFactory::GetEventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) { mutex_lock l(mu_); auto itr = event_mgr_map_.find(se); if (itr == event_mgr_map_.end()) { auto event_mgr = new EventMgr(se, gpu_options); event_mgr_map_[se] = event_mgr; return event_mgr; } else { return itr->second; } } }
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/core/common_runtime/device/device_event_mgr.h" #include <atomic> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tsl/framework/device_id.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/gpu/gpu_device.h" #include "tensorflow/core/common_runtime/gpu/gpu_process_state.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/version.h" namespace tensorflow { class TEST_EventMgr : public EventMgr { public: TEST_EventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) : EventMgr(se, gpu_options) {} }; class TEST_EventMgrHelper { public: explicit TEST_EventMgrHelper(EventMgr* em) : em_(em) { StopPollingLoop(); } size_t queue_size() { mutex_lock l(em_->mu_); size_t n = 0; for (const auto& [stream, events_and_callbacks] : em_->callbacks_) { n += events_and_callbacks.size(); } return n; } size_t free_size() { mutex_lock l(em_->mu_); return em_->free_events_.size(); } void PollEvents() { while (queue_size() > 0) { EventMgr::ToFreeVector to_free; { mutex_lock l(em_->mu_); em_->PollEvents(nullptr, &to_free); } em_->FreeMemory(to_free); } } void StopPollingLoop() { return em_->StopPollingLoop(); } void StartPollingLoop() { return em_->StartPollingLoop(); } private: EventMgr* em_; }; static std::atomic_int_fast64_t live_tensor_bytes(0); class TestTensorBuffer : public TensorBuffer { public: explicit TestTensorBuffer(size_t bytes) : TensorBuffer(nullptr), bytes_(bytes) { live_tensor_bytes += bytes_; } ~TestTensorBuffer() override { live_tensor_bytes -= bytes_; } size_t size() const override { return bytes_; } TensorBuffer* root_buffer() override { return nullptr; } void FillAllocationDescription(AllocationDescription* arg) const override {} private: size_t bytes_; }; namespace { TEST(EventMgr, Empty) { auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TEST_EventMgr em(stream_exec, GPUOptions()); TEST_EventMgrHelper th(&em); EXPECT_EQ(0, th.queue_size()); EXPECT_EQ(0, th.free_size()); } TEST(EventMgr, WarnIfInCallback) { auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TEST_EventMgr em(stream_exec, GPUOptions()); TEST_EventMgrHelper th(&em); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); bool hit = false; th.StartPollingLoop(); device_event_mgr::WarnIfInCallback([&hit] { hit = true; }); EXPECT_FALSE(hit); Notification note; em.ThenExecute(stream.get(), [&hit, &note]() { device_event_mgr::WarnIfInCallback([&hit, &note] { hit = true; note.Notify(); }); }); note.WaitForNotification(); EXPECT_TRUE(hit); } } class GPUDeviceTestHelper { public: GPUDeviceTestHelper(size_t memory_limit, int pending_cap) { SessionOptions sops; device_ = DeviceFactory::NewDevice(DEVICE_GPU, sops, "/job:a/replica:0/task:0"); gpu_.reset(reinterpret_cast<BaseGPUDevice*>(device_.release())); gpu_allocator_ = GPUProcessState::singleton()->GetGPUAllocator( GPUOptions(), tsl::TfDeviceId(0), memory_limit, {}); host_allocator_ = GPUProcessState::singleton()->GetGpuHostAllocator( {}, 0); } BaseGPUDevice* gpu() { return gpu_.get(); } Allocator* gpu_allocator() { return gpu_allocator_; } Allocator* host_allocator() { return host_allocator_; } se::Stream* compute_stream() { return gpu_->stream_->compute; } se::Stream* h2d_stream() { return gpu_->stream_->host_to_device; } se::Stream* d2h_stream() { return gpu_->stream_->device_to_host; } se::Stream* d2d_stream() { return gpu_->stream_->device_to_device[0]; } EventMgr* event_mgr() { return gpu_->em_; } int pending_cap() { return gpu_->pending_cap_; } private: std::unique_ptr<Device> device_; std::unique_ptr<BaseGPUDevice> gpu_; Allocator* gpu_allocator_; Allocator* host_allocator_; }; namespace { class EMBenchmarkHelper { GPUDeviceTestHelper* gpu_helper_; std::vector<std::unique_ptr<OpKernel>> add_kernels_; std::vector<OpKernelContext::Params*> add_params_; std::vector<std::unique_ptr<OpKernelContext>> add_contexts_; NodeDef add_node_def_; NodeDef id_node_def_; gtl::InlinedVector<TensorValue, 4> add_inputs_; std::vector<AllocatorAttributes> allocator_attrs_; gtl::InlinedVector<Tensor, 4> gpu_inputs_; gtl::InlinedVector<Tensor, 4> gpu_outputs_; gtl::InlinedVector<Tensor, 4> host_inputs_; gtl::InlinedVector<Tensor, 4> host_outputs_; public: static constexpr int kTDim = 1024; int num_ops() const { return add_kernels_.size(); } size_t tensor_size() const { return add_inputs_.empty() ? 0 : add_inputs_[0]->NumElements(); } Tensor& host_outputs(int i) { return host_outputs_[i]; } Tensor& host_inputs(int i) { return host_inputs_[i]; } EMBenchmarkHelper(GPUDeviceTestHelper* h) : gpu_helper_(h) {} void ReInit(int num_ops, int tensor_size) { gpu_inputs_.clear(); while (gpu_inputs_.size() < 2) { gpu_inputs_.push_back(Tensor(gpu_helper_->gpu_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); } gpu_outputs_.clear(); while (gpu_outputs_.empty()) { gpu_outputs_.push_back(Tensor(gpu_helper_->gpu_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); } host_inputs_.clear(); while (host_inputs_.size() < 2) { int instance_index = host_inputs_.size(); host_inputs_.push_back(Tensor(gpu_helper_->host_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); for (int i = 0; i < tensor_size; ++i) { host_inputs_.back().flat<float>()(i) = i * (1.0 + (0.5 * instance_index)); } } host_outputs_.clear(); while (host_outputs_.empty()) { host_outputs_.push_back(Tensor(gpu_helper_->host_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); for (int i = 0; i < tensor_size; ++i) { host_outputs_.back().flat<float>()(i) = -1; } } add_kernels_.clear(); add_params_.clear(); while (add_kernels_.size() < num_ops) { MakeAddOp(); } } std::unique_ptr<OpKernel> GetOpKernel(const NodeDef& node_def, Status* status) { return CreateOpKernel("GPU", gpu_helper_->gpu(), gpu_helper_->gpu_allocator(), node_def, TF_GRAPH_DEF_VERSION, status); } void MakeAddOp() { if (add_kernels_.empty()) { TF_ASSERT_OK(NodeDefBuilder("add_op", "Add") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Device("/job:a/replica:0/task:0/GPU:0") .Finalize(&add_node_def_)); } Status status; add_kernels_.emplace_back(GetOpKernel(add_node_def_, &status)); TF_ASSERT_OK(status); add_params_.push_back(new OpKernelContext::Params); PrepOpKernel(add_params_.back(), add_kernels_.back().get()); } void SetOutputAttrs(OpKernelContext::Params* params, std::vector<AllocatorAttributes>* attrs) { attrs->clear(); for (int index = 0; index < params->op_kernel->num_outputs(); index++) { AllocatorAttributes attr; const bool on_host = (params->op_kernel->output_memory_types()[index] == HOST_MEMORY); attr.set_on_host(on_host); attrs->push_back(attr); } params->output_attr_array = attrs->data(); params->forward_from_array = {}; } void PrepOpKernel(OpKernelContext::Params* params, OpKernel* kernel) { params->step_id = 1; params->device = gpu_helper_->gpu(); params->log_memory = false; params->rendezvous = nullptr; params->collective_executor = nullptr; params->session_state = nullptr; params->session_handle = "session_handle"; params->tensor_store = nullptr; params->cancellation_manager = nullptr; params->call_frame = nullptr; params->function_library = nullptr; params->runner = nullptr; params->graph_collector = nullptr; params->step_container = nullptr; params->slice_reader_cache = nullptr; params->resource_manager = gpu_helper_->gpu()->resource_manager(); params->stats_collector = nullptr; params->inc_num_deferred_ops_function = nullptr; params->dec_num_deferred_ops_function = nullptr; params->op_device_context = nullptr; params->track_allocations = false; params->op_kernel = kernel; params->frame_iter = FrameAndIter(0, 0); params->is_input_dead = false; if (add_inputs_.empty()) { add_inputs_.resize(2); add_inputs_[0] = TensorValue(&gpu_inputs_[0]); add_inputs_[1] = TensorValue(&gpu_inputs_[1]); } params->inputs = add_inputs_; SetOutputAttrs(params, &allocator_attrs_); } struct TimeSet { int iter = 0; int64_t start = 0; int64_t copy_done = 0; int64_t compute_done = 0; int64_t final_copy = 0; int64_t all_done = 0; }; void DisplayTimes(std::vector<TimeSet>* times) { LOG(INFO) << "Summarize set of " << times->size() << " iters"; for (auto& ts : *times) { ts.final_copy = ts.all_done - ts.compute_done; ts.compute_done = ts.compute_done - ts.copy_done; ts.copy_done = ts.copy_done - ts.start; ts.all_done = ts.all_done - ts.start; } struct TSSort { bool operator()(const TimeSet& a, const TimeSet& b) { return a.all_done < b.all_done; } }; std::sort(times->begin(), times->end(), TSSort()); int64_t last_time = 0; for (int i = 0; i < times->size(); ++i) { if (i == (times->size() - 1) || (times->at(i).all_done >= (1.05 * last_time))) { LOG(INFO) << "rank " << i << " iter: " << times->at(i).iter << " copy: " << times->at(i).copy_done << " compute: " << times->at(i).compute_done << " copy back: " << times->at(i).final_copy << " sum: " << times->at(i).all_done; last_time = times->at(i).all_done; } } } void DoAddChain(int adds_per_copy, int rounds, bool event_after_add, std::function<void()> callback, std::vector<TimeSet>* times) { Tensor alias0(gpu_inputs_[0]); Tensor alias1(gpu_inputs_[1]); for (int r = 0; r < rounds; ++r) { if (times) { times->at(r).iter = r; times->at(r).start = Env::Default()->NowMicros(); } TF_ASSERT_OK( gpu_helper_->h2d_stream()->WaitFor(gpu_helper_->compute_stream())); const int64_t src_bytes = host_inputs_[0].TotalBytes(); se::DeviceMemoryBase gpu_dst_ptr0(DMAHelper::base(&gpu_inputs_[0]), src_bytes); TF_ASSERT_OK(gpu_helper_->h2d_stream()->Memcpy( &gpu_dst_ptr0, DMAHelper::base(&host_inputs_[0]), src_bytes)); se::DeviceMemoryBase gpu_dst_ptr1(DMAHelper::base(&gpu_inputs_[1]), src_bytes); TF_ASSERT_OK(gpu_helper_->h2d_stream()->Memcpy( &gpu_dst_ptr1, DMAHelper::base(&host_inputs_[1]), src_bytes)); TF_ASSERT_OK( gpu_helper_->compute_stream()->WaitFor(gpu_helper_->h2d_stream())); if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->compute_stream(), [times, r]() { times->at(r).copy_done = Env::Default()->NowMicros(); }); } std::unique_ptr<OpKernelContext> ctx; for (int apc = 0; apc < adds_per_copy; ++apc) { ctx.reset(new OpKernelContext(add_params_[apc], 1)); gpu_helper_->gpu()->Compute(add_kernels_[apc].get(), ctx.get()); TF_ASSERT_OK(ctx->status()); if (event_after_add) { gpu_helper_->event_mgr()->ThenExecute(gpu_helper_->compute_stream(), callback); } } if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->compute_stream(), [times, r]() { times->at(r).compute_done = Env::Default()->NowMicros(); }); } TF_ASSERT_OK( gpu_helper_->d2h_stream()->WaitFor(gpu_helper_->compute_stream())); const int64_t return_bytes = ctx->mutable_output(0)->TotalBytes(); se::DeviceMemoryBase gpu_src_ptr(DMAHelper::base(ctx->mutable_output(0)), return_bytes); TF_ASSERT_OK(gpu_helper_->d2h_stream()->Memcpy( DMAHelper::base(&host_outputs_[0]), gpu_src_ptr, return_bytes)); gpu_helper_->event_mgr()->ThenExecute(gpu_helper_->d2h_stream(), callback); if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->d2h_stream(), [times, r]() { times->at(r).all_done = Env::Default()->NowMicros(); }); } } } }; static void BM_no_ops(::testing::benchmark::State& state) { const int threads = state.range(0); const int iters = state.max_iterations; auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); TEST_EventMgr em(stream_exec, GPUOptions()); auto benchmark_exec = [&]() { std::atomic<int> counter; counter.store(0, std::memory_order_seq_cst); se::Stream* stream_ptr = stream.get(); auto runner = [&em, &counter, stream_ptr, iters]() { auto callback = [&counter]() { counter.fetch_add(1); }; for (int i = 0; i < iters; ++i) { em.ThenExecute(stream_ptr, callback); } }; for (int t = 0; t < threads; ++t) { Env::Default()->SchedClosure(runner); } int expected = iters * threads; while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } }; #ifdef PLATFORM_GOOGLE while (state.KeepRunningBatch(state.max_iterations)) { benchmark_exec(); } #else state.ResumeTiming(); benchmark_exec(); state.PauseTiming(); #endif } BENCHMARK(BM_no_ops)->UseRealTime()->Arg(4)->Arg(8)->Arg(32); GPUDeviceTestHelper* gpu_helper = nullptr; EMBenchmarkHelper* bm_helper = nullptr; mutex helper_mu; #ifdef PLATFORM_GOOGLE static void BM_chain_ops(::testing::benchmark::State& state, int tensor_size, int adds_per_round, bool event_after_add, int pending_cap) { #else static void BM_chain_ops(::testing::benchmark::State& state, int tensor_size, int adds_per_round, bool event_after_add, int pending_cap, int threads) { #endif const int iters = state.max_iterations; { mutex_lock l(helper_mu); if (gpu_helper && gpu_helper->pending_cap() != pending_cap) { delete bm_helper; bm_helper = nullptr; delete gpu_helper; gpu_helper = nullptr; } if (!gpu_helper) { gpu_helper = new GPUDeviceTestHelper(1 << 24, pending_cap); bm_helper = new EMBenchmarkHelper(gpu_helper); } if (bm_helper->num_ops() != adds_per_round || bm_helper->tensor_size() != tensor_size) { bm_helper->ReInit(adds_per_round, tensor_size); } } std::vector<EMBenchmarkHelper::TimeSet> times; std::vector<EMBenchmarkHelper::TimeSet>* time_ptr = nullptr; if (VLOG_IS_ON(1)) { times.resize(iters); time_ptr = &times; } std::atomic<int> counter; counter.store(0, std::memory_order_seq_cst); auto callback = [&counter]() { counter.fetch_add(1); }; int expected = 1 + (event_after_add ? adds_per_round : 0); bm_helper->DoAddChain(adds_per_round, 1, event_after_add, callback, nullptr); while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } counter = 0; #ifdef PLATFORM_GOOGLE while (state.KeepRunningBatch(state.max_iterations)) { expected = iters * (1 + (event_after_add ? adds_per_round : 0)); bm_helper->DoAddChain(adds_per_round, iters, event_after_add, callback, time_ptr); while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } } #else state.ResumeTiming(); expected = threads * iters * (1 + (event_after_add ? adds_per_round : 0)); for (int i = 0; i < threads; ++i) { Env::Default()->SchedClosure( [callback, iters, adds_per_round, event_after_add, time_ptr]() { bm_helper->DoAddChain(adds_per_round, iters, event_after_add, callback, time_ptr); }); } while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } state.PauseTiming(); #endif VLOG(1) << "counter = " << counter << " post_execute Output: " << bm_helper->host_outputs(0).SummarizeValue(64); if (time_ptr) bm_helper->DisplayTimes(time_ptr); } #ifdef PLATFORM_GOOGLE static void BM_chain_1024_1_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 1, false, 0); } static void BM_chain_1024_1_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 1, true, 0); } static void BM_chain_1024_10_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 10, false, 0); } static void BM_chain_1024_10_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 10, true, 0); } static void BM_chain_1024_100_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 100, false, 0); } static void BM_chain_1024_100_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 100, true, 0); } static void BM_chain_1M_1_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 1, false, 0); } static void BM_chain_1M_1_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 1, true, 0); } static void BM_chain_1M_10_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 10, false, 0); } static void BM_chain_1M_10_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 10, true, 0); } static void BM_chain_1M_100_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 100, false, 0); } static void BM_chain_1M_100_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 100, true, 0); } BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(8); #else static void BM_chain_1024_1_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 1, false, 0, threads); } static void BM_chain_1024_1_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 1, true, 0, threads); } static void BM_chain_1024_10_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 10, false, 0, threads); } static void BM_chain_1024_10_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 10, true, 0, threads); } static void BM_chain_1024_100_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 100, false, 0, threads); } static void BM_chain_1024_100_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 100, true, 0, threads); } static void BM_chain_1M_1_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 1, false, 0, threads); } static void BM_chain_1M_1_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 1, true, 0, threads); } static void BM_chain_1M_10_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 10, false, 0, threads); } static void BM_chain_1M_10_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 10, true, 0, threads); } static void BM_chain_1M_100_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 100, false, 0, threads); } static void BM_chain_1M_100_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 100, true, 0, threads); } BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(8); #endif } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_event_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_event_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e2ab1c0d-c7b7-446e-9d85-8322e4227a2e
cpp
tensorflow/tensorflow
convert_tensor
tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.cc
tensorflow/compiler/mlir/tensorflow/utils/convert_tensor_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.h" #include <cstdint> #include <limits> #include <optional> #include <string> #include <vector> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Types.h" #include "mlir/Support/DebugStringHelper.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dynamic_shape_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/mangling_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/bfloat16.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/tstring.h" #include "tsl/platform/ml_dtypes.h" namespace tensorflow { using llvm::ArrayRef; using llvm::SmallVector; using mlir::Builder; using mlir::DenseStringElementsAttr; using mlir::ElementsAttr; using mlir::RankedTensorType; using mlir::ShapedType; using mlir::Type; using tensorflow::errors::InvalidArgument; static TensorProto ConvertToProto(const Tensor& input_tensor, bool use_tensor_content = true) { TensorProto tensor_proto; if (use_tensor_content) input_tensor.AsProtoTensorContent(&tensor_proto); else input_tensor.AsProtoField(&tensor_proto); return tensor_proto; } static std::string MangleTensor(const Tensor& tensor) { return mangling_util::MangleTensor(ConvertToProto(tensor)); } template <typename T> absl::StatusOr<ElementsAttr> ConvertFlatTensor(const Tensor& input_tensor, ShapedType type) { auto arr = input_tensor.flat<T>(); return ElementsAttr(mlir::DenseElementsAttr::get( type, llvm::ArrayRef(arr.data(), arr.size()))); } ElementsAttr ConvertTensorOfCustomFloatType(const Tensor& tensor, RankedTensorType type) { auto buffer = llvm::ArrayRef(static_cast<char*>(tensor.data()), tensor.TotalBytes()); return mlir::DenseElementsAttr::getFromRawBuffer(type, buffer); } absl::StatusOr<ElementsAttr> ConvertStringTensor(const Tensor& input_tensor, ShapedType type) { auto arr = input_tensor.flat<tstring>(); std::vector<mlir::StringRef> string_refs; string_refs.reserve(arr.size()); for (int i = 0; i < arr.size(); i++) { const auto& val = arr(i); string_refs.push_back({val.data(), val.size()}); } return ElementsAttr(DenseStringElementsAttr::get(type, string_refs)); } absl::StatusOr<ElementsAttr> ConvertTensor(const Tensor& input_tensor, Builder* builder) { const auto& input_dtype = input_tensor.dtype(); const auto& input_shape = input_tensor.shape(); Type elt_type; TF_RETURN_IF_ERROR(ConvertDataType(input_dtype, *builder, &elt_type)); SmallVector<int64_t, 4> shape; ConvertToMlirShape(input_shape, &shape); auto type = RankedTensorType::get(shape, elt_type); #define CONVERT_FLAT(DTYPE, CTYPE) \ case DTYPE: \ return ConvertFlatTensor<CTYPE>(input_tensor, type); switch (input_dtype) { CONVERT_FLAT(DT_BOOL, bool) CONVERT_FLAT(DT_FLOAT, float) CONVERT_FLAT(DT_DOUBLE, double) CONVERT_FLAT(DT_INT8, int8) CONVERT_FLAT(DT_INT16, int16) CONVERT_FLAT(DT_INT32, int32) CONVERT_FLAT(DT_INT64, int64_t) CONVERT_FLAT(DT_UINT8, uint8) CONVERT_FLAT(DT_UINT16, uint16) CONVERT_FLAT(DT_UINT32, uint32) CONVERT_FLAT(DT_UINT64, uint64) CONVERT_FLAT(DT_COMPLEX64, std::complex<float>) CONVERT_FLAT(DT_COMPLEX128, std::complex<double>) case DT_BFLOAT16: case DT_HALF: case DT_FLOAT8_E5M2: case DT_FLOAT8_E4M3FN: return ConvertTensorOfCustomFloatType(input_tensor, type); case DT_STRING: return ConvertStringTensor(input_tensor, type); default: return ElementsAttr( mlir::TF::TensorProtoAttr::get(type, MangleTensor(input_tensor))); } #undef CONVERT_FLAT } int NumberOfMaterializedElements(const TensorProto& tensor) { if (!tensor.tensor_content().empty()) return -1; #define MATCH(DTYPE, FIELD) \ case DTYPE: \ return tensor.FIELD##_val().size() switch (tensor.dtype()) { MATCH(DT_FLOAT, float); MATCH(DT_DOUBLE, double); MATCH(DT_INT8, int); MATCH(DT_UINT8, int); MATCH(DT_INT16, int); MATCH(DT_UINT16, int); MATCH(DT_INT32, int); MATCH(DT_UINT32, uint32); MATCH(DT_INT64, int64); MATCH(DT_UINT64, uint64); MATCH(DT_BOOL, bool); MATCH(DT_HALF, half); MATCH(DT_BFLOAT16, half); MATCH(DT_STRING, string); case DT_COMPLEX64: case DT_COMPLEX128: default: return -1; } } absl::StatusOr<ElementsAttr> ConvertTensorProto(const TensorProto& input_tensor, Builder* builder) { TensorShape input_tensor_shape(input_tensor.tensor_shape()); if (NumberOfMaterializedElements(input_tensor) == 1 && input_tensor_shape.num_elements() > 1) { TensorProto tensor_copy = input_tensor; auto* shape = tensor_copy.mutable_tensor_shape(); shape->clear_dim(); shape->add_dim()->set_size(1); TF_ASSIGN_OR_RETURN(ElementsAttr single_attr, ConvertTensorProto(tensor_copy, builder)); llvm::SmallVector<int64_t> original_dimensions; for (auto dim : input_tensor_shape) original_dimensions.push_back(dim.size); return ElementsAttr(mlir::SplatElementsAttr::get( single_attr.getShapedType().clone(original_dimensions), single_attr.getValues<mlir::Attribute>()[0])); } Tensor t; if (!t.FromProto(input_tensor)) return InvalidArgument("Failed to parse input_tensor."); return ConvertTensor(t, builder); } void ConvertToTensorShapeProto(ArrayRef<int64_t> shape, TensorShapeProto* output_shape) { for (auto d : shape) { output_shape->add_dim()->set_size(ShapedType::isDynamic(d) ? kTFDynamicSize : d); } } PartialTensorShape ConvertTypeToTensorShape(const mlir::Type& type) { if (mlir::isa<mlir::UnrankedTensorType>(type)) { return PartialTensorShape(); } if (auto tensor_type = mlir::dyn_cast<mlir::RankedTensorType>(type)) { TensorShapeProto tensor_shape_proto; ConvertToTensorShapeProto(tensor_type.getShape(), &tensor_shape_proto); return PartialTensorShape(tensor_shape_proto); } return TensorShape(); } mlir::TF::ShapeAttr ConvertTypeToTensorShapeAttr(const mlir::Type& type) { if (mlir::isa<mlir::UnrankedTensorType>(type)) { return mlir::TF::ShapeAttr::get(type.getContext(), std::nullopt); } if (auto tensor_type = mlir::dyn_cast<mlir::RankedTensorType>(type)) { return mlir::TF::ShapeAttr::get(type.getContext(), tensor_type.getShape()); } return mlir::TF::ShapeAttr::get(type.getContext(), ArrayRef<int64_t>()); } absl::StatusOr<TensorSpecProto> ConvertTypeToTensorSpecProto( const mlir::Type& type) { DataType dtype; TF_RETURN_IF_ERROR(ConvertToDataType(type, &dtype)); TensorSpecProto tensor_spec; tensor_spec.set_dtype(dtype); *tensor_spec.mutable_shape() = ConvertTypeToTensorShape(type).AsProto(); return tensor_spec; } absl::StatusOr<mlir::Attribute> ConvertTensorShapeProto( const TensorShapeProto& shape, mlir::MLIRContext* context) { if (shape.unknown_rank()) return mlir::TF::ShapeAttr::get(context, std::nullopt); llvm::SmallVector<int64_t, 4> dims; dims.reserve(shape.dim().size()); for (const auto& dim : shape.dim()) { dims.push_back(dim.size() == kTFDynamicSize ? ShapedType::kDynamic : dim.size()); } return mlir::TF::ShapeAttr::get(context, llvm::ArrayRef(dims)); } void ConvertStringElementsAttr( const DenseStringElementsAttr attr, protobuf::RepeatedPtrField<std::string>* output) { for (const auto& val : attr.getRawStringData()) output->Add({val.data(), val.size()}); } template <typename T> void ConvertComplexElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<T>* output) { for (const auto& val : attr.getValues<std::complex<T>>()) { output->Add(val.real()); output->Add(val.imag()); } } Status ConvertTensorProtoAttr(const mlir::TF::TensorProtoAttr attr, TensorProto* output_tensor) { auto mangled_tensor = attr.getValue(); absl::string_view tensor_view(mangled_tensor.data(), mangled_tensor.size()); return mangling_util::DemangleTensor(tensor_view, output_tensor); } template <typename T> void ConvertElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<T>* output) { if (attr.isSplat()) { if (attr.getSplatValue<T>() != T(0)) output->Add(attr.getSplatValue<T>()); } else { output->Reserve(attr.getNumElements()); for (auto value : attr.getValues<T>()) output->AddAlreadyReserved(value); } } template <typename T, typename Cord> void ConvertFloatElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<T>* output, Cord* tensor_content) { if (attr.isSplat()) { if (attr.getSplatValue<T>() != T(0)) output->Add(attr.getSplatValue<T>()); } else { port::CopyFromArray(tensor_content, attr.getRawData().data(), attr.getRawData().size()); } } void ConvertHalfElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<int>* output) { if (attr.isSplat()) { if (attr.getSplatValue<Eigen::half>() != Eigen::half(0)) output->Add( Eigen::numext::bit_cast<uint16_t>(attr.getSplatValue<Eigen::half>())); } else { output->Reserve(attr.getNumElements()); for (const Eigen::half value : attr.getValues<Eigen::half>()) output->AddAlreadyReserved(Eigen::numext::bit_cast<uint16_t>(value)); } } template <typename T, typename U = T, typename Cord> void ConvertIntElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<T>* output, Cord* tensor_content) { if (attr.isSplat()) { if (attr.getSplatValue<U>() != U(0)) output->Add(static_cast<T>(attr.getSplatValue<U>())); } else { port::CopyFromArray(tensor_content, attr.getRawData().data(), attr.getRawData().size()); } } template <typename T, typename U = T, typename Cord> void ConvertUIntElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<T>* output, Cord* tensor_content) { if (attr.isSplat()) { if (attr.getSplatValue<U>() != U(0)) output->Add(static_cast<T>(attr.getSplatValue<U>())); } else { port::CopyFromArray(tensor_content, attr.getRawData().data(), attr.getRawData().size()); } } void ConvertBfloat16ElementsAttr(const mlir::DenseElementsAttr attr, protobuf::RepeatedField<int>* output) { if (attr.isSplat()) { if (attr.getSplatValue<bfloat16>() != bfloat16(0)) output->Add( Eigen::numext::bit_cast<uint16_t>(attr.getSplatValue<bfloat16>())); } else { output->Reserve(attr.getNumElements()); for (const bfloat16 value : attr.getValues<bfloat16>()) output->AddAlreadyReserved(Eigen::numext::bit_cast<uint16_t>(value)); } } template <typename T> void ConvertFloat8ElementsAttr(const mlir::DenseElementsAttr attr, std::string* output) { if (attr.isSplat()) { if (attr.getSplatValue<T>() != T(0)) output->push_back( Eigen::numext::bit_cast<uint8_t>(attr.getSplatValue<T>())); } else { output->reserve(attr.getNumElements()); for (const T value : attr.getValues<T>()) output->push_back(Eigen::numext::bit_cast<uint8_t>(value)); } } Status ConvertToTensorProto(const ElementsAttr attr, TensorProto* output) { auto type = attr.getShapedType(); auto shape = type.getShape(); DataType output_dtype; TF_RETURN_IF_ERROR(ConvertToDataType(type, &output_dtype)); output->set_dtype(output_dtype); ConvertToTensorShapeProto(shape, output->mutable_tensor_shape()); if (auto tensor_attr = mlir::dyn_cast<mlir::TF::TensorProtoAttr>(attr)) return ConvertTensorProtoAttr(tensor_attr, output); auto dense_attr = mlir::dyn_cast<mlir::DenseElementsAttr>(attr); if (!dense_attr) return errors::InvalidArgument("Unsupported elements attr"); switch (output_dtype) { case DT_BOOL: ConvertElementsAttr(dense_attr, output->mutable_bool_val()); break; case DT_BFLOAT16: ConvertBfloat16ElementsAttr(dense_attr, output->mutable_half_val()); break; case DT_COMPLEX64: ConvertComplexElementsAttr(dense_attr, output->mutable_scomplex_val()); break; case DT_COMPLEX128: ConvertComplexElementsAttr(dense_attr, output->mutable_dcomplex_val()); break; case DT_DOUBLE: ConvertFloatElementsAttr(dense_attr, output->mutable_double_val(), output->mutable_tensor_content()); break; case DT_HALF: ConvertHalfElementsAttr(dense_attr, output->mutable_half_val()); break; case DT_FLOAT: ConvertFloatElementsAttr(dense_attr, output->mutable_float_val(), output->mutable_tensor_content()); break; case DT_FLOAT8_E5M2: ConvertFloat8ElementsAttr<tsl::float8_e5m2>(dense_attr, output->mutable_float8_val()); break; case DT_FLOAT8_E4M3FN: ConvertFloat8ElementsAttr<tsl::float8_e4m3fn>( dense_attr, output->mutable_float8_val()); break; case tensorflow::DT_INT4: ConvertIntElementsAttr<int, tsl::int4>(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case tensorflow::DT_UINT4: ConvertUIntElementsAttr<int, tsl::uint4>( dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_QUINT8: case DT_INT8: ConvertUIntElementsAttr<int, int8_t>(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_QUINT16: case DT_INT16: ConvertIntElementsAttr<int, int16_t>(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_INT32: ConvertIntElementsAttr(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_INT64: ConvertIntElementsAttr(dense_attr, output->mutable_int64_val(), output->mutable_tensor_content()); break; case DT_STRING: ConvertStringElementsAttr(mlir::cast<DenseStringElementsAttr>(dense_attr), output->mutable_string_val()); break; case DT_UINT8: ConvertUIntElementsAttr<int, uint8_t>(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_UINT16: ConvertUIntElementsAttr<int, uint16_t>(dense_attr, output->mutable_int_val(), output->mutable_tensor_content()); break; case DT_UINT32: ConvertUIntElementsAttr(dense_attr, output->mutable_uint32_val(), output->mutable_tensor_content()); break; case DT_UINT64: ConvertUIntElementsAttr(dense_attr, output->mutable_uint64_val(), output->mutable_tensor_content()); break; default: return errors::Unimplemented(absl::StrCat("Unimplemented data type ", DataTypeString(output_dtype))); } return absl::OkStatus(); } Status ConvertToTensor(const mlir::ElementsAttr attr, Tensor* output_tensor) { TensorProto tensor_proto; TF_RETURN_IF_ERROR(ConvertToTensorProto(attr, &tensor_proto)); if (!output_tensor->FromProto(tensor_proto)) { return InvalidArgument("Couldn't convert tensor proto to tensor."); } return absl::OkStatus(); } }
#include "tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.h" #include <cstring> #include <initializer_list> #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dynamic_shape_utils.h" #include "xla/test.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/ml_dtypes.h" namespace tensorflow { namespace { using ::testing::Eq; using ::testing::IsFalse; using ::testing::IsTrue; static void RegisterDialects(mlir::MLIRContext &context) { context.loadDialect<mlir::TF::TensorFlowDialect>(); } TEST(ConvertTypeToTensorTypeTest, UnrankedTensorType) { mlir::MLIRContext context; RegisterDialects(context); mlir::Builder b(&context); PartialTensorShape output_shape = ConvertTypeToTensorShape(mlir::UnrankedTensorType::get(b.getF32Type())); EXPECT_TRUE(output_shape.IsIdenticalTo(PartialTensorShape())); } TEST(ConvertTypeToTensorTypeTest, NonFullyDefinedRankedTensorType) { mlir::MLIRContext context; RegisterDialects(context); mlir::Builder b(&context); PartialTensorShape output_shape = ConvertTypeToTensorShape( GetTypeFromTFTensorShape({-1, 2, 3}, b.getF32Type())); EXPECT_TRUE(output_shape.IsIdenticalTo(PartialTensorShape({-1, 2, 3}))); } TEST(ConvertTypeToTensorTypeTest, FullyDefinedRankedTensorType) { mlir::MLIRContext context; RegisterDialects(context); mlir::Builder b(&context); PartialTensorShape output_shape = ConvertTypeToTensorShape( mlir::RankedTensorType::get({1, 2, 3}, b.getF32Type())); EXPECT_TRUE(output_shape.IsIdenticalTo(PartialTensorShape({1, 2, 3}))); } TEST(ConvertTypeToTensorTypeTest, ScalarTensorType) { mlir::MLIRContext context; mlir::Builder b(&context); PartialTensorShape output_shape = ConvertTypeToTensorShape(b.getF32Type()); EXPECT_TRUE(output_shape.IsIdenticalTo(TensorShape())); } TEST(ConvertTypeToTensorTypeTest, ConvertStringTensor) { mlir::MLIRContext context; RegisterDialects(context); mlir::Builder b(&context); Tensor tensor(DT_STRING, TensorShape({1, 2, 2, 1})); EXPECT_EQ(4, tensor.NumElements()); auto Tt = tensor.flat<tstring>(); Tt.setValues({"one", "two", "three", "four"}); auto value_or_status = ConvertTensor(tensor, &b); ASSERT_TRUE(value_or_status.ok()); auto attr = value_or_status.value(); EXPECT_TRUE(mlir::isa<mlir::DenseStringElementsAttr>(attr)); auto string_attr = mlir::cast<mlir::DenseStringElementsAttr>(attr); auto string_values = string_attr.getRawStringData(); ASSERT_EQ(string_values.size(), 4); EXPECT_EQ(string_values[0], mlir::StringRef("one")); EXPECT_EQ(string_values[1], mlir::StringRef("two")); EXPECT_EQ(string_values[2], mlir::StringRef("three")); EXPECT_EQ(string_values[3], mlir::StringRef("four")); } class ConvertTensorTest : public ::testing::Test { protected: template <typename T> void VerifyConversion(std::initializer_list<T> values, DataType dtype, mlir::Type expected_ty) { mlir::Builder b(expected_ty.getContext()); Tensor tensor(dtype, TensorShape({static_cast<int64_t>(values.size())})); tensor.flat<T>().setValues(values); auto value_or = ConvertTensor(tensor, &b); TF_ASSERT_OK(value_or.status()); auto attr = value_or.value(); EXPECT_EQ(attr.getShapedType().getElementType(), expected_ty); Tensor out; TF_ASSERT_OK(ConvertToTensor(attr, &out)); test::ExpectTensorEqual<T>(tensor, out); } }; TEST_F(ConvertTensorTest, Simple) { mlir::MLIRContext context; RegisterDialects(context); ASSERT_NO_FATAL_FAILURE(VerifyConversion<Eigen::half>( {Eigen::half(1.0)}, DT_HALF, mlir::FloatType::getF16(&context))); ASSERT_NO_FATAL_FAILURE( VerifyConversion<bfloat16>({bfloat16(1.0), bfloat16(-1.0)}, DT_BFLOAT16, mlir::FloatType::getBF16(&context))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<float>( {1.0, -1.0}, DT_FLOAT, mlir::FloatType::getF32(&context))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<double>( {1.0, -1.0}, DT_DOUBLE, mlir::FloatType::getF64(&context))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<tsl::float8_e5m2>( {tsl::float8_e5m2{1.0}, tsl::float8_e5m2{-1.0}}, DT_FLOAT8_E5M2, mlir::FloatType::getFloat8E5M2(&context))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<tsl::float8_e4m3fn>( {tsl::float8_e4m3fn{1.0}, tsl::float8_e4m3fn{-1.0}}, DT_FLOAT8_E4M3FN, mlir::FloatType::getFloat8E4M3FN(&context))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<int4>( {static_cast<int4>(1), static_cast<int4>(-1)}, DT_INT4, mlir::IntegerType::get(&context, 4, mlir::IntegerType::SignednessSemantics::Signed))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<int8>( {1, -1}, DT_INT8, mlir::IntegerType::get(&context, 8))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<int16>( {1, -1}, DT_INT16, mlir::IntegerType::get(&context, 16))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<int32>( {1, -1}, DT_INT32, mlir::IntegerType::get(&context, 32))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<int64_t>( {1, -1}, DT_INT64, mlir::IntegerType::get(&context, 64))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<uint4>( {static_cast<uint4>(1), static_cast<uint4>(2)}, DT_UINT4, mlir::IntegerType::get( &context, 4, mlir::IntegerType::SignednessSemantics::Unsigned))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<uint8>( {1, 2}, DT_UINT8, mlir::IntegerType::get( &context, 8, mlir::IntegerType::SignednessSemantics::Unsigned))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<uint16>( {1, 2}, DT_UINT16, mlir::IntegerType::get( &context, 16, mlir::IntegerType::SignednessSemantics::Unsigned))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<uint32>( {1, 2}, DT_UINT32, mlir::IntegerType::get( &context, 32, mlir::IntegerType::SignednessSemantics::Unsigned))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<uint64>( {1, 2}, DT_UINT64, mlir::IntegerType::get( &context, 64, mlir::IntegerType::SignednessSemantics::Unsigned))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<std::complex<float>>( {{0.0, 1.0}, {1.0, 0.0}}, DT_COMPLEX64, mlir::ComplexType::get(mlir::FloatType::getF32(&context)))); ASSERT_NO_FATAL_FAILURE(VerifyConversion<std::complex<double>>( {{0.0, 1.0}, {1.0, 0.0}}, DT_COMPLEX128, mlir::ComplexType::get(mlir::FloatType::getF64(&context)))); } bool IsSplat(mlir::ElementsAttr attr) { return mlir::cast<mlir::DenseElementsAttr>(attr).isSplat(); } TEST(ConvertTensorProtoTest, SplatTensor) { TensorProto tensor; tensor.set_dtype(DT_FLOAT); tensor.mutable_tensor_shape()->add_dim()->set_size(1ULL << 35); tensor.add_float_val(42.0); mlir::MLIRContext context; mlir::Builder builder(&context); TF_ASSERT_OK_AND_ASSIGN(mlir::ElementsAttr attribute, ConvertTensorProto(tensor, &builder)); EXPECT_THAT( attribute, AllOf(Eq(mlir::DenseElementsAttr::get( mlir::RankedTensorType::get({1ULL << 35}, builder.getF32Type()), 42.0f)), ResultOf(IsSplat, IsTrue()))); } TEST(ConvertTensorProtoTest, NonSplatTensor) { TensorProto proto = tensor::CreateTensorProto<float>( {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); mlir::MLIRContext context; mlir::Builder builder(&context); TF_ASSERT_OK_AND_ASSIGN(mlir::ElementsAttr attribute, ConvertTensorProto(proto, &builder)); EXPECT_THAT( attribute, AllOf(Eq(mlir::DenseElementsAttr::get( mlir::RankedTensorType::get({2, 2}, builder.getF32Type()), {1.0f, 2.0f, 3.0f, 4.0f})), ResultOf(IsSplat, IsFalse()))); } TEST(ConvertTypeToTensorSpecProtoTest, UnrankedTensorType) { mlir::MLIRContext context; mlir::Builder b(&context); auto output_proto = ConvertTypeToTensorSpecProto( mlir::UnrankedTensorType::get(b.getF32Type())); TF_ASSERT_OK(output_proto.status()); EXPECT_EQ(output_proto->dtype(), DT_FLOAT); EXPECT_TRUE(output_proto->shape().unknown_rank()); } TEST(ConvertTypeToTensorSpecProtoTest, RankedTensorType) { mlir::MLIRContext context; mlir::Builder b(&context); auto output_proto = ConvertTypeToTensorSpecProto( mlir::RankedTensorType::get({1, 2, 3}, b.getF32Type())); TF_ASSERT_OK(output_proto.status()); EXPECT_EQ(output_proto->dtype(), DT_FLOAT); EXPECT_EQ(output_proto->shape().dim_size(), 3); EXPECT_EQ(output_proto->shape().dim().at(0).size(), 1); EXPECT_EQ(output_proto->shape().dim().at(1).size(), 2); EXPECT_EQ(output_proto->shape().dim().at(2).size(), 3); } TEST(ConvertTypeToTensorSpecProtoTest, ScalarTensorType) { mlir::MLIRContext context; mlir::Builder b(&context); auto output_proto = ConvertTypeToTensorSpecProto(b.getF32Type()); TF_ASSERT_OK(output_proto.status()); EXPECT_EQ(output_proto->dtype(), DT_FLOAT); EXPECT_FALSE(output_proto->shape().unknown_rank()); EXPECT_EQ(output_proto->shape().dim_size(), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/convert_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0a821a6c-44b2-46e5-928c-96e5c8548a77
cpp
tensorflow/tensorflow
import
tensorflow/lite/toco/tflite/import.cc
tensorflow/lite/toco/tflite/import_test.cc
#include "tensorflow/lite/toco/tflite/import.h" #include <memory> #include <string> #include "absl/log/check.h" #include "absl/log/log.h" #include "flatbuffers/verifier.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/lite/core/tools/verifier.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/tflite/operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace details { void LoadTensorsTable(const ::tflite::Model& input_model, TensorsTable* tensors_table) { auto tensors = (*input_model.subgraphs())[0]->tensors(); if (!tensors) return; for (const auto* tensor : *tensors) { tensors_table->push_back(tensor->name()->c_str()); } } void LoadOperatorsTable(const ::tflite::Model& input_model, OperatorsTable* operators_table) { auto opcodes = input_model.operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { operators_table->push_back(EnumNameBuiltinOperator(builtin_code)); } else { operators_table->push_back(opcode->custom_code()->c_str()); } } } } void ImportTensors(const ::tflite::Model& input_model, Model* model) { auto tensors = (*input_model.subgraphs())[0]->tensors(); auto* buffers = input_model.buffers(); if (!tensors) return; for (const auto* input_tensor : *tensors) { Array& array = model->GetOrCreateArray(input_tensor->name()->c_str()); array.data_type = DataType::Deserialize(input_tensor->type()); int buffer_index = input_tensor->buffer(); auto* buffer = buffers->Get(buffer_index); DataBuffer::Deserialize(*input_tensor, *buffer, &array); auto shape = input_tensor->shape(); if (shape) { array.mutable_shape()->mutable_dims()->clear(); for (uint32_t i = 0; i < shape->Length(); ++i) { auto d = shape->Get(i); array.mutable_shape()->mutable_dims()->push_back(d); } } auto quantization = input_tensor->quantization(); if (quantization) { if (quantization->min() && quantization->max()) { CHECK_EQ(1, quantization->min()->Length()); CHECK_EQ(1, quantization->max()->Length()); MinMax& minmax = array.GetOrCreateMinMax(); minmax.min = quantization->min()->Get(0); minmax.max = quantization->max()->Get(0); } if (quantization->scale() && quantization->zero_point()) { CHECK_EQ(1, quantization->scale()->Length()); CHECK_EQ(1, quantization->zero_point()->Length()); QuantizationParams& q = array.GetOrCreateQuantizationParams(); q.scale = quantization->scale()->Get(0); q.zero_point = quantization->zero_point()->Get(0); } } } } void ImportOperators( const ::tflite::Model& input_model, const std::map<std::string, std::unique_ptr<BaseOperator>>& ops_by_name, const details::TensorsTable& tensors_table, const details::OperatorsTable& operators_table, Model* model) { auto ops = (*input_model.subgraphs())[0]->operators(); if (!ops) return; for (const auto* input_op : *ops) { uint32_t index = input_op->opcode_index(); if (index > operators_table.size()) { LOG(FATAL) << "Index " << index << " must be between zero and " << operators_table.size(); } std::string opname = operators_table.at(index); std::unique_ptr<Operator> new_op = nullptr; if (ops_by_name.count(opname) == 0) { std::string effective_opname = "TENSORFLOW_UNSUPPORTED"; if (ops_by_name.count(effective_opname) == 0) { LOG(FATAL) << "Internal logic error: TENSORFLOW_UNSUPPORTED not found."; } new_op = ops_by_name.at(effective_opname) ->Deserialize(input_op->builtin_options(), input_op->custom_options()); if (new_op->type == OperatorType::kUnsupported) { auto* unsupported_op = static_cast<TensorFlowUnsupportedOperator*>(new_op.get()); unsupported_op->tensorflow_op = opname; unsupported_op->quantized = true; } else { LOG(FATAL) << "Expected a TensorFlowUnsupportedOperator"; } } else { new_op = ops_by_name.at(opname)->Deserialize(input_op->builtin_options(), input_op->custom_options()); } model->operators.emplace_back(new_op.release()); auto* op = model->operators.back().get(); auto inputs = input_op->inputs(); for (uint32_t i = 0; i < inputs->Length(); i++) { auto input_index = inputs->Get(i); if (input_index != -1) { const std::string& input_name = tensors_table.at(input_index); op->inputs.push_back(input_name); } else { const std::string& tensor_name = toco::AvailableArrayName(*model, "OptionalTensor"); model->CreateOptionalArray(tensor_name); op->inputs.push_back(tensor_name); } } auto outputs = input_op->outputs(); for (int i = 0, end = outputs->Length(); i < end; i++) { auto output_index = outputs->Get(i); const std::string& output_name = tensors_table.at(output_index); op->outputs.push_back(output_name); } } } void ImportIOTensors(const ModelFlags& model_flags, const ::tflite::Model& input_model, const details::TensorsTable& tensors_table, Model* model) { if (model_flags.input_arrays().empty()) { auto inputs = (*input_model.subgraphs())[0]->inputs(); if (inputs) { for (int input : *inputs) { const std::string& input_name = tensors_table.at(input); model->flags.add_input_arrays()->set_name(input_name); } } } if (model_flags.output_arrays().empty()) { auto outputs = (*input_model.subgraphs())[0]->outputs(); if (outputs) { for (int output : *outputs) { const std::string& output_name = tensors_table.at(output); model->flags.add_output_arrays(output_name); } } } } namespace { bool Verify(const void* buf, size_t len) { ::flatbuffers::Verifier verifier(static_cast<const uint8_t*>(buf), len); return ::tflite::VerifyModelBuffer(verifier); } } std::unique_ptr<Model> Import(const ModelFlags& model_flags, const std::string& input_file_contents) { ::tflite::AlwaysTrueResolver r; if (!::tflite::Verify(input_file_contents.data(), input_file_contents.size(), r, ::tflite::DefaultErrorReporter())) { LOG(FATAL) << "Invalid flatbuffer."; } const ::tflite::Model* input_model = ::tflite::GetModel(input_file_contents.data()); const auto ops_by_name = BuildOperatorByNameMap(); if (!input_model->subgraphs() || input_model->subgraphs()->size() != 1) { LOG(FATAL) << "Number of subgraphs in tflite should be exactly 1."; } std::unique_ptr<Model> model; model = std::make_unique<Model>(); details::TensorsTable tensors_table; details::LoadTensorsTable(*input_model, &tensors_table); details::OperatorsTable operators_table; details::LoadOperatorsTable(*input_model, &operators_table); ImportTensors(*input_model, model.get()); ImportOperators(*input_model, ops_by_name, tensors_table, operators_table, model.get()); ImportIOTensors(model_flags, *input_model, tensors_table, model.get()); UndoWeightsShuffling(model.get()); return model; } } }
#include "tensorflow/lite/toco/tflite/import.h" #include <initializer_list> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/lite/version.h" namespace toco { namespace tflite { namespace { using ::testing::ElementsAre; using flatbuffers::Offset; using flatbuffers::Vector; class ImportTest : public ::testing::Test { protected: template <typename T> Offset<Vector<unsigned char>> CreateDataVector(const std::vector<T>& data) { return builder_.CreateVector(reinterpret_cast<const uint8_t*>(data.data()), sizeof(T) * data.size()); } Offset<Vector<Offset<::tflite::Buffer>>> BuildBuffers() { auto buf0 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({})); auto buf1 = ::tflite::CreateBuffer( builder_, CreateDataVector<float>({1.0f, 2.0f, 3.0f, 4.0f})); auto buf2 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({3.0f, 4.0f})); return builder_.CreateVector( std::vector<Offset<::tflite::Buffer>>({buf0, buf1, buf2})); } Offset<Vector<Offset<::tflite::Tensor>>> BuildTensors() { auto q = ::tflite::CreateQuantizationParameters( builder_, builder_.CreateVector<float>({0.1f}), builder_.CreateVector<float>({0.2f}), builder_.CreateVector<float>({0.3f}), builder_.CreateVector<int64_t>({100LL})); auto t1 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({1, 2, 2}), ::tflite::TensorType_FLOAT32, 1, builder_.CreateString("tensor_one"), q); auto t2 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({2, 1}), ::tflite::TensorType_FLOAT32, 0, builder_.CreateString("tensor_two"), q); return builder_.CreateVector( std::vector<Offset<::tflite::Tensor>>({t1, t2})); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes( std::initializer_list<::tflite::BuiltinOperator> op_codes) { std::vector<Offset<::tflite::OperatorCode>> op_codes_vector; for (auto op : op_codes) { op_codes_vector.push_back(::tflite::CreateOperatorCode(builder_, op, 0)); } return builder_.CreateVector(op_codes_vector); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes() { return BuildOpCodes({::tflite::BuiltinOperator_MAX_POOL_2D, ::tflite::BuiltinOperator_CONV_2D}); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators( std::initializer_list<int> inputs, std::initializer_list<int> outputs) { auto is = builder_.CreateVector<int>(inputs); if (inputs.size() == 0) is = 0; auto os = builder_.CreateVector<int>(outputs); if (outputs.size() == 0) os = 0; auto op = ::tflite::CreateOperator( builder_, 0, is, os, ::tflite::BuiltinOptions_Conv2DOptions, ::tflite::CreateConv2DOptions(builder_, ::tflite::Padding_VALID, 1, 1, ::tflite::ActivationFunctionType_NONE) .Union(), 0, ::tflite::CustomOptionsFormat_FLEXBUFFERS); return builder_.CreateVector(std::vector<Offset<::tflite::Operator>>({op})); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators() { return BuildOperators({0}, {1}); } Offset<Vector<Offset<::tflite::SubGraph>>> BuildSubGraphs( Offset<Vector<Offset<::tflite::Tensor>>> tensors, Offset<Vector<Offset<::tflite::Operator>>> operators, int num_sub_graphs = 1) { std::vector<int32_t> inputs = {0}; std::vector<int32_t> outputs = {1}; std::vector<Offset<::tflite::SubGraph>> v; for (int i = 0; i < num_sub_graphs; ++i) { v.push_back(::tflite::CreateSubGraph( builder_, tensors, builder_.CreateVector(inputs), builder_.CreateVector(outputs), operators, builder_.CreateString("subgraph"))); } return builder_.CreateVector(v); } void BuildTestModel() { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto s = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, s, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); } std::string InputModelAsString() { return std::string(reinterpret_cast<char*>(builder_.GetBufferPointer()), builder_.GetSize()); } flatbuffers::FlatBufferBuilder builder_; const ::tflite::Model* input_model_ = nullptr; }; TEST_F(ImportTest, LoadTensorsTable) { BuildTestModel(); details::TensorsTable tensors; details::LoadTensorsTable(*input_model_, &tensors); EXPECT_THAT(tensors, ElementsAre("tensor_one", "tensor_two")); } TEST_F(ImportTest, LoadOperatorsTable) { BuildTestModel(); details::OperatorsTable operators; details::LoadOperatorsTable(*input_model_, &operators); EXPECT_THAT(operators, ElementsAre("MAX_POOL_2D", "CONV_2D")); } TEST_F(ImportTest, Tensors) { BuildTestModel(); auto model = Import(ModelFlags(), InputModelAsString()); ASSERT_GT(model->HasArray("tensor_one"), 0); Array& a1 = model->GetArray("tensor_one"); EXPECT_EQ(ArrayDataType::kFloat, a1.data_type); EXPECT_THAT(a1.GetBuffer<ArrayDataType::kFloat>().data, ElementsAre(1.0f, 2.0f, 3.0f, 4.0f)); ASSERT_TRUE(a1.has_shape()); EXPECT_THAT(a1.shape().dims(), ElementsAre(1, 2, 2)); const auto& mm = a1.minmax; ASSERT_TRUE(mm.get()); EXPECT_FLOAT_EQ(0.1, mm->min); EXPECT_FLOAT_EQ(0.2, mm->max); const auto& q = a1.quantization_params; ASSERT_TRUE(q.get()); EXPECT_FLOAT_EQ(0.3, q->scale); EXPECT_EQ(100, q->zero_point); } TEST_F(ImportTest, NoBuffers) { auto buffers = 0; auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'buffers' section."); } TEST_F(ImportTest, NoInputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({}, {1}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'inputs' for operator."); } TEST_F(ImportTest, NoOutputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({0}, {}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'outputs' for operator."); } TEST_F(ImportTest, InvalidOpCode) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes({static_cast<::tflite::BuiltinOperator>(-1), ::tflite::BuiltinOperator_CONV_2D}); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Operator id '-1' is out of range."); } TEST_F(ImportTest, MultipleSubGraphs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators, 2); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Number of subgraphs in tflite should be exactly 1."); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/import.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/import_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b204cf53-9ac5-4632-8b9c-991be7e258ce
cpp
tensorflow/tensorflow
tflite_settings_json_parser
tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.cc
tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser_test.cc
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include <string> #include "flatbuffers/idl.h" #include "tensorflow/lite/acceleration/configuration/configuration_fbs_contents-inl.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace delegates { namespace utils { TfLiteSettingsJsonParser::TfLiteSettingsJsonParser() { TFLITE_DCHECK(parser_.Parse(configuration_fbs_contents) && parser_.SetRootType("TFLiteSettings")); } const TFLiteSettings* TfLiteSettingsJsonParser::Parse( const std::string& json_file_path) { if (!LoadFromJsonFile(json_file_path) || buffer_pointer_ == nullptr) { return nullptr; } return flatbuffers::GetRoot<TFLiteSettings>(buffer_pointer_); } const uint8_t* TfLiteSettingsJsonParser::GetBufferPointer() { return buffer_pointer_; } flatbuffers::uoffset_t TfLiteSettingsJsonParser::GetBufferSize() { return buffer_size_; } bool TfLiteSettingsJsonParser::LoadFromJsonFile( const std::string& json_file_path) { buffer_size_ = 0; buffer_pointer_ = nullptr; if (json_file_path.empty()) { TFLITE_LOG(ERROR) << "Invalid JSON file path."; return false; } std::string json_file; if (!flatbuffers::LoadFile(json_file_path.c_str(), false, &json_file)) { TFLITE_LOG(ERROR) << "Failed to load the delegate settings file (" << json_file_path << ")."; return false; } if (!parser_.Parse(json_file.c_str())) { TFLITE_LOG(ERROR) << "Failed to parse the delegate settings file (" << json_file_path << ")."; return false; } buffer_size_ = parser_.builder_.GetSize(); buffer_pointer_ = parser_.builder_.GetBufferPointer(); return true; } } } }
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace { using tflite::TFLiteSettings; using tflite::delegates::utils::TfLiteSettingsJsonParser; TEST(TfLiteSettingsJsonParserTest, SuccessWithValidXNNPackDelegateSettings) { TfLiteSettingsJsonParser parser; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); EXPECT_NE(parser.GetBufferPointer(), nullptr); EXPECT_NE(parser.GetBufferSize(), 0); ASSERT_NE(tflite_settings, nullptr); EXPECT_EQ(tflite_settings->delegate(), tflite::Delegate_XNNPACK); ASSERT_NE(tflite_settings->xnnpack_settings(), nullptr); EXPECT_EQ(tflite_settings->xnnpack_settings()->num_threads(), 5); } TEST(TfLiteSettingsJsonParserTest, GetBufferPointerReturnsValidBufferPointers) { TfLiteSettingsJsonParser parser; parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); const uint8_t* buffer_pointer = parser.GetBufferPointer(); ASSERT_NE(buffer_pointer, nullptr); ASSERT_NE(parser.GetBufferSize(), 0); const TFLiteSettings* tflite_settings = flatbuffers::GetRoot<TFLiteSettings>(buffer_pointer); ASSERT_NE(tflite_settings, nullptr); EXPECT_EQ(tflite_settings->delegate(), tflite::Delegate_XNNPACK); ASSERT_NE(tflite_settings->xnnpack_settings(), nullptr); EXPECT_EQ(tflite_settings->xnnpack_settings()->num_threads(), 5); } TEST(TfLiteSettingsJsonParserTest, FailedToParseInvalidSettings) { TfLiteSettingsJsonParser parser; EXPECT_EQ( parser.Parse("tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_invalid_settings.json"), nullptr); EXPECT_EQ(parser.GetBufferPointer(), nullptr); EXPECT_EQ(parser.GetBufferSize(), 0); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
570e99a0-b00f-43b7-841a-542291098e88
cpp
tensorflow/tensorflow
batch_matmul
tensorflow/lite/kernels/batch_matmul.cc
tensorflow/lite/kernels/batch_matmul_test.cc
#include "tensorflow/lite/kernels/internal/reference/batch_matmul.h" #include <stddef.h> #include <algorithm> #include <cstdint> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/batch_matmul.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace batch_matmul { static const int kInputLHSTensor = 0; static const int kInputRHSTensor = 1; static const int kOutputTensor = 0; static const int kNumTempTensorsForAdjoints = 2; static const int kNumTempTensorsForHybrid = 5; enum KernelType { kReference, kGenericOptimized, }; struct OpData { int32_t output_multiplier; int output_shift; int32_t output_activation_min; int32_t output_activation_max; int scratch_tensor_index; bool rhs_transposed; bool compute_row_sums = false; }; struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { params = reinterpret_cast<TfLiteBatchMatMulParams*>(node->builtin_data); lhs = GetInput(context, node, kInputLHSTensor); rhs = GetInput(context, node, kInputRHSTensor); output = GetOutput(context, node, 0); } TfLiteBatchMatMulParams* params; const TfLiteTensor* lhs; const TfLiteTensor* rhs; TfLiteTensor* output; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); op_data->rhs_transposed = false; context->AddTensors(context, kNumTempTensorsForAdjoints + kNumTempTensorsForHybrid, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const RuntimeShape& extended_lhs_shape, const RuntimeShape& extended_rhs_shape, bool adj_x, bool adj_y, int output_rank, TfLiteTensor* output) { TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_rank); for (int i = 0; i < output_rank - 2; ++i) { const int lhs_dim = extended_lhs_shape.Dims(i); const int rhs_dim = extended_rhs_shape.Dims(i); int broadcast_dim = lhs_dim; if ((lhs_dim != rhs_dim) && (lhs_dim == 1)) { broadcast_dim = rhs_dim; } output_shape->data[i] = broadcast_dim; } int lhs_rows_index = adj_x ? output_rank - 1 : output_rank - 2; int rhs_cols_index = adj_y ? output_rank - 2 : output_rank - 1; output_shape->data[output_rank - 2] = extended_lhs_shape.Dims(lhs_rows_index); output_shape->data[output_rank - 1] = extended_rhs_shape.Dims(rhs_cols_index); TfLiteStatus stat = context->ResizeTensor(context, output, output_shape); return stat; } TfLiteStatus InitializeTemporaries(TfLiteContext* context, TfLiteNode* node, OpContext* op_context) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* lhs = op_context->lhs; const TfLiteTensor* rhs = op_context->rhs; TfLiteIntArrayFree(node->temporaries); bool is_hybrid = (op_context->lhs->type == kTfLiteFloat32 && rhs->type == kTfLiteInt8); if (is_hybrid) { node->temporaries = TfLiteIntArrayCreate(kNumTempTensorsForAdjoints + kNumTempTensorsForHybrid); } else { node->temporaries = TfLiteIntArrayCreate(kNumTempTensorsForAdjoints); } const int lhs_rank = NumDimensions(lhs); const int rhs_rank = NumDimensions(rhs); const int batch_size = op_context->params->adj_x ? lhs->dims->data[lhs_rank - 1] : lhs->dims->data[lhs_rank - 2]; const int num_units = op_context->params->adj_y ? rhs->dims->data[rhs_rank - 2] : rhs->dims->data[rhs_rank - 1]; { node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* scratch_buffer; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 0, &scratch_buffer)); TfLiteIntArray* scratch_buffer_size = TfLiteIntArrayCreate(lhs_rank); for (int i = 0; i < lhs_rank - 2; ++i) { scratch_buffer_size->data[i] = lhs->dims->data[i]; } scratch_buffer_size->data[lhs_rank - 2] = lhs->dims->data[lhs_rank - 1]; scratch_buffer_size->data[lhs_rank - 1] = lhs->dims->data[lhs_rank - 2]; scratch_buffer->type = op_context->lhs->type; scratch_buffer->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_buffer, scratch_buffer_size)); } { node->temporaries->data[1] = op_data->scratch_tensor_index + 1; TfLiteTensor* scratch_buffer; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &scratch_buffer)); scratch_buffer->name = "BatchMatMul_scratch_buffer"; const TfLiteTensor* rhs = op_context->rhs; int rhs_rank = NumDimensions(rhs); TfLiteIntArray* scratch_buffer_size = TfLiteIntArrayCreate(rhs_rank); for (int i = 0; i < rhs_rank - 2; ++i) { scratch_buffer_size->data[i] = rhs->dims->data[i]; } scratch_buffer_size->data[rhs_rank - 2] = rhs->dims->data[rhs_rank - 1]; scratch_buffer_size->data[rhs_rank - 1] = rhs->dims->data[rhs_rank - 2]; if (IsConstantTensor(op_context->rhs)) { scratch_buffer->allocation_type = kTfLiteArenaRwPersistent; } else { scratch_buffer->allocation_type = kTfLiteArenaRw; } scratch_buffer->type = op_context->rhs->type; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_buffer, scratch_buffer_size)); } if (is_hybrid) { int num_batches = 1; for (int i = 0; i < lhs_rank - 2; ++i) { num_batches *= lhs->dims->data[i]; } int num_weights_matrices = 1; for (int i = 0; i < rhs_rank - 2; ++i) { num_weights_matrices *= rhs->dims->data[i]; } op_data->compute_row_sums = true; node->temporaries->data[2] = op_data->scratch_tensor_index + 2; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &input_quantized)); input_quantized->type = op_context->rhs->type; input_quantized->allocation_type = kTfLiteArenaRw; TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(op_context->lhs->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); node->temporaries->data[3] = op_data->scratch_tensor_index + 3; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {num_batches * batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = scaling_dims[0]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[4] = op_data->scratch_tensor_index + 4; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int accum_scratch_dims[2] = {num_units, batch_size}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_size = TfLiteIntArrayCreate(2); accum_size->data[0] = num_units; accum_size->data[1] = batch_size; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, accum_scratch, accum_size)); } node->temporaries->data[5] = op_data->scratch_tensor_index + 5; TfLiteTensor* input_offsets; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 5, &input_offsets)); input_offsets->type = kTfLiteInt32; input_offsets->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(input_offsets->dims, 1, scaling_dims)) { TfLiteIntArray* input_offsets_size = TfLiteIntArrayCreate(1); input_offsets_size->data[0] = num_batches * batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_offsets, input_offsets_size)); } node->temporaries->data[6] = op_data->scratch_tensor_index + 6; TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 6, &row_sums)); row_sums->type = kTfLiteInt32; row_sums->allocation_type = kTfLiteArenaRwPersistent; int row_sums_dims[1] = {num_weights_matrices * num_units}; if (!TfLiteIntArrayEqualsArray(row_sums->dims, 1, row_sums_dims)) { TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(1); row_sums_size->data[0] = row_sums_dims[0]; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, row_sums, row_sums_size)); } } return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE_OK(context, InitializeTemporaries(context, node, &op_context)); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); bool adj_x = op_context.params->adj_x; bool adj_y = op_context.params->adj_y; const TfLiteTensor* lhs_data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputLHSTensor, &lhs_data)); const TfLiteTensor* rhs_data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputRHSTensor, &rhs_data)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if ((lhs_data->type == kTfLiteInt8 || lhs_data->type == kTfLiteInt16) && output->type != kTfLiteInt32) { double real_multiplier = 0.0; TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( context, lhs_data, rhs_data, output, &real_multiplier)); int exponent; QuantizeMultiplier(real_multiplier, &op_data->output_multiplier, &exponent); op_data->output_shift = exponent; if (lhs_data->type == kTfLiteInt8) { op_data->output_activation_min = std::numeric_limits<int8_t>::min(); op_data->output_activation_max = std::numeric_limits<int8_t>::max(); } else { op_data->output_activation_min = std::numeric_limits<int16_t>::min(); op_data->output_activation_max = std::numeric_limits<int16_t>::max(); } } if (lhs_data->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, lhs_data->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, rhs_data->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } TF_LITE_ENSURE(context, lhs_data->type == kTfLiteFloat32 || lhs_data->type == kTfLiteInt8 || lhs_data->type == kTfLiteInt16); TF_LITE_ENSURE(context, rhs_data->type == kTfLiteFloat32 || rhs_data->type == kTfLiteInt8 || rhs_data->type == kTfLiteInt16); TF_LITE_ENSURE(context, (lhs_data->type == kTfLiteFloat32 && rhs_data->type == kTfLiteInt8) || lhs_data->type == rhs_data->type); TF_LITE_ENSURE(context, NumDimensions(lhs_data) >= 2); TF_LITE_ENSURE(context, NumDimensions(lhs_data) <= 5); TF_LITE_ENSURE(context, NumDimensions(rhs_data) >= 2); TF_LITE_ENSURE(context, NumDimensions(rhs_data) <= 5); const int lhs_rank = NumDimensions(lhs_data); const int rhs_rank = NumDimensions(rhs_data); const int output_rank = std::max(lhs_rank, rhs_rank); const RuntimeShape extended_lhs_shape = RuntimeShape::ExtendedShape(output_rank, GetTensorShape(lhs_data)); const RuntimeShape extended_rhs_shape = RuntimeShape::ExtendedShape(output_rank, GetTensorShape(rhs_data)); for (int i = 0; i < output_rank - 2; ++i) { const int lhs_dim = extended_lhs_shape.Dims(i); const int rhs_dim = extended_rhs_shape.Dims(i); if (lhs_dim != rhs_dim) { if (lhs_dim != 1) { TF_LITE_ENSURE_EQ(context, rhs_dim, 1); } } } int accum_dim_lhs = adj_x ? extended_lhs_shape.Dims(output_rank - 2) : extended_lhs_shape.Dims(output_rank - 1); int accum_dim_rhs = adj_y ? extended_rhs_shape.Dims(output_rank - 1) : extended_rhs_shape.Dims(output_rank - 2); TF_LITE_ENSURE_EQ(context, accum_dim_lhs, accum_dim_rhs); TfLiteStatus status = ResizeOutputTensor(context, extended_lhs_shape, extended_rhs_shape, adj_x, adj_y, output_rank, output); return status; } template <typename scalar> void TransposeRowsColumnsImpl(const TfLiteTensor* tensor_in, const scalar* input, TfLiteTensor* tensor_out, scalar* output) { RuntimeShape transposed_shape(GetTensorShape(tensor_in)); RuntimeShape shape(GetTensorShape(tensor_in)); TransposeParams params; int rank = NumDimensions(tensor_in); params.perm_count = rank; for (int i = 0; i < rank - 2; ++i) { params.perm[i] = i; } params.perm[rank - 2] = rank - 1; params.perm[rank - 1] = rank - 2; transposed_shape.SetDim(rank - 1, shape.Dims(rank - 2)); transposed_shape.SetDim(rank - 2, shape.Dims(rank - 1)); optimized_ops::Transpose(params, shape, input, transposed_shape, output); } TfLiteStatus TransposeRowsColumns(TfLiteContext* context, const TfLiteTensor* tensor_in, TfLiteTensor* tensor_out) { if (tensor_in->type == kTfLiteFloat32) { TransposeRowsColumnsImpl<float>(tensor_in, GetTensorData<float>(tensor_in), tensor_out, GetTensorData<float>(tensor_out)); return kTfLiteOk; } else if (tensor_in->type == kTfLiteInt8) { TransposeRowsColumnsImpl<int8_t>( tensor_in, GetTensorData<int8_t>(tensor_in), tensor_out, GetTensorData<int8_t>(tensor_out)); return kTfLiteOk; } else if (tensor_in->type == kTfLiteInt16) { TransposeRowsColumnsImpl<int16_t>( tensor_in, GetTensorData<int16_t>(tensor_in), tensor_out, GetTensorData<int16_t>(tensor_out)); return kTfLiteOk; } else { TF_LITE_KERNEL_LOG( context, "Can only transpose tensors with float, int8 or int16 type."); return kTfLiteError; } } RuntimeShape SwapRowColumnDims(const RuntimeShape& shape) { RuntimeShape swapped_shape(shape); const int32_t dims = shape.DimensionsCount(); swapped_shape.SetDim(dims - 2, shape.Dims(dims - 1)); swapped_shape.SetDim(dims - 1, shape.Dims(dims - 2)); return swapped_shape; } TfLiteStatus EvalHybrid(TfLiteContext* context, TfLiteNode* node, OpData* data, const RuntimeShape& input_shape, const TfLiteTensor* input, const RuntimeShape& filter_shape, const TfLiteTensor* filter, TfLiteTensor* input_quantized, TfLiteTensor* scaling_factors, TfLiteTensor* accum_scratch, TfLiteTensor* row_sums, TfLiteTensor* input_offsets, TfLiteTensor* output) { const auto* params = reinterpret_cast<TfLiteBatchMatMulParams*>(node->builtin_data); const int32_t num_input_dims = input_shape.DimensionsCount(); const int input_size = input_shape.Dims(num_input_dims - 2); const int batch_size = input_shape.Dims(num_input_dims - 1); int num_batches_to_quantize = batch_size; for (int i = 0; i < input_shape.DimensionsCount() - 2; ++i) { num_batches_to_quantize *= input_shape.Dims(i); } const int scaling_factor_size = GetTensorShape(scaling_factors).FlatSize(); TF_LITE_ENSURE(context, scaling_factor_size >= num_batches_to_quantize); float* scaling_factors_ptr = GetTensorData<float>(scaling_factors); int32_t* input_offset_ptr = nullptr; int32_t* row_sums_ptr = nullptr; input_offset_ptr = GetTensorData<int32_t>(input_offsets); row_sums_ptr = GetTensorData<int32_t>(row_sums); if (!params->asymmetric_quantize_inputs) { memset(input_offset_ptr, 0, input_offsets->bytes); } int8_t* quant_data = GetTensorData<int8_t>(input_quantized); const int8_t* filter_data = GetTensorData<int8_t>(filter); const float* input_ptr = GetTensorData<float>(input); tensor_utils::BatchQuantizeFloats(input_ptr, num_batches_to_quantize, input_size, quant_data, scaling_factors_ptr, input_offset_ptr, params->asymmetric_quantize_inputs); for (int b = 0; b < num_batches_to_quantize; ++b) { scaling_factors_ptr[b] *= filter->params.scale; } RuntimeShape output_shape = GetTensorShape(output); int output_size = 1; for (int i = 0; i < output_shape.DimensionsCount(); ++i) { output_size *= output_shape.Dims(i); } std::fill_n(GetTensorData<float>(output), output_size, 0.0f); reference_ops::BatchMatMul( filter_shape, filter_data, input_shape, quant_data, scaling_factors_ptr, input_offset_ptr, row_sums_ptr, GetTensorShape(output), GetTensorData<float>(output), &(data->compute_row_sums)); return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus EvalInt8Int8(TfLiteContext* context, const OpData* data, const RuntimeShape& lhs_shape, const TfLiteTensor* lhs, const RuntimeShape& rhs_shape, const TfLiteTensor* rhs, const RuntimeShape& output_shape, TfLiteTensor* output, bool transpose_lhs) { FullyConnectedParams op_params; int32_t input_offset = -lhs->params.zero_point; int32_t filter_offset = -rhs->params.zero_point; int32_t output_offset = output->params.zero_point; op_params.input_offset = input_offset; op_params.weights_offset = filter_offset; op_params.output_offset = output_offset; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = data->output_shift; op_params.quantized_activation_min = data->output_activation_min; op_params.quantized_activation_max = data->output_activation_max; op_params.lhs_cacheable = IsConstantTensor(lhs); op_params.rhs_cacheable = IsConstantTensor(rhs); if (kernel_type == kReference) { reference_ops::BatchMatMul<int8_t, int32_t>( op_params, rhs_shape, GetTensorData<int8_t>(rhs), lhs_shape, GetTensorData<int8_t>(lhs), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { optimized_ops::BatchMatMul( op_params, rhs_shape, GetTensorData<int8_t>(rhs), lhs_shape, GetTensorData<int8_t>(lhs), GetTensorShape(output), GetTensorData<int8_t>(output), CpuBackendContext::GetFromContext(context), transpose_lhs); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus EvalInt8Int32(TfLiteContext* context, const OpData* data, const RuntimeShape& lhs_shape, const TfLiteTensor* lhs, const RuntimeShape& rhs_shape, const TfLiteTensor* rhs, const RuntimeShape& output_shape, TfLiteTensor* output, bool transpose_lhs) { FullyConnectedParams op_params; int32_t input_offset = -lhs->params.zero_point; int32_t weights_offset = -rhs->params.zero_point; int32_t output_offset = output->params.zero_point; op_params.input_offset = input_offset; op_params.weights_offset = weights_offset; op_params.output_offset = output_offset; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = data->output_shift; op_params.quantized_activation_min = data->output_activation_min; op_params.quantized_activation_max = data->output_activation_max; op_params.lhs_cacheable = IsConstantTensor(lhs); op_params.rhs_cacheable = IsConstantTensor(rhs); if (kernel_type == kReference) { reference_ops::BatchMatMul<int8, int8, int32>( rhs_shape, GetTensorData<int8>(rhs), lhs_shape, GetTensorData<int8>(lhs), GetTensorShape(output), GetTensorData<int32>(output)); } else { optimized_ops::BatchMatMul( op_params, rhs_shape, GetTensorData<int8_t>(rhs), lhs_shape, GetTensorData<int8_t>(lhs), GetTensorShape(output), GetTensorData<int32_t>(output), CpuBackendContext::GetFromContext(context), transpose_lhs); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus EvalInt16(TfLiteContext* context, const OpData* data, const RuntimeShape& lhs_shape, const TfLiteTensor* lhs, const RuntimeShape& rhs_shape, const TfLiteTensor* rhs, const RuntimeShape& output_shape, TfLiteTensor* output) { FullyConnectedParams op_params; int32_t input_offset = -lhs->params.zero_point; int32_t filter_offset = -rhs->params.zero_point; int32_t output_offset = output->params.zero_point; op_params.input_offset = input_offset; op_params.weights_offset = filter_offset; op_params.output_offset = output_offset; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = data->output_shift; op_params.quantized_activation_min = data->output_activation_min; op_params.quantized_activation_max = data->output_activation_max; reference_ops::BatchMatMul<int16_t, int64_t>( op_params, rhs_shape, GetTensorData<int16_t>(rhs), lhs_shape, GetTensorData<int16_t>(lhs), GetTensorShape(output), GetTensorData<int16_t>(output)); return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, OpData* data, const RuntimeShape& lhs_shape, const TfLiteTensor* lhs, const RuntimeShape& rhs_shape, const TfLiteTensor* rhs, TfLiteTensor* output, bool transpose_lhs) { if (lhs->type == kTfLiteFloat32 && rhs->type == kTfLiteInt8) { TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &input_quantized)); TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &scaling_factors)); TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &accum_scratch)); TfLiteTensor* input_offsets; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 5, &input_offsets)); TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 6, &row_sums)); return EvalHybrid(context, node, data, lhs_shape, lhs, rhs_shape, rhs, input_quantized, scaling_factors, accum_scratch, row_sums, input_offsets, output); } else if (lhs->type == kTfLiteInt8 && rhs->type == kTfLiteInt8) { if (output->type == kTfLiteInt8) { return EvalInt8Int8<kernel_type>(context, data, lhs_shape, lhs, rhs_shape, rhs, GetTensorShape(output), output, transpose_lhs); } else { return EvalInt8Int32<kernel_type>(context, data, lhs_shape, lhs, rhs_shape, rhs, GetTensorShape(output), output, transpose_lhs); } } else if (lhs->type == kTfLiteInt16 && rhs->type == kTfLiteInt16) { return EvalInt16<kernel_type>(context, data, lhs_shape, lhs, rhs_shape, rhs, GetTensorShape(output), output); } else { TF_LITE_KERNEL_LOG( context, "Currently only hybrid, int8 and int16 quantization are supported.\n"); return kTfLiteError; } return kTfLiteOk; } TfLiteTensor* GetTempRhs(TfLiteContext* context, TfLiteNode* node, const TfLiteTensor* rhs) { TfLiteTensor* transposed_rhs = GetTemporary(context, node, 1); if (transposed_rhs == nullptr) { return nullptr; } if (rhs->type == kTfLiteInt8 || rhs->type == kTfLiteInt16) { transposed_rhs->params.scale = rhs->params.scale; transposed_rhs->params.zero_point = rhs->params.zero_point; } return transposed_rhs; } TfLiteTensor* GetTempLhs(TfLiteContext* context, TfLiteNode* node, const TfLiteTensor* lhs) { TfLiteTensor* transposed_lhs = GetTemporary(context, node, 0); if (transposed_lhs == nullptr) { return nullptr; } if (lhs->type == kTfLiteInt8 || lhs->type == kTfLiteInt16) { transposed_lhs->params.scale = lhs->params.scale; transposed_lhs->params.zero_point = lhs->params.zero_point; } return transposed_lhs; } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpContext op_context(context, node); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* lhs; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputLHSTensor, &lhs)); const TfLiteTensor* rhs; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputRHSTensor, &rhs)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); RuntimeShape orig_lhs_shape = GetTensorShape(lhs); RuntimeShape orig_rhs_shape = GetTensorShape(rhs); bool adj_y = op_context.params->adj_y; bool adj_x = op_context.params->adj_x; int32_t rhs_dims_count = orig_rhs_shape.DimensionsCount(); int32_t lhs_dims_count = orig_lhs_shape.DimensionsCount(); if (rhs_dims_count > 2 && lhs_dims_count > 2) { int rhs_one = orig_rhs_shape.DimsData()[rhs_dims_count - 3]; if (rhs_one == 1) { int32_t* lhs_dims = orig_lhs_shape.DimsData(); int32_t* rhs_dims = orig_rhs_shape.DimsData(); RuntimeShape tmp_l(lhs_dims_count - 1, lhs_dims); tmp_l.SetDim(lhs_dims_count - 3, lhs_dims[lhs_dims_count - 3] * lhs_dims[lhs_dims_count - 2]); tmp_l.SetDim(lhs_dims_count - 2, lhs_dims[lhs_dims_count - 1]); orig_lhs_shape.ReplaceWith(tmp_l.DimensionsCount(), tmp_l.DimsData()); RuntimeShape tmp_r(rhs_dims_count - 1, orig_rhs_shape.DimsData()); tmp_r.SetDim(rhs_dims_count - 3, rhs_dims[rhs_dims_count - 2]); tmp_r.SetDim(rhs_dims_count - 2, rhs_dims[rhs_dims_count - 1]); orig_rhs_shape.ReplaceWith(tmp_r.DimensionsCount(), tmp_r.DimsData()); } } rhs_dims_count = orig_rhs_shape.DimensionsCount(); lhs_dims_count = orig_lhs_shape.DimensionsCount(); const TfLiteTensor* rhs_tensor = rhs; bool implicit_transpose_possible = true; if ((lhs->type == kTfLiteFloat32 && rhs->type == kTfLiteInt8) || kernel_type == kReference || rhs->type == kTfLiteInt16) { implicit_transpose_possible = false; } bool do_implicit_transpose = !adj_y && implicit_transpose_possible; if (!adj_y && !implicit_transpose_possible) { rhs_tensor = GetTempRhs(context, node, rhs); } const TfLiteTensor* lhs_tensor = adj_x ? GetTempLhs(context, node, lhs) : lhs; if (!adj_y && !implicit_transpose_possible) { if (!(IsConstantTensor(rhs) && op_data->rhs_transposed)) { TransposeRowsColumns(context, rhs, GetTemporary(context, node, 1)); op_data->rhs_transposed = true; } } if (adj_x) { TransposeRowsColumns(context, lhs, GetTemporary(context, node, 0)); } RuntimeShape rhs_shape = (adj_y && !do_implicit_transpose) ? orig_rhs_shape : SwapRowColumnDims(orig_rhs_shape); RuntimeShape lhs_shape = adj_x ? orig_lhs_shape : SwapRowColumnDims(orig_lhs_shape); switch (rhs->type) { case kTfLiteFloat32: if (kernel_type == kGenericOptimized) { optimized_ops::BatchMatMul( rhs_shape, GetTensorData<float>(rhs_tensor), lhs_shape, GetTensorData<float>(lhs_tensor), GetTensorShape(output), GetTensorData<float>(output), CpuBackendContext::GetFromContext(context), do_implicit_transpose); } else { reference_ops::BatchMatMul(rhs_shape, GetTensorData<float>(rhs_tensor), lhs_shape, GetTensorData<float>(lhs_tensor), GetTensorShape(output), GetTensorData<float>(output)); } break; case kTfLiteInt8: case kTfLiteInt16: EvalQuantized<kernel_type>(context, node, op_data, lhs_shape, lhs_tensor, rhs_shape, rhs_tensor, output, do_implicit_transpose); break; default: TF_LITE_KERNEL_LOG(context, "Currently BatchMatMul doesn't support type: %s", TfLiteTypeGetName(lhs->type)); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_BATCH_MATMUL_REF() { static TfLiteRegistration r = {batch_matmul::Init, batch_matmul::Free, batch_matmul::Prepare, batch_matmul::Eval<batch_matmul::kReference>}; return &r; } TfLiteRegistration* Register_BATCH_MATMUL_GENERIC_OPTIMIZED() { static TfLiteRegistration r = { batch_matmul::Init, batch_matmul::Free, batch_matmul::Prepare, batch_matmul::Eval<batch_matmul::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_BATCH_MATMUL() { return Register_BATCH_MATMUL_GENERIC_OPTIMIZED(); } } } }
#include <stddef.h> #include <stdint.h> #include <initializer_list> #include <limits> #include <map> #include <numeric> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace ops { namespace builtin { TfLiteRegistration* Register_BATCH_MATMUL_REF(); TfLiteRegistration* Register_BATCH_MATMUL_GENERIC_OPTIMIZED(); } } namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; template <typename T> tflite::TensorType GetTFLiteType() { if (std::is_same<T, int8_t>::value) { return TensorType_INT8; } if (std::is_same<T, int16_t>::value) { return TensorType_INT16; } if (std::is_same<T, int32_t>::value) { return TensorType_INT32; } return TensorType_FLOAT32; } template <typename T> class BatchMatMulOpModel : public SingleOpModel { public: BatchMatMulOpModel(const TensorData& lhs, const TensorData& rhs, bool adj_x = false, bool adj_y = false) { lhs_id_ = AddInput(lhs); rhs_id_ = AddInput(rhs); output_id_ = AddOutput(GetTFLiteType<T>()); SetBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y).Union()); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}); } int lhs() const { return lhs_id_; } int rhs() const { return rhs_id_; } std::vector<T> GetOutput() { return ExtractVector<T>(output_id_); } std::vector<int32_t> GetOutputShape() { return GetTensorShape(output_id_); } protected: int lhs_id_; int rhs_id_; int output_id_; }; const auto kKernelMap = new std::map<string, TfLiteRegistration*>({ {"Reference", ops::builtin::Register_BATCH_MATMUL_REF()}, {"GenericOptimized", ops::builtin::Register_BATCH_MATMUL_GENERIC_OPTIMIZED()}, }); class BatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(BatchMatMulOpTest, Float32Test_Ones) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {3, 2, 1, 4}}, {TensorType_FLOAT32, {3, 1, 4, 1}}); std::vector<float> lhs(24); std::iota(lhs.begin(), lhs.end(), 1); std::vector<float> rhs(12); std::iota(rhs.begin(), rhs.end(), 1); std::vector<float> res{30, 70, 278, 382, 782, 950}; model.PopulateTensor<float>(model.lhs(), lhs); model.PopulateTensor<float>(model.rhs(), rhs); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray(res)); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 2, 1, 1})); } TEST_P(BatchMatMulOpTest, Float32Test_Flatten) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {3, 2, 2, 4}}, {TensorType_FLOAT32, {3, 1, 4, 1}}); std::vector<float> lhs(48); std::iota(lhs.begin(), lhs.end(), 1); std::vector<float> rhs(12); std::iota(rhs.begin(), rhs.end(), 1); std::vector<float> res{30, 70, 110, 150, 486, 590, 694, 798, 1454, 1622, 1790, 1958}; model.PopulateTensor<float>(model.lhs(), lhs); model.PopulateTensor<float>(model.rhs(), rhs); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray(res)); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 2, 2, 1})); } TEST_P(BatchMatMulOpTest, Float32Test_Simple) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_FLOAT32, {1, 3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Int8Test_Simple) { BatchMatMulOpModel<int32_t> model({TensorType_INT8, {1, 2, 3}}, {TensorType_INT8, {1, 3, 4}}); model.PopulateTensor<int8_t>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int8_t>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({74, 80, 86, 92, 173, 188, 203, 218})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Int8Test_LargeElement) { BatchMatMulOpModel<int32_t> model({TensorType_INT8, {1, 2, 3}}, {TensorType_INT8, {1, 3, 4}}); model.PopulateTensor<int8_t>(model.lhs(), {121, 122, 123, 124, 125, 126}); model.PopulateTensor<int8_t>(model.rhs(), {117, 118, 119, 110, 111, 112, 113, 114, 115, 116, 117, 118}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray( {41844, 42210, 42576, 41732, 42873, 43248, 43623, 42758})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_SimpleRHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_FLOAT32, {1, 4, 3}}, false, true); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<float>(model.rhs(), {7, 11, 15, 8, 12, 16, 9, 13, 17, 10, 14, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_SimpleLHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 3, 2}}, {TensorType_FLOAT32, {1, 3, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 4, 2, 5, 3, 6}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BatchSizeTwo) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 2, 3}}, {TensorType_FLOAT32, {2, 3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218., 560., 584., 608., 632., 767., 800., 833., 866.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 2, 3}}, {TensorType_FLOAT32, {3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218., 272., 296., 320., 344., 371., 404., 437., 470.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BroadcastLHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 3, 2}}, {TensorType_FLOAT32, {3, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 4, 2, 5, 3, 6, 7, 10, 8, 11, 9, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), Pointwise(FloatingPointEq(), {74., 80., 86., 92., 173., 188., 203., 218., 272., 296., 320., 344., 371., 404., 437., 470.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 3, 2}}, {TensorType_FLOAT32, {3, 2, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), Pointwise( FloatingPointEq(), {29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2LHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 2, 3}}, {TensorType_FLOAT32, {3, 2, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), Pointwise( FloatingPointEq(), {29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2RHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 3, 2}}, {TensorType_FLOAT32, {3, 4, 2}}, false, true); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 11, 8, 12, 9, 13, 10, 14, 15, 19, 16, 20, 17, 21, 18, 22, 23, 27, 24, 28, 25, 29, 26, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), Pointwise( FloatingPointEq(), {29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2BothAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 2, 3}}, {TensorType_FLOAT32, {3, 4, 2}}, true, true); model.PopulateTensor<float>(model.lhs(), {1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12}); model.PopulateTensor<float>(model.rhs(), {7, 11, 8, 12, 9, 13, 10, 14, 15, 19, 16, 20, 17, 21, 18, 22, 23, 27, 24, 28, 25, 29, 26, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), Pointwise( FloatingPointEq(), {29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BroadcastFromRHS) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {4, 5}}, {TensorType_FLOAT32, {3, 1, 5, 2}}); model.PopulateTensor<float>( model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}); model.PopulateTensor<float>( model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), Pointwise(FloatingPointEq(), {185., 200., 460., 500., 735., 800., 1010., 1100., 335., 350., 860., 900., 1385., 1450., 1910., 2000., 485., 500., 1260., 1300., 2035., 2100., 2810., 2900.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 1, 4, 2})); } INSTANTIATE_TEST_SUITE_P( BatchMatMulOpTest, BatchMatMulOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); class ConstRHSBatchMatMulOpModel : public MultiOpModel { public: ConstRHSBatchMatMulOpModel(const TensorData& lhs, std::initializer_list<int> rhs_shape, std::initializer_list<float> rhs_data, bool adj_x = false, bool adj_y = false) { lhs_id_ = AddInput(lhs); rhs_id_ = AddConstInput<float>(TensorType_FLOAT32, rhs_data, rhs_shape); matmul_output_id_ = AddOutput(lhs.type); std::vector<int> matmul_inputs{lhs_id_, rhs_id_}; std::vector<int> matmul_outputs{matmul_output_id_}; AddBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y).Union(), matmul_inputs, matmul_outputs); neg_output_id_ = AddOutput(lhs.type); std::vector<int> neg_inputs{matmul_output_id_}; std::vector<int> neg_outputs{neg_output_id_}; AddBuiltinOp(BuiltinOperator_NEG, BuiltinOptions_NegOptions, CreateNegOptions(builder_).Union(), neg_inputs, neg_outputs); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}); } int lhs() const { return lhs_id_; } std::vector<float> GetOutput() { return ExtractVector<float>(neg_output_id_); } std::vector<int32_t> GetOutputShape() { return GetTensorShape(neg_output_id_); } protected: int lhs_id_; int rhs_id_; int matmul_output_id_; int neg_output_id_; }; TEST(ConstRHSBatchMatMulOpModel, RHSNotAdjoint) { ConstRHSBatchMatMulOpModel model({TensorType_FLOAT32, {1, 6, 2}}, {2, 3}, {6, 3, 7, 4, 6, 9}); model.PopulateTensor<float>(model.lhs(), {6, 3, 7, 4, 6, 9, 2, 6, 7, 4, 3, 7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({-48, -36, -69, -58, -45, -85, -72, -72, -123, -36, -42, -68, -58, -45, -85, -46, -51, -84})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 3})); model.PopulateTensor<float>(model.lhs(), {6, 3, 7, 4, 6, 9, 2, 6, 7, 4, 3, 7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({-48, -36, -69, -58, -45, -85, -72, -72, -123, -36, -42, -68, -58, -45, -85, -46, -51, -84})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 3})); } class HybridBatchMatMulOpModel : public SingleOpModel { public: HybridBatchMatMulOpModel(int units, int batches, const TensorData& lhs, const TensorData& rhs, const TensorData& output = {TensorType_FLOAT32}, bool asymmetric_quantize_inputs = true, bool adj_x = false, bool adj_y = false) : units_(units), batches_(batches) { int total_input_size = 1; for (size_t i = 0; i < lhs.shape.size(); ++i) { total_input_size *= lhs.shape[i]; } input_size_ = total_input_size / batches_; lhs_id_ = AddInput(lhs); rhs_id_ = AddInput(rhs); output_id_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y, asymmetric_quantize_inputs) .Union()); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}, -1, false, false); } void SetWeights(const std::vector<float>& data) { SymmetricQuantizeAndPopulate(rhs_id_, data); AllocateAndDelegate(true); } void SetSignedWeights(std::initializer_list<float> f) { SignedSymmetricQuantizeAndPopulate(rhs_id_, f); AllocateAndDelegate(true); } void SetInput(const std::vector<float>& f) { PopulateTensor(lhs_id_, f); } std::vector<float> GetOutput() { return ExtractVector<float>(output_id_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_id_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } int lhs() const { return lhs_id_; } int rhs() const { return rhs_id_; } protected: int lhs_id_; int rhs_id_; int output_id_; int units_; int batches_; int input_size_; }; class HybridAsymmetricBatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(HybridAsymmetricBatchMatMulOpTest, SimpleTestQuantizedInt8) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 193, 193, 193, 247, 247, 247, }, 3.f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, MultipleNumBatchQuantizedInt8) { HybridBatchMatMulOpModel m( 10, 4, {TensorType_FLOAT32, {1, 2, 2, 3}}, {TensorType_INT8, {3, 10}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, }); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, }, 0.64f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 10})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, RegressionTestQuantizedInt8) { HybridBatchMatMulOpModel m( 10, 2, {TensorType_FLOAT32, {2, 3}}, {TensorType_INT8, {3, 10}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, }); m.SetInput({ 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, }, 0.64f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 10})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSize) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {6, 3}}, {TensorType_INT8, {3, 8}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights( {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjX) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {3, 6}}, {TensorType_INT8, {3, 8}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, true); m.SetSignedWeights( {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}); m.SetInput( {11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjY) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {6, 3}}, {TensorType_INT8, {8, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, false, true); m.SetSignedWeights( {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjXAdjY) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {3, 6}}, {TensorType_INT8, {8, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, true, true); m.SetSignedWeights( {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}); m.SetInput( {11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastWeights) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 57, 57, 57, 193, 193, 193, 247, 247, 247, }, 3.f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 3})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastBigWeights) { HybridBatchMatMulOpModel m( 9, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 9}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 17, 17, 17, 26, 26, 26, 2, 2, 2, 18, 18, 18, 27, 27, 27, 3, 3, 3, 19, 19, 19, 28, 28, 28, 4, 4, 4, 20, 20, 20, 29, 29, 29, 5, 5, 5, 21, 21, 21, 30, 30, 30, 6, 6, 6, 22, 22, 22, 31, 31, 31, 7, 7, 7, 23, 23, 23, 32, 32, 32, 8, 8, 8, 24, 24, 24, 33, 33, 33, 9, 9, 9, 25, 25, 25, 34, 34, 34, 10, 10, 10, 26, 26, 26, 35, 35, 35, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 295, 295, 295, 448, 448, 448, 57, 57, 57, 361, 361, 361, 532, 532, 532, 193, 193, 193, 1425, 1425, 1425, 2118, 2118, 2118, 247, 247, 247, 1511, 1511, 1511, 2222, 2222, 2222 }, 10.0f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 9})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastInputs) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {2, 10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, -3, 1, 2, -2, 2, 3, -1, 3, 4, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 6, 10, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, -45, 23, 57, -19, 57, 23, 23, 23, 57, 57, 57, }, 1.5f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 3})); } INSTANTIATE_TEST_SUITE_P( HybridAsymmetricBatchMatMulOpTest, HybridAsymmetricBatchMatMulOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); class HybridSymmetricBatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(HybridSymmetricBatchMatMulOpTest, SimpleTestQuantizedInt8) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, false); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 193, 193, 193, 247, 247, 247, }, 1.5f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3})); } TEST_P(HybridSymmetricBatchMatMulOpTest, QuantizedInt8BroadcastWeights) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, false); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 57, 57, 57, 193, 193, 193, 247, 247, 247, }, 1.5f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 3})); } TEST_P(HybridSymmetricBatchMatMulOpTest, QuantizedInt8BroadcastBigWeights) { HybridBatchMatMulOpModel m( 9, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 9}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, false); m.SetSignedWeights({ 1, 1, 1, 17, 17, 17, 26, 26, 26, 2, 2, 2, 18, 18, 18, 27, 27, 27, 3, 3, 3, 19, 19, 19, 28, 28, 28, 4, 4, 4, 20, 20, 20, 29, 29, 29, 5, 5, 5, 21, 21, 21, 30, 30, 30, 6, 6, 6, 22, 22, 22, 31, 31, 31, 7, 7, 7, 23, 23, 23, 32, 32, 32, 8, 8, 8, 24, 24, 24, 33, 33, 33, 9, 9, 9, 25, 25, 25, 34, 34, 34, 10, 10, 10, 26, 26, 26, 35, 35, 35, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 295, 295, 295, 448, 448, 448, 57, 57, 57, 361, 361, 361, 532, 532, 532, 193, 193, 193, 1425, 1425, 1425, 2118, 2118, 2118, 247, 247, 247, 1511, 1511, 1511, 2222, 2222, 2222 }, 10.0f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 9})); } TEST_P(HybridSymmetricBatchMatMulOpTest, QuantizedInt8BroadcastInputs) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {2, 10, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, false); m.SetSignedWeights({ 1, -3, 1, 2, -2, 2, 3, -1, 3, 4, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 6, 10, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, -45, 23, 57, -19, 57, 23, 23, 23, 57, 57, 57, }, 1.5f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 3})); } INSTANTIATE_TEST_SUITE_P( HybridSymmetricBatchMatMulOpTest, HybridSymmetricBatchMatMulOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); class QuantizedBatchMatMulOpModel : public SingleOpModel { public: QuantizedBatchMatMulOpModel(int units, int batches, const TensorData& lhs, const TensorData& output = {TensorType_INT8}, bool adj_x = false, bool adj_y = false) : units_(units), batches_(batches) { int total_input_size = 1; for (size_t i = 0; i < lhs.shape.size(); ++i) { total_input_size *= lhs.shape[i]; } input_size_ = total_input_size / batches_; int rhs_batch_size = adj_y ? units_ : input_size_; int rhs_channels = adj_y ? input_size_ : units_; lhs_id_ = AddInput(lhs); rhs_id_ = AddInput({lhs.type, {rhs_batch_size, rhs_channels}, 0, 0, GetScale(lhs_id_), GetZeroPoint(lhs_id_)}); output_id_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y).Union()); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}); } template <typename T> void SetWeights(const std::vector<float>& data) { QuantizeAndPopulate<T>(rhs_id_, data); } template <typename T> void SetInput(const std::vector<float>& data) { QuantizeAndPopulate<T>(lhs_id_, data); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_id_); } template <typename T> std::vector<float> GetDequantizedOutput() { return Dequantize<T>(ExtractVector<T>(output_id_), GetScale(output_id_), GetZeroPoint(output_id_)); } protected: int lhs_id_; int rhs_id_; int output_id_; int units_; int batches_; int input_size_; }; class QuantizedBatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(QuantizedBatchMatMulOpTest, SimpleTestQuantizedInt8) { QuantizedBatchMatMulOpModel m( 3, 2, {TensorType_INT8, {2, 10}, -63.5, 64}, {TensorType_INT8, {}, -127, 128}); m.SetWeights<int8_t>({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput<int8_t>({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear({23, 23, 23, 57, 57, 57}))); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAre(22, 22, 22, 56, 56, 56)); } TEST_P(QuantizedBatchMatMulOpTest, SimpleTestQuantizedInt8AdjRHS) { QuantizedBatchMatMulOpModel m( 3, 2, {TensorType_INT8, {2, 10}, -63.5, 64}, {TensorType_INT8, {}, -127, 128}, false, true); m.SetWeights<int8_t>({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput<int8_t>({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear({14, 65, 128, 20, 95, 128}))); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAre(13, 64, 127, 19, 94, 127)); } TEST_P(QuantizedBatchMatMulOpTest, SimpleTestQuantizedInt16) { const float inputs_scale = 10.0 / std::numeric_limits<int16_t>::max(); const float output_scale = 1.0; const int32_t zero_point = 0; QuantizedBatchMatMulOpModel m( 3, 2, {TensorType_INT16, {2, 10}, 0, 0, inputs_scale, zero_point}, {TensorType_INT16, {}, 0, 0, output_scale, zero_point}); m.SetWeights<int16_t>({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput<int16_t>({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDequantizedOutput<int16_t>(), ElementsAreArray(ArrayFloatNear({23, 23, 23, 57, 57, 57}))); EXPECT_THAT(m.GetOutput<int16_t>(), ElementsAre(23, 23, 23, 57, 57, 57)); } INSTANTIATE_TEST_SUITE_P( QuantizedBatchMatMulOpTest, QuantizedBatchMatMulOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/batch_matmul.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/batch_matmul_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
31560376-54b1-4b76-9afc-50948117b640
cpp
tensorflow/tensorflow
devicedb
tensorflow/lite/experimental/acceleration/compatibility/devicedb.cc
tensorflow/lite/experimental/acceleration/compatibility/devicedb_test.cc
#include "tensorflow/lite/experimental/acceleration/compatibility/devicedb.h" #include <map> #include <string> #include <vector> #include "tensorflow/lite/experimental/acceleration/compatibility/database_generated.h" namespace tflite { namespace acceleration { namespace { std::vector<const DeviceDecisionTreeEdge*> Find( const DeviceDecisionTreeNode* root, const std::string& value) { std::vector<const DeviceDecisionTreeEdge*> found; if (root->comparison() == Comparison_EQUAL) { const DeviceDecisionTreeEdge* possible = root->items()->LookupByKey(value.c_str()); if (possible) { found.push_back(possible); } } else { for (const DeviceDecisionTreeEdge* item : *(root->items())) { if ((root->comparison() == Comparison_MINIMUM) ? value >= item->value()->str() : value <= item->value()->str()) { found.push_back(item); } } } return found; } void UpdateVariablesFromDeviceDecisionTreeEdges( std::map<std::string, std::string>* variable_values, const DeviceDecisionTreeEdge& item) { if (item.derived_properties()) { for (const DerivedProperty* p : *(item.derived_properties())) { (*variable_values)[p->variable()->str()] = p->value()->str(); } } } void Follow(const DeviceDecisionTreeNode* root, std::map<std::string, std::string>* variable_values) { if (!root->variable()) { return; } auto possible_value = variable_values->find(root->variable()->str()); if (possible_value == variable_values->end()) { return; } std::vector<const DeviceDecisionTreeEdge*> edges = Find(root, possible_value->second); for (const DeviceDecisionTreeEdge* edge : edges) { UpdateVariablesFromDeviceDecisionTreeEdges(variable_values, *edge); if (edge->children()) { for (const DeviceDecisionTreeNode* root : *(edge->children())) { Follow(root, variable_values); } } } } } void UpdateVariablesFromDatabase( std::map<std::string, std::string>* variable_values, const DeviceDatabase& database) { if (!database.root()) return; for (const DeviceDecisionTreeNode* root : *(database.root())) { Follow(root, variable_values); } } } }
#include "tensorflow/lite/experimental/acceleration/compatibility/devicedb.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/experimental/acceleration/compatibility/devicedb-sample.h" #include "tensorflow/lite/experimental/acceleration/compatibility/variables.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace acceleration { namespace { class DeviceDbTest : public ::testing::Test { protected: void LoadSample() { device_db_ = flatbuffers::GetRoot<DeviceDatabase>( g_tflite_acceleration_devicedb_sample_binary); } const DeviceDatabase* device_db_ = nullptr; }; TEST_F(DeviceDbTest, Load) { LoadSample(); ASSERT_TRUE(device_db_); ASSERT_TRUE(device_db_->root()); EXPECT_EQ(device_db_->root()->size(), 4); } TEST_F(DeviceDbTest, SocLookup) { LoadSample(); ASSERT_TRUE(device_db_); std::map<std::string, std::string> variables; variables[kDeviceModel] = "m712c"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[kSoCModel], "exynos_7872"); variables.clear(); variables[kDeviceModel] = "sc_02l"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[kSoCModel], "exynos_7885"); variables.clear(); variables[kDeviceModel] = "nosuch"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables.find(kSoCModel), variables.end()); } TEST_F(DeviceDbTest, StatusLookupWithSoC) { LoadSample(); ASSERT_TRUE(device_db_); std::map<std::string, std::string> variables; variables[kOpenGLESVersion] = "3.1"; variables[kSoCModel] = "exynos_7872"; variables[kAndroidSdkVersion] = "24"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusSupported); variables[kOpenGLESVersion] = "3.0"; variables.erase(variables.find(gpu::kStatus)); UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables.find(gpu::kStatus), variables.end()); variables.clear(); variables[kOpenGLESVersion] = "3.1"; variables[kSoCModel] = "exynos_7883"; variables[kAndroidSdkVersion] = "24"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables.find(gpu::kStatus), variables.end()); variables[kAndroidSdkVersion] = "29"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusSupported); } TEST_F(DeviceDbTest, StatusLookupWithDevice) { LoadSample(); ASSERT_TRUE(device_db_); std::map<std::string, std::string> variables; variables[kAndroidSdkVersion] = "24"; variables[kDeviceModel] = "sm_j810f"; variables[kDeviceName] = "j8y18lte"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusUnsupported); variables.clear(); variables[kAndroidSdkVersion] = "24"; variables[kDeviceModel] = "sm_j810m"; variables[kDeviceName] = "j8y18lte"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusSupported); } TEST_F(DeviceDbTest, StatusLookupBasedOnDerivedProperties) { LoadSample(); ASSERT_TRUE(device_db_); std::map<std::string, std::string> variables; variables[kOpenGLESVersion] = "3.1"; variables[kAndroidSdkVersion] = "24"; variables[kDeviceModel] = "m712c"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusSupported); } TEST_F(DeviceDbTest, StatusLookupWithMaximumComparison) { LoadSample(); ASSERT_TRUE(device_db_); std::map<std::string, std::string> variables; variables[kDeviceModel] = "shiraz_ag_2011"; variables[kAndroidSdkVersion] = "28"; UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusUnsupported); variables[kAndroidSdkVersion] = "27"; variables.erase(variables.find(gpu::kStatus)); UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables[gpu::kStatus], gpu::kStatusUnsupported); variables[kAndroidSdkVersion] = "29"; variables.erase(variables.find(gpu::kStatus)); UpdateVariablesFromDatabase(&variables, *device_db_); EXPECT_EQ(variables.find(gpu::kStatus), variables.end()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/compatibility/devicedb.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/compatibility/devicedb_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
86b85201-3336-4062-a4b9-5007b589da3e
cpp
tensorflow/tensorflow
index_domain
third_party/xla/xla/python/ifrt/index_domain.cc
third_party/xla/xla/python/ifrt/index_domain_test.cc
#include "xla/python/ifrt/index_domain.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" namespace xla { namespace ifrt { std::string IndexDomain::DebugString() const { return absl::StrCat("IndexDomain(origin=", origin_.DebugString(), ",shape=", shape_.DebugString(), ")"); } std::ostream& operator<<(std::ostream& os, const IndexDomain& index_domain) { return os << index_domain.DebugString(); } } }
#include "xla/python/ifrt/index_domain.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/shape.h" namespace xla { namespace ifrt { namespace { TEST(IndexDomainTest, Construction) { IndexDomain a(Index({1, 2}), Shape({3, 4})); EXPECT_EQ(a.origin(), Index({1, 2})); EXPECT_EQ(a.shape(), Shape({3, 4})); IndexDomain b(Shape({3, 4})); EXPECT_EQ(b.origin(), Index({0, 0})); EXPECT_EQ(b.shape(), Shape({3, 4})); } TEST(IndexDomainTest, Operations) { IndexDomain a(Index({1, 2}), Shape({3, 4})); Index b({1, 2}); EXPECT_EQ(a + b, IndexDomain(Index({2, 4}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c += b, IndexDomain(Index({2, 4}), Shape({3, 4}))); } EXPECT_EQ(a - b, IndexDomain(Index({0, 0}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c -= b, IndexDomain(Index({0, 0}), Shape({3, 4}))); } } TEST(IndexDomainTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {IndexDomain(Index({1, 2}), Shape({3, 4})), IndexDomain(Index({1, 2}), Shape({4, 3})), IndexDomain(Index({2, 1}), Shape({3, 4})), IndexDomain(Index({2, 1}), Shape({4, 3}))})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_domain.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_domain_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c26e3140-8b23-45b0-b07c-7702938d3de1
cpp
tensorflow/tensorflow
rewrite_dataset_op
tensorflow/core/kernels/data/rewrite_dataset_op.cc
tensorflow/core/kernels/data/rewrite_dataset_op_test.cc
#include "tensorflow/core/kernels/data/rewrite_dataset_op.h" #if !defined(IS_MOBILE_PLATFORM) #include <map> #include <string> #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { constexpr const char* const RewriteDatasetOp::kDatasetType; constexpr const char* const RewriteDatasetOp::kInputDataset; constexpr const char* const RewriteDatasetOp::kRewriteName; constexpr const char* const RewriteDatasetOp::kOutputTypes; constexpr const char* const RewriteDatasetOp::kOutputShapes; RewriteDatasetOp::RewriteDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void RewriteDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { tstring rewrite_name; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kRewriteName, &rewrite_name)); auto config_factory = [rewrite_name]() { RewriterConfig rewriter_config; rewriter_config.add_optimizers(std::string(rewrite_name)); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); rewriter_config.set_fail_on_optimizer_errors(true); return rewriter_config; }; core::RefCountPtr<DatasetBase> rewritten; OP_REQUIRES_OK(ctx, RewriteDataset(ctx, input, std::move(config_factory), false, &rewritten)); *output = rewritten.release(); } namespace { REGISTER_KERNEL_BUILDER(Name("RewriteDataset").Device(DEVICE_CPU), RewriteDatasetOp); } } } #else namespace tensorflow { namespace data { RewriteDatasetOp::RewriteDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void RewriteDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { input->Ref(); *output = input; } namespace { REGISTER_KERNEL_BUILDER(Name("RewriteDataset").Device(DEVICE_CPU), RewriteDatasetOp); } } } #endif
#include "tensorflow/core/kernels/data/rewrite_dataset_op.h" #include <utility> #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "rewrite_dataset"; constexpr char kReplicateOnSplit[] = "replicate_on_split"; class RewriteDatasetParams : public DatasetParams { public: template <typename T> RewriteDatasetParams(T input_dataset_params, string rewrite_name, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), rewrite_name_(rewrite_name) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return {CreateTensor<tstring>(TensorShape({}), {rewrite_name_})}; } Status GetInputNames(std::vector<string>* input_names) const override { *input_names = {RewriteDatasetOp::kInputDataset, RewriteDatasetOp::kRewriteName}; return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); return absl::OkStatus(); } string dataset_type() const override { return RewriteDatasetOp::kDatasetType; } private: string rewrite_name_; }; class RewriteDatasetOpTest : public DatasetOpsTestBase {}; TEST_F(RewriteDatasetOpTest, ReplicateOnSplit) { auto range_dataset_params = RangeDatasetParams(0, 5, 1); auto rewrite_dataset_params = RewriteDatasetParams(std::move(range_dataset_params), kReplicateOnSplit, {DT_INT64}, {PartialTensorShape({})}, kNodeName); std::vector<Tensor> expected_outputs = CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}, {4}}); TF_ASSERT_OK(Initialize(rewrite_dataset_params)); TF_EXPECT_OK(CheckIteratorGetNext(expected_outputs, true)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/rewrite_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/rewrite_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5e142f2-7a29-4a6e-950a-b8e0e50b01db
cpp
tensorflow/tensorflow
self_adjoint_eig
third_party/xla/xla/hlo/builder/lib/self_adjoint_eig.cc
third_party/xla/xla/hlo/builder/lib/self_adjoint_eig_test.cc
#include "xla/hlo/builder/lib/self_adjoint_eig.h" #include <memory> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { SelfAdjointEigResult SelfAdjointEig(XlaOp a, bool lower, int64_t max_iter, float tol, bool sort_eigenvalues) { XlaBuilder* builder = a.builder(); XlaOp result = builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); if (num_dims < 2) { return InvalidArgument( "Arguments to Eigen decomposition must have rank >= 2: got shape %s.", a_shape.ToString()); } PrimitiveType type = a_shape.element_type(); if (!primitive_util::IsFloatingPointType(type) && !primitive_util::IsComplexType(type)) { return InvalidArgument( "Type of the input matrix must be floating point " "or complex: got %s.", a_shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); if (m != n) { return InvalidArgument( "Arguments to symmetric eigendecomposition must be square matrices: " "got shape (%d, %d).", m, n); } const int num_batch_dims = a_shape.dimensions().size() - 2; const std::vector<int64_t> batch_dims( a_shape.dimensions().begin(), a_shape.dimensions().begin() + num_batch_dims); PrimitiveType eigvals_type = primitive_util::IsComplexType(type) ? primitive_util::ComplexComponentType(type) : type; std::vector<int64_t> eigvals_dims = batch_dims; eigvals_dims.push_back(m); Shape eigh_shape = ShapeUtil::MakeTupleShape( {a_shape, ShapeUtil::MakeShape(eigvals_type, eigvals_dims)}); std::string opaque = absl::StrFormat("%d,%d,%d,%f", lower, sort_eigenvalues, max_iter, tol); return CustomCall(a.builder(), "Eigh", {a}, eigh_shape, opaque); }); return SelfAdjointEigResult{GetTupleElement(result, 0), GetTupleElement(result, 1)}; } }
#include "xla/hlo/builder/lib/self_adjoint_eig.h" #include <algorithm> #include <numeric> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { class SelfAdjointEigTest : public ClientLibraryTestBase { protected: void SetUp() override { ClientLibraryTestBase::SetUp(); batch_3d_4x4_ = Array3D<float>{ { {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 100, 6}, {12, 48, 6, 62}, }, }; matrix2d_8x8_ = Array2D<float>{ {14., 123., 49., 112., 115., 173., 182., 125.}, {123., 14., 60., 118., 150., 130., 91., 72.}, {49., 60., 138., 111., 106., 101., 115., 142.}, {112., 118., 111., 142., 91., 130., 25., 61.}, {115., 150., 106., 91., 116., 121., 128., 85.}, {173., 130., 101., 130., 121., 70., 151., 132.}, {182., 91., 115., 25., 128., 151., 66., 92.}, {125., 72., 142., 61., 85., 132., 92., 156.}, }; low_rank_4x4_ = Array2D<float>{ {2, 1, 4, 3}, {1, 5, 5, 9}, {4, 5, 10, 11}, {3, 9, 11, 17}, }; } void TearDown() override { ClientLibraryTestBase::TearDown(); } Array3D<float> GetUnitMatrix3D(const Array3D<float>& matrix) { Array3D<float> result(matrix.n1(), matrix.n2(), matrix.n3(), 0.0); for (int i = 0; i < matrix.n1(); ++i) { for (int j = 0; j < matrix.n2(); ++j) { result({i, j, j}) = 1.0; } } return result; } Array3D<float> ExtractTriangularMatrix(const Array3D<float>& matrix, bool lower) { Array3D<float> result(matrix); for (int i = 0; i < result.n1(); ++i) { for (int j = 0; j < result.n2(); ++j) { if (lower) { for (int k = j + 1; k < result.n3(); ++k) { result({i, j, k}) = 0.0; } } else { for (int k = 0; k < j; ++k) { result({i, j, k}) = 0.0; } } } } return result; } Array3D<float> batch_3d_4x4_; Array2D<float> matrix2d_8x8_; Array2D<float> low_rank_4x4_; Array2D<int> wrong_type_4x4_; }; XlaOp GetAverageAbsoluteError(XlaOp m1, XlaOp m2, XlaBuilder* builder) { Shape shape = builder->GetShape(m1).value(); int64_t size = ShapeUtil::ElementsIn(shape); return ReduceAll(Abs(m1 - m2), ConstantR0WithType(builder, F32, 0), CreateScalarAddComputation(F32, builder)) / ConstantR0WithType(builder, F32, std::max<int64_t>(1, size)); } XlaOp ComputeMatmulVWVt(SelfAdjointEigResult result, XlaBuilder* builder) { Shape shape = builder->GetShape(result.v).value(); absl::Span<const int64_t> out_dims = shape.dimensions(); std::vector<int64_t> broadcast_dims(shape.rank() - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[shape.rank() - 2] = shape.rank() - 1; auto vw = Mul(result.v, BroadcastInDim(ConvertElementType(result.w, shape.element_type()), out_dims, broadcast_dims)); return BatchDot(vw, MaybeConjugate(TransposeInMinorDims(result.v), true), PrecisionConfig::HIGHEST); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_2x4x4) { for (bool sort_eigenvalues : {false, true}) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a, true, 15, 1e-5, sort_eigenvalues); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_3x3_Complex) { XlaBuilder builder(TestName()); Array<complex64> input = { {1, complex64{2, -7}, complex64{4, -8}}, {complex64{2, 7}, 3, complex64{5, -9}}, {complex64{4, 8}, complex64{5, 9}, 6}, }; XlaOp a; auto a_data = CreateParameter<complex64>(input, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompare<complex64>(&builder, input, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_Lower_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>( ExtractTriangularMatrix(batch_3d_4x4_, true), 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VWVt_EQ_A_Upper_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>( ExtractTriangularMatrix(batch_3d_4x4_, false), 0, "a", &builder, &a); auto result = SelfAdjointEig(a, false); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Orthogonality_2x4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); BatchDot(result.v, TransposeInMinorDims(result.v), PrecisionConfig::HIGHEST); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(batch_3d_4x4_), {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_VtWV_EQ_A_Rank_Deficient_4x4) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR2Parameter<float>(low_rank_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); ComputeMatmulVWVt(result, &builder); ComputeAndCompareR2<float>(&builder, low_rank_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Eigen_8x8) { XlaBuilder builder(TestName()); std::vector<float> expected{-182.69205, -116.86245, -105.74489, -9.545369, 37.81711, 104.732285, 120.29153, 868.00385}; XlaOp a; auto a_data = CreateR2Parameter<float>(matrix2d_8x8_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); Add(result.w, ZerosLike(result.w)); ComputeAndCompareR1<float>(&builder, expected, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Test_Orthogonality_8x8) { XlaBuilder builder(TestName()); float expected_vals = 1e-3; XlaOp a; auto a_data = CreateR2Parameter<float>(matrix2d_8x8_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); GetAverageAbsoluteError(IdentityMatrix(&builder, F32, 8, 8), BatchDot(TransposeInMinorDims(result.v), result.v), &builder); ComputeAndCompareR0<float>(&builder, expected_vals, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SelfAdjointEigTest, Wrong_Type_Int) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR2Parameter<int>(wrong_type_4x4_, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); EXPECT_FALSE(result.v.valid()); EXPECT_FALSE(result.w.valid()); } Array2D<float> GenerateRandomSymmetricMatrix(int size) { Array2D<float> result{size, size, 0.0}; result.FillRandom(10 , 2 , 12346 ); for (int i = 0; i < size; ++i) { for (int j = 0; j < i; ++j) { result({j, i}) = result({i, j}); } } return result; } using EighTestCase = int64_t; class RandomEighTest : public ClientLibraryTestBase, public ::testing::WithParamInterface<EighTestCase> {}; XLA_TEST_P(RandomEighTest, Random) { XlaBuilder builder(TestName()); int64_t size = GetParam(); Array2D<float> a_val = GenerateRandomSymmetricMatrix(size); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SelfAdjointEig(a); GetAverageAbsoluteError(ComputeMatmulVWVt(result, &builder), a, &builder); double kExpected = 0.00300000003; ComputeAndCompareR0<float>(&builder, kExpected, {a_data.get()}, ErrorSpec(kExpected, 0)); } #ifndef XLA_TEST_BACKEND_CPU INSTANTIATE_TEST_SUITE_P( RandomEighTestInstantiation, RandomEighTest, ::testing::Values(0, 1, 2, 3, 8, 16, 32, 77, 129, 203, 256, 257, 493, 511, 512, 513, 1000), [](const ::testing::TestParamInfo<EighTestCase>& info) { const int64_t size = info.param; return absl::StrCat(size); }); #else INSTANTIATE_TEST_SUITE_P( RandomEighTestInstantiation, RandomEighTest, ::testing::Values(0, 1, 2, 3, 8, 16, 32, 77, 129, 203, 256, 257, 493, 511, 512), [](const ::testing::TestParamInfo<EighTestCase>& info) { const int64_t size = info.param; return absl::StrCat(size); }); #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/self_adjoint_eig.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/self_adjoint_eig_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ac09648e-4986-4aff-bf5f-113cdfb15936
cpp
google/tensorstore
int4
tensorstore/util/int4.h
tensorstore/util/int4_test.cc
#ifndef TENSORSTORE_UTIL_INT4_H_ #define TENSORSTORE_UTIL_INT4_H_ #include <cmath> #include <cstdint> #include <limits> #include <type_traits> #include <nlohmann/json_fwd.hpp> namespace tensorstore { class Int4Padded; } namespace std { template <> struct numeric_limits<::tensorstore::Int4Padded>; } namespace tensorstore { namespace internal { constexpr int8_t SignedTrunc4(int8_t x) { return static_cast<int8_t>(static_cast<uint8_t>(x) << 4) >> 4; } } class Int4Padded { public: constexpr Int4Padded() : rep_(0) {} template <typename T, typename = std::enable_if_t<std::is_convertible_v<T, int8_t>>> constexpr explicit Int4Padded(T x) : rep_(internal::SignedTrunc4(static_cast<int8_t>(x))) {} constexpr operator int8_t() const { return internal::SignedTrunc4(rep_); } Int4Padded& operator=(bool v) { return *this = static_cast<Int4Padded>(v); } template <typename T> std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded&> operator=( T v) { return *this = static_cast<Int4Padded>(v); } #define TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(OP) \ friend Int4Padded operator OP(Int4Padded a, Int4Padded b) { \ return Int4Padded(a.rep_ OP b.rep_); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded> \ operator OP(Int4Padded a, T b) { \ return Int4Padded(a.rep_ OP b); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded> \ operator OP(T a, Int4Padded b) { \ return Int4Padded(a OP b.rep_); \ } \ #define TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(OP) \ friend Int4Padded& operator OP##=(Int4Padded& a, Int4Padded b) { \ return a = Int4Padded(a.rep_ OP b.rep_); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded&> \ operator OP##=(Int4Padded& a, T b) { \ return a = Int4Padded(a.rep_ OP b); \ } \ TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(+) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(+) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(-) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(-) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(*) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(*) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(/) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(/) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(%) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(%) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(&) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(&) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(|) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(|) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(^) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(^) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(<<) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(<<) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(>>) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(>>) #undef TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP #undef TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP friend Int4Padded operator~(Int4Padded a) { Int4Padded result; result.rep_ = internal::SignedTrunc4(~a.rep_); return result; } friend Int4Padded operator-(Int4Padded a) { Int4Padded result; result.rep_ = internal::SignedTrunc4(-a.rep_); return result; } friend Int4Padded operator+(Int4Padded a) { return a; } friend Int4Padded operator++(Int4Padded& a) { a += Int4Padded(1); return a; } friend Int4Padded operator--(Int4Padded& a) { a -= Int4Padded(1); return a; } friend Int4Padded operator++(Int4Padded& a, int) { Int4Padded original_value = a; ++a; return original_value; } friend Int4Padded operator--(Int4Padded& a, int) { Int4Padded original_value = a; --a; return original_value; } template <template <typename U, typename V, typename... Args> class ObjectType , template <typename U, typename... Args> class ArrayType , class StringType , class BooleanType , class NumberIntegerType , class NumberUnsignedType , class NumberFloatType , template <typename U> class AllocatorType , template <typename T, typename SFINAE = void> class JSONSerializer , class BinaryType > friend void to_json( ::nlohmann::basic_json<ObjectType, ArrayType, StringType, BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType, AllocatorType, JSONSerializer, BinaryType>& j, Int4Padded v) { j = static_cast<NumberIntegerType>(v); } constexpr friend bool operator==(const Int4Padded& a, const Int4Padded& b) { return internal::SignedTrunc4(a.rep_) == internal::SignedTrunc4(b.rep_); } constexpr friend bool operator!=(const Int4Padded& a, const Int4Padded& b) { return !(a == b); } struct bitcast_construct_t {}; explicit constexpr Int4Padded(bitcast_construct_t, int8_t rep) : rep_(rep) {} int8_t rep_; }; inline Int4Padded abs(Int4Padded x) { x.rep_ = internal::SignedTrunc4(::std::abs(x.rep_)); return x; } inline Int4Padded pow(Int4Padded x, Int4Padded y) { return Int4Padded(std::pow(static_cast<int8_t>(x), static_cast<int8_t>(y))); } } namespace std { template <> struct numeric_limits<tensorstore::Int4Padded> { static constexpr bool is_specialized = true; static constexpr bool is_signed = true; static constexpr bool is_integer = true; static constexpr bool is_exact = true; static constexpr bool has_infinity = false; static constexpr bool has_quiet_NaN = false; static constexpr bool has_signaling_NaN = false; static constexpr bool is_bounded = true; static constexpr bool is_modulo = true; static constexpr int digits = 3; static constexpr int digits10 = 0; static constexpr int max_digits10 = 0; static constexpr int radix = 2; static constexpr tensorstore::Int4Padded min() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{-8}); } static constexpr tensorstore::Int4Padded lowest() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{-8}); } static constexpr tensorstore::Int4Padded max() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{7}); } }; } #endif
#include "tensorstore/util/int4.h" #include <cmath> #include <cstdint> #include <cstring> #include <limits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/casts.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json_gtest.h" namespace { using Int4 = tensorstore::Int4Padded; Int4 Bitcast(int8_t x) { return absl::bit_cast<Int4>(x); } constexpr std::pair<int8_t, Int4> kInt8ToInt4[] = { {-10, Int4(6)}, {-9, Int4(7)}, {-8, Int4(-8)}, {-7, Int4(-7)}, {-6, Int4(-6)}, {-5, Int4(-5)}, {-4, Int4(-4)}, {-3, Int4(-3)}, {-2, Int4(-2)}, {-1, Int4(-1)}, {0, Int4(0)}, {1, Int4(1)}, {2, Int4(2)}, {3, Int4(3)}, {4, Int4(4)}, {5, Int4(5)}, {6, Int4(6)}, {7, Int4(7)}, {8, Int4(-8)}, {9, Int4(-7)}, {10, Int4(-6)}, }; constexpr std::pair<Int4, int8_t> kInt4ToInt8[] = { {Int4(-8), -8}, {Int4(-7), -7}, {Int4(-6), -6}, {Int4(-5), -5}, {Int4(-4), -4}, {Int4(-3), -3}, {Int4(-2), -2}, {Int4(-1), -1}, {Int4(0), 0}, {Int4(1), 1}, {Int4(2), 2}, {Int4(3), 3}, {Int4(4), 4}, {Int4(5), 5}, {Int4(6), 6}, {Int4(7), 7}, }; TEST(Int4Test, Int8ToInt4) { for (const auto& [i8, i4] : kInt8ToInt4) { EXPECT_EQ(static_cast<Int4>(i8), i4); } } TEST(Int4Test, Int4ToInt8) { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_EQ(static_cast<int8_t>(i4), i8); } } template <typename X> void TestInt4ToXToInt4() { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_EQ(static_cast<Int4>(static_cast<X>(i4)), i4); } } TEST(Int4Test, Int4ToInt32ToInt4) { TestInt4ToXToInt4<int32_t>(); } TEST(Int4Test, Int4ToFloatToInt4) { TestInt4ToXToInt4<float>(); } TEST(Int4Test, Int4ToDoubleToInt4) { TestInt4ToXToInt4<double>(); } TEST(Int4Test, Arithmetic) { EXPECT_EQ(Int4(1) + Int4(2), Int4(3)); EXPECT_EQ(Int4(7) + Int4(2), Int4(-7)); EXPECT_EQ(Int4(3) - Int4(5), Int4(-2)); EXPECT_EQ(Int4(5) * Int4(-7), Int4(-3)); EXPECT_EQ(Int4(-8) / Int4(3), Int4(-2)); EXPECT_EQ(Int4(-7) % Int4(3), Int4(-1)); } TEST(Int4Test, BitwiseBinary) { EXPECT_EQ(Int4(0b0110) & Int4(0b1011), Int4(0b0010)); EXPECT_EQ(Int4(0b0110) | Int4(0b1011), Int4(0b1111)); EXPECT_EQ(Int4(0b0110) ^ Int4(0b1011), Int4(0b1101)); } TEST(Int4Test, BitwiseUnaryInverse) { EXPECT_EQ(~Int4(0b1011), Int4(0b0100)); EXPECT_EQ(~Int4(0b0110), Int4(0b1001)); } TEST(Int4Test, BitwiseShift) { EXPECT_EQ(Int4(0b0011) << Int4(0), Int4(0b0011)); EXPECT_EQ(Int4(0b0011) << Int4(1), Int4(0b0110)); EXPECT_EQ(Int4(0b0011) << Int4(2), Int4(0b1100)); EXPECT_EQ(Int4(0b0011) << Int4(3), Int4(0b1000)); EXPECT_EQ(Int4(0b0011) << Int4(4), Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << Int4(5), Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << int8_t{0}, Int4(0b0011)); EXPECT_EQ(Int4(0b0011) << int8_t{1}, Int4(0b0110)); EXPECT_EQ(Int4(0b0011) << int8_t{2}, Int4(0b1100)); EXPECT_EQ(Int4(0b0011) << int8_t{3}, Int4(0b1000)); EXPECT_EQ(Int4(0b0011) << int8_t{4}, Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << int8_t{5}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(0), Int4(0b0100)); EXPECT_EQ(Int4(0b0100) >> Int4(1), Int4(0b0010)); EXPECT_EQ(Int4(0b0100) >> Int4(2), Int4(0b0001)); EXPECT_EQ(Int4(0b0100) >> Int4(3), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(4), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(5), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{0}, Int4(0b0100)); EXPECT_EQ(Int4(0b0100) >> int8_t{1}, Int4(0b0010)); EXPECT_EQ(Int4(0b0100) >> int8_t{2}, Int4(0b0001)); EXPECT_EQ(Int4(0b0100) >> int8_t{3}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{4}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{5}, Int4(0b0000)); EXPECT_EQ(Int4(0b1010) >> Int4(0), Int4(0b1010)); EXPECT_EQ(Int4(0b1010) >> Int4(1), Int4(0b1101)); EXPECT_EQ(Int4(0b1010) >> Int4(2), Int4(0b1110)); EXPECT_EQ(Int4(0b1010) >> Int4(3), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> Int4(4), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> Int4(5), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{0}, Int4(0b1010)); EXPECT_EQ(Int4(0b1010) >> int8_t{1}, Int4(0b1101)); EXPECT_EQ(Int4(0b1010) >> int8_t{2}, Int4(0b1110)); EXPECT_EQ(Int4(0b1010) >> int8_t{3}, Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{4}, Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{5}, Int4(0b1111)); } TEST(Int4Test, Abs) { EXPECT_EQ(abs(Int4(7)), Int4(7)); EXPECT_EQ(abs(Int4(0)), Int4(0)); EXPECT_EQ(abs(Int4(-7)), Int4(7)); EXPECT_EQ(abs(Int4(-8)), Int4(-8)); } TEST(Int4Test, Pow) { EXPECT_EQ(pow(Int4(2), Int4(0)), Int4(1)); EXPECT_EQ(pow(Int4(2), Int4(1)), Int4(2)); EXPECT_EQ(pow(Int4(2), Int4(2)), Int4(4)); } TEST(Int4Test, Comparison) { for (int i = 0; i <= 15; i++) { const Int4 a = kInt4ToInt8[i].first; EXPECT_EQ(a, a); EXPECT_LE(a, a); EXPECT_GE(a, a); for (int j = i + 1; j <= 15; j++) { const Int4 b = kInt4ToInt8[j].first; EXPECT_NE(a, b); EXPECT_LT(a, b); EXPECT_LE(a, b); EXPECT_GT(b, a); EXPECT_GE(b, a); } } } TEST(Int4Test, EquivalentRepresentationsCompareEqual) { for (int low_nibble = 0; low_nibble <= 15; low_nibble++) { const Int4 answer = Int4(low_nibble); for (int high_nibble_a = 0; high_nibble_a <= 15; high_nibble_a++) { for (int high_nibble_b = 0; high_nibble_b <= 15; high_nibble_b++) { const int8_t a = low_nibble | (high_nibble_a << 4); const int8_t b = low_nibble | (high_nibble_b << 4); const Int4 a4 = Bitcast(a); const Int4 b4 = Bitcast(b); EXPECT_EQ(a4, answer); EXPECT_EQ(b4, answer); EXPECT_EQ(a4, b4); } } } } TEST(Int4Test, NonCanonicalRepresentationsCompareCorrectly) { EXPECT_LT(Bitcast(0xD3), Bitcast(0xE5)); EXPECT_LE(Bitcast(0xD3), Bitcast(0xE5)); EXPECT_GT(Bitcast(0x33), Bitcast(0x4A)); EXPECT_GE(Bitcast(0x33), Bitcast(0x4A)); } TEST(Int4Test, JsonConversion) { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_THAT(::nlohmann::json(i4), tensorstore::MatchesJson(i8)); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/int4.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/int4_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b1b7d91e-5a2a-4393-9417-f758eb6e6396
cpp
tensorflow/tensorflow
rematerializer
tensorflow/compiler/mlir/lite/experimental/remat/rematerializer.cc
tensorflow/compiler/mlir/lite/experimental/remat/rematerializer_test.cc
#include "tensorflow/compiler/mlir/lite/experimental/remat/rematerializer.h" #include <algorithm> #include <map> #include <tuple> #include <utility> #include <vector> namespace mlir { namespace TFL { namespace { std::tuple<std::vector<int>::iterator, bool> Find(const int item, std::vector<int>& items) { const auto iter = std::lower_bound(items.begin(), items.end(), item); return std::make_tuple(iter, iter != items.end() && *iter == item); } void Insert(const int item, std::vector<int>& items) { const auto [iter, found] = Find(item, items); if (!found) items.insert(iter, item); } void Erase(const int item, std::vector<int>& items) { const auto [iter, found] = Find(item, items); if (found) items.erase(iter); } } int Rematerializer::AddOperation(const bool is_stateful) { operations_.emplace_back(); operations_.back().is_stateful = is_stateful; return operations_.size() - 1; } int Rematerializer::AddTensor(const SizeT size) { tensors_.emplace_back(); tensors_.back().size = size; return tensors_.size() - 1; } void Rematerializer::DelUse(const int ioperation, const int itensor) { auto& tensor = tensors_[itensor]; auto& operation = operations_[ioperation]; const auto& size = tensor.size; const bool was_first_use = (!tensor.operations.empty() && ioperation == tensor.first_use()); const bool was_last_use = (!tensor.operations.empty() && ioperation == tensor.last_use()); Erase(ioperation, tensor.operations); Erase(itensor, operation.tensors); if (was_first_use) { operation.alloc -= size; if (!was_last_use) { operations_[tensor.first_use()].alloc += size; } } if (was_last_use) { operation.dealloc -= size; if (!was_first_use) { operations_[tensor.last_use()].dealloc += size; } } } void Rematerializer::AddUse(const int ioperation, const int itensor) { auto& tensor = tensors_[itensor]; auto& operation = operations_[ioperation]; const auto& size = tensor.size; const bool will_be_first_use = tensor.operations.empty() || ioperation < tensor.first_use(); const bool will_be_last_use = tensor.operations.empty() || ioperation > tensor.last_use(); if (will_be_first_use) { operation.alloc += size; if (!will_be_last_use) { operations_[tensor.first_use()].alloc -= size; } } if (will_be_last_use) { operation.dealloc += size; if (!will_be_first_use) { operations_[tensor.last_use()].dealloc -= size; } } Insert(ioperation, tensor.operations); Insert(itensor, operation.tensors); } Rematerializer::SizeT Rematerializer::MaxSavings(const int begin, const int end, const int peak_loc) const { SizeT max_savings = 0; for (int ioperation = begin; ioperation != end; ++ioperation) { for (const int itensor : operations_[ioperation].tensors) { if (const Tensor& tensor = tensors_[itensor]; tensor.first_use() == ioperation && tensor.last_use() > peak_loc ) { max_savings += tensor.size; } } } return max_savings; } std::tuple<Rematerializer::SizeT, Rematerializer::RematSpec> Rematerializer::FindBestRemat(const SizeT min_savings, const int begin_len, const int end_len) const { const auto peak = GetPeakMemory(); SizeT best_peak_mem = peak.size; RematSpec best_remat = {}; for (int len = begin_len; len < end_len; ++len) { std::vector<std::tuple<SizeT, int, int>> pre_screen; for (int begin = 0, end = begin + len; end <= peak.op_index; ++begin, ++end) { if (!std::any_of(operations_.begin() + begin, operations_.begin() + end, [](const Operation& s) { return s.is_stateful; })) { if (const auto max_savings = MaxSavings(begin, end, peak.op_index); max_savings >= min_savings) { pre_screen.emplace_back(max_savings, begin, end); } } } std::sort(pre_screen.begin(), pre_screen.end()); for (; !pre_screen.empty(); pre_screen.pop_back()) { const auto& [max_savings, begin, end] = pre_screen.back(); const auto insert_before = FindBestRematPoint(begin, end, peak.op_index); if (insert_before == operations_.size()) { continue; } const RematSpec this_remat = {begin, end, insert_before}; if (const auto new_peak = GetPeakMemory(this_remat); new_peak.size < best_peak_mem && peak.size >= new_peak.size + min_savings) { best_peak_mem = new_peak.size; best_remat = this_remat; } if (peak.size >= max_savings + best_peak_mem) { break; } } if (peak.size >= min_savings + best_peak_mem) { break; } } return std::make_tuple(best_peak_mem, best_remat); } std::vector<Rematerializer::MemSpec> Rematerializer::GetDeltas( const RematSpec& remat) const { std::vector<MemSpec> deltas; if (remat.begin == remat.end) { return deltas; } const auto source_to_target = [&](int i) { return i + (remat.insert - remat.begin); }; struct TensorUse { int first_use; int last_use; }; std::map<int, TensorUse> source_uses; for (int ioperation = remat.begin; ioperation < remat.end; ++ioperation) { const auto& operation = operations_[ioperation]; for (const int itensor : operation.tensors) { const auto [iter, inserted] = source_uses.emplace( itensor, TensorUse{ioperation, ioperation}); if (!inserted) { iter->second.last_use = ioperation; } } } deltas.reserve(2 * source_uses.size()); for (const auto& [itensor, source] : source_uses) { auto& tensor = tensors_[itensor]; const TensorUse global = {tensor.first_use(), tensor.last_use()}; auto add_alloc = [&](int pos) { deltas.emplace_back(pos, tensor.size); }; auto add_dealloc = [&](int pos) { deltas.emplace_back(pos + 1, -tensor.size); }; auto del_dealloc = [&](int pos) { deltas.emplace_back(pos + 1, tensor.size); }; if (global.first_use < remat.begin) { if (global.last_use < remat.insert) { del_dealloc(global.last_use); add_dealloc(source_to_target(source.last_use)); } } else { add_alloc(source_to_target(source.first_use)); if (global.last_use < remat.insert) { add_dealloc(source_to_target(source.last_use)); } else { add_dealloc(*std::partition_point( tensor.operations.rbegin(), tensor.operations.rend(), [&](int i) { return i >= remat.insert; })); } } } std::sort(deltas.begin(), deltas.end(), ByOpIndex); return deltas; } Rematerializer::MemProfile Rematerializer::GetMemProfile( const RematSpec& remat) const { const auto num_inserted = remat.end - remat.begin; std::vector<SizeT> profile(operations_.size() + num_inserted); MapMem([&](const MemSpec& m) { profile[m.op_index] = m.size; }, remat); return profile; } Rematerializer::MemSpec Rematerializer::GetPeakMemory( const RematSpec& remat) const { MemSpec peak; MapMem([&](const MemSpec& m) { peak = std::max(m, peak, BySize); }, remat); return peak; } int Rematerializer::FindBestRematPoint(const int begin, const int end, const int peak_loc) const { int best = operations_.size(); for (int ioperation = begin; ioperation < end; ++ioperation) { for (const int itensor : operations_[ioperation].tensors) { if (const auto& tensor = tensors_[itensor]; tensor.first_use() >= begin && tensor.first_use() < end && tensor.last_use() > peak_loc) { for (const int ioperation : tensor.operations) { if (ioperation > peak_loc && ioperation < best) { best = ioperation; break; } } } } } return best; } void Rematerializer::Remat(const RematSpec& remat) { const int num_inserted = remat.end - remat.begin; for (auto& tensor : tensors_) { std::for_each(std::lower_bound(tensor.operations.begin(), tensor.operations.end(), remat.insert), tensor.operations.end(), [&](int& iop) { iop += num_inserted; }); } operations_.insert(operations_.begin() + remat.insert, num_inserted, {}); std::vector<std::pair<int, int>> new_tensors; for (int iop_old = remat.begin, iop_new = remat.insert; iop_old < remat.end; ++iop_old, ++iop_new) { for (const auto itensor : operations_[iop_old].tensors) { if (tensors_[itensor].first_use() == iop_old) { new_tensors.emplace_back(itensor, AddTensor(tensors_[itensor].size)); } AddUse(iop_new, itensor); } } std::sort(new_tensors.begin(), new_tensors.end()); for (int iop = remat.insert; iop < operations_.size(); ++iop) { for (const int old_tensor : std::vector<int>(operations_[iop].tensors)) { const auto new_tensor = std::lower_bound(new_tensors.begin(), new_tensors.end(), std::make_pair(old_tensor, 0)); if (new_tensor != new_tensors.end() && new_tensor->first == old_tensor) { DelUse(iop, old_tensor); AddUse(iop, new_tensor->second); } } } } void Rematerializer::RunGreedyAlgorithm(const int max_cost, const int max_block_length, const SizeT min_savings) { const bool unlimited_cost = (max_cost < 0); for (int min_block_length = 1, cost = 0; min_block_length <= max_block_length && (unlimited_cost || cost <= max_cost); min_block_length *= 2) { while (unlimited_cost || cost <= max_cost) { const auto [peak, remat] = FindBestRemat( min_savings, min_block_length, std::min(1 + (unlimited_cost ? max_block_length : std::min(max_block_length, max_cost - cost)), 2 * min_block_length)); if (remat.begin == remat.end) break; Remat(remat); ApplyRemat(remat); cost += (remat.end - remat.begin); } } } } }
#include "tensorflow/compiler/mlir/lite/experimental/remat/rematerializer.h" #include <algorithm> #include <array> #include <cstdlib> #include <initializer_list> #include <random> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace mlir { namespace TFL { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::FieldsAre; using ::testing::StrictMock; class RematTest : public ::testing::Test { protected: class TestableRematerializer : public Rematerializer { public: using Rematerializer::AddOperation; using Rematerializer::AddTensor; using Rematerializer::AddUse; using Rematerializer::DelUse; using Rematerializer::Remat; }; TestableRematerializer r_; }; TEST_F(RematTest, TensorUseSimple) { for (int i = 0; i < 6; ++i) { r_.AddOperation(false); r_.AddTensor(1 << i); } r_.AddUse(2, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 4, 0, 0, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(2), Eq(4))); r_.AddUse(2, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 4, 0, 0, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(2), Eq(4))); r_.AddUse(4, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 4, 4, 4, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(4), Eq(4))); r_.DelUse(2, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 0, 0, 4, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(4), Eq(4))); r_.DelUse(2, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 0, 0, 4, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(4), Eq(4))); r_.DelUse(4, 2); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(0, 0, 0, 0, 0, 0)); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(5), Eq(0))); } TEST_F(RematTest, TensorUseMany) { constexpr int n = 6; for (int i = 0; i < n; ++i) { r_.AddUse(r_.AddOperation(false), r_.AddTensor(1 << (n - i - 1))); } for (int i = 0; i < n; ++i) { r_.AddUse(r_.AddOperation(false), n - 1 - i); } EXPECT_THAT(r_.GetMemProfile(), ElementsAreArray({32, 48, 56, 60, 62, 63, 63, 62, 60, 56, 48, 32})); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(6), Eq(63))); } TEST_F(RematTest, PeakTiesAreBrokenInFavorOfLaterOperations) { r_.AddUse(r_.AddOperation(false), r_.AddTensor(100)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(1)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(100)); ASSERT_THAT(r_.GetMemProfile(), ElementsAreArray({100, 1, 100})); EXPECT_THAT(r_.GetPeakMemory(), FieldsAre(Eq(2), Eq(100))); } TEST_F(RematTest, RematRecreatesOutput) { r_.AddUse(r_.AddOperation(false), r_.AddTensor(100)); r_.AddOperation(false); ASSERT_THAT(r_.GetMemProfile(), ElementsAre(100, 0)); EXPECT_THAT(r_.GetMemProfile({0, 1, 2}), ElementsAre(100, 0, 100)); r_.Remat({0, 1, 2}); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(100, 0, 100)); EXPECT_THAT(r_.AddTensor(0), 2); } TEST_F(RematTest, RematExtendsInputAndRecreatesOutput) { r_.AddUse(r_.AddOperation(false), r_.AddTensor(1)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(100)); r_.AddUse(1, 0); r_.AddOperation(false); r_.AddOperation(false); ASSERT_THAT(r_.GetMemProfile(), ElementsAre(1, 101, 0, 0)); EXPECT_THAT(r_.GetMemProfile({1, 2, 3}), ElementsAre(1, 101, 1, 101, 0)); r_.Remat({1, 2, 3}); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(1, 101, 1, 101, 0)); EXPECT_THAT(r_.AddTensor(0), 3); } TEST_F(RematTest, BlockRematDuplicatesIntraBlockValues) { r_.AddUse(r_.AddOperation(false), r_.AddTensor(1)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(10)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(100)); r_.AddUse(r_.AddOperation(false), r_.AddTensor(1000)); r_.AddOperation(false); r_.AddUse(1, 0); r_.AddUse(2, 0); r_.AddUse(2, 1); r_.AddUse(3, 0); r_.AddUse(3, 1); r_.AddUse(3, 2); ASSERT_THAT(r_.GetMemProfile(), ElementsAre(1, 11, 111, 1111, 0)); EXPECT_THAT(r_.GetMemProfile({1, 4, 5}), ElementsAre(1, 11, 111, 1111, 1, 11, 111, 1111)); r_.Remat({1, 4, 5}); EXPECT_THAT(r_.GetMemProfile(), ElementsAre(1, 11, 111, 1111, 1, 11, 111, 1111)); EXPECT_THAT(r_.AddTensor(0), 7); } class RematSimulationTest : public testing::Test { protected: class RandomRemat : public Rematerializer { public: using Rematerializer::Remat; RandomRemat(const int num_operations, const int num_tensors, const int num_uses, std::mt19937& rng) { std::uniform_int_distribution<int> some_size_log(0, 16); std::uniform_int_distribution<int> some_tensor(0, num_tensors - 1); std::uniform_int_distribution<int> some_operation(0, num_operations - 1); for (int i = 0; i < num_tensors; ++i) { AddTensor(SizeT{1} << some_size_log(rng)); } for (int i = 0; i < num_operations; ++i) { AddOperation(false); } for (int i = 0; i < num_uses; ++i) { AddUse(some_operation(rng), some_tensor(rng)); } } }; }; TEST_F(RematSimulationTest, SimulationAgreesWithReality) { constexpr int kNumOperations = 128; constexpr int kNumTensors = 32; constexpr int kNumUses = kNumOperations * kNumTensors / 4; std::mt19937 rng; for (int i = 0; i < 1024; ++i) { RandomRemat remat(kNumOperations, kNumTensors, kNumUses, rng); std::array<int, 3> randos; const auto& [begin, end, insert] = randos; for (int i = 0, num_operations = kNumOperations; i < 4; ++i, num_operations += end - begin) { std::uniform_int_distribution<int> some_op(0, num_operations - 1); for (auto& rando : randos) { rando = some_op(rng); } std::sort(randos.begin(), randos.end()); const Rematerializer::RematSpec spec{begin, end, insert}; const auto simulated_profile = remat.GetMemProfile(spec); remat.Remat(spec); const auto actual_profile = remat.GetMemProfile(); EXPECT_THAT(simulated_profile, ElementsAreArray(actual_profile)); } } } class GreedyRematTest : public testing::Test { protected: class RainbowRemat : public Rematerializer { public: explicit RainbowRemat(const std::vector<std::vector<int>>& sizes, int extra_ops = 0, SizeT extra_size = 0) { for (const auto& rainbow : sizes) { int tensor = 0; int op = 0; for (const auto& size : rainbow) { for (int i = 0; i < extra_ops; ++i) { op = AddOperation(false); if (i != 0) { AddUse(op, tensor); } tensor = AddTensor(extra_size); AddUse(op, tensor); } op = AddOperation(size < 0); if (extra_ops > 0) { AddUse(op, tensor); } tensor = AddTensor(std::abs(size)); AddUse(op, tensor); } for (int i = 0; i < rainbow.size(); ++i) { op = AddOperation(false); AddUse(op, tensor - i); } } } }; class MlpRemat : public Rematerializer { public: explicit MlpRemat(const std::vector<int>& sizes) { int forward_tensor = -1; int backward_tensor = -1; int op = -1; for (const int size : sizes) { op = AddOperation(false); if (forward_tensor >= 0) AddUse(op, forward_tensor); forward_tensor = AddTensor(size); AddUse(op, forward_tensor); } for (; forward_tensor >= 0; --forward_tensor) { op = AddOperation(false); AddUse(op, forward_tensor); if (backward_tensor >= 0) AddUse(op, backward_tensor); backward_tensor = AddTensor(sizes[forward_tensor]); AddUse(op, backward_tensor); } } MOCK_METHOD(void, ApplyRemat, (const RematSpec&)); }; }; TEST_F(GreedyRematTest, MlpBasic) { StrictMock<MlpRemat> remat(std::vector<int>({1, 1, 1})); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 3, 4, 4, 3})); EXPECT_CALL(remat, ApplyRemat(FieldsAre(0, 1, 5))); remat.RunGreedyAlgorithm(-1, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 2, 3, 3, 2, 3})); } TEST_F(GreedyRematTest, MlpBinary) { StrictMock<MlpRemat> remat(std::vector<int>({1, 2, 4, 8})); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 23, 19, 9, 4})); EXPECT_CALL(remat, ApplyRemat(FieldsAre(2, 3, 5))); EXPECT_CALL(remat, ApplyRemat(FieldsAre(0, 1, 8))); remat.RunGreedyAlgorithm(-1, 4, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 6, 14, 18, 14, 18, 8, 3, 4})); } TEST_F(GreedyRematTest, SimpleMax) { RainbowRemat remat({{1, 2, 4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 31, 31, 15, 7, 3, 1})); remat.RunGreedyAlgorithm(-1, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 4, 8, 16, 16, 8, 8, 4, 4, 2, 2, 1, 1})); } TEST_F(GreedyRematTest, SimpleMaxLongWindow) { RainbowRemat remat({{1, 2, 4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 31, 31, 15, 7, 3, 1})); remat.RunGreedyAlgorithm(-1, 4, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 4, 8, 16, 16, 8, 8, 4, 4, 2, 2, 1, 1})); } TEST_F(GreedyRematTest, SimpleSizeThreshold) { RainbowRemat remat({{1, 2, 4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 31, 31, 15, 7, 3, 1})); remat.RunGreedyAlgorithm(-1, 1, 4); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 11, 19, 19, 11, 11, 7, 7, 3, 1})); } TEST_F(GreedyRematTest, SimpleCostThreshold) { RainbowRemat remat({{1, 2, 4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 31, 31, 15, 7, 3, 1})); remat.RunGreedyAlgorithm(1, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 23, 23, 15, 15, 7, 3, 1})); } TEST_F(GreedyRematTest, SimpleForbiddenOps) { RainbowRemat remat({{1, 2, -4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 31, 31, 15, 7, 3, 1})); remat.RunGreedyAlgorithm(-1, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 4, 12, 20, 20, 12, 12, 4, 2, 2, 1, 1})); } TEST_F(GreedyRematTest, DoubleMax) { RainbowRemat remat({{1, 2, 4, 8, 16}, {4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray( {1, 3, 7, 15, 31, 31, 15, 7, 3, 1, 4, 12, 28, 28, 12, 4})); remat.RunGreedyAlgorithm(-1, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 2, 4, 8, 16, 16, 8, 8, 4, 4, 2, 2, 1, 1, 4, 8, 16, 16, 8, 8, 4, 4})); } TEST_F(GreedyRematTest, DoubleCostThreshold) { RainbowRemat remat({{1, 2, 4, 8, 16}, {4, 8, 16}}); ASSERT_THAT(remat.GetMemProfile(), ElementsAreArray( {1, 3, 7, 15, 31, 31, 15, 7, 3, 1, 4, 12, 28, 28, 12, 4})); remat.RunGreedyAlgorithm(2, 1, 1); EXPECT_THAT(remat.GetMemProfile(), ElementsAreArray({1, 3, 7, 15, 23, 23, 15, 15, 7, 3, 1, 4, 12, 20, 20, 12, 12, 4})); } TEST_F(GreedyRematTest, SingleLongerBlocksByWindowSize) { std::vector<Rematerializer::SizeT> best_for_window_size; for (int window_size : {0, 1, 2, 3, 4, 5}) { RainbowRemat remat({{1, 2, 4, 8}}, 2, 16); remat.RunGreedyAlgorithm(-1, window_size, 1); best_for_window_size.push_back(remat.GetPeakMemory().size); } EXPECT_THAT(best_for_window_size, ElementsAreArray({44, 36, 36, 32, 32, 32})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/experimental/remat/rematerializer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/experimental/remat/rematerializer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
715a0fe5-3ad4-439c-9e62-b63e79c3c1be
cpp
tensorflow/tensorflow
logical_id_thunk
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk.cc
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk_test.cc
#include "xla/backends/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <cstring> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu::internal { static Thunk::Kind ToThunkKind(LogicalIdKind logical_id_kind) { switch (logical_id_kind) { case LogicalIdKind::kPartitionId: return Thunk::Kind::kPartitionId; case LogicalIdKind::kReplicaId: return Thunk::Kind::kReplicaId; } } template <LogicalIdKind logical_id_kind> absl::StatusOr<std::unique_ptr<LogicalIdThunk<logical_id_kind>>> LogicalIdThunk<logical_id_kind>::Create( Info info, BufferAllocation::Slice logical_id_buffer) { return absl::WrapUnique( new LogicalIdThunk(std::move(info), logical_id_buffer)); } template <LogicalIdKind logical_id_kind> LogicalIdThunk<logical_id_kind>::LogicalIdThunk( Info info, BufferAllocation::Slice logical_id_buffer) : Thunk(ToThunkKind(logical_id_kind), info), logical_id_buffer_(logical_id_buffer) {} template <LogicalIdKind logical_id_kind> static constexpr auto ToString() { if constexpr (logical_id_kind == LogicalIdKind::kPartitionId) { return "Partition"; } else if constexpr (logical_id_kind == LogicalIdKind::kReplicaId) { return "Replica"; } } template <LogicalIdKind logical_id_kind> absl::StatusOr<int32_t> LogicalIdThunk<logical_id_kind>::GetIdForDevice( const DeviceAssignment* device_assignment, GlobalDeviceId device_id) const { if constexpr (logical_id_kind == LogicalIdKind::kPartitionId) { return device_assignment->PartitionIdForDevice(device_id); } else if constexpr (logical_id_kind == LogicalIdKind::kReplicaId) { return device_assignment->ReplicaIdForDevice(device_id); } } template <LogicalIdKind logical_id_kind> tsl::AsyncValueRef<typename LogicalIdThunk<logical_id_kind>::ExecuteEvent> LogicalIdThunk<logical_id_kind>::Execute(const ExecuteParams& params) { tsl::profiler::TraceMe trace([&] { return TraceMeEncode(); }); TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase logical_id_data, params.buffer_allocations->GetDeviceAddress(logical_id_buffer_)); TF_RET_CHECK(logical_id_data.size() == sizeof(int32_t)) << "Logical id buffer must be able to fit logical id value"; TF_RET_CHECK(params.collective_params) << ToString<logical_id_kind>() << " id requires collective params"; TF_ASSIGN_OR_RETURN( int32_t logical_id, GetIdForDevice(params.collective_params->device_assignment, params.collective_params->global_device_id)); VLOG(3) << absl::StreamFormat("%s id: %d", ToString<logical_id_kind>(), logical_id); VLOG(3) << absl::StreamFormat(" logical_id: slice %s (%p)", logical_id_buffer_.ToString(), logical_id_data.opaque()); std::memcpy(logical_id_data.opaque(), &logical_id, sizeof(int32_t)); return OkExecuteEvent(); } template <LogicalIdKind logical_id_kind> Thunk::BufferUses LogicalIdThunk<logical_id_kind>::buffer_uses() const { return {BufferUse::Write(logical_id_buffer_)}; } template class LogicalIdThunk<LogicalIdKind::kReplicaId>; template class LogicalIdThunk<LogicalIdKind::kPartitionId>; }
#include "xla/backends/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/executable_run_options.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { absl::StatusOr<DeviceAssignment> CreateDeviceAssignment( std::vector<std::vector<int64_t>> devices) { const auto computation_count = devices.size(); if (devices.empty()) { return absl::InternalError("Devices must not be empty."); } const auto replica_count = devices[0].size(); DeviceAssignment device_assignment(replica_count, computation_count); for (int64_t partition = 0; partition < computation_count; ++partition) { for (int64_t replica = 0; replica < replica_count; ++replica) { device_assignment(replica, partition) = devices[partition][replica]; } } return device_assignment; } TEST(LogicalIdThunkTest, GetReplicaId) { std::vector<int32_t> dst(1, std::numeric_limits<int32_t>::min()); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(dst.data(), sizeof(int32_t))); BufferAllocation alloc(0, sizeof(int32_t), 0); BufferAllocation::Slice id_slice(&alloc, 0, sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kReplicaId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, ReplicaIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0, 1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], 0); } TEST(LogicalIdThunkTest, GetPartitionId) { std::vector<int32_t> dst(2, std::numeric_limits<int32_t>::min()); std::vector<MaybeOwningDeviceMemory> buffers; static constexpr auto kDataSize = 2 * sizeof(int32_t); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), kDataSize)); BufferAllocation alloc(0, kDataSize, 0); BufferAllocation::Slice id_slice(&alloc, sizeof(int32_t), sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kPartitionId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, PartitionIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0}, {1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], std::numeric_limits<int32_t>::min()); EXPECT_EQ(dst[1], 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/logical_id_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/logical_id_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4838c2d9-38ad-4e47-8b5e-fc837fc96c8d
cpp
tensorflow/tensorflow
op_requires
tensorflow/core/framework/op_requires.h
tensorflow/core/framework/op_requires_test.cc
#ifndef TENSORFLOW_CORE_FRAMEWORK_OP_REQUIRES_H_ #define TENSORFLOW_CORE_FRAMEWORK_OP_REQUIRES_H_ #include <utility> #include "tensorflow/core/platform/macros.h" namespace tensorflow { #define OP_REQUIRES(CTX, EXP, STATUS) \ do { \ if (!TF_PREDICT_TRUE(EXP)) { \ CheckNotInComputeAsync((CTX), "OP_REQUIRES_ASYNC"); \ (CTX)->CtxFailure(__FILE__, __LINE__, (STATUS)); \ return; \ } \ } while (0) #define OP_REQUIRES_OK(CTX, ...) \ do { \ if (!TF_PREDICT_TRUE( \ ::tensorflow::op_requires_internal::OkImpl<::absl::Status>( \ (CTX), __FILE__, __LINE__, \ static_cast<const ::absl::Status&>(__VA_ARGS__)))) { \ return; \ } \ } while (0) #define OP_REQUIRES_OK_OR_SET_PAYLOAD(CTX, PAYLOAD_KEY, PAYLOAD_VALUE, STATUS) \ do { \ if (!TF_PREDICT_TRUE(STATUS.ok())) { \ CheckNotInComputeAsync((CTX), "OP_REQUIRES_OK_ASYNC"); \ if (!PAYLOAD_VALUE.empty()) { \ STATUS.SetPayload(PAYLOAD_KEY, absl::Cord(PAYLOAD_VALUE)); \ } \ (CTX)->CtxFailureWithWarning(__FILE__, __LINE__, STATUS); \ return; \ } \ } while (0) #define OP_REQUIRES_ASYNC(CTX, EXP, STATUS, CALLBACK) \ do { \ if (!TF_PREDICT_TRUE(EXP)) { \ (CTX)->CtxFailure(__FILE__, __LINE__, (STATUS)); \ (CALLBACK)(); \ return; \ } \ } while (0) #define OP_REQUIRES_OK_ASYNC(CTX, STATUS, CALLBACK) \ do { \ if (!TF_PREDICT_TRUE( \ ::tensorflow::op_requires_internal::OkAsyncImpl<::absl::Status>( \ (CTX), __FILE__, __LINE__, (STATUS)))) { \ (CALLBACK)(); \ return; \ } \ } while (0) #define OP_REQUIRES_VALUE(lhs, ctx, rexpr) \ OP_REQUIRES_VALUE_IMPL( \ TF_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, ctx, \ rexpr) #define OP_REQUIRES_VALUE_IMPL(statusor, lhs, ctx, rexpr) \ auto statusor = (rexpr); \ OP_REQUIRES_OK(ctx, statusor.status()); \ lhs = std::move(statusor.value()) namespace op_requires_internal { template <typename S, typename Ctx> bool OkImpl(Ctx&& ctx, const char* file, int line, const S& s) { if (!TF_PREDICT_TRUE(s.ok())) { CheckNotInComputeAsync(ctx, "OP_REQUIRES_OK_ASYNC"); ctx->CtxFailureWithWarning(file, line, s); return false; } else { return true; } } template <typename S, typename Ctx> bool OkAsyncImpl(Ctx&& ctx, const char* file, int line, const S& s) { if (!TF_PREDICT_TRUE(s.ok())) { ctx->CtxFailureWithWarning(file, line, s); return false; } else { return true; } } } } #endif
#include "tensorflow/core/framework/op_requires.h" #include <optional> #include <utility> #include "absl/status/status.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::tensorflow::testing::StatusIs; using ::testing::Optional; class Holder { public: explicit Holder() : fine_(absl::OkStatus()), foul_(absl::InternalError("test")) {} const absl::Status& Fine() const { return fine_; } const absl::Status& Foul() const { return foul_; } private: absl::Status fine_; absl::Status foul_; }; struct TestContext { public: void CtxFailureWithWarning(const char* file, int line, absl::Status status) { stored_status.emplace(std::move(status)); } friend void CheckNotInComputeAsync(TestContext* ctx, const char* msg) {} std::optional<absl::Status> stored_status = std::nullopt; }; void TestFunction(TestContext& ctx, bool success, bool& reached) { if (success) { OP_REQUIRES_OK(&ctx, Holder().Fine()); } else { OP_REQUIRES_OK(&ctx, Holder().Foul()); } reached = true; } TEST(OpRequires, RequiresOkWithOkStatus) { TestContext ctx; bool reached = false; TestFunction(ctx, true, reached); EXPECT_FALSE(ctx.stored_status.has_value()); EXPECT_TRUE(reached); } TEST(OpRequires, RequiresOkWithFailedStatus) { TestContext ctx; bool reached = false; TestFunction(ctx, false, reached); EXPECT_THAT(ctx.stored_status, Optional(StatusIs(absl::StatusCode::kInternal))); EXPECT_FALSE(reached); } void TestFunctionAsync(TestContext& ctx, bool success, bool& reached, bool& handled) { auto done = gtl::MakeCleanup([&handled]() { handled = true; }); if (success) { OP_REQUIRES_OK_ASYNC(&ctx, Holder().Fine(), done.release()); } else { OP_REQUIRES_OK_ASYNC(&ctx, Holder().Foul(), done.release()); } reached = true; } TEST(OpRequires, RequiresOkAsyncWithOkStatus) { TestContext ctx; bool reached = false; bool handled = false; TestFunctionAsync(ctx, true, reached, handled); EXPECT_FALSE(ctx.stored_status.has_value()); EXPECT_TRUE(reached); EXPECT_TRUE(handled); } TEST(OpRequires, RequiresOkAsyncWithFailedStatus) { TestContext ctx; bool reached = false; bool handled = false; TestFunctionAsync(ctx, false, reached, handled); EXPECT_THAT(ctx.stored_status, Optional(StatusIs(absl::StatusCode::kInternal))); EXPECT_FALSE(reached); EXPECT_TRUE(handled); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/op_requires.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/op_requires_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0cade028-d640-4047-8bf8-abf849d918d7
cpp
tensorflow/tensorflow
grpc_service_impl
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl_test.cc
#include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" namespace xla { namespace ifrt { namespace proxy { ::grpc::Status GrpcServiceImpl::GetVersion(::grpc::ServerContext* context, const GrpcGetVersionRequest* request, GrpcGetVersionResponse* response) { auto protocol_version = ChooseVersion(request->min_version().protocol_version(), request->max_version().protocol_version()); if (!protocol_version.ok()) { return xla::ToGrpcStatus(protocol_version.status()); } response->mutable_version()->set_protocol_version(*protocol_version); return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::IfrtSession( ::grpc::ServerContext* context, ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>* stream) { GrpcIfrtSessionMetadata metadata; { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-ifrt-session-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Missing metadata for GrpcIfrtService.IfrtSession: " "ifrt-proxy-grpc-ifrt-session-metadata-bin"); } if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Unable to parse GrpcIfrtSessionMetadata"); } } const uint64_t session_id = next_session_id_.fetch_add(1, std::memory_order_relaxed); VLOG(0) << "Starting a new IFRT session with session_id=" << session_id; auto host_buffer_store = std::make_shared<xla::ifrt::proxy::HostBufferStore>(); { absl::MutexLock l(&host_buffer_store_mu_); CHECK(host_buffer_stores_.insert({session_id, host_buffer_store}).second); } absl::Cleanup cleanup = [&] { absl::MutexLock l(&host_buffer_store_mu_); CHECK_GT(host_buffer_stores_.erase(session_id), 0); }; auto backend = backend_factory_(metadata.version(), session_id, std::move(host_buffer_store)); if (!backend.ok()) { LOG(INFO) << "Creating IFRT backend " << session_id << " failed: " << backend.status(); return xla::ToGrpcStatus(backend.status()); } absl::Mutex writer_mu; bool first_request_read = false; while (true) { auto request = std::make_unique<IfrtRequest>(); if (!stream->Read(request.get())) { break; } if (!first_request_read) { VLOG(0) << "First request read for session " << session_id; first_request_read = true; } const uint64_t op_id = request->request_metadata().op_id(); auto response = (*backend)->Process(std::move(request)); response.OnReady( [op_id, stream, &writer_mu](absl::StatusOr<std::shared_ptr<IfrtResponse>> response) { absl::MutexLock l(&writer_mu); if (response.ok()) { stream->Write(**response); } else { stream->Write(*NewIfrtResponse(op_id, response.status())); } }); } backend->reset(); VLOG(0) << "Finishing IFRT session " << session_id; return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferStore( ::grpc::ServerContext* context, ::grpc::ServerReader<GrpcHostBufferStoreRequest>* stream, GrpcHostBufferStoreResponse* response) { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-host-buffer-store-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status( ::grpc::StatusCode::INTERNAL, "Missing gRPC metadata for GrpcHostBufferService.Store"); } GrpcHostBufferStoreMetadata metadata; if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::DATA_LOSS, "Unable to parse GrpcHostBufferStoreMetadata"); } std::string data; data.reserve(metadata.buffer_size()); GrpcHostBufferStoreRequest request; while (stream->Read(&request)) { data.append(request.data()); } if (data.size() != metadata.buffer_size()) { return ::grpc::Status( ::grpc::StatusCode::DATA_LOSS, absl::StrCat("Potential data loss for host buffers: expected ", metadata.buffer_size(), " bytes but got ", data.size(), " bytes")); } auto store = GetHostBufferStore(metadata.session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Store(metadata.handle(), std::move(data))); } ::grpc::Status GrpcServiceImpl::HostBufferLookup( ::grpc::ServerContext* context, const GrpcHostBufferLookupRequest* request, ::grpc::ServerWriter<GrpcHostBufferLookupResponse>* stream) { static constexpr int64_t kChunkSize = 1024 * 1024; auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } auto data = (*store)->Lookup(request->handle()); if (!data.ok()) { return xla::ToGrpcStatus(data.status()); } GrpcHostBufferLookupResponse response; if (!(*data)->empty()) { for (int64_t offset = 0; offset < (*data)->size(); offset += kChunkSize) { #if defined(PLATFORM_GOOGLE) response.set_alias_data( absl::string_view(**data).substr(offset, kChunkSize)); #else response.set_data((*data)->substr(offset, kChunkSize)); #endif stream->Write(response); response.Clear(); } } else { stream->Write(response); } return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferDelete( ::grpc::ServerContext* context, const GrpcHostBufferDeleteRequest* request, GrpcHostBufferDeleteResponse* response) { auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Delete(request->handle())); } bool GrpcServiceImpl::Test_InsertHostBufferStore( uint64_t session_id, std::shared_ptr<xla::ifrt::proxy::HostBufferStore> store) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.insert({session_id, std::move(store)}).second; } bool GrpcServiceImpl::Test_DeleteHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.erase(session_id) > 0; } absl::StatusOr<std::shared_ptr<xla::ifrt::proxy::HostBufferStore>> GrpcServiceImpl::GetHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); const auto it = host_buffer_stores_.find(session_id); if (it == host_buffer_stores_.end()) { return absl::NotFoundError( absl::StrCat("Session id ", session_id, " does not exist")); } return it->second; } } } }
#include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "xla/python/ifrt_proxy/client/grpc_host_buffer.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/grpc_server.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(kServerMaxVersion); return version; } absl::StatusOr<std::unique_ptr<GrpcServer>> MakeGrpcServer() { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); return GrpcServer::CreateFromIfrtClientFactory(addr, []() { return absl::UnimplementedError( "IFRT client creation fails. This test is not expected to " "instantiate any IFRT client"); }); } TEST(GrpcServiceImplTest, CanBeUsedToSetupAnGrpcServer) { ASSERT_THAT(MakeGrpcServer(), IsOk()); } class GrpcIfrtServiceImplHostBufferTest : public testing::TestWithParam<int64_t> { protected: GrpcIfrtServiceImplHostBufferTest() : impl_([](IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) { return absl::UnimplementedError( "IFRT backend creation is not implemented"); }) { ::grpc::ServerBuilder builder; builder.RegisterService(&impl_); server_ = builder.BuildAndStart(); stub_ = grpc::GrpcIfrtService::NewStub( server_->InProcessChannel(::grpc::ChannelArguments())); } std::string GetTestData() const { std::string data; for (int i = 0; i < GetParam(); ++i) { data.push_back(i % 7); } return data; } GrpcServiceImpl impl_; std::unique_ptr<::grpc::Server> server_; std::shared_ptr<grpc::GrpcIfrtService::Stub> stub_; }; TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupStringView) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::string_view source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupCord) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::Cord source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Lookup) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Delete) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); ASSERT_THAT(client.Delete(kHandle).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), StatusIs(absl::StatusCode::kNotFound)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } INSTANTIATE_TEST_SUITE_P( DataSize, GrpcIfrtServiceImplHostBufferTest, testing::Values(0, 16, 3 * 1024 * 1024)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8260e578-71f7-49bc-94f4-3c2cd85c6dbc
cpp
google/tensorstore
async_write_array
tensorstore/internal/async_write_array.cc
tensorstore/internal/async_write_array_test.cc
#include "tensorstore/internal/async_write_array.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <utility> #include "absl/base/optimization.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/masked_array.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal { Index AsyncWriteArray::Spec::GetNumInBoundsElements(BoxView<> domain) const { const DimensionIndex rank = this->rank(); assert(domain.rank() == rank); Index product = 1; const BoxView<> bounds = this->valid_data_bounds; for (DimensionIndex i = 0; i < rank; ++i) { product *= Intersect(bounds[i], domain[i]).size(); } return product; } SharedArrayView<const void> AsyncWriteArray::Spec::GetFillValueForDomain( BoxView<> domain) const { const DimensionIndex rank = domain.rank(); assert(Contains(overall_fill_value.domain(), domain)); return SharedArrayView<const void>( AddByteOffset( overall_fill_value.element_pointer(), IndexInnerProduct(rank, overall_fill_value.byte_strides().data(), domain.origin().data())), StridedLayoutView<>(rank, domain.shape().data(), overall_fill_value.byte_strides().data())); } Result<NDIterable::Ptr> AsyncWriteArray::Spec::GetReadNDIterable( SharedArrayView<const void> array, BoxView<> domain, IndexTransform<> chunk_transform, Arena* arena) const { if (!array.valid()) array = GetFillValueForDomain(domain); assert(internal::RangesEqual(array.shape(), domain.shape())); StridedLayoutView<dynamic_rank, offset_origin> data_layout( domain, array.byte_strides()); TENSORSTORE_ASSIGN_OR_RETURN( chunk_transform, ComposeLayoutAndTransform(data_layout, std::move(chunk_transform))); return GetTransformedArrayNDIterable( {AddByteOffset(std::move(array.element_pointer()), -data_layout.origin_byte_offset()), std::move(chunk_transform)}, arena); } AsyncWriteArray::MaskedArray::MaskedArray(DimensionIndex rank) : mask(rank) {} void AsyncWriteArray::MaskedArray::WriteFillValue(const Spec& spec, BoxView<> domain) { array = {}; mask.Reset(); mask.num_masked_elements = domain.num_elements(); mask.region = domain; } AsyncWriteArray::WritebackData AsyncWriteArray::MaskedArray::GetArrayForWriteback( const Spec& spec, BoxView<> domain, const SharedArrayView<const void>& read_array, bool read_state_already_integrated) { assert(domain.rank() == spec.rank()); const auto must_store = [&](ArrayView<const void> array) { if (spec.store_if_equal_to_fill_value) return true; return !AreArraysEqual(array, spec.GetFillValueForDomain(domain), spec.fill_value_comparison_kind); }; const auto get_writeback_from_array = [&] { WritebackData writeback; writeback.array = array; writeback.must_store = must_store(writeback.array); if (!writeback.must_store) { array = {}; writeback.array = spec.GetFillValueForDomain(domain); writeback.may_retain_reference_to_array_indefinitely = true; } else { writeback.may_retain_reference_to_array_indefinitely = (array_capabilities <= kImmutableAndCanRetainIndefinitely); } return writeback; }; if (!array.valid()) { if (IsFullyOverwritten(spec, domain)) { WritebackData writeback; writeback.array = spec.GetFillValueForDomain(domain); writeback.must_store = false; writeback.may_retain_reference_to_array_indefinitely = true; return writeback; } if (IsUnmodified()) { WritebackData writeback; writeback.must_store = read_array.valid() && must_store(read_array); if (writeback.must_store) { writeback.array = read_array; } else { writeback.array = spec.GetFillValueForDomain(domain); } writeback.may_retain_reference_to_array_indefinitely = true; return writeback; } if (!read_state_already_integrated && read_array.valid()) { array_capabilities = kMutableArray; array = tensorstore::MakeCopy(spec.GetFillValueForDomain(domain), {c_order, include_repeated_elements}); RebaseMaskedArray(domain, ArrayView<const void>(read_array), array, mask); return get_writeback_from_array(); } WritebackData writeback; writeback.array = spec.GetFillValueForDomain(domain); writeback.must_store = false; writeback.may_retain_reference_to_array_indefinitely = true; return writeback; } if (!read_state_already_integrated && mask.num_masked_elements != domain.num_elements()) { EnsureWritable(spec); RebaseMaskedArray( domain, read_array.valid() ? ArrayView<const void>(read_array) : ArrayView<const void>(spec.GetFillValueForDomain(domain)), array, mask); } return get_writeback_from_array(); } size_t AsyncWriteArray::MaskedArray::EstimateSizeInBytes( const Spec& spec, tensorstore::span<const Index> shape) const { size_t total = 0; if (array.valid()) { total += GetByteExtent(array); } if (mask.mask_array) { const Index num_elements = ProductOfExtents(shape); total += num_elements * sizeof(bool); } return total; } void AsyncWriteArray::MaskedArray::EnsureWritable(const Spec& spec) { assert(array.valid()); auto new_array = tensorstore::AllocateArray(array.shape(), tensorstore::c_order, tensorstore::default_init, spec.dtype()); CopyArray(array, new_array); array = std::move(new_array); array_capabilities = kMutableArray; } Result<TransformedSharedArray<void>> AsyncWriteArray::MaskedArray::GetWritableTransformedArray( const Spec& spec, BoxView<> domain, IndexTransform<> chunk_transform) { if (!array.valid()) { this->array = tensorstore::AllocateArray(domain.shape(), tensorstore::c_order, tensorstore::default_init, spec.dtype()); array_capabilities = kMutableArray; if (IsFullyOverwritten(spec, domain)) { CopyArray(spec.GetFillValueForDomain(domain), this->array); } else { assert(IsUnmodified()); } } else if (array_capabilities != kMutableArray) { EnsureWritable(spec); } StridedLayoutView<dynamic_rank, offset_origin> data_layout{ domain, this->array.byte_strides()}; TENSORSTORE_ASSIGN_OR_RETURN( chunk_transform, ComposeLayoutAndTransform(data_layout, std::move(chunk_transform))); return {std::in_place, UnownedToShared( AddByteOffset(ElementPointer<void>(this->array.element_pointer()), -data_layout.origin_byte_offset())), std::move(chunk_transform)}; } Result<NDIterable::Ptr> AsyncWriteArray::MaskedArray::BeginWrite( const Spec& spec, BoxView<> domain, IndexTransform<> chunk_transform, Arena* arena) { TENSORSTORE_ASSIGN_OR_RETURN( auto transformed_array, GetWritableTransformedArray(spec, domain, std::move(chunk_transform))); return GetTransformedArrayNDIterable(std::move(transformed_array), arena); } void AsyncWriteArray::MaskedArray::EndWrite( const Spec& spec, BoxView<> domain, IndexTransformView<> chunk_transform, Arena* arena) { WriteToMask(&mask, domain, chunk_transform, arena); } void AsyncWriteArray::MaskedArray::Clear() { mask.Reset(); array = {}; } AsyncWriteArray::AsyncWriteArray(DimensionIndex rank) : write_state(rank) {} AsyncWriteArray::WritebackData AsyncWriteArray::GetArrayForWriteback( const Spec& spec, BoxView<> domain, const SharedArrayView<const void>& read_array, const StorageGeneration& read_generation) { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, read_generation == this->read_generation); if (write_state.array.valid()) this->read_generation = read_generation; return writeback_data; } Result<NDIterable::Ptr> AsyncWriteArray::GetReadNDIterable( const Spec& spec, BoxView<> domain, SharedArrayView<const void> read_array, const StorageGeneration& read_generation, IndexTransform<> chunk_transform, Arena* arena) { if (!read_array.valid()) read_array = spec.GetFillValueForDomain(domain); if (!write_state.IsUnmodified()) { if (write_state.IsFullyOverwritten(spec, domain)) { if (!write_state.array.valid()) { read_array = spec.GetFillValueForDomain(domain); } } else if (this->read_generation != read_generation) { assert(write_state.array.valid()); if (write_state.array_capabilities != MaskedArray::kMutableArray) { write_state.EnsureWritable(spec); } RebaseMaskedArray(domain, read_array, write_state.array, write_state.mask); this->read_generation = read_generation; } if (write_state.array.valid()) { read_array = write_state.array; } } return spec.GetReadNDIterable(std::move(read_array), domain, std::move(chunk_transform), arena); } namespace { bool ZeroCopyToWriteArray( const AsyncWriteArray::Spec& spec, BoxView<> domain, IndexTransformView<> chunk_transform, TransformedSharedArray<const void> source_array, AsyncWriteArray::WriteArraySourceCapabilities source_capabilities, AsyncWriteArray::MaskedArray& write_state) { assert(source_capabilities != AsyncWriteArray::WriteArraySourceCapabilities::kCannotRetain); const DimensionIndex dest_rank = domain.rank(); assert(spec.rank() == dest_rank); assert(chunk_transform.output_rank() == dest_rank); IndexTransformView<> source_transform = source_array.transform(); const DimensionIndex input_rank = chunk_transform.input_rank(); assert(source_transform.input_rank() == input_rank); assert(source_transform.domain().box() == chunk_transform.domain().box()); Index new_byte_strides[kMaxRank]; DimensionIndex dest_dim_for_input_dim[kMaxRank]; std::fill_n(dest_dim_for_input_dim, input_rank, DimensionIndex(-1)); std::fill_n(new_byte_strides, dest_rank, Index(0)); for (DimensionIndex dest_dim = 0; dest_dim < dest_rank; ++dest_dim) { if (domain.shape()[dest_dim] == 1) continue; auto map = chunk_transform.output_index_map(dest_dim); if (map.method() != OutputIndexMethod::single_input_dimension) { continue; } [[maybe_unused]] DimensionIndex prev_dest_dim = std::exchange(dest_dim_for_input_dim[map.input_dimension()], dest_dim); assert(prev_dest_dim == -1); } const DimensionIndex source_output_rank = source_transform.output_rank(); Index source_offset = 0; for (DimensionIndex source_output_dim = 0; source_output_dim < source_output_rank; ++source_output_dim) { auto map = source_transform.output_index_map(source_output_dim); source_offset = internal::wrap_on_overflow::Add(source_offset, map.offset()); switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const DimensionIndex dest_dim = dest_dim_for_input_dim[input_dim]; const Index source_stride = map.stride(); if (dest_dim == -1) { assert(source_transform.input_shape()[input_dim] == 1); const Index source_origin = source_transform.input_origin()[input_dim]; source_offset = internal::wrap_on_overflow::Add( source_offset, internal::wrap_on_overflow::Multiply( source_origin, source_stride)); break; } const auto dest_map = chunk_transform.output_index_map(dest_dim); const Index dest_stride = dest_map.stride(); assert(dest_stride == 1 || dest_stride == -1); new_byte_strides[dest_dim] = internal::wrap_on_overflow::Add( new_byte_strides[dest_dim], internal::wrap_on_overflow::Multiply(source_stride, dest_stride)); break; } case OutputIndexMethod::array: return false; } } for (DimensionIndex dest_dim = 0; dest_dim < dest_rank; ++dest_dim) { auto map = chunk_transform.output_index_map(dest_dim); source_offset = internal::wrap_on_overflow::Subtract( source_offset, internal::wrap_on_overflow::Multiply( new_byte_strides[dest_dim], map.offset())); } auto& new_array = write_state.array; new_array.layout() = StridedLayoutView<>(dest_rank, domain.shape().data(), new_byte_strides); source_offset = internal::wrap_on_overflow::Add( source_offset, IndexInnerProduct(dest_rank, domain.origin().data(), new_byte_strides)); new_array.element_pointer() = AddByteOffset( SharedElementPointer<void>(internal::const_pointer_cast<void>(std::move( source_array.element_pointer().pointer())), spec.dtype()), source_offset); using WriteArraySourceCapabilities = AsyncWriteArray::WriteArraySourceCapabilities; using MaskedArray = AsyncWriteArray::MaskedArray; switch (source_capabilities) { case WriteArraySourceCapabilities::kCannotRetain: ABSL_UNREACHABLE(); case WriteArraySourceCapabilities::kMutable: write_state.array_capabilities = MaskedArray::kMutableArray; break; case WriteArraySourceCapabilities::kImmutableAndCanRetainIndefinitely: write_state.array_capabilities = MaskedArray::kImmutableAndCanRetainIndefinitely; break; case WriteArraySourceCapabilities::kImmutableAndCanRetainUntilCommit: write_state.array_capabilities = MaskedArray::kImmutableAndCanRetainUntilCommit; break; } return true; } } absl::Status AsyncWriteArray::WriteArray( const Spec& spec, BoxView<> domain, IndexTransformView<> chunk_transform, absl::FunctionRef<Result<std::pair<TransformedSharedArray<const void>, WriteArraySourceCapabilities>>()> get_source_array) { [[maybe_unused]] const DimensionIndex dest_rank = spec.rank(); assert(domain.rank() == dest_rank); assert(chunk_transform.output_rank() == dest_rank); Box<dynamic_rank(kMaxRank)> output_range(spec.rank()); TENSORSTORE_ASSIGN_OR_RETURN( bool output_range_exact, tensorstore::GetOutputRange(chunk_transform, output_range)); if (!output_range_exact || output_range != domain) { return absl::CancelledError(); } TENSORSTORE_ASSIGN_OR_RETURN(auto source_array_info, get_source_array()); auto source_capabilities = std::get<1>(source_array_info); if (source_capabilities == WriteArraySourceCapabilities::kCannotRetain) { TENSORSTORE_ASSIGN_OR_RETURN( auto dest_transformed_array, write_state.GetWritableTransformedArray(spec, domain, chunk_transform)); TENSORSTORE_RETURN_IF_ERROR(CopyTransformedArray( std::get<0>(source_array_info), dest_transformed_array)); } else { if (!ZeroCopyToWriteArray(spec, domain, chunk_transform, std::get<0>(source_array_info), source_capabilities, write_state)) { return absl::CancelledError(); } } write_state.mask.Reset(); write_state.mask.num_masked_elements = domain.num_elements(); write_state.mask.region = domain; return absl::OkStatus(); } Result<NDIterable::Ptr> AsyncWriteArray::BeginWrite( const Spec& spec, BoxView<> domain, IndexTransform<> chunk_transform, Arena* arena) { return write_state.BeginWrite(spec, domain, std::move(chunk_transform), arena); } void AsyncWriteArray::EndWrite(const Spec& spec, BoxView<> domain, IndexTransformView<> chunk_transform, bool success, Arena* arena) { if (!success) { InvalidateReadState(); return; } write_state.EndWrite(spec, domain, chunk_transform, arena); } } }
#include "tensorstore/internal/async_write_array.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <limits> #include <random> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/array_testutil.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_array.h" #include "tensorstore/internal/nditerable_copy.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Index; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MakeScalarArray; using ::tensorstore::ReferencesSameDataAs; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::Arena; using ::tensorstore::internal::AsyncWriteArray; using MaskedArray = AsyncWriteArray::MaskedArray; using Spec = AsyncWriteArray::Spec; tensorstore::SharedArray<void> CopyNDIterable( tensorstore::internal::NDIterable::Ptr source_iterable, tensorstore::span<const Index> shape, Arena* arena) { auto dest_array = tensorstore::AllocateArray(shape, tensorstore::c_order, tensorstore::default_init, source_iterable->dtype()); auto dest_iterable = tensorstore::internal::GetArrayNDIterable(dest_array, arena); tensorstore::internal::NDIterableCopier copier(*source_iterable, *dest_iterable, shape, arena); TENSORSTORE_EXPECT_OK(copier.Copy()); return dest_array; } template <typename Target> void TestWrite(Target* target, const Spec& spec, BoxView<> domain, tensorstore::SharedOffsetArrayView<const void> source_array) { Arena arena; auto transform = tensorstore::IdentityTransform(source_array.domain()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto dest_iterable, target->BeginWrite(spec, domain, transform, &arena)); auto source_iterable = tensorstore::internal::GetArrayNDIterable(source_array, &arena); tensorstore::internal::NDIterableCopier copier( *source_iterable, *dest_iterable, source_array.shape(), &arena); TENSORSTORE_EXPECT_OK(copier.Copy()); if constexpr (std::is_same_v<Target, AsyncWriteArray>) { target->EndWrite(spec, domain, transform, true, &arena); } else { target->EndWrite(spec, domain, transform, &arena); } } TEST(SpecTest, Basic) { auto overall_fill_value = MakeOffsetArray<int32_t>( {-2, 0}, { {1, 2, 3, 4, 5, 6, 7, 8, 9}, {11, 12, 13, 14, 15, 16, 17, 18, 19}, {21, 22, 23, 24, 25, 26, 27, 28, 29}, {31, 32, 33, 34, 35, 36, 37, 38, 39}, }); tensorstore::Box<> component_bounds({-1, -kInfIndex}, {3, kInfSize}); Spec spec{overall_fill_value, component_bounds}; EXPECT_EQ(6, spec.GetNumInBoundsElements(BoxView<>({0, 0}, {2, 3}))); EXPECT_EQ(3, spec.GetNumInBoundsElements(BoxView<>({-2, 0}, {2, 3}))); EXPECT_EQ(2, spec.rank()); EXPECT_EQ(tensorstore::dtype_v<int32_t>, spec.dtype()); EXPECT_EQ(0, spec.EstimateReadStateSizeInBytes( false, tensorstore::span<const Index>({2, 3}))); EXPECT_EQ(2 * 3 * sizeof(int32_t), spec.EstimateReadStateSizeInBytes( true, tensorstore::span<const Index>({2, 3}))); { auto read_array = MakeArray<int32_t>({{7, 8, 9}, {10, 11, 12}}); Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, spec.GetReadNDIterable( read_array, BoxView<>({2, 6}, {2, 3}), tensorstore::IdentityTransform(tensorstore::Box<>({2, 6}, {2, 2})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{7, 8}, {10, 11}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 2}), &arena)); } } TEST(MaskedArrayTest, Basic) { auto overall_fill_value = MakeOffsetArray<int32_t>( {-2, 0}, { {1, 2, 3, 4, 5, 6, 7, 8, 9}, {11, 12, 13, 14, 15, 16, 17, 18, 19}, {21, 22, 23, 24, 25, 26, 27, 28, 29}, {31, 32, 33, 34, 35, 36, 37, 38, 39}, }); auto fill_value_copy = MakeArray<int32_t>({{21, 22, 23}, {31, 32, 33}}); tensorstore::Box<> component_bounds({-1, -kInfIndex}, {3, kInfSize}); Spec spec{overall_fill_value, component_bounds}; MaskedArray write_state(2); Box<> domain({0, 0}, {2, 3}); EXPECT_EQ(0, write_state.EstimateSizeInBytes(spec, domain.shape())); EXPECT_TRUE(write_state.IsUnmodified()); EXPECT_FALSE(write_state.array.valid()); auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, {}, false); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(writeback_data.must_store); } { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, fill_value_copy, false); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(writeback_data.must_store); } { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, false); EXPECT_EQ(read_array, writeback_data.array); EXPECT_TRUE(writeback_data.must_store); } TestWrite(&write_state, spec, domain, tensorstore::AllocateArray<int32_t>( tensorstore::BoxView<>({1, 1}, {0, 0}))); EXPECT_TRUE(write_state.array.valid()); EXPECT_TRUE(write_state.IsUnmodified()); EXPECT_FALSE(write_state.IsFullyOverwritten(spec, domain)); EXPECT_EQ(2 * 3 * sizeof(int32_t), write_state.EstimateSizeInBytes(spec, domain.shape())); std::fill_n(static_cast<int32_t*>(write_state.array.data()), domain.num_elements(), 0); TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({1, 1}, {{7, 8}})); EXPECT_EQ(MakeArray<int32_t>({{0, 0, 0}, {0, 7, 8}}), write_state.shared_array_view(spec)); EXPECT_FALSE(write_state.IsUnmodified()); EXPECT_FALSE(write_state.IsFullyOverwritten(spec, domain)); TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{9}})); EXPECT_EQ(MakeArray<int32_t>({{9, 0, 0}, {0, 7, 8}}), write_state.shared_array_view(spec)); EXPECT_EQ(MakeArray<bool>({{1, 0, 0}, {0, 1, 1}}), tensorstore::Array(write_state.mask.mask_array.get(), {2, 3})); EXPECT_FALSE(write_state.IsUnmodified()); EXPECT_FALSE(write_state.IsFullyOverwritten(spec, domain)); EXPECT_EQ(2 * 3 * (sizeof(int32_t) + sizeof(bool)), write_state.EstimateSizeInBytes(spec, domain.shape())); { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, {}, false); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(MakeArray<int32_t>({{9, 22, 23}, {31, 7, 8}}), writeback_data.array); } { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, true); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(MakeArray<int32_t>({{9, 22, 23}, {31, 7, 8}}), writeback_data.array); } { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, false); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(MakeArray<int32_t>({{9, 12, 13}, {14, 7, 8}}), writeback_data.array); } TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{9}, {9}})); TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{10, 10, 10}})); EXPECT_FALSE(write_state.IsUnmodified()); EXPECT_TRUE(write_state.IsFullyOverwritten(spec, domain)); { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, false); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(MakeArray<int32_t>({{10, 10, 10}, {9, 7, 8}}), writeback_data.array); } TestWrite(&write_state, spec, domain, fill_value_copy); EXPECT_TRUE(write_state.array.valid()); { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, false); EXPECT_FALSE(writeback_data.must_store); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(write_state.array.valid()); } write_state.Clear(); EXPECT_TRUE(write_state.IsUnmodified()); TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({1, 1}, {{7, 8}})); write_state.WriteFillValue(spec, domain); EXPECT_FALSE(write_state.IsUnmodified()); EXPECT_FALSE(write_state.array.valid()); EXPECT_EQ(0, write_state.EstimateSizeInBytes(spec, domain.shape())); EXPECT_TRUE(write_state.IsFullyOverwritten(spec, domain)); { auto writeback_data = write_state.GetArrayForWriteback( spec, domain, read_array, false); EXPECT_FALSE(writeback_data.must_store); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(write_state.array.valid()); } TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({1, 1}, {{7, 8}})); EXPECT_EQ(MakeArray<int32_t>({{21, 22, 23}, {31, 7, 8}}), write_state.shared_array_view(spec)); } TEST(MaskedArrayTest, PartialChunk) { auto overall_fill_value = MakeOffsetArray<int32_t>( {-2, 0}, { {1, 2, 3, 4, 5, 6, 7, 8, 9}, {11, 12, 13, 14, 15, 16, 17, 18, 19}, {21, 22, 23, 24, 25, 26, 27, 28, 29}, {31, 32, 33, 34, 35, 36, 37, 38, 39}, }); tensorstore::Box<> component_bounds({-1, -kInfIndex}, {3, kInfSize}); Spec spec{overall_fill_value, component_bounds}; Box<> domain{{-2, 0}, {2, 3}}; MaskedArray write_state(2); TestWrite(&write_state, spec, domain, tensorstore::MakeOffsetArray<int32_t>({-1, 0}, {{7, 8, 9}})); EXPECT_TRUE(write_state.IsFullyOverwritten(spec, domain)); } TEST(MaskedArrayTest, StoreIfEqualToFillValue) { auto overall_fill_value = MakeScalarArray<int32_t>(42); tensorstore::Box<> component_bounds; Spec spec{overall_fill_value, component_bounds}; spec.store_if_equal_to_fill_value = true; MaskedArray write_state(0); TestWrite(&write_state, spec, {}, tensorstore::MakeScalarArray<int32_t>(42)); { auto writeback_data = write_state.GetArrayForWriteback( spec, {}, {}, false); EXPECT_EQ(overall_fill_value, writeback_data.array); EXPECT_TRUE(writeback_data.must_store); } auto read_array = MakeScalarArray<int32_t>(50); { auto writeback_data = write_state.GetArrayForWriteback( spec, {}, read_array, false); EXPECT_EQ(overall_fill_value, writeback_data.array); EXPECT_TRUE(writeback_data.must_store); } } TEST(MaskedArrayTest, CompareFillValueIdenticallyEqual) { auto fill_value = MakeScalarArray<float>(std::numeric_limits<float>::quiet_NaN()); tensorstore::Box<> component_bounds; Spec spec{fill_value, component_bounds}; spec.fill_value_comparison_kind = tensorstore::EqualityComparisonKind::identical; MaskedArray write_state(0); TestWrite(&write_state, spec, {}, tensorstore::MakeScalarArray<float>( std::numeric_limits<float>::signaling_NaN())); { auto writeback_data = write_state.GetArrayForWriteback( spec, {}, {}, false); EXPECT_TRUE(AreArraysIdenticallyEqual( tensorstore::MakeScalarArray<float>( std::numeric_limits<float>::signaling_NaN()), writeback_data.array)); EXPECT_TRUE(writeback_data.must_store); } TestWrite(&write_state, spec, {}, tensorstore::MakeScalarArray<float>( std::numeric_limits<float>::quiet_NaN())); { auto writeback_data = write_state.GetArrayForWriteback( spec, {}, {}, false); EXPECT_TRUE( AreArraysIdenticallyEqual(tensorstore::MakeScalarArray<float>( std::numeric_limits<float>::quiet_NaN()), writeback_data.array)); EXPECT_FALSE(writeback_data.must_store); EXPECT_EQ(fill_value.data(), writeback_data.array.data()); } } TEST(AsyncWriteArrayTest, Basic) { AsyncWriteArray async_write_array(2); auto overall_fill_value = MakeOffsetArray<int32_t>( {-2, 0}, { {1, 2, 3, 4, 5, 6, 7, 8, 9}, {11, 12, 13, 14, 15, 16, 17, 18, 19}, {21, 22, 23, 24, 25, 26, 27, 28, 29}, {31, 32, 33, 34, 35, 36, 37, 38, 39}, }); tensorstore::Box<> component_bounds({-1, -kInfIndex}, {3, kInfSize}); Spec spec{overall_fill_value, component_bounds}; Box<> domain{{0, 0}, {2, 3}}; auto fill_value_copy = MakeArray<int32_t>({{21, 22, 23}, {31, 32, 33}}); { Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, {}, StorageGeneration::FromString("a"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 1}, {2, 2})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{22, 23}, {32, 33}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 2}), &arena)); } { auto read_array = MakeArray<int32_t>({{21, 22, 23}, {24, 25, 26}}); Arena arena; auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, read_array, StorageGeneration::FromString("b")); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(read_array, writeback_data.array); EXPECT_EQ(StorageGeneration::Invalid(), async_write_array.read_generation); } TestWrite(&async_write_array, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{8}})); { auto* data_ptr = async_write_array.write_state.array.data(); TestWrite(&async_write_array, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{7}})); EXPECT_EQ(data_ptr, async_write_array.write_state.array.data()); } { Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, {}, StorageGeneration::FromString("a"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 0}, {2, 3})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{7, 22, 23}, {31, 32, 33}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 3}), &arena)); } { auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, read_array, StorageGeneration::FromString("a"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 0}, {2, 3})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{7, 22, 23}, {31, 32, 33}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 3}), &arena)); } tensorstore::SharedArray<const void> prev_writeback_array; { auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); Arena arena; auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, read_array, StorageGeneration::FromString("a")); EXPECT_TRUE(writeback_data.must_store); prev_writeback_array = writeback_data.array; EXPECT_EQ(MakeArray<int32_t>({{7, 22, 23}, {31, 32, 33}}), writeback_data.array); } { auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, read_array, StorageGeneration::FromString("b"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 0}, {2, 3})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{7, 12, 13}, {14, 15, 16}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 3}), &arena)); } { auto read_array = MakeArray<int32_t>({{21, 22, 23}, {24, 25, 26}}); Arena arena; auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, read_array, StorageGeneration::FromString("c")); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(MakeArray<int32_t>({{7, 22, 23}, {24, 25, 26}}), writeback_data.array); EXPECT_EQ(StorageGeneration::FromString("c"), async_write_array.read_generation); EXPECT_NE(prev_writeback_array, writeback_data.array); } async_write_array.write_state.WriteFillValue(spec, domain); { auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, read_array, StorageGeneration::FromString("b"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 0}, {2, 3})), &arena)); EXPECT_EQ(fill_value_copy, CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 3}), &arena)); } TestWrite(&async_write_array, spec, domain, tensorstore::MakeOffsetArray<int32_t>({0, 0}, {{9}})); { auto read_array = MakeArray<int32_t>({{11, 12, 13}, {14, 15, 16}}); Arena arena; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto iterable, async_write_array.GetReadNDIterable( spec, domain, read_array, StorageGeneration::FromString("b"), tensorstore::IdentityTransform(tensorstore::Box<>({0, 0}, {2, 3})), &arena)); EXPECT_EQ(MakeArray<int32_t>({{9, 22, 23}, {31, 32, 33}}), CopyNDIterable(std::move(iterable), tensorstore::span<const Index>({2, 3}), &arena)); } } TEST(AsyncWriteArrayTest, Issue144) { AsyncWriteArray async_write_array(1); auto overall_fill_value = MakeArray<int32_t>({0, 0}); tensorstore::Box<> component_bounds(1); Spec spec{overall_fill_value, component_bounds}; Box<> domain{{0}, {2}}; TestWrite(&async_write_array, spec, domain, tensorstore::MakeOffsetArray<int32_t>({1}, {0})); { auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, {}, StorageGeneration::FromString("c")); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(writeback_data.must_store); } EXPECT_EQ(1, async_write_array.write_state.mask.num_masked_elements); EXPECT_FALSE(async_write_array.write_state.array.data()); for (int i = 0; i < 2; ++i) { auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, {}, StorageGeneration::FromString("d")); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(writeback_data.must_store); EXPECT_EQ(1, async_write_array.write_state.mask.num_masked_elements); EXPECT_FALSE(async_write_array.write_state.array.data()); } { auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, MakeArray<int32_t>({2, 2}), StorageGeneration::FromString("e")); EXPECT_EQ(MakeArray<int32_t>({2, 0}), writeback_data.array); EXPECT_TRUE(writeback_data.must_store); EXPECT_EQ(1, async_write_array.write_state.mask.num_masked_elements); EXPECT_TRUE(async_write_array.write_state.array.data()); } { auto writeback_data = async_write_array.GetArrayForWriteback( spec, domain, MakeArray<int32_t>({0, 2}), StorageGeneration::FromString("f")); EXPECT_EQ(spec.GetFillValueForDomain(domain), writeback_data.array); EXPECT_FALSE(writeback_data.must_store); EXPECT_EQ(1, async_write_array.write_state.mask.num_masked_elements); EXPECT_FALSE(async_write_array.write_state.array.data()); } } using WriteArraySourceCapabilities = AsyncWriteArray::WriteArraySourceCapabilities; using ArrayCapabilities = AsyncWriteArray::MaskedArray::ArrayCapabilities; void TestWriteArraySuccess( WriteArraySourceCapabilities source_capabilities, ArrayCapabilities expected_array_capabilities, bool may_retain_writeback, bool zero_copy, tensorstore::IndexTransformView<> chunk_transform, tensorstore::TransformedSharedArray<const void> source_array) { SCOPED_TRACE(tensorstore::StrCat("chunk_transform=", chunk_transform)); AsyncWriteArray async_write_array(chunk_transform.output_rank()); tensorstore::Box<> output_range(chunk_transform.output_rank()); ASSERT_THAT(tensorstore::GetOutputRange(chunk_transform, output_range), ::testing::Optional(true)); auto origin = output_range.origin(); SCOPED_TRACE(tensorstore::StrCat("origin=", origin)); auto fill_value = tensorstore::AllocateArray(output_range, tensorstore::c_order, tensorstore::value_init, source_array.dtype()); tensorstore::Box<> component_bounds(chunk_transform.output_rank()); Spec spec{fill_value, component_bounds}; size_t orig_use_count = source_array.element_pointer().pointer().use_count(); TENSORSTORE_ASSERT_OK(async_write_array.WriteArray( spec, output_range, chunk_transform, [&] { return std::pair{source_array, source_capabilities}; })); auto validate_zero_copy = [&](const auto& target_array, size_t orig_use_count) { EXPECT_EQ((zero_copy ? orig_use_count + 1 : orig_use_count), source_array.element_pointer().pointer().use_count()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_target_array, target_array | tensorstore::AllDims().TranslateTo(output_range.origin()) | chunk_transform | tensorstore::TryConvertToArray()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_source_array, source_array | tensorstore::TryConvertToArray()); EXPECT_THAT( materialized_target_array, ::testing::Conditional( zero_copy, ReferencesSameDataAs(materialized_source_array), ::testing::Not(ReferencesSameDataAs(materialized_source_array)))); }; { SCOPED_TRACE( "Checking async_write_array.write_state.array before calling " "GetArrayForWriteback"); validate_zero_copy(async_write_array.write_state.array, orig_use_count); } EXPECT_EQ(expected_array_capabilities, async_write_array.write_state.array_capabilities); { SCOPED_TRACE("Checking writeback_data"); orig_use_count = source_array.element_pointer().pointer().use_count(); auto writeback_data = async_write_array.GetArrayForWriteback( spec, output_range, {}, StorageGeneration::Invalid()); validate_zero_copy(writeback_data.array, orig_use_count); EXPECT_EQ(may_retain_writeback, writeback_data.may_retain_reference_to_array_indefinitely); EXPECT_EQ(expected_array_capabilities, async_write_array.write_state.array_capabilities); } } absl::Status TestWriteArrayError( WriteArraySourceCapabilities source_capabilities, tensorstore::Box<> box, tensorstore::IndexTransformView<> chunk_transform, tensorstore::TransformedSharedArray<const void> source_array) { AsyncWriteArray async_write_array(chunk_transform.output_rank()); auto fill_value = tensorstore::AllocateArray( box, tensorstore::c_order, tensorstore::value_init, source_array.dtype()); tensorstore::Box<> component_bounds(chunk_transform.output_rank()); Spec spec{fill_value, component_bounds}; return async_write_array.WriteArray(spec, box, chunk_transform, [&] { return std::pair{source_array, source_capabilities}; }); } void TestWriteArrayIdentityTransformSuccess( WriteArraySourceCapabilities source_capabilities, ArrayCapabilities expected_array_capabilities, bool may_retain_writeback, bool zero_copy) { auto source_array = MakeArray<int32_t>({{7, 8, 9}, {10, 11, 12}}); auto chunk_transform = tensorstore::IdentityTransform(source_array.shape()); TestWriteArraySuccess(source_capabilities, expected_array_capabilities, may_retain_writeback, zero_copy, chunk_transform, source_array); } TEST(WriteArrayIdentityTransformSuccessTest, kCannotRetain) { TestWriteArrayIdentityTransformSuccess( WriteArraySourceCapabilities::kCannotRetain, AsyncWriteArray::MaskedArray::kMutableArray, true, false); } TEST(WriteArrayIdentityTransformSuccessTest, kImmutableAndCanRetainIndefinitely) { TestWriteArrayIdentityTransformSuccess( WriteArraySourceCapabilities::kImmutableAndCanRetainIndefinitely, AsyncWriteArray::MaskedArray::kImmutableAndCanRetainIndefinitely, true, true); } TEST(WriteArrayIdentityTransformSuccessTest, kImmutableAndCanRetainUntilCommit) { TestWriteArrayIdentityTransformSuccess( WriteArraySourceCapabilities::kImmutableAndCanRetainUntilCommit, AsyncWriteArray::MaskedArray::kImmutableAndCanRetainUntilCommit, false, true); } TEST(WriteArrayIdentityTransformSuccessTest, kMutable) { TestWriteArrayIdentityTransformSuccess( WriteArraySourceCapabilities::kMutable, AsyncWriteArray::MaskedArray::kMutableArray, true, true); } TEST(WriteArrayNonIdentityTransformSuccess, kMutable) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_ASYNC_WRITE_ARRAY")}; tensorstore::SharedArray<const void> base_source_array = MakeArray<int32_t>({{7, 8, 9}, {10, 11, 12}}); constexpr size_t kNumIterations = 10; for (size_t iter_i = 0; iter_i < kNumIterations; ++iter_i) { tensorstore::IndexTransform<> source_transform; { tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 2; source_transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IndexDomain<>(base_source_array.domain()), p); } SCOPED_TRACE(tensorstore::StrCat("source_transform=", source_transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto source_array, base_source_array | source_transform); auto chunk_transform = tensorstore::internal::MakeRandomStridedIndexTransformForInputSpace( gen, source_array.domain()); TestWriteArraySuccess(WriteArraySourceCapabilities::kMutable, AsyncWriteArray::MaskedArray::kMutableArray, true, true, chunk_transform, source_array); } } TEST(WriteArrayErrorTest, SourceArrayIndexArrayMap) { tensorstore::SharedArray<const void> base_source_array = MakeArray<int32_t>({{7, 8, 9}, {10, 11, 12}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto source_array, base_source_array | tensorstore::Dims(1).OuterIndexArraySlice( tensorstore::MakeArray<Index>({1, 0, 1, 1, 2}))); auto chunk_transform = tensorstore::IdentityTransform(source_array.domain()); EXPECT_THAT(TestWriteArrayError(WriteArraySourceCapabilities::kMutable, tensorstore::Box<>({2, 5}), chunk_transform, source_array), tensorstore::MatchesStatus(absl::StatusCode::kCancelled)); } TEST(WriteArrayErrorTest, ChunkTransformIndexArrayMap) { tensorstore::SharedArray<const void> base_source_array = MakeArray<int32_t>({{7, 8, 9}, {10, 11, 12}}); tensorstore::TransformedSharedArray<const void> source_array = base_source_array; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto chunk_transform, tensorstore::IdentityTransform(source_array.domain()) | tensorstore::Dims(1).OuterIndexArraySlice( tensorstore::MakeArray<Index>({0, 1, 2}))); EXPECT_THAT(TestWriteArrayError(WriteArraySourceCapabilities::kMutable, tensorstore::Box<>({2, 3}), chunk_transform, source_array), tensorstore::MatchesStatus(absl::StatusCode::kCancelled)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/async_write_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/async_write_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7c566eab-5a0b-48f5-8314-6b7a47a159d1
cpp
google/cel-cpp
optional_value
common/values/optional_value.cc
common/values/optional_value_test.cc
#include <string> #include <utility> #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "common/casting.h" #include "common/memory.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_kind.h" namespace cel { namespace { class EmptyOptionalValue final : public OptionalValueInterface { public: EmptyOptionalValue() = default; bool HasValue() const override { return false; } void Value(cel::Value& result) const override { result = ErrorValue( absl::FailedPreconditionError("optional.none() dereference")); } }; class FullOptionalValue final : public OptionalValueInterface { public: explicit FullOptionalValue(cel::Value value) : value_(std::move(value)) {} bool HasValue() const override { return true; } void Value(cel::Value& result) const override { result = value_; } private: friend struct NativeTypeTraits<FullOptionalValue>; const cel::Value value_; }; } template <> struct NativeTypeTraits<FullOptionalValue> { static bool SkipDestructor(const FullOptionalValue& value) { return NativeType::SkipDestructor(value.value_); } }; std::string OptionalValueInterface::DebugString() const { if (HasValue()) { return absl::StrCat("optional(", Value().DebugString(), ")"); } return "optional.none()"; } OptionalValue OptionalValue::Of(MemoryManagerRef memory_manager, cel::Value value) { ABSL_DCHECK(value.kind() != ValueKind::kError && value.kind() != ValueKind::kUnknown); return OptionalValue( memory_manager.MakeShared<FullOptionalValue>(std::move(value))); } OptionalValue OptionalValue::None() { static const absl::NoDestructor<EmptyOptionalValue> empty; return OptionalValue(common_internal::MakeShared(&*empty, nullptr)); } absl::Status OptionalValueInterface::Equal(ValueManager& value_manager, const cel::Value& other, cel::Value& result) const { if (auto other_value = As<OptionalValue>(other); other_value.has_value()) { if (HasValue() != other_value->HasValue()) { result = BoolValue{false}; return absl::OkStatus(); } if (!HasValue()) { result = BoolValue{true}; return absl::OkStatus(); } return Value().Equal(value_manager, other_value->Value(), result); return absl::OkStatus(); } result = BoolValue{false}; return absl::OkStatus(); } }
#include <sstream> #include <utility> #include "absl/status/status.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/memory.h" #include "common/type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::StatusIs; using ::testing::An; using ::testing::Ne; using ::testing::TestParamInfo; class OptionalValueTest : public common_internal::ThreadCompatibleValueTest<> { public: OptionalValue OptionalNone() { return OptionalValue::None(); } OptionalValue OptionalOf(Value value) { return OptionalValue::Of(memory_manager(), std::move(value)); } }; TEST_P(OptionalValueTest, Kind) { auto value = OptionalNone(); EXPECT_EQ(value.kind(), OptionalValue::kKind); EXPECT_EQ(OpaqueValue(value).kind(), OptionalValue::kKind); EXPECT_EQ(Value(value).kind(), OptionalValue::kKind); } TEST_P(OptionalValueTest, Type) { auto value = OptionalNone(); EXPECT_EQ(value.GetRuntimeType(), OptionalType()); } TEST_P(OptionalValueTest, DebugString) { auto value = OptionalNone(); { std::ostringstream out; out << value; EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OpaqueValue(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << Value(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OptionalOf(IntValue()); EXPECT_EQ(out.str(), "optional(0)"); } } TEST_P(OptionalValueTest, SerializeTo) { absl::Cord value; EXPECT_THAT(OptionalValue().SerializeTo(value_manager(), value), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, ConvertToJson) { EXPECT_THAT(OptionalValue().ConvertToJson(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, InstanceOf) { auto value = OptionalNone(); EXPECT_TRUE(InstanceOf<OptionalValue>(value)); EXPECT_TRUE(InstanceOf<OptionalValue>(OpaqueValue(value))); EXPECT_TRUE(InstanceOf<OptionalValue>(Value(value))); } TEST_P(OptionalValueTest, Cast) { auto value = OptionalNone(); EXPECT_THAT(Cast<OptionalValue>(value), An<OptionalValue>()); EXPECT_THAT(Cast<OptionalValue>(OpaqueValue(value)), An<OptionalValue>()); EXPECT_THAT(Cast<OptionalValue>(Value(value)), An<OptionalValue>()); } TEST_P(OptionalValueTest, As) { auto value = OptionalNone(); EXPECT_THAT(As<OptionalValue>(OpaqueValue(value)), Ne(absl::nullopt)); EXPECT_THAT(As<OptionalValue>(Value(value)), Ne(absl::nullopt)); } TEST_P(OptionalValueTest, HasValue) { auto value = OptionalNone(); EXPECT_FALSE(value.HasValue()); value = OptionalOf(IntValue()); EXPECT_TRUE(value.HasValue()); } TEST_P(OptionalValueTest, Value) { auto value = OptionalNone(); auto element = value.Value(); ASSERT_TRUE(InstanceOf<ErrorValue>(element)); EXPECT_THAT(Cast<ErrorValue>(element).NativeValue(), StatusIs(absl::StatusCode::kFailedPrecondition)); value = OptionalOf(IntValue()); element = value.Value(); ASSERT_TRUE(InstanceOf<IntValue>(element)); EXPECT_EQ(Cast<IntValue>(element), IntValue()); } INSTANTIATE_TEST_SUITE_P( OptionalValueTest, OptionalValueTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), OptionalValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/optional_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/optional_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
d5e0aae3-f28b-414d-a342-b691170f8ef7
cpp
google/tensorstore
zip_key_value_store
tensorstore/kvstore/zip/zip_key_value_store.cc
tensorstore/kvstore/zip/zip_key_value_store_test.cc
#include <stddef.h> #include <algorithm> #include <cassert> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/cord_reader.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/compression/zip_details.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/zip/zip_dir_cache.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "absl/base/attributes.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/util/garbage_collection/std_vector.h" using ::tensorstore::internal_zip_kvstore::Directory; using ::tensorstore::internal_zip_kvstore::ZipDirectoryCache; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; ABSL_CONST_INIT internal_log::VerboseFlag zip_logging("zip"); auto zip_metrics = TENSORSTORE_KVSTORE_COMMON_READ_METRICS(zip); struct ZipKvStoreSpecData { kvstore::Spec base; Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.base, x.cache_pool, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member("base", jb::Projection<&ZipKvStoreSpecData::base>()), jb::Member(internal::CachePoolResource::id, jb::Projection<&ZipKvStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection<&ZipKvStoreSpecData::data_copy_concurrency>()) ); }; class ZipKvStoreSpec : public internal_kvstore::RegisteredDriverSpec<ZipKvStoreSpec, ZipKvStoreSpecData> { public: static constexpr char id[] = "zip"; Future<kvstore::DriverPtr> DoOpen() const override; absl::Status ApplyOptions(kvstore::DriverSpecOptions&& options) override { return data_.base.driver.Set(std::move(options)); } Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ZipKvStore : public internal_kvstore::RegisteredDriver<ZipKvStore, ZipKvStoreSpec> { public: Future<ReadResult> Read(Key key, ReadOptions options) override; std::string DescribeKey(std::string_view key) override { return tensorstore::StrCat(QuoteString(key), " in ", base_.driver->DescribeKey(base_.path)); } void ListImpl(ListOptions options, ListReceiver receiver) override; absl::Status GetBoundSpecData(ZipKvStoreSpecData& spec) const { spec = spec_data_; return absl::OkStatus(); } kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return base_.driver->GetSupportedFeatures(KeyRange::Singleton(base_.path)); } Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override { return KvStore(base_.driver, base_.path, transaction); } const Executor& executor() const { return spec_data_.data_copy_concurrency->executor; } ZipKvStoreSpecData spec_data_; kvstore::KvStore base_; internal::PinnedCacheEntry<ZipDirectoryCache> cache_entry_; }; Future<kvstore::DriverPtr> ZipKvStoreSpec::DoOpen() const { return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ZipKvStoreSpec>(this)]( kvstore::KvStore& base_kvstore) mutable -> Result<kvstore::DriverPtr> { std::string cache_key; internal::EncodeCacheKey(&cache_key, base_kvstore.driver, base_kvstore.path, spec->data_.data_copy_concurrency); auto& cache_pool = *spec->data_.cache_pool; auto directory_cache = internal::GetCache<ZipDirectoryCache>( cache_pool.get(), cache_key, [&] { return std::make_unique<ZipDirectoryCache>( base_kvstore.driver, spec->data_.data_copy_concurrency->executor); }); auto driver = internal::MakeIntrusivePtr<ZipKvStore>(); driver->base_ = std::move(base_kvstore); driver->spec_data_ = std::move(spec->data_); driver->cache_entry_ = GetCacheEntry(directory_cache, driver->base_.path); return driver; }, kvstore::Open(data_.base)); } struct ReadState : public internal::AtomicReferenceCount<ReadState> { internal::IntrusivePtr<ZipKvStore> owner_; kvstore::Key key_; kvstore::ReadOptions options_; void OnDirectoryReady(Promise<kvstore::ReadResult> promise) { TimestampedStorageGeneration stamp; kvstore::ReadOptions options; options.staleness_bound = options_.staleness_bound; options.byte_range = OptionalByteRangeRequest{}; size_t seek_pos = 0; { ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData> lock( *(owner_->cache_entry_)); stamp = lock.stamp(); assert(lock.data()); const ZipDirectoryCache::ReadData& dir = *lock.data(); ABSL_LOG_IF(INFO, zip_logging) << dir; auto it = std::lower_bound( dir.entries.begin(), dir.entries.end(), key_, [](const auto& e, const std::string& k) { return e.filename < k; }); if (it == dir.entries.end() || it->filename != key_) { promise.SetResult(kvstore::ReadResult::Missing(std::move(stamp))); return; } if (!options_.generation_conditions.Matches(stamp.generation)) { promise.SetResult(kvstore::ReadResult::Unspecified(std::move(stamp))); return; } if (dir.full_read) { seek_pos = it->local_header_offset; } else { seek_pos = 0; options.byte_range = OptionalByteRangeRequest::Range( it->local_header_offset, it->local_header_offset + it->estimated_size); } } options.generation_conditions.if_equal = stamp.generation; Link(WithExecutor(owner_->executor(), [self = internal::IntrusivePtr<ReadState>(this), seek_pos](Promise<kvstore::ReadResult> promise, ReadyFuture<kvstore::ReadResult> ready) { self->OnValueRead(std::move(promise), std::move(ready), seek_pos); }), std::move(promise), kvstore::Read(owner_->base_, {}, std::move(options))); } void OnValueRead(Promise<kvstore::ReadResult> promise, ReadyFuture<kvstore::ReadResult> ready, size_t seek_pos) { if (!promise.result_needed()) return; if (!ready.status().ok()) { promise.SetResult(ready.status()); return; } internal_zip::ZipEntry local_header{}; auto result = [&]() -> Result<kvstore::ReadResult> { kvstore::ReadResult read_result = std::move(ready.value()); if (!read_result.has_value()) { return read_result; } absl::Cord source = std::move(read_result.value); riegeli::CordReader reader(&source); reader.Seek(seek_pos); TENSORSTORE_RETURN_IF_ERROR(ReadLocalEntry(reader, local_header)); TENSORSTORE_RETURN_IF_ERROR(ValidateEntryIsSupported(local_header)); TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, options_.byte_range.Validate(local_header.uncompressed_size)); TENSORSTORE_ASSIGN_OR_RETURN( auto entry_reader, internal_zip::GetReader(&reader, local_header)); if (byte_range.inclusive_min > 0) { entry_reader->Skip(byte_range.inclusive_min); } if (!entry_reader->Read(byte_range.size(), read_result.value)) { if (entry_reader->status().ok()) { return absl::OutOfRangeError("Failed to read range"); } return entry_reader->status(); } return read_result; }(); ABSL_LOG_IF(INFO, zip_logging && !result.ok()) << result.status() << "\n" << local_header; promise.SetResult(std::move(result)); } }; Future<kvstore::ReadResult> ZipKvStore::Read(Key key, ReadOptions options) { auto state = internal::MakeIntrusivePtr<ReadState>(); state->owner_ = internal::IntrusivePtr<ZipKvStore>(this); state->key_ = std::move(key); state->options_ = options; zip_metrics.read.Increment(); return PromiseFuturePair<kvstore::ReadResult>::LinkValue( WithExecutor( executor(), [state = std::move(state)](Promise<ReadResult> promise, ReadyFuture<const void>) { if (!promise.result_needed()) return; state->OnDirectoryReady(std::move(promise)); }), cache_entry_->Read({options.staleness_bound})) .future; } struct ListState : public internal::AtomicReferenceCount<ListState> { internal::IntrusivePtr<ZipKvStore> owner_; kvstore::ListOptions options_; ListReceiver receiver_; Promise<void> promise_; Future<void> future_; ListState(internal::IntrusivePtr<ZipKvStore>&& owner, kvstore::ListOptions&& options, ListReceiver&& receiver) : owner_(std::move(owner)), options_(std::move(options)), receiver_(std::move(receiver)) { auto [promise, future] = PromiseFuturePair<void>::Make(MakeResult()); this->promise_ = std::move(promise); this->future_ = std::move(future); future_.Force(); execution::set_starting(receiver_, [promise = promise_] { promise.SetResult(absl::CancelledError("")); }); } ~ListState() { auto& r = promise_.raw_result(); if (r.ok()) { execution::set_done(receiver_); } else { execution::set_error(receiver_, r.status()); } execution::set_stopping(receiver_); } void OnDirectoryReady() { auto dir = ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData>( *(owner_->cache_entry_)) .shared_data(); assert(dir); auto it = std::lower_bound( dir->entries.begin(), dir->entries.end(), options_.range.inclusive_min, [](const auto& e, const std::string& k) { return e.filename < k; }); for (; it != dir->entries.end(); ++it) { if (KeyRange::CompareKeyAndExclusiveMax( it->filename, options_.range.exclusive_max) >= 0) { break; } if (it->filename.size() >= options_.strip_prefix_length) { execution::set_value( receiver_, ListEntry{it->filename.substr(options_.strip_prefix_length), ListEntry::checked_size(it->uncompressed_size)}); } } } }; void ZipKvStore::ListImpl(ListOptions options, ListReceiver receiver) { auto state = internal::MakeIntrusivePtr<ListState>( internal::IntrusivePtr<ZipKvStore>(this), std::move(options), std::move(receiver)); auto* state_ptr = state.get(); zip_metrics.list.Increment(); LinkValue(WithExecutor(executor(), [state = std::move(state)](Promise<void> promise, ReadyFuture<const void>) { state->OnDirectoryReady(); }), state_ptr->promise_, cache_entry_->Read({state_ptr->options_.staleness_bound})); } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(tensorstore::ZipKvStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::ZipKvStoreSpec> registration; }
#include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/flags/flag.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/notification.h" #include <nlohmann/json.hpp> #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorstore/context.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" ABSL_FLAG(std::string, tensorstore_test_data, "", "Path to internal/compression/testdata/data.zip"); namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::Context; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; static constexpr unsigned char kReadOpZip[] = { 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x5b, 0x19, 0x57, 0x93, 0xc0, 0x3a, 0x94, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x1c, 0x00, 0x6b, 0x65, 0x79, 0x55, 0x54, 0x09, 0x00, 0x03, 0x1b, 0xf3, 0xe8, 0x64, 0x1c, 0xf3, 0xe8, 0x64, 0x75, 0x78, 0x0b, 0x00, 0x01, 0x04, 0x6c, 0x35, 0x00, 0x00, 0x04, 0x53, 0x5f, 0x01, 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x50, 0x4b, 0x01, 0x02, 0x1e, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x5b, 0x19, 0x57, 0x93, 0xc0, 0x3a, 0x94, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xa4, 0x81, 0x00, 0x00, 0x00, 0x00, 0x6b, 0x65, 0x79, 0x55, 0x54, 0x05, 0x00, 0x03, 0x1b, 0xf3, 0xe8, 0x64, 0x75, 0x78, 0x0b, 0x00, 0x01, 0x04, 0x6c, 0x35, 0x00, 0x00, 0x04, 0x53, 0x5f, 0x01, 0x00, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x49, 0x00, 0x00, 0x00, 0x4d, 0x00, 0x00, 0x00, 0x00, 0x00, }; absl::Cord GetReadOpZip() { return absl::MakeCordFromExternal( std::string_view(reinterpret_cast<const char*>(kReadOpZip), sizeof(kReadOpZip)), [](auto) {}); } absl::Cord GetTestZipFileData() { ABSL_CHECK(!absl::GetFlag(FLAGS_tensorstore_test_data).empty()); absl::Cord filedata; TENSORSTORE_CHECK_OK(riegeli::ReadAll( riegeli::FdReader(absl::GetFlag(FLAGS_tensorstore_test_data)), filedata)); ABSL_CHECK_EQ(filedata.size(), 319482); return filedata; } class ZipKeyValueStoreTest : public ::testing::Test { public: ZipKeyValueStoreTest() : context_(Context::Default()) {} void PrepareMemoryKvstore(absl::Cord value) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( tensorstore::KvStore memory, tensorstore::kvstore::Open({{"driver", "memory"}}, context_).result()); TENSORSTORE_CHECK_OK( tensorstore::kvstore::Write(memory, "data.zip", value).result()); } tensorstore::Context context_; }; TEST_F(ZipKeyValueStoreTest, Simple) { PrepareMemoryKvstore(GetTestZipFileData()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "data.zip"}}}}, context_) .result()); for (int i = 0; i < 2; ++i) { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: data/a.png", "set_value: data/bb.png", "set_value: data/c.png", "set_done", "set_stopping")) << i; } { kvstore::ListOptions options; options.range = options.range.Prefix("data/b"); options.strip_prefix_length = 5; absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, options), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: bb.png", "set_done", "set_stopping")); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto read_result, kvstore::Read(store, "data/bb.png").result()); EXPECT_THAT(read_result, MatchesKvsReadResult( ::testing::_, ::testing::Not(tensorstore::StorageGeneration::Unknown()))); EXPECT_THAT(read_result.value.size(), 106351); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto read_result, kvstore::Read(store, "data/zz.png").result()); EXPECT_THAT(read_result, MatchesKvsReadResultNotFound()); } } TEST_F(ZipKeyValueStoreTest, ReadOps) { PrepareMemoryKvstore(GetReadOpZip()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "data.zip"}}}}, context_) .result()); ::tensorstore::internal::TestKeyValueStoreReadOps( store, "key", absl::Cord("abcdefghijklmnop"), "missing_key"); } TEST_F(ZipKeyValueStoreTest, InvalidSpec) { auto context = tensorstore::Context::Default(); EXPECT_THAT( kvstore::Open({{"driver", "zip"}, {"extra", "key"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(ZipKeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.check_data_persists = false; options.check_write_read = false; options.check_data_after_serialization = false; options.check_store_serialization = true; options.full_spec = {{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "abc.zip"}}}}; options.full_base_spec = {{"driver", "memory"}, {"path", "abc.zip"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
96b1761e-033d-4e9d-a447-5c2336991e90
cpp
tensorflow/tensorflow
saved_tensor_slice_util
tensorflow/core/util/saved_tensor_slice_util.cc
tensorflow/core/util/saved_tensor_slice_util_test.cc
#include "tensorflow/core/util/saved_tensor_slice_util.h" #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/ordered_code.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace checkpoint { const char kSavedTensorSlicesKey[] = ""; string EncodeTensorNameSlice(const string& name, const TensorSlice& slice) { string buffer; tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, 0); tensorflow::strings::OrderedCode::WriteString(&buffer, name); tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, slice.dims()); for (int d = 0; d < slice.dims(); ++d) { tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer, slice.start(d)); tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer, slice.length(d)); } return buffer; } Status DecodeTensorNameSlice(const string& code, string* name, tensorflow::TensorSlice* slice) { StringPiece src(code); uint64 x; if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) { return errors::Internal("Failed to parse the leading number: src = ", src); } if (x != 0) { return errors::Internal( "The leading number should always be 0 for any valid key: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadString(&src, name)) { return errors::Internal("Failed to parse the tensor name: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) { return errors::Internal("Failed to parse the tensor rank: src = ", src); } if (x == 0) { return errors::Internal("Expecting positive rank of the tensor, got ", x, ", src = ", src); } if (x >= kint32max) { return errors::Internal("Too many elements ", x); } slice->SetFullSlice(x); for (int d = 0; d < static_cast<int32>(x); ++d) { int64_t start, length; if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src, &start)) { return errors::Internal("Failed to parse start: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src, &length)) { return errors::Internal("Failed to parse length: src = ", src); } if (length >= 0) { slice->set_start(d, start); slice->set_length(d, length); } } return absl::OkStatus(); } Status ParseShapeAndSlice(const string& shape_and_slice, TensorShape* shape, TensorSlice* slice, TensorShape* shape_slice) { CHECK(!shape_and_slice.empty()); std::vector<string> splits = str_util::Split(shape_and_slice, ' '); if (splits.size() < 2) { return errors::InvalidArgument( "Need least two elements in shape_and_slice specification: ", shape_and_slice); } slice->Clear(); auto status = slice->Parse(splits.back(), slice); if (!status.ok()) return status; splits.pop_back(); shape->Clear(); for (const auto& s : splits) { int64_t dim; if (!strings::safe_strto64(s, &dim)) { return errors::InvalidArgument( "Non numerical dimension in shape_and_slice: ", shape_and_slice); } shape->AddDim(dim); } return slice->SliceTensorShape(*shape, shape_slice); } } }
#include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace checkpoint { namespace { TEST(TensorShapeUtilTest, TensorNameSliceToOrderedCode) { { TensorSlice s = TensorSlice::ParseOrDie("-:-:1,3:4,5"); string buffer = EncodeTensorNameSlice("foo", s); string name; s.Clear(); TF_CHECK_OK(DecodeTensorNameSlice(buffer, &name, &s)); EXPECT_EQ("foo", name); EXPECT_EQ("-:-:1,3:4,5", s.DebugString()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/saved_tensor_slice_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/saved_tensor_slice_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef2e10a4-b4e8-4a54-96cd-ad5096524559
cpp
tensorflow/tensorflow
ptrvec
third_party/xla/xla/hlo/ir/ptrvec.h
third_party/xla/xla/hlo/ir/ptrvec_test.cc
#ifndef XLA_HLO_IR_PTRVEC_H_ #define XLA_HLO_IR_PTRVEC_H_ #include <cstddef> #include <cstdint> #include <cstdlib> #include <limits> #include <type_traits> #include <vector> #include "absl/log/check.h" #include "tsl/platform/logging.h" namespace xla { template <typename T> class PtrVec { public: static_assert(std::is_pointer<T>::value); PtrVec(); ~PtrVec(); PtrVec(const PtrVec& x); PtrVec& operator=(const PtrVec& x); PtrVec(PtrVec&& x); PtrVec& operator=(PtrVec&& x); using difference_type = std::ptrdiff_t; using value_type = T; using pointer = T*; using reference = T&; using const_reference = T const&; using const_iterator = T const*; const_iterator begin() const; const_iterator end() const; size_t size() const; bool empty() const; T* data(); T const* data() const; T& operator[](size_t i); T operator[](size_t i) const; T at(size_t i) const; T front() const; T back() const; void clear(); void pop_back(); void push_back(T x); void erase(const_iterator iter); operator std::vector<T>() const; private: static constexpr uintptr_t kEmptyTag = 0x1; static constexpr uintptr_t kBigTag = 0x3; static constexpr uintptr_t kTagMask = 0x3; struct Big { size_t size; size_t capacity; T data[]; }; inline static bool can_inline(T ptr) { if constexpr (alignof(decltype(*ptr)) >= 2) { DCHECK_EQ(reinterpret_cast<uintptr_t>(ptr) & 0x1, 0); return true; } return ((reinterpret_cast<uintptr_t>(ptr) & 0x1) == 0); } inline bool is_big() const { return (rep_ & kTagMask) == kBigTag; } inline Big* big() const { DCHECK(is_big()); return reinterpret_cast<Big*>(rep_ & ~kTagMask); } inline static size_t big_size(size_t n) { static constexpr size_t kMaxFit = (std::numeric_limits<size_t>::max() - sizeof(Big)) / sizeof(T); DCHECK_LE(n, kMaxFit); const size_t result = sizeof(Big) + n * sizeof(T); DCHECK_GE(result, sizeof(Big)); return result; } inline Big* MakeBig(size_t capacity) { Big* big = static_cast<Big*>(malloc(big_size(capacity))); big->size = 0; big->capacity = capacity; rep_ = reinterpret_cast<uintptr_t>(big) | kBigTag; return big; } inline static void FreeBig(Big* big) { free(big); } uintptr_t rep_; }; template <class T> inline PtrVec<T>::PtrVec() : rep_(kEmptyTag) {} template <class T> inline PtrVec<T>::~PtrVec() { if (is_big()) FreeBig(big()); } template <class T> inline PtrVec<T>::PtrVec(const PtrVec& x) : rep_(kEmptyTag) { *this = x; } template <class T> inline PtrVec<T>& PtrVec<T>::operator=(const PtrVec& x) { if (this == &x) { return *this; } const size_t n = x.size(); Big* b; if (!is_big()) { if (n < 2) { if (n == 0) { rep_ = kEmptyTag; return *this; } T single = x.front(); if (can_inline(single)) { rep_ = reinterpret_cast<uintptr_t>(single); DCHECK(!empty()); DCHECK(!is_big()); return *this; } } b = MakeBig(x.size()); } else { if (n == 0) { clear(); return *this; } b = big(); if (b->capacity < n) { FreeBig(b); b = MakeBig(n); } } memcpy(b->data, x.data(), n * sizeof(T)); b->size = n; return *this; } template <class T> inline PtrVec<T>::PtrVec(PtrVec&& x) : rep_(x.rep_) { x.rep_ = kEmptyTag; } template <class T> inline PtrVec<T>& PtrVec<T>::operator=(PtrVec&& x) { if (this != &x) { if (is_big()) { FreeBig(big()); } rep_ = x.rep_; x.rep_ = kEmptyTag; } return *this; } template <class T> inline size_t PtrVec<T>::size() const { return is_big() ? big()->size : (rep_ != kEmptyTag ? 1 : 0); } template <class T> inline bool PtrVec<T>::empty() const { return rep_ == kEmptyTag; } template <class T> inline T* PtrVec<T>::data() { return is_big() ? big()->data : reinterpret_cast<T*>(&rep_); } template <class T> inline T const* PtrVec<T>::data() const { return is_big() ? big()->data : reinterpret_cast<T const*>(&rep_); } template <class T> inline T& PtrVec<T>::operator[](size_t i) { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::operator[](size_t i) const { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::at(size_t i) const { DCHECK_LT(i, size()); return *(data() + i); } template <class T> inline T PtrVec<T>::front() const { return (*this)[0]; } template <class T> inline T PtrVec<T>::back() const { return (*this)[size() - 1]; } template <class T> inline typename PtrVec<T>::const_iterator PtrVec<T>::begin() const { return data(); } template <class T> inline typename PtrVec<T>::const_iterator PtrVec<T>::end() const { return data() + size(); } template <class T> inline void PtrVec<T>::clear() { if (is_big()) { FreeBig(big()); } rep_ = kEmptyTag; } template <class T> inline void PtrVec<T>::pop_back() { DCHECK(!empty()); if (is_big()) { big()->size--; if (big()->size == 0) { clear(); } } else { rep_ = kEmptyTag; } } template <class T> inline void PtrVec<T>::push_back(T x) { if (!is_big()) { if (rep_ == kEmptyTag) { if (can_inline(x)) { rep_ = reinterpret_cast<uintptr_t>(x); DCHECK(!empty()); DCHECK(!is_big()); } else { Big* b = MakeBig(1); b->size = 1; b->data[0] = x; } } else { T singleton = front(); Big* b = MakeBig(2); b->size = 2; b->data[0] = singleton; b->data[1] = x; } } else { Big* b = big(); const size_t n = b->size; DCHECK_LE(n, b->capacity); if (n == b->capacity) { Big* old = b; b = MakeBig(std::max<size_t>(2, 2 * old->capacity)); memcpy(b->data, old->data, n * sizeof(T)); FreeBig(old); } b->data[n] = x; b->size = n + 1; } } template <class T> inline void PtrVec<T>::erase(const_iterator iter) { DCHECK_GE(iter, begin()); DCHECK_LT(iter, end()); if (!is_big()) { rep_ = kEmptyTag; } else { Big* b = big(); const size_t index = iter - b->data; memmove(b->data + index, b->data + index + 1, (b->size - index - 1) * sizeof(T)); b->size--; if (b->size == 0) { clear(); } } } template <class T> inline PtrVec<T>::operator std::vector<T>() const { if (empty()) return {}; return std::vector<T>(begin(), end()); } template <typename T> bool operator==(const PtrVec<T>& a, const PtrVec<T>& b) { auto a_data = a.data(); auto b_data = b.data(); return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size()); } template <typename T> bool operator!=(const PtrVec<T>& a, const PtrVec<T>& b) { return !(a == b); } } #endif
#include "xla/hlo/ir/ptrvec.h" #include <cstdint> #include <initializer_list> #include <memory> #include <utility> #include <vector> #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class PtrVecTest : public testing::Test { public: int* NewInt(int v) { ints_.push_back(std::make_unique<int>(v)); return ints_.back().get(); } void Fill(PtrVec<int*>& dst, absl::Span<const int> src) { for (int v : src) { dst.push_back(NewInt(v)); } } std::vector<int> Pointees(const PtrVec<int*>& src) { std::vector<int> result; result.reserve(src.size()); for (int* ptr : src) { result.push_back(*ptr); } return result; } private: std::vector<std::unique_ptr<int>> ints_; }; std::vector<std::vector<int>> TestCases() { return std::vector<std::vector<int>>{ {}, {100}, {200, 300}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, }; } TEST_F(PtrVecTest, Accessors) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); ASSERT_EQ(v.empty(), c.empty()); ASSERT_EQ(v.size(), c.size()); if (!c.empty()) { ASSERT_EQ(*v.front(), c.front()); ASSERT_EQ(*v.back(), c.back()); } } } TEST_F(PtrVecTest, Iteration) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); int i = 0; for (auto ptr : v) { ASSERT_EQ(*ptr, c[i]); i++; } } } TEST_F(PtrVecTest, Indexing) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*v[i], c[i]); ASSERT_EQ(*v.at(i), c[i]); } } } TEST_F(PtrVecTest, Data) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); int** data = v.data(); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*data[i], c[i]); } } } TEST_F(PtrVecTest, ConversionToVector) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); std::vector<int*> vec = v; ASSERT_EQ(vec.size(), c.size()); for (int i = 0; i < c.size(); i++) { ASSERT_EQ(*vec[i], c[i]); } } } TEST_F(PtrVecTest, Clear) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); v.clear(); EXPECT_EQ(Pointees(v), std::vector<int>{}); } } TEST_F(PtrVecTest, PopBack) { for (const auto& c : TestCases()) { SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); auto model = c; while (!model.empty()) { model.pop_back(); v.pop_back(); EXPECT_EQ(Pointees(v), model); } } } TEST_F(PtrVecTest, Erase) { for (const auto& c : TestCases()) { if (c.empty()) { continue; } SCOPED_TRACE(c.size()); PtrVec<int*> v; Fill(v, c); auto model = c; int offset = c.size() / 2; model.erase(model.begin() + offset); v.erase(v.begin() + offset); EXPECT_EQ(Pointees(v), model); } } TEST_F(PtrVecTest, Assign) { const auto cases = TestCases(); for (const auto& x : cases) { for (const auto& y : cases) { SCOPED_TRACE(absl::StrFormat("from %d to %d", x.size(), y.size())); { PtrVec<int*> b; Fill(b, y); PtrVec<int*> a = b; ASSERT_EQ(Pointees(a), y); } { PtrVec<int*> b; Fill(b, y); PtrVec<int*> a = std::move(b); ASSERT_EQ(Pointees(a), y); ASSERT_EQ(Pointees(b), std::vector<int>{}); } { PtrVec<int*> a; Fill(a, x); ASSERT_EQ(Pointees(a), x); PtrVec<int*> b; Fill(b, y); a = b; ASSERT_EQ(Pointees(a), y); } { PtrVec<int*> a; Fill(a, x); PtrVec<int*> b; Fill(b, y); a = std::move(b); ASSERT_EQ(Pointees(a), y); ASSERT_EQ(Pointees(b), std::vector<int>{}); } } } } TEST_F(PtrVecTest, ReducedAlignment) { const char* str = "hello world"; for (int i = 0; i < 11; i++) { PtrVec<const char*> vec; vec.push_back(&str[i]); EXPECT_EQ(vec.size(), 1); EXPECT_EQ(vec[0], &str[i]); PtrVec<const char*> copy; copy = vec; EXPECT_EQ(copy.size(), 1); EXPECT_EQ(copy[0], &str[i]); } } struct Elem { int64_t number; }; void BM_PtrVecIter(::testing::benchmark::State& state) { const int n = state.range(0); std::vector<Elem> storage(n); PtrVec<Elem*> vec; for (int i = 0; i < n; i++) { storage[i].number = i; vec.push_back(&storage[i]); } uintptr_t sum = 0; for (auto s : state) { for (int i = 0; i < vec.size(); i++) { sum += reinterpret_cast<uintptr_t>(vec[i]); } } VLOG(1) << sum; } BENCHMARK(BM_PtrVecIter)->Arg(0)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(1024); void BM_StdVecIter(::testing::benchmark::State& state) { const int n = state.range(0); std::vector<Elem> storage(n); std::vector<Elem*> vec; for (int i = 0; i < n; i++) { storage[i].number = i; vec.push_back(&storage[i]); } uintptr_t sum = 0; for (auto s : state) { for (int i = 0; i < vec.size(); i++) { sum += reinterpret_cast<uintptr_t>(vec[i]); } } VLOG(1) << sum; } BENCHMARK(BM_StdVecIter)->Arg(0)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/ptrvec.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/ptrvec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef944928-2288-4478-a959-a120c27ef729
cpp
tensorflow/tensorflow
graph_def_splitter
tensorflow/tools/proto_splitter/cc/graph_def_splitter.cc
tensorflow/tools/proto_splitter/cc/graph_def_splitter_test.cc
#include "tensorflow/tools/proto_splitter/cc/graph_def_splitter.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/tools/proto_splitter/cc/composable_splitter.h" #include "tensorflow/tools/proto_splitter/cc/composable_splitter_base.h" #include "tensorflow/tools/proto_splitter/cc/large_node_splitter.h" #include "tensorflow/tools/proto_splitter/cc/max_size.h" #include "tensorflow/tools/proto_splitter/cc/repeated_field_splitter.h" #include "tensorflow/tools/proto_splitter/cc/size_splitter.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace tensorflow::tools::proto_splitter { namespace { using namespace std::string_literals; class ConstantSplitter : public SizeSplitter { public: using SizeSplitter::SizeSplitter; absl::StatusOr<int> BuildChunksReturnSize() override { NodeDef* node = tsl::protobuf::DynamicCastToGenerated<NodeDef>(message()); std::vector<FieldType> tensor_field = {"attr"s, "value"s, "tensor"s}; std::vector<FieldType> content_field = {"attr"s, "value"s, "tensor"s, "tensor_content"s}; TF_ASSIGN_OR_RETURN(auto ret, GetMutableField(node, tensor_field)); auto tensor_msg = ret.parent->GetReflection()->MutableMessage(ret.parent, ret.field); TensorProto* tensor_proto = tsl::protobuf::DynamicCastToGenerated<TensorProto>(tensor_msg); int size_diff; if (tensor_proto->tensor_content().empty()) { Tensor t; if (!t.FromProto(*tensor_proto)) { return absl::InvalidArgumentError( "Invalid Const NodeDef.attr[\"value\"].tensor value."); } TensorProto container; t.AsProtoTensorContent(&container); size_diff = container.tensor_content().size(); auto x = std::make_unique<std::string>( std::move(*container.mutable_tensor_content())); auto y = std::make_unique<MessageBytes>(std::move(*x)); TF_RETURN_IF_ERROR(AddChunk(std::move(y), &content_field)); } else { size_diff = tensor_proto->tensor_content().size(); auto x = std::make_unique<std::string>( std::move(*tensor_proto->mutable_tensor_content())); auto y = std::make_unique<MessageBytes>(std::move(*x)); TF_RETURN_IF_ERROR(AddChunk(std::move(y), &content_field)); } auto dtype = tensor_proto->dtype(); auto tensor_shape = tensor_proto->tensor_shape(); auto version_number = tensor_proto->version_number(); tensor_proto->Clear(); tensor_proto->set_dtype(dtype); *tensor_proto->mutable_tensor_shape() = tensor_shape; tensor_proto->set_version_number(version_number); return size_diff; } }; class ConstantSplitterFactory : public SizeSplitterFactory { public: using SizeSplitterFactory::SizeSplitterFactory; absl::StatusOr<std::unique_ptr<SizeSplitter>> CreateSplitter( tsl::protobuf::Message* message, ComposableSplitterBase* parent_splitter, std::vector<FieldType>* fields_in_parent, int size) override { if (size < GetMaxSize()) return nullptr; NodeDef* node = tsl::protobuf::DynamicCastToGenerated<NodeDef>(message); if (node->op() != "Const") return absl::UnimplementedError(absl::StrCat( "Currently only able to split 'Const' nodes that are larger than the " "2GB maximum proto size. Got node of type '", node->op(), "' with size: ", size, ".")); ConstantSplitter* splitter = new ConstantSplitter(message, parent_splitter, fields_in_parent); return absl::WrapUnique(splitter); } }; class FunctionDefSplitter : public SizeSplitter { public: using SizeSplitter::SizeSplitter; absl::StatusOr<int> BuildChunksReturnSize() override { size_t current_size = GetInitialSize(); uint64_t max_size = GetMaxSize(); std::vector<FieldType> fields = {}; if (LARGE_SIZE_CHECK(current_size, max_size) && current_size < max_size) { auto splitter = LargeNodeSplitter<FunctionDef>(message(), this, &fields); splitter.SetInitialSize(current_size); return splitter.BuildChunksReturnSize(); } else if (current_size > max_size) { ConstantSplitterFactory constant_splitter_factory; LargeNodeSplitterFactory<NodeDef> large_node_splitter_factory; std::vector<SizeSplitterFactory*> factories = { &constant_splitter_factory, &large_node_splitter_factory}; auto ret = RepeatedFieldSplitter<FunctionDef, NodeDef>::Create( message(), this, &fields, "node_def"s, &factories); if (!ret.ok()) return ret.status(); auto splitter = ret.value(); return splitter.BuildChunksReturnSize(); } return 0; } }; class FunctionDefSplitterFactory : public SizeSplitterFactory { public: using SizeSplitterFactory::SizeSplitterFactory; absl::StatusOr<std::unique_ptr<SizeSplitter>> CreateSplitter( tsl::protobuf::Message* message, ComposableSplitterBase* parent_splitter, std::vector<FieldType>* fields_in_parent, int size) override { FunctionDefSplitter* splitter = new FunctionDefSplitter(message, parent_splitter, fields_in_parent); return absl::WrapUnique(splitter); } }; } absl::Status GraphDefSplitter::BuildChunks() { TF_RETURN_IF_ERROR(SetMessageAsBaseChunk()); GraphDef* g = tsl::protobuf::DynamicCastToGenerated<GraphDef>(message()); uint64_t max_size = GetMaxSize(); size_t graph_size = GetInitialSize(); if (graph_size < max_size) return absl::OkStatus(); std::vector<FieldType> field_in_parent = {}; ConstantSplitterFactory constant_splitter_factory; LargeNodeSplitterFactory<NodeDef> large_node_splitter_factory; std::vector<SizeSplitterFactory*> factories = {&constant_splitter_factory, &large_node_splitter_factory}; auto node_splitter_ret = RepeatedFieldSplitter<GraphDef, NodeDef>::Create( g, this, &field_in_parent, "node"s, &factories); if (!node_splitter_ret.ok()) return node_splitter_ret.status(); auto node_splitter = node_splitter_ret.value(); FunctionDefSplitterFactory function_splitter_factory; std::vector<FieldType> library_field = {"library"s}; std::vector<SizeSplitterFactory*> fn_factories = {&function_splitter_factory}; auto library_splitter_ret = RepeatedFieldSplitter<FunctionDefLibrary, FunctionDef>::Create( g->mutable_library(), this, &library_field, "function"s, &fn_factories); if (!library_splitter_ret.ok()) return library_splitter_ret.status(); auto library_splitter = library_splitter_ret.value(); size_t library_size = g->library().ByteSizeLong(); library_splitter.SetInitialSize(library_size); size_t approx_node_size = graph_size - library_size; node_splitter.SetInitialSize(approx_node_size); if (library_size > approx_node_size) { TF_ASSIGN_OR_RETURN(int size_diff, library_splitter.BuildChunksReturnSize()); library_size -= size_diff; if (approx_node_size + library_size > max_size) { TF_ASSIGN_OR_RETURN(int size_diff, node_splitter.BuildChunksReturnSize()); approx_node_size -= size_diff; } } else { TF_ASSIGN_OR_RETURN(int size_diff, node_splitter.BuildChunksReturnSize()); approx_node_size -= size_diff; if (approx_node_size + library_size > max_size) { TF_ASSIGN_OR_RETURN(int size_diff, library_splitter.BuildChunksReturnSize()); library_size -= size_diff; } } if (g->ByteSizeLong() > max_size) { LargeNodeSplitter<FunctionDefLibrary> entire_library_splitter( g->mutable_library(), this, &library_field); int index = 1; entire_library_splitter.SetChunkIndex(&index); TF_RETURN_IF_ERROR(entire_library_splitter.BuildChunks()); } return absl::OkStatus(); } }
#include "tensorflow/tools/proto_splitter/cc/graph_def_splitter.h" #include <cstdint> #include <memory> #include <string> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/tools/proto_splitter/cc/max_size.h" #include "tensorflow/tools/proto_splitter/cc/test_util.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/testdata/test_message.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tools::proto_splitter { namespace { using ::tensorflow::proto_splitter::ChunkedMessage; TEST(GraphDefSplitterTest, TestLargeConstant) { GraphDef proto; const std::string graph_def_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-large-constant.pb"); int64_t max_size = 500; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSizeLong(), GetMaxSize()); std::string large_constant_1, large_constant_2; const std::variant<std::string, absl::Cord>& tensor_constant_1 = proto.node(2).attr().at("value").tensor().tensor_content(); const std::variant<std::string, absl::Cord>& tensor_constant_2 = proto.node(4).attr().at("value").tensor().tensor_content(); if (std::holds_alternative<std::string>(tensor_constant_1)) { large_constant_1 = std::get<std::string>(tensor_constant_1); } else { absl::CopyCordToString(std::get<absl::Cord>(tensor_constant_1), &large_constant_1); } if (std::holds_alternative<std::string>(tensor_constant_2)) { large_constant_2 = std::get<std::string>(tensor_constant_2); } else { absl::CopyCordToString(std::get<absl::Cord>(tensor_constant_2), &large_constant_2); } GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); ChunkedMessage* chunked_message = x.chunked_message; ASSERT_NE(chunked_message, nullptr); EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunk_index: 0 chunked_fields { field_tag { field: 1 } field_tag { index: 2 } field_tag { field: 5 } field_tag { map_key { s: "value" } } field_tag { field: 8 } field_tag { field: 4 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 4 } field_tag { field: 5 } field_tag { map_key { s: "value" } } field_tag { field: 8 } field_tag { field: 4 } message { chunk_index: 2 } })pb")); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); EXPECT_THAT((*chunks)[1], ::testing::VariantWith<std::string>(large_constant_1)); EXPECT_THAT((*chunks)[2], ::testing::VariantWith<std::string>(large_constant_2)); } TEST(GraphDefSplitterTest, TestLargeNodes) { GraphDef proto; const std::string graph_def_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-large-nodes.pb"); int64_t max_size = 200; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSize(), GetMaxSize()); NodeDef node_1 = proto.node(1); NodeDef node_2 = proto.node(2); NodeDef node_3 = proto.node(3); NodeDef node_5 = proto.node(5); GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); ChunkedMessage* chunked_message = x.chunked_message; ASSERT_NE(chunked_message, nullptr); EXPECT_THAT(*chunked_message, EqualsProto(R"pb(chunk_index: 0 chunked_fields { field_tag { field: 1 } field_tag { index: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 1 } field_tag { index: 2 } message { chunk_index: 2 } } chunked_fields { field_tag { field: 1 } field_tag { index: 3 } message { chunk_index: 3 } } chunked_fields { field_tag { field: 1 } field_tag { index: 5 } message { chunk_index: 4 } })pb")); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); EXPECT_TRUE(std::holds_alternative<std::shared_ptr<tsl::protobuf::Message>>( (*chunks)[1])); EXPECT_TRUE(std::holds_alternative<std::shared_ptr<tsl::protobuf::Message>>( (*chunks)[2])); EXPECT_TRUE(std::holds_alternative<std::shared_ptr<tsl::protobuf::Message>>( (*chunks)[3])); EXPECT_TRUE(std::holds_alternative<std::shared_ptr<tsl::protobuf::Message>>( (*chunks)[4])); EXPECT_THAT( *std::get<std::shared_ptr<tsl::protobuf::Message>>((*chunks)[1]).get(), EqualsProto(node_1)); EXPECT_THAT( *std::get<std::shared_ptr<tsl::protobuf::Message>>((*chunks)[2]).get(), EqualsProto(node_2)); EXPECT_THAT( *std::get<std::shared_ptr<tsl::protobuf::Message>>((*chunks)[3]).get(), EqualsProto(node_3)); EXPECT_THAT( *std::get<std::shared_ptr<tsl::protobuf::Message>>((*chunks)[4]).get(), EqualsProto(node_5)); } TEST(GraphDefSplitterTest, TestLotsNodes) { GraphDef proto; const std::string graph_def_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-lots-nodes.pb"); int64_t max_size = 96 * 5; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSize(), GetMaxSize()); int expected_node_size = proto.node_size(); GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); ChunkedMessage* chunked_message = x.chunked_message; ASSERT_NE(chunked_message, nullptr); EXPECT_THAT( *chunked_message, EqualsProto(R"pb(chunk_index: 0 chunked_fields { message { chunk_index: 1 } } chunked_fields { message { chunk_index: 2 } } chunked_fields { message { chunk_index: 3 } } chunked_fields { message { chunk_index: 4 } })pb")); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); int actual_node_size = 0; for (MessageBytes& chunk : *chunks) { GraphDef* message = nullptr; if (std::holds_alternative<std::shared_ptr<tsl::protobuf::Message>>( chunk)) { message = tsl::protobuf::DynamicCastToGenerated<GraphDef>( std::get<std::shared_ptr<tsl::protobuf::Message>>(chunk).get()); } else if (std::holds_alternative<tsl::protobuf::Message*>(chunk)) { message = tsl::protobuf::DynamicCastToGenerated<GraphDef>( std::get<tsl::protobuf::Message*>(chunk)); } else { EXPECT_FALSE(std::holds_alternative<std::string>(chunk)); } actual_node_size += message->node_size(); } EXPECT_EQ(actual_node_size, expected_node_size); } TEST(GraphDefSplitterTest, TestFunctionLotsOfNodes) { GraphDef proto; const std::string graph_def_path = io::JoinPath( testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "function-lots-of-nodes.pb"); int64_t max_size = 500; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSize(), GetMaxSize()); GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); } TEST(GraphDefSplitterTest, TestFunctionLargeNodes) { GraphDef proto; const std::string graph_def_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "function-large-nodes.pb"); int64_t max_size = 200; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSize(), GetMaxSize()); GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); } TEST(GraphDefSplitterTest, TestGraphAndFunction) { GraphDef proto; const std::string graph_def_path = io::JoinPath( testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "graph-def-and-function.pb"); int64_t max_size = 200; DebugSetMaxSize(max_size); TF_EXPECT_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), graph_def_path, &proto)); EXPECT_GE(proto.ByteSize(), GetMaxSize()); GraphDefSplitter splitter(&proto); TF_ASSERT_OK_AND_ASSIGN(auto x, splitter.Split()); std::vector<MessageBytes>* chunks = x.chunks; ASSERT_NE(chunks, nullptr); EXPECT_CHUNK_SIZES(chunks, max_size); TF_ASSERT_OK(splitter.Write("/tmp/hoi")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/graph_def_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/proto_splitter/cc/graph_def_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c23af1c-2ff4-49b9-9dfc-748298738328
cpp
tensorflow/tensorflow
substr_op
tensorflow/core/kernels/substr_op.cc
tensorflow/core/kernels/substr_op_test.cc
#include <cstddef> #include <cstdlib> #include <string> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/kernel_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/string_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/bcast.h" namespace tensorflow { template <typename T> class SubstrOp : public OpKernel { public: explicit SubstrOp(OpKernelConstruction* ctx) : OpKernel(ctx) { string unit; OP_REQUIRES_OK(ctx, ctx->GetAttr("unit", &unit)); OP_REQUIRES_OK(ctx, ParseCharUnit(unit, &unit_)); } void Compute(OpKernelContext* context) override { const Tensor& input_tensor = context->input(0); const Tensor& pos_tensor = context->input(1); const Tensor& len_tensor = context->input(2); const TensorShape& input_shape = input_tensor.shape(); const TensorShape& pos_shape = pos_tensor.shape(); const TensorShape& len_shape = len_tensor.shape(); OP_REQUIRES(context, (pos_shape == len_shape), errors::InvalidArgument( "pos and len should have the same shape, got: ", pos_shape.DebugString(), " vs. ", len_shape.DebugString())); bool is_scalar = TensorShapeUtils::IsScalar(pos_shape); if (is_scalar || input_shape == pos_shape) { auto input = input_tensor.flat<tstring>(); Tensor* output_tensor = nullptr; OP_REQUIRES_OK(context, context->allocate_output("output", input_tensor.shape(), &output_tensor)); auto output = output_tensor->flat<tstring>(); if (is_scalar) { const T pos = tensorflow::internal::SubtleMustCopy(pos_tensor.scalar<T>()()); const T len = tensorflow::internal::SubtleMustCopy(len_tensor.scalar<T>()()); for (size_t i = 0; i < input_tensor.NumElements(); ++i) { StringPiece in(input(i)); T byte_pos = pos; T byte_len = len; switch (unit_) { case CharUnit::UTF8_CHAR: OP_REQUIRES( context, UpdatePosAndLenForUtf8(in, &byte_pos, &byte_len), errors::InvalidArgument("pos ", pos, " out of range for ", "string at index ", i)); break; case CharUnit::BYTE: byte_pos = AdjustedPosIndex(byte_pos, in); OP_REQUIRES( context, FastBoundsCheck(byte_pos, in.size() + 1), errors::InvalidArgument("pos ", pos, " out of range for ", "string b'", in, "' at index ", i)); } StringPiece sub_in = in.substr(byte_pos, byte_len); output(i).assign(sub_in.data(), sub_in.size()); } } else { auto pos_flat = pos_tensor.flat<T>(); auto len_flat = len_tensor.flat<T>(); for (size_t i = 0; i < input_tensor.NumElements(); ++i) { StringPiece in(input(i)); const T pos = tensorflow::internal::SubtleMustCopy(pos_flat(i)); const T len = tensorflow::internal::SubtleMustCopy(len_flat(i)); T byte_pos = pos; T byte_len = len; switch (unit_) { case CharUnit::UTF8_CHAR: OP_REQUIRES( context, UpdatePosAndLenForUtf8(in, &byte_pos, &byte_len), errors::InvalidArgument("pos ", pos, " out of range for ", "string at index ", i)); break; case CharUnit::BYTE: byte_pos = AdjustedPosIndex(byte_pos, in); OP_REQUIRES( context, FastBoundsCheck(byte_pos, in.size() + 1), errors::InvalidArgument("pos ", pos, " out of range for ", "string b'", in, "' at index ", i)); } StringPiece sub_in = in.substr(byte_pos, byte_len); output(i).assign(sub_in.data(), sub_in.size()); } } } else { BCast bcast(BCast::FromShape(input_shape), BCast::FromShape(pos_shape), false); OP_REQUIRES(context, bcast.IsValid(), errors::InvalidArgument( "Incompatible shapes: ", input_shape.DebugString(), " vs. ", pos_shape.DebugString())); TensorShape output_shape = BCast::ToShape(bcast.result_shape()); int ndims = output_shape.dims(); Tensor* output_tensor = nullptr; OP_REQUIRES_OK(context, context->allocate_output("output", output_shape, &output_tensor)); switch (ndims) { case 1: { auto input = input_tensor.shaped<tstring, 1>(bcast.x_reshape()); auto output = output_tensor->shaped<tstring, 1>(bcast.result_shape()); auto pos_shaped = pos_tensor.shaped<T, 1>(bcast.y_reshape()); auto len_shaped = len_tensor.shaped<T, 1>(bcast.y_reshape()); Tensor pos_buffer; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), output_shape, &pos_buffer)); typename TTypes<T, 1>::Tensor pos_bcast( pos_buffer.shaped<T, 1>(bcast.result_shape())); pos_bcast = pos_shaped.broadcast(BCast::ToIndexArray<1>(bcast.y_bcast())); Tensor len_buffer; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), output_shape, &len_buffer)); typename TTypes<T, 1>::Tensor len_bcast( len_buffer.shaped<T, 1>(bcast.result_shape())); len_bcast = len_shaped.broadcast(BCast::ToIndexArray<1>(bcast.y_bcast())); for (int i = 0; i < output_shape.dim_size(0); ++i) { StringPiece in(input(input.dimension(0) > 1 ? i : 0)); const T pos = tensorflow::internal::SubtleMustCopy(pos_bcast(i)); const T len = tensorflow::internal::SubtleMustCopy(len_bcast(i)); T byte_pos = pos; T byte_len = len; switch (unit_) { case CharUnit::UTF8_CHAR: OP_REQUIRES( context, UpdatePosAndLenForUtf8(in, &byte_pos, &byte_len), errors::InvalidArgument("pos ", pos, " out of range for ", "string at index ", i)); break; case CharUnit::BYTE: byte_pos = AdjustedPosIndex(byte_pos, in); OP_REQUIRES( context, FastBoundsCheck(byte_pos, in.size() + 1), errors::InvalidArgument("pos ", pos, " out of range for ", "string b'", in, "' at index ", i)); } StringPiece sub_in = in.substr(byte_pos, byte_len); output(i).assign(sub_in.data(), sub_in.size()); } break; } case 2: { auto input = input_tensor.shaped<tstring, 2>(bcast.x_reshape()); auto output = output_tensor->shaped<tstring, 2>(bcast.result_shape()); auto pos_shaped = pos_tensor.shaped<T, 2>(bcast.y_reshape()); auto len_shaped = len_tensor.shaped<T, 2>(bcast.y_reshape()); Tensor pos_buffer; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), output_shape, &pos_buffer)); typename TTypes<T, 2>::Tensor pos_bcast( pos_buffer.shaped<T, 2>(bcast.result_shape())); pos_bcast = pos_shaped.broadcast(BCast::ToIndexArray<2>(bcast.y_bcast())); Tensor len_buffer; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), output_shape, &len_buffer)); typename TTypes<T, 2>::Tensor len_bcast( len_buffer.shaped<T, 2>(bcast.result_shape())); len_bcast = len_shaped.broadcast(BCast::ToIndexArray<2>(bcast.y_bcast())); for (int i = 0; i < output_shape.dim_size(0); ++i) { for (int j = 0; j < output_shape.dim_size(1); ++j) { StringPiece in(input(input.dimension(0) > 1 ? i : 0, input.dimension(1) > 1 ? j : 0)); const T pos = tensorflow::internal::SubtleMustCopy(pos_bcast(i, j)); const T len = tensorflow::internal::SubtleMustCopy(len_bcast(i, j)); T byte_pos = pos; T byte_len = len; switch (unit_) { case CharUnit::UTF8_CHAR: OP_REQUIRES( context, UpdatePosAndLenForUtf8(in, &byte_pos, &byte_len), errors::InvalidArgument("pos ", pos, " out of range for ", "string at index ", i)); break; case CharUnit::BYTE: byte_pos = AdjustedPosIndex(byte_pos, in); OP_REQUIRES( context, FastBoundsCheck(byte_pos, in.size() + 1), errors::InvalidArgument("pos ", pos, " out of range for ", "string b'", in, "' at index (", i, ", ", j, ")")); } StringPiece sub_in = in.substr(byte_pos, byte_len); output(i, j).assign(sub_in.data(), sub_in.size()); } } break; } default: { context->SetStatus(errors::Unimplemented( "Substr broadcast not implemented for ", ndims, " dimensions")); } } } } private: static inline T AdjustedPosIndex(const T pos_requested, const StringPiece s) { if (pos_requested < 0) { return s.size() + pos_requested; } return pos_requested; } static inline bool UpdatePosAndLenForUtf8(const StringPiece in, T* pos, T* len) { if (*pos >= 0) { return UpdatePositivePosAndLenForUtf8(in, *pos, *len, pos, len); } else { return UpdateNegativePosAndLenForUtf8(in, *pos, *len, pos, len); } } static bool UpdatePositivePosAndLenForUtf8(const StringPiece in, const T pos, const T len, T* char_pos, T* char_len) { *char_pos = 0; if (!ForwardNUTF8CharPositions(in, pos, char_pos)) { return false; } *char_len = *char_pos; ForwardNUTF8CharPositions(in, len, char_len); *char_len = *char_len - *char_pos; return true; } static bool UpdateNegativePosAndLenForUtf8(const StringPiece in, const T pos, const T len, T* char_pos, T* char_len) { *char_len = in.size(); T utf8_chars_to_skip = -pos - len; if (utf8_chars_to_skip < 0) { utf8_chars_to_skip = 0; } if (!BackNUTF8CharPositions(in, utf8_chars_to_skip, char_len)) { return false; } *char_pos = *char_len; if (!BackNUTF8CharPositions(in, -pos - utf8_chars_to_skip, char_pos)) { return false; } *char_len = *char_len - *char_pos; return true; } CharUnit unit_ = CharUnit::BYTE; }; #define REGISTER_SUBSTR(type) \ REGISTER_KERNEL_BUILDER( \ Name("Substr").Device(DEVICE_CPU).TypeConstraint<type>("T"), \ SubstrOp<type>); REGISTER_SUBSTR(int32); REGISTER_SUBSTR(int64_t); }
#include <string> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { const char* ascii_lines[] = { "**TensorFlow** is an open source software library for numerical " "computation using data flow graphs.", "The graph nodes represent mathematical operations, while the graph edges " "represent the multidimensional data arrays (tensors) that flow between " "them.", "This flexible architecture enables you to deploy computation to one or " "more CPUs or GPUs in a desktop, server, or mobile device without " "rewriting code.", "TensorFlow also includes " "[TensorBoard](https: "summaries_and_tensorboard), a data visualization toolkit.", "TensorFlow was originally developed by researchers and engineers working " "on the Google Brain team within Google's Machine Intelligence Research " "organization for the purposes of conducting machine learning and deep " "neural networks research.", "The system is general enough to be applicable in a wide variety of other " "domains, as well.", "TensorFlow provides stable Python API and C APIs as well as without API " "backwards compatibility guarantee like C++, Go, Java, JavaScript and " "Swift."}; const char* unicode_lines[] = { "TensorFlow\xe6\x98\xaf\xe4\xb8\x80\xe4\xb8\xaa\xe4\xbd\xbf\xe7\x94\xa8\xe6" "\x95\xb0\xe6\x8d\xae\xe6\xb5\x81\xe5\x9b\xbe\xe8\xbf\x9b\xe8\xa1\x8c\xe6" "\x95\xb0\xe5\x80\xbc\xe8\xae\xa1\xe7\xae\x97\xe7\x9a\x84\xe5\xbc\x80\xe6" "\xba\x90\xe8\xbd\xaf\xe4\xbb\xb6\xe5\xba\x93\xe3\x80\x82", "\xe5\x9b\xbe\xe5\xbd\xa2\xe8\x8a\x82\xe7\x82\xb9\xe8\xa1\xa8\xe7\xa4\xba" "\xe6\x95\xb0\xe5\xad\xa6\xe8\xbf\x90\xe7\xae\x97\xef\xbc\x8c\xe8\x80\x8c" "\xe5\x9b\xbe\xe5\xbd\xa2\xe8\xbe\xb9\xe7\xbc\x98\xe8\xa1\xa8\xe7\xa4\xba" "\xe5\x9c\xa8\xe5\xae\x83\xe4\xbb\xac\xe4\xb9\x8b\xe9\x97\xb4\xe6\xb5\x81" "\xe5\x8a\xa8\xe7\x9a\x84\xe5\xa4\x9a\xe7\xbb\xb4\xe6\x95\xb0\xe6\x8d\xae" "\xe9\x98\xb5\xe5\x88\x97\xef\xbc\x88\xe5\xbc\xa0\xe9\x87\x8f\xef\xbc\x89" "\xe3\x80\x82", "\xe8\xbf\x99\xe7\xa7\x8d\xe7\x81\xb5\xe6\xb4\xbb\xe7\x9a\x84\xe4\xbd\x93" "\xe7\xb3\xbb\xe7\xbb\x93\xe6\x9e\x84\xe4\xbd\xbf\xe6\x82\xa8\xe5\x8f\xaf" "\xe4\xbb\xa5\xe5\xb0\x86\xe8\xae\xa1\xe7\xae\x97\xe9\x83\xa8\xe7\xbd\xb2" "\xe5\x88\xb0\xe6\xa1\x8c\xe9\x9d\xa2\xef\xbc\x8c\xe6\x9c\x8d\xe5\x8a\xa1" "\xe5\x99\xa8\xe6\x88\x96\xe7\xa7\xbb\xe5\x8a\xa8\xe8\xae\xbe\xe5\xa4\x87" "\xe4\xb8\xad\xe7\x9a\x84\xe4\xb8\x80\xe4\xb8\xaa\xe6\x88\x96\xe5\xa4\x9a" "\xe4\xb8\xaa CPU\xe6\x88\x96GPU\xef\xbc\x8c\xe8\x80\x8c\xe6\x97\xa0\xe9" "\x9c\x80\xe9\x87\x8d\xe5\x86\x99\xe4\xbb\xa3\xe7\xa0\x81\xe3\x80\x82", "TensorFlow\xe8\xbf\x98\xe5\x8c\x85\xe6\x8b\xac[TensorBoard]\xef\xbc\x88" "https: "\xbc\x8c\xe8\xbf\x99\xe6\x98\xaf\xe4\xb8\x80\xe4\xb8\xaa\xe6\x95\xb0\xe6" "\x8d\xae\xe5\x8f\xaf\xe8\xa7\x86\xe5\x8c\x96\xe5\xb7\xa5\xe5\x85\xb7\xe5" "\x8c\x85\xe3\x80\x82", "TensorFlow\xe6\x9c\x80\xe5\x88\x9d\xe6\x98\xaf\xe7\x94\xb1\xe7\xa0\x94\xe7" "\xa9\xb6\xe4\xba\xba\xe5\x91\x98\xe5\x92\x8c\xe5\xb7\xa5\xe7\xa8\x8b\xe5" "\xb8\x88\xe5\x9c\xa8Google\xe6\x9c\xba\xe5\x99\xa8\xe6\x99\xba\xe8\x83\xbd" "\xe7\xa0\x94\xe7\xa9\xb6\xe7\xbb\x84\xe7\xbb\x87\xe7\x9a\x84Google Brain" "\xe5\x9b\xa2\xe9\x98\x9f\xe5\xbc\x80\xe5\x8f\x91\xe7\x9a\x84\xef\xbc\x8c" "\xe7\x9b\xae\xe7\x9a\x84\xe6\x98\xaf\xe8\xbf\x9b\xe8\xa1\x8c\xe6\x9c\xba" "\xe5\x99\xa8\xe5\xad\xa6\xe4\xb9\xa0\xe5\x92\x8c\xe6\xb7\xb1\xe5\xba\xa6" "\xe7\xa5\x9e\xe7\xbb\x8f\xe7\xbd\x91\xe7\xbb\x9c\xe7\xa0\x94\xe7\xa9\xb6" "\xe3\x80\x82", "\xe8\xaf\xa5\xe7\xb3\xbb\xe7\xbb\x9f\xe8\xb6\xb3\xe4\xbb\xa5\xe9\x80\x82" "\xe7\x94\xa8\xe4\xba\x8e\xe5\x90\x84\xe7\xa7\x8d\xe5\x85\xb6\xe4\xbb\x96" "\xe9\xa2\x86\xe5\x9f\x9f\xe4\xb9\x9f\xe6\x98\xaf\xe5\xa6\x82\xe6\xad\xa4" "\xe3\x80\x82", "TensorFlow\xe6\x8f\x90\xe4\xbe\x9b\xe7\xa8\xb3\xe5\xae\x9a\xe7\x9a\x84" "Python API\xe5\x92\x8c C API\xef\xbc\x8c\xe4\xbb\xa5\xe5\x8f\x8a\xe6\xb2" "\xa1\xe6\x9c\x89 API\xe5\x90\x91\xe5\x90\x8e\xe5\x85\xbc\xe5\xae\xb9\xe6" "\x80\xa7\xe4\xbf\x9d\xe8\xaf\x81\xef\xbc\x8c\xe5\xa6\x82 C ++\xef\xbc\x8c" "Go\xef\xbc\x8cJava\xef\xbc\x8cJavaScript\xe5\x92\x8cSwift\xe3\x80\x82", }; const char* const kByteUnit = "BYTE"; const char* const kUTF8Unit = "UTF8_CHAR"; Tensor GetTestTensor(int batch) { const int sz = TF_ARRAYSIZE(ascii_lines); Tensor t(DT_STRING, {batch}); auto s = t.flat<tstring>(); for (int i = 0; i < batch; ++i) { s(i) = ascii_lines[i % sz]; } return t; } Tensor GetTestUTF8Tensor(int batch) { const int sz = TF_ARRAYSIZE(unicode_lines); Tensor t(DT_STRING, {batch}); auto s = t.flat<tstring>(); for (int i = 0; i < batch; ++i) { s(i) = unicode_lines[i % sz]; } return t; } Graph* SetupSubstrGraph(const Tensor& input, const int32_t pos, const int32_t len, const char* const unit) { Graph* g = new Graph(OpRegistry::Global()); Tensor position(DT_INT32, TensorShape({})); position.flat<int32>().setConstant(pos); Tensor length(DT_INT32, TensorShape({})); length.flat<int32>().setConstant(len); TF_CHECK_OK(NodeBuilder("substr_op", "Substr") .Input(test::graph::Constant(g, input)) .Input(test::graph::Constant(g, position)) .Input(test::graph::Constant(g, length)) .Attr("unit", unit) .Finalize(g, nullptr )); return g; } static void BM_SubstrByte(::testing::benchmark::State& state) { const int batch_size = state.range(0); Tensor input = GetTestTensor(batch_size); Graph* g = SetupSubstrGraph(input, 3, 30, kByteUnit); test::Benchmark("cpu", g, false).Run(state); state.SetItemsProcessed(state.iterations()); } static void BM_SubstrUTF8(::testing::benchmark::State& state) { const int batch_size = state.range(0); Tensor input = GetTestUTF8Tensor(batch_size); Graph* g = SetupSubstrGraph(input, 3, 30, kUTF8Unit); test::Benchmark("cpu", g, false).Run(state); state.SetItemsProcessed(state.iterations()); } BENCHMARK(BM_SubstrByte) ->UseRealTime() ->Arg(1) ->Arg(8) ->Arg(16) ->Arg(32) ->Arg(64) ->Arg(128) ->Arg(256); BENCHMARK(BM_SubstrUTF8) ->UseRealTime() ->Arg(1) ->Arg(8) ->Arg(16) ->Arg(32) ->Arg(64) ->Arg(128) ->Arg(256); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/substr_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/substr_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
662c17fd-2323-497a-ba1c-0d24992c1432
cpp
tensorflow/tensorflow
quantization_ops
tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops.cc
tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops_test.cc
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops.h" #include "absl/strings/str_format.h" #include "tensorflow/cc/ops #include "tensorflow/compiler/tf2tensorrt/common/utils.h" #include "tensorflow/compiler/tf2tensorrt/convert/op_converter.h" #include "tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.h" #include "tensorflow/compiler/tf2tensorrt/convert/ops/layer_utils.h" #include "tensorflow/compiler/tf2tensorrt/convert/weights.h" #include "tensorflow/core/framework/node_def_util.h" #include "third_party/tensorrt/NvInfer.h" namespace tensorflow { namespace tensorrt { namespace convert { bool IsQuantizeAndDequantizeOp(const Node* node) { return absl::c_find(kQuantizationOpNames, node->def().op()) != kQuantizationOpNames.end(); } namespace { template <typename T> QuantizationScales<T, 1> ComputeQuantizationRange(bool signed_input, int num_bits, bool narrow_range, T* min_range, T* max_range) { const int64_t min_quantized = signed_input ? narrow_range ? -(1ULL << (num_bits - 1)) + 1 : -(1ULL << (num_bits - 1)) : 0; const int64_t max_quantized = signed_input ? (1ULL << (num_bits - 1)) - 1 : (1ULL << num_bits) - 1; const T scale_from_min_side = (min_quantized * *min_range > 0) ? min_quantized / *min_range : std::numeric_limits<T>::max(); const T scale_from_max_side = (max_quantized * *max_range > 0) ? max_quantized / *max_range : std::numeric_limits<T>::max(); QuantizationScales<T, 1> scales; if (scale_from_min_side < scale_from_max_side) { scales.quantize_scale[0] = scale_from_min_side; scales.dequantize_scale[0] = *min_range / min_quantized; *max_range = max_quantized * scales.dequantize_scale[0]; } else { scales.quantize_scale[0] = scale_from_max_side; scales.dequantize_scale[0] = *max_range / max_quantized; *min_range = min_quantized * scales.dequantize_scale[0]; } return scales; } StatusOr<nvinfer1::ITensor*> ExlicitQDQInputToTensor( TRTNetworkBuilder* builder, const OpConverterParams* params, const TRT_TensorOrWeights& input) { if (input.is_tensor()) { return input.tensor()->trt_tensor(); } if (!IS_TRT_VERSION_GE(8, 0, 0, 0) && input.weights().count() > 1) { LOG(WARNING) << absl::StrCat( "QDQ per-channel for weights not " "implemented, assuming uniform scaling"); } TRT_ShapedWeights trt_weights = input.weights(); StatusOr<nvinfer1::IConstantLayer*> weights_const = builder->WeightsToConstant(trt_weights.GetTrtWeights(), trt_weights.Shape()); TRT_ENSURE_PTR_OK(weights_const); params->converter->SetLayerName(*weights_const, params->node_def, "const"); nvinfer1::ITensor* qdq_input = (*weights_const)->getOutput(0); std::string name = absl::StrCat((*weights_const)->getName(), "_output"); qdq_input->setName(name.c_str()); return qdq_input; } } template <typename T> struct QDQOpSpec {}; template <> struct QDQOpSpec<ops::QuantizeAndDequantizeV2> { static constexpr std::array<InputArgSpec, 3> InputSpec() { return { InputArgSpec::Create("input", TrtInputArg::kBoth), InputArgSpec::Create("input_min", TrtInputArg::kWeight), InputArgSpec::Create("input_max", TrtInputArg::kWeight), }; } struct Attrs { float min_range; float max_range; bool narrow_range; std::string round_mode; UniformQuantizationScales scales; }; static Status ValidateQDQForExplicitPrecision( const std::vector<TRT_TensorOrWeights>& inputs, const NodeDef& node_def, Attrs* args) { AttrSlice attrs(node_def); TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "round_mode", &args->round_mode)); if (args->round_mode != "HALF_TO_EVEN") { LOG(WARNING) << node_def.op() << ": " << node_def.name() << " has round_mode=" << args->round_mode << ", but for TensorRT conversion, " "round_mode=HALF_TO_EVEN is recommended."; } TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "narrow_range", &args->narrow_range)); if (args->narrow_range) { LOG(WARNING) << node_def.op() << ": " << node_def.name() << " has narrow_range=true, but for TensorRT conversion, " "narrow_range=false is recommended."; } args->min_range = inputs.at(1).weights().template GetPointer<float>()[0]; args->max_range = inputs.at(2).weights().template GetPointer<float>()[0]; const int num_bits = 8; args->scales = ComputeQuantizationRange<float>( true, num_bits, args->narrow_range, &args->min_range, &args->max_range); TRT_ENSURE(args->scales.dequantize_scale[0] != 0); TRT_ENSURE(args->scales.quantize_scale[0] != 0); return OkStatus(); } static Status ConvertExplicit(const OpConverterParams* params, const Attrs& args) { const auto& node_def = params->node_def; StatusOr<TRTNetworkBuilder> builder = TRTNetworkBuilder::Create( params->converter->network(), params->weight_store); StatusOr<nvinfer1::ITensor*> qdq_input = ExlicitQDQInputToTensor(&*builder, params, params->inputs.at(0)); TRT_ENSURE_PTR_OK(qdq_input); const int required_dims = params->use_implicit_batch ? 3 : 4; const nvinfer1::Dims idims = (*qdq_input)->getDimensions(); nvinfer1::Dims intermediate_dims = idims; TRT_ENSURE(idims.nbDims > 0); if (idims.nbDims < required_dims) { const int nb_extra_dims = required_dims - idims.nbDims; intermediate_dims.nbDims = required_dims; std::vector<int> ones(nb_extra_dims, 1); TRT_ENSURE(ones.size() == nb_extra_dims && nb_extra_dims > 0); if (!params->use_implicit_batch) { intermediate_dims.d[0] = idims.d[0]; std::copy(ones.begin(), ones.end(), intermediate_dims.d + 1); std::copy_n(idims.d + 1, idims.nbDims - 1, intermediate_dims.d + ones.size() + 1); } else { std::copy(ones.begin(), ones.end(), intermediate_dims.d); std::copy_n(idims.d, idims.nbDims, intermediate_dims.d + ones.size()); } LOG(WARNING) << absl::StrCat( node_def.name(), ":", node_def.op(), ": tensor ", (*qdq_input)->getName(), " has shape ", DebugString(idims), " but TRT scale layer requires at least 3 dims excluding batch dim, " "trying to recover by inserting 1's to create shape ", DebugString(intermediate_dims)); StatusOr<nvinfer1::IShuffleLayer*> reshape = builder->Reshape(*qdq_input, intermediate_dims); TRT_ENSURE_PTR_OK(reshape); *qdq_input = (*reshape)->getOutput(0); } VLOG(1) << "[ExplicitPrecision]" << node_def.op() << ": " << node_def.name() << " computed scales: " << args.scales << " from min/max ranges " << args.min_range << "/" << args.max_range; StatusOr<nvinfer1::ILayer*> qdq = builder->UniformQuantizeDequantizeExplicit( *qdq_input, args.scales.quantize_scale[0], args.scales.dequantize_scale[0], node_def.name()); TRT_ENSURE_PTR_OK(qdq); ITensorProxyPtr final_output = (*qdq)->getOutput(0); if (idims.nbDims != intermediate_dims.nbDims) { StatusOr<nvinfer1::IShuffleLayer*> undo_reshape = builder->Reshape(*qdq_input, idims); TRT_ENSURE_PTR_OK(undo_reshape); final_output = (*undo_reshape)->getOutput(0); } params->outputs->push_back(final_output); return OkStatus(); } }; template <> struct QDQOpSpec<ops::QuantizeAndDequantizeV3> { static constexpr std::array<InputArgSpec, 4> InputSpec() { return { InputArgSpec::Create("input", TrtInputArg::kBoth), InputArgSpec::Create("min", TrtInputArg::kWeight), InputArgSpec::Create("max", TrtInputArg::kWeight), InputArgSpec::Create("num_bits", TrtInputArg::kWeight), }; } using Attrs = QDQOpSpec<ops::QuantizeAndDequantizeV2>::Attrs; static Status ValidateQDQForExplicitPrecision( const std::vector<TRT_TensorOrWeights>& inputs, const NodeDef& node_def, Attrs* args) { return QDQOpSpec< ops::QuantizeAndDequantizeV2>::ValidateQDQForExplicitPrecision(inputs, node_def, args); } static Status ConvertExplicit(const OpConverterParams* params, const Attrs& args) { return QDQOpSpec<ops::QuantizeAndDequantizeV2>::ConvertExplicit(params, args); } }; template <> struct QDQOpSpec<ops::FakeQuantWithMinMaxVars> { static constexpr std::array<InputArgSpec, 3> InputSpec() { return { InputArgSpec::Create("input", TrtInputArg::kBoth), InputArgSpec::Create("min", TrtInputArg::kWeight), InputArgSpec::Create("max", TrtInputArg::kWeight), }; } struct Attrs { int num_bits; bool narrow_range; }; static Status ValidateQDQForExplicitPrecision( const std::vector<TRT_TensorOrWeights>& inputs, const NodeDef& node_def, Attrs* args) { return errors::Unimplemented(""); } static Status ConvertExplicit(const OpConverterParams* params, const Attrs& args) { return errors::Unimplemented(""); } }; template <> struct QDQOpSpec<ops::FakeQuantWithMinMaxArgs> { static constexpr std::array<InputArgSpec, 1> InputSpec() { return { InputArgSpec::Create("input", TrtInputArg::kBoth), }; } struct Attrs { float min; float max; int num_bits; bool narrow_range; }; static Status ValidateQDQForExplicitPrecision( const std::vector<TRT_TensorOrWeights>& inputs, const NodeDef& node_def, Attrs* args) { return errors::Unimplemented(""); } static Status ConvertExplicit(const OpConverterParams* params, const Attrs& args) { return errors::Unimplemented(""); } }; Status ConvertDynamicRangeMode(const OpConverterParams* params) { const auto& inputs = params->inputs; const auto& node_def = params->node_def; float min_range = 0.0f; float max_range = 0.0f; const auto& op_name = node_def.op(); if (op_name == "FakeQuantWithMinMaxArgs") { AttrSlice attrs(node_def); TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "min", &min_range)); TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "max", &max_range)); } else if (op_name == "FakeQuantWithMinMaxVars" || op_name == "QuantizeAndDequantizeV2" || op_name == "QuantizeAndDequantizeV3") { auto get_weights_value = [&inputs](int index) { const auto* raw_weights = inputs.at(index).weights().GetPointer<float>(); return raw_weights[0]; }; min_range = get_weights_value(1); max_range = get_weights_value(2); } else { return errors::InvalidArgument("Unknown quantization op ", op_name, ", at ", node_def.name()); } if (params->validation_only) { return OkStatus(); } ITensorProxyPtr input0 = inputs.at(0).tensor(); params->converter->ProvideQuantizationRange(&input0, min_range, max_range); params->outputs->push_back(inputs.at(0)); return OkStatus(); } template <typename TFOpType> class ConvertQDQ : public OpConverterBase<ConvertQDQ<TFOpType>> { public: explicit ConvertQDQ(const OpConverterParams* params) : OpConverterBase<ConvertQDQ<TFOpType>>(params) {} static constexpr auto InputSpec() { return QDQOpSpec<TFOpType>::InputSpec(); } static constexpr const char* NodeDefDataTypeAttributeName() { return ""; } Status ValidateDynamicRangeINT8Mode() { if (this->params_->validation_only) { return ConvertDynamicRangeMode(this->params_); } return OkStatus(); } Status Validate() { if (!this->params_->use_explicit_precision) { return ValidateDynamicRangeINT8Mode(); } return OpSpec::ValidateQDQForExplicitPrecision( this->params_->inputs, this->params_->node_def, &attrs_); } Status Convert() { if (!this->params_->use_explicit_precision) { return ConvertDynamicRangeMode(this->params_); } return OpSpec::ConvertExplicit(this->params_, attrs_); } using OpSpec = QDQOpSpec<TFOpType>; using OpSpecAttrs = typename QDQOpSpec<TFOpType>::Attrs; OpSpecAttrs attrs_; }; REGISTER_DEFAULT_TRT_OP_CONVERTER( MakeConverterFunction<ConvertQDQ<ops::QuantizeAndDequantizeV2>>(), "QuantizeAndDequantizeV2"); REGISTER_DEFAULT_TRT_OP_CONVERTER( MakeConverterFunction<ConvertQDQ<ops::QuantizeAndDequantizeV3>>(), "QuantizeAndDequantizeV3"); REGISTER_DEFAULT_TRT_OP_CONVERTER( MakeConverterFunction<ConvertQDQ<ops::FakeQuantWithMinMaxVars>>(), "FakeQuantWithMinMaxVars"); REGISTER_DEFAULT_TRT_OP_CONVERTER( MakeConverterFunction<ConvertQDQ<ops::FakeQuantWithMinMaxArgs>>(), "FakeQuantWithMinMaxArgs"); } } } #endif
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/linalg_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/compiler/jit/shape_inference.h" #include "tensorflow/compiler/tf2tensorrt/convert/convert_nodes.h" #include "tensorflow/compiler/tf2tensorrt/convert/utils.h" #include "tensorflow/compiler/tf2tensorrt/trt_convert_api.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #if IS_TRT_VERSION_GE(8, 0, 0, 0) namespace tensorflow { namespace tensorrt { namespace convert { namespace ops = ::tensorflow::ops; using ::tensorflow::testing::StatusIs; namespace { enum class ConvEpilogueType { kNone, kReLU, kBatchNorm, kReLUBatchnorm, kBatchnormReLU }; std::ostream& operator<<(std::ostream& os, ConvEpilogueType epilogue) { switch (epilogue) { case ConvEpilogueType::kNone: return os << "None"; case ConvEpilogueType::kReLU: return os << "ReLU only"; case ConvEpilogueType::kBatchNorm: return os << "BatchNorm Only"; case ConvEpilogueType::kReLUBatchnorm: return os << "ReLU+Batchnorm"; case ConvEpilogueType::kBatchnormReLU: return os << "BatchNorm+ReLU"; } } std::string DebugString(ConvEpilogueType epilogue) { std::stringstream ss; ss << epilogue; return ss.str(); } ops::Placeholder AddInput(Scope scope, int input_idx, const std::string data_format, std::array<int, 3> size_chw = {1, 3, 3}) { PartialTensorShape input_shape; if (data_format == "NCHW") { input_shape = PartialTensorShape({1, size_chw[0], size_chw[1], size_chw[2]}); } else if (data_format == "NHWC") { input_shape = PartialTensorShape({1, size_chw[1], size_chw[2], size_chw[0]}); } else if (data_format == "NHW") { input_shape = PartialTensorShape({1, size_chw[1], size_chw[2]}); } else { LOG(FATAL) << "Unknown input shape type " << data_format; } auto input_attrs = ops::Placeholder::Attrs().Shape(input_shape); return ops::Placeholder(scope.WithOpName(absl::StrCat("input_", input_idx)), DT_FLOAT, input_attrs); } Output AddQDQV2(Scope scope, Input input) { auto input_min = ops::Const<float>(scope.WithOpName("in_min"), -1.0f, TensorShape{}); auto input_max = ops::Const<float>(scope.WithOpName("in_max"), 1.0f, TensorShape{}); return ops::QuantizeAndDequantizeV2(scope.WithOpName("qdq"), input, input_min, input_max); } Output AddOutput(Scope scope, Output input, int idx, bool add_qdq) { Output out = input; if (add_qdq) { out = AddQDQV2(scope, input); } return ops::Identity(scope.WithOpName(StrCat("output_", idx)), out); } Output AddConv2D(Scope scope, Input input, int in_channels, int out_channels, std::array<int, 2> filter_size = {1, 1}, std::array<int, 2> stride = {1, 1}, const std::string& data_format = "NCHW", bool with_bias = true, ConvEpilogueType epilogue = ConvEpilogueType::kBatchnormReLU, bool qdq_on_output = false) { auto weights_const = ops::Const( scope.WithOpName("weights"), 1.0f, TensorShape({filter_size[0], filter_size[1], in_channels, out_channels})); auto conv_input = !qdq_on_output ? AddQDQV2(scope.WithOpName("qdq_input"), input) : input; Output result = ops::Conv2D( scope.WithOpName("conv2d"), conv_input, AddQDQV2(scope, weights_const), {1, 1, 1, 1}, "SAME", ops::Conv2D::Attrs().DataFormat(data_format)); if (with_bias) { auto bias_const = ops::Const(scope.WithOpName("bias_weights"), 1.0f, TensorShape({ out_channels, })); result = ops::BiasAdd(scope.WithOpName("bias"), result, bias_const, ops::BiasAdd::Attrs().DataFormat(data_format)); } auto add_bn = [scope, data_format](Input input, const int channels) -> Output { TensorShape constant_shape = TensorShape({channels}); auto bn_scale = ops::Const(scope.WithOpName("bn_scale"), 1.0f, constant_shape); auto bn_offset = ops::Const(scope.WithOpName("bn_offset"), 1.0f, constant_shape); auto bn_mean = ops::Const(scope.WithOpName("bn_mean"), 0.1f, TensorShape({channels})); auto bn_var = ops::Const(scope.WithOpName("bn_var"), 1.0f, TensorShape({channels})); Input conv_bn_input = IS_TRT_VERSION_GE(8, 0, 1, 0) ? input : AddQDQV2(scope.WithOpName("qdq_input"), input); return ops::FusedBatchNormV3( scope.WithOpName("bn"), conv_bn_input, bn_scale, bn_offset, bn_mean, bn_var, ops::FusedBatchNormV3::Attrs().IsTraining(false).DataFormat( data_format)) .y; }; switch (epilogue) { case ConvEpilogueType::kBatchNorm: { result = add_bn(result, out_channels); break; } case ConvEpilogueType::kReLU: { result = ops::Relu(scope.WithOpName("relu"), result); break; } case ConvEpilogueType::kReLUBatchnorm: { result = ops::Relu(scope.WithOpName("relu"), result); result = add_bn(result, out_channels); break; } case ConvEpilogueType::kBatchnormReLU: { result = add_bn(result, out_channels); result = ops::Relu(scope.WithOpName("relu"), result); break; } case ConvEpilogueType::kNone: break; } if (qdq_on_output) { result = AddQDQV2(scope.WithOpName("qdq_out"), result); } return result; } ops::BatchMatMulV2 AddMatMul(Scope scope, const std::string& name, Input input) { auto input_qdq = AddQDQV2(scope, input); auto weights_const = ops::Const(scope.WithOpName(name + "_weights"), {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, TensorShape({3, 3})); auto weights_qdq = AddQDQV2(scope.WithOpName("weights_qdq"), weights_const); return ops::BatchMatMulV2(scope.WithOpName(name), input_qdq, weights_qdq); } } struct QDQTestOptions { bool conv_has_bias{true}; std::string data_format{"NCHW"}; bool qdq_on_output{false}; bool final_qdq{true}; ConvEpilogueType conv_epilogue; TfTrtConversionParams conversion_params{}; }; std::ostream& operator<<(std::ostream& os, const QDQTestOptions opts) { return os << absl::StrCat( "QDQTestOptions(conv_has_bias=", static_cast<int>(opts.conv_has_bias), ", qdq_on_output=", static_cast<int>(opts.qdq_on_output), ", data_format=", opts.data_format, ", conv_epilogue=", DebugString(opts.conv_epilogue), ", final_qdq=", opts.final_qdq, ")"); } std::vector<QDQTestOptions> EnumerateQDQTestOptions() { std::vector<QDQTestOptions> result; for (const absl::string_view data_format : {"NCHW", "NHWC"}) { for (auto use_bias : {true, false}) { for (auto qdq_on_output : {false, true}) { for (auto final_qdq : {true, false}) { for (auto conv_epilogue : {ConvEpilogueType::kReLU, ConvEpilogueType::kNone, ConvEpilogueType::kBatchnormReLU}) { if (data_format == "NHWC" && (conv_epilogue == ConvEpilogueType::kBatchnormReLU || conv_epilogue == ConvEpilogueType::kBatchNorm || conv_epilogue == ConvEpilogueType::kBatchnormReLU)) { continue; } QDQTestOptions opts{}; opts.conv_has_bias = use_bias; opts.data_format = data_format; opts.qdq_on_output = qdq_on_output; opts.final_qdq = final_qdq; opts.conv_epilogue = conv_epilogue; result.push_back(opts); } } } } } return result; } class QDQExplicitTest : public ::testing::Test, public ::testing::WithParamInterface<QDQTestOptions> { public: static StatusOr<PartialTensorShape> GetShape(const std::string& name, const GraphShapeInfo& shapes) { TRT_ENSURE(shapes.find(name) != shapes.end()); TRT_ENSURE(shapes.at(name).size() == 1); return shapes.at(name)[0].shape; } StatusOr<MetaGraphDef> GetModel(const GraphDef& graph_def, const std::vector<const NodeDef*>& inputs, const std::vector<const NodeDef*>& outputs, const GraphShapeInfo& shapes) { TRT_ENSURE(!inputs.empty()); TRT_ENSURE(!outputs.empty()); MetaGraphDef out; out.mutable_graph_def()->CopyFrom(graph_def); SignatureDef signature_def; auto& mutable_inputs = *signature_def.mutable_inputs(); for (int i = 0; i < inputs.size(); i++) { std::string input_name = inputs[i]->name(); auto& input = mutable_inputs[input_name]; input.set_name(input_name); input.set_dtype(DT_FLOAT); TRT_ENSURE(shapes.find(input_name) != shapes.end()); TRT_ENSURE(shapes.at(input_name).size() == 1); PartialTensorShape input_shape = shapes.at(input_name)[0].shape; input_shape.AsProto(input.mutable_tensor_shape()); } auto& mutable_outputs = *signature_def.mutable_outputs(); for (int i = 0; i < outputs.size(); i++) { std::string output_name = outputs[i]->name(); auto& output = mutable_outputs[output_name]; output.set_name(output_name); output.set_dtype(DT_FLOAT); TRT_ENSURE(shapes.find(output_name) != shapes.end()); TRT_ENSURE(shapes.at(output_name).size() == 1); PartialTensorShape output_shape = shapes.at(output_name)[0].shape; output_shape.AsProto(output.mutable_tensor_shape()); } (*out.mutable_signature_def())["serving_default"] = signature_def; return out; } static Status CheckTrtNode(const GraphDef& converted_graph_def) { int n_trt_ops = 0; string op_name{"TRTEngineOp"}; for (const auto& node : converted_graph_def.node()) { if (op_name == node.op()) { n_trt_ops++; const auto& attr = node.attr(); TRT_ENSURE(attr.at("static_engine").b()); VLOG(2) << "Found serialized segment with size " << attr.at("serialized_segment").s().size(); TRT_ENSURE(!attr.at("serialized_segment").s().empty()); } } TRT_ENSURE(n_trt_ops == 1); return OkStatus(); } Status ConvertAndRun(Scope* scope) { std::vector<const NodeDef*> inputs; std::vector<const NodeDef*> outputs; GraphDef gdef; TF_RETURN_IF_ERROR(scope->ToGraphDef(&gdef)); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_RETURN_IF_ERROR(scope->ToGraph(graph.get())); GraphShapeInfo shape_info; TF_RETURN_IF_ERROR(InferShapes(graph.get(), {}, nullptr, &shape_info)); for (const NodeDef& node : gdef.node()) { if (absl::StartsWith(node.name(), "input_")) { inputs.push_back(&node); } else if (absl::StartsWith(node.name(), "output_")) { outputs.push_back(&node); } } StatusOr<MetaGraphDef> meta_graph_def = GetModel(gdef, inputs, outputs, shape_info); TRT_ENSURE_OK(meta_graph_def); std::vector<Tensor> input_tensors; std::vector<std::string> input_names; for (const auto& input : inputs) { input_names.push_back(input->name()); StatusOr<PartialTensorShape> input_shape = GetShape(input->name(), shape_info); TRT_ENSURE_OK(input_shape); TensorShape shape; input_shape->AsTensorShape(&shape); Tensor tensor(DT_FLOAT, shape); test::FillIota(&tensor, 1.0f); input_tensors.push_back(tensor); } std::vector<std::string> output_names; for (const auto& output : outputs) { output_names.push_back(output->name()); } TfTrtConversionParams conversion_params; conversion_params.allow_build_at_runtime = true; conversion_params.precision_mode = TrtPrecisionMode::INT8; conversion_params.use_calibration = false; conversion_params.convert_to_static_engine = true; TRT_ENSURE(input_names.size() == input_tensors.size()); StatusOr<GraphDef> converted_gdef = tensorrt::ConvertAndBuild( meta_graph_def->graph_def(), input_names, output_names, {input_tensors}, conversion_params); TRT_ENSURE_OK(converted_gdef); return CheckTrtNode(*converted_gdef); } protected: TfTrtConversionParams params_; TrtUniquePtrType<nvinfer1::ICudaEngine> engine_; }; class TestQDQSuite : public QDQExplicitTest {}; #define EXPECT_QDQ_ON_OUTPUT_FAILURE(params, scope) \ if ((params).qdq_on_output) { \ EXPECT_THAT(ConvertAndRun(&(scope)), StatusIs(error::INTERNAL)); \ return; \ } #define EXPECT_NO_FINAL_QDQ_FAILURE(params, scope) \ if (!(params).final_qdq) { \ EXPECT_THAT(ConvertAndRun(&(scope)), StatusIs(error::INTERNAL)); \ return; \ } #define EXPECT_BUILD_OK(scope) TF_EXPECT_OK(ConvertAndRun(&(scope))) #define POLICY_TRT7(params, scope) \ if (!IS_TRT_VERSION_GE(8, 0, 0, 0)) { \ EXPECT_QDQ_ON_OUTPUT_FAILURE(params, scope); \ EXPECT_NO_FINAL_QDQ_FAILURE(params, scope); \ EXPECT_BUILD_OK(scope); \ } #define POLICY_TRT8(params, scope) \ if (IS_TRT_VERSION_GE(8, 0, 0, 0)) { \ if (((params).conv_epilogue == ConvEpilogueType::kBatchNorm || \ (params).conv_epilogue == ConvEpilogueType::kBatchnormReLU || \ (params).conv_epilogue == ConvEpilogueType::kReLUBatchnorm) && \ (params).data_format == "NHWC") { \ EXPECT_THAT(ConvertAndRun(&(scope)), StatusIs(error::UNIMPLEMENTED)); \ return; \ } \ EXPECT_BUILD_OK(scope); \ } #define SKIP_TRT7(x) \ if (!IS_TRT_VERSION_GE(8, 0, 0, 0) && (x)) { \ GTEST_SKIP(); \ } TEST_P(TestQDQSuite, TestConv2DBasic) { SKIP_TRT7(GetParam().qdq_on_output); SKIP_TRT7(GetParam().data_format != "NCHW"); SKIP_TRT7(!GetParam().final_qdq); Scope scope = Scope::NewRootScope(); auto input = AddInput(scope, 0, GetParam().data_format, {3, 28, 28}); Output out = input; const int num_conv = 1; std::array<int, 2> in_channels = {3, 16}; std::array<int, 2> out_channels = {16, 32}; for (int i = 0; i < num_conv; i++) { out = AddConv2D(scope.WithOpName(absl::StrCat("conv_", i)), out, in_channels[i], out_channels[i], {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); } out = AddOutput(scope, out, 0, GetParam().final_qdq); POLICY_TRT7(GetParam(), scope); POLICY_TRT8(GetParam(), scope); } TEST_P(TestQDQSuite, TestMatMulBasic) { if (GetParam().data_format != "NCHW" || !GetParam().conv_has_bias || GetParam().qdq_on_output || GetParam().conv_epilogue != ConvEpilogueType::kReLU) { GTEST_SKIP(); } Scope scope = Scope::NewRootScope(); auto input = AddInput(scope, 0, "NHW"); auto matmul_op = AddMatMul(scope, "matmul", input); auto out = AddOutput(scope, matmul_op, 0, GetParam().final_qdq); TF_EXPECT_OK(ConvertAndRun(&scope)); } TEST_P(TestQDQSuite, AddBothBranchesQDQConvSingleInput) { SKIP_TRT7(!GetParam().final_qdq); SKIP_TRT7(GetParam().data_format != "NCHW"); Scope scope = Scope::NewRootScope(); auto input1 = AddInput(scope, 0, GetParam().data_format, {3, 28, 28}); auto conv1 = AddConv2D(scope, input1, 3, 16, {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); auto conv2 = AddConv2D(scope, input1, 3, 16, {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); auto add = ops::Add(scope.WithOpName("add"), !GetParam().qdq_on_output ? AddQDQV2(scope, conv1) : conv1, !GetParam().qdq_on_output ? AddQDQV2(scope, conv2) : conv2); auto conv3 = AddConv2D(scope.WithOpName("conv3"), conv2, 16, 16, {1, 1}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); auto out = AddOutput(scope.WithOpName("output"), conv3, 0, GetParam().final_qdq); POLICY_TRT7(GetParam(), scope); POLICY_TRT8(GetParam(), scope); } TEST_P(TestQDQSuite, AddBothBranchesQDQMultipleInput) { SKIP_TRT7(true); Scope scope = Scope::NewRootScope(); auto input1 = AddInput(scope, 0, GetParam().data_format); auto input2 = AddInput(scope, 1, GetParam().data_format); auto add = ops::Add(scope.WithOpName("add"), !GetParam().qdq_on_output ? AddQDQV2(scope, input1) : input1, !GetParam().qdq_on_output ? AddQDQV2(scope, input2) : input2); auto output = AddOutput(scope, add, 0, true); TF_EXPECT_OK(ConvertAndRun(&scope)); } TEST_P(TestQDQSuite, TestConvMaxpool) { SKIP_TRT7(!GetParam().final_qdq); SKIP_TRT7(GetParam().data_format != "NCHW"); Scope scope = Scope::NewRootScope(); auto input = AddInput(scope, 0, GetParam().data_format, {3, 28, 28}); auto conv1 = AddConv2D(scope, input, 3, 16, {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); ops::MaxPool maxpool = ops::MaxPool(scope.WithOpName("maxpool"), AddQDQV2(scope.WithOpName("mp_qdq_in"), conv1), {1, 1, 1, 1}, {1, 1, 1, 1}, "SAME", ops::MaxPool::Attrs().DataFormat(GetParam().data_format)); auto output = AddOutput(scope.WithOpName("output"), maxpool, 0, GetParam().final_qdq); POLICY_TRT7(GetParam(), scope); POLICY_TRT8(GetParam(), scope); } TEST_P(TestQDQSuite, TestConvMaxpoolConv) { SKIP_TRT7(!GetParam().final_qdq); SKIP_TRT7(GetParam().data_format != "NCHW"); Scope scope = Scope::NewRootScope(); auto input = AddInput(scope, 0, GetParam().data_format, {3, 28, 28}); auto conv1 = AddConv2D(scope, input, 3, 16, {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); ops::MaxPool maxpool = ops::MaxPool(scope.WithOpName("maxpool"), AddQDQV2(scope.WithOpName("mp_qdq_in"), conv1), {1, 1, 1, 1}, {1, 1, 1, 1}, "SAME", ops::MaxPool::Attrs().DataFormat(GetParam().data_format)); auto conv2 = AddConv2D(scope, maxpool, 16, 16, {3, 3}, {1, 1}, GetParam().data_format, GetParam().conv_has_bias, GetParam().conv_epilogue, GetParam().qdq_on_output); auto output = AddOutput(scope.WithOpName("out"), conv2, 0, GetParam().final_qdq); POLICY_TRT7(GetParam(), scope); POLICY_TRT8(GetParam(), scope); } INSTANTIATE_TEST_SUITE_P(TestQDQSuiteInst, TestQDQSuite, ::testing::ValuesIn(EnumerateQDQTestOptions())); } } } #endif #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ef36b79c-43e5-4468-b0d3-2d13d55df0fe
cpp
tensorflow/tensorflow
negate
tensorflow/lite/experimental/shlo/ops/negate.cc
tensorflow/lite/experimental/shlo/ops/negate_test.cc
#include "tensorflow/lite/experimental/shlo/ops/negate.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Negate : std::negate<void> {}; NegateOp Create(NegateOp::Attributes) { return {}; } absl::Status Prepare(NegateOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("negate"), input, IsSignedIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("negate"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(NegateOp& op, const Tensor& input, Tensor& output) { Negate negate; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), negate, input, output) } else if (IsSignedIntTensor(input) || IsFloatTensor(input)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), negate, input, output); } return absl::FailedPreconditionError( "stablehlo.negate: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/negate.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<NegateOp> { static std::string Get() { return "Negate"; } }; namespace { struct Negate : std::negate<void> { } negate_ref; INSTANTIATE_TYPED_TEST_SUITE_P(Negate, UnaryElementwiseOpShapePropagationTest, NegateOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Negate, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<NegateOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<NegateOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Negate, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct NegateTest : ::testing::Test {}; TYPED_TEST_SUITE(NegateTest, ArithmeticTestTypes, TestParamNames); TYPED_TEST(NegateTest, ArithmeticTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), negate_ref); auto op = Create(NegateOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedNegateTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedNegateTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedNegateTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = negate_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(NegateOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/negate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/negate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
847a5dd2-48c1-4e5d-839a-ac7295ef96e3
cpp
abseil/abseil-cpp
traits
absl/random/internal/traits.h
absl/random/internal/traits_test.cc
#ifndef ABSL_RANDOM_INTERNAL_TRAITS_H_ #define ABSL_RANDOM_INTERNAL_TRAITS_H_ #include <cstdint> #include <limits> #include <type_traits> #include "absl/base/config.h" #include "absl/numeric/bits.h" #include "absl/numeric/int128.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { template <typename A, typename B> class is_widening_convertible { template <class T> static constexpr int rank() { return !std::numeric_limits<T>::is_integer + std::numeric_limits<T>::is_signed; } public: static constexpr bool value = std::numeric_limits<A>::digits <= std::numeric_limits<B>::digits && rank<A>() <= rank<B>(); }; template <typename T> struct IsIntegral : std::is_integral<T> {}; template <> struct IsIntegral<absl::int128> : std::true_type {}; template <> struct IsIntegral<absl::uint128> : std::true_type {}; template <typename T> struct MakeUnsigned : std::make_unsigned<T> {}; template <> struct MakeUnsigned<absl::int128> { using type = absl::uint128; }; template <> struct MakeUnsigned<absl::uint128> { using type = absl::uint128; }; template <typename T> struct IsUnsigned : std::is_unsigned<T> {}; template <> struct IsUnsigned<absl::int128> : std::false_type {}; template <> struct IsUnsigned<absl::uint128> : std::true_type {}; template <size_t N> struct unsigned_bits; template <> struct unsigned_bits<8> { using type = uint8_t; }; template <> struct unsigned_bits<16> { using type = uint16_t; }; template <> struct unsigned_bits<32> { using type = uint32_t; }; template <> struct unsigned_bits<64> { using type = uint64_t; }; template <> struct unsigned_bits<128> { using type = absl::uint128; }; struct U256 { uint128 hi; uint128 lo; }; template <> struct unsigned_bits<256> { using type = U256; }; template <typename IntType> struct make_unsigned_bits { using type = typename unsigned_bits< std::numeric_limits<typename MakeUnsigned<IntType>::type>::digits>::type; }; template <typename T> int BitWidth(T v) { constexpr int half_bits = sizeof(T) * 8 / 2; if (sizeof(T) == 16 && (v >> half_bits) != 0) { return bit_width(static_cast<uint64_t>(v >> half_bits)) + half_bits; } else { return bit_width(static_cast<uint64_t>(v)); } } } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/traits.h" #include <cstdint> #include <type_traits> #include "gtest/gtest.h" namespace { using absl::random_internal::is_widening_convertible; template <typename T> void CheckWideningConvertsToSelf() { static_assert(is_widening_convertible<T, T>::value, "Type is not convertible to self!"); } template <typename T, typename Next, typename... Args> void CheckWideningConvertsToSelf() { CheckWideningConvertsToSelf<T>(); CheckWideningConvertsToSelf<Next, Args...>(); } template <typename T> void CheckNotWideningConvertibleWithSigned() { using signed_t = typename std::make_signed<T>::type; static_assert(!is_widening_convertible<T, signed_t>::value, "Unsigned type is convertible to same-sized signed-type!"); static_assert(!is_widening_convertible<signed_t, T>::value, "Signed type is convertible to same-sized unsigned-type!"); } template <typename T, typename Next, typename... Args> void CheckNotWideningConvertibleWithSigned() { CheckNotWideningConvertibleWithSigned<T>(); CheckWideningConvertsToSelf<Next, Args...>(); } template <typename T, typename Higher> void CheckWideningConvertsToLargerTypes() { using signed_t = typename std::make_signed<T>::type; using higher_t = Higher; using signed_higher_t = typename std::make_signed<Higher>::type; static_assert(is_widening_convertible<T, higher_t>::value, "Type not embeddable into larger type!"); static_assert(is_widening_convertible<T, signed_higher_t>::value, "Type not embeddable into larger signed type!"); static_assert(!is_widening_convertible<signed_t, higher_t>::value, "Signed type is embeddable into larger unsigned type!"); static_assert(is_widening_convertible<signed_t, signed_higher_t>::value, "Signed type not embeddable into larger signed type!"); } template <typename T, typename Higher, typename Next, typename... Args> void CheckWideningConvertsToLargerTypes() { CheckWideningConvertsToLargerTypes<T, Higher>(); CheckWideningConvertsToLargerTypes<Higher, Next, Args...>(); } template <typename T, typename U, bool expect = true> void CheckWideningConvertsTo() { static_assert(is_widening_convertible<T, U>::value == expect, "Unexpected result for is_widening_convertible<T, U>!"); } TEST(TraitsTest, IsWideningConvertibleTest) { constexpr bool kInvalid = false; CheckWideningConvertsToSelf< uint8_t, uint16_t, uint32_t, uint64_t, int8_t, int16_t, int32_t, int64_t, float, double>(); CheckNotWideningConvertibleWithSigned< uint8_t, uint16_t, uint32_t, uint64_t>(); CheckWideningConvertsToLargerTypes< uint8_t, uint16_t, uint32_t, uint64_t>(); CheckWideningConvertsTo<float, double>(); CheckWideningConvertsTo<uint16_t, float>(); CheckWideningConvertsTo<uint32_t, double>(); CheckWideningConvertsTo<uint64_t, double, kInvalid>(); CheckWideningConvertsTo<double, float, kInvalid>(); CheckWideningConvertsTo<bool, int>(); CheckWideningConvertsTo<bool, float>(); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/traits.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/traits_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
8dcaa8a0-e5c8-4330-b8cd-5a56f66cfb40
cpp
google/cel-cpp
time_functions
runtime/standard/time_functions.cc
runtime/standard/time_functions_test.cc
#include "runtime/standard/time_functions.h" #include <functional> #include <string> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/overflow.h" #include "internal/status_macros.h" namespace cel { namespace { absl::Status FindTimeBreakdown(absl::Time timestamp, absl::string_view tz, absl::TimeZone::CivilInfo* breakdown) { absl::TimeZone time_zone; if (tz.empty()) { *breakdown = time_zone.At(timestamp); return absl::OkStatus(); } if (absl::LoadTimeZone(tz, &time_zone)) { *breakdown = time_zone.At(timestamp); return absl::OkStatus(); } if (absl::StrContains(tz, ":")) { std::string dur = absl::StrCat(tz, "m"); absl::StrReplaceAll({{":", "h"}}, &dur); absl::Duration d; if (absl::ParseDuration(dur, &d)) { timestamp += d; *breakdown = time_zone.At(timestamp); return absl::OkStatus(); } } return absl::InvalidArgumentError("Invalid timezone"); } Value GetTimeBreakdownPart( ValueManager& value_factory, absl::Time timestamp, absl::string_view tz, const std::function<int64_t(const absl::TimeZone::CivilInfo&)>& extractor_func) { absl::TimeZone::CivilInfo breakdown; auto status = FindTimeBreakdown(timestamp, tz, &breakdown); if (!status.ok()) { return value_factory.CreateErrorValue(status); } return value_factory.CreateIntValue(extractor_func(breakdown)); } Value GetFullYear(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.year(); }); } Value GetMonth(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.month() - 1; }); } Value GetDayOfYear(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart( value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return absl::GetYearDay(absl::CivilDay(breakdown.cs)) - 1; }); } Value GetDayOfMonth(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.day() - 1; }); } Value GetDate(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.day(); }); } Value GetDayOfWeek(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart( value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { absl::Weekday weekday = absl::GetWeekday(breakdown.cs); int weekday_num = static_cast<int>(weekday); weekday_num = (weekday_num == 6) ? 0 : weekday_num + 1; return weekday_num; }); } Value GetHours(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.hour(); }); } Value GetMinutes(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.minute(); }); } Value GetSeconds(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart(value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return breakdown.cs.second(); }); } Value GetMilliseconds(ValueManager& value_factory, absl::Time timestamp, absl::string_view tz) { return GetTimeBreakdownPart( value_factory, timestamp, tz, [](const absl::TimeZone::CivilInfo& breakdown) { return absl::ToInt64Milliseconds(breakdown.subsecond); }); } absl::Status RegisterTimestampFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kFullYear, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetFullYear(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kFullYear, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetFullYear(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kMonth, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetMonth(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor(builtin::kMonth, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetMonth(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kDayOfYear, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetDayOfYear(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kDayOfYear, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetDayOfYear(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kDayOfMonth, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetDayOfMonth(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kDayOfMonth, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetDayOfMonth(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kDate, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetDate(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor(builtin::kDate, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetDate(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kDayOfWeek, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetDayOfWeek(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kDayOfWeek, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetDayOfWeek(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kHours, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetHours(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor(builtin::kHours, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetHours(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kMinutes, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetMinutes(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kMinutes, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetMinutes(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kSeconds, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetSeconds(value_factory, ts, tz.ToString()); }))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kSeconds, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetSeconds(value_factory, ts, ""); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: CreateDescriptor(builtin::kMilliseconds, true), BinaryFunctionAdapter<Value, absl::Time, const StringValue&>:: WrapFunction([](ValueManager& value_factory, absl::Time ts, const StringValue& tz) -> Value { return GetMilliseconds(value_factory, ts, tz.ToString()); }))); return registry.Register( UnaryFunctionAdapter<Value, absl::Time>::CreateDescriptor( builtin::kMilliseconds, true), UnaryFunctionAdapter<Value, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time ts) -> Value { return GetMilliseconds(value_factory, ts, ""); })); } absl::Status RegisterCheckedTimeArithmeticFunctions( FunctionRegistry& registry) { CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, absl::Duration>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Time, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Time t1, absl::Duration d2) -> absl::StatusOr<Value> { auto sum = cel::internal::CheckedAdd(t1, d2); if (!sum.ok()) { return value_factory.CreateErrorValue(sum.status()); } return value_factory.CreateTimestampValue(*sum); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Duration, absl::Time>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Duration, absl::Time>:: WrapFunction([](ValueManager& value_factory, absl::Duration d2, absl::Time t1) -> absl::StatusOr<Value> { auto sum = cel::internal::CheckedAdd(t1, d2); if (!sum.ok()) { return value_factory.CreateErrorValue(sum.status()); } return value_factory.CreateTimestampValue(*sum); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Duration, absl::Duration>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Duration, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Duration d1, absl::Duration d2) -> absl::StatusOr<Value> { auto sum = cel::internal::CheckedAdd(d1, d2); if (!sum.ok()) { return value_factory.CreateErrorValue(sum.status()); } return value_factory.CreateDurationValue(*sum); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Time, absl::Duration>:: CreateDescriptor(builtin::kSubtract, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Time, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Time t1, absl::Duration d2) -> absl::StatusOr<Value> { auto diff = cel::internal::CheckedSub(t1, d2); if (!diff.ok()) { return value_factory.CreateErrorValue(diff.status()); } return value_factory.CreateTimestampValue(*diff); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Time, absl::Time>::CreateDescriptor(builtin::kSubtract, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Time, absl::Time>:: WrapFunction([](ValueManager& value_factory, absl::Time t1, absl::Time t2) -> absl::StatusOr<Value> { auto diff = cel::internal::CheckedSub(t1, t2); if (!diff.ok()) { return value_factory.CreateErrorValue(diff.status()); } return value_factory.CreateDurationValue(*diff); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, absl::Duration, absl::Duration>::CreateDescriptor(builtin::kSubtract, false), BinaryFunctionAdapter<absl::StatusOr<Value>, absl::Duration, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Duration d1, absl::Duration d2) -> absl::StatusOr<Value> { auto diff = cel::internal::CheckedSub(d1, d2); if (!diff.ok()) { return value_factory.CreateErrorValue(diff.status()); } return value_factory.CreateDurationValue(*diff); }))); return absl::OkStatus(); } absl::Status RegisterUncheckedTimeArithmeticFunctions( FunctionRegistry& registry) { CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, absl::Duration>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<Value, absl::Time, absl::Duration>::WrapFunction( [](ValueManager& value_factory, absl::Time t1, absl::Duration d2) -> Value { return value_factory.CreateUncheckedTimestampValue(t1 + d2); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Duration, absl::Time>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<Value, absl::Duration, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Duration d2, absl::Time t1) -> Value { return value_factory.CreateUncheckedTimestampValue(t1 + d2); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Duration, absl::Duration>::CreateDescriptor(builtin::kAdd, false), BinaryFunctionAdapter<Value, absl::Duration, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Duration d1, absl::Duration d2) -> Value { return value_factory.CreateUncheckedDurationValue(d1 + d2); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, absl::Duration>:: CreateDescriptor(builtin::kSubtract, false), BinaryFunctionAdapter<Value, absl::Time, absl::Duration>::WrapFunction( [](ValueManager& value_factory, absl::Time t1, absl::Duration d2) -> Value { return value_factory.CreateUncheckedTimestampValue(t1 - d2); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Time, absl::Time>::CreateDescriptor( builtin::kSubtract, false), BinaryFunctionAdapter<Value, absl::Time, absl::Time>::WrapFunction( [](ValueManager& value_factory, absl::Time t1, absl::Time t2) -> Value { return value_factory.CreateUncheckedDurationValue(t1 - t2); }))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<Value, absl::Duration, absl::Duration>:: CreateDescriptor(builtin::kSubtract, false), BinaryFunctionAdapter<Value, absl::Duration, absl::Duration>:: WrapFunction([](ValueManager& value_factory, absl::Duration d1, absl::Duration d2) -> Value { return value_factory.CreateUncheckedDurationValue(d1 - d2); }))); return absl::OkStatus(); } absl::Status RegisterDurationFunctions(FunctionRegistry& registry) { using DurationAccessorFunction = UnaryFunctionAdapter<int64_t, absl::Duration>; CEL_RETURN_IF_ERROR(registry.Register( DurationAccessorFunction::CreateDescriptor(builtin::kHours, true), DurationAccessorFunction::WrapFunction( [](ValueManager&, absl::Duration d) -> int64_t { return absl::ToInt64Hours(d); }))); CEL_RETURN_IF_ERROR(registry.Register( DurationAccessorFunction::CreateDescriptor(builtin::kMinutes, true), DurationAccessorFunction::WrapFunction( [](ValueManager&, absl::Duration d) -> int64_t { return absl::ToInt64Minutes(d); }))); CEL_RETURN_IF_ERROR(registry.Register( DurationAccessorFunction::CreateDescriptor(builtin::kSeconds, true), DurationAccessorFunction::WrapFunction( [](ValueManager&, absl::Duration d) -> int64_t { return absl::ToInt64Seconds(d); }))); return registry.Register( DurationAccessorFunction::CreateDescriptor(builtin::kMilliseconds, true), DurationAccessorFunction::WrapFunction( [](ValueManager&, absl::Duration d) -> int64_t { constexpr int64_t millis_per_second = 1000L; return absl::ToInt64Milliseconds(d) % millis_per_second; })); } } absl::Status RegisterTimeFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(RegisterTimestampFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterDurationFunctions(registry)); if (options.enable_timestamp_duration_overflow_errors) { return RegisterCheckedTimeArithmeticFunctions(registry); } return RegisterUncheckedTimeArithmeticFunctions(registry); } }
#include "runtime/standard/time_functions.h" #include <vector> #include "base/builtins.h" #include "base/function_descriptor.h" #include "internal/testing.h" namespace cel { namespace { using ::testing::UnorderedElementsAre; MATCHER_P3(MatchesOperatorDescriptor, name, expected_kind1, expected_kind2, "") { const FunctionDescriptor& descriptor = *arg; std::vector<Kind> types{expected_kind1, expected_kind2}; return descriptor.name() == name && descriptor.receiver_style() == false && descriptor.types() == types; } MATCHER_P2(MatchesTimeAccessor, name, kind, "") { const FunctionDescriptor& descriptor = *arg; std::vector<Kind> types{kind}; return descriptor.name() == name && descriptor.receiver_style() == true && descriptor.types() == types; } MATCHER_P2(MatchesTimezoneTimeAccessor, name, kind, "") { const FunctionDescriptor& descriptor = *arg; std::vector<Kind> types{kind, Kind::kString}; return descriptor.name() == name && descriptor.receiver_style() == true && descriptor.types() == types; } TEST(RegisterTimeFunctions, MathOperatorsRegistered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTimeFunctions(registry, options)); auto registered_functions = registry.ListFunctions(); EXPECT_THAT(registered_functions[builtin::kAdd], UnorderedElementsAre( MatchesOperatorDescriptor(builtin::kAdd, Kind::kDuration, Kind::kDuration), MatchesOperatorDescriptor(builtin::kAdd, Kind::kTimestamp, Kind::kDuration), MatchesOperatorDescriptor(builtin::kAdd, Kind::kDuration, Kind::kTimestamp))); EXPECT_THAT(registered_functions[builtin::kSubtract], UnorderedElementsAre( MatchesOperatorDescriptor(builtin::kSubtract, Kind::kDuration, Kind::kDuration), MatchesOperatorDescriptor(builtin::kSubtract, Kind::kTimestamp, Kind::kDuration), MatchesOperatorDescriptor( builtin::kSubtract, Kind::kTimestamp, Kind::kTimestamp))); } TEST(RegisterTimeFunctions, AccessorsRegistered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTimeFunctions(registry, options)); auto registered_functions = registry.ListFunctions(); EXPECT_THAT( registered_functions[builtin::kFullYear], UnorderedElementsAre( MatchesTimeAccessor(builtin::kFullYear, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kFullYear, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kDate], UnorderedElementsAre( MatchesTimeAccessor(builtin::kDate, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kDate, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kMonth], UnorderedElementsAre( MatchesTimeAccessor(builtin::kMonth, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kMonth, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kDayOfYear], UnorderedElementsAre( MatchesTimeAccessor(builtin::kDayOfYear, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kDayOfYear, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kDayOfMonth], UnorderedElementsAre( MatchesTimeAccessor(builtin::kDayOfMonth, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kDayOfMonth, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kDayOfWeek], UnorderedElementsAre( MatchesTimeAccessor(builtin::kDayOfWeek, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kDayOfWeek, Kind::kTimestamp))); EXPECT_THAT( registered_functions[builtin::kHours], UnorderedElementsAre( MatchesTimeAccessor(builtin::kHours, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kHours, Kind::kTimestamp), MatchesTimeAccessor(builtin::kHours, Kind::kDuration))); EXPECT_THAT( registered_functions[builtin::kMinutes], UnorderedElementsAre( MatchesTimeAccessor(builtin::kMinutes, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kMinutes, Kind::kTimestamp), MatchesTimeAccessor(builtin::kMinutes, Kind::kDuration))); EXPECT_THAT( registered_functions[builtin::kSeconds], UnorderedElementsAre( MatchesTimeAccessor(builtin::kSeconds, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kSeconds, Kind::kTimestamp), MatchesTimeAccessor(builtin::kSeconds, Kind::kDuration))); EXPECT_THAT( registered_functions[builtin::kMilliseconds], UnorderedElementsAre( MatchesTimeAccessor(builtin::kMilliseconds, Kind::kTimestamp), MatchesTimezoneTimeAccessor(builtin::kMilliseconds, Kind::kTimestamp), MatchesTimeAccessor(builtin::kMilliseconds, Kind::kDuration))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/time_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/time_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
779e5c14-9a64-4b41-8d98-5656de7f3bb9
cpp
tensorflow/tensorflow
extract_outside_compilation_pass
tensorflow/compiler/jit/extract_outside_compilation_pass.cc
tensorflow/compiler/jit/extract_outside_compilation_pass_test.cc
#include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { std::optional<string> HostGraphControlRetMapping(const Node* n) { if (HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { return n->name(); } return std::nullopt; } absl::StatusOr<Node*> AddHostComputeKeyPlaceholder( const string& xla_cluster_name, Graph* g) { NodeDef key_def; NodeDefBuilder builder(absl::StrCat(xla_cluster_name, "_key_placeholder"), "Placeholder"); builder.Attr("dtype", DT_STRING); builder.Attr("shape", PartialTensorShape({2})); builder.Attr("_host_compute_call_node", xla_cluster_name); Status s = builder.Finalize(&key_def); if (!s.ok()) return s; Node* n = g->AddNode(key_def, &s); if (!s.ok()) return s; return n; } bool IsKeyPlaceholderNode(const Node& n) { return n.type_string() == "Placeholder" && absl::EndsWith(n.name(), "_key_placeholder"); } std::vector<Node*> GatherNodesWithType(const Graph& g, const string& type) { std::vector<Node*> result; for (Node* n : g.nodes()) { if (n->type_string() == type) { result.push_back(n); } } return result; } Status GetArgDataTypes(const std::vector<Node*>& arg_nodes, std::vector<DataType>* recv_at_host_dtypes) { recv_at_host_dtypes->resize(arg_nodes.size(), DT_INVALID); for (auto* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "T", &dtype)); (*recv_at_host_dtypes)[index] = dtype; } for (int i = 0, end = recv_at_host_dtypes->size(); i < end; i++) { if ((*recv_at_host_dtypes)[i] == DT_INVALID) { return errors::Internal("Cannot get datatype for input ", i); } } return absl::OkStatus(); } absl::StatusOr<Node*> BuildRecvAtHostNode( Graph* g, const string& oc_cluster_name, const std::vector<DataType>& recv_at_host_dtypes, Node* key_placeholder) { NodeDefBuilder recv_at_host_builder( absl::StrCat("outside_compilation_", oc_cluster_name, "_recv"), "_XlaRecvAtHost"); NodeDef recv_at_host_def; recv_at_host_builder.Attr("Toutputs", recv_at_host_dtypes); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); recv_at_host_builder.Attr("device_ordinal", device_ordinal_value); recv_at_host_builder.Attr( "key", absl::StrCat("host_compute_channel_", oc_cluster_name)); recv_at_host_builder.Attr(kXlaHasHostTransferAttrName, true); recv_at_host_builder.Input(key_placeholder->name(), 0, DT_STRING); TF_RETURN_IF_ERROR(recv_at_host_builder.Finalize(&recv_at_host_def)); TF_ASSIGN_OR_RETURN(Node * recv_at_host_node, g->AddNode(recv_at_host_def)); return recv_at_host_node; } absl::StatusOr<Node*> ReplaceArgNodesWithRecvAtHostNode( Graph* g, const string& oc_cluster_name, std::vector<DataType>* recv_at_host_dtypes, Node* key_placeholder) { std::vector<Node*> arg_nodes = GatherNodesWithType(*g, "_Arg"); TF_RETURN_IF_ERROR(GetArgDataTypes(arg_nodes, recv_at_host_dtypes)); TF_ASSIGN_OR_RETURN( Node * recv_at_host_node, BuildRecvAtHostNode(g, oc_cluster_name, *recv_at_host_dtypes, key_placeholder)); for (auto* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); std::vector<OutEdgeInfo> out_edge_info; out_edge_info.reserve(n->out_edges().size()); for (auto edge : n->out_edges()) { out_edge_info.push_back( {edge->dst(), edge->src_output(), edge->dst_input()}); } g->RemoveNode(n); for (const OutEdgeInfo& edge : out_edge_info) { if (edge.dst_input == Graph::kControlSlot) { g->AddControlEdge(recv_at_host_node, edge.dst); } else { g->AddEdge(recv_at_host_node, index, edge.dst, edge.dst_input); } } for (int i = 0, end = out_edge_info.size(); i < end; i++) { const OutEdgeInfo edge = out_edge_info[i]; if (edge.dst_input == Graph::kControlSlot) { continue; } Node* dst = edge.dst; NodeDef new_def = dst->def(); *new_def.mutable_input(edge.dst_input) = absl::StrCat(recv_at_host_node->name(), ":", index); TF_ASSIGN_OR_RETURN(Node * dst_replace, ReplaceNode(g, dst, new_def)); for (int j = i + 1, end = out_edge_info.size(); j < end; j++) { if (out_edge_info[j].dst == dst) { out_edge_info[j].dst = dst_replace; } } } } g->AddEdge(key_placeholder, 0, recv_at_host_node, 0); return recv_at_host_node; } Status GetRetDataTypes(const std::vector<Node*>& ret_nodes, std::vector<DataType>* send_from_host_dtypes) { send_from_host_dtypes->resize(ret_nodes.size(), DT_INVALID); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "T", &dtype)); (*send_from_host_dtypes)[index] = dtype; } for (int i = 0, end = send_from_host_dtypes->size(); i < end; i++) { if ((*send_from_host_dtypes)[i] == DT_INVALID) { return errors::Internal("Cannot get datatype for output ", i); } } return absl::OkStatus(); } absl::StatusOr<Node*> BuildSendFromHostNode( Graph* g, const string& oc_cluster_name, const std::vector<Node*>& ret_nodes, const std::vector<DataType>& send_from_host_dtypes, Node* key_placeholder) { NodeDefBuilder send_from_host_builder( absl::StrCat("outside_compilation_", oc_cluster_name, "_send"), "_XlaSendFromHost"); NodeDef send_from_host_def; send_from_host_builder.Attr("Tinputs", send_from_host_dtypes); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); send_from_host_builder.Attr("device_ordinal", device_ordinal_value); send_from_host_builder.Attr( "key", absl::StrCat("host_compute_channel_", oc_cluster_name)); send_from_host_builder.Attr(kXlaHasHostTransferAttrName, true); std::vector<NodeDefBuilder::NodeOut> inputs(send_from_host_dtypes.size()); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); const int num_dtypes = send_from_host_dtypes.size(); if (index < 0 || index >= num_dtypes) { return errors::Internal("Invalid _Retval index: ", index); } for (auto edge : n->in_edges()) { inputs[index] = NodeDefBuilder::NodeOut{edge->src()->name(), edge->src_output(), edge->src()->output_type(edge->src_output())}; } } send_from_host_builder.Input(inputs); send_from_host_builder.Input(key_placeholder->name(), 0, DT_STRING); TF_RETURN_IF_ERROR(send_from_host_builder.Finalize(&send_from_host_def)); TF_ASSIGN_OR_RETURN(Node * send_from_host_node, g->AddNode(send_from_host_def)); return send_from_host_node; } absl::StatusOr<Node*> ReplaceRetNodesWithSendFromHostNode( Graph* g, const string& oc_cluster_name, std::vector<DataType>* send_from_host_dtypes, Node* key_placeholder) { std::vector<Node*> ret_nodes = GatherNodesWithType(*g, "_Retval"); TF_RETURN_IF_ERROR(GetRetDataTypes(ret_nodes, send_from_host_dtypes)); TF_ASSIGN_OR_RETURN( Node * send_from_host_node, BuildSendFromHostNode(g, oc_cluster_name, ret_nodes, *send_from_host_dtypes, key_placeholder)); for (auto* n : ret_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); for (auto edge : n->in_edges()) { if (edge->src_output() == Graph::kControlSlot) { g->AddControlEdge(edge->src(), send_from_host_node); } else { g->AddEdge(edge->src(), edge->src_output(), send_from_host_node, index); } } g->RemoveNode(n); } g->AddEdge(key_placeholder, 0, send_from_host_node, send_from_host_dtypes->size()); return send_from_host_node; } std::optional<std::vector<PartialTensorShape>> GetInferredInputShapes( int num_inputs, Node* send_from_host_node) { std::vector<PartialTensorShape> results(num_inputs); for (int i = 0; i < num_inputs; i++) { const Edge* e; if (!send_from_host_node->input_edge(i, &e).ok()) { return std::nullopt; } std::vector<PartialTensorShape> shapes; if (!GetNodeAttr(e->src()->attrs(), kXlaInferredShapesAttrName, &shapes) .ok()) { return std::nullopt; } const PartialTensorShape shape = shapes[e->src_output()]; if (!shape.IsFullyDefined()) { return std::nullopt; } results[e->dst_input()] = shape; } return results; } string host_compute_node_name(const string& original_oc_name) { return absl::StrCat("outside_compilation_", original_oc_name, "_host_compute"); } absl::StatusOr<NodeDef> BuildXlaHostComputeNodeDef( const Node* call_node, const std::map<string, int>& host_compute_core, const absl::flat_hash_map<string, std::vector<string>>& cluster_deps) { string original_oc_name; TF_RETURN_IF_ERROR(GetNodeAttr( call_node->attrs(), "_outside_compilation_subgraph", &original_oc_name)); NodeDefBuilder host_compute_builder(host_compute_node_name(original_oc_name), "XlaHostCompute"); host_compute_builder.Attr(kXlaOriginalOutsideCompilationNodeName, host_compute_builder.node_name()); for (const auto& attr : call_node->attrs()) { host_compute_builder.Attr(attr.first, attr.second); } const auto iter = host_compute_core.find(original_oc_name); if (iter != host_compute_core.end()) { int core = iter->second; host_compute_builder.Attr("tpu_core", core); } std::vector<string> xla_token_input_nodes; xla_token_input_nodes.emplace_back(kXlaTokenArgNodeName); auto cluster_deps_it = cluster_deps.find(original_oc_name); if (cluster_deps_it != cluster_deps.end()) { for (const auto& dep : cluster_deps_it->second) { xla_token_input_nodes.emplace_back(host_compute_node_name(dep)); } } host_compute_builder.Attr(kXlaTokenInputNodesAttrName, xla_token_input_nodes); std::vector<DataType> input_dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(call_node->attrs(), "Tinputs", &input_dtypes)); std::vector<NodeDefBuilder::NodeOut> inputs(input_dtypes.size()); for (auto e : call_node->in_edges()) { if (e->IsControlEdge()) { continue; } const int input_dtypes_size = input_dtypes.size(); if (e->dst_input() < 0 || e->dst_input() >= input_dtypes_size) { return errors::Internal("Invalid dst_input: ", e->dst_input()); } inputs[e->dst_input()] = NodeDefBuilder::NodeOut{ e->src()->name(), e->src_output(), input_dtypes[e->dst_input()]}; } host_compute_builder.Input(inputs); NodeDef new_def; TF_RETURN_IF_ERROR(host_compute_builder.Finalize(&new_def)); return new_def; } TF_ATTRIBUTE_NOINLINE absl::StatusOr<Node*> ReplaceOutsideCompilationCallNode( Graph* g, Node* call_node, const std::map<string, int>& host_compute_core, const absl::flat_hash_map<string, std::vector<string>>& cluster_deps) { TF_ASSIGN_OR_RETURN( NodeDef node_def, BuildXlaHostComputeNodeDef(call_node, host_compute_core, cluster_deps)); TF_ASSIGN_OR_RETURN(Node * host_compute_node, ReplaceNode(g, call_node, node_def)); VLOG(4) << "Added HostCompute node: " << host_compute_node->DebugString(); return host_compute_node; } Status ResetDeviceOrdinalToPlaceholderValue(Graph* g) { AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); for (Node* n : g->nodes()) { if (!HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { continue; } if (n->type_string() == "_XlaRecvAtHost" || n->type_string() == "_XlaSendFromHost") { n->ClearAttr("device_ordinal"); n->AddAttr("device_ordinal", device_ordinal_value); } else if (n->IsIfNode()) { for (const string& attr_name : std::vector<string>{"then_branch", "else_branch"}) { NameAttrList branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), attr_name, &branch_func)); (*branch_func.mutable_attr())["_device_ordinal"] = device_ordinal_value; n->ClearAttr(attr_name); n->AddAttr(attr_name, branch_func); } } else if (n->IsWhileNode()) { for (const string& attr_name : std::vector<string>{"cond", "body"}) { NameAttrList branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), attr_name, &branch_func)); (*branch_func.mutable_attr())["_device_ordinal"] = device_ordinal_value; n->ClearAttr(attr_name); n->AddAttr(attr_name, branch_func); } } else if (HasNodeAttr(n->def(), "_device_ordinal")) { n->ClearAttr("_device_ordinal"); n->AddAttr("_device_ordinal", device_ordinal_value); } else { return errors::Internal("Unknown node marked with ", kXlaHasHostTransferAttrName, ": ", n->DebugString()); } } return absl::OkStatus(); } bool HasLiftedArgs(const FunctionDef& function_def) { return absl::c_any_of(function_def.node_def(), [](const NodeDef& node_def) { return (node_def.op() == "Placeholder" && node_def.attr().find(kXlaLiftedArgOutsideCompilationAttrName) != node_def.attr().end()); }); } absl::StatusOr<std::vector<std::pair<Node*, Node*>>> LiftedArgsAndOutsideCompilationNodesInFunctionBody( const FunctionBody& function_body, const std::unordered_map<string, Node*>& outside_compilation_attr_to_node) { std::vector<std::pair<Node*, Node*>> lifted_arg_nodes_and_outside_compilation_nodes; for (Node* n : function_body.graph->op_nodes()) { string oc_cluster; if (n->type_string() == "Placeholder" && GetNodeAttr(n->def(), kXlaLiftedArgOutsideCompilationAttrName, &oc_cluster) .ok()) { TF_RET_CHECK(outside_compilation_attr_to_node.find(oc_cluster) != outside_compilation_attr_to_node.end()); lifted_arg_nodes_and_outside_compilation_nodes.emplace_back( n, outside_compilation_attr_to_node.at(oc_cluster)); } } return lifted_arg_nodes_and_outside_compilation_nodes; } absl::StatusOr<std::vector<DataType>> UpdateTypesAttribute( const std::vector<std::pair<Node*, Node*>>& lifted_arg_nodes_and_outside_compilation_nodes, const string& type_attr_name, Node* n) { std::vector<DataType> data_types; data_types.reserve(lifted_arg_nodes_and_outside_compilation_nodes.size()); TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), type_attr_name, &data_types)); for (auto pair : lifted_arg_nodes_and_outside_compilation_nodes) { Node* outside_compilation_node = pair.second; DataType data_type; TF_RET_CHECK(outside_compilation_node->IsIdentity() || outside_compilation_node->type_string() == "Placeholder"); if (outside_compilation_node->IsIdentity()) { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "T", &data_type)); } else { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "dtype", &data_type)); } data_types.push_back(data_type); } n->ClearAttr(type_attr_name); n->AddAttr(type_attr_name, data_types); return data_types; } void AddEdgesFromOutsideCompilationNodes( const int original_arg_count, const int arg_to_input_edge_offset, const std::vector<DataType>& data_types, const std::vector<Node*>& outside_compilation_nodes, Graph* g, Node* n) { for (int i = original_arg_count, end = data_types.size(); i < end; i++) { Node* outside_compilation_node = outside_compilation_nodes[i - original_arg_count]; g->AddEdge(outside_compilation_node, 0, n, i + arg_to_input_edge_offset); } } absl::StatusOr<Node*> AddOutsideCompilationInputArgToFunctionBody( const FunctionBody& function_body, const int arg_idx, const DataType& data_type) { NodeDefBuilder arg_builder(absl::StrCat("arg_", arg_idx), "_Arg"); arg_builder.Attr("T", data_type); arg_builder.Attr("index", arg_idx); NodeDef arg_def; TF_RETURN_IF_ERROR(arg_builder.Finalize(&arg_def)); TF_ASSIGN_OR_RETURN(Node * arg_node, function_body.graph->AddNode(arg_def)); return arg_node; } Status AddMatchingRetvalNode(const FunctionBody& function_body, const int arg_idx, const DataType& data_type, Node* arg_node) { NodeDefBuilder ret_builder(absl::StrCat("ret_", arg_idx), "_Retval"); ret_builder.Attr("T", data_type); ret_builder.Attr("index", arg_idx); ret_builder.Input(arg_node->name(), 0, data_type); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, function_body.graph->AddNode(ret_def)); function_body.graph->AddEdge(arg_node, 0, ret_node, 0); return absl::OkStatus(); } void ReplaceLiftedArgNodePlaceholderWithArg( const FunctionBody& function_body, const int original_arg_count, const int arg_idx, const std::vector<Node*>& lifted_arg_nodes, Node* arg_node) { Node* lifted_arg_node = lifted_arg_nodes[arg_idx - original_arg_count]; if (!lifted_arg_node) { return; } for (const Edge* e : lifted_arg_node->out_edges()) { if (e->IsControlEdge()) { function_body.graph->AddControlEdge(arg_node, e->dst()); } else { function_body.graph->AddEdge(arg_node, 0, e->dst(), e->dst_input()); } } function_body.graph->RemoveNode(lifted_arg_node); } Status AddFunctionWithNewName(const std::string& new_name, const std::string& func_attr_name, const FunctionDef& function_def, NameAttrList* func_attr, Node* callsite_node, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(fld->AddFunctionDef(function_def)); func_attr->set_name(new_name); callsite_node->ClearAttr(func_attr_name); callsite_node->AddAttr(func_attr_name, *func_attr); return absl::OkStatus(); } Status PostprocessLiftedArgsForWhile( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { TF_RET_CHECK(n->IsWhileNode()); NameAttrList body_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "body", &body_func)); const FunctionDef* body_function_def = fld->Find(body_func.name()); TF_RET_CHECK(body_function_def); if (!HasLiftedArgs(*body_function_def)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> body_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*body_function_def, AttrSlice(&body_func.attr()), fld, &body_function_body)); int original_arg_count = body_function_body->arg_nodes.size(); TF_ASSIGN_OR_RETURN( auto lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *body_function_body, outside_compilation_attr_to_node)); TF_ASSIGN_OR_RETURN( std::vector<DataType> data_types, UpdateTypesAttribute(lifted_arg_nodes_and_outside_compilation_nodes, "T", n)); std::vector<Node*> outside_compilation_nodes; outside_compilation_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(outside_compilation_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.second; }); AddEdgesFromOutsideCompilationNodes(original_arg_count, 0, data_types, outside_compilation_nodes, g, n); std::vector<Node*> lifted_arg_nodes; lifted_arg_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(lifted_arg_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.first; }); for (int i = original_arg_count, end = data_types.size(); i < end; i++) { TF_ASSIGN_OR_RETURN(Node * arg_node, AddOutsideCompilationInputArgToFunctionBody( *body_function_body, i, data_types[i])); TF_RETURN_IF_ERROR( AddMatchingRetvalNode(*body_function_body, i, data_types[i], arg_node)); ReplaceLiftedArgNodePlaceholderWithArg( *body_function_body, original_arg_count, i, lifted_arg_nodes, arg_node); } const auto new_body_function_name = fld->UniqueFunctionName(absl::StrCat(body_func.name(), "_lifted_arg_")); FunctionDef rewritten_body_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *body_function_body->graph, new_body_function_name, HostGraphControlRetMapping, &rewritten_body_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName(new_body_function_name, "body", rewritten_body_function_def, &body_func, n, fld)); NameAttrList cond_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "cond", &cond_func)); const FunctionDef* cond_function_def = fld->Find(cond_func.name()); TF_RET_CHECK(cond_function_def); std::unique_ptr<FunctionBody> cond_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*cond_function_def, AttrSlice(&cond_func.attr()), fld, &cond_function_body)); for (int i = original_arg_count, end = data_types.size(); i < end; i++) { absl::StatusOr<Node*> arg_node_or = AddOutsideCompilationInputArgToFunctionBody(*cond_function_body, i, data_types[i]); TF_RETURN_IF_ERROR(arg_node_or.status()); } const auto new_cond_function_name = fld->UniqueFunctionName(absl::StrCat(cond_func.name(), "_lifted_arg_")); FunctionDef rewritten_cond_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *cond_function_body->graph, new_cond_function_name, HostGraphControlRetMapping, &rewritten_cond_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName(new_cond_function_name, "cond", rewritten_cond_function_def, &cond_func, n, fld)); return absl::OkStatus(); } Status PostprocessLiftedArgsForIf( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { TF_RET_CHECK(n->IsIfNode()); NameAttrList then_branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "then_branch", &then_branch_func)); const FunctionDef* then_branch_function_def = fld->Find(then_branch_func.name()); TF_RET_CHECK(then_branch_function_def); NameAttrList else_branch_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "else_branch", &else_branch_func)); const FunctionDef* else_branch_function_def = fld->Find(else_branch_func.name()); TF_RET_CHECK(else_branch_function_def); if (!HasLiftedArgs(*then_branch_function_def) && !HasLiftedArgs(*else_branch_function_def)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> then_branch_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *then_branch_function_def, AttrSlice(&then_branch_func.attr()), fld, &then_branch_function_body)); std::unique_ptr<FunctionBody> else_branch_function_body; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *else_branch_function_def, AttrSlice(&else_branch_func.attr()), fld, &else_branch_function_body)); int original_arg_count = then_branch_function_body->arg_nodes.size(); TF_ASSIGN_OR_RETURN( auto then_branch_lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *then_branch_function_body, outside_compilation_attr_to_node)); TF_ASSIGN_OR_RETURN( auto else_branch_lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *else_branch_function_body, outside_compilation_attr_to_node)); std::vector<Node*> outside_compilation_nodes; std::vector<Node*> then_branch_lifted_arg_nodes; outside_compilation_nodes.reserve( then_branch_lifted_arg_nodes_and_outside_compilation_nodes.size()); then_branch_lifted_arg_nodes.reserve( then_branch_lifted_arg_nodes_and_outside_compilation_nodes.size()); for (const auto& pair : then_branch_lifted_arg_nodes_and_outside_compilation_nodes) { outside_compilation_nodes.push_back(pair.second); then_branch_lifted_arg_nodes.push_back(pair.first); } for (const auto& pair : else_branch_lifted_arg_nodes_and_outside_compilation_nodes) { if (std::find(outside_compilation_nodes.begin(), outside_compilation_nodes.end(), pair.second) == outside_compilation_nodes.end()) { outside_compilation_nodes.push_back(pair.second); then_branch_lifted_arg_nodes.push_back(nullptr); } } std::vector<Node*> else_branch_lifted_arg_nodes( outside_compilation_nodes.size()); for (const auto& pair : else_branch_lifted_arg_nodes_and_outside_compilation_nodes) { auto iter = std::find(outside_compilation_nodes.begin(), outside_compilation_nodes.end(), pair.second); TF_RET_CHECK(iter != outside_compilation_nodes.end()); int index = iter - outside_compilation_nodes.begin(); else_branch_lifted_arg_nodes[index] = pair.first; } std::vector<DataType> data_types; data_types.reserve(outside_compilation_nodes.size()); TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "Tin", &data_types)); for (Node* n : outside_compilation_nodes) { data_types.push_back(n->output_type(0)); } n->ClearAttr("Tin"); n->AddAttr("Tin", data_types); AddEdgesFromOutsideCompilationNodes(original_arg_count, 1, data_types, outside_compilation_nodes, g, n); for (int i = original_arg_count, end = data_types.size(); i < end; ++i) { TF_ASSIGN_OR_RETURN(Node * then_branch_arg_node, AddOutsideCompilationInputArgToFunctionBody( *then_branch_function_body, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg( *then_branch_function_body, original_arg_count, i, then_branch_lifted_arg_nodes, then_branch_arg_node); TF_ASSIGN_OR_RETURN(Node * else_branch_arg_node, AddOutsideCompilationInputArgToFunctionBody( *else_branch_function_body, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg( *else_branch_function_body, original_arg_count, i, else_branch_lifted_arg_nodes, else_branch_arg_node); } const auto new_then_function_name = fld->UniqueFunctionName( absl::StrCat(then_branch_func.name(), "_lifted_arg_")); FunctionDef rewritten_then_branch_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *then_branch_function_body->graph, new_then_function_name, HostGraphControlRetMapping, &rewritten_then_branch_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName( new_then_function_name, "then_branch", rewritten_then_branch_function_def, &then_branch_func, n, fld)); const auto new_else_function_name = fld->UniqueFunctionName( absl::StrCat(else_branch_func.name(), "_lifted_arg_")); FunctionDef rewritten_else_branch_function_def; TF_RETURN_IF_ERROR(GraphToFunctionDef( *else_branch_function_body->graph, new_else_function_name, HostGraphControlRetMapping, &rewritten_else_branch_function_def)); TF_RETURN_IF_ERROR(AddFunctionWithNewName( new_else_function_name, "else_branch", rewritten_else_branch_function_def, &else_branch_func, n, fld)); return absl::OkStatus(); } Status PostprocessLiftedArgsForCall( const std::unordered_map<string, Node*>& outside_compilation_attr_to_node, Graph* g, Node* n, FunctionLibraryDefinition* fld) { const FunctionDef* fdef = fld->Find(n->type_string()); TF_RET_CHECK(fdef); if (!HasLiftedArgs(*fdef)) { return absl::OkStatus(); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, n->attrs(), fld, &fbody)); int original_arg_count = fbody->arg_nodes.size(); TF_ASSIGN_OR_RETURN(auto lifted_arg_nodes_and_outside_compilation_nodes, LiftedArgsAndOutsideCompilationNodesInFunctionBody( *fbody, outside_compilation_attr_to_node)); std::vector<DataType> data_types(n->input_types().begin(), n->input_types().end()); for (auto pair : lifted_arg_nodes_and_outside_compilation_nodes) { Node* outside_compilation_node = pair.second; DataType data_type; TF_RET_CHECK(outside_compilation_node->IsIdentity() || outside_compilation_node->type_string() == "Placeholder"); if (outside_compilation_node->IsIdentity()) { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "T", &data_type)); } else { TF_RETURN_IF_ERROR( GetNodeAttr(outside_compilation_node->def(), "dtype", &data_type)); } data_types.push_back(data_type); } std::vector<Node*> lifted_arg_nodes; lifted_arg_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(lifted_arg_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.first; }); for (int i = original_arg_count, end = data_types.size(); i < end; ++i) { TF_ASSIGN_OR_RETURN( Node * arg_node, AddOutsideCompilationInputArgToFunctionBody(*fbody, i, data_types[i])); ReplaceLiftedArgNodePlaceholderWithArg(*fbody, original_arg_count, i, lifted_arg_nodes, arg_node); } FunctionDef rewritten_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*fbody->graph, n->type_string(), HostGraphControlRetMapping, &rewritten_fdef)); const auto new_function_name = fld->UniqueFunctionName(absl::StrCat(n->type_string(), "_lifted_arg_")); rewritten_fdef.mutable_signature()->set_name(new_function_name); TF_RETURN_IF_ERROR(fld->AddFunctionDef(rewritten_fdef)); NodeDef node_def = n->def(); *node_def.mutable_op() = new_function_name; for (int i = original_arg_count, end = data_types.size(); i < end; i++) { Node* outside_compilation_node = lifted_arg_nodes_and_outside_compilation_nodes[i - original_arg_count] .second; node_def.add_input(absl::StrCat(outside_compilation_node->name(), ":", 0)); } TF_ASSIGN_OR_RETURN(n, ReplaceNode(g, n, node_def)); std::vector<Node*> outside_compilation_nodes; outside_compilation_nodes.reserve( lifted_arg_nodes_and_outside_compilation_nodes.size()); std::transform( lifted_arg_nodes_and_outside_compilation_nodes.begin(), lifted_arg_nodes_and_outside_compilation_nodes.end(), std::back_inserter(outside_compilation_nodes), [](const std::pair<Node*, Node*>& pair) { return pair.second; }); AddEdgesFromOutsideCompilationNodes(original_arg_count, 0, data_types, outside_compilation_nodes, g, n); return absl::OkStatus(); } absl::StatusOr<std::unordered_map<string, Node*>> OutsideCompilationAttrToNode( const Graph& g) { std::unordered_map<string, Node*> outside_compilation_attr_to_node; for (Node* n : g.op_nodes()) { bool is_lifted_arg; string outside_compilation_attr; if (TryGetNodeAttr(n->def(), kXlaIsLiftedArgAttrName, &is_lifted_arg) && TryGetNodeAttr(n->def(), "_xla_outside_compilation", &outside_compilation_attr)) { TF_RET_CHECK(is_lifted_arg); TF_RET_CHECK(n->IsIdentity() || n->type_string() == "Placeholder"); outside_compilation_attr_to_node[outside_compilation_attr] = n; } } return outside_compilation_attr_to_node; } Status PostprocessLiftedArgs(Graph* g, FunctionLibraryDefinition* fld) { TF_ASSIGN_OR_RETURN(auto outside_compilation_attr_to_node, OutsideCompilationAttrToNode(*g)); std::vector<Node*> call_nodes; for (Node* n : g->op_nodes()) { if (!HasNodeAttr(n->def(), kXlaHasHostTransferAttrName)) { continue; } if (n->IsWhileNode()) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForWhile( outside_compilation_attr_to_node, g, n, fld)); } if (n->IsIfNode()) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForIf( outside_compilation_attr_to_node, g, n, fld)); } if (fld->Contains(n->type_string())) { call_nodes.push_back(n); } } for (Node* n : call_nodes) { TF_RETURN_IF_ERROR(PostprocessLiftedArgsForCall( outside_compilation_attr_to_node, g, n, fld)); } return absl::OkStatus(); } Status ConstructHostGraph( const string& xla_cluster_name, const string& outside_compilation_attr_name, const std::vector<string>& outside_compilation_host_graphs, FunctionLibraryDefinition* fld, std::unique_ptr<Graph>* host_graph) { host_graph->reset(new Graph(fld)); NodeDefBuilder sequencer_builder(absl::StrCat(xla_cluster_name, "_sequencer"), "NoOp"); sequencer_builder.Attr("_xla_host_transfer_sequencer", xla_cluster_name); NodeDef sequencer_def; TF_RETURN_IF_ERROR(sequencer_builder.Finalize(&sequencer_def)); TF_ASSIGN_OR_RETURN(Node * sequencer, (*host_graph)->AddNode(sequencer_def)); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, host_graph->get())); for (const string& host_func : outside_compilation_host_graphs) { VLOG(4) << "Expanding host graph " << host_func; AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> host_fbody; const FunctionDef* host_fdef = fld->Find(host_func); TF_RET_CHECK(host_fdef); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*host_fdef, AttrSlice(&attrs), fld, &host_fbody)); FixupSourceAndSinkEdges(host_fbody->graph); std::map<const Node*, Node*> node_map; node_map[host_fbody->graph->source_node()] = (*host_graph)->source_node(); node_map[host_fbody->graph->sink_node()] = (*host_graph)->sink_node(); Status s; ReverseDFS( *host_fbody->graph, nullptr, [&](const Node* n) { if (!s.ok()) { return; } Node* copy; if (node_map.find(n) != node_map.end()) { copy = node_map.at(n); } else if (IsKeyPlaceholderNode(*n)) { copy = key_placeholder; node_map[n] = copy; } else { NodeDef copy_def = n->def(); copy_def.clear_device(); copy = (*host_graph)->AddNode(copy_def, &s); if (!s.ok()) { return; } node_map[n] = copy; } for (auto e : n->in_edges()) { if (node_map.find(e->src()) == node_map.end()) { s = errors::Internal("Cannot find node image for ", e->src()->DebugString()); return; } (*host_graph) ->AddEdge(node_map[e->src()], e->src_output(), copy, e->dst_input()); } if (HasNodeAttr(copy->def(), kXlaHasHostTransferAttrName)) { (*host_graph)->AddControlEdge(copy, sequencer); } }, NodeComparatorID()); if (!s.ok()) { return s; } } TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(host_graph->get())); if (!sequencer->in_edges().empty()) { (*host_graph)->AddControlEdge(sequencer, (*host_graph)->sink_node()); } PruneForReverseReachability( host_graph->get(), std::unordered_set<const Node*>{(*host_graph)->sink_node()}); TF_RETURN_IF_ERROR(PostprocessEdgesBetweenOutsideCompilations( host_graph->get(), outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PostprocessLiftedArgs(host_graph->get(), fld)); if (VLOG_IS_ON(4)) { DumpGraphToFile(absl::StrCat("extract_outside_compilation_host_graph_for_", xla_cluster_name), **host_graph, fld); } return absl::OkStatus(); } Status ExpandHostGraphIntoMainGraph(Graph* main_graph, FunctionLibraryDefinition* fld, const string& host_graph_func_name, Node* xla_computation_node, Node* pivot_node) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* host_graph_func = fld->Find(host_graph_func_name); TF_RET_CHECK(host_graph_func); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*host_graph_func, AttrSlice(&attrs), fld, &fbody)); Graph* host_graph = fbody->graph; FixupSourceAndSinkEdges(host_graph); std::map<const Node*, Node*> node_map; if (pivot_node) { node_map[host_graph->source_node()] = pivot_node; } else { node_map[host_graph->source_node()] = main_graph->source_node(); } node_map[host_graph->sink_node()] = main_graph->sink_node(); Status s = absl::OkStatus(); auto copy_node_fn = [&](const Node* n) { if (!s.ok()) { return; } Node* copy; if (node_map.find(n) != node_map.end()) { copy = node_map.at(n); } else { NodeDef copy_def = n->def(); copy = main_graph->AddNode(copy_def, &s); if (!s.ok()) { return; } node_map[n] = copy; } for (auto e : n->in_edges()) { if (node_map.find(e->src()) == node_map.end()) { s = errors::Internal("Cannot find node image for ", e->src()->DebugString()); return; } main_graph->AddEdge(node_map[e->src()], e->src_output(), copy, e->dst_input()); } if (copy->type_string() == "NoOp" && HasNodeAttr(copy->def(), "_xla_host_transfer_sequencer")) { main_graph->AddControlEdge(copy, xla_computation_node); } }; ReverseDFS(*host_graph, nullptr, copy_node_fn, NodeComparatorID()); return s; } Status RewriteShapeInferenceGraph(const string& shape_inference_graph_name, Graph* host_graph, Node* pivot_node, FunctionLibraryDefinition* fld) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* shape_inference_graph = fld->Find(shape_inference_graph_name); TF_RET_CHECK(shape_inference_graph); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*shape_inference_graph, AttrSlice(&attrs), fld, &fbody)); Graph* g = fbody->graph; Node* send_from_host = nullptr; for (Node* n : g->nodes()) { if (n->type_string() == "_XlaSendFromHost") { send_from_host = n; break; } } if (!send_from_host) { return errors::Internal("Shape inference graph ", shape_inference_graph_name, " does not have _XlaSendFromHost node."); } Node* send_node_in_host_graph = nullptr; for (Node* n : host_graph->nodes()) { if (n->name() == send_from_host->name()) { send_node_in_host_graph = n; break; } } if (send_node_in_host_graph) { std::vector<Node*> nodes; nodes.reserve(g->num_op_nodes()); for (Node* n : g->op_nodes()) { nodes.push_back(n); } for (Node* n : nodes) { g->RemoveNode(n); } Node* start_node = pivot_node ? pivot_node : host_graph->source_node(); struct Visit { Node* n; bool is_exiting; }; std::vector<Visit> stack{{send_node_in_host_graph, false}}; std::map<Node*, Node*> node_map; node_map[host_graph->source_node()] = g->source_node(); while (!stack.empty()) { Visit& curr = stack.back(); if (curr.is_exiting) { if (node_map.find(curr.n) == node_map.end()) { Node* copy = g->CopyNode(curr.n); if (curr.n != start_node) { for (const Edge* e : curr.n->in_edges()) { auto node_iter = node_map.find(e->src()); if (node_iter == node_map.end()) { return errors::Internal("Cannot find node image for ", e->src()->DebugString()); } g->AddEdge(node_iter->second, e->src_output(), copy, e->dst_input()); } } node_map[curr.n] = copy; } stack.pop_back(); } else { curr.is_exiting = true; if (curr.n != start_node) { for (const Edge* e : curr.n->in_edges()) { if (node_map.find(e->src()) != node_map.end()) { continue; } stack.push_back({e->src(), false}); } } } } send_from_host = node_map[send_node_in_host_graph]; } else { } for (auto e : g->edges()) { if (e->IsControlEdge()) { g->RemoveEdge(e); } } PruneForReverseReachability(g, std::unordered_set<const Node*>{send_from_host}); if (VLOG_IS_ON(4)) { DumpGraphToFile(shape_inference_graph_name, *g, fld); } FunctionDef fdef_replace; TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, shape_inference_graph_name, &fdef_replace)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(shape_inference_graph_name, fdef_replace)); return absl::OkStatus(); } void SetMaximalSharding(NodeDefBuilder& node_builder) { xla::OpSharding sharding; sharding.set_type(xla::OpSharding::MAXIMAL); sharding.add_tile_assignment_dimensions(1); sharding.add_tile_assignment_devices(0); node_builder.Attr("_XlaSharding", sharding.SerializeAsString()); } TF_ATTRIBUTE_NOINLINE absl::StatusOr<Node*> BuildSendIfPredNode( const string& name, const string& host_transfer_key, Node* pred_node, Graph* g) { NodeDefBuilder send_pred_builder(name, "XlaSendToHost"); send_pred_builder.Attr("Tinput", DT_BOOL); send_pred_builder.Attr("key", absl::StrCat(host_transfer_key, "_dtoh_0")); send_pred_builder.Attr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); send_pred_builder.Attr(kXlaOriginalOutsideCompilationNodeName, name); SetMaximalSharding(send_pred_builder); send_pred_builder.Input(pred_node->name(), 0, DT_BOOL); NodeDef send_pred_def; TF_RETURN_IF_ERROR(send_pred_builder.Finalize(&send_pred_def)); TF_ASSIGN_OR_RETURN(Node * send_pred_node, g->AddNode(send_pred_def)); g->AddEdge(pred_node, 0, send_pred_node, 0); return send_pred_node; } Status ReplaceKeyPlaceholderWithArgNode(const string& xla_cluster_name, const string& func_name, FunctionLibraryDefinition* fld) { AttrValue device_ordinal_attr; device_ordinal_attr.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_attr; std::unique_ptr<FunctionBody> fbody; const FunctionDef* func = fld->Find(func_name); TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(*func, AttrSlice(&attrs), fld, &fbody)); Graph* g = fbody->graph; Node* key_placeholder = nullptr; for (Node* n : g->nodes()) { if (IsKeyPlaceholderNode(*n)) { key_placeholder = n; break; } } if (!key_placeholder) { TF_ASSIGN_OR_RETURN(key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, g)); } NodeDefBuilder arg_builder("key_arg", FunctionLibraryDefinition::kArgOp); arg_builder.Attr("T", DT_STRING); arg_builder.Attr("index", 0); NodeDef arg_def; TF_RETURN_IF_ERROR(arg_builder.Finalize(&arg_def)); TF_RETURN_IF_ERROR(ReplaceNode(g, key_placeholder, arg_def).status()); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(g)); FunctionDef replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *g, func_name, HostGraphControlRetMapping, &replace_fdef)); TF_RETURN_IF_ERROR(fld->ReplaceFunction(func_name, replace_fdef)); return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status BuildHostGraphForIfNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const string& if_node_name, const string& host_transfer_key, const string& host_graph_func_name, FunctionLibraryDefinition* fld, const string& then_branch_host_func_name, const string& else_branch_host_func_name) { Graph host_graph(fld); string outside_compilation_name = absl::StrCat("oc_if_", if_node_name); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); NodeDefBuilder recv_pred_builder( absl::StrCat("recv_oc_if_pred_", if_node_name), "_XlaRecvAtHost"); recv_pred_builder.Attr("Toutputs", std::vector<DataType>{DT_BOOL}); recv_pred_builder.Attr("key", host_transfer_key); recv_pred_builder.Attr("device_ordinal", device_ordinal_value); recv_pred_builder.Attr(xla_cluster_attr_name, xla_cluster_name); recv_pred_builder.Attr(outside_compilation_attr_name, outside_compilation_name); recv_pred_builder.Attr(kXlaHasHostTransferAttrName, true); recv_pred_builder.Input(key_placeholder->name(), 0, DT_STRING); NodeDef recv_pred_def; TF_RETURN_IF_ERROR(recv_pred_builder.Finalize(&recv_pred_def)); TF_ASSIGN_OR_RETURN(Node * recv_pred_node, host_graph.AddNode(recv_pred_def)); host_graph.AddEdge(key_placeholder, 0, recv_pred_node, 0); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, then_branch_host_func_name, fld)); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, else_branch_host_func_name, fld)); NodeDefBuilder if_builder(absl::StrCat("oc_if_", if_node_name), "If"); if_builder.Attr("Tcond", DT_BOOL); if_builder.Attr("Tin", std::vector<DataType>{DT_STRING}); if_builder.Attr("Tout", std::vector<DataType>{}); NameAttrList host_then_branch, host_else_branch; host_then_branch.set_name(then_branch_host_func_name); (*host_then_branch.mutable_attr())["_device_ordinal"] = device_ordinal_value; host_else_branch.set_name(else_branch_host_func_name); (*host_else_branch.mutable_attr())["_device_ordinal"] = device_ordinal_value; if_builder.Attr("then_branch", host_then_branch); if_builder.Attr("else_branch", host_else_branch); if_builder.Attr(kXlaHasHostTransferAttrName, true); if_builder.Attr(xla_cluster_attr_name, xla_cluster_name); if_builder.Attr(outside_compilation_attr_name, outside_compilation_name); if_builder.Input(recv_pred_node->name(), 0, DT_BOOL); std::vector<NodeDefBuilder::NodeOut> if_inputs{ {key_placeholder->name(), 0, DT_STRING}}; if_builder.Input(if_inputs); NodeDef if_def; TF_RETURN_IF_ERROR(if_builder.Finalize(&if_def)); TF_ASSIGN_OR_RETURN(Node * if_node, host_graph.AddNode(if_def)); host_graph.AddEdge(recv_pred_node, 0, if_node, 0); host_graph.AddEdge(key_placeholder, 0, if_node, 1); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status AddSendLoopPredToLoopCond( const string& cond_xla_func_name, const string& host_transfer_key, NameAttrList* loop_cond_func, FunctionLibraryDefinition* fld, Node* while_node) { std::unique_ptr<FunctionBody> fbody; const FunctionDef* loop_cond_fdef = fld->Find(loop_cond_func->name()); TF_RET_CHECK(loop_cond_fdef); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *loop_cond_fdef, AttrSlice(&loop_cond_func->attr()), fld, &fbody)); Graph* g = fbody->graph; Node* ret_node = nullptr; for (Node* n : g->nodes()) { if (n->type_string() == "_Retval") { if (ret_node) { return errors::Internal("Multiple return node for loop cond function ", loop_cond_func->name(), ": ", ret_node->DebugString(), " and ", n->DebugString()); } else { ret_node = n; } } } if (!ret_node) { return errors::Internal("No _Retval node for loop cond function ", loop_cond_func->name()); } Node* loop_cond; TF_RETURN_IF_ERROR(ret_node->input_node(0, &loop_cond)); NodeDefBuilder send_loop_cond_builder( absl::StrCat("send_oc_while_cond_", while_node->name()), "XlaSendToHost"); send_loop_cond_builder.Attr("Tinput", DT_BOOL); send_loop_cond_builder.Attr("key", absl::StrCat(host_transfer_key, "_dtoh_0")); send_loop_cond_builder.Attr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); send_loop_cond_builder.Attr(kXlaOriginalOutsideCompilationNodeName, send_loop_cond_builder.node_name()); SetMaximalSharding(send_loop_cond_builder); send_loop_cond_builder.Input(loop_cond->name(), 0, DT_BOOL); NodeDef send_loop_cond_def; TF_RETURN_IF_ERROR(send_loop_cond_builder.Finalize(&send_loop_cond_def)); TF_ASSIGN_OR_RETURN(Node * send_loop_cond_node, g->AddNode(send_loop_cond_def)); g->AddEdge(loop_cond, 0, send_loop_cond_node, 0); FunctionDef replace_fdef; if (loop_cond_func->name() == cond_xla_func_name) { TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, loop_cond_func->name(), &replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(loop_cond_func->name(), replace_fdef)); } else { const auto new_name = fld->UniqueFunctionName( absl::StrCat(loop_cond_func->name(), "_send_pred_added_")); TF_RETURN_IF_ERROR(GraphToFunctionDef(*g, new_name, &replace_fdef)); TF_RETURN_IF_ERROR(fld->AddFunctionDef(replace_fdef)); loop_cond_func->set_name(new_name); while_node->ClearAttr("cond"); while_node->AddAttr("cond", *loop_cond_func); } return absl::OkStatus(); } Status RewriteHostWhileLoopCond( const string& cond_host_func_name, const string& while_node_name, const string& host_transfer_key, const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& outside_compilation_name, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, cond_host_func_name, fld)); AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_temp_value; std::unique_ptr<FunctionBody> cond_fbody; const FunctionDef* cond_host_func = fld->Find(cond_host_func_name); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*cond_host_func, AttrSlice(&attrs), fld, &cond_fbody)); Graph* cond_graph = cond_fbody->graph; Node* key_arg = nullptr; for (Node* n : cond_graph->nodes()) { if (n->type_string() == "_Arg") { key_arg = n; } } if (!key_arg) { return errors::Internal( "No _Arg node found for host compute key in function ", cond_host_func_name); } NodeDefBuilder recv_pred_builder( absl::StrCat("recv_oc_while_cond_", while_node_name), "_XlaRecvAtHost"); recv_pred_builder.Attr("Toutputs", std::vector<DataType>{DT_BOOL}); recv_pred_builder.Attr("key", host_transfer_key); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); recv_pred_builder.Attr("device_ordinal", device_ordinal_value); recv_pred_builder.Attr(xla_cluster_attr_name, xla_cluster_name); recv_pred_builder.Attr(outside_compilation_attr_name, outside_compilation_name); recv_pred_builder.Attr(kXlaHasHostTransferAttrName, true); recv_pred_builder.Input(key_arg->name(), 0, DT_STRING); NodeDef recv_pred_def; TF_RETURN_IF_ERROR(recv_pred_builder.Finalize(&recv_pred_def)); TF_ASSIGN_OR_RETURN(Node * recv_pred_node, cond_graph->AddNode(recv_pred_def)); cond_graph->AddEdge(key_arg, 0, recv_pred_node, 0); NodeDefBuilder ret_builder( absl::StrCat("recv_oc_while_cond_ret_", while_node_name), "_Retval"); ret_builder.Attr("T", DT_BOOL); ret_builder.Attr("index", 0); ret_builder.Input(recv_pred_node->name(), 0, DT_BOOL); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, cond_graph->AddNode(ret_def)); cond_graph->AddEdge(recv_pred_node, 0, ret_node, 0); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(cond_graph)); FunctionDef cond_replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*cond_graph, cond_host_func_name, HostGraphControlRetMapping, &cond_replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(cond_host_func_name, cond_replace_fdef)); return absl::OkStatus(); } Status RewriteHostWhileLoopBody( const string& body_host_func_name, const string& while_node_name, const string& host_transfer_key, const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& outside_compilation_name, FunctionLibraryDefinition* fld) { TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, body_host_func_name, fld)); AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> attrs; attrs["_device_ordinal"] = device_ordinal_temp_value; std::unique_ptr<FunctionBody> body_fbody; const FunctionDef* body_host_func = fld->Find(body_host_func_name); TF_RET_CHECK(body_host_func); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*body_host_func, AttrSlice(&attrs), fld, &body_fbody)); Graph* body_graph = body_fbody->graph; Node* key_arg = nullptr; for (Node* n : body_graph->nodes()) { if (n->type_string() == "_Arg") { key_arg = n; } } if (!key_arg) { return errors::Internal( "No _Arg node found for host compute key in function ", body_host_func_name); } NodeDefBuilder ret_builder( absl::StrCat("recv_oc_while_body_ret_", while_node_name), "_Retval"); ret_builder.Attr("T", DT_STRING); ret_builder.Attr("index", 0); ret_builder.Input(key_arg->name(), 0, DT_STRING); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, body_graph->AddNode(ret_def)); body_graph->AddEdge(key_arg, 0, ret_node, 0); TF_RETURN_IF_ERROR(ResetDeviceOrdinalToPlaceholderValue(body_graph)); FunctionDef body_replace_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*body_graph, body_host_func_name, HostGraphControlRetMapping, &body_replace_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(body_host_func_name, body_replace_fdef)); return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status BuildHostGraphForWhileNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const string& while_node_name, const string& host_transfer_key, const string& host_graph_func_name, FunctionLibraryDefinition* fld, const string& cond_host_func_name, const string& body_host_func_name) { Graph host_graph(fld); string outside_compilation_name = absl::StrCat("oc_while_", while_node_name); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); TF_RETURN_IF_ERROR(RewriteHostWhileLoopCond( cond_host_func_name, while_node_name, host_transfer_key, xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, outside_compilation_name, fld)); TF_RETURN_IF_ERROR(RewriteHostWhileLoopBody( body_host_func_name, while_node_name, host_transfer_key, xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, outside_compilation_name, fld)); NodeDefBuilder while_builder(absl::StrCat("oc_while_", while_node_name), "While"); while_builder.Attr("T", std::vector<DataType>{DT_STRING}); NameAttrList func; AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); (*func.mutable_attr())["_device_ordinal"] = device_ordinal_value; func.set_name(cond_host_func_name); while_builder.Attr("cond", func); func.set_name(body_host_func_name); while_builder.Attr("body", func); while_builder.Attr(kXlaHasHostTransferAttrName, true); while_builder.Attr(xla_cluster_attr_name, xla_cluster_name); while_builder.Attr(outside_compilation_attr_name, outside_compilation_name); while_builder.Attr("parallel_iterations", 1); std::vector<NodeDefBuilder::NodeOut> while_inputs{ {key_placeholder->name(), 0, DT_STRING}}; while_builder.Input(while_inputs); NodeDef while_def; TF_RETURN_IF_ERROR(while_builder.Finalize(&while_def)); TF_ASSIGN_OR_RETURN(Node * while_node, host_graph.AddNode(while_def)); host_graph.AddEdge(key_placeholder, 0, while_node, 0); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } Status BuildHostGraphForFuncCallNode( const string& xla_cluster_attr_name, const string& xla_cluster_name, const string& outside_compilation_attr_name, const string& func_call_node_name, const string& func_call_host_func_name, const string& host_graph_func_name, FunctionLibraryDefinition* fld) { Graph host_graph(fld); AttrValue device_ordinal_value; device_ordinal_value.set_placeholder("_device_ordinal"); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name, &host_graph)); TF_RETURN_IF_ERROR(ReplaceKeyPlaceholderWithArgNode( xla_cluster_name, func_call_host_func_name, fld)); NodeDefBuilder call_builder(absl::StrCat("oc_call_", func_call_node_name), func_call_host_func_name, fld); call_builder.Input(key_placeholder->name(), 0, DT_STRING); call_builder.Attr("_device_ordinal", device_ordinal_value); call_builder.Attr(kXlaHasHostTransferAttrName, true); call_builder.Attr(xla_cluster_attr_name, xla_cluster_name); call_builder.Attr(outside_compilation_attr_name, call_builder.node_name()); NodeDef call_def; TF_RETURN_IF_ERROR(call_builder.Finalize(&call_def)); TF_ASSIGN_OR_RETURN(Node * call_node, host_graph.AddNode(call_def)); host_graph.AddEdge(key_placeholder, 0, call_node, 0); FunctionDef oc_host_graph_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(host_graph, host_graph_func_name, HostGraphControlRetMapping, &oc_host_graph_fdef)); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, oc_host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(oc_host_graph_fdef)); } return absl::OkStatus(); } TF_ATTRIBUTE_NOINLINE Status ExtractOutsideCompilationForFuncCallNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { bool func_has_outside_compilation = false; NameAttrList func; if (fld->Contains(n->type_string())) { func.set_name(n->type_string()); typedef protobuf::Map<string, AttrValue> AttrMap; *func.mutable_attr() = AttrMap(n->attrs().begin(), n->attrs().end()); } else if (n->IsPartitionedCall()) { TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "f", &func)); } else { TF_RET_CHECK(n->type_string() == FunctionLibraryDefinition::kGradientOp); func.set_name(FunctionLibraryDefinition::kGradientOp); *func.mutable_attr() = n->def().attr(); } string canonical_func_name; if (func.name() == FunctionLibraryDefinition::kGradientOp) { NameAttrList forward_func; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "f", &forward_func)); canonical_func_name = absl::StrCat("gradient_", forward_func.name()); } else { canonical_func_name = func.name(); } string new_func_name = absl::StrCat(canonical_func_name, "_oc"); string host_func_name = absl::StrCat("oc_func_call_host_", canonical_func_name); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func, new_func_name, host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &func_has_outside_compilation)); if (!func_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; auto replace_builder = std::make_unique<NodeDefBuilder>(n->name(), new_func_name, fld); std::vector<NodeDefBuilder::NodeOut> inputs(n->num_inputs()); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { continue; } const bool input_size_check = e->dst_input() < static_cast<int>(inputs.size()); TF_RET_CHECK(e->dst_input() >= 0 && input_size_check); inputs[e->dst_input()] = NodeDefBuilder::NodeOut{e->src()->name(), e->src_output(), e->src()->output_type(e->src_output())}; } for (const auto& input : inputs) { replace_builder->Input(input); } for (const auto& attr : n->attrs()) { replace_builder->Attr(attr.first, attr.second); } auto replace_def = std::make_unique<NodeDef>(); TF_RETURN_IF_ERROR(replace_builder->Finalize(replace_def.get())); TF_ASSIGN_OR_RETURN(Node * replace, ReplaceNode(g, n, *replace_def)); replace->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); replace->AddAttr(kXlaOriginalOutsideCompilationNodeName, replace->name()); string oc_host_graph_name = absl::StrCat("oc_func_host_graph_", replace->name()); TF_RETURN_IF_ERROR(BuildHostGraphForFuncCallNode( xla_cluster_attr_name, xla_cluster_name, outside_compilation_attr_name, replace->name(), host_func_name, oc_host_graph_name, fld)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForIfNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { NameAttrList then_branch, else_branch; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "then_branch", &then_branch)); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "else_branch", &else_branch)); bool then_branch_has_outside_compilation = false; bool else_branch_has_outside_compilation = false; string then_branch_host_func_name = absl::StrCat("oc_then_branch_host_if_", then_branch.name()), else_branch_host_func_name = absl::StrCat("oc_else_branch_host_if_", else_branch.name()); string then_branch_xla_func_name = absl::StrCat(then_branch.name(), "_oc"), else_branch_xla_func_name = absl::StrCat(else_branch.name(), "_oc"); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, then_branch, then_branch_xla_func_name, then_branch_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &then_branch_has_outside_compilation)); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, else_branch, else_branch_xla_func_name, else_branch_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &else_branch_has_outside_compilation)); if (!then_branch_has_outside_compilation && !else_branch_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; if (then_branch_has_outside_compilation) { then_branch.set_name(then_branch_xla_func_name); n->ClearAttr("then_branch"); n->AddAttr("then_branch", then_branch); } if (else_branch_has_outside_compilation) { else_branch.set_name(else_branch_xla_func_name); n->ClearAttr("else_branch"); n->AddAttr("else_branch", else_branch); } n->AddAttr(kXlaOriginalOutsideCompilationNodeName, n->name()); string host_transfer_key = absl::StrCat("oc_if_pred_", n->name()); Node* pred_node; TF_RETURN_IF_ERROR(n->input_node(0, &pred_node)); TF_ASSIGN_OR_RETURN( Node * send_pred_node, BuildSendIfPredNode(absl::StrCat("send_oc_if_pred_", n->name()), host_transfer_key, pred_node, g)); n->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{send_pred_node->name()}); g->AddControlEdge(send_pred_node, n); if (!then_branch_has_outside_compilation) { std::unique_ptr<Graph> then_branch_host_graph(new Graph(fld)); std::vector<string> then_branch_host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph( xla_cluster_name, outside_compilation_attr_name, then_branch_host_graphs, fld, &then_branch_host_graph)); FunctionDef then_branch_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*then_branch_host_graph, then_branch_host_func_name, &then_branch_host_fdef)); if (fld->Find(then_branch_host_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(then_branch_host_func_name, then_branch_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(then_branch_host_fdef)); } } if (!else_branch_has_outside_compilation) { std::unique_ptr<Graph> else_branch_host_graph(new Graph(fld)); std::vector<string> else_branch_host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph( xla_cluster_name, outside_compilation_attr_name, else_branch_host_graphs, fld, &else_branch_host_graph)); FunctionDef else_branch_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*else_branch_host_graph, else_branch_host_func_name, &else_branch_host_fdef)); if (fld->Find(else_branch_host_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(else_branch_host_func_name, else_branch_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(else_branch_host_fdef)); } } string oc_host_graph_name = absl::StrCat("oc_if_host_graph_", n->name()); TF_RETURN_IF_ERROR(BuildHostGraphForIfNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, n->name(), host_transfer_key, oc_host_graph_name, fld, then_branch_host_func_name, else_branch_host_func_name)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForWhileNode( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, Graph* g, Node* n, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { NameAttrList cond, body; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "cond", &cond)); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "body", &body)); bool cond_has_outside_compilation = false; bool body_has_outside_compilation = false; string cond_host_func_name = absl::StrCat("oc_cond_host_while_", cond.name()), body_host_func_name = absl::StrCat("oc_body_host_while_", body.name()); string cond_xla_func_name = absl::StrCat(cond.name(), "_oc"), body_xla_func_name = absl::StrCat(body.name(), "_oc"); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, cond, cond_xla_func_name, cond_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &cond_has_outside_compilation)); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, body, body_xla_func_name, body_host_func_name, host_compute_core, flr, fld, shape_inference_graphs, &body_has_outside_compilation)); if (!cond_has_outside_compilation && !body_has_outside_compilation) { return absl::OkStatus(); } *has_outside_compilation = true; if (cond_has_outside_compilation) { cond.set_name(cond_xla_func_name); n->ClearAttr("cond"); n->AddAttr("cond", cond); } if (body_has_outside_compilation) { body.set_name(body_xla_func_name); n->ClearAttr("body"); n->AddAttr("body", body); } n->AddAttr(kXlaOriginalOutsideCompilationNodeName, n->name()); string host_transfer_key = absl::StrCat("oc_while_pred_", n->name()); TF_RETURN_IF_ERROR(AddSendLoopPredToLoopCond( cond_xla_func_name, host_transfer_key, &cond, fld, n)); n->AddAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}); if (!cond_has_outside_compilation) { std::unique_ptr<Graph> cond_host_graph(new Graph(fld)); std::vector<string> host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, host_graphs, fld, &cond_host_graph)); FunctionDef cond_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*cond_host_graph, cond_host_func_name, &cond_host_fdef)); if (fld->Find(cond_host_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(cond_host_func_name, cond_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(cond_host_fdef)); } } if (!body_has_outside_compilation) { std::unique_ptr<Graph> body_host_graph(new Graph(fld)); std::vector<string> host_graphs; TF_RETURN_IF_ERROR(ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, host_graphs, fld, &body_host_graph)); FunctionDef body_host_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*body_host_graph, body_host_func_name, &body_host_fdef)); if (fld->Find(body_host_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(body_host_func_name, body_host_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(body_host_fdef)); } } string oc_host_graph_name = absl::StrCat("oc_while_host_graph_", n->name()); TF_RETURN_IF_ERROR(BuildHostGraphForWhileNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, n->name(), host_transfer_key, oc_host_graph_name, fld, cond_host_func_name, body_host_func_name)); host_graphs->push_back(oc_host_graph_name); return absl::OkStatus(); } Status ExtractOutsideCompilationForNodesWithAssociatedFunctions( Graph* g, const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const std::map<string, int>& host_compute_core, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* host_graphs, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { std::vector<Node*> if_nodes, while_nodes, func_call_nodes; for (Node* n : g->nodes()) { if (n->IsIfNode()) { if_nodes.push_back(n); } else if (n->IsWhileNode()) { while_nodes.push_back(n); } else if (IsFunctionCall(*fld, *n)) { func_call_nodes.push_back(n); } } for (Node* n : func_call_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFuncCallNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } for (Node* n : if_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForIfNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } for (Node* n : while_nodes) { TF_RETURN_IF_ERROR(ExtractOutsideCompilationForWhileNode( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, g, n, flr, fld, host_graphs, shape_inference_graphs, has_outside_compilation)); } return absl::OkStatus(); } Status CopyOutsideCompilationConstNodes( Graph* g, const string& outside_compilation_attr_name) { for (Node* n : g->op_nodes()) { if (!n->IsConstant() || !HasNodeAttr(n->def(), outside_compilation_attr_name)) { continue; } std::vector<const Edge*> out_edges(n->out_edges().begin(), n->out_edges().end()); bool has_non_oc_output = false; for (const Edge* e : out_edges) { if (!e->IsControlEdge() && !HasNodeAttr(e->dst()->def(), outside_compilation_attr_name)) { has_non_oc_output = true; break; } } if (!has_non_oc_output) { continue; } NodeDef copy_def = n->def(); copy_def.set_name(g->NewName(n->name())); copy_def.mutable_attr()->erase(outside_compilation_attr_name); TF_ASSIGN_OR_RETURN(Node * copy_node, g->AddNode(copy_def)); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), copy_node); } } for (const Edge* e : out_edges) { if (!e->IsControlEdge() && !HasNodeAttr(e->dst()->def(), outside_compilation_attr_name)) { Node* dst = e->dst(); int dst_input = e->dst_input(); g->RemoveEdge(e); g->AddEdge(copy_node, 0, dst, dst_input); } } } return absl::OkStatus(); } } Status RewriteOutsideCompilationSubgraphFn::operator()( const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* graph, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* node_def) { string old_name = node_def->op(); string new_name = absl::StrCat(xla_cluster_name_, "_", new_function_name_, "_", old_name); node_def->set_op(new_name); node_def->set_name(new_name); FixupSourceAndSinkEdges(graph->get()); TF_ASSIGN_OR_RETURN( Node * key_placeholder, AddHostComputeKeyPlaceholder(xla_cluster_name_, graph->get())); std::vector<DataType> recv_at_host_dtypes; TF_ASSIGN_OR_RETURN( Node * recv_at_host_node, ReplaceArgNodesWithRecvAtHostNode(graph->get(), new_name, &recv_at_host_dtypes, key_placeholder)); std::vector<DataType> send_from_host_dtypes; TF_ASSIGN_OR_RETURN( Node * send_from_host_node, ReplaceRetNodesWithSendFromHostNode( graph->get(), new_name, &send_from_host_dtypes, key_placeholder)); for (Node* n : (*graph)->nodes()) { if (IsKeyPlaceholderNode(*n)) { continue; } n->AddAttr(xla_cluster_attr_name_, xla_cluster_name_); n->AddAttr(outside_compilation_attr_name_, old_name); } std::optional<std::vector<PartialTensorShape>> shapes = GetInferredInputShapes(send_from_host_dtypes.size(), send_from_host_node); for (Node* n : (*graph)->nodes()) { n->ClearAttr(kXlaInferredShapesAttrName); } for (Node* n : (*graph)->nodes()) { if (HasNodeAttr(n->def(), kXlaConnectedToXlaComputationAttrName)) { (*graph)->AddControlEdge(n, send_from_host_node); n->ClearAttr(kXlaConnectedToXlaComputationAttrName); } if (HasNodeAttr(n->def(), kXlaConnectedFromXlaComputationAttrName)) { (*graph)->AddControlEdge(recv_at_host_node, n); n->ClearAttr(kXlaConnectedFromXlaComputationAttrName); } } if (send_from_host_node->in_edges().size() > 1) { (*graph)->AddControlEdge(send_from_host_node, (*graph)->sink_node()); } PruneForReverseReachability( graph->get(), std::unordered_set<const Node*>{(*graph)->sink_node()}); AddNodeAttr("_outside_compilation_subgraph", old_name, node_def); if (shapes) { NameAttrList shape_inference_graph; AddNodeAttr("shape_inference_graph", shape_inference_graph, node_def); AddNodeAttr("shapes", *shapes, node_def); } else { string shape_inference_func_name = absl::StrCat("_outside_compilation_shape_inference_", new_name); NameAttrList shape_inference_graph; shape_inference_graph.set_name(shape_inference_func_name); AddNodeAttr("shape_inference_graph", shape_inference_graph, node_def); AddNodeAttr("shapes", std::vector<TensorShapeProto>{}, node_def); } AddNodeAttr("ancestors", std::vector<string>{}, node_def); AddNodeAttr("Tinputs", recv_at_host_dtypes, node_def); AddNodeAttr("Toutputs", send_from_host_dtypes, node_def); AddNodeAttr("key", absl::StrCat("host_compute_channel_", new_name), node_def); return absl::OkStatus(); } Status ExtractOutsideCompilationForFunction( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const string& xla_cluster_name, const NameAttrList& func_name_attrs, const string& new_func_name, const string& host_graph_func_name, const std::map<string, int>& host_compute_core, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, std::vector<string>* shape_inference_graphs, bool* has_outside_compilation) { const string& func_name = func_name_attrs.name(); FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR( flr->Instantiate(func_name, AttrSlice(&func_name_attrs.attr()), &handle)); Status ret_status = absl::OkStatus(); auto cleanup_handle = gtl::MakeCleanup([&]() { auto s = flr->ReleaseHandle(handle); if (!s.ok()) { ret_status.Update(s); } }); const FunctionBody* fbody = flr->GetFunctionBody(handle); *has_outside_compilation = false; for (Node* n : fbody->graph->nodes()) { if (HasNodeAttr(n->def(), outside_compilation_attr_name)) { *has_outside_compilation = true; break; } } if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("extract_outside_compilation_for_func_before_", func_name), *fbody->graph, fld); } std::unique_ptr<Graph> graph_out; std::vector<string> outside_compilation_host_graphs; std::vector<string> shape_inference_graphs_to_rewrite; if (*has_outside_compilation) { TF_RETURN_IF_ERROR(CopyOutsideCompilationConstNodes( fbody->graph, outside_compilation_attr_name)); TF_ASSIGN_OR_RETURN(auto cluster_deps, OutsideCompilationClusterDependencies( fbody->graph, outside_compilation_attr_name)); TF_RETURN_IF_ERROR(PreprocessEdgesBetweenOutsideCompilations( fbody->graph, outside_compilation_attr_name)); auto rewrite_fn = std::make_unique<RewriteOutsideCompilationSubgraphFn>( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, new_func_name); TF_RETURN_IF_ERROR(EncapsulateSubgraphsInFunctions( outside_compilation_attr_name, *fbody->graph, *rewrite_fn, true, &graph_out, fld)); std::vector<Node*> outside_compilation_nodes; for (Node* n : graph_out->nodes()) { if (HasNodeAttr(n->def(), "_outside_compilation_subgraph")) { outside_compilation_nodes.push_back(n); outside_compilation_host_graphs.push_back(n->name()); auto shape_inference_graph = std::make_unique<NameAttrList>(); TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "shape_inference_graph", shape_inference_graph.get())); if (!shape_inference_graph->name().empty()) { shape_inference_graphs->push_back(shape_inference_graph->name()); shape_inference_graphs_to_rewrite.push_back( shape_inference_graph->name()); const FunctionDef* xla_fdef = fld->Find(n->name()); if (!xla_fdef) { return errors::Internal("Cannot find XLA function ", n->name()); } auto shape_inference_fdef = std::make_unique<FunctionDef>(*xla_fdef); shape_inference_fdef->mutable_signature()->set_name( shape_inference_graph->name()); if (fld->Find(shape_inference_graph->name())) { TF_RETURN_IF_ERROR(fld->ReplaceFunction( shape_inference_graph->name(), *shape_inference_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*shape_inference_fdef)); } } } } std::map<string, Node*> host_compute_nodes; for (Node* n : outside_compilation_nodes) { auto host_compute_node_or = ReplaceOutsideCompilationCallNode( graph_out.get(), n, host_compute_core, *cluster_deps); TF_RETURN_IF_ERROR(host_compute_node_or.status()); Node* host_compute_node = host_compute_node_or.value(); host_compute_nodes[host_compute_node->name()] = host_compute_node; } for (const auto& iter : host_compute_nodes) { Node* host_compute_node = iter.second; std::vector<string> token_input_node_names; TF_RETURN_IF_ERROR(GetNodeAttr(host_compute_node->def(), kXlaTokenInputNodesAttrName, &token_input_node_names)); for (const string& node_name : token_input_node_names) { if (node_name == kXlaTokenArgNodeName) { continue; } auto iter = host_compute_nodes.find(node_name); TF_RET_CHECK(iter != host_compute_nodes.end()); graph_out->AddControlEdge(iter->second, host_compute_node); } } } Graph* g = (*has_outside_compilation) ? graph_out.get() : fbody->graph; TF_RETURN_IF_ERROR(ExtractOutsideCompilationForNodesWithAssociatedFunctions( g, xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, host_compute_core, flr, fld, &outside_compilation_host_graphs, shape_inference_graphs, has_outside_compilation)); if (*has_outside_compilation) { std::unique_ptr<Graph> host_graph; TF_RETURN_IF_ERROR( ConstructHostGraph(xla_cluster_name, outside_compilation_attr_name, outside_compilation_host_graphs, fld, &host_graph)); auto host_graph_fdef = std::make_unique<FunctionDef>(); TF_RETURN_IF_ERROR(GraphToFunctionDef(*host_graph, host_graph_func_name, HostGraphControlRetMapping, host_graph_fdef.get())); if (fld->Find(host_graph_func_name)) { TF_RETURN_IF_ERROR( fld->ReplaceFunction(host_graph_func_name, *host_graph_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*host_graph_fdef)); } for (const string& shape_inference_graph : shape_inference_graphs_to_rewrite) { TF_RETURN_IF_ERROR( RewriteShapeInferenceGraph(shape_inference_graph, host_graph.get(), nullptr, fld)); } for (const string& func : outside_compilation_host_graphs) { TF_RETURN_IF_ERROR(fld->RemoveFunction(func)); } auto updated_fdef = std::make_unique<FunctionDef>(); TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, new_func_name, updated_fdef.get())); updated_fdef->mutable_signature()->set_is_stateful(true); const FunctionDef* original_fdef = fld->Find(func_name); if (original_fdef) { for (const auto& attr : original_fdef->attr()) { (*updated_fdef->mutable_attr())[attr.first] = attr.second; } } if (fld->Find(new_func_name)) { TF_RETURN_IF_ERROR(fld->ReplaceFunction(new_func_name, *updated_fdef)); } else { TF_RETURN_IF_ERROR(fld->AddFunctionDef(*updated_fdef)); } if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("extract_outside_compilation_for_func_after_", func_name), *g, fld); } } return ret_status; } Status ExtractOutsideCompilation( const string& xla_cluster_attr_name, const string& outside_compilation_attr_name, const std::unordered_map<string, XlaClusterInfo>& clusters, Graph* g, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, bool* modified) { if (VLOG_IS_ON(4)) { DumpGraphToFile("extract_outside_compilation_before", *g, fld); } *modified = false; auto node_name_index = g->BuildNodeNameIndex(); for (auto& iter : clusters) { string xla_cluster_name = iter.first; Node* n = iter.second.node; auto const& func_name_attrs = iter.second.func_name_attrs; auto const& host_compute_core = iter.second.host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; string host_graph_func_name = absl::StrCat("oc_host_graph_", xla_cluster_name); TF_RETURN_IF_ERROR(ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func_name_attrs, func_name_attrs.name(), host_graph_func_name, host_compute_core, flr, fld, &shape_inference_graphs, &has_outside_compilation)); *modified |= has_outside_compilation; if (has_outside_compilation) { string pivot_name = absl::StrCat(xla_cluster_name, "/pivot"); Node* pivot_node = node_name_index[pivot_name]; TF_RETURN_IF_ERROR(ExpandHostGraphIntoMainGraph( g, fld, host_graph_func_name, n, pivot_node)); TF_RETURN_IF_ERROR(fld->RemoveFunction(host_graph_func_name)); for (const auto& shape_inference_graph_name : shape_inference_graphs) { TF_RETURN_IF_ERROR(RewriteShapeInferenceGraph( shape_inference_graph_name, g, pivot_node, fld)); } } } if (VLOG_IS_ON(4)) { DumpGraphToFile("extract_outside_compilation_after", *g, fld); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "xla/test.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { TEST(RewriteOutsideCompilationSubgraphFnTest, Basic) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg0 = ops::_Arg(s.WithOpName("arg0"), DT_INT32, 0); Output arg1 = ops::_Arg(s.WithOpName("arg1"), DT_FLOAT, 1); Output arg2 = ops::_Arg(s.WithOpName("arg2"), DT_INT32, 2); Output add = ops::Add(s.WithOpName("add"), arg0, arg0); auto ret0 = ops::_Retval(s.WithOpName("ret0"), add, 0); auto ret1 = ops::_Retval(s.WithOpName("ret1"), arg1, 1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); Node *add_node = node_name_image["add"]; EXPECT_NE(add_node, nullptr); add_node->AddAttr(kXlaConnectedToXlaComputationAttrName, "cluster"); add_node->AddAttr(kXlaConnectedFromXlaComputationAttrName, "cluster"); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); for (Node *n : g->nodes()) { EXPECT_NE(n->type_string(), "_Arg"); } Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_NE(recv_at_host, nullptr); std::vector<DataType> recv_at_host_dtypes; TF_CHECK_OK( GetNodeAttr(recv_at_host->attrs(), "Toutputs", &recv_at_host_dtypes)); EXPECT_EQ(recv_at_host_dtypes.size(), 3); EXPECT_EQ(recv_at_host_dtypes[0], DT_INT32); EXPECT_EQ(recv_at_host_dtypes[1], DT_FLOAT); EXPECT_EQ(recv_at_host_dtypes[2], DT_INT32); for (Node *n : g->nodes()) { EXPECT_NE(n->type_string(), "_Retval"); } Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_NE(send_from_host, nullptr); std::vector<DataType> send_from_host_dtypes; TF_CHECK_OK( GetNodeAttr(send_from_host->attrs(), "Tinputs", &send_from_host_dtypes)); EXPECT_EQ(send_from_host_dtypes.size(), 2); EXPECT_EQ(send_from_host_dtypes[0], DT_INT32); EXPECT_EQ(send_from_host_dtypes[1], DT_FLOAT); add_node = node_name_image["add"]; EXPECT_NE(add_node, nullptr); EXPECT_TRUE(HasNodeAttr(add_node->def(), "_xla")); EXPECT_TRUE(HasNodeAttr(add_node->def(), "_oc")); bool has_control_edge_from_recv_at_host = false; for (auto e : add_node->in_edges()) { if (e->IsControlEdge() && e->src() == recv_at_host) { has_control_edge_from_recv_at_host = true; } } EXPECT_TRUE(has_control_edge_from_recv_at_host); bool has_control_edge_to_send_from_host = false; for (auto e : add_node->out_edges()) { if (e->IsControlEdge() && e->dst() == send_from_host) { has_control_edge_to_send_from_host = true; } } EXPECT_TRUE(has_control_edge_to_send_from_host); NameAttrList shape_inference_graph; TF_CHECK_OK(GetNodeAttr(AttrSlice(&call_node_def.attr()), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), "_outside_compilation_shape_inference_cluster__0"); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoSendFromHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg0 = ops::_Arg(s.WithOpName("arg0"), DT_INT32, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_NE(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_EQ(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoRecvAtHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); auto ret = ops::_Retval(s.WithOpName("ret"), const0, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_NE(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_EQ(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_NE(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, NoKeyPlaceholder) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); auto node_name_image = g->BuildNodeNameIndex(); Node *key_placeholder = node_name_image["cluster_key_placeholder"]; EXPECT_EQ(key_placeholder, nullptr); Node *recv_at_host = node_name_image["outside_compilation_cluster__0_recv"]; EXPECT_EQ(recv_at_host, nullptr); Node *send_from_host = node_name_image["outside_compilation_cluster__0_send"]; EXPECT_EQ(send_from_host, nullptr); } TEST(RewriteOutsideCompilationSubgraphFnTest, ShapesInferred) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); auto ret = ops::_Retval(s.WithOpName("ret"), const0, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); Node *const0_node = node_name_image["const0"]; EXPECT_NE(const0_node, nullptr); PartialTensorShape shape({2}); const0_node->AddAttr(kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); RewriteOutsideCompilationSubgraphFn rewrite_fn("_xla", "_oc", "cluster", ""); std::vector<OutputTensor> arg_source_tensors; NodeDef call_node_def; call_node_def.set_op("0"); TF_CHECK_OK( rewrite_fn(arg_source_tensors, &g, nullptr, nullptr, &call_node_def)); node_name_image = g->BuildNodeNameIndex(); std::vector<TensorShapeProto> shapes; TF_CHECK_OK(GetNodeAttr(AttrSlice(&call_node_def.attr()), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 1); EXPECT_EQ(shapes[0].dim_size(), 1); } class ExtractOutsideCompilationForFunctionTest : public ::testing::Test { public: void SetUp() override { SessionOptions session_options; std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); } Status ExtractOutsideCompilationTest( const string &xla_cluster_attr_name, const string &outside_compilation_attr_name, const string &xla_cluster_name, const NameAttrList &func_name_attrs, const string &new_func_name, const string &host_graph_func_name, const std::map<string, int> &host_compute_core, FunctionLibraryDefinition *fld, std::vector<string> *shape_inference_graphs, bool *has_outside_compilation) { OptimizerOptions opts; pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, fld, opts, nullptr); auto flr = pflr_->GetFLR("/job:localhost/replica:0/task:0/cpu:0"); return ExtractOutsideCompilationForFunction( xla_cluster_attr_name, outside_compilation_attr_name, xla_cluster_name, func_name_attrs, new_func_name, host_graph_func_name, host_compute_core, flr, fld, shape_inference_graphs, has_outside_compilation); } private: std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; }; TEST_F(ExtractOutsideCompilationForFunctionTest, Basic) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity(s.WithOpName("identity1"), identity0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); int tpu_core; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "tpu_core", &tpu_core)); EXPECT_EQ(tpu_core, 1); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "tpu_core", &tpu_core)); EXPECT_EQ(tpu_core, 0); std::vector<TensorShapeProto> shapes; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 0); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "shapes", &shapes)); EXPECT_EQ(shapes.size(), 1); EXPECT_EQ(shapes[0].dim_size(), 1); NameAttrList shape_inference_graph; TF_CHECK_OK(GetNodeAttr(host_compute_0->attrs(), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), ""); TF_CHECK_OK(GetNodeAttr(host_compute_1->attrs(), "shape_inference_graph", &shape_inference_graph)); EXPECT_EQ(shape_inference_graph.name(), ""); EXPECT_EQ(shape_inference_graphs.size(), 0); std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper( *fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; Node *key_placeholder = nullptr, *sequencer = nullptr; for (Node *n : host_graph->nodes()) { if (n->type_string() == "Placeholder" && absl::EndsWith(n->name(), "_key_placeholder")) { EXPECT_EQ(key_placeholder, nullptr); key_placeholder = n; } else if (HasNodeAttr(n->def(), "_xla_host_transfer_sequencer")) { EXPECT_EQ(sequencer, nullptr); sequencer = n; } } EXPECT_NE(key_placeholder, nullptr); EXPECT_NE(sequencer, nullptr); int num_send_from_host = 0, num_recv_at_host = 0; std::vector<Node *> send_recv_nodes; for (Node *n : host_graph->nodes()) { if (n->type_string() == "_XlaSendFromHost") { num_send_from_host++; send_recv_nodes.push_back(n); } else if (n->type_string() == "_XlaRecvAtHost") { num_recv_at_host++; send_recv_nodes.push_back(n); } } EXPECT_EQ(num_send_from_host, 1); EXPECT_EQ(num_recv_at_host, 1); for (Node *n : send_recv_nodes) { Node *input_node; TF_CHECK_OK(n->input_node(n->num_inputs() - 1, &input_node)); EXPECT_EQ(input_node, key_placeholder); bool has_control_edge_to_sequencer = false; for (const Edge *e : n->out_edges()) { if (e->IsControlEdge() && e->dst() == sequencer) { has_control_edge_to_sequencer = true; break; } } EXPECT_TRUE(has_control_edge_to_sequencer); } } TEST_F(ExtractOutsideCompilationForFunctionTest, NoHostGraph) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); EXPECT_EQ(fld.Find("host_graph"), nullptr); } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInIf) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity_true_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_true_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_true_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *true_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "true_fn", true_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity_false_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_false_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_false_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *false_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "false_fn", false_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output cond = ops::Const(s.WithOpName("const0"), true, {2}); Output input = ops::Const(s.WithOpName("const1"), 1, {2}); NameAttrList true_fn; true_fn.set_name("true_fn"); NameAttrList false_fn; false_fn.set_name("false_fn"); auto if_op = ops::If(s.WithOpName("if"), cond, std::initializer_list<Input>{cond, input}, {DT_INT32}, true_fn, false_fn); ops::_Retval retval(s.WithOpName("retval"), if_op.output[0], 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *recv_if_pred_node = node_name_index["recv_oc_if_pred_if"]; EXPECT_NE(recv_if_pred_node, nullptr); Node *if_oc_node = node_name_index["oc_if_if"]; EXPECT_NE(if_oc_node, nullptr); Node *if_oc_node_cond_input; TF_CHECK_OK(if_oc_node->input_node(0, &if_oc_node_cond_input)); EXPECT_EQ(if_oc_node_cond_input, recv_if_pred_node); const FunctionDef *true_def = fld.Find("oc_then_branch_host_if_true_fn"); EXPECT_NE(true_def, nullptr); bool has_identity_true_fn_node = false; for (const auto &node_def : true_def->node_def()) { if (node_def.name() == "identity_true_fn") { has_identity_true_fn_node = true; break; } } EXPECT_TRUE(has_identity_true_fn_node); const FunctionDef *false_def = fld.Find("oc_else_branch_host_if_false_fn"); EXPECT_NE(false_def, nullptr); bool has_identity_false_fn_node = false; for (const auto &node_def : false_def->node_def()) { if (node_def.name() == "identity_false_fn") { has_identity_false_fn_node = true; break; } } EXPECT_TRUE(has_identity_false_fn_node); } { std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); Graph *xla_graph = xla_fbody->graph; auto node_name_index = xla_graph->BuildNodeNameIndex(); Node *send_if_pred_node = node_name_index["send_oc_if_pred_if"]; EXPECT_NE(send_if_pred_node, nullptr); bool has_control_edge_to_if = false; for (const Edge *e : send_if_pred_node->out_edges()) { if (e->IsControlEdge() && e->dst()->name() == "if") { has_control_edge_to_if = true; break; } } EXPECT_TRUE(has_control_edge_to_if); Node *if_node = node_name_index["if"]; EXPECT_NE(if_node, nullptr); std::vector<string> token_inputs; TF_CHECK_OK( GetNodeAttr(if_node->def(), "_xla_token_input_nodes", &token_inputs)); EXPECT_THAT(token_inputs, ::testing::ElementsAre("send_oc_if_pred_if")); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInWhile) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_BOOL, 0); Output identity = ops::Identity(s.WithOpName("identity_cond_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_cond_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_cond_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *cond_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cond_fn", cond_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_BOOL, 0); Output identity = ops::Identity(s.WithOpName("identity_body_fn"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity_body_fn"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity_body_fn"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *body_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "body_fn", body_fn_fdef)); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("const0"), true, {2}); NameAttrList cond_fn; cond_fn.set_name("cond_fn"); NameAttrList body_fn; body_fn.set_name("body_fn"); auto while_op = ops::While(s.WithOpName("while"), std::initializer_list<Input>{input}, cond_fn, body_fn); ops::_Retval retval(s.WithOpName("retval"), while_op.output[0], 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *while_oc_node = node_name_index["oc_while_while"]; EXPECT_NE(while_oc_node, nullptr); const FunctionDef *cond_def = fld.Find("oc_cond_host_while_cond_fn"); EXPECT_NE(cond_def, nullptr); bool has_identity_cond_fn_node = false; for (const auto &node_def : cond_def->node_def()) { if (node_def.name() == "identity_cond_fn") { has_identity_cond_fn_node = true; break; } } EXPECT_TRUE(has_identity_cond_fn_node); const FunctionDef *body_def = fld.Find("oc_body_host_while_body_fn"); EXPECT_NE(body_def, nullptr); bool has_identity_body_fn_node = false; for (const auto &node_def : body_def->node_def()) { if (node_def.name() == "identity_body_fn") { has_identity_body_fn_node = true; break; } } EXPECT_TRUE(has_identity_body_fn_node); } { const FunctionDef *cond_def = fld.Find("cond_fn_oc"); EXPECT_NE(cond_def, nullptr); bool has_send_oc_while_cond_node = false; for (const auto &node_def : cond_def->node_def()) { if (node_def.name() == "send_oc_while_cond_while") { has_send_oc_while_cond_node = true; break; } } EXPECT_TRUE(has_send_oc_while_cond_node); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationInFunction) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output arg = ops::_Arg(s.WithOpName("arg"), DT_INT32, 0); Output identity = ops::Identity(s.WithOpName("identity"), arg); ops::_Retval retval(s.WithOpName("retval"), identity, 0); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity"]->AddAttr("_oc", "0"); PartialTensorShape shape({2}); node_name_image["identity"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *true_fn_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "fn", true_fn_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); { std::unique_ptr<Graph> g(new Graph(&fld)); tensorflow::TensorProto tensor_proto; tensor_proto.set_dtype(tensorflow::DT_INT32); tensorflow::TensorShapeProto shape; shape.add_dim()->set_size(2); *tensor_proto.mutable_tensor_shape() = shape; for (int i = 0; i < 2; ++i) { tensor_proto.add_int_val(1); } NodeDef const_def; TF_CHECK_OK(NodeDefBuilder("const", "Const") .Attr("dtype", DT_INT32) .Attr("value", tensor_proto) .Finalize(&const_def)); Status s; Node *const_node = g->AddNode(const_def, &s); TF_CHECK_OK(s); NodeDef fn_def; TF_CHECK_OK(NodeDefBuilder("fn", "fn", &fld) .Input("const", 0, DT_INT32) .Finalize(&fn_def)); Node *fn_node = g->AddNode(fn_def, &s); TF_CHECK_OK(s); g->AddEdge(const_node, 0, fn_node, 0); NodeDef ret_def; TF_CHECK_OK(NodeDefBuilder("ret", "_Retval") .Attr("index", 0) .Attr("T", DT_INT32) .Input("fn", 0, DT_INT32) .Finalize(&ret_def)); Node *ret_node = g->AddNode(ret_def, &s); TF_CHECK_OK(s); g->AddEdge(fn_node, 0, ret_node, 0); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); TF_CHECK_OK(fld.AddFunctionDef(*xla_fdef)); } protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); { std::unique_ptr<FunctionBody> host_fbody; AttrValue device_ordinal_temp_value; device_ordinal_temp_value.set_i(0); protobuf::Map<string, AttrValue> host_func_attrs; host_func_attrs["_device_ordinal"] = device_ordinal_temp_value; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("host_graph"), AttrSlice(&host_func_attrs), &fld, &host_fbody)); Graph *host_graph = host_fbody->graph; auto node_name_index = host_graph->BuildNodeNameIndex(); Node *call_node = node_name_index["oc_call_fn"]; EXPECT_NE(call_node, nullptr); std::unique_ptr<FunctionBody> call_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("oc_func_call_host_fn"), AttrSlice(&host_func_attrs), &fld, &call_fbody)); bool has_recv = false, has_send = false; for (Node *n : call_fbody->graph->nodes()) { if (n->type_string() == "_XlaRecvAtHost") { has_recv = true; } else if (n->type_string() == "_XlaSendFromHost") { has_send = true; } } EXPECT_TRUE(has_recv); EXPECT_TRUE(has_send); } { std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); Graph *xla_graph = xla_fbody->graph; auto node_name_index = xla_graph->BuildNodeNameIndex(); Node *fn_node = node_name_index["fn"]; EXPECT_NE(fn_node, nullptr); EXPECT_EQ(fn_node->type_string(), "fn_oc"); std::unique_ptr<FunctionBody> call_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("fn_oc"), AttrSlice(), &fld, &call_fbody)); bool has_hc = false; for (Node *n : call_fbody->graph->nodes()) { if (n->type_string() == "XlaHostCompute") { has_hc = true; } } EXPECT_TRUE(has_hc); } } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationClusterDataDependency) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity(s.WithOpName("identity1"), identity0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); std::cout << "Graph is " << (*g).ToGraphDefDebug().DebugString() << std::endl; auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); std::vector<string> token_input_nodes; TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_0->attrs()), "_xla_token_input_nodes", &token_input_nodes)); std::vector<string> expected_token_input_nodes_0({"_xla_token_arg_node"}); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_0); token_input_nodes.clear(); std::vector<string> expected_token_input_nodes_1( {"_xla_token_arg_node", "outside_compilation_0_host_compute"}); TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_1->attrs()), "_xla_token_input_nodes", &token_input_nodes)); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_1); bool has_control_edge = false; for (const Edge *e : host_compute_1->in_edges()) { if (e->IsControlEdge() && e->src() == host_compute_0) { has_control_edge = true; break; } } EXPECT_TRUE(has_control_edge); } TEST_F(ExtractOutsideCompilationForFunctionTest, OutsideCompilationClusterControlDependency) { FunctionDefLibrary fdl; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output const0 = ops::Const(s.WithOpName("const0"), 1, {2}); Output identity0 = ops::Identity(s.WithOpName("identity0"), const0); Output identity1 = ops::Identity( s.WithOpName("identity1").WithControlDependencies(identity0), const0); Output identity2 = ops::Identity(s.WithOpName("identity2"), identity1); std::unique_ptr<Graph> g(new Graph(OpRegistry::Global())); TF_CHECK_OK(s.ToGraph(g.get())); std::cout << "Graph is " << (*g).ToGraphDefDebug().DebugString() << std::endl; auto node_name_image = g->BuildNodeNameIndex(); node_name_image["identity0"]->AddAttr("_oc", "0"); node_name_image["identity1"]->AddAttr("_oc", "1"); PartialTensorShape shape({2}); node_name_image["identity1"]->AddAttr( kXlaInferredShapesAttrName, std::vector<PartialTensorShape>{shape}); FunctionDef *xla_fdef = fdl.add_function(); TF_CHECK_OK(GraphToFunctionDef(*g, "cluster", xla_fdef)); } FunctionLibraryDefinition fld(OpRegistry::Global(), fdl); protobuf::Map<string, tensorflow::AttrValue> attrs; std::map<string, int> host_compute_core = {{"0", 1}, {"1", 0}}; std::vector<string> shape_inference_graphs; bool has_outside_compilation; NameAttrList name_attrs; name_attrs.set_name("cluster"); *name_attrs.mutable_attr() = attrs; TF_CHECK_OK(ExtractOutsideCompilationTest( "_xla", "_oc", "cluster", name_attrs, "cluster_rewritten", "host_graph", host_compute_core, &fld, &shape_inference_graphs, &has_outside_compilation)); std::unique_ptr<FunctionBody> xla_fbody; TF_CHECK_OK(FunctionDefToBodyHelper(*fld.Find("cluster_rewritten"), AttrSlice(), &fld, &xla_fbody)); auto node_name_index = xla_fbody->graph->BuildNodeNameIndex(); Node *host_compute_0 = node_name_index["outside_compilation_0_host_compute"]; EXPECT_NE(host_compute_0, nullptr); Node *host_compute_1 = node_name_index["outside_compilation_1_host_compute"]; EXPECT_NE(host_compute_1, nullptr); std::vector<string> token_input_nodes; TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_0->attrs()), "_xla_token_input_nodes", &token_input_nodes)); std::vector<string> expected_token_input_nodes_0({"_xla_token_arg_node"}); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_0); token_input_nodes.clear(); std::vector<string> expected_token_input_nodes_1( {"_xla_token_arg_node", "outside_compilation_0_host_compute"}); TF_CHECK_OK(GetNodeAttr(AttrSlice(host_compute_1->attrs()), "_xla_token_input_nodes", &token_input_nodes)); EXPECT_EQ(token_input_nodes, expected_token_input_nodes_1); bool has_control_edge = false; for (const Edge *e : host_compute_1->in_edges()) { if (e->IsControlEdge() && e->src() == host_compute_0) { has_control_edge = true; break; } } EXPECT_TRUE(has_control_edge); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/extract_outside_compilation_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/extract_outside_compilation_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
35a86109-ab28-4382-a184-1d795c9d4f32
cpp
tensorflow/tensorflow
make_padding
tensorflow/lite/delegates/gpu/common/transformations/make_padding.cc
tensorflow/lite/delegates/gpu/common/transformations/make_padding_test.cc
#include "tensorflow/lite/delegates/gpu/common/transformations/make_padding.h" #include <any> #include <memory> #include <string> #include <vector> #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { bool IsConstZeros(const Node& node) { if (node.operation.type != ToString(OperationType::CONSTANT)) { return false; } auto& attr = std::any_cast<const ConstTensorAttributes&>(node.operation.attributes); for (auto f : attr.tensor.data) { if (f != 0) { return false; } } return true; } class MakePaddingFromZerosConcat : public NodeTransformation { public: TransformResult ApplyToNode(Node* node, GraphFloat32* graph) final { if (node->operation.type != ToString(OperationType::CONCAT)) { return {TransformStatus::SKIPPED, ""}; } auto inputs = graph->FindInputs(node->id); if (inputs.size() != 2) { return {TransformStatus::SKIPPED, ""}; } bool first = true; for (auto input : inputs) { auto dep = graph->FindProducer(input->id); if (dep != nullptr && IsConstZeros(*dep)) { auto& concat_attr = std::any_cast<const ConcatAttributes&>(node->operation.attributes); PadAttributes pad_attr; pad_attr.type = PaddingContentType::ZEROS; pad_attr.appended = BHWC(0, 0, 0, 0); pad_attr.prepended = BHWC(0, 0, 0, 0); BHWC* p = first ? &pad_attr.prepended : &pad_attr.appended; switch (concat_attr.axis) { case Axis::HEIGHT: p->h = input->tensor.shape.h; break; case Axis::WIDTH: p->w = input->tensor.shape.w; break; case Axis::CHANNELS: p->c = input->tensor.shape.c; break; default: return {TransformStatus::DECLINED, "Padding for concat axis is unsupported: " + ToString(concat_attr.axis)}; } absl::Status status = RemovePrecedingNode(graph, dep, node); if (!status.ok()) { return {TransformStatus::INVALID, "Unable to remove const node: " + std::string(status.message())}; } node->operation.attributes = pad_attr; node->operation.type = ToString(OperationType::PAD); return {TransformStatus::APPLIED, "Replaced concat with padding"}; } first = false; } return {TransformStatus::SKIPPED, ""}; } }; } std::unique_ptr<NodeTransformation> NewMakePaddingFromConcat() { return std::make_unique<MakePaddingFromZerosConcat>(); } } }
#include "tensorflow/lite/delegates/gpu/common/transformations/make_padding.h" #include <any> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { TEST(MakePadding, Smoke) { GraphFloat32 graph; auto input = graph.NewValue(); input->tensor.shape = BHWC(1, 2, 3, 5); auto concat_node = graph.NewNode(); ASSERT_TRUE(graph.AddConsumer(concat_node->id, input->id).ok()); concat_node->operation.type = ToString(OperationType::CONCAT); ConcatAttributes attr; attr.axis = Axis::HEIGHT; concat_node->operation.attributes = attr; Value* output = nullptr; ASSERT_TRUE(AddOutput(&graph, concat_node, &output).ok()); output->tensor.shape = BHWC(1, 7, 3, 5); auto const_node = graph.NewNode(); const_node->operation.type = ToString(OperationType::CONSTANT); ConstTensorAttributes const_attr; const_attr.tensor.shape = BHWC(1, 5, 3, 5); const_attr.tensor.data = std::vector<float>(const_attr.tensor.shape.DimensionsProduct(), 0); const_node->operation.attributes = const_attr; Value* const_link = nullptr; ASSERT_TRUE( ConnectTwoNodes(&graph, const_node, concat_node, &const_link).ok()); const_link->tensor.shape = const_attr.tensor.shape; ASSERT_EQ(2, graph.nodes().size()); auto transformation = NewMakePaddingFromConcat(); ModelTransformer transformer(&graph); transformer.Apply("make_padding", transformation.get()); ASSERT_EQ(1, graph.nodes().size()); ASSERT_EQ(2, graph.values().size()); auto pad_node = graph.nodes()[0]; ASSERT_EQ(ToString(OperationType::PAD), pad_node->operation.type); auto pad_attr = std::any_cast<PadAttributes>(pad_node->operation.attributes); EXPECT_EQ(BHWC(0, 0, 0, 0), pad_attr.prepended); EXPECT_EQ(BHWC(0, 5, 0, 0), pad_attr.appended); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/transformations/make_padding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/transformations/make_padding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df710905-4c94-4794-b5f8-5d19921229f4
cpp
google/arolla
unspecified_qtype
arolla/qtype/unspecified_qtype.cc
arolla/qtype/unspecified_qtype_test.cc
#include "arolla/qtype/unspecified_qtype.h" #include "absl/base/no_destructor.h" #include "absl/strings/string_view.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" namespace arolla { namespace { struct Unspecified {}; class UnspecifiedQType final : public QType { public: UnspecifiedQType() : QType(ConstructorArgs{.name = "UNSPECIFIED", .type_info = typeid(Unspecified), .type_layout = MakeTypeLayout<Unspecified>()}) {} ReprToken UnsafeReprToken(const void* source) const override { return ReprToken{"unspecified"}; } void UnsafeCopy(const void* , void* ) const override {} void UnsafeCombineToFingerprintHasher( const void* , FingerprintHasher* hasher) const override { hasher->Combine(absl::string_view("::arolla::UnspecifiedQValue")); } }; } QTypePtr GetUnspecifiedQType() { static const absl::NoDestructor<UnspecifiedQType> result; return result.get(); } const TypedValue& GetUnspecifiedQValue() { static const absl::NoDestructor<TypedValue> result( TypedValue::UnsafeFromTypeDefaultConstructed(GetUnspecifiedQType())); return *result; } }
#include "arolla/qtype/unspecified_qtype.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla { namespace { using ::arolla::testing::ReprTokenEq; TEST(UnspecifiedQTypeTest, UnspecifiedQType) { const auto unspecified_qtype = GetUnspecifiedQType(); EXPECT_EQ(unspecified_qtype->name(), "UNSPECIFIED"); EXPECT_EQ(unspecified_qtype->type_layout().AllocSize(), 1); EXPECT_EQ(unspecified_qtype->type_layout().AllocAlignment().value, 1); EXPECT_TRUE(unspecified_qtype->type_fields().empty()); EXPECT_EQ(unspecified_qtype->value_qtype(), nullptr); } TEST(UnspecifiedQTypeTest, UnspecifiedQValue) { const auto unspecified_qvalue = GetUnspecifiedQValue(); EXPECT_EQ(unspecified_qvalue.GetType(), GetUnspecifiedQType()); EXPECT_THAT(unspecified_qvalue.GenReprToken(), ReprTokenEq("unspecified")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/unspecified_qtype.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/unspecified_qtype_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
1728e1b9-6e09-4311-b043-433a6e8d79b4
cpp
google/cel-cpp
cel_proto_wrap_util
eval/public/structs/cel_proto_wrap_util.cc
eval/public/structs/cel_proto_wrap_util_test.cc
#include "eval/public/structs/cel_proto_wrap_util.h" #include <math.h> #include <cstdint> #include <limits> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/message.h" #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "common/any.h" #include "eval/public/cel_value.h" #include "eval/public/structs/protobuf_value_factory.h" #include "eval/testutil/test_message.pb.h" #include "extensions/protobuf/internal/any.h" #include "extensions/protobuf/internal/duration.h" #include "extensions/protobuf/internal/struct.h" #include "extensions/protobuf/internal/timestamp.h" #include "extensions/protobuf/internal/wrappers.h" #include "internal/overflow.h" #include "internal/proto_time_encoding.h" #include "internal/time.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "google/protobuf/message_lite.h" namespace google::api::expr::runtime::internal { namespace { using cel::internal::DecodeDuration; using cel::internal::DecodeTime; using cel::internal::EncodeTime; using google::protobuf::Any; using google::protobuf::BoolValue; using google::protobuf::BytesValue; using google::protobuf::DoubleValue; using google::protobuf::Duration; using google::protobuf::FloatValue; using google::protobuf::Int32Value; using google::protobuf::Int64Value; using google::protobuf::ListValue; using google::protobuf::StringValue; using google::protobuf::Struct; using google::protobuf::Timestamp; using google::protobuf::UInt32Value; using google::protobuf::UInt64Value; using google::protobuf::Value; using google::protobuf::Arena; using google::protobuf::Descriptor; using google::protobuf::DescriptorPool; using google::protobuf::Message; using google::protobuf::MessageFactory; constexpr int64_t kMaxIntJSON = (1ll << 53) - 1; constexpr int64_t kMinIntJSON = -kMaxIntJSON; static bool IsJSONSafe(int64_t i) { return i >= kMinIntJSON && i <= kMaxIntJSON; } static bool IsJSONSafe(uint64_t i) { return i <= static_cast<uint64_t>(kMaxIntJSON); } class DynamicList : public CelList { public: DynamicList(const ListValue* values, ProtobufValueFactory factory, Arena* arena) : arena_(arena), factory_(std::move(factory)), values_(values) {} CelValue operator[](int index) const override; int size() const override { return values_->values_size(); } private: Arena* arena_; ProtobufValueFactory factory_; const ListValue* values_; }; class DynamicMap : public CelMap { public: DynamicMap(const Struct* values, ProtobufValueFactory factory, Arena* arena) : arena_(arena), factory_(std::move(factory)), values_(values), key_list_(values) {} absl::StatusOr<bool> Has(const CelValue& key) const override { CelValue::StringHolder str_key; if (!key.GetValue(&str_key)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid map key type: '", CelValue::TypeName(key.type()), "'")); } return values_->fields().contains(std::string(str_key.value())); } absl::optional<CelValue> operator[](CelValue key) const override; int size() const override { return values_->fields_size(); } absl::StatusOr<const CelList*> ListKeys() const override { return &key_list_; } private: class DynamicMapKeyList : public CelList { public: explicit DynamicMapKeyList(const Struct* values) : values_(values), keys_(), initialized_(false) {} CelValue operator[](int index) const override { CheckInit(); return keys_[index]; } int size() const override { CheckInit(); return values_->fields_size(); } private: void CheckInit() const { absl::MutexLock lock(&mutex_); if (!initialized_) { for (const auto& it : values_->fields()) { keys_.push_back(CelValue::CreateString(&it.first)); } initialized_ = true; } } const Struct* values_; mutable absl::Mutex mutex_; mutable std::vector<CelValue> keys_; mutable bool initialized_; }; Arena* arena_; ProtobufValueFactory factory_; const Struct* values_; const DynamicMapKeyList key_list_; }; class ValueManager { public: ValueManager(const ProtobufValueFactory& value_factory, const google::protobuf::DescriptorPool* descriptor_pool, google::protobuf::Arena* arena, google::protobuf::MessageFactory* message_factory) : value_factory_(value_factory), descriptor_pool_(descriptor_pool), arena_(arena), message_factory_(message_factory) {} ValueManager(const ProtobufValueFactory& value_factory, google::protobuf::Arena* arena) : value_factory_(value_factory), descriptor_pool_(DescriptorPool::generated_pool()), arena_(arena), message_factory_(MessageFactory::generated_factory()) {} static CelValue ValueFromDuration(absl::Duration duration) { return CelValue::CreateDuration(duration); } CelValue ValueFromDuration(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicDurationProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromDuration(*status_or_unwrapped); } CelValue ValueFromMessage(const Duration* duration) { return ValueFromDuration(DecodeDuration(*duration)); } CelValue ValueFromTimestamp(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicTimestampProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromTimestamp(*status_or_unwrapped); } static CelValue ValueFromTimestamp(absl::Time timestamp) { return CelValue::CreateTimestamp(timestamp); } CelValue ValueFromMessage(const Timestamp* timestamp) { return ValueFromTimestamp(DecodeTime(*timestamp)); } CelValue ValueFromMessage(const ListValue* list_values) { return CelValue::CreateList(Arena::Create<DynamicList>( arena_, list_values, value_factory_, arena_)); } CelValue ValueFromMessage(const Struct* struct_value) { return CelValue::CreateMap(Arena::Create<DynamicMap>( arena_, struct_value, value_factory_, arena_)); } CelValue ValueFromAny(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicAnyProto(*message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromAny(status_or_unwrapped->type_url(), cel::GetAnyValueAsCord(*status_or_unwrapped), descriptor_pool_, message_factory_); } CelValue ValueFromAny(absl::string_view type_url, const absl::Cord& payload, const DescriptorPool* descriptor_pool, MessageFactory* message_factory) { auto pos = type_url.find_last_of('/'); if (pos == absl::string_view::npos) { return CreateErrorValue(arena_, "Malformed type_url string"); } std::string full_name = std::string(type_url.substr(pos + 1)); const Descriptor* nested_descriptor = descriptor_pool->FindMessageTypeByName(full_name); if (nested_descriptor == nullptr) { return CreateErrorValue(arena_, "Descriptor not found"); } const Message* prototype = message_factory->GetPrototype(nested_descriptor); if (prototype == nullptr) { return CreateErrorValue(arena_, "Prototype not found"); } Message* nested_message = prototype->New(arena_); if (!nested_message->ParseFromCord(payload)) { return CreateErrorValue(arena_, "Failed to unpack Any into message"); } return UnwrapMessageToValue(nested_message, value_factory_, arena_); } CelValue ValueFromMessage(const Any* any_value, const DescriptorPool* descriptor_pool, MessageFactory* message_factory) { return ValueFromAny(any_value->type_url(), absl::Cord(any_value->value()), descriptor_pool, message_factory); } CelValue ValueFromMessage(const Any* any_value) { return ValueFromMessage(any_value, descriptor_pool_, message_factory_); } CelValue ValueFromBool(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicBoolValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromBool(*status_or_unwrapped); } static CelValue ValueFromBool(bool value) { return CelValue::CreateBool(value); } CelValue ValueFromMessage(const BoolValue* wrapper) { return ValueFromBool(wrapper->value()); } CelValue ValueFromInt32(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicInt32ValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromInt32(*status_or_unwrapped); } static CelValue ValueFromInt32(int32_t value) { return CelValue::CreateInt64(value); } CelValue ValueFromMessage(const Int32Value* wrapper) { return ValueFromInt32(wrapper->value()); } CelValue ValueFromUInt32(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicUInt32ValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromUInt32(*status_or_unwrapped); } static CelValue ValueFromUInt32(uint32_t value) { return CelValue::CreateUint64(value); } CelValue ValueFromMessage(const UInt32Value* wrapper) { return ValueFromUInt32(wrapper->value()); } CelValue ValueFromInt64(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicInt64ValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromInt64(*status_or_unwrapped); } static CelValue ValueFromInt64(int64_t value) { return CelValue::CreateInt64(value); } CelValue ValueFromMessage(const Int64Value* wrapper) { return ValueFromInt64(wrapper->value()); } CelValue ValueFromUInt64(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicUInt64ValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromUInt64(*status_or_unwrapped); } static CelValue ValueFromUInt64(uint64_t value) { return CelValue::CreateUint64(value); } CelValue ValueFromMessage(const UInt64Value* wrapper) { return ValueFromUInt64(wrapper->value()); } CelValue ValueFromFloat(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicFloatValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromFloat(*status_or_unwrapped); } static CelValue ValueFromFloat(float value) { return CelValue::CreateDouble(value); } CelValue ValueFromMessage(const FloatValue* wrapper) { return ValueFromFloat(wrapper->value()); } CelValue ValueFromDouble(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicDoubleValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromDouble(*status_or_unwrapped); } static CelValue ValueFromDouble(double value) { return CelValue::CreateDouble(value); } CelValue ValueFromMessage(const DoubleValue* wrapper) { return ValueFromDouble(wrapper->value()); } CelValue ValueFromString(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicStringValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromString(*status_or_unwrapped); } CelValue ValueFromString(const absl::Cord& value) { return CelValue::CreateString( Arena::Create<std::string>(arena_, static_cast<std::string>(value))); } static CelValue ValueFromString(const std::string* value) { return CelValue::CreateString(value); } CelValue ValueFromMessage(const StringValue* wrapper) { return ValueFromString(&wrapper->value()); } CelValue ValueFromBytes(const google::protobuf::Message* message) { auto status_or_unwrapped = cel::extensions::protobuf_internal::UnwrapDynamicBytesValueProto( *message); if (!status_or_unwrapped.ok()) { return CreateErrorValue(arena_, status_or_unwrapped.status()); } return ValueFromBytes(*status_or_unwrapped); } CelValue ValueFromBytes(const absl::Cord& value) { return CelValue::CreateBytes( Arena::Create<std::string>(arena_, static_cast<std::string>(value))); } static CelValue ValueFromBytes(google::protobuf::Arena* arena, std::string value) { return CelValue::CreateBytes( Arena::Create<std::string>(arena, std::move(value))); } CelValue ValueFromMessage(const BytesValue* wrapper) { return CelValue::CreateBytes( Arena::Create<std::string>(arena_, std::string(wrapper->value()))); } CelValue ValueFromMessage(const Value* value) { switch (value->kind_case()) { case Value::KindCase::kNullValue: return CelValue::CreateNull(); case Value::KindCase::kNumberValue: return CelValue::CreateDouble(value->number_value()); case Value::KindCase::kStringValue: return CelValue::CreateString(&value->string_value()); case Value::KindCase::kBoolValue: return CelValue::CreateBool(value->bool_value()); case Value::KindCase::kStructValue: return ValueFromMessage(&value->struct_value()); case Value::KindCase::kListValue: return ValueFromMessage(&value->list_value()); default: return CelValue::CreateNull(); } } template <typename T> CelValue ValueFromGeneratedMessageLite(const google::protobuf::Message* message) { const auto* downcast_message = google::protobuf::DynamicCastToGenerated<T>(message); if (downcast_message != nullptr) { return ValueFromMessage(downcast_message); } auto* value = google::protobuf::Arena::Create<T>(arena_); absl::Cord serialized; if (!message->SerializeToCord(&serialized)) { return CreateErrorValue( arena_, absl::UnknownError( absl::StrCat("failed to serialize dynamic message: ", message->GetTypeName()))); } if (!value->ParseFromCord(serialized)) { return CreateErrorValue(arena_, absl::UnknownError(absl::StrCat( "failed to parse generated message: ", value->GetTypeName()))); } return ValueFromMessage(value); } template <typename T> CelValue ValueFromMessage(const google::protobuf::Message* message) { if constexpr (std::is_same_v<Any, T>) { return ValueFromAny(message); } else if constexpr (std::is_same_v<BoolValue, T>) { return ValueFromBool(message); } else if constexpr (std::is_same_v<BytesValue, T>) { return ValueFromBytes(message); } else if constexpr (std::is_same_v<DoubleValue, T>) { return ValueFromDouble(message); } else if constexpr (std::is_same_v<Duration, T>) { return ValueFromDuration(message); } else if constexpr (std::is_same_v<FloatValue, T>) { return ValueFromFloat(message); } else if constexpr (std::is_same_v<Int32Value, T>) { return ValueFromInt32(message); } else if constexpr (std::is_same_v<Int64Value, T>) { return ValueFromInt64(message); } else if constexpr (std::is_same_v<ListValue, T>) { return ValueFromGeneratedMessageLite<ListValue>(message); } else if constexpr (std::is_same_v<StringValue, T>) { return ValueFromString(message); } else if constexpr (std::is_same_v<Struct, T>) { return ValueFromGeneratedMessageLite<Struct>(message); } else if constexpr (std::is_same_v<Timestamp, T>) { return ValueFromTimestamp(message); } else if constexpr (std::is_same_v<UInt32Value, T>) { return ValueFromUInt32(message); } else if constexpr (std::is_same_v<UInt64Value, T>) { return ValueFromUInt64(message); } else if constexpr (std::is_same_v<Value, T>) { return ValueFromGeneratedMessageLite<Value>(message); } else { ABSL_UNREACHABLE(); } } private: const ProtobufValueFactory& value_factory_; const google::protobuf::DescriptorPool* descriptor_pool_; google::protobuf::Arena* arena_; MessageFactory* message_factory_; }; class ValueFromMessageMaker { public: template <class MessageType> static CelValue CreateWellknownTypeValue(const google::protobuf::Message* msg, const ProtobufValueFactory& factory, Arena* arena) { google::protobuf::MessageFactory* message_factory = msg->GetReflection()->GetMessageFactory(); const google::protobuf::DescriptorPool* pool = msg->GetDescriptor()->file()->pool(); return ValueManager(factory, pool, arena, message_factory) .ValueFromMessage<MessageType>(msg); } static absl::optional<CelValue> CreateValue( const google::protobuf::Message* message, const ProtobufValueFactory& factory, Arena* arena) { switch (message->GetDescriptor()->well_known_type()) { case google::protobuf::Descriptor::WELLKNOWNTYPE_DOUBLEVALUE: return CreateWellknownTypeValue<DoubleValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_FLOATVALUE: return CreateWellknownTypeValue<FloatValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_INT64VALUE: return CreateWellknownTypeValue<Int64Value>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_UINT64VALUE: return CreateWellknownTypeValue<UInt64Value>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_INT32VALUE: return CreateWellknownTypeValue<Int32Value>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_UINT32VALUE: return CreateWellknownTypeValue<UInt32Value>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_STRINGVALUE: return CreateWellknownTypeValue<StringValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_BYTESVALUE: return CreateWellknownTypeValue<BytesValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_BOOLVALUE: return CreateWellknownTypeValue<BoolValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_ANY: return CreateWellknownTypeValue<Any>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_DURATION: return CreateWellknownTypeValue<Duration>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_TIMESTAMP: return CreateWellknownTypeValue<Timestamp>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_VALUE: return CreateWellknownTypeValue<Value>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_LISTVALUE: return CreateWellknownTypeValue<ListValue>(message, factory, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_STRUCT: return CreateWellknownTypeValue<Struct>(message, factory, arena); default: return absl::nullopt; } } ValueFromMessageMaker(const ValueFromMessageMaker&) = delete; ValueFromMessageMaker& operator=(const ValueFromMessageMaker&) = delete; }; CelValue DynamicList::operator[](int index) const { return ValueManager(factory_, arena_) .ValueFromMessage(&values_->values(index)); } absl::optional<CelValue> DynamicMap::operator[](CelValue key) const { CelValue::StringHolder str_key; if (!key.GetValue(&str_key)) { return CreateErrorValue(arena_, absl::InvalidArgumentError(absl::StrCat( "Invalid map key type: '", CelValue::TypeName(key.type()), "'"))); } auto it = values_->fields().find(std::string(str_key.value())); if (it == values_->fields().end()) { return absl::nullopt; } return ValueManager(factory_, arena_).ValueFromMessage(&it->second); } google::protobuf::Message* DurationFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { absl::Duration val; if (!value.GetValue(&val)) { return nullptr; } if (!cel::internal::ValidateDuration(val).ok()) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicDurationProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* BoolFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { bool val; if (!value.GetValue(&val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicBoolValueProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* BytesFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { CelValue::BytesHolder view_val; if (!value.GetValue(&view_val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicBytesValueProto( absl::Cord(view_val.value()), *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* DoubleFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { double val; if (!value.GetValue(&val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicDoubleValueProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* FloatFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { double val; if (!value.GetValue(&val)) { return nullptr; } float fval = val; if (val > std::numeric_limits<float>::max()) { fval = std::numeric_limits<float>::infinity(); } else if (val < std::numeric_limits<float>::lowest()) { fval = -std::numeric_limits<float>::infinity(); } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicFloatValueProto(fval, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* Int32FromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { int64_t val; if (!value.GetValue(&val)) { return nullptr; } if (!cel::internal::CheckedInt64ToInt32(val).ok()) { return nullptr; } int32_t ival = static_cast<int32_t>(val); auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicInt32ValueProto(ival, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* Int64FromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { int64_t val; if (!value.GetValue(&val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicInt64ValueProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* StringFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { CelValue::StringHolder view_val; if (!value.GetValue(&view_val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicStringValueProto( absl::Cord(view_val.value()), *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* TimestampFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { absl::Time val; if (!value.GetValue(&val)) { return nullptr; } if (!cel::internal::ValidateTimestamp(val).ok()) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicTimestampProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* UInt32FromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { uint64_t val; if (!value.GetValue(&val)) { return nullptr; } if (!cel::internal::CheckedUint64ToUint32(val).ok()) { return nullptr; } uint32_t ival = static_cast<uint32_t>(val); auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicUInt32ValueProto(ival, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* UInt64FromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { uint64_t val; if (!value.GetValue(&val)) { return nullptr; } auto* message = prototype->New(arena); auto status_or_wrapped = cel::extensions::protobuf_internal::WrapDynamicUInt64ValueProto(val, *message); if (!status_or_wrapped.ok()) { status_or_wrapped.IgnoreError(); return nullptr; } return message; } google::protobuf::Message* ValueFromValue(google::protobuf::Message* message, const CelValue& value, google::protobuf::Arena* arena); google::protobuf::Message* ValueFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { return ValueFromValue(prototype->New(arena), value, arena); } google::protobuf::Message* ListFromValue(google::protobuf::Message* message, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsList()) { return nullptr; } const CelList& list = *value.ListOrDie(); for (int i = 0; i < list.size(); i++) { auto e = list.Get(arena, i); auto status_or_elem = cel::extensions::protobuf_internal::DynamicListValueProtoAddElement( message); if (!status_or_elem.ok()) { return nullptr; } if (ValueFromValue(*status_or_elem, e, arena) == nullptr) { return nullptr; } } return message; } google::protobuf::Message* ListFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsList()) { return nullptr; } return ListFromValue(prototype->New(arena), value, arena); } google::protobuf::Message* StructFromValue(google::protobuf::Message* message, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsMap()) { return nullptr; } const CelMap& map = *value.MapOrDie(); absl::StatusOr<const CelList*> keys_or = map.ListKeys(arena); if (!keys_or.ok()) { return nullptr; } const CelList& keys = **keys_or; for (int i = 0; i < keys.size(); i++) { auto k = keys.Get(arena, i); if (!k.IsString()) { return nullptr; } absl::string_view key = k.StringOrDie().value(); auto v = map.Get(arena, k); if (!v.has_value()) { return nullptr; } auto status_or_value = cel::extensions::protobuf_internal::DynamicStructValueProtoAddField( key, message); if (!status_or_value.ok()) { return nullptr; } if (ValueFromValue(*status_or_value, *v, arena) == nullptr) { return nullptr; } } return message; } google::protobuf::Message* StructFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsMap()) { return nullptr; } return StructFromValue(prototype->New(arena), value, arena); } google::protobuf::Message* ValueFromValue(google::protobuf::Message* message, const CelValue& value, google::protobuf::Arena* arena) { switch (value.type()) { case CelValue::Type::kBool: { bool val; if (value.GetValue(&val)) { if (cel::extensions::protobuf_internal::DynamicValueProtoSetBoolValue( val, message) .ok()) { return message; } } } break; case CelValue::Type::kBytes: { CelValue::BytesHolder val; if (value.GetValue(&val)) { if (cel::extensions::protobuf_internal::DynamicValueProtoSetStringValue( absl::Base64Escape(val.value()), message) .ok()) { return message; } } } break; case CelValue::Type::kDouble: { double val; if (value.GetValue(&val)) { if (cel::extensions::protobuf_internal::DynamicValueProtoSetNumberValue( val, message) .ok()) { return message; } } } break; case CelValue::Type::kDuration: { absl::Duration val; if (value.GetValue(&val)) { auto encode = cel::internal::EncodeDurationToString(val); if (!encode.ok()) { return nullptr; } if (cel::extensions::protobuf_internal::DynamicValueProtoSetStringValue( *encode, message) .ok()) { return message; } } } break; case CelValue::Type::kInt64: { int64_t val; if (value.GetValue(&val)) { if (IsJSONSafe(val)) { if (cel::extensions::protobuf_internal:: DynamicValueProtoSetNumberValue(static_cast<double>(val), message) .ok()) { return message; } } else { if (cel::extensions::protobuf_internal:: DynamicValueProtoSetStringValue(absl::StrCat(val), message) .ok()) { return message; } } } } break; case CelValue::Type::kString: { CelValue::StringHolder val; if (value.GetValue(&val)) { if (cel::extensions::protobuf_internal::DynamicValueProtoSetStringValue( val.value(), message) .ok()) { return message; } } } break; case CelValue::Type::kTimestamp: { absl::Time val; if (value.GetValue(&val)) { auto encode = cel::internal::EncodeTimeToString(val); if (!encode.ok()) { return nullptr; } if (cel::extensions::protobuf_internal::DynamicValueProtoSetStringValue( *encode, message) .ok()) { return message; } } } break; case CelValue::Type::kUint64: { uint64_t val; if (value.GetValue(&val)) { if (IsJSONSafe(val)) { if (cel::extensions::protobuf_internal:: DynamicValueProtoSetNumberValue(static_cast<double>(val), message) .ok()) { return message; } } else { if (cel::extensions::protobuf_internal:: DynamicValueProtoSetStringValue(absl::StrCat(val), message) .ok()) { return message; } } } } break; case CelValue::Type::kList: { auto status_or_list = cel::extensions::protobuf_internal::DynamicValueProtoMutableListValue( message); if (!status_or_list.ok()) { return nullptr; } if (ListFromValue(*status_or_list, value, arena) != nullptr) { return message; } } break; case CelValue::Type::kMap: { auto status_or_struct = cel::extensions::protobuf_internal:: DynamicValueProtoMutableStructValue(message); if (!status_or_struct.ok()) { return nullptr; } if (StructFromValue(*status_or_struct, value, arena) != nullptr) { return message; } } break; case CelValue::Type::kNullType: if (cel::extensions::protobuf_internal::DynamicValueProtoSetNullValue( message) .ok()) { return message; } break; default: return nullptr; } return nullptr; } bool ValueFromValue(Value* json, const CelValue& value, google::protobuf::Arena* arena); bool ListFromValue(ListValue* json_list, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsList()) { return false; } const CelList& list = *value.ListOrDie(); for (int i = 0; i < list.size(); i++) { auto e = list.Get(arena, i); Value* elem = json_list->add_values(); if (!ValueFromValue(elem, e, arena)) { return false; } } return true; } bool StructFromValue(Struct* json_struct, const CelValue& value, google::protobuf::Arena* arena) { if (!value.IsMap()) { return false; } const CelMap& map = *value.MapOrDie(); absl::StatusOr<const CelList*> keys_or = map.ListKeys(arena); if (!keys_or.ok()) { return false; } const CelList& keys = **keys_or; auto fields = json_struct->mutable_fields(); for (int i = 0; i < keys.size(); i++) { auto k = keys.Get(arena, i); if (!k.IsString()) { return false; } absl::string_view key = k.StringOrDie().value(); auto v = map.Get(arena, k); if (!v.has_value()) { return false; } Value field_value; if (!ValueFromValue(&field_value, *v, arena)) { return false; } (*fields)[std::string(key)] = field_value; } return true; } bool ValueFromValue(Value* json, const CelValue& value, google::protobuf::Arena* arena) { switch (value.type()) { case CelValue::Type::kBool: { bool val; if (value.GetValue(&val)) { json->set_bool_value(val); return true; } } break; case CelValue::Type::kBytes: { CelValue::BytesHolder val; if (value.GetValue(&val)) { json->set_string_value(absl::Base64Escape(val.value())); return true; } } break; case CelValue::Type::kDouble: { double val; if (value.GetValue(&val)) { json->set_number_value(val); return true; } } break; case CelValue::Type::kDuration: { absl::Duration val; if (value.GetValue(&val)) { auto encode = cel::internal::EncodeDurationToString(val); if (!encode.ok()) { return false; } json->set_string_value(*encode); return true; } } break; case CelValue::Type::kInt64: { int64_t val; if (value.GetValue(&val)) { if (IsJSONSafe(val)) { json->set_number_value(val); } else { json->set_string_value(absl::StrCat(val)); } return true; } } break; case CelValue::Type::kString: { CelValue::StringHolder val; if (value.GetValue(&val)) { json->set_string_value(val.value()); return true; } } break; case CelValue::Type::kTimestamp: { absl::Time val; if (value.GetValue(&val)) { auto encode = cel::internal::EncodeTimeToString(val); if (!encode.ok()) { return false; } json->set_string_value(*encode); return true; } } break; case CelValue::Type::kUint64: { uint64_t val; if (value.GetValue(&val)) { if (IsJSONSafe(val)) { json->set_number_value(val); } else { json->set_string_value(absl::StrCat(val)); } return true; } } break; case CelValue::Type::kList: return ListFromValue(json->mutable_list_value(), value, arena); case CelValue::Type::kMap: return StructFromValue(json->mutable_struct_value(), value, arena); case CelValue::Type::kNullType: json->set_null_value(protobuf::NULL_VALUE); return true; default: return false; } return false; } google::protobuf::Message* AnyFromValue(const google::protobuf::Message* prototype, const CelValue& value, google::protobuf::Arena* arena) { std::string type_name; absl::Cord payload; switch (value.type()) { case CelValue::Type::kBool: { BoolValue v; type_name = v.GetTypeName(); v.set_value(value.BoolOrDie()); payload = v.SerializeAsCord(); } break; case CelValue::Type::kBytes: { BytesValue v; type_name = v.GetTypeName(); v.set_value(std::string(value.BytesOrDie().value())); payload = v.SerializeAsCord(); } break; case CelValue::Type::kDouble: { DoubleValue v; type_name = v.GetTypeName(); v.set_value(value.DoubleOrDie()); payload = v.SerializeAsCord(); } break; case CelValue::Type::kDuration: { Duration v; if (!cel::internal::EncodeDuration(value.DurationOrDie(), &v).ok()) { return nullptr; } type_name = v.GetTypeName(); payload = v.SerializeAsCord(); } break; case CelValue::Type::kInt64: { Int64Value v; type_name = v.GetTypeName(); v.set_value(value.Int64OrDie()); payload = v.SerializeAsCord(); } break; case CelValue::Type::kString: { StringValue v; type_name = v.GetTypeName(); v.set_value(std::string(value.StringOrDie().value())); payload = v.SerializeAsCord(); } break; case CelValue::Type::kTimestamp: { Timestamp v; if (!cel::internal::EncodeTime(value.TimestampOrDie(), &v).ok()) { return nullptr; } type_name = v.GetTypeName(); payload = v.SerializeAsCord(); } break; case CelValue::Type::kUint64: { UInt64Value v; type_name = v.GetTypeName(); v.set_value(value.Uint64OrDie()); payload = v.SerializeAsCord(); } break; case CelValue::Type::kList: { ListValue v; if (!ListFromValue(&v, value, arena)) { return nullptr; } type_name = v.GetTypeName(); payload = v.SerializeAsCord(); } break; case CelValue::Type::kMap: { Struct v; if (!StructFromValue(&v, value, arena)) { return nullptr; } type_name = v.GetTypeName(); payload = v.SerializeAsCord(); } break; case CelValue::Type::kNullType: { Value v; type_name = v.GetTypeName(); v.set_null_value(google::protobuf::NULL_VALUE); payload = v.SerializeAsCord(); } break; case CelValue::Type::kMessage: { type_name = value.MessageWrapperOrDie().message_ptr()->GetTypeName(); payload = value.MessageWrapperOrDie().message_ptr()->SerializeAsCord(); } break; default: return nullptr; } auto* message = prototype->New(arena); if (cel::extensions::protobuf_internal::WrapDynamicAnyProto( absl::StrCat("type.googleapis.com/", type_name), payload, *message) .ok()) { return message; } return nullptr; } bool IsAlreadyWrapped(google::protobuf::Descriptor::WellKnownType wkt, const CelValue& value) { if (value.IsMessage()) { const auto* msg = value.MessageOrDie(); if (wkt == msg->GetDescriptor()->well_known_type()) { return true; } } return false; } class MessageFromValueMaker { public: MessageFromValueMaker(const MessageFromValueMaker&) = delete; MessageFromValueMaker& operator=(const MessageFromValueMaker&) = delete; static google::protobuf::Message* MaybeWrapMessage(const google::protobuf::Descriptor* descriptor, google::protobuf::MessageFactory* factory, const CelValue& value, Arena* arena) { switch (descriptor->well_known_type()) { case google::protobuf::Descriptor::WELLKNOWNTYPE_DOUBLEVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return DoubleFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_FLOATVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return FloatFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_INT64VALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return Int64FromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_UINT64VALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return UInt64FromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_INT32VALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return Int32FromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_UINT32VALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return UInt32FromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_STRINGVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return StringFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_BYTESVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return BytesFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_BOOLVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return BoolFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_ANY: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return AnyFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_DURATION: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return DurationFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_TIMESTAMP: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return TimestampFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_VALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return ValueFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_LISTVALUE: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return ListFromValue(factory->GetPrototype(descriptor), value, arena); case google::protobuf::Descriptor::WELLKNOWNTYPE_STRUCT: if (IsAlreadyWrapped(descriptor->well_known_type(), value)) { return nullptr; } return StructFromValue(factory->GetPrototype(descriptor), value, arena); default: return nullptr; } } }; } CelValue UnwrapMessageToValue(const google::protobuf::Message* value, const ProtobufValueFactory& factory, Arena* arena) { if (value == nullptr) { return CelValue::CreateNull(); } absl::optional<CelValue> special_value = ValueFromMessageMaker::CreateValue(value, factory, arena); if (special_value.has_value()) { return *special_value; } return factory(value); } const google::protobuf::Message* MaybeWrapValueToMessage( const google::protobuf::Descriptor* descriptor, google::protobuf::MessageFactory* factory, const CelValue& value, Arena* arena) { google::protobuf::Message* msg = MessageFromValueMaker::MaybeWrapMessage( descriptor, factory, value, arena); return msg; } }
#include "eval/public/structs/cel_proto_wrap_util.h" #include <cassert> #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/empty.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/dynamic_message.h" #include "google/protobuf/message.h" #include "absl/base/no_destructor.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/protobuf_value_factory.h" #include "eval/public/structs/trivial_legacy_type_info.h" #include "eval/testutil/test_message.pb.h" #include "internal/proto_time_encoding.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "testutil/util.h" namespace google::api::expr::runtime::internal { namespace { using ::testing::Eq; using ::testing::UnorderedPointwise; using google::protobuf::Duration; using google::protobuf::ListValue; using google::protobuf::Struct; using google::protobuf::Timestamp; using google::protobuf::Value; using google::protobuf::Any; using google::protobuf::BoolValue; using google::protobuf::BytesValue; using google::protobuf::DoubleValue; using google::protobuf::FloatValue; using google::protobuf::Int32Value; using google::protobuf::Int64Value; using google::protobuf::StringValue; using google::protobuf::UInt32Value; using google::protobuf::UInt64Value; using google::protobuf::Arena; CelValue ProtobufValueFactoryImpl(const google::protobuf::Message* m) { return CelValue::CreateMessageWrapper( CelValue::MessageWrapper(m, TrivialTypeInfo::GetInstance())); } class CelProtoWrapperTest : public ::testing::Test { protected: CelProtoWrapperTest() {} void ExpectWrappedMessage(const CelValue& value, const google::protobuf::Message& message) { auto* result = MaybeWrapValueToMessage( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), value, arena()); EXPECT_TRUE(result != nullptr); EXPECT_THAT(result, testutil::EqualsProto(message)); auto* identity = MaybeWrapValueToMessage( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), ProtobufValueFactoryImpl(result), arena()); EXPECT_TRUE(identity == nullptr); result = MaybeWrapValueToMessage( ReflectedCopy(message)->GetDescriptor(), ReflectedCopy(message)->GetReflection()->GetMessageFactory(), value, arena()); EXPECT_TRUE(result != nullptr); EXPECT_THAT(result, testutil::EqualsProto(message)); } void ExpectNotWrapped(const CelValue& value, const google::protobuf::Message& message) { auto result = MaybeWrapValueToMessage( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), value, arena()); EXPECT_TRUE(result == nullptr); } template <class T> void ExpectUnwrappedPrimitive(const google::protobuf::Message& message, T result) { CelValue cel_value = UnwrapMessageToValue(&message, &ProtobufValueFactoryImpl, arena()); T value; EXPECT_TRUE(cel_value.GetValue(&value)); EXPECT_THAT(value, Eq(result)); T dyn_value; CelValue cel_dyn_value = UnwrapMessageToValue( ReflectedCopy(message).get(), &ProtobufValueFactoryImpl, arena()); EXPECT_THAT(cel_dyn_value.type(), Eq(cel_value.type())); EXPECT_TRUE(cel_dyn_value.GetValue(&dyn_value)); EXPECT_THAT(value, Eq(dyn_value)); } void ExpectUnwrappedMessage(const google::protobuf::Message& message, google::protobuf::Message* result) { CelValue cel_value = UnwrapMessageToValue(&message, &ProtobufValueFactoryImpl, arena()); if (result == nullptr) { EXPECT_TRUE(cel_value.IsNull()); return; } EXPECT_TRUE(cel_value.IsMessage()); EXPECT_THAT(cel_value.MessageOrDie(), testutil::EqualsProto(*result)); } std::unique_ptr<google::protobuf::Message> ReflectedCopy( const google::protobuf::Message& message) { std::unique_ptr<google::protobuf::Message> dynamic_value( factory_.GetPrototype(message.GetDescriptor())->New()); dynamic_value->CopyFrom(message); return dynamic_value; } Arena* arena() { return &arena_; } private: Arena arena_; google::protobuf::DynamicMessageFactory factory_; }; TEST_F(CelProtoWrapperTest, TestType) { Duration msg_duration; msg_duration.set_seconds(2); msg_duration.set_nanos(3); CelValue value_duration2 = UnwrapMessageToValue(&msg_duration, &ProtobufValueFactoryImpl, arena()); EXPECT_THAT(value_duration2.type(), Eq(CelValue::Type::kDuration)); Timestamp msg_timestamp; msg_timestamp.set_seconds(2); msg_timestamp.set_nanos(3); CelValue value_timestamp2 = UnwrapMessageToValue(&msg_timestamp, &ProtobufValueFactoryImpl, arena()); EXPECT_THAT(value_timestamp2.type(), Eq(CelValue::Type::kTimestamp)); } TEST_F(CelProtoWrapperTest, TestDuration) { Duration msg_duration; msg_duration.set_seconds(2); msg_duration.set_nanos(3); CelValue value = UnwrapMessageToValue(&msg_duration, &ProtobufValueFactoryImpl, arena()); EXPECT_THAT(value.type(), Eq(CelValue::Type::kDuration)); Duration out; auto status = cel::internal::EncodeDuration(value.DurationOrDie(), &out); EXPECT_TRUE(status.ok()); EXPECT_THAT(out, testutil::EqualsProto(msg_duration)); } TEST_F(CelProtoWrapperTest, TestTimestamp) { Timestamp msg_timestamp; msg_timestamp.set_seconds(2); msg_timestamp.set_nanos(3); CelValue value = UnwrapMessageToValue(&msg_timestamp, &ProtobufValueFactoryImpl, arena()); EXPECT_TRUE(value.IsTimestamp()); Timestamp out; auto status = cel::internal::EncodeTime(value.TimestampOrDie(), &out); EXPECT_TRUE(status.ok()); EXPECT_THAT(out, testutil::EqualsProto(msg_timestamp)); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueNull) { Value json; json.set_null_value(google::protobuf::NullValue::NULL_VALUE); ExpectUnwrappedMessage(json, nullptr); } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueNull) { Value value_msg; value_msg.set_null_value(protobuf::NULL_VALUE); CelValue value = UnwrapMessageToValue(ReflectedCopy(value_msg).get(), &ProtobufValueFactoryImpl, arena()); EXPECT_TRUE(value.IsNull()); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueBool) { bool value = true; Value json; json.set_bool_value(true); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueNumber) { double value = 1.0; Value json; json.set_number_value(value); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueString) { const std::string test = "test"; auto value = CelValue::StringHolder(&test); Value json; json.set_string_value(test); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueStruct) { const std::vector<std::string> kFields = {"field1", "field2", "field3"}; Struct value_struct; auto& value1 = (*value_struct.mutable_fields())[kFields[0]]; value1.set_bool_value(true); auto& value2 = (*value_struct.mutable_fields())[kFields[1]]; value2.set_number_value(1.0); auto& value3 = (*value_struct.mutable_fields())[kFields[2]]; value3.set_string_value("test"); CelValue value = UnwrapMessageToValue(&value_struct, &ProtobufValueFactoryImpl, arena()); ASSERT_TRUE(value.IsMap()); const CelMap* cel_map = value.MapOrDie(); CelValue field1 = CelValue::CreateString(&kFields[0]); auto field1_presence = cel_map->Has(field1); ASSERT_OK(field1_presence); EXPECT_TRUE(*field1_presence); auto lookup1 = (*cel_map)[field1]; ASSERT_TRUE(lookup1.has_value()); ASSERT_TRUE(lookup1->IsBool()); EXPECT_EQ(lookup1->BoolOrDie(), true); CelValue field2 = CelValue::CreateString(&kFields[1]); auto field2_presence = cel_map->Has(field2); ASSERT_OK(field2_presence); EXPECT_TRUE(*field2_presence); auto lookup2 = (*cel_map)[field2]; ASSERT_TRUE(lookup2.has_value()); ASSERT_TRUE(lookup2->IsDouble()); EXPECT_DOUBLE_EQ(lookup2->DoubleOrDie(), 1.0); CelValue field3 = CelValue::CreateString(&kFields[2]); auto field3_presence = cel_map->Has(field3); ASSERT_OK(field3_presence); EXPECT_TRUE(*field3_presence); auto lookup3 = (*cel_map)[field3]; ASSERT_TRUE(lookup3.has_value()); ASSERT_TRUE(lookup3->IsString()); EXPECT_EQ(lookup3->StringOrDie().value(), "test"); std::string missing = "missing_field"; CelValue missing_field = CelValue::CreateString(&missing); auto missing_field_presence = cel_map->Has(missing_field); ASSERT_OK(missing_field_presence); EXPECT_FALSE(*missing_field_presence); const CelList* key_list = cel_map->ListKeys().value(); ASSERT_EQ(key_list->size(), kFields.size()); std::vector<std::string> result_keys; for (int i = 0; i < key_list->size(); i++) { CelValue key = (*key_list)[i]; ASSERT_TRUE(key.IsString()); result_keys.push_back(std::string(key.StringOrDie().value())); } EXPECT_THAT(result_keys, UnorderedPointwise(Eq(), kFields)); } TEST_F(CelProtoWrapperTest, UnwrapDynamicStruct) { Struct struct_msg; const std::string kFieldInt = "field_int"; const std::string kFieldBool = "field_bool"; (*struct_msg.mutable_fields())[kFieldInt].set_number_value(1.); (*struct_msg.mutable_fields())[kFieldBool].set_bool_value(true); CelValue value = UnwrapMessageToValue(ReflectedCopy(struct_msg).get(), &ProtobufValueFactoryImpl, arena()); EXPECT_TRUE(value.IsMap()); const CelMap* cel_map = value.MapOrDie(); ASSERT_TRUE(cel_map != nullptr); { auto lookup = (*cel_map)[CelValue::CreateString(&kFieldInt)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsDouble()); EXPECT_THAT(v.DoubleOrDie(), testing::DoubleEq(1.)); } { auto lookup = (*cel_map)[CelValue::CreateString(&kFieldBool)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsBool()); EXPECT_EQ(v.BoolOrDie(), true); } { auto presence = cel_map->Has(CelValue::CreateBool(true)); ASSERT_FALSE(presence.ok()); EXPECT_EQ(presence.status().code(), absl::StatusCode::kInvalidArgument); auto lookup = (*cel_map)[CelValue::CreateBool(true)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsError()); } } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueStruct) { const std::string kField1 = "field1"; const std::string kField2 = "field2"; Value value_msg; (*value_msg.mutable_struct_value()->mutable_fields())[kField1] .set_number_value(1); (*value_msg.mutable_struct_value()->mutable_fields())[kField2] .set_number_value(2); CelValue value = UnwrapMessageToValue(ReflectedCopy(value_msg).get(), &ProtobufValueFactoryImpl, arena()); EXPECT_TRUE(value.IsMap()); EXPECT_TRUE( (*value.MapOrDie())[CelValue::CreateString(&kField1)].has_value()); EXPECT_TRUE( (*value.MapOrDie())[CelValue::CreateString(&kField2)].has_value()); } TEST_F(CelProtoWrapperTest, UnwrapMessageToValueList) { const std::vector<std::string> kFields = {"field1", "field2", "field3"}; ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("test"); CelValue value = UnwrapMessageToValue(&list_value, &ProtobufValueFactoryImpl, arena()); ASSERT_TRUE(value.IsList()); const CelList* cel_list = value.ListOrDie(); ASSERT_EQ(cel_list->size(), 3); CelValue value1 = (*cel_list)[0]; ASSERT_TRUE(value1.IsBool()); EXPECT_EQ(value1.BoolOrDie(), true); auto value2 = (*cel_list)[1]; ASSERT_TRUE(value2.IsDouble()); EXPECT_DOUBLE_EQ(value2.DoubleOrDie(), 1.0); auto value3 = (*cel_list)[2]; ASSERT_TRUE(value3.IsString()); EXPECT_EQ(value3.StringOrDie().value(), "test"); } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueListValue) { Value value_msg; value_msg.mutable_list_value()->add_values()->set_number_value(1.); value_msg.mutable_list_value()->add_values()->set_number_value(2.); CelValue value = UnwrapMessageToValue(ReflectedCopy(value_msg).get(), &ProtobufValueFactoryImpl, arena()); EXPECT_TRUE(value.IsList()); EXPECT_THAT((*value.ListOrDie())[0].DoubleOrDie(), testing::DoubleEq(1)); EXPECT_THAT((*value.ListOrDie())[1].DoubleOrDie(), testing::DoubleEq(2)); } TEST_F(CelProtoWrapperTest, UnwrapAnyValue) { TestMessage test_message; test_message.set_string_value("test"); Any any; any.PackFrom(test_message); ExpectUnwrappedMessage(any, &test_message); } TEST_F(CelProtoWrapperTest, UnwrapInvalidAny) { Any any; CelValue value = UnwrapMessageToValue(&any, &ProtobufValueFactoryImpl, arena()); ASSERT_TRUE(value.IsError()); any.set_type_url("/"); ASSERT_TRUE( UnwrapMessageToValue(&any, &ProtobufValueFactoryImpl, arena()).IsError()); any.set_type_url("/invalid.proto.name"); ASSERT_TRUE( UnwrapMessageToValue(&any, &ProtobufValueFactoryImpl, arena()).IsError()); } TEST_F(CelProtoWrapperTest, UnwrapBoolWrapper) { bool value = true; BoolValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapInt32Wrapper) { int64_t value = 12; Int32Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapUInt32Wrapper) { uint64_t value = 12; UInt32Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapInt64Wrapper) { int64_t value = 12; Int64Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapUInt64Wrapper) { uint64_t value = 12; UInt64Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapFloatWrapper) { double value = 42.5; FloatValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapDoubleWrapper) { double value = 42.5; DoubleValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapStringWrapper) { std::string text = "42"; auto value = CelValue::StringHolder(&text); StringValue wrapper; wrapper.set_value(text); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapBytesWrapper) { std::string text = "42"; auto value = CelValue::BytesHolder(&text); BytesValue wrapper; wrapper.set_value("42"); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, WrapNull) { auto cel_value = CelValue::CreateNull(); Value json; json.set_null_value(protobuf::NULL_VALUE); ExpectWrappedMessage(cel_value, json); Any any; any.PackFrom(json); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBool) { auto cel_value = CelValue::CreateBool(true); Value json; json.set_bool_value(true); ExpectWrappedMessage(cel_value, json); BoolValue wrapper; wrapper.set_value(true); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBytes) { std::string str = "hello world"; auto cel_value = CelValue::CreateBytes(CelValue::BytesHolder(&str)); BytesValue wrapper; wrapper.set_value(str); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBytesToValue) { std::string str = "hello world"; auto cel_value = CelValue::CreateBytes(CelValue::BytesHolder(&str)); Value json; json.set_string_value("aGVsbG8gd29ybGQ="); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapDuration) { auto cel_value = CelValue::CreateDuration(absl::Seconds(300)); Duration d; d.set_seconds(300); ExpectWrappedMessage(cel_value, d); Any any; any.PackFrom(d); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapDurationToValue) { auto cel_value = CelValue::CreateDuration(absl::Seconds(300)); Value json; json.set_string_value("300s"); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapDouble) { double num = 1.5; auto cel_value = CelValue::CreateDouble(num); Value json; json.set_number_value(num); ExpectWrappedMessage(cel_value, json); DoubleValue wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapDoubleToFloatValue) { double num = 1.5; auto cel_value = CelValue::CreateDouble(num); FloatValue wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); double small_num = -9.9e-100; wrapper.set_value(small_num); cel_value = CelValue::CreateDouble(small_num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapDoubleOverflow) { double lowest_double = std::numeric_limits<double>::lowest(); auto cel_value = CelValue::CreateDouble(lowest_double); FloatValue wrapper; wrapper.set_value(-std::numeric_limits<float>::infinity()); ExpectWrappedMessage(cel_value, wrapper); double max_double = std::numeric_limits<double>::max(); cel_value = CelValue::CreateDouble(max_double); wrapper.set_value(std::numeric_limits<float>::infinity()); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapInt64) { int32_t num = std::numeric_limits<int32_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Value json; json.set_number_value(static_cast<double>(num)); ExpectWrappedMessage(cel_value, json); Int64Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapInt64ToInt32Value) { int32_t num = std::numeric_limits<int32_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Int32Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapFailureInt64ToInt32Value) { int64_t num = std::numeric_limits<int64_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Int32Value wrapper; ExpectNotWrapped(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapInt64ToValue) { int64_t max = std::numeric_limits<int64_t>::max(); auto cel_value = CelValue::CreateInt64(max); Value json; json.set_string_value(absl::StrCat(max)); ExpectWrappedMessage(cel_value, json); int64_t min = std::numeric_limits<int64_t>::min(); cel_value = CelValue::CreateInt64(min); json.set_string_value(absl::StrCat(min)); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapUint64) { uint32_t num = std::numeric_limits<uint32_t>::max(); auto cel_value = CelValue::CreateUint64(num); Value json; json.set_number_value(static_cast<double>(num)); ExpectWrappedMessage(cel_value, json); UInt64Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapUint64ToUint32Value) { uint32_t num = std::numeric_limits<uint32_t>::max(); auto cel_value = CelValue::CreateUint64(num); UInt32Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapUint64ToValue) { uint64_t num = std::numeric_limits<uint64_t>::max(); auto cel_value = CelValue::CreateUint64(num); Value json; json.set_string_value(absl::StrCat(num)); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureUint64ToUint32Value) { uint64_t num = std::numeric_limits<uint64_t>::max(); auto cel_value = CelValue::CreateUint64(num); UInt32Value wrapper; ExpectNotWrapped(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapString) { std::string str = "test"; auto cel_value = CelValue::CreateString(CelValue::StringHolder(&str)); Value json; json.set_string_value(str); ExpectWrappedMessage(cel_value, json); StringValue wrapper; wrapper.set_value(str); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapTimestamp) { absl::Time ts = absl::FromUnixSeconds(1615852799); auto cel_value = CelValue::CreateTimestamp(ts); Timestamp t; t.set_seconds(1615852799); ExpectWrappedMessage(cel_value, t); Any any; any.PackFrom(t); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapTimestampToValue) { absl::Time ts = absl::FromUnixSeconds(1615852799); auto cel_value = CelValue::CreateTimestamp(ts); Value json; json.set_string_value("2021-03-15T23:59:59Z"); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapList) { std::vector<CelValue> list_elems = { CelValue::CreateDouble(1.5), CelValue::CreateInt64(-2L), }; ContainerBackedListImpl list(std::move(list_elems)); auto cel_value = CelValue::CreateList(&list); Value json; json.mutable_list_value()->add_values()->set_number_value(1.5); json.mutable_list_value()->add_values()->set_number_value(-2.); ExpectWrappedMessage(cel_value, json); ExpectWrappedMessage(cel_value, json.list_value()); Any any; any.PackFrom(json.list_value()); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapFailureListValueBadJSON) { TestMessage message; std::vector<CelValue> list_elems = { CelValue::CreateDouble(1.5), UnwrapMessageToValue(&message, &ProtobufValueFactoryImpl, arena()), }; ContainerBackedListImpl list(std::move(list_elems)); auto cel_value = CelValue::CreateList(&list); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapStruct) { const std::string kField1 = "field1"; std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateString(CelValue::StringHolder(&kField1)), CelValue::CreateBool(true)}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; (*json.mutable_struct_value()->mutable_fields())[kField1].set_bool_value( true); ExpectWrappedMessage(cel_value, json); ExpectWrappedMessage(cel_value, json.struct_value()); Any any; any.PackFrom(json.struct_value()); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapFailureStructBadKeyType) { std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateInt64(1L), CelValue::CreateBool(true)}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureStructBadValueType) { const std::string kField1 = "field1"; TestMessage bad_value; std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateString(CelValue::StringHolder(&kField1)), UnwrapMessageToValue(&bad_value, &ProtobufValueFactoryImpl, arena())}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; ExpectNotWrapped(cel_value, json); } class TestMap : public CelMapBuilder { public: absl::StatusOr<const CelList*> ListKeys() const override { return absl::UnimplementedError("test"); } }; TEST_F(CelProtoWrapperTest, WrapFailureStructListKeysUnimplemented) { const std::string kField1 = "field1"; TestMap map; ASSERT_OK(map.Add(CelValue::CreateString(CelValue::StringHolder(&kField1)), CelValue::CreateString(CelValue::StringHolder(&kField1)))); auto cel_value = CelValue::CreateMap(&map); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureWrongType) { auto cel_value = CelValue::CreateNull(); std::vector<const google::protobuf::Message*> wrong_types = { &BoolValue::default_instance(), &BytesValue::default_instance(), &DoubleValue::default_instance(), &Duration::default_instance(), &FloatValue::default_instance(), &Int32Value::default_instance(), &Int64Value::default_instance(), &ListValue::default_instance(), &StringValue::default_instance(), &Struct::default_instance(), &Timestamp::default_instance(), &UInt32Value::default_instance(), &UInt64Value::default_instance(), }; for (const auto* wrong_type : wrong_types) { ExpectNotWrapped(cel_value, *wrong_type); } } TEST_F(CelProtoWrapperTest, WrapFailureErrorToAny) { auto cel_value = CreateNoSuchFieldError(arena(), "error_field"); ExpectNotWrapped(cel_value, Any::default_instance()); } TEST_F(CelProtoWrapperTest, DebugString) { google::protobuf::Empty e; EXPECT_EQ(UnwrapMessageToValue(&e, &ProtobufValueFactoryImpl, arena()) .DebugString(), "Message: opaque"); ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("test"); CelValue value = UnwrapMessageToValue(&list_value, &ProtobufValueFactoryImpl, arena()); EXPECT_EQ(value.DebugString(), "CelList: [bool: 1, double: 1.000000, string: test]"); Struct value_struct; auto& value1 = (*value_struct.mutable_fields())["a"]; value1.set_bool_value(true); auto& value2 = (*value_struct.mutable_fields())["b"]; value2.set_number_value(1.0); auto& value3 = (*value_struct.mutable_fields())["c"]; value3.set_string_value("test"); value = UnwrapMessageToValue(&value_struct, &ProtobufValueFactoryImpl, arena()); EXPECT_THAT( value.DebugString(), testing::AllOf(testing::StartsWith("CelMap: {"), testing::HasSubstr("<string: a>: <bool: 1>"), testing::HasSubstr("<string: b>: <double: 1.0"), testing::HasSubstr("<string: c>: <string: test>"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/cel_proto_wrap_util.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/cel_proto_wrap_util_test.cc
4552db5798fb0853b131b783d8875794334fae7f
c8c785cb-0a1c-4856-9184-3546aad84b13
cpp
google/arolla
switch_index
arolla/util/switch_index.h
arolla/util/switch_index_test.cc
#ifndef AROLLA_UTIL_SWITCH_INDEX_H_ #define AROLLA_UTIL_SWITCH_INDEX_H_ #include <cassert> #include <type_traits> #include <utility> #include "absl/base/attributes.h" namespace arolla { #define CASE_1(k) \ case (k): \ return std::forward<Callback>(callback)(std::integral_constant<int, (k)>()) #define CASE_4(k) \ CASE_1(k); \ CASE_1(k + 1); \ CASE_1(k + 2); \ CASE_1(k + 3) #define CASE_16(k) \ CASE_4(k); \ CASE_4(k + 4); \ CASE_4(k + 8); \ CASE_4(k + 12) template <typename Callback> auto switch_index_32(int n, Callback&& callback) { assert(0 <= n && n < 32); switch (n) { CASE_16(0); CASE_16(16); } return std::forward<Callback>(callback)(std::integral_constant<int, 31>()); } template <typename Callback> auto switch_index_64(int n, Callback&& callback) { assert(0 <= n && n < 64); switch (n) { CASE_16(0); CASE_16(16); CASE_16(32); CASE_16(48); } return std::forward<Callback>(callback)(std::integral_constant<int, 63>()); } template <int N, typename Callback> inline ABSL_ATTRIBUTE_ALWAYS_INLINE auto switch_index(int n, Callback&& callback) { static_assert(N == 32 || N == 64); if constexpr (N == 32) { return switch_index_32(n, std::forward<Callback>(callback)); } else { return switch_index_64(n, std::forward<Callback>(callback)); } } #undef CASE_16 #undef CASE_4 #undef CASE_1 } #endif
#include "arolla/util/switch_index.h" #include <string> #include "gtest/gtest.h" namespace arolla::testing { namespace { template <int N> void test_switch_index() { for (int i = 0; i < N; ++i) { EXPECT_EQ(std::to_string(i), switch_index<N>(i, [i](auto arg) { constexpr int constexpr_i = arg(); EXPECT_EQ(i, constexpr_i); return std::to_string(constexpr_i); })); } } TEST(SwitchIndex, switch_index_32) { test_switch_index<32>(); } TEST(SwitchIndex, switch_index_64) { test_switch_index<64>(); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/switch_index.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/switch_index_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
2f2dd5f2-a8cd-4856-b362-5cee75f05ca3
cpp
tensorflow/tensorflow
message
tensorflow/lite/testing/message.cc
tensorflow/lite/testing/message_test.cc
#include "tensorflow/lite/testing/message.h" #include <stack> #include <string> #include "tensorflow/lite/testing/tokenize.h" namespace tflite { namespace testing { class MessageStack : public TokenProcessor { public: explicit MessageStack(Message* first_node) { nodes_.push(first_node); valid_ = true; } void ConsumeToken(std::string* token) override { if (!valid_) return; Message* current_node = nodes_.top(); if (*token == "{") { if (previous_token_.empty()) { valid_ = false; return; } nodes_.push(current_node ? current_node->AddChild(previous_token_) : nullptr); previous_token_.clear(); } else if (*token == "}") { if (nodes_.size() == 1 || !previous_token_.empty()) { valid_ = false; return; } if (current_node) { current_node->Finish(); } nodes_.pop(); } else if (*token == ":") { if (previous_token_.empty()) { valid_ = false; return; } } else { if (previous_token_.empty()) { previous_token_.swap(*token); } else { if (current_node) { current_node->SetField(previous_token_, *token); } previous_token_.clear(); } } } bool valid() const { return valid_; } private: std::stack<Message*> nodes_; std::string previous_token_; bool valid_; }; bool Message::Read(std::istream* input, Message* message) { MessageStack stack(message); Tokenize(input, &stack); return stack.valid(); } } }
#include "tensorflow/lite/testing/message.h" #include <map> #include <string> #include <gtest/gtest.h> namespace tflite { namespace testing { namespace { class TestMessage : public Message { public: TestMessage() {} explicit TestMessage(const std::string& text_to_parse) { std::stringstream ss(text_to_parse); finished_ = Message::Read(&ss, this); } void SetField(const std::string& name, const std::string& value) override { fields_[name] = value; } Message* AddChild(const std::string& name) override { TestMessage* m = new TestMessage; m->name_ = name; return Store(m); } void Finish() override { finished_ = true; } int NumChildren() const { return Children().size(); } const TestMessage* GetChild(int i) const { return dynamic_cast<TestMessage*>(Children()[i].get()); } int NumFields() const { return fields_.size(); } const std::string& GetField(const std::string& key) const { return fields_.at(key); } const std::string& name() const { return name_; } bool finished() const { return finished_; } protected: std::string name_; std::map<std::string, std::string> fields_; bool finished_ = false; }; TEST(MessageTest, Simple) { TestMessage message("x{a:1 b:2} y{} z{c:3} d:4"); ASSERT_TRUE(message.finished()); ASSERT_EQ(message.NumFields(), 1); EXPECT_EQ(message.GetField("d"), "4"); ASSERT_EQ(message.NumChildren(), 3); auto* x = message.GetChild(0); EXPECT_EQ(x->name(), "x"); ASSERT_EQ(x->NumFields(), 2); EXPECT_EQ(x->GetField("a"), "1"); EXPECT_EQ(x->GetField("b"), "2"); auto* y = message.GetChild(1); EXPECT_EQ(y->name(), "y"); ASSERT_EQ(y->NumFields(), 0); auto* z = message.GetChild(2); EXPECT_EQ(z->name(), "z"); ASSERT_EQ(z->NumFields(), 1); EXPECT_EQ(z->GetField("c"), "3"); } TEST(MessageTest, Unnamed) { TestMessage message("x{c:3} {} y{d:4}"); ASSERT_FALSE(message.finished()); EXPECT_EQ(message.NumChildren(), 1); } TEST(MessageTest, TooManyBraces) { TestMessage message("x{c:3} } y{d:4}"); ASSERT_FALSE(message.finished()); EXPECT_EQ(message.NumChildren(), 1); } TEST(MessageTest, LeftoverToken) { TestMessage message("x{c:3} z{test} y{d:4}"); ASSERT_FALSE(message.finished()); EXPECT_EQ(message.NumChildren(), 2); } TEST(MessageTest, MissingKey) { TestMessage message("x{c:3} z{:test} y{d:4}"); ASSERT_FALSE(message.finished()); EXPECT_EQ(message.NumChildren(), 2); } TEST(MessageTest, MissingValue) { TestMessage message("x{c:3} z{test:} y{d:4}"); ASSERT_FALSE(message.finished()); EXPECT_EQ(message.NumChildren(), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/message.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/testing/message_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
75518bb5-a390-42b6-b985-bea3835768f4
cpp
google/cel-cpp
comprehension_slots
eval/eval/comprehension_slots.h
eval/eval/comprehension_slots_test.cc
#ifndef THIRD_PARTY_CEL_CPP_EVAL_EVAL_COMPREHENSION_SLOTS_H_ #define THIRD_PARTY_CEL_CPP_EVAL_EVAL_COMPREHENSION_SLOTS_H_ #include <cstddef> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/types/optional.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" namespace google::api::expr::runtime { class ComprehensionSlots { public: struct Slot { cel::Value value; AttributeTrail attribute; }; static ComprehensionSlots& GetEmptyInstance() { static absl::NoDestructor<ComprehensionSlots> instance(0); return *instance; } explicit ComprehensionSlots(size_t size) : size_(size), slots_(size) {} ComprehensionSlots(const ComprehensionSlots&) = delete; ComprehensionSlots& operator=(const ComprehensionSlots&) = delete; ComprehensionSlots(ComprehensionSlots&&) = default; ComprehensionSlots& operator=(ComprehensionSlots&&) = default; Slot* Get(size_t index) { ABSL_DCHECK_LT(index, slots_.size()); auto& slot = slots_[index]; if (!slot.has_value()) return nullptr; return &slot.value(); } void Reset() { slots_.clear(); slots_.resize(size_); } void ClearSlot(size_t index) { ABSL_DCHECK_LT(index, slots_.size()); slots_[index] = absl::nullopt; } void Set(size_t index) { ABSL_DCHECK_LT(index, slots_.size()); slots_[index].emplace(); } void Set(size_t index, cel::Value value) { Set(index, std::move(value), AttributeTrail()); } void Set(size_t index, cel::Value value, AttributeTrail attribute) { ABSL_DCHECK_LT(index, slots_.size()); slots_[index] = Slot{std::move(value), std::move(attribute)}; } size_t size() const { return slots_.size(); } private: size_t size_; std::vector<absl::optional<Slot>> slots_; }; } #endif
#include "eval/eval/comprehension_slots.h" #include "base/attribute.h" #include "base/type_provider.h" #include "common/memory.h" #include "common/type.h" #include "common/type_factory.h" #include "common/type_manager.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/eval/attribute_trail.h" #include "internal/testing.h" namespace google::api::expr::runtime { using ::cel::Attribute; using ::absl_testing::IsOkAndHolds; using ::cel::MemoryManagerRef; using ::cel::StringValue; using ::cel::TypeFactory; using ::cel::TypeManager; using ::cel::TypeProvider; using ::cel::Value; using ::cel::ValueManager; using ::testing::Truly; TEST(ComprehensionSlots, Basic) { cel::common_internal::LegacyValueManager factory( MemoryManagerRef::ReferenceCounting(), TypeProvider::Builtin()); ComprehensionSlots slots(4); ComprehensionSlots::Slot* unset = slots.Get(0); EXPECT_EQ(unset, nullptr); slots.Set(0, factory.CreateUncheckedStringValue("abcd"), AttributeTrail(Attribute("fake_attr"))); auto* slot0 = slots.Get(0); ASSERT_TRUE(slot0 != nullptr); EXPECT_THAT(slot0->value, Truly([](const Value& v) { return v.Is<StringValue>() && v.GetString().ToString() == "abcd"; })) << "value is 'abcd'"; EXPECT_THAT(slot0->attribute.attribute().AsString(), IsOkAndHolds("fake_attr")); slots.ClearSlot(0); EXPECT_EQ(slots.Get(0), nullptr); slots.Set(3, factory.CreateUncheckedStringValue("abcd"), AttributeTrail(Attribute("fake_attr"))); auto* slot3 = slots.Get(3); ASSERT_TRUE(slot3 != nullptr); EXPECT_THAT(slot3->value, Truly([](const Value& v) { return v.Is<StringValue>() && v.GetString().ToString() == "abcd"; })) << "value is 'abcd'"; slots.Reset(); slot0 = slots.Get(0); EXPECT_TRUE(slot0 == nullptr); slot3 = slots.Get(3); EXPECT_TRUE(slot3 == nullptr); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/comprehension_slots.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/comprehension_slots_test.cc
4552db5798fb0853b131b783d8875794334fae7f
8b3d1a79-9e0e-4afa-b82c-826ddee12d52
cpp
tensorflow/tensorflow
xla_launch_util
tensorflow/compiler/jit/xla_launch_util.cc
tensorflow/compiler/jit/xla_launch_util_test.cc
#include "tensorflow/compiler/jit/xla_launch_util.h" #include <cstdint> #include <memory> #include <optional> #include <set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer_util.h" #include "tensorflow/compiler/jit/variable_info.h" #include "tensorflow/compiler/jit/variable_info_util.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "xla/client/local_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/pjrt/tracked_device_buffer.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/framework/device_id_utils.h" #include "xla/tsl/framework/serving_device_selector_policies.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.h" #include "tensorflow/core/common_runtime/gpu_device_context.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/tfrt/common/async_value_tensor.h" #include "tensorflow/core/util/stream_executor_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using xla::ScopedShapedBuffer; using xla::ShapedBuffer; se::Platform::Id XlaPlatformInfoFromDevice(DeviceBase* device_base) { auto device = static_cast<Device*>(device_base); se::Platform::Id platform_id = nullptr; if (device->device_type() == DEVICE_CPU) { platform_id = se::host::kHostPlatformId; } return platform_id; } absl::flat_hash_map<int, int> CreateVariableLookup( const std::vector<VariableInfo>& variables) { absl::flat_hash_map<int, int> variable_lookup; for (int i = 0; i < variables.size(); i++) { variable_lookup[variables[i].index()] = i; } return variable_lookup; } } std::vector<const Tensor*> InputsFromContext(OpKernelContext* ctx) { std::vector<const Tensor*> inputs; inputs.reserve(ctx->num_inputs()); for (int input_idx = 0; input_idx < ctx->num_inputs(); input_idx++) { inputs.push_back(&ctx->input(input_idx)); } return inputs; } absl::StatusOr<std::vector<int>> GetConstantInputIndicesFromContext( OpKernelContext* ctx) { std::vector<int> constant_input_indices; TF_RETURN_IF_ERROR(GetCompileTimeConstInputs( &ctx->op_kernel(), &constant_input_indices, ctx->function_library())); if (!absl::c_all_of(constant_input_indices, [&](int idx) { return ctx->input_memory_type(idx) == HOST_MEMORY; })) { return errors::Internal("Unexpected device placement for a constant input"); } return constant_input_indices; } XlaComputationLaunchContext::XlaComputationLaunchContext( xla::LocalClient* client, se::DeviceMemoryAllocator* xla_allocator, int device_ordinal, bool allocate_xla_tensors, bool use_multiple_streams) : client_(client), xla_allocator_(xla_allocator), allocate_xla_tensors_(allocate_xla_tensors), use_multiple_streams_(use_multiple_streams), device_ordinal_(device_ordinal) { if (use_multiple_streams_) { CHECK(allocate_xla_tensors_) << "To use multiple streams correctly we must " "be allocating XLA tensors!"; } } static void PopulateExecutionInputBuffer(xla::ExecutionInput& execution_input, xla::ShapeIndex index, se::DeviceMemoryBase buffer, bool donate_buffer, int device_ordinal, se::DeviceMemoryAllocator* allocator) { xla::MaybeOwningDeviceMemory* in_buffer = execution_input.MutableBuffer(index); if (donate_buffer) { *in_buffer = se::OwningDeviceMemory(buffer, device_ordinal, allocator); } else { *in_buffer = buffer; } } absl::StatusOr<std::vector<xla::ExecutionInput>> XlaComputationLaunchContext::PopulateInputs( OpKernelContext* ctx, const XlaCompiler::CompilationResult* compilation_result, const std::map<int, const Tensor*>& resource_vars, int missing_ctx_input_prefix, const xla::HloInputOutputAliasConfig& input_output_alias) { std::vector<xla::ExecutionInput> arguments; arguments.reserve(compilation_result->xla_input_shapes.size()); for (int i = 0; i < compilation_result->xla_input_shapes.size(); ++i) { int arg_num = compilation_result->input_mapping[i]; CHECK_GE(arg_num, missing_ctx_input_prefix); const xla::Shape& device_shape = compilation_result->xla_input_shapes[i]; const xla::Shape& host_shape = xla::ShapeUtil::DeviceShapeToHostShape(device_shape); auto resource_var_it = resource_vars.find(arg_num); bool is_resource_variable = resource_var_it != resource_vars.end(); bool is_updated_resource_variable = is_resource_variable && absl::c_any_of(compilation_result->resource_updates, [&](const XlaCompiler::ResourceUpdate& update) { return update.input_index == arg_num && update.modified; }); const Tensor* t = is_resource_variable ? resource_var_it->second : &(ctx->input(arg_num - missing_ctx_input_prefix)); CHECK(t); bool donate_buffer = t->RefCountIsOne() && is_updated_resource_variable && input_output_alias.ParameterHasAlias(i, xla::ShapeIndex{}); VLOG(3) << "Processing input: " << i << "; is_resource_variable=" << is_resource_variable << "; is_updated_resource_variable=" << is_updated_resource_variable << "; donate_buffer=" << donate_buffer; if (use_multiple_streams_) { CHECK(ctx->op_device_context() && ctx->op_device_context()->stream()) << "Must have a stream available when using XLA tensors!"; XlaTensor* xla_tensor = XlaTensor::FromTensor(t); CHECK(xla_tensor); xla_tensor->WaitForDefinitionEventOnStream( ctx->op_device_context()->stream()); } arguments.emplace_back(device_shape, host_shape); xla::ExecutionInput& execution_input = arguments.back(); se::DeviceMemoryBase dmem = XlaTensor::DeviceMemoryFromTensor(*t); PopulateExecutionInputBuffer(execution_input, xla::ShapeIndex{}, dmem, donate_buffer, device_ordinal_, xla_allocator_); } return std::move(arguments); } static Tensor MakeTensor(DataType dtype, const TensorShape& shape, se::DeviceMemoryBase buffer, Allocator* allocator) { size_t expected_size = shape.num_elements() * DataTypeSize(dtype); auto* tensor_buffer = new XlaTensorBuffer(buffer.opaque(), expected_size, buffer.size(), allocator); Tensor t(dtype, shape, tensor_buffer); tensor_buffer->Unref(); return t; } static absl::StatusOr<Tensor> GetOrCreateTensorForOutput( xla::ScopedShapedBuffer& output, int output_num, OpKernelContext* ctx, int missing_ctx_input_prefix, const xla::HloInputOutputAliasConfig& input_output_alias, absl::Span<const int> input_mapping, const std::map<int, const Tensor*>& resource_vars_snapshots, DataType output_dtype, const TensorShape& output_shape, Allocator* output_allocator, bool allocate_xla_tensors, se::Stream* stream, bool use_multiple_streams, std::shared_ptr<se::Event> definition_event) { xla::ShapeIndex output_index = input_output_alias.shape().IsTuple() ? xla::ShapeIndex({output_num}) : xla::ShapeIndex({}); CHECK(input_output_alias.shape().IsTuple() || output_num == 0); if (std::optional<xla::HloInputOutputAliasConfig::Alias> alias = input_output_alias.GetAliasedParameter(output_index)) { VLOG(3) << "Found alias: " << alias->ToString(); int tf_param = input_mapping[alias->parameter_number] - missing_ctx_input_prefix; const Tensor input_tensor = ctx->input(tf_param).dtype() != DT_RESOURCE ? ctx->input(tf_param) : *resource_vars_snapshots.at(missing_ctx_input_prefix + tf_param); se::DeviceMemoryBase input_buffer = XlaTensor::DeviceMemoryFromTensor(input_tensor); se::DeviceMemoryBase output_buffer = output.buffer({output_num}); if (input_buffer.opaque() == output_buffer.opaque()) { output.set_buffer(se::OwningDeviceMemory(), {output_num}); return input_tensor; } } if (allocate_xla_tensors) { Tensor output_tensor; TF_RETURN_IF_ERROR( ctx->allocate_temp(output_dtype, output_shape, &output_tensor)); if (output_tensor.TotalBytes() > 0) { XlaTensor* xla_tensor = XlaTensor::FromTensor(&output_tensor); TF_RET_CHECK(xla_tensor); xla_tensor->set_shaped_buffer(output.TakeSubTree({output_num})); if (use_multiple_streams) { xla_tensor->ResetDefinitionEvent(definition_event, stream); } } return output_tensor; } se::DeviceMemoryBase output_buffer = output.buffer({output_num}); Tensor output_tensor = MakeTensor(output_dtype, output_shape, output_buffer, output_allocator); output.set_buffer(se::OwningDeviceMemory(), {output_num}); return output_tensor; } Status SetOutputForConstant( OpKernelContext* ctx, bool requires_copy_to_device, const XlaCompiler::CompilationResult* compilation_result, int output_num) { CHECK(compilation_result->outputs[output_num].is_constant); const Tensor& const_tensor = compilation_result->outputs[output_num].constant_value; Tensor* output_tensor; if (requires_copy_to_device && const_tensor.TotalBytes() > 0) { VLOG(1) << "Constant output tensor on device"; TF_RETURN_IF_ERROR( ctx->allocate_output(output_num, const_tensor.shape(), &output_tensor)); Device* device = dynamic_cast<Device*>(ctx->device()); if (device == nullptr) { return errors::Internal("DeviceBase was not a Device."); } ctx->op_device_context()->CopyCPUTensorToDevice( &const_tensor, device, output_tensor, [&](Status status) { TF_CHECK_OK(status); }); if (device->device_type() == DEVICE_GPU) { auto* gpu_device_context = static_cast<GPUDeviceContext*>(ctx->op_device_context()); TF_RETURN_IF_ERROR(gpu_device_context->stream()->WaitFor( gpu_device_context->host_to_device_stream())); } } else { ctx->set_output(output_num, const_tensor); output_tensor = ctx->mutable_output(output_num); } return absl::OkStatus(); } static absl::StatusOr<Var*> GetOrCreateResourceVar( OpKernelContext* ctx, const ResourceHandle& handle, const XlaCompiler::ResourceUpdate& write) { Var* variable = nullptr; TF_RETURN_IF_ERROR( LookupOrCreateResource<Var>(ctx, handle, &variable, [&write](Var** ptr) { *ptr = new Var(write.type); return absl::OkStatus(); })); return variable; } absl::StatusOr<std::vector<VariableInfo>> GatherVariableInfo( OpKernelContext* ctx, const XlaCompiler::CompilationResult& compilation_result, int missing_ctx_input_prefix) { std::vector<VariableInfo> out; out.reserve(compilation_result.resource_updates.size()); for (int i = 0; i < compilation_result.resource_updates.size(); ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result.resource_updates[i]; int actual_input_index = write.input_index - missing_ctx_input_prefix; if (actual_input_index < 0 || actual_input_index >= ctx->num_inputs()) { return errors::Internal("Invalid input index for variable write."); } const ResourceHandle handle = HandleFromInput(ctx, actual_input_index); TF_ASSIGN_OR_RETURN(Var * variable, GetOrCreateResourceVar(ctx, handle, write)); out.emplace_back(actual_input_index, handle.name(), variable, handle.definition_stack_trace()); } return std::move(out); } Status XlaComputationLaunchContext::PopulateOutputs( OpKernelContext* ctx, const XlaCompiler::CompilationResult* compilation_result, ScopedShapedBuffer output, int missing_ctx_input_prefix, absl::Span<VariableInfo> variable_infos, const xla::HloInputOutputAliasConfig& input_output_alias, const std::map<int, const Tensor*>& resource_vars) { se::Stream* stream = ctx->op_device_context() ? ctx->op_device_context()->stream() : nullptr; Allocator* allocator = ctx->device()->GetAllocator({}); VLOG(2) << "Result tuple shape: " << output.on_host_shape().DebugString(); VLOG(2) << "Result tuple shape (on device): " << output.on_device_shape().DebugString(); CHECK_EQ(ctx->num_outputs(), compilation_result->outputs.size()); if (!output.on_host_shape().IsTuple()) { ShapedBuffer nontuple_buffer = output.release(); ShapedBuffer buffer( xla::ShapeUtil::MakeTupleShape({nontuple_buffer.on_host_shape()}), xla::ShapeUtil::MakeTupleShape({nontuple_buffer.on_device_shape()}), output.device_ordinal()); buffer.buffers().CopySubtreeFrom(nontuple_buffer.buffers(), {}, {0}); output = ScopedShapedBuffer(std::move(buffer), output.memory_allocator()); } std::shared_ptr<se::Event> definition_event; if (use_multiple_streams_ && stream) { TF_ASSIGN_OR_RETURN(definition_event, stream->parent()->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(definition_event.get())); } for (const XlaOutputDescription& descr : compilation_result->outputs) { if (descr.type == DT_VARIANT) { return errors::Unimplemented( "Support for TensorList crossing the XLA/TF boundary " "is not implemented"); } } std::vector<TensorShape> output_tensor_shapes; output_tensor_shapes.reserve(ctx->num_outputs()); if (output.on_host_shape().is_dynamic()) { const se::Platform* platform = nullptr; if (stream != nullptr) { platform = stream->parent()->GetPlatform(); } else { TF_ASSIGN_OR_RETURN(platform, se::PlatformManager::PlatformWithId( XlaPlatformInfoFromDevice(ctx->device()))); } TF_ASSIGN_OR_RETURN(auto transfer_manager, xla::TransferManager::GetForPlatform(platform)); xla::Shape output_device_shape = output.on_device_shape(); TF_RETURN_IF_ERROR(transfer_manager->ReadDynamicShapes( stream, &output, &output_device_shape)); output.set_shapes(output_device_shape, output_device_shape); for (int i = 0; i < ctx->num_outputs(); ++i) { const xla::Shape& subshape = xla::ShapeUtil::GetSubshape(output_device_shape, {i}); TensorShape shape; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(subshape, &shape)); output_tensor_shapes.push_back(shape); } } else { for (int i = 0; i < ctx->num_outputs(); ++i) { output_tensor_shapes.push_back(compilation_result->outputs[i].shape); } } int output_num = 0; for (int i = 0, end = ctx->num_outputs(); i < end; ++i) { const TensorShape& shape = output_tensor_shapes[i]; const DataType& type = compilation_result->outputs[i].type; VLOG(2) << "Populating output for retval " << i << " shape " << shape.DebugString() << " type " << DataTypeString(type); if (compilation_result->outputs[i].is_constant) { TF_RETURN_IF_ERROR(SetOutputForConstant( ctx, stream != nullptr, compilation_result, i)); } else if (type == DT_RESOURCE) { int input_index = compilation_result->outputs[i].input_index - missing_ctx_input_prefix; TF_RET_CHECK(input_index >= 0 && input_index < ctx->num_inputs()) << "Invalid input for outputs " << i << ": " << input_index; ctx->set_output(i, ctx->input(input_index)); } else { TF_ASSIGN_OR_RETURN( Tensor output_tensor, GetOrCreateTensorForOutput( output, output_num, ctx, missing_ctx_input_prefix, input_output_alias, compilation_result->input_mapping, resource_vars, ctx->expected_output_dtype(i), shape, allocator, allocate_xla_tensors_, stream, use_multiple_streams_, definition_event)); ctx->set_output(i, output_tensor); ++output_num; } } absl::flat_hash_map<int, int> variable_info_lookup; for (int i = 0; i < variable_infos.size(); i++) { variable_info_lookup.emplace(variable_infos[i].index(), i); } for (int i = 0, end = compilation_result->resource_updates.size(); i < end; ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result->resource_updates[i]; int actual_input_index = write.input_index - missing_ctx_input_prefix; CHECK_GE(actual_input_index, 0); CHECK_LT(actual_input_index, ctx->num_inputs()); Var* var = variable_infos[variable_info_lookup[actual_input_index]].var(); CHECK(var); VLOG(2) << "Updating variable #" << i << " at input index: " << actual_input_index << " with shape " << write.shape.DebugString() << "; variable tensor has shape: " << var->tensor()->shape().DebugString(); if (var->is_initialized && var->tensor()->dtype() != write.type) { return errors::Internal("Mismatched type in variable write"); } TF_ASSIGN_OR_RETURN( Tensor output_tensor, GetOrCreateTensorForOutput(output, output_num, ctx, missing_ctx_input_prefix, input_output_alias, compilation_result->input_mapping, resource_vars, write.type, write.shape, allocator, allocate_xla_tensors_, stream, use_multiple_streams_, definition_event)); var->is_initialized |= write.modified; *var->tensor() = output_tensor; ++output_num; } return absl::OkStatus(); } absl::StatusOr<std::vector<XlaCompiler::Argument>> XlaComputationLaunchContext::BuildXlaCompilerArguments( absl::Span<int const> must_be_constant_idxs, absl::Span<const Tensor* const> inputs, absl::Span<VariableInfo const> variable_args, Device* device) { if (!must_be_constant_idxs.empty() && !absl::c_is_sorted(must_be_constant_idxs)) { return absl::InvalidArgumentError("must_be_constant_idxs is not sorted"); } VLOG(2) << "Must be const args: {" << absl::StrJoin(must_be_constant_idxs, ",") << "} out of " << inputs.size() << " args"; std::vector<XlaCompiler::Argument> out; out.resize(inputs.size()); DeviceContext* device_context = nullptr; if (device != nullptr) { TF_RETURN_IF_ERROR(device->TryGetDeviceContext(&device_context)); bool using_default_context = false; auto cleanup = absl::MakeCleanup([&] { if (device_context != nullptr && !using_default_context) { device_context->Unref(); } }); if (device_context == nullptr) { using_default_context = true; auto* dev_info = device->tensorflow_accelerator_device_info(); if (dev_info) device_context = dev_info->default_context; } } absl::flat_hash_map<int, const VariableInfo*> variable_info_lookup; TF_CHECK_OK(CreateVariableInfoLookup(variable_args, variable_info_lookup)); for (int64_t input_num = 0; input_num < inputs.size(); ++input_num) { const Tensor* input = inputs[input_num]; XlaCompiler::Argument& arg = out[input_num]; if (variable_info_lookup.count(input_num) && device != nullptr) { TF_RET_CHECK(input->dtype() == DT_RESOURCE); const VariableInfo& variable = *variable_info_lookup[input_num]; arg.name = std::string(variable.name()); arg.kind = XlaCompiler::Argument::kResource; arg.resource_kind = XlaResource::kVariable; arg.definition_stack_trace = variable.definition_stack_trace(); if (variable.var() && variable.var()->is_initialized) { const Tensor* value = variable.var()->tensor(); arg.type = value->dtype(); arg.shape = value->shape(); arg.initialized = true; } else { arg.initialized = false; arg.type = DT_INVALID; arg.shape = TensorShape(); } if (absl::c_binary_search(must_be_constant_idxs, input_num)) { TF_RET_CHECK(variable.var() && variable.var()->is_initialized); const Tensor* value = variable.var()->tensor(); Tensor value_on_host(value->dtype(), value->shape()); if (!device_context) { value_on_host = *value; } else { TF_RETURN_IF_ERROR(device_context->CopyDeviceTensorToCPUSync( value, "", device, &value_on_host)); } arg.kind = XlaCompiler::Argument::kConstantResource; arg.constant_value = value_on_host; } } else if (absl::c_binary_search(must_be_constant_idxs, input_num)) { arg.kind = XlaCompiler::Argument::kConstant; arg.type = input->dtype(); arg.shape = input->shape(); arg.constant_value = *input; } else { TF_RET_CHECK(input->dtype() != DT_RESOURCE); if (input->NumElements() > 0) { arg.kind = XlaCompiler::Argument::kParameter; } else { arg.kind = XlaCompiler::Argument::kConstant; arg.constant_value = *input; } arg.type = input->dtype(); arg.shape = input->shape(); } } return out; } Status PreparePjRtExecutableArguments( int num_missing_prefix_ctx_inputs, const std::vector<int>& input_mapping, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, xla::PjRtClient* pjrt_client, xla::PjRtDevice* pjrt_device, bool use_pjrt_tensor_buffer, std::vector<xla::PjRtBuffer*>* args, std::vector<std::unique_ptr<xla::PjRtBuffer>>* owned_args, absl::flat_hash_set<int>* non_donatable_input_indices) { for (auto arg_num : input_mapping) { const Tensor* tensor; if (auto it = variable_snapshots.find(arg_num); it != variable_snapshots.end()) { tensor = it->second; } else { tensor = inputs[arg_num - num_missing_prefix_ctx_inputs]; } AsyncValueTensor* av_tensor = AsyncValueTensor::FromTensor(tensor); if (use_pjrt_tensor_buffer) { if (av_tensor != nullptr) { return absl::InvalidArgumentError( "If use_pjrt_tensor_buffer is set, the input tensor should not " "contain an AsyncValueTensor."); } const PjRtTensorBuffer* pjrt_tensor_buffer = dynamic_cast<const PjRtTensorBuffer*>(DMAHelper::buffer(tensor)); if (pjrt_tensor_buffer != nullptr) { args->push_back(pjrt_tensor_buffer->pjrt_buffer()); } else { auto dmem = se::DeviceMemoryBase( const_cast<char*>(tensor->tensor_data().data()), tensor->tensor_data().size()); absl::Span<const std::shared_ptr<xla::BufferSequencingEvent>> definition_events; auto device_buffer = std::make_shared<xla::TrackedDeviceBuffer>( nullptr, pjrt_device, std::initializer_list<se::DeviceMemoryBase>{dmem}, definition_events, []() {}); xla::Shape device_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape( tensor->dtype(), tensor->shape(), &device_shape)); std::unique_ptr<xla::PjRtBuffer> pjrt_buffer = std::make_unique<xla::PjRtStreamExecutorBuffer>( device_shape, std::move(device_buffer), pjrt_client, pjrt_device, pjrt_device->default_memory_space().value_or(nullptr)); owned_args->push_back(std::move(pjrt_buffer)); args->push_back(owned_args->back().get()); } } else { if (av_tensor->GetBuffer() == nullptr) { CHECK_EQ(tensor->NumElements(), 0); continue; } args->push_back(av_tensor->GetBuffer().get()); } if (!tensor->RefCountIsOne()) { non_donatable_input_indices->insert(args->size() - 1); } } return absl::OkStatus(); } Status PopulateCtxOutputsFromPjRtExecutableOutputs( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult& compilation_result, const bool use_pjrt_tensor_buffer, std::vector<std::unique_ptr<xla::PjRtBuffer>>& executable_outputs, OpKernelContext* ctx) { int output_num = 0; for (int i = 0, end = ctx->num_outputs(); i < end; ++i) { const DataType& type = compilation_result.outputs[i].type; VLOG(2) << "Populating output for retval " << i << " type " << DataTypeString(type); if (type == DT_VARIANT) { return absl::UnimplementedError( "Support for TensorList crossing the XLA/TF boundary " "is not implemented"); } if (compilation_result.outputs[i].is_constant) { bool requires_copy_to_device = GetDeviceType(ctx) != DEVICE_CPU; TF_RETURN_IF_ERROR(SetOutputForConstant(ctx, requires_copy_to_device, &compilation_result, i)); } else if (type == DT_RESOURCE) { int input_index = compilation_result.outputs[i].input_index - num_missing_prefix_ctx_inputs; TF_RET_CHECK(input_index >= 0 && input_index < ctx->num_inputs()) << "Invalid input for outputs " << i << ": " << input_index; ctx->set_output(i, *inputs[input_index]); } else { xla::PjRtBuffer* output_buffer = executable_outputs[output_num].get(); if (output_buffer->IsTuple()) { return absl::InvalidArgumentError( "Tuple PJRT buffer output is not supported."); } absl::Span<const int64_t> dims; std::optional<std::vector<int64_t>> logical_dims_storage; if (output_buffer->has_dynamic_dimensions()) { TF_ASSIGN_OR_RETURN(std::vector<int64_t> logical_dims, output_buffer->logical_dimensions()); logical_dims_storage.emplace(std::move(logical_dims)); dims = *logical_dims_storage; } else { dims = output_buffer->dimensions(); } TensorShape tensor_shape; for (int i = 0; i < dims.size(); ++i) { TF_RETURN_IF_ERROR(tensor_shape.AddDimWithStatus(dims[i])); } if (use_pjrt_tensor_buffer) { TF_ASSIGN_OR_RETURN( Tensor output_tensor, MakeTensorFromPjRtBuffer( type, tensor_shape, std::move(executable_outputs[output_num]))); ctx->set_output(i, output_tensor); } else { Tensor* output_tensor; TF_RETURN_IF_ERROR( ctx->allocate_output(i, tensor_shape, &output_tensor)); auto output_avt = AsyncValueTensor::FromTensor(output_tensor); output_avt->SetBuffer(std::move(executable_outputs[output_num])); } ++output_num; } } const auto& variable_lookup = CreateVariableLookup(variables); for (int i = 0; i < compilation_result.resource_updates.size(); ++i) { const XlaCompiler::ResourceUpdate& write = compilation_result.resource_updates[i]; int actual_input_index = write.input_index - num_missing_prefix_ctx_inputs; CHECK_GE(actual_input_index, 0); CHECK_LT(actual_input_index, ctx->num_inputs()); auto it = variable_lookup.find(actual_input_index); if (it == variable_lookup.end()) { continue; } Var* var = variables[it->second].var(); CHECK(var); VLOG(2) << "Updating variable #" << i << " at input index: " << actual_input_index << " with shape " << write.shape.DebugString() << "; variable tensor has shape: " << var->tensor()->shape().DebugString(); if (var->is_initialized && var->tensor()->dtype() != write.type) { return errors::Internal("Mismatched type in variable write"); } if (use_pjrt_tensor_buffer) { TF_RETURN_IF_ERROR(PjRtTensorBufferUtil::UpdateOrMakeTensorWithPjRtBuffer( write.type, write.shape, std::move(executable_outputs[output_num]), var->tensor())); } else { TF_RETURN_IF_ERROR( ctx->allocate_temp(write.type, write.shape, var->tensor())); AsyncValueTensor::FromTensor(var->tensor()) ->SetBuffer(std::move(executable_outputs[output_num])); } var->is_initialized |= write.modified; ++output_num; } return absl::OkStatus(); } xla::ExecuteOptions GetPjRtExecuteOptions( const DeviceType& device_type, absl::flat_hash_set<int> non_donatable_input_indices) { xla::ExecuteOptions options; options.arguments_are_tupled = false; options.untuple_result = true; options.launch_id = 1; if (device_type == DEVICE_GPU) { options.strict_shape_checking = false; } options.use_major_to_minor_data_layout_for_callbacks = true; options.non_donatable_input_indices = std::move(non_donatable_input_indices); return options; } DeviceType GetDeviceType(OpKernelContext* ctx) { auto* device = tensorflow::down_cast<Device*>(ctx->device()->UnderlyingDevice()); return DeviceType(device->device_type()); } Status RunPjRtExecutable( const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable, OpKernelContext* ctx) { absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } return RunPjRtExecutable(0, inputs, variable_snapshots, variables, compilation_result, pjrt_client, executable, ctx); } Status RunPjRtExecutable( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, const std::vector<VariableInfo>& updated_variables, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable, OpKernelContext* ctx) { const bool use_pjrt_tensor_buffer = ctx->device() ->tensorflow_accelerator_device_info() ->use_pjrt_tensor_buffer; const DeviceType& device_type = GetDeviceType(ctx); const int pjrt_device_id = tsl::GetDeviceIdFromDeviceParsedName(ctx->device()->parsed_name()); TF_ASSIGN_OR_RETURN(xla::PjRtDevice * device, pjrt_client->LookupAddressableDevice( xla::PjRtLocalDeviceId(pjrt_device_id))); gpu::GpuServingDeviceSelectorResource* device_selector_resource = nullptr; if (device_type == DEVICE_GPU) { auto rm = ctx->resource_manager(); TF_RETURN_IF_ERROR(rm->LookupOrCreate< gpu::GpuServingDeviceSelectorResource>( rm->default_container(), gpu::kGpuServingDeviceSelectorResourceName, &device_selector_resource, [&](gpu::GpuServingDeviceSelectorResource** device_selector_resource) { *device_selector_resource = new gpu::GpuServingDeviceSelectorResource( pjrt_client->addressable_device_count(), std::make_unique<tsl::RoundRobinPolicy>()); return absl::OkStatus(); })); core::ScopedUnref device_selector_resource_ref(device_selector_resource); TF_ASSIGN_OR_RETURN(absl::string_view fingerprint, executable->FingerprintExecutable()); device_selector_resource->selector()->Enqueue(pjrt_device_id, fingerprint); } TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs, RunPjRtExecutable(num_missing_prefix_ctx_inputs, inputs, variable_snapshots, updated_variables, device_type, use_pjrt_tensor_buffer, compilation_result, device, pjrt_client, executable)); if (device_selector_resource != nullptr) { device_selector_resource->selector()->Completed(pjrt_device_id, false); } TF_RETURN_IF_ERROR(PopulateCtxOutputsFromPjRtExecutableOutputs( num_missing_prefix_ctx_inputs, inputs, updated_variables, compilation_result, use_pjrt_tensor_buffer, execute_outputs, ctx)); return absl::OkStatus(); } absl::StatusOr<std::vector<std::unique_ptr<xla::PjRtBuffer>>> RunPjRtExecutable( int num_missing_prefix_ctx_inputs, const std::vector<const Tensor*>& inputs, const absl::flat_hash_map<int, const Tensor*>& variable_snapshots, const std::vector<VariableInfo>& updated_variables, const DeviceType& device_type, bool use_pjrt_tensor_buffer, const XlaCompiler::CompilationResult& compilation_result, xla::PjRtDevice* device, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* executable) { std::vector<xla::PjRtBuffer*> executable_args; executable_args.reserve(compilation_result.input_mapping.size()); std::vector<std::unique_ptr<xla::PjRtBuffer>> owned_executable_args; absl::flat_hash_set<int> non_donatable_input_indices; TF_RETURN_IF_ERROR(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, compilation_result.input_mapping, inputs, variable_snapshots, pjrt_client, device, use_pjrt_tensor_buffer, &executable_args, &owned_executable_args, &non_donatable_input_indices)); std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs; std::optional<xla::PjRtFuture<>> future; if (executable->num_replicas() != 1 || executable->num_partitions() != 1) { TF_ASSIGN_OR_RETURN( execute_outputs, executable->ExecuteSharded( executable_args, device, GetPjRtExecuteOptions(device_type, std::move(non_donatable_input_indices)), future)); } else { TF_ASSIGN_OR_RETURN( execute_outputs, executable->ExecutePortable( executable_args, device, GetPjRtExecuteOptions(device_type, std::move(non_donatable_input_indices)), future)); } if (!owned_executable_args.empty() && future.has_value()) { future->OnReady([owned_executable_args = std::move(owned_executable_args)](Status s) {}); } return execute_outputs; } }
#include "tensorflow/compiler/jit/xla_launch_util.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "tensorflow/compiler/jit/device_compiler.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/pjrt_device_compiler_client.h" #include "tensorflow/compiler/jit/variable_info.h" #include "tensorflow/compiler/jit/variable_info_util.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/tfrt_cpu_pjrt_client.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/framework/device_id_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using PjRtDeviceCompiler = DeviceCompiler<xla::PjRtLoadedExecutable, xla::PjRtClient>; using PjRtDeviceExecutablePersistor = DeviceExecutablePersistor<xla::PjRtLoadedExecutable, xla::PjRtClient>; absl::flat_hash_map<int, const Tensor*> GetVariableSnapshots( const std::vector<VariableInfo>& variables) { absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } return variable_snapshots; } class PjRtExecutionUtilTest : public OpsTestBase { public: PjRtExecutionUtilTest() { auto& rollout_config = GetXlaOpsCommonFlags()->tf_xla_use_device_api; rollout_config.enabled_for_xla_launch_ = true; rollout_config.enabled_for_compile_on_demand_ = true; GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; auto device_type = DeviceType(DEVICE_XLA_CPU); rollout_config.AllowForDeviceInXlaLaunch(device_type); rollout_config.AllowForDeviceInXlaCompileOnDemand(device_type); auto jit_device_type = DeviceType(DEVICE_CPU_XLA_JIT); auto device = DeviceFactory::NewDevice(device_type.type_string(), SessionOptions(), "/job:localhost/replica:0/task:0"); device_ = device.get(); SetDevice(device_type, std::move(device)); TF_CHECK_OK(SetPjRtClientInTFGlobalResourceManager( device_type, xla::GetTfrtCpuClient(true, 1) .value())); TF_CHECK_OK(device_->TryGetDeviceContext(&device_context_)); AllocatorAttributes host_alloc_attr; host_alloc_attr.set_on_host(true); host_allocator_ = device_->GetAllocator(host_alloc_attr); AllocatorAttributes device_alloc_attr; device_alloc_attr.set_on_host(false); device_allocator_ = device_->GetAllocator(device_alloc_attr); auto pjrt_client_or = GetOrCreatePjRtClient(device_type_); TF_CHECK_OK(pjrt_client_or.status()); pjrt_client_ = pjrt_client_or.value(); device_compiler_ = new PjRtDeviceCompiler( std::make_unique<PjRtDeviceExecutablePersistor>( PjRtDeviceExecutablePersistor::Config(), jit_device_type), std::make_unique<PjRtDeviceCompilerClient>(pjrt_client_)); profiler_ = new DeviceCompilationProfiler(); compiler_options_.device_type = jit_device_type; compiler_options_.client = nullptr; compiler_options_.flib_def = flib_def_.get(); } ~PjRtExecutionUtilTest() override { for (const auto& tensor : tensors_) { delete tensor; } tensors_.clear(); device_context_->Unref(); core::ScopedUnref device_compiler_ref(device_compiler_); core::ScopedUnref profiler_ref(profiler_); } template <typename T> Tensor* CreateHostTensor(const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* host_tensor = new Tensor(host_allocator_, DataTypeToEnum<T>::v(), shape); test::FillValues<T>(host_tensor, data); tensors_.push_back(host_tensor); return host_tensor; } template <typename T> Tensor* CreateDeviceTensor(const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* host_tensor = CreateHostTensor<T>(shape, data); Tensor* device_tensor = new Tensor(device_allocator_, DataTypeToEnum<T>::v(), shape); TF_EXPECT_OK(device_context_->CopyCPUTensorToDeviceSync( host_tensor, device_, device_tensor)); tensors_.push_back(device_tensor); return device_tensor; } Tensor* GetOutput(int output_index) { CHECK_LT(output_index, context_->num_outputs()); Tensor* device_tensor = context_->mutable_output(output_index); managed_outputs_.resize(context_->num_outputs()); if (managed_outputs_[output_index]) { return managed_outputs_[output_index]; } Tensor* host_tensor = new Tensor(host_allocator_, device_tensor->dtype(), device_tensor->shape()); TF_EXPECT_OK(device_context_->CopyDeviceTensorToCPUSync( device_tensor, "", device_, host_tensor)); managed_outputs_[output_index] = host_tensor; return host_tensor; } void CompileToExecutable(const std::vector<XlaCompiler::Argument>& args, const XlaCompiler::CompilationResult** result, xla::PjRtLoadedExecutable** executable, XlaCompiler::CompileOptions compile_options = {}) { TF_EXPECT_OK(device_compiler_->CompileSingleOpIfNeeded( compiler_options_, args, compile_options, context_.get(), profiler_, result, executable)); } absl::StatusOr<std::vector<std::unique_ptr<xla::PjRtBuffer>>> RunExecutable( const std::vector<const Tensor*>& inputs, const std::vector<VariableInfo>& variables, const XlaCompiler::CompilationResult* result, xla::PjRtLoadedExecutable* executable) { TF_ASSIGN_OR_RETURN(auto pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(device_->parsed_name().id))); std::vector<xla::PjRtBuffer*> executable_args; executable_args.reserve(result->input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( 0, result->input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &executable_args, {}, &non_donatable_input_indices)); xla::ExecuteOptions exe_options; exe_options.arguments_are_tupled = false; exe_options.untuple_result = true; return executable->ExecutePortable(executable_args, pjrt_device, exe_options); } template <typename T> Var* CreateVariable(const string& name, const TensorShape& shape, const gtl::ArraySlice<T> data) { Tensor* init_var_value = CreateDeviceTensor<T>(shape, data); Var* var = new Var(DataTypeToEnum<T>::v()); *var->tensor() = *init_var_value; var->is_initialized = true; return var; } template <typename T> void AddVariableInput(const string& name, const TensorShape& shape, const gtl::ArraySlice<T> data) { Var* var = CreateVariable<T>(name, shape, data); ResourceMgr* rm = device_->resource_manager(); TF_ASSERT_OK(rm->Create(rm->default_container(), name, var)); ResourceHandle handle; handle.set_device(device_->name()); handle.set_container(rm->default_container()); handle.set_name(name); TypeIndex type_index = TypeIndex::Make<Var>(); handle.set_hash_code(type_index.hash_code()); handle.set_maybe_type_name(type_index.name()); Tensor* input = new Tensor(host_allocator_, DT_RESOURCE, TensorShape({})); input->scalar<ResourceHandle>()() = handle; tensors_.push_back(input); inputs_.push_back({nullptr, input}); } protected: DeviceContext* device_context_; Allocator* host_allocator_; Allocator* device_allocator_; XlaCompiler::Options compiler_options_; xla::PjRtClient* pjrt_client_; PjRtDeviceCompiler* device_compiler_; DeviceCompilationProfiler* profiler_; }; TEST_F(PjRtExecutionUtilTest, PreparePjRtExecutableArguments) { std::vector<const Tensor*> inputs; inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {0, 0, 0})); inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {1, 2, 3})); inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {4, 5, 6})); int num_missing_prefix_ctx_inputs = 2; std::vector<int> input_mapping{3, 4}; std::vector<VariableInfo> variables; std::vector<xla::PjRtBuffer*> exec_args; exec_args.reserve(input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &exec_args, {}, &non_donatable_input_indices)); EXPECT_EQ(exec_args.size(), 2); std::shared_ptr<xla::Literal> literal1 = *exec_args[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal1, xla::LiteralUtil::CreateR2<int32_t>({{1, 2, 3}}))); std::shared_ptr<xla::Literal> literal2 = *exec_args[1]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal2, xla::LiteralUtil::CreateR2<int32_t>({{4, 5, 6}}))); } TEST_F(PjRtExecutionUtilTest, PreparePjRtExecutableArgumentsVariableInputs) { std::vector<VariableInfo> variables; Var* var1 = CreateVariable<int32>("v1", TensorShape({1, 2}), {1, 2}); variables.emplace_back(3, "v1", var1); Var* var2 = CreateVariable<int32>("v2", TensorShape({1, 2}), {3, 4}); variables.emplace_back(4, "v2", var2); std::vector<const Tensor*> inputs; inputs.push_back(CreateDeviceTensor<int32_t>(TensorShape({1, 3}), {0, 0, 0})); int num_missing_prefix_ctx_inputs = 2; std::vector<int> input_mapping{3, 4}; std::vector<xla::PjRtBuffer*> exec_args; exec_args.reserve(input_mapping.size()); absl::flat_hash_set<int> non_donatable_input_indices; TF_EXPECT_OK(PreparePjRtExecutableArguments( num_missing_prefix_ctx_inputs, input_mapping, inputs, GetVariableSnapshots(variables), nullptr, nullptr, false, &exec_args, {}, &non_donatable_input_indices)); EXPECT_EQ(exec_args.size(), 2); std::shared_ptr<xla::Literal> literal1 = *exec_args[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal1, xla::LiteralUtil::CreateR2<int32_t>({{1, 2}}))); std::shared_ptr<xla::Literal> literal2 = *exec_args[1]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal2, xla::LiteralUtil::CreateR2<int32_t>({{3, 4}}))); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* a = CreateDeviceTensor<int32>(TensorShape({1, 3}), {1, 2, 3}); Tensor* b = CreateDeviceTensor<int32>(TensorShape({1, 3}), {4, 5, 6}); inputs_.push_back({nullptr, a}); inputs_.push_back({nullptr, b}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 3}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 3}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs; inputs.push_back(a); inputs.push_back(b); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, {}, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, {}, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 3}), {5, 7, 9}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsDynamicShape) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("testWhere", "Where") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* a = CreateDeviceTensor<float>(TensorShape({2, 3}), {0., 1., 1., 0., 0., 0.}); inputs_.push_back({nullptr, a}); CreateContext(); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_FLOAT; args[0].shape = TensorShape({2, 3}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs; inputs.push_back(a); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, {}, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, {}, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int64>(TensorShape({2, 2}), {0, 1, 0, 2}); test::ExpectTensorEqual<int64>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsVariableInputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, variables, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, variables, *result, false, execute_outputs, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 2}), {4, 6}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, PopulateCtxOutputsResourceUpdates) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AssignAddVariableOp", "AssignAddVariableOp") .Input(FakeInput(DT_RESOURCE)) .Input(FakeInput(DT_INT32)) .Attr("dtype", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var", TensorShape({1, 3}), {1, 2, 3}); Tensor* a = CreateDeviceTensor<int32>(TensorShape({1, 3}), {2, 2, 2}); inputs_.push_back({nullptr, a}); CreateContext(); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK_AND_ASSIGN(std::vector<int> constant_input_indices, GetConstantInputIndicesFromContext(context_.get())); TF_ASSERT_OK(LockVariables(absl::MakeSpan(variables))); TF_ASSERT_OK_AND_ASSIGN( std::vector<XlaCompiler::Argument> args, XlaComputationLaunchContext::BuildXlaCompilerArguments( constant_input_indices, inputs, variables, static_cast<Device*>(context_->device()))); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); TF_ASSERT_OK_AND_ASSIGN(auto execute_outputs, RunExecutable(inputs, variables, result, executable)); TF_EXPECT_OK(PopulateCtxOutputsFromPjRtExecutableOutputs( 0, inputs, variables, *result, false, execute_outputs, context_.get())); EXPECT_EQ(context_->num_outputs(), 0); ResourceMgr* rm = device_->resource_manager(); Var* var = nullptr; TF_ASSERT_OK(rm->Lookup(rm->default_container(), "var", &var)); core::ScopedUnref var_ref(var); Tensor* device_tensor = var->tensor(); Tensor* host_tensor = new Tensor(host_allocator_, device_tensor->dtype(), device_tensor->shape()); tensors_.push_back(host_tensor); TF_ASSERT_OK(device_context_->CopyDeviceTensorToCPUSync( device_tensor, "", device_, host_tensor)); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 3}), {3, 4, 5}); test::ExpectTensorEqual<int32>(*expected, *host_tensor); } TEST(XlaLaunchUtilTest, GetPjRtExecuteOptions) { xla::ExecuteOptions options = GetPjRtExecuteOptions(DeviceType(DEVICE_GPU), {}); EXPECT_FALSE(options.arguments_are_tupled); EXPECT_TRUE(options.untuple_result); EXPECT_FALSE(options.strict_shape_checking); EXPECT_TRUE(options.use_major_to_minor_data_layout_for_callbacks); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutable) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK(RunPjRtExecutable(inputs, variables, *result, pjrt_client_, executable, context_.get())); Tensor* expected = CreateHostTensor<int32>(TensorShape({1, 2}), {4, 6}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutableWithVariableSnapshotsAndMissingInputs) { XlaOpRegistry::RegisterCompilationKernels(); TF_EXPECT_OK(NodeDefBuilder("Fill", "Fill") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("index_type", DT_INT32) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_EXPECT_OK(InitOp()); Tensor* dims = CreateHostTensor<int32>(TensorShape({1}), {2}); Tensor* value = CreateDeviceTensor<int32>(TensorShape(), {1}); inputs_.push_back({nullptr, dims}); inputs_.push_back({nullptr, value}); CreateContext(); TF_ASSERT_OK_AND_ASSIGN(std::vector<int> constant_input_indices, GetConstantInputIndicesFromContext(context_.get())); EXPECT_EQ(constant_input_indices.size(), 1); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); absl::flat_hash_map<int, const Tensor*> variable_snapshots; const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; { std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); TF_ASSERT_OK(LockVariables(absl::MakeSpan(variables))); variable_snapshots = GetVariableSnapshots(variables); TF_ASSERT_OK_AND_ASSIGN( std::vector<XlaCompiler::Argument> args, XlaComputationLaunchContext::BuildXlaCompilerArguments( constant_input_indices, inputs, variables, static_cast<Device*>(context_->device()))); CompileToExecutable(args, &result, &executable); } inputs = {inputs.begin() + constant_input_indices.size(), inputs.end()}; { TF_ASSERT_OK_AND_ASSIGN(std::vector<VariableInfo> updated_variables, GatherVariableInfo(context_.get(), *result, constant_input_indices.size())); TF_ASSERT_OK(LockVariables(absl::MakeSpan(updated_variables))); TF_ASSERT_OK(RunPjRtExecutable( constant_input_indices.size(), inputs, variable_snapshots, updated_variables, *result, pjrt_client_, executable, context_.get())); } Tensor* expected = CreateHostTensor<int32>(TensorShape({2}), {1, 1}); test::ExpectTensorEqual<int32>(*expected, *GetOutput(0)); } TEST_F(PjRtExecutionUtilTest, RunPjRtExecutableWithoutCtx) { XlaOpRegistry::RegisterCompilationKernels(); TF_ASSERT_OK(NodeDefBuilder("AddV2", "AddV2") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_INT32) .Device("/job:localhost/replica:0/task:0/device:XLA_CPU:0") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddVariableInput<int32>("var1", TensorShape({1, 2}), {1, 2}); AddVariableInput<int32>("var2", TensorShape({1, 2}), {3, 4}); CreateContext(); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({1, 2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({1, 2}); const XlaCompiler::CompilationResult* result; xla::PjRtLoadedExecutable* executable; CompileToExecutable(args, &result, &executable); std::vector<const Tensor*> inputs = InputsFromContext(context_.get()); std::vector<int> variables_indices = GetResourceVariableIndicesFromContext(context_.get()); std::vector<VariableInfo> variables; variables.reserve(variables_indices.size()); TF_ASSERT_OK(GetVariableInfosFromInputs(context_->resource_manager(), context_->device(), inputs, variables_indices, &variables)); const bool use_pjrt_tensor_buffer = context_->device() ->tensorflow_accelerator_device_info() ->use_pjrt_tensor_buffer; const DeviceType& device_type = GetDeviceType(context_.get()); const int pjrt_device_id = tsl::GetDeviceIdFromDeviceParsedName(context_->device()->parsed_name()); TF_ASSERT_OK_AND_ASSIGN(xla::PjRtDevice * pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(pjrt_device_id))); absl::flat_hash_map<int, const Tensor*> variable_snapshots; for (int i = 0; i < variables.size(); i++) { variable_snapshots[variables[i].index()] = variables[i].var()->tensor(); } TF_ASSERT_OK_AND_ASSIGN( std::vector<std::unique_ptr<xla::PjRtBuffer>> execute_outputs, RunPjRtExecutable(0, inputs, variable_snapshots, variables, device_type, use_pjrt_tensor_buffer, *result, pjrt_device, pjrt_client_, executable)); for (const auto& output : execute_outputs) { TF_ASSERT_OK(output->GetReadyFuture().Await()); } ASSERT_EQ(execute_outputs.size(), 1); std::shared_ptr<xla::Literal> literal = *execute_outputs[0]->ToLiteralSync(); EXPECT_TRUE(xla::LiteralTestUtil::Equal( *literal, xla::LiteralUtil::CreateR2<int32_t>({{4, 6}}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_launch_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/xla_launch_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04214a7c-da83-4558-8b92-d0c7af9fc73b
cpp
google/arolla
batch_arithmetic
arolla/qexpr/operators/math/batch_arithmetic.h
arolla/qexpr/operators/math/batch_arithmetic_test.cc
#ifndef AROLLA_QEXPR_OPERATORS_MATH_BATCH_ARITHMETIC_H_ #define AROLLA_QEXPR_OPERATORS_MATH_BATCH_ARITHMETIC_H_ #include <type_traits> #include "absl/log/check.h" #include "absl/types/span.h" #include "Eigen/Core" namespace arolla { namespace batch_arithmetic_internal { template <typename T> using DynamicEigenVector = Eigen::Array<T, 1, Eigen::Dynamic, Eigen::RowMajor>; template <typename T> using DynamicEigenVectorView = Eigen::Map<const DynamicEigenVector<T>>; template <typename T> using DynamicMutableEigenVectorView = Eigen::Map<DynamicEigenVector<T>>; template <typename T, class OP, typename InternalT = T> struct BinaryEigenOperation { void operator()(absl::Span<T> result, absl::Span<const T> a, absl::Span<const T> b) const { auto size = a.size(); DCHECK_EQ(size, b.size()); DCHECK_EQ(size, result.size()); static_assert( sizeof(T) == sizeof(InternalT) && std::is_floating_point_v<T> == std::is_floating_point_v<InternalT>, "Incorrect InternalT"); const auto* a_data = reinterpret_cast<const InternalT*>(a.data()); const auto* b_data = reinterpret_cast<const InternalT*>(b.data()); auto* result_data = reinterpret_cast<InternalT*>(result.data()); DynamicEigenVectorView<InternalT> eigen_a(a_data, size); DynamicEigenVectorView<InternalT> eigen_b(b_data, size); DynamicMutableEigenVectorView<InternalT> eigen_result(result_data, size); OP::Apply(eigen_a, eigen_b, &eigen_result); } }; struct ProdOp { template <typename T, typename RT> static void Apply(const T& a, const T& b, RT* c) { *c = a * b; } }; struct AddOp { template <typename T, typename RT> static void Apply(const T& a, const T& b, RT* c) { *c = a + b; } }; struct SubOp { template <typename T, typename RT> static void Apply(const T& a, const T& b, RT* c) { *c = a - b; } }; template <typename T> static auto MakeUnsignedIfIntegralFn() { if constexpr (std::is_integral_v<T>) { return std::make_unsigned_t<T>(); } else { return T(); } } template <typename T> using UnsignedIfIntegral = decltype(MakeUnsignedIfIntegralFn<T>()); } template <typename T> using BatchAdd = batch_arithmetic_internal::BinaryEigenOperation< T, batch_arithmetic_internal::AddOp, batch_arithmetic_internal::UnsignedIfIntegral<T>>; template <typename T> using BatchSub = batch_arithmetic_internal::BinaryEigenOperation< T, batch_arithmetic_internal::SubOp, batch_arithmetic_internal::UnsignedIfIntegral<T>>; template <typename T> using BatchProd = batch_arithmetic_internal::BinaryEigenOperation< T, batch_arithmetic_internal::ProdOp, batch_arithmetic_internal::UnsignedIfIntegral<T>>; template <typename T> T BatchAggSum(absl::Span<const T> data) { batch_arithmetic_internal::DynamicEigenVectorView<T> e_data(data.data(), data.size()); return e_data.sum(); } } #endif
#include "arolla/qexpr/operators/math/batch_arithmetic.h" #include <cstdint> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/types/span.h" namespace arolla { namespace { TEST(BatchArithmetic, BatchAdd) { std::vector<float> arg1{1., 3., 2.}; std::vector<float> arg2{3.5, 1.5, 2.}; std::vector<float> res(3); BatchAdd<float>()(absl::Span<float>(res), arg1, arg2); EXPECT_THAT(res, testing::ElementsAre(4.5, 4.5, 4.0)); } TEST(BatchArithmetic, BatchSub) { std::vector<int64_t> arg1{1, 3, 2}; std::vector<int64_t> arg2{3, 1, 2}; std::vector<int64_t> res(3); BatchSub<int64_t>()(absl::Span<int64_t>(res), arg1, arg2); EXPECT_THAT(res, testing::ElementsAre(-2, 2, 0)); } TEST(BatchArithmetic, BatchProd) { std::vector<double> arg1{1., 3., 2.}; std::vector<double> arg2{3.5, 1.5, 2.}; std::vector<double> res(3); BatchProd<double>()(absl::Span<double>(res), arg1, arg2); EXPECT_THAT(res, testing::ElementsAre(3.5, 4.5, 4.0)); } TEST(BatchArithmetic, AggSum) { std::vector<float> arg{1., 3., 2.}; EXPECT_EQ(BatchAggSum<float>(arg), 6.); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/math/batch_arithmetic.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/math/batch_arithmetic_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
64afe01c-f225-4810-a1ae-f62d116283b3
cpp
tensorflow/tensorflow
summary_db_writer
tensorflow/core/summary/summary_db_writer.cc
tensorflow/core/summary/summary_db_writer_test.cc
#include "tensorflow/core/summary/summary_db_writer.h" #include <deque> #include "tensorflow/core/summary/summary_converter.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/db/sqlite.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/util/event.pb.h" #define CALL_SUPPORTED_TYPES(m) \ TF_CALL_tstring(m) \ TF_CALL_half(m) \ TF_CALL_float(m) \ TF_CALL_double(m) \ TF_CALL_complex64(m) \ TF_CALL_complex128(m) \ TF_CALL_int8(m) \ TF_CALL_int16(m) \ TF_CALL_int32(m) \ TF_CALL_int64(m) \ TF_CALL_uint8(m) \ TF_CALL_uint16(m) \ TF_CALL_uint32(m) \ TF_CALL_uint64(m) namespace tensorflow { namespace { const uint64 kIdTiers[] = { 0x7fffffULL, 0x7fffffffULL, 0x7fffffffffffULL, }; const int kMaxIdTier = sizeof(kIdTiers) / sizeof(uint64) - 1; const int kIdCollisionDelayMicros = 10; const int kMaxIdCollisions = 21; const int64_t kAbsent = 0LL; const char* kScalarPluginName = "scalars"; const char* kImagePluginName = "images"; const char* kAudioPluginName = "audio"; const char* kHistogramPluginName = "histograms"; const int64_t kReserveMinBytes = 32; const double kReserveMultiplier = 1.5; const int64_t kPreallocateRows = 1000; const uint64 kFlushBytes = 1024 * 1024; double DoubleTime(uint64 micros) { return static_cast<double>(micros) / 1.0e6; } string StringifyShape(const TensorShape& shape) { string result; bool first = true; for (const auto& dim : shape) { if (first) { first = false; } else { strings::StrAppend(&result, ","); } strings::StrAppend(&result, dim.size); } return result; } Status CheckSupportedType(const Tensor& t) { #define CASE(T) \ case DataTypeToEnum<T>::value: \ break; switch (t.dtype()) { CALL_SUPPORTED_TYPES(CASE) default: return errors::Unimplemented(DataTypeString(t.dtype()), " tensors unsupported on platform"); } return absl::OkStatus(); #undef CASE } Tensor AsScalar(const Tensor& t) { Tensor t2{t.dtype(), {}}; #define CASE(T) \ case DataTypeToEnum<T>::value: \ t2.scalar<T>()() = t.flat<T>()(0); \ break; switch (t.dtype()) { CALL_SUPPORTED_TYPES(CASE) default: t2 = {DT_FLOAT, {}}; t2.scalar<float>()() = NAN; break; } return t2; #undef CASE } void PatchPluginName(SummaryMetadata* metadata, const char* name) { if (metadata->plugin_data().plugin_name().empty()) { metadata->mutable_plugin_data()->set_plugin_name(name); } } Status SetDescription(Sqlite* db, int64_t id, const StringPiece& markdown) { const char* sql = R"sql( INSERT OR REPLACE INTO Descriptions (id, description) VALUES (?, ?) )sql"; SqliteStatement insert_desc; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert_desc)); insert_desc.BindInt(1, id); insert_desc.BindText(2, markdown); return insert_desc.StepAndReset(); } class IdAllocator { public: IdAllocator(Env* env, Sqlite* db) : env_{env}, db_{db} { DCHECK(env_ != nullptr); DCHECK(db_ != nullptr); } Status CreateNewId(int64_t* id) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); Status s; SqliteStatement stmt; TF_RETURN_IF_ERROR(db_->Prepare("INSERT INTO Ids (id) VALUES (?)", &stmt)); for (int i = 0; i < kMaxIdCollisions; ++i) { int64_t tid = MakeRandomId(); stmt.BindInt(1, tid); s = stmt.StepAndReset(); if (s.ok()) { *id = tid; break; } if (s.code() != error::INVALID_ARGUMENT) break; if (tier_ < kMaxIdTier) { LOG(INFO) << "IdAllocator collision at tier " << tier_ << " (of " << kMaxIdTier << ") so auto-adjusting to a higher tier"; ++tier_; } else { LOG(WARNING) << "IdAllocator (attempt #" << i << ") " << "resulted in a collision at the highest tier; this " "is problematic if it happens often; you can try " "pruning the Ids table; you can also file a bug " "asking for the ID space to be increased; otherwise " "writes will gradually slow down over time until they " "become impossible"; } env_->SleepForMicroseconds((1 << i) * kIdCollisionDelayMicros); } return s; } private: int64_t MakeRandomId() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t id = static_cast<int64_t>(random::New64() & kIdTiers[tier_]); if (id == kAbsent) ++id; return id; } mutex mu_; Env* const env_; Sqlite* const db_; int tier_ TF_GUARDED_BY(mu_) = 0; IdAllocator(const IdAllocator&) = delete; void operator=(const IdAllocator&) = delete; }; class GraphWriter { public: static Status Save(Sqlite* db, SqliteTransaction* txn, IdAllocator* ids, GraphDef* graph, uint64 now, int64_t run_id, int64_t* graph_id) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) { TF_RETURN_IF_ERROR(ids->CreateNewId(graph_id)); GraphWriter saver{db, txn, graph, now, *graph_id}; saver.MapNameToNodeId(); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveNodeInputs(), "SaveNodeInputs"); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveNodes(), "SaveNodes"); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveGraph(run_id), "SaveGraph"); return absl::OkStatus(); } private: GraphWriter(Sqlite* db, SqliteTransaction* txn, GraphDef* graph, uint64 now, int64_t graph_id) : db_(db), txn_(txn), graph_(graph), now_(now), graph_id_(graph_id) {} void MapNameToNodeId() { size_t toto = static_cast<size_t>(graph_->node_size()); name_copies_.reserve(toto); name_to_node_id_.reserve(toto); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { name_copies_.emplace_back(graph_->node(node_id).name()); name_to_node_id_.emplace(name_copies_.back(), node_id); } } Status SaveNodeInputs() { const char* sql = R"sql( INSERT INTO NodeInputs ( graph_id, node_id, idx, input_node_id, input_node_idx, is_control ) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { const NodeDef& node = graph_->node(node_id); for (int idx = 0; idx < node.input_size(); ++idx) { StringPiece name = node.input(idx); int64_t input_node_id; int64_t input_node_idx = 0; int64_t is_control = 0; size_t i = name.rfind(':'); if (i != StringPiece::npos) { if (!strings::safe_strto64(name.substr(i + 1, name.size() - i - 1), &input_node_idx)) { return errors::DataLoss("Bad NodeDef.input: ", name); } name.remove_suffix(name.size() - i); } if (!name.empty() && name[0] == '^') { name.remove_prefix(1); is_control = 1; } auto e = name_to_node_id_.find(name); if (e == name_to_node_id_.end()) { return errors::DataLoss("Could not find node: ", name); } input_node_id = e->second; insert.BindInt(1, graph_id_); insert.BindInt(2, node_id); insert.BindInt(3, idx); insert.BindInt(4, input_node_id); insert.BindInt(5, input_node_idx); insert.BindInt(6, is_control); unflushed_bytes_ += insert.size(); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), node.name(), " -> ", name); TF_RETURN_IF_ERROR(MaybeFlush()); } } return absl::OkStatus(); } Status SaveNodes() { const char* sql = R"sql( INSERT INTO Nodes ( graph_id, node_id, node_name, op, device, node_def) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { NodeDef* node = graph_->mutable_node(node_id); insert.BindInt(1, graph_id_); insert.BindInt(2, node_id); insert.BindText(3, node->name()); insert.BindText(4, node->op()); insert.BindText(5, node->device()); node->clear_name(); node->clear_op(); node->clear_device(); node->clear_input(); string node_def; if (node->SerializeToString(&node_def)) { insert.BindBlobUnsafe(6, node_def); } unflushed_bytes_ += insert.size(); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), node->name()); TF_RETURN_IF_ERROR(MaybeFlush()); } return absl::OkStatus(); } Status SaveGraph(int64_t run_id) { const char* sql = R"sql( INSERT OR REPLACE INTO Graphs ( run_id, graph_id, inserted_time, graph_def ) VALUES (?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); if (run_id != kAbsent) insert.BindInt(1, run_id); insert.BindInt(2, graph_id_); insert.BindDouble(3, DoubleTime(now_)); graph_->clear_node(); string graph_def; if (graph_->SerializeToString(&graph_def)) { insert.BindBlobUnsafe(4, graph_def); } return insert.StepAndReset(); } Status MaybeFlush() { if (unflushed_bytes_ >= kFlushBytes) { TF_RETURN_WITH_CONTEXT_IF_ERROR(txn_->Commit(), "flushing ", unflushed_bytes_, " bytes"); unflushed_bytes_ = 0; } return absl::OkStatus(); } Sqlite* const db_; SqliteTransaction* const txn_; uint64 unflushed_bytes_ = 0; GraphDef* const graph_; const uint64 now_; const int64_t graph_id_; std::vector<string> name_copies_; std::unordered_map<StringPiece, int64_t, StringPieceHasher> name_to_node_id_; GraphWriter(const GraphWriter&) = delete; void operator=(const GraphWriter&) = delete; }; class RunMetadata { public: RunMetadata(IdAllocator* ids, const string& experiment_name, const string& run_name, const string& user_name) : ids_{ids}, experiment_name_{experiment_name}, run_name_{run_name}, user_name_{user_name} { DCHECK(ids_ != nullptr); } const string& experiment_name() { return experiment_name_; } const string& run_name() { return run_name_; } const string& user_name() { return user_name_; } int64_t run_id() TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); return run_id_; } Status SetGraph(Sqlite* db, uint64 now, double computed_time, std::unique_ptr<GraphDef> g) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { int64_t run_id; { mutex_lock lock(mu_); TF_RETURN_IF_ERROR(InitializeRun(db, now, computed_time)); run_id = run_id_; } int64_t graph_id; SqliteTransaction txn(*db); TF_RETURN_IF_ERROR( GraphWriter::Save(db, &txn, ids_, g.get(), now, run_id, &graph_id)); return txn.Commit(); } Status GetTagId(Sqlite* db, uint64 now, double computed_time, const string& tag_name, int64_t* tag_id, const SummaryMetadata& metadata) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); TF_RETURN_IF_ERROR(InitializeRun(db, now, computed_time)); auto e = tag_ids_.find(tag_name); if (e != tag_ids_.end()) { *tag_id = e->second; return absl::OkStatus(); } TF_RETURN_IF_ERROR(ids_->CreateNewId(tag_id)); tag_ids_[tag_name] = *tag_id; TF_RETURN_IF_ERROR( SetDescription(db, *tag_id, metadata.summary_description())); const char* sql = R"sql( INSERT INTO Tags ( run_id, tag_id, tag_name, inserted_time, display_name, plugin_name, plugin_data ) VALUES ( :run_id, :tag_id, :tag_name, :inserted_time, :display_name, :plugin_name, :plugin_data ) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert)); if (run_id_ != kAbsent) insert.BindInt(":run_id", run_id_); insert.BindInt(":tag_id", *tag_id); insert.BindTextUnsafe(":tag_name", tag_name); insert.BindDouble(":inserted_time", DoubleTime(now)); insert.BindTextUnsafe(":display_name", metadata.display_name()); insert.BindTextUnsafe(":plugin_name", metadata.plugin_data().plugin_name()); insert.BindBlobUnsafe(":plugin_data", metadata.plugin_data().content()); return insert.StepAndReset(); } private: Status InitializeUser(Sqlite* db, uint64 now) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (user_id_ != kAbsent || user_name_.empty()) return absl::OkStatus(); const char* get_sql = R"sql( SELECT user_id FROM Users WHERE user_name = ? )sql"; SqliteStatement get; TF_RETURN_IF_ERROR(db->Prepare(get_sql, &get)); get.BindText(1, user_name_); bool is_done; TF_RETURN_IF_ERROR(get.Step(&is_done)); if (!is_done) { user_id_ = get.ColumnInt(0); return absl::OkStatus(); } TF_RETURN_IF_ERROR(ids_->CreateNewId(&user_id_)); const char* insert_sql = R"sql( INSERT INTO Users ( user_id, user_name, inserted_time ) VALUES (?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); insert.BindInt(1, user_id_); insert.BindText(2, user_name_); insert.BindDouble(3, DoubleTime(now)); TF_RETURN_IF_ERROR(insert.StepAndReset()); return absl::OkStatus(); } Status InitializeExperiment(Sqlite* db, uint64 now, double computed_time) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (experiment_name_.empty()) return absl::OkStatus(); if (experiment_id_ == kAbsent) { TF_RETURN_IF_ERROR(InitializeUser(db, now)); const char* get_sql = R"sql( SELECT experiment_id, started_time FROM Experiments WHERE user_id IS ? AND experiment_name = ? )sql"; SqliteStatement get; TF_RETURN_IF_ERROR(db->Prepare(get_sql, &get)); if (user_id_ != kAbsent) get.BindInt(1, user_id_); get.BindText(2, experiment_name_); bool is_done; TF_RETURN_IF_ERROR(get.Step(&is_done)); if (!is_done) { experiment_id_ = get.ColumnInt(0); experiment_started_time_ = get.ColumnInt(1); } else { TF_RETURN_IF_ERROR(ids_->CreateNewId(&experiment_id_)); experiment_started_time_ = computed_time; const char* insert_sql = R"sql( INSERT INTO Experiments ( user_id, experiment_id, experiment_name, inserted_time, started_time, is_watching ) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); if (user_id_ != kAbsent) insert.BindInt(1, user_id_); insert.BindInt(2, experiment_id_); insert.BindText(3, experiment_name_); insert.BindDouble(4, DoubleTime(now)); insert.BindDouble(5, computed_time); insert.BindInt(6, 0); TF_RETURN_IF_ERROR(insert.StepAndReset()); } } if (computed_time < experiment_started_time_) { experiment_started_time_ = computed_time; const char* update_sql = R"sql( UPDATE Experiments SET started_time = ? WHERE experiment_id = ? )sql"; SqliteStatement update; TF_RETURN_IF_ERROR(db->Prepare(update_sql, &update)); update.BindDouble(1, computed_time); update.BindInt(2, experiment_id_); TF_RETURN_IF_ERROR(update.StepAndReset()); } return absl::OkStatus(); } Status InitializeRun(Sqlite* db, uint64 now, double computed_time) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (run_name_.empty()) return absl::OkStatus(); TF_RETURN_IF_ERROR(InitializeExperiment(db, now, computed_time)); if (run_id_ == kAbsent) { TF_RETURN_IF_ERROR(ids_->CreateNewId(&run_id_)); run_started_time_ = computed_time; const char* insert_sql = R"sql( INSERT OR REPLACE INTO Runs ( experiment_id, run_id, run_name, inserted_time, started_time ) VALUES (?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); if (experiment_id_ != kAbsent) insert.BindInt(1, experiment_id_); insert.BindInt(2, run_id_); insert.BindText(3, run_name_); insert.BindDouble(4, DoubleTime(now)); insert.BindDouble(5, computed_time); TF_RETURN_IF_ERROR(insert.StepAndReset()); } if (computed_time < run_started_time_) { run_started_time_ = computed_time; const char* update_sql = R"sql( UPDATE Runs SET started_time = ? WHERE run_id = ? )sql"; SqliteStatement update; TF_RETURN_IF_ERROR(db->Prepare(update_sql, &update)); update.BindDouble(1, computed_time); update.BindInt(2, run_id_); TF_RETURN_IF_ERROR(update.StepAndReset()); } return absl::OkStatus(); } mutex mu_; IdAllocator* const ids_; const string experiment_name_; const string run_name_; const string user_name_; int64_t experiment_id_ TF_GUARDED_BY(mu_) = kAbsent; int64_t run_id_ TF_GUARDED_BY(mu_) = kAbsent; int64_t user_id_ TF_GUARDED_BY(mu_) = kAbsent; double experiment_started_time_ TF_GUARDED_BY(mu_) = 0.0; double run_started_time_ TF_GUARDED_BY(mu_) = 0.0; std::unordered_map<string, int64_t> tag_ids_ TF_GUARDED_BY(mu_); RunMetadata(const RunMetadata&) = delete; void operator=(const RunMetadata&) = delete; }; class SeriesWriter { public: SeriesWriter(int64_t series, RunMetadata* meta) : series_{series}, meta_{meta} { DCHECK(series_ > 0); } Status Append(Sqlite* db, int64_t step, uint64 now, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (rowids_.empty()) { Status s = Reserve(db, t); if (!s.ok()) { rowids_.clear(); return s; } } int64_t rowid = rowids_.front(); Status s = Write(db, rowid, step, computed_time, t); if (s.ok()) { ++count_; } rowids_.pop_front(); return s; } Status Finish(Sqlite* db) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (!rowids_.empty()) { SqliteTransaction txn(*db); const char* sql = R"sql( DELETE FROM Tensors WHERE rowid = ? )sql"; SqliteStatement deleter; TF_RETURN_IF_ERROR(db->Prepare(sql, &deleter)); for (size_t i = count_; i < rowids_.size(); ++i) { deleter.BindInt(1, rowids_.front()); TF_RETURN_IF_ERROR(deleter.StepAndReset()); rowids_.pop_front(); } TF_RETURN_IF_ERROR(txn.Commit()); rowids_.clear(); } return absl::OkStatus(); } private: Status Write(Sqlite* db, int64_t rowid, int64_t step, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) { if (t.dtype() == DT_STRING) { if (t.dims() == 0) { return Update(db, step, computed_time, t, t.scalar<tstring>()(), rowid); } else { SqliteTransaction txn(*db); TF_RETURN_IF_ERROR( Update(db, step, computed_time, t, StringPiece(), rowid)); TF_RETURN_IF_ERROR(UpdateNdString(db, t, rowid)); return txn.Commit(); } } else { return Update(db, step, computed_time, t, t.tensor_data(), rowid); } } Status Update(Sqlite* db, int64_t step, double computed_time, const Tensor& t, const StringPiece& data, int64_t rowid) { const char* sql = R"sql( UPDATE OR REPLACE Tensors SET step = ?, computed_time = ?, dtype = ?, shape = ?, data = ? WHERE rowid = ? )sql"; SqliteStatement stmt; TF_RETURN_IF_ERROR(db->Prepare(sql, &stmt)); stmt.BindInt(1, step); stmt.BindDouble(2, computed_time); stmt.BindInt(3, t.dtype()); stmt.BindText(4, StringifyShape(t.shape())); stmt.BindBlobUnsafe(5, data); stmt.BindInt(6, rowid); TF_RETURN_IF_ERROR(stmt.StepAndReset()); return absl::OkStatus(); } Status UpdateNdString(Sqlite* db, const Tensor& t, int64_t tensor_rowid) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) { DCHECK_EQ(t.dtype(), DT_STRING); DCHECK_GT(t.dims(), 0); const char* deleter_sql = R"sql( DELETE FROM TensorStrings WHERE tensor_rowid = ? )sql"; SqliteStatement deleter; TF_RETURN_IF_ERROR(db->Prepare(deleter_sql, &deleter)); deleter.BindInt(1, tensor_rowid); TF_RETURN_WITH_CONTEXT_IF_ERROR(deleter.StepAndReset(), tensor_rowid); const char* inserter_sql = R"sql( INSERT INTO TensorStrings ( tensor_rowid, idx, data ) VALUES (?, ?, ?) )sql"; SqliteStatement inserter; TF_RETURN_IF_ERROR(db->Prepare(inserter_sql, &inserter)); auto flat = t.flat<tstring>(); for (int64_t i = 0; i < flat.size(); ++i) { inserter.BindInt(1, tensor_rowid); inserter.BindInt(2, i); inserter.BindBlobUnsafe(3, flat(i)); TF_RETURN_WITH_CONTEXT_IF_ERROR(inserter.StepAndReset(), "i=", i); } return absl::OkStatus(); } Status Reserve(Sqlite* db, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { SqliteTransaction txn(*db); unflushed_bytes_ = 0; if (t.dtype() == DT_STRING) { if (t.dims() == 0) { TF_RETURN_IF_ERROR(ReserveData(db, &txn, t.scalar<tstring>()().size())); } else { TF_RETURN_IF_ERROR(ReserveTensors(db, &txn, kReserveMinBytes)); } } else { TF_RETURN_IF_ERROR(ReserveData(db, &txn, t.tensor_data().size())); } return txn.Commit(); } Status ReserveData(Sqlite* db, SqliteTransaction* txn, size_t size) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t space = static_cast<int64_t>(static_cast<double>(size) * kReserveMultiplier); if (space < kReserveMinBytes) space = kReserveMinBytes; return ReserveTensors(db, txn, space); } Status ReserveTensors(Sqlite* db, SqliteTransaction* txn, int64_t reserved_bytes) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { const char* sql = R"sql( INSERT INTO Tensors ( series, data ) VALUES (?, ZEROBLOB(?)) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert)); for (int64_t i = 0; i < kPreallocateRows; ++i) { insert.BindInt(1, series_); insert.BindInt(2, reserved_bytes); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), "i=", i); rowids_.push_back(db->last_insert_rowid()); unflushed_bytes_ += reserved_bytes; TF_RETURN_IF_ERROR(MaybeFlush(db, txn)); } return absl::OkStatus(); } Status MaybeFlush(Sqlite* db, SqliteTransaction* txn) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (unflushed_bytes_ >= kFlushBytes) { TF_RETURN_WITH_CONTEXT_IF_ERROR(txn->Commit(), "flushing ", unflushed_bytes_, " bytes"); unflushed_bytes_ = 0; } return absl::OkStatus(); } mutex mu_; const int64_t series_; RunMetadata* const meta_; uint64 count_ TF_GUARDED_BY(mu_) = 0; std::deque<int64_t> rowids_ TF_GUARDED_BY(mu_); uint64 unflushed_bytes_ TF_GUARDED_BY(mu_) = 0; SeriesWriter(const SeriesWriter&) = delete; void operator=(const SeriesWriter&) = delete; }; class RunWriter { public: explicit RunWriter(RunMetadata* meta) : meta_{meta} {} Status Append(Sqlite* db, int64_t tag_id, int64_t step, uint64 now, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { SeriesWriter* writer = GetSeriesWriter(tag_id); return writer->Append(db, step, now, computed_time, t); } Status Finish(Sqlite* db) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (series_writers_.empty()) return absl::OkStatus(); for (auto i = series_writers_.begin(); i != series_writers_.end(); ++i) { if (!i->second) continue; TF_RETURN_WITH_CONTEXT_IF_ERROR(i->second->Finish(db), "finish tag_id=", i->first); i->second.reset(); } return absl::OkStatus(); } private: SeriesWriter* GetSeriesWriter(int64_t tag_id) TF_LOCKS_EXCLUDED(mu_) { mutex_lock sl(mu_); auto spot = series_writers_.find(tag_id); if (spot == series_writers_.end()) { SeriesWriter* writer = new SeriesWriter(tag_id, meta_); series_writers_[tag_id].reset(writer); return writer; } else { return spot->second.get(); } } mutex mu_; RunMetadata* const meta_; std::unordered_map<int64_t, std::unique_ptr<SeriesWriter>> series_writers_ TF_GUARDED_BY(mu_); RunWriter(const RunWriter&) = delete; void operator=(const RunWriter&) = delete; }; class SummaryDbWriter : public SummaryWriterInterface { public: SummaryDbWriter(Env* env, Sqlite* db, const string& experiment_name, const string& run_name, const string& user_name) : SummaryWriterInterface(), env_{env}, db_{db}, ids_{env_, db_}, meta_{&ids_, experiment_name, run_name, user_name}, run_{&meta_} { DCHECK(env_ != nullptr); db_->Ref(); } ~SummaryDbWriter() override { core::ScopedUnref unref(db_); Status s = run_.Finish(db_); if (!s.ok()) { LOG(ERROR) << s; } int64_t run_id = meta_.run_id(); if (run_id == kAbsent) return; const char* sql = R"sql( UPDATE Runs SET finished_time = ? WHERE run_id = ? )sql"; SqliteStatement update; s = db_->Prepare(sql, &update); if (s.ok()) { update.BindDouble(1, DoubleTime(env_->NowMicros())); update.BindInt(2, run_id); s = update.StepAndReset(); } if (!s.ok()) { LOG(ERROR) << "Failed to set Runs[" << run_id << "].finish_time: " << s; } } Status Flush() override { return absl::OkStatus(); } Status WriteTensor(int64_t global_step, Tensor t, const string& tag, const string& serialized_metadata) override { TF_RETURN_IF_ERROR(CheckSupportedType(t)); SummaryMetadata metadata; if (!metadata.ParseFromString(serialized_metadata)) { return errors::InvalidArgument("Bad serialized_metadata"); } return Write(global_step, t, tag, metadata); } Status WriteScalar(int64_t global_step, Tensor t, const string& tag) override { TF_RETURN_IF_ERROR(CheckSupportedType(t)); SummaryMetadata metadata; PatchPluginName(&metadata, kScalarPluginName); return Write(global_step, AsScalar(t), tag, metadata); } Status WriteGraph(int64_t global_step, std::unique_ptr<GraphDef> g) override { uint64 now = env_->NowMicros(); return meta_.SetGraph(db_, now, DoubleTime(now), std::move(g)); } Status WriteEvent(std::unique_ptr<Event> e) override { return MigrateEvent(std::move(e)); } Status WriteHistogram(int64_t global_step, Tensor t, const string& tag) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR( AddTensorAsHistogramToSummary(t, tag, e->mutable_summary())); return MigrateEvent(std::move(e)); } Status WriteImage(int64_t global_step, Tensor t, const string& tag, int max_images, Tensor bad_color) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR(AddTensorAsImageToSummary(t, tag, max_images, bad_color, e->mutable_summary())); return MigrateEvent(std::move(e)); } Status WriteAudio(int64_t global_step, Tensor t, const string& tag, int max_outputs, float sample_rate) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR(AddTensorAsAudioToSummary( t, tag, max_outputs, sample_rate, e->mutable_summary())); return MigrateEvent(std::move(e)); } string DebugString() const override { return "SummaryDbWriter"; } private: Status Write(int64_t step, const Tensor& t, const string& tag, const SummaryMetadata& metadata) { uint64 now = env_->NowMicros(); double computed_time = DoubleTime(now); int64_t tag_id; TF_RETURN_IF_ERROR( meta_.GetTagId(db_, now, computed_time, tag, &tag_id, metadata)); TF_RETURN_WITH_CONTEXT_IF_ERROR( run_.Append(db_, tag_id, step, now, computed_time, t), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/", tag, "@", step); return absl::OkStatus(); } Status MigrateEvent(std::unique_ptr<Event> e) { switch (e->what_case()) { case Event::WhatCase::kSummary: { uint64 now = env_->NowMicros(); auto summaries = e->mutable_summary(); for (int i = 0; i < summaries->value_size(); ++i) { Summary::Value* value = summaries->mutable_value(i); TF_RETURN_WITH_CONTEXT_IF_ERROR( MigrateSummary(e.get(), value, now), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/", value->tag(), "@", e->step()); } break; } case Event::WhatCase::kGraphDef: TF_RETURN_WITH_CONTEXT_IF_ERROR( MigrateGraph(e.get(), e->graph_def()), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/__graph__@", e->step()); break; default: break; } return absl::OkStatus(); } Status MigrateGraph(const Event* e, const string& graph_def) { uint64 now = env_->NowMicros(); std::unique_ptr<GraphDef> graph{new GraphDef}; if (!ParseProtoUnlimited(graph.get(), graph_def)) { return errors::InvalidArgument("bad proto"); } return meta_.SetGraph(db_, now, e->wall_time(), std::move(graph)); } Status MigrateSummary(const Event* e, Summary::Value* s, uint64 now) { switch (s->value_case()) { case Summary::Value::ValueCase::kTensor: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateTensor(e, s, now), "tensor"); break; case Summary::Value::ValueCase::kSimpleValue: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateScalar(e, s, now), "scalar"); break; case Summary::Value::ValueCase::kHisto: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateHistogram(e, s, now), "histo"); break; case Summary::Value::ValueCase::kImage: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateImage(e, s, now), "image"); break; case Summary::Value::ValueCase::kAudio: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateAudio(e, s, now), "audio"); break; default: break; } return absl::OkStatus(); } Status MigrateTensor(const Event* e, Summary::Value* s, uint64 now) { Tensor t; if (!t.FromProto(s->tensor())) return errors::InvalidArgument("bad proto"); TF_RETURN_IF_ERROR(CheckSupportedType(t)); int64_t tag_id; TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateScalar(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_FLOAT, {}}; t.scalar<float>()() = s->simple_value(); int64_t tag_id; PatchPluginName(s->mutable_metadata(), kScalarPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateHistogram(const Event* e, Summary::Value* s, uint64 now) { const HistogramProto& histo = s->histo(); int k = histo.bucket_size(); if (k != histo.bucket_limit_size()) { return errors::InvalidArgument("size mismatch"); } Tensor t{DT_DOUBLE, {k, 3}}; auto data = t.flat<double>(); for (int i = 0, j = 0; i < k; ++i) { double left_edge = (i == 0) ? std::numeric_limits<double>::min() : histo.bucket_limit(i - 1); data(j++) = left_edge; data(j++) = histo.bucket_limit(i); data(j++) = histo.bucket(i); } int64_t tag_id; PatchPluginName(s->mutable_metadata(), kHistogramPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateImage(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_STRING, {3}}; auto img = s->mutable_image(); t.flat<tstring>()(0) = strings::StrCat(img->width()); t.flat<tstring>()(1) = strings::StrCat(img->height()); t.flat<tstring>()(2) = std::move(*img->mutable_encoded_image_string()); int64_t tag_id; PatchPluginName(s->mutable_metadata(), kImagePluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateAudio(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_STRING, {1, 2}}; auto wav = s->mutable_audio(); t.flat<tstring>()(0) = std::move(*wav->mutable_encoded_audio_string()); t.flat<tstring>()(1) = ""; int64_t tag_id; PatchPluginName(s->mutable_metadata(), kAudioPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Env* const env_; Sqlite* const db_; IdAllocator ids_; RunMetadata meta_; RunWriter run_; }; } Status CreateSummaryDbWriter(Sqlite* db, const string& experiment_name, const string& run_name, const string& user_name, Env* env, SummaryWriterInterface** result) { *result = new SummaryDbWriter(env, db, experiment_name, run_name, user_name); return absl::OkStatus(); } }
#include "tensorflow/core/summary/summary_db_writer.h" #include "tensorflow/core/summary/schema.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/db/sqlite.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { Tensor MakeScalarInt64(int64_t x) { Tensor t(DT_INT64, TensorShape({})); t.scalar<int64_t>()() = x; return t; } class FakeClockEnv : public EnvWrapper { public: FakeClockEnv() : EnvWrapper(Env::Default()), current_millis_(0) {} void AdvanceByMillis(const uint64 millis) { current_millis_ += millis; } uint64 NowMicros() const override { return current_millis_ * 1000; } uint64 NowSeconds() const override { return current_millis_ * 1000; } private: uint64 current_millis_; }; class SummaryDbWriterTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db_)); TF_ASSERT_OK(SetupTensorboardSqliteDb(db_)); } void TearDown() override { if (writer_ != nullptr) { writer_->Unref(); writer_ = nullptr; } db_->Unref(); db_ = nullptr; } int64_t QueryInt(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return -1; } return stmt.ColumnInt(0); } double QueryDouble(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return -1; } return stmt.ColumnDouble(0); } string QueryString(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return "MISSINGNO"; } return stmt.ColumnString(0); } FakeClockEnv env_; Sqlite* db_ = nullptr; SummaryWriterInterface* writer_ = nullptr; }; TEST_F(SummaryDbWriterTest, WriteHistogram_VerifyTensorValues) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "histtest", "test1", "user1", &env_, &writer_)); int step = 0; std::unique_ptr<Event> e{new Event}; e->set_step(step); e->set_wall_time(123); Summary::Value* s = e->mutable_summary()->add_value(); s->set_tag("normal/myhisto"); double dummy_value = 10.123; HistogramProto* proto = s->mutable_histo(); proto->Clear(); proto->set_min(dummy_value); proto->set_max(dummy_value); proto->set_num(dummy_value); proto->set_sum(dummy_value); proto->set_sum_squares(dummy_value); int size = 3; double bucket_limits[] = {-30.5, -10.5, -5.5}; double bucket[] = {-10, 10, 20}; for (int i = 0; i < size; i++) { proto->add_bucket_limit(bucket_limits[i]); proto->add_bucket(bucket[i]); } TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); writer_->Unref(); writer_ = nullptr; string result = QueryString("SELECT data FROM Tensors"); const double* val = reinterpret_cast<const double*>(result.data()); double histarray[] = {std::numeric_limits<double>::min(), -30.5, -10, -30.5, -10.5, 10, -10.5, -5.5, 20}; int histarray_size = 9; for (int i = 0; i < histarray_size; i++) { EXPECT_EQ(histarray[i], val[i]); } } TEST_F(SummaryDbWriterTest, NothingWritten_NoRowsCreated) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); TF_ASSERT_OK(writer_->Flush()); writer_->Unref(); writer_ = nullptr; EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Ids")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Users")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Experiments")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Runs")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Tags")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Tensors")); } TEST_F(SummaryDbWriterTest, TensorsWritten_RowsGetInitialized) { SummaryMetadata metadata; metadata.set_display_name("display_name"); metadata.set_summary_description("description"); metadata.mutable_plugin_data()->set_plugin_name("plugin_name"); metadata.mutable_plugin_data()->set_content("plugin_data"); SummaryMetadata metadata_nope; metadata_nope.set_display_name("nope"); metadata_nope.set_summary_description("nope"); metadata_nope.mutable_plugin_data()->set_plugin_name("nope"); metadata_nope.mutable_plugin_data()->set_content("nope"); TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(2, MakeScalarInt64(314LL), "taggy", metadata_nope.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Users")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Experiments")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(1000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); int64_t user_id = QueryInt("SELECT user_id FROM Users"); int64_t experiment_id = QueryInt("SELECT experiment_id FROM Experiments"); int64_t run_id = QueryInt("SELECT run_id FROM Runs"); int64_t tag_id = QueryInt("SELECT tag_id FROM Tags"); EXPECT_LT(0LL, user_id); EXPECT_LT(0LL, experiment_id); EXPECT_LT(0LL, run_id); EXPECT_LT(0LL, tag_id); EXPECT_EQ("jart", QueryString("SELECT user_name FROM Users")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Users")); EXPECT_EQ(user_id, QueryInt("SELECT user_id FROM Experiments")); EXPECT_EQ("mad-science", QueryString("SELECT experiment_name FROM Experiments")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Experiments")); EXPECT_EQ(experiment_id, QueryInt("SELECT experiment_id FROM Runs")); EXPECT_EQ("train", QueryString("SELECT run_name FROM Runs")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Runs")); EXPECT_EQ(run_id, QueryInt("SELECT run_id FROM Tags")); EXPECT_EQ("taggy", QueryString("SELECT tag_name FROM Tags")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Tags")); EXPECT_EQ("display_name", QueryString("SELECT display_name FROM Tags")); EXPECT_EQ("plugin_name", QueryString("SELECT plugin_name FROM Tags")); EXPECT_EQ("plugin_data", QueryString("SELECT plugin_data FROM Tags")); EXPECT_EQ("description", QueryString("SELECT description FROM Descriptions")); EXPECT_EQ(tag_id, QueryInt("SELECT series FROM Tensors WHERE step = 1")); EXPECT_EQ(0.023, QueryDouble("SELECT computed_time FROM Tensors WHERE step = 1")); EXPECT_EQ(tag_id, QueryInt("SELECT series FROM Tensors WHERE step = 2")); EXPECT_EQ(0.046, QueryDouble("SELECT computed_time FROM Tensors WHERE step = 2")); } TEST_F(SummaryDbWriterTest, EmptyParentNames_NoParentsCreated) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "", "", &env_, &writer_)); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", "")); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Users")); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Experiments")); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(1000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); } TEST_F(SummaryDbWriterTest, WriteEvent_Scalar) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "", "", &env_, &writer_)); std::unique_ptr<Event> e{new Event}; e->set_step(7); e->set_wall_time(123.456); Summary::Value* s = e->mutable_summary()->add_value(); s->set_tag("π"); s->set_simple_value(3.14f); s = e->mutable_summary()->add_value(); s->set_tag("φ"); s->set_simple_value(1.61f); TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(2LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(2000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); int64_t tag1_id = QueryInt("SELECT tag_id FROM Tags WHERE tag_name = 'π'"); int64_t tag2_id = QueryInt("SELECT tag_id FROM Tags WHERE tag_name = 'φ'"); EXPECT_GT(tag1_id, 0LL); EXPECT_GT(tag2_id, 0LL); EXPECT_EQ(123.456, QueryDouble(strings::StrCat( "SELECT computed_time FROM Tensors WHERE series = ", tag1_id, " AND step = 7"))); EXPECT_EQ(123.456, QueryDouble(strings::StrCat( "SELECT computed_time FROM Tensors WHERE series = ", tag2_id, " AND step = 7"))); } TEST_F(SummaryDbWriterTest, WriteGraph) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "R", "", &env_, &writer_)); env_.AdvanceByMillis(23); GraphDef graph; graph.mutable_library()->add_gradient()->set_function_name("funk"); NodeDef* node = graph.add_node(); node->set_name("x"); node->set_op("Placeholder"); node = graph.add_node(); node->set_name("y"); node->set_op("Placeholder"); node = graph.add_node(); node->set_name("z"); node->set_op("Love"); node = graph.add_node(); node->set_name("+"); node->set_op("Add"); node->add_input("x"); node->add_input("y"); node->add_input("^z"); node->set_device("tpu/lol"); std::unique_ptr<Event> e{new Event}; graph.SerializeToString(e->mutable_graph_def()); TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Graphs")); ASSERT_EQ(4LL, QueryInt("SELECT COUNT(*) FROM Nodes")); ASSERT_EQ(3LL, QueryInt("SELECT COUNT(*) FROM NodeInputs")); ASSERT_EQ(QueryInt("SELECT run_id FROM Runs"), QueryInt("SELECT run_id FROM Graphs")); int64_t graph_id = QueryInt("SELECT graph_id FROM Graphs"); EXPECT_GT(graph_id, 0LL); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Graphs")); GraphDef graph2; graph2.ParseFromString(QueryString("SELECT graph_def FROM Graphs")); EXPECT_EQ(0, graph2.node_size()); EXPECT_EQ("funk", graph2.library().gradient(0).function_name()); EXPECT_EQ("x", QueryString("SELECT node_name FROM Nodes WHERE node_id = 0")); EXPECT_EQ("y", QueryString("SELECT node_name FROM Nodes WHERE node_id = 1")); EXPECT_EQ("z", QueryString("SELECT node_name FROM Nodes WHERE node_id = 2")); EXPECT_EQ("+", QueryString("SELECT node_name FROM Nodes WHERE node_id = 3")); EXPECT_EQ("Placeholder", QueryString("SELECT op FROM Nodes WHERE node_id = 0")); EXPECT_EQ("Placeholder", QueryString("SELECT op FROM Nodes WHERE node_id = 1")); EXPECT_EQ("Love", QueryString("SELECT op FROM Nodes WHERE node_id = 2")); EXPECT_EQ("Add", QueryString("SELECT op FROM Nodes WHERE node_id = 3")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 0")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 1")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 2")); EXPECT_EQ("tpu/lol", QueryString("SELECT device FROM Nodes WHERE node_id = 3")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(0LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(1LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(2LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(0LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(0LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(1LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 2")); } TEST_F(SummaryDbWriterTest, UsesIdsTable) { SummaryMetadata metadata; TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(4LL, QueryInt("SELECT COUNT(*) FROM Ids")); EXPECT_EQ(4LL, QueryInt(strings::StrCat( "SELECT COUNT(*) FROM Ids WHERE id IN (", QueryInt("SELECT user_id FROM Users"), ", ", QueryInt("SELECT experiment_id FROM Experiments"), ", ", QueryInt("SELECT run_id FROM Runs"), ", ", QueryInt("SELECT tag_id FROM Tags"), ")"))); } TEST_F(SummaryDbWriterTest, SetsRunFinishedTime) { SummaryMetadata metadata; TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(0.023, QueryDouble("SELECT started_time FROM Runs")); ASSERT_EQ(0.0, QueryDouble("SELECT finished_time FROM Runs")); env_.AdvanceByMillis(23); writer_->Unref(); writer_ = nullptr; ASSERT_EQ(0.023, QueryDouble("SELECT started_time FROM Runs")); ASSERT_EQ(0.046, QueryDouble("SELECT finished_time FROM Runs")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_db_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_db_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2cf421c1-f469-45b8-8be7-7c73f872ea22
cpp
tensorflow/tensorflow
list_ops_util
tensorflow/lite/kernels/variants/list_ops_util.cc
tensorflow/lite/kernels/variants/list_ops_util_test.cc
#include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/array.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" namespace tflite { namespace variants { IntArrayUniquePtr TensorAsShape(const TfLiteTensor& shape) { if (shape.dims->size == 0) { return BuildTfLiteArray({}); } const int rank = shape.dims->data[0]; const int* begin = reinterpret_cast<const int*>(shape.data.data); const int* end = begin + rank; return BuildTfLiteArray(std::vector<int>(begin, end)); } IntArrayUniquePtr MergeShapesOrNull(IntArrayUniquePtr l, IntArrayUniquePtr r) { if (l == nullptr) { return r; } if (r == nullptr) { return l; } if (l->size == 0) { return r; } if (r->size == 0) { return l; } if (l->size != r->size) { return nullptr; } for (int i = 0; i < r->size; ++i) { if (l->data[i] == -1) { l->data[i] = r->data[i]; } else if (r->data[i] != -1 && l->data[i] != r->data[i]) { return nullptr; } } return l; } bool IsShapeFullyDefined(const TfLiteIntArray& shape) { for (int i = 0; i < shape.size; ++i) { if (shape.data[i] < 0) { return false; } } return true; } TfLiteStatus GetShapeIfAllEqual(const TensorArray& arr, IntArrayUniquePtr& result) { const TfLiteIntArray* common_shape = nullptr; for (int i = 0; i < arr.NumElements(); ++i) { const TfLiteTensor* cur_element = arr.At(i); if (cur_element == nullptr) { continue; } if (common_shape == nullptr) { common_shape = cur_element->dims; continue; } if (!TfLiteIntArrayEqual(common_shape, cur_element->dims)) { return kTfLiteError; } } result = common_shape != nullptr ? BuildTfLiteArray(*common_shape) : nullptr; return kTfLiteOk; } } }
#include "tensorflow/lite/kernels/variants/list_ops_util.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace { TEST(TensorAsShape, ScalarTensor_ReturnsEmptyIntArray) { TensorUniquePtr scalar_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({}), kTfLiteDynamic); IntArrayUniquePtr shape_from_tensor = TensorAsShape(*scalar_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({})); } TEST(TensorAsShape, SingleElementTensor_ReturnsSize1Shape) { TensorUniquePtr single_el_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({1}), kTfLiteDynamic); single_el_tensor->data.i32[0] = 10; IntArrayUniquePtr shape_from_tensor = TensorAsShape(*single_el_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({10})); } TEST(TensorAsShape, OneDMultipleElementShape_ReturnsHighRankedShape) { TensorUniquePtr one_d_mul_el_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({3}), kTfLiteDynamic); one_d_mul_el_tensor->data.i32[0] = 10; one_d_mul_el_tensor->data.i32[1] = 9; one_d_mul_el_tensor->data.i32[2] = 8; IntArrayUniquePtr shape_from_tensor = TensorAsShape(*one_d_mul_el_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({10, 9, 8})); } TEST(MergeShapesOrNull, IncompatibleSameRank_ReturnsNull) { IntArrayUniquePtr l = BuildTfLiteArray({2, 3}); IntArrayUniquePtr r = BuildTfLiteArray({3, 3}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, NotSameRank_ReturnsNull) { IntArrayUniquePtr l = BuildTfLiteArray({1}); IntArrayUniquePtr r = BuildTfLiteArray({1, 2}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, MergeShapesOrNullSameRankNENull) { IntArrayUniquePtr l = BuildTfLiteArray({1}); IntArrayUniquePtr r = BuildTfLiteArray({2}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, RankedUnknownLKnownR_ReturnsStatic) { IntArrayUniquePtr l = BuildTfLiteArray({-1}); IntArrayUniquePtr r = BuildTfLiteArray({2}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2})); } TEST(MergeShapesOrNull, UnknownRKnownL_ReturnsStatic) { IntArrayUniquePtr l = BuildTfLiteArray({2}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2})); } TEST(MergeShapesOrNull, UnknownBoth_ReturnsUnknown) { IntArrayUniquePtr l = BuildTfLiteArray({-1}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({-1})); } TEST(MergeShapesOrNull, RankedUnknownDifferentDims_ConstrainsUnknownDims) { IntArrayUniquePtr l = BuildTfLiteArray({-1, 2, 5}); IntArrayUniquePtr r = BuildTfLiteArray({1, -1, 5}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({1, 2, 5})); } TEST(MergeShapesOrNull, BothUnranked_ReturnsUnranked) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({})); } TEST(MergeShapesOrNull, UrankedAndStatic1D_ReturnsStatic1D) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({1})); } TEST(MergeShapesOrNull, UnrankedAndStaticND_ReturnsStaticND) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({2, 3}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2, 3})); } TEST(MergeShapesOrNull, UnrankedAndRankedUnknown_ReturnsRankedUnknown) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({-1})); } TEST(MergeShapesOrNull, NullInput_ReturnsOther) { EXPECT_THAT(MergeShapesOrNull(BuildTfLiteArray({3}), nullptr).get(), DimsAre({3})); EXPECT_THAT(MergeShapesOrNull(nullptr, BuildTfLiteArray({2})).get(), DimsAre({2})); EXPECT_EQ(MergeShapesOrNull(nullptr, nullptr).get(), nullptr); } TEST(MergeShapesOrNull, NullInput_ReturnsUnrankedOther) { EXPECT_THAT(MergeShapesOrNull(BuildTfLiteArray({}), nullptr).get(), DimsAre({})); EXPECT_THAT(MergeShapesOrNull(nullptr, BuildTfLiteArray({})).get(), DimsAre({})); } TEST(ElementsSameShape, NoElements_SucceedsWithNullptr) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(2); IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_EQ(res.get(), nullptr); } TEST(ElementsSameShape, ZeroSize_SucceedsWithNullptr) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_EQ(res.get(), nullptr); } TEST(ElementsSameShape, OneSize_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(1); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_AllSet_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(2); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(1, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_SomeSet_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_SomeSetNotSameRank_Fails) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 3}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteError); } TEST(ElementsSameShape, MultipleElements_SomeSetNotSameDim_Fails) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 3}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteError); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_ops_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_ops_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce3f61da-4768-4dc2-a05f-104fc015a518
cpp
tensorflow/tensorflow
comparators
third_party/xla/xla/hlo/builder/lib/comparators.cc
third_party/xla/xla/hlo/builder/lib/comparators_test.cc
#include "xla/hlo/builder/lib/comparators.h" #include <limits> #include <optional> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using XlaCompareOp = XlaOp (*)(XlaOp, XlaOp, absl::Span<const int64_t>); XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder, XlaCompareOp generator) { CHECK_NE(operand_types.size(), 0); std::vector<std::optional<XlaCompareOp>> generators(operand_types.size()); generators[0] = generator; return CreateScalarComparisonComputation(name, operand_types, generators, builder); } } XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, const std::vector<std::optional<XlaCompareOp>>& generators, XlaBuilder* builder) { auto b = builder->CreateSubBuilder(name); if (operand_types.empty()) { b->ReportError(InvalidArgument("operand_types should not be empty")); return b->BuildAndNoteError(); } CHECK_EQ(operand_types.size(), generators.size()); int parameter_count = 0; int last_generator_index = 0; std::vector<XlaOp> lhs_params; std::vector<XlaOp> rhs_params; for (auto operand_type : operand_types) { auto scalar_shape = ShapeUtil::MakeShape(operand_type, {}); auto lhs_param = Parameter(b.get(), parameter_count * 2, scalar_shape, absl::StrCat("p.", parameter_count, ".lhs")); auto rhs_param = Parameter(b.get(), parameter_count * 2 + 1, scalar_shape, absl::StrCat("p.", parameter_count, ".rhs")); lhs_params.emplace_back(lhs_param); rhs_params.emplace_back(rhs_param); if (generators[parameter_count].has_value()) { last_generator_index = parameter_count; } parameter_count++; } CHECK_NE(parameter_count, 0); XlaOp result; XlaOp prev_equal; for (int i = 0; i < parameter_count; i++) { if (generators[i].has_value()) { XlaOp cmp_op = generators[i].value()(lhs_params[i], rhs_params[i], {}); result = prev_equal.valid() ? Select(prev_equal, cmp_op, result) : cmp_op; if (i != last_generator_index) { XlaOp eq_op = EqTotalOrder(lhs_params[i], rhs_params[i]); prev_equal = prev_equal.valid() ? And(prev_equal, eq_op) : eq_op; } } } CHECK(result.valid()); return b->BuildAndNoteError(); } XlaComputation CreateScalarLtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation("compare-less-than", operand_types, builder, LtTotalOrder); } XlaComputation CreateScalarGtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation( "compare-greater-than", operand_types, builder, GtTotalOrder); } }
#include "xla/hlo/builder/lib/comparators.h" #include <cmath> #include <limits> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { class ComparatorsTest : public ClientLibraryTestBase { public: ComparatorsTest() : builder_(TestName()) {} XlaBuilder* builder() { return &builder_; } private: XlaBuilder builder_; }; template < PrimitiveType type, typename T = typename primitive_util::PrimitiveTypeToNative<type>::type> void BuildComparatorAndComparisons(ComparatorsTest* test, bool compare_less_than, absl::InlinedVector<bool, 10>* expected) { auto compare = compare_less_than ? CreateScalarLtComputation({type}, test->builder()) : CreateScalarGtComputation({type}, test->builder()); auto negative_nan = ConstantR0<T>( test->builder(), -T(std::numeric_limits<float>::quiet_NaN())); auto positive_nan = ConstantR0<T>(test->builder(), T(std::numeric_limits<float>::quiet_NaN())); auto negative_zero = ConstantR0<T>(test->builder(), T(-0.)); auto positive_zero = ConstantR0<T>(test->builder(), T(0.)); auto negative_infinity = MinValue(test->builder(), type); auto positive_infinity = MaxValue(test->builder(), type); std::vector<XlaOp> all_constants{negative_nan, negative_infinity, negative_zero, positive_zero, positive_infinity, positive_nan}; std::vector<XlaOp> all_comparisons; all_comparisons.reserve(std::pow(all_constants.size(), 2)); for (const XlaOp& lhs_constant : all_constants) { for (const XlaOp& rhs_constant : all_constants) { all_comparisons.push_back(Broadcast( Call(test->builder(), compare, {lhs_constant, rhs_constant}), {1})); } } ConcatInDim(test->builder(), all_comparisons, 0); expected->clear(); for (int i = 0; i < all_constants.size(); ++i) { for (int j = 0; j < all_constants.size(); ++j) { expected->push_back(compare_less_than ? i < j : i > j); } } } XLA_TEST_F(ComparatorsTest, CompareLtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } const auto kCompareStr = HloOpcodeString(xla::HloOpcode::kCompare); const auto kParameterStr = HloOpcodeString(xla::HloOpcode::kParameter); const auto kSelectStr = HloOpcodeString(xla::HloOpcode::kSelect); void ExpectCompareOp( const xla::HloInstructionProto op, xla::PrimitiveType type, absl::string_view direction, int parameter0_number, int parameter1_number, const tsl::protobuf::RepeatedPtrField<xla::HloInstructionProto>& all_ops) { EXPECT_EQ(op.opcode(), kCompareStr); const auto& operand0 = all_ops.at(op.operand_ids(0) - 1); EXPECT_EQ(operand0.opcode(), kParameterStr); EXPECT_EQ(operand0.parameter_number(), parameter0_number); EXPECT_EQ(operand0.shape().element_type(), type); const auto& operand1 = all_ops.at(op.operand_ids(1) - 1); EXPECT_EQ(operand1.opcode(), kParameterStr); EXPECT_EQ(operand1.parameter_number(), parameter1_number); EXPECT_EQ(operand1.shape().element_type(), type); } TEST(VariadicComparatorTest, OneOperandOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16}, {LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 2); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, {}}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsTwoComparisons) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); EXPECT_EQ(root.opcode(), HloOpcodeString(xla::HloOpcode::kSelect)); ExpectCompareOp(instr.at(root.operand_ids(0) - 1), U16, "EQ", 0, 1, instr); ExpectCompareOp(instr.at(root.operand_ids(1) - 1), U32, "LT", 2, 3, instr); ExpectCompareOp(instr.at(root.operand_ids(2) - 1), U16, "LT", 0, 1, instr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/comparators.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/comparators_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
026ad976-bcd8-45e2-a971-4ccda66bdadd
cpp
tensorflow/tensorflow
mkl_quantize_op
tensorflow/core/kernels/mkl/mkl_quantize_op.cc
tensorflow/core/kernels/mkl/mkl_quantize_op_test.cc
#ifdef INTEL_MKL #define EIGEN_USE_THREADS #include "dnnl.hpp" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/type_traits.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/mkl_graph_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/mkl_util.h" #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) #include "tensorflow/core/platform/mutex.h" #endif using dnnl::primitive_attr; using dnnl::prop_kind; using dnnl::reorder; using dnnl::stream; namespace { enum { QUANTIZE_MODE_MIN_COMBINED, QUANTIZE_MODE_MIN_FIRST, QUANTIZE_MODE_SCALED, }; enum { ROUND_HALF_AWAY_FROM_ZERO, ROUND_HALF_TO_EVEN, }; } namespace tensorflow { #ifndef ENABLE_ONEDNN_V3 #define SET_MKL_LAYOUT(md) SetMklLayout(&md) #else #define SET_MKL_LAYOUT(md) SetMklLayout(md) #endif typedef Eigen::ThreadPoolDevice CPUDevice; struct MklReorderWithScaleFwdParams { memory::dims src_dims; memory::desc src_md; memory::desc dst_md; #ifdef ENABLE_ONEDNN_V3 memory::desc scale_md; #endif string dtypes = string(""); struct PostOpParam { string name; std::vector<float> param; }; PostOpParam post_op_params; #ifndef ENABLE_ONEDNN_V3 MklReorderWithScaleFwdParams(memory::dims src_dims, memory::desc src_md, memory::desc dst_md) : src_dims(src_dims), src_md(src_md), dst_md(dst_md) {} #else MklReorderWithScaleFwdParams(memory::dims src_dims, memory::desc src_md, memory::desc dst_md, memory::desc scale_md) : src_dims(src_dims), src_md(src_md), dst_md(dst_md), scale_md(scale_md) {} #endif }; class MklReorderWithScalePrimitive : public MklPrimitive { public: explicit MklReorderWithScalePrimitive( const MklReorderWithScaleFwdParams& fwdParams) : MklPrimitive(engine(engine::kind::cpu, 0)) { Setup(fwdParams); } ~MklReorderWithScalePrimitive() {} std::shared_ptr<primitive> GetPrimitive() { return context_.reorder_prim; } void Execute(void* src_data, void* dst_data, #ifdef ENABLE_ONEDNN_V3 void* scale_data, #endif std::shared_ptr<stream> reorder_stream) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(primitive_execution_mu_); #endif #if !defined(ENABLE_ONEDNN_OPENMP) && !defined(ENABLE_ONEDNN_V3) context_.src_mem->set_data_handle(src_data, *reorder_stream); context_.dst_mem->set_data_handle(dst_data, *reorder_stream); #else context_.src_mem->set_data_handle(src_data); context_.dst_mem->set_data_handle(dst_data); #endif #ifdef ENABLE_ONEDNN_V3 context_.scale_mem->set_data_handle(scale_data); #endif context_.reorder_prim->execute(*reorder_stream, context_.prim_args); context_.src_mem->set_data_handle(DummyData); context_.dst_mem->set_data_handle(DummyData); #ifdef ENABLE_ONEDNN_V3 context_.scale_mem->set_data_handle(DummyData); #endif } private: struct ReorderContext { std::shared_ptr<dnnl::memory> src_mem; std::shared_ptr<dnnl::memory> dst_mem; #ifdef ENABLE_ONEDNN_V3 std::shared_ptr<dnnl::memory> scale_mem; #endif std::shared_ptr<reorder::primitive_desc> reorder_pd; std::shared_ptr<primitive> reorder_prim; std::shared_ptr<dnnl::stream> reorder_stream; std::unordered_map<int, dnnl::memory> prim_args; ReorderContext() : src_mem(nullptr), dst_mem(nullptr), #ifdef ENABLE_ONEDNN_V3 scale_mem(nullptr), #endif reorder_pd(nullptr), reorder_prim(nullptr) { } } context_; void Setup(const MklReorderWithScaleFwdParams& fwdParams) { context_.src_mem.reset( new memory(fwdParams.src_md, cpu_engine_, DummyData)); context_.dst_mem.reset( new memory(fwdParams.dst_md, cpu_engine_, DummyData)); #ifdef ENABLE_ONEDNN_V3 context_.scale_mem.reset( new memory(fwdParams.scale_md, cpu_engine_, DummyData)); #endif dnnl::primitive_attr post_ops_attr; #ifndef ENABLE_ONEDNN_V3 auto const& post_op_params = fwdParams.post_op_params; DCHECK(post_op_params.name == "scale"); DCHECK_EQ(post_op_params.param.size(), 1); std::vector<float> scales; scales.push_back(post_op_params.param[0]); post_ops_attr.set_output_scales(0, scales); #else post_ops_attr.set_scales_mask(DNNL_ARG_SRC, 0 ); #endif context_.reorder_pd.reset( new ReorderPd(cpu_engine_, context_.src_mem->get_desc(), cpu_engine_, context_.dst_mem->get_desc(), post_ops_attr)); context_.reorder_prim.reset(new reorder(*context_.reorder_pd)); context_.prim_args.insert({DNNL_ARG_FROM, *context_.src_mem}); context_.prim_args.insert({DNNL_ARG_TO, *context_.dst_mem}); #ifdef ENABLE_ONEDNN_V3 context_.prim_args.insert( {DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, *context_.scale_mem}); #endif } #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex primitive_execution_mu_; #endif }; template <typename T> class MklReorderWithScalePrimitiveFactory : public MklPrimitiveFactory<T> { public: static MklReorderWithScalePrimitive* Get( const memory* from, const memory* to, const MklReorderWithScaleFwdParams& fwdParams) { auto reorderPrim = static_cast<MklReorderWithScalePrimitive*>( MklReorderWithScalePrimitiveFactory<T>::GetInstance().GetReorder( from, to, fwdParams)); if (reorderPrim == nullptr) { reorderPrim = new MklReorderWithScalePrimitive(fwdParams); MklReorderWithScalePrimitiveFactory<T>::GetInstance().SetReorder( from, to, reorderPrim, fwdParams); } return reorderPrim; } static MklReorderWithScalePrimitiveFactory& GetInstance() { static MklReorderWithScalePrimitiveFactory instance_; return instance_; } private: MklReorderWithScalePrimitiveFactory() {} ~MklReorderWithScalePrimitiveFactory() {} static string CreateKey(const memory* from, const memory* to, const MklReorderWithScaleFwdParams& fwdParams) { FactoryKeyCreator key_creator; key_creator.AddAsKey(MklReorderPrimitiveFactory<T>::CreateKey(from, to)); if (fwdParams.post_op_params.name == "scale") { DCHECK_EQ(fwdParams.post_op_params.param.size(), 1); key_creator.AddAsKey(fwdParams.post_op_params.name); key_creator.AddAsKey(fwdParams.post_op_params.param[0]); } else { return string("not_a_key"); } return key_creator.GetKey(); } MklPrimitive* GetReorder(const memory* from, const memory* to, const MklReorderWithScaleFwdParams& fwdParams) { string key = CreateKey(from, to, fwdParams); return this->GetOp(key); } void SetReorder(const memory* from, const memory* to, MklPrimitive* op, const MklReorderWithScaleFwdParams& fwdParams) { string key = CreateKey(from, to, fwdParams); this->SetOp(key, op); } }; template <typename Device, typename T, typename S, bool native_format = false> class MklQuantizeV2Op : public OpKernel { public: explicit MklQuantizeV2Op(OpKernelConstruction* ctx) : OpKernel(ctx) { string mode_string; OP_REQUIRES_OK(ctx, ctx->GetAttr("mode", &mode_string)); OP_REQUIRES(ctx, (mode_string == "MIN_COMBINED" || mode_string == "MIN_FIRST" || mode_string == "SCALED"), absl::InvalidArgumentError( absl::StrCat("Mode string must be 'MIN_COMBINED'," " 'MIN_FIRST', or 'SCALED', is '" + mode_string + "'"))); if (mode_string == "MIN_COMBINED") { mode_ = QUANTIZE_MODE_MIN_COMBINED; } else if (mode_string == "MIN_FIRST") { mode_ = QUANTIZE_MODE_MIN_FIRST; } else if (mode_string == "SCALED") { mode_ = QUANTIZE_MODE_SCALED; } string round_mode_string; OP_REQUIRES_OK(ctx, ctx->GetAttr("round_mode", &round_mode_string)); OP_REQUIRES( ctx, (round_mode_string == "HALF_AWAY_FROM_ZERO" || round_mode_string == "HALF_TO_EVEN"), absl::InvalidArgumentError(absl::StrCat("Round mode string must be " "'HALF_AWAY_FROM_ZERO' or " "'HALF_TO_EVEN', is '" + round_mode_string + "'"))); if (round_mode_string == "HALF_AWAY_FROM_ZERO") { round_mode_ = ROUND_HALF_AWAY_FROM_ZERO; } else if (round_mode_string == "HALF_TO_EVEN") { OP_REQUIRES(ctx, mode_string == "SCALED", absl::InvalidArgumentError( absl::StrCat("Round mode 'HALF_TO_EVEN' " "only supported for mode 'SCALED', " "but mode is '" + mode_string + "'."))); round_mode_ = ROUND_HALF_TO_EVEN; } OP_REQUIRES_OK(ctx, ctx->GetAttr("narrow_range", &narrow_range_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &axis_)); OP_REQUIRES_OK( ctx, ctx->GetAttr("ensure_minimum_range", &ensure_minimum_range_)); } void ComputeScalar(OpKernelContext* ctx, float min_range, float max_range) { OP_REQUIRES(ctx, (mode_ == QUANTIZE_MODE_MIN_FIRST), absl::InvalidArgumentError( "Scalar calculation in MKL is supported only for" "MIN_FIRST mode for now.")); const Tensor& min_tensor = ctx->input(1); const Tensor& max_tensor = ctx->input(2); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(min_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`min_input` must be rank 0 but is rank ", min_tensor.dims()))); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(max_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`max_input` must be rank 0 but is rank ", max_tensor.dims()))); auto cpu_engine = engine(engine::kind::cpu, 0); const unsigned int src_idx = 0; const Tensor& src_tensor = MklGetInput(ctx, src_idx); MklDnnShape output_mkl_shape; output_mkl_shape.SetMklTensor(false); Tensor* output_tensor = nullptr; AllocateOutputSetMklShape(ctx, 0, &output_tensor, src_tensor.shape(), output_mkl_shape, native_format); TensorShape min_tf_shape = {}; MklDnnShape min_mkl_shape; min_mkl_shape.SetMklTensor(false); Tensor* output_min_tensor = nullptr; AllocateOutputSetMklShape(ctx, 1, &output_min_tensor, min_tf_shape, min_mkl_shape, native_format); TensorShape max_tf_shape = {}; MklDnnShape max_mkl_shape; max_mkl_shape.SetMklTensor(false); Tensor* output_max_tensor = nullptr; AllocateOutputSetMklShape(ctx, 2, &output_max_tensor, max_tf_shape, max_mkl_shape, native_format); float scale_factor = 0; const int number_of_bits = sizeof(T) * 8; const int64 number_of_steps = static_cast<int64_t>(1) << number_of_bits; scale_factor = (number_of_steps - 1.0) / (max_range - min_range); float* src_data = const_cast<float*>(src_tensor.flat<float>().data()); T* out_data = output_tensor->flat<T>().data(); out_data[0] = (src_data[0] - min_range) * scale_factor; output_min_tensor->scalar<float>()() = min_range; output_max_tensor->scalar<float>()() = max_range; return; } void Compute(OpKernelContext* ctx) override { const unsigned int src_idx = 0; const float input_min_range = ctx->input(1).scalar<float>()(); const float input_max_range = ctx->input(2).scalar<float>()(); float min_range = std::min(0.0f, input_min_range); float max_range; OP_REQUIRES(ctx, (input_max_range >= input_min_range), absl::InvalidArgumentError( "input_max_range must be larger than input_min_range.")); const float epsilon = std::max(1.0f, std::max(fabsf(input_min_range), fabsf(input_max_range))) * ensure_minimum_range_; max_range = std::max(input_max_range, min_range + epsilon); max_range = std::max(0.0f, max_range); auto cpu_engine = engine(engine::kind::cpu, 0); const Tensor& src_tensor = MklGetInput(ctx, src_idx); MklDnnShape src_mkl_shape; GetMklShape(ctx, src_idx, &src_mkl_shape, native_format); auto src_tf_shape = src_mkl_shape.IsMklTensor() ? src_mkl_shape.GetTfShape() : src_tensor.shape(); auto src_dims = src_mkl_shape.IsMklTensor() ? src_mkl_shape.GetSizesAsMklDnnDims() : TFShapeToMklDnnDims(src_tensor.shape()); auto output_dims = src_dims; memory::format_tag dst_layout_type; switch (src_tf_shape.dims()) { case 0: ComputeScalar(ctx, min_range, max_range); return; case 1: dst_layout_type = memory::format_tag::x; break; case 2: dst_layout_type = memory::format_tag::nc; break; case 3: dst_layout_type = memory::format_tag::tnc; break; case 4: dst_layout_type = memory::format_tag::nhwc; break; case 5: dst_layout_type = memory::format_tag::ndhwc; break; default: OP_REQUIRES_OK(ctx, absl::AbortedError("Input dims must be <= 5 and >= 1")); return; } MklDnnData<S> src(&cpu_engine); MklDnnData<T> dst(&cpu_engine); #ifdef ENABLE_ONEDNN_V3 MklDnnData<float> scale(&cpu_engine); #endif auto src_md = src_mkl_shape.IsMklTensor() ? src_mkl_shape.GetMklLayout() : memory::desc(src_dims, MklDnnType<S>(), dst_layout_type); src.SetUsrMem(src_md, &src_tensor); memory::desc dst_md = memory::desc(src_dims, MklDnnType<T>(), dst_layout_type); MklDnnShape output_mkl_shape; TensorShape output_tf_shape; if (src_mkl_shape.IsMklTensor()) { output_mkl_shape.SetMklTensor(true); output_mkl_shape.SET_MKL_LAYOUT(dst_md); output_mkl_shape.SetElemType(MklDnnType<T>()); output_mkl_shape.SetTfLayout(src_mkl_shape.GetDimension(), src_mkl_shape.GetSizesAsMklDnnDims(), src_mkl_shape.GetTfDataFormat()); output_tf_shape.AddDim(dst_md.get_size() / sizeof(T)); } else { output_mkl_shape.SetMklTensor(false); output_tf_shape = MklDnnDimsToTFShape(output_dims); } Tensor* output_tensor = nullptr; AllocateOutputSetMklShape(ctx, 0, &output_tensor, output_tf_shape, output_mkl_shape, native_format); dst.SetUsrMem(dst_md, output_tensor); TensorShape min_tf_shape = {}; MklDnnShape min_mkl_shape; min_mkl_shape.SetMklTensor(false); Tensor* output_min_tensor = nullptr; AllocateOutputSetMklShape(ctx, 1, &output_min_tensor, min_tf_shape, min_mkl_shape, native_format); TensorShape max_tf_shape = {}; MklDnnShape max_mkl_shape; max_mkl_shape.SetMklTensor(false); Tensor* output_max_tensor = nullptr; AllocateOutputSetMklShape(ctx, 2, &output_max_tensor, max_tf_shape, max_mkl_shape, native_format); Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(ctx); tsl::OneDnnThreadPool eigen_tp(eigen_interface, ThreadPoolUseCallerThread()); float scale_factor = 0; if (mode_ == QUANTIZE_MODE_SCALED) { const int num_bits = sizeof(T) * 8; const float max_abs = std::max(std::abs(min_range), std::abs(max_range)); const bool is_signed = std::is_same<T, qint8>() || std::is_same<T, qint16>() || std::is_same<T, qint32>(); float target_range; if (is_signed) { max_range = max_abs; min_range = -max_abs; target_range = static_cast<float>((uint64_t{1} << num_bits) - 1) / 2.; } else { max_range = max_abs; min_range = 0.0; target_range = static_cast<float>((uint64_t{1} << num_bits) - 1); } scale_factor = target_range / max_abs; #ifdef ENABLE_ONEDNN_V3 auto scale_md = memory::desc({1}, MklDnnType<float>(), memory::format_tag::x); MklReorderWithScaleFwdParams fwdParams(src_dims, src_md, dst_md, scale_md); Tensor scale_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DT_FLOAT, {1}, &scale_tensor)); scale_tensor.flat<float>()(0) = scale_factor; scale.SetUsrMem(scale_md, &scale_tensor); #else MklReorderWithScaleFwdParams fwdParams(src_dims, src_md, dst_md); #endif fwdParams.dtypes.append(typeid(S).name()); fwdParams.dtypes.append(typeid(T).name()); fwdParams.post_op_params.name = "scale"; fwdParams.post_op_params.param.push_back(scale_factor); MklReorderWithScalePrimitive* reorder_prim = MklReorderWithScalePrimitiveFactory<T>::Get( src.GetUsrMem(), dst.GetUsrMem(), fwdParams); std::shared_ptr<stream> cpu_stream; cpu_stream.reset(CreateStream(&eigen_tp, reorder_prim->GetEngine())); reorder_prim->Execute(src.GetUsrMemDataHandle(), dst.GetUsrMemDataHandle(), #ifdef ENABLE_ONEDNN_V3 scale.GetUsrMemDataHandle(), #endif cpu_stream); } else if (mode_ == QUANTIZE_MODE_MIN_FIRST) { using namespace dnnl; std::shared_ptr<stream> cpu_stream; cpu_stream.reset(CreateStream(&eigen_tp, cpu_engine)); auto shift = static_cast<S>(-min_range); memory::dims shift_dims(src_tf_shape.dims(), 1); auto shift_md = memory::desc(shift_dims, MklDnnType<S>(), dst_layout_type); memory shift_mem(shift_md, cpu_engine, (void*)(&shift)); primitive_attr attr; std::vector<float> src_0_scale{255.0f / (max_range - min_range)}; std::vector<float> src_1_scale{255.0f / (max_range - min_range)}; #ifdef ENABLE_ONEDNN_V3 attr.set_scales_mask(DNNL_ARG_SRC_0, 0); attr.set_scales_mask(DNNL_ARG_SRC_1, 0); auto binary_pd = binary::primitive_desc(cpu_engine, algorithm::binary_add, src_md, shift_md, dst_md, attr); #else attr.set_scales(DNNL_ARG_SRC_0, 0, src_0_scale); attr.set_scales(DNNL_ARG_SRC_1, 0, src_1_scale); auto binary_d = binary::desc(algorithm::binary_add, src_md, shift_md, dst_md); auto binary_pd = binary::primitive_desc(binary_d, attr, cpu_engine); #endif auto binary_prim = binary(binary_pd); auto src_0_scale_mem = memory({{1}, MklDnnType<float>(), memory::format_tag::x}, cpu_engine, src_0_scale.data()); auto src_1_scale_mem = memory({{1}, MklDnnType<float>(), memory::format_tag::x}, cpu_engine, src_1_scale.data()); std::unordered_map<int, memory> net_args{ {DNNL_ARG_SRC_0, *src.GetUsrMem()}, {DNNL_ARG_SRC_1, shift_mem}, {DNNL_ARG_DST, *dst.GetUsrMem()}, #ifdef ENABLE_ONEDNN_V3 {DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC_0, src_0_scale_mem}, { DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC_1, src_1_scale_mem } #endif }; binary_prim.execute(*cpu_stream, net_args); } else { OP_REQUIRES(ctx, false, absl::UnimplementedError( "Supported modes are MIN_FIRST and SCALED only.")); } output_min_tensor->scalar<float>()() = min_range; output_max_tensor->scalar<float>()() = max_range; } private: float ensure_minimum_range_; int mode_; int round_mode_; int axis_; bool narrow_range_; }; #define REGISTER_QUANTIZE(src_type, dst_type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklQuantizeV2") \ .Device(DEVICE_CPU) \ .TypeConstraint<dst_type>("T") \ .Label(mkl_op_registry::kMklQuantizedOpLabel), \ MklQuantizeV2Op<CPUDevice, dst_type, src_type, true>) REGISTER_QUANTIZE(float, qint8); REGISTER_QUANTIZE(float, quint8); #undef SET_MKL_LAYOUT } #endif
#if defined(INTEL_MKL) #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { class MklQuantizeV2OpTest : public OpsTestBase {}; TEST_F(MklQuantizeV2OpTest, small_uint8) { TF_ASSERT_OK(NodeDefBuilder("quantize_op", "_MklQuantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("mode", "SCALED") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({8}), {0.0, 1.0, 1.25, 1.75, 127.0, 255.0, 500.0, 2.0}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({8})); Tensor expected_min(allocator(), DT_FLOAT, TensorShape({})); Tensor expected_max(allocator(), DT_FLOAT, TensorShape({})); test::FillValues<quint8>(&expected, {0, 1, 1, 2, 127, 255, 255, 2}); test::FillValues<float>(&expected_min, {0.0}); test::FillValues<float>(&expected_max, {255.0}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); test::ExpectTensorEqual<float>(expected_min, *GetOutput(1)); test::ExpectTensorEqual<float>(expected_max, *GetOutput(2)); } TEST_F(MklQuantizeV2OpTest, small_int8) { TF_ASSERT_OK(NodeDefBuilder("quantize_op", "_MklQuantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<qint8>::v()) .Attr("mode", "SCALED") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({8}), {0.0, -1.0, 1.25, -1.75, -24.5, -255.0, -80.315, 256.0}); AddInputFromArray<float>(TensorShape({}), {-50.0}); AddInputFromArray<float>(TensorShape({}), {127.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT8, TensorShape({8})); Tensor expected_min(allocator(), DT_FLOAT, TensorShape({})); Tensor expected_max(allocator(), DT_FLOAT, TensorShape({})); test::FillValues<qint8>(&expected, {0, -1, 1, -2, -25, -128, -81, 127}); test::ExpectTensorEqual<qint8>(expected, *GetOutput(0)); test::FillValues<float>(&expected_min, {-127.0}); test::FillValues<float>(&expected_max, {127.0}); test::ExpectTensorEqual<float>(expected_min, *GetOutput(1)); test::ExpectTensorEqual<float>(expected_max, *GetOutput(2)); } TEST_F(MklQuantizeV2OpTest, small_minfirst) { TF_ASSERT_OK(NodeDefBuilder("quantize_op", "_MklQuantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("mode", "MIN_FIRST") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({8}), {1.0, 1.25, 1.75, 2, 3.15, 127.0, 255.0, 500.0}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({8})); test::FillValues<quint8>(&expected, {1, 1, 2, 2, 3, 127, 255, 255}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); const float output_min = GetOutput(1)->scalar<float>()(); const float output_max = GetOutput(2)->scalar<float>()(); EXPECT_NEAR(0.0f, output_min, 1e-5f); EXPECT_NEAR(255.0f, output_max, 1e-5f); } TEST_F(MklQuantizeV2OpTest, small_minfirst_uint) { TF_ASSERT_OK(NodeDefBuilder("quantize_op", "_MklQuantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("mode", "MIN_FIRST") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({8}), {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); AddInputFromArray<float>(TensorShape({}), {0.1}); AddInputFromArray<float>(TensorShape({}), {0.8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({8})); test::FillValues<quint8>(&expected, {32, 64, 96, 128, 159, 191, 223, 255}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); const float output_min = GetOutput(1)->scalar<float>()(); const float output_max = GetOutput(2)->scalar<float>()(); EXPECT_NEAR(0.0f, output_min, 1e-5f); EXPECT_NEAR(0.8f, output_max, 1e-5f); } TEST_F(MklQuantizeV2OpTest, small_minfirst_int) { TF_ASSERT_OK(NodeDefBuilder("quantize_op", "_MklQuantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("mode", "MIN_FIRST") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({8}), {-0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8}); AddInputFromArray<float>(TensorShape({}), {-0.8}); AddInputFromArray<float>(TensorShape({}), {-0.1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({8})); test::FillValues<quint8>(&expected, {223, 191, 159, 128, 96, 64, 32, 0}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); const float output_min = GetOutput(1)->scalar<float>()(); const float output_max = GetOutput(2)->scalar<float>()(); EXPECT_NEAR(-0.8f, output_min, 1e-5f); EXPECT_NEAR(0.0f, output_max, 1e-5f); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_quantize_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_quantize_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d229d95d-83c7-4da2-964e-3b50e74751e5
cpp
tensorflow/tensorflow
canonicalize_all_gather_for_cse
third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse.cc
third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse_test.cc
#include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<bool> CanonicalizeAllGatherForCSE::RunOnComputation( HloComputation* comp) { bool changed = false; std::vector<HloInstruction*> ordered_hlos = comp->MakeInstructionPostOrder(); for (HloInstruction* hlo : ordered_hlos) { HloAllGatherInstruction* ag = DynCast<HloAllGatherInstruction>(hlo); if (!ag || ag->operand_count() > 1) { continue; } HloInstruction* real_data = ag->mutable_operand(0); while (real_data->ReshapeMerelyInsertsOrDeletes1SizedDimensions() .has_value()) { real_data = real_data->mutable_operand(0); } if (real_data == ag->operand(0)) { continue; } const int64_t ag_dim = ag->all_gather_dimension(); int64_t new_ag_dim; if (auto dims = ShapeUtil::ReshapeLeavesDimensionsUnmodified( ag->operand(0)->shape(), real_data->shape(), {ag_dim})) { new_ag_dim = dims->at(0); } else { int64_t major_elements = Product(absl::MakeConstSpan(ag->operand(0)->shape().dimensions()) .subspan(0, ag_dim)); new_ag_dim = 0; while (major_elements > 1) { major_elements /= real_data->shape().dimensions(new_ag_dim++); } } if (new_ag_dim == real_data->shape().rank()) { continue; } const int64_t all_gather_participants = ShapeUtil::ElementsIn(ag->shape()) / ShapeUtil::ElementsIn(ag->operand(0)->shape()); Shape new_ag_shape = real_data->shape(); new_ag_shape.set_dimensions( new_ag_dim, all_gather_participants * new_ag_shape.dimensions(new_ag_dim)); std::optional<int64_t> new_channel_id = ag->channel_id() ? std::make_optional(this->NextChannelId()) : std::nullopt; HloInstruction* new_ag = comp->AddInstruction(HloInstruction::CreateAllGather( new_ag_shape, {real_data}, new_ag_dim, ag->device_list(), ag->constrain_layout(), new_channel_id, ag->use_global_device_ids())); ag->SetupDerivedInstruction(new_ag); HloInstruction* new_formatting = comp->AddInstruction( HloInstruction::CreateReshape(ag->shape(), new_ag)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction(ag, new_formatting)); changed = true; } return changed; } absl::StatusOr<bool> CanonicalizeAllGatherForCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; next_channel_id_ = hlo_query::NextChannelId(*module); for (HloComputation* comp : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool comp_changed, RunOnComputation(comp)); changed |= comp_changed; } return changed; } }
#include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { using ::testing::_; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; class AllGatherCanonicalizeTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest())); HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } absl::Status RunPassOnModule(HloModule* module, int64_t distance_threshold = 100) { HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); return absl::OkStatus(); } }; TEST_F(AllGatherCanonicalizeTest, SimpleReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) ROOT ag = s32[2,8]{1,0} all-gather(resh), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::Reshape(op::AllGather(_)), op::Shape("s32[2,8]"))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes2) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapesNoDim0) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[1,16,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={1}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, NonDegenerateReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,4,2,1,1]{4,3,2,1,0} reshape(resh) ROOT ag = s32[2,4,2,1,1]{4,3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::AllGather(op::Reshape(op::Reshape(_))), op::Shape("s32[2,4,2,1,1]"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
541c6011-78dc-41c7-a579-b06864d5f305
cpp
tensorflow/tensorflow
bfloat16_type
tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type.cc
tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type_test.cc
#include "tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" namespace mlir::quant::stablehlo { bool IsLargeFloatType(Type type) { type = getElementTypeOrSelf(type); return isa<FloatType>(type) && type.getIntOrFloatBitWidth() > 16; } Type ToBfloat16Type(Type type) { if (auto shaped = mlir::dyn_cast<ShapedType>(type)) { const Type elem = shaped.getElementType(); if (IsLargeFloatType(elem)) { return shaped.clone(BFloat16Type::get(type.getContext())); } } else if (IsLargeFloatType(type)) { return BFloat16Type::get(type.getContext()); } return type; } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type.h" #include <memory> #include <gtest/gtest.h> #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" namespace mlir::quant::stablehlo { namespace { std::unique_ptr<MLIRContext> CreateContext() { auto context = std::make_unique<MLIRContext>(); DialectRegistry mlir_registry; RegisterCommonToolingDialects(mlir_registry); context->appendDialectRegistry(mlir_registry); return context; } TEST(IsLargeFloatTypeTest, scalars) { auto context = CreateContext(); EXPECT_FALSE(IsLargeFloatType(Float8E4M3FNType::get(context.get()))); EXPECT_FALSE(IsLargeFloatType(Float16Type::get(context.get()))); EXPECT_FALSE(IsLargeFloatType(BFloat16Type::get(context.get()))); EXPECT_TRUE(IsLargeFloatType(Float32Type::get(context.get()))); EXPECT_TRUE(IsLargeFloatType(Float64Type::get(context.get()))); EXPECT_TRUE(IsLargeFloatType(Float80Type::get(context.get()))); EXPECT_FALSE(IsLargeFloatType(IntegerType::get(context.get(), 8))); EXPECT_FALSE(IsLargeFloatType(IntegerType::get(context.get(), 16))); EXPECT_FALSE(IsLargeFloatType(IntegerType::get(context.get(), 32))); } TEST(IsLargeFloatTypeTest, tensors) { auto context = CreateContext(); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, Float8E4M3FNType::get(context.get())))); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, Float16Type::get(context.get())))); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, BFloat16Type::get(context.get())))); EXPECT_TRUE(IsLargeFloatType( RankedTensorType::get({2, 2}, Float32Type::get(context.get())))); EXPECT_TRUE(IsLargeFloatType( RankedTensorType::get({2, 2}, Float64Type::get(context.get())))); EXPECT_TRUE(IsLargeFloatType( RankedTensorType::get({2, 2}, Float80Type::get(context.get())))); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 8)))); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 16)))); EXPECT_FALSE(IsLargeFloatType( RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 32)))); } TEST(ToBfloat16TypeTest, scalars) { auto context = CreateContext(); EXPECT_EQ(ToBfloat16Type(Float8E4M3FNType::get(context.get())), Float8E4M3FNType::get(context.get())); EXPECT_EQ(ToBfloat16Type(Float16Type::get(context.get())), Float16Type::get(context.get())); EXPECT_EQ(ToBfloat16Type(BFloat16Type::get(context.get())), BFloat16Type::get(context.get())); EXPECT_EQ(ToBfloat16Type(Float32Type::get(context.get())), BFloat16Type::get(context.get())); EXPECT_EQ(ToBfloat16Type(Float64Type::get(context.get())), BFloat16Type::get(context.get())); EXPECT_EQ(ToBfloat16Type(Float80Type::get(context.get())), BFloat16Type::get(context.get())); EXPECT_EQ(ToBfloat16Type(IntegerType::get(context.get(), 8)), IntegerType::get(context.get(), 8)); EXPECT_EQ(ToBfloat16Type(IntegerType::get(context.get(), 16)), IntegerType::get(context.get(), 16)); EXPECT_EQ(ToBfloat16Type(IntegerType::get(context.get(), 32)), IntegerType::get(context.get(), 32)); } TEST(ToBfloat16TypeTest, tensors) { auto context = CreateContext(); EXPECT_EQ( ToBfloat16Type( RankedTensorType::get({2, 2}, Float8E4M3FNType::get(context.get()))), RankedTensorType::get({2, 2}, Float8E4M3FNType::get(context.get()))); EXPECT_EQ(ToBfloat16Type( RankedTensorType::get({2, 2}, Float16Type::get(context.get()))), RankedTensorType::get({2, 2}, Float16Type::get(context.get()))); EXPECT_EQ(ToBfloat16Type(RankedTensorType::get( {2, 2}, BFloat16Type::get(context.get()))), RankedTensorType::get({2, 2}, BFloat16Type::get(context.get()))); EXPECT_EQ(ToBfloat16Type( RankedTensorType::get({2, 2}, Float32Type::get(context.get()))), RankedTensorType::get({2, 2}, BFloat16Type::get(context.get()))); EXPECT_EQ(ToBfloat16Type( RankedTensorType::get({2, 2}, Float64Type::get(context.get()))), RankedTensorType::get({2, 2}, BFloat16Type::get(context.get()))); EXPECT_EQ(ToBfloat16Type( RankedTensorType::get({2, 2}, Float80Type::get(context.get()))), RankedTensorType::get({2, 2}, BFloat16Type::get(context.get()))); EXPECT_EQ(ToBfloat16Type(RankedTensorType::get( {2, 2}, IntegerType::get(context.get(), 8))), RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 8))); EXPECT_EQ(ToBfloat16Type(RankedTensorType::get( {2, 2}, IntegerType::get(context.get(), 16))), RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 16))); EXPECT_EQ(ToBfloat16Type(RankedTensorType::get( {2, 2}, IntegerType::get(context.get(), 32))), RankedTensorType::get({2, 2}, IntegerType::get(context.get(), 32))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/utils/bfloat16_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eebdf9b7-6617-46ed-9659-7b074107777a
cpp
google/quiche
hpack_whole_entry_buffer
quiche/http2/hpack/decoder/hpack_whole_entry_buffer.cc
quiche/http2/hpack/decoder/hpack_whole_entry_buffer_test.cc
#include "quiche/http2/hpack/decoder/hpack_whole_entry_buffer.h" #include "absl/strings/str_cat.h" #include "quiche/common/platform/api/quiche_flag_utils.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_text_utils.h" namespace http2 { HpackWholeEntryBuffer::HpackWholeEntryBuffer(HpackWholeEntryListener* listener, size_t max_string_size_bytes) : max_string_size_bytes_(max_string_size_bytes) { set_listener(listener); } HpackWholeEntryBuffer::~HpackWholeEntryBuffer() = default; void HpackWholeEntryBuffer::set_listener(HpackWholeEntryListener* listener) { QUICHE_CHECK(listener); listener_ = listener; } void HpackWholeEntryBuffer::set_max_string_size_bytes( size_t max_string_size_bytes) { max_string_size_bytes_ = max_string_size_bytes; } void HpackWholeEntryBuffer::BufferStringsIfUnbuffered() { name_.BufferStringIfUnbuffered(); value_.BufferStringIfUnbuffered(); } void HpackWholeEntryBuffer::OnIndexedHeader(size_t index) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnIndexedHeader: index=" << index; listener_->OnIndexedHeader(index); } void HpackWholeEntryBuffer::OnStartLiteralHeader(HpackEntryType entry_type, size_t maybe_name_index) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnStartLiteralHeader: entry_type=" << entry_type << ", maybe_name_index=" << maybe_name_index; entry_type_ = entry_type; maybe_name_index_ = maybe_name_index; } void HpackWholeEntryBuffer::OnNameStart(bool huffman_encoded, size_t len) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnNameStart: huffman_encoded=" << (huffman_encoded ? "true" : "false") << ", len=" << len; QUICHE_DCHECK_EQ(maybe_name_index_, 0u); if (!error_detected_) { if (len > max_string_size_bytes_) { QUICHE_DVLOG(1) << "Name length (" << len << ") is longer than permitted (" << max_string_size_bytes_ << ")"; ReportError(HpackDecodingError::kNameTooLong); QUICHE_CODE_COUNT_N(decompress_failure_3, 18, 23); return; } name_.OnStart(huffman_encoded, len); } } void HpackWholeEntryBuffer::OnNameData(const char* data, size_t len) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnNameData: len=" << len << " data:\n" << quiche::QuicheTextUtils::HexDump( absl::string_view(data, len)); QUICHE_DCHECK_EQ(maybe_name_index_, 0u); if (!error_detected_ && !name_.OnData(data, len)) { ReportError(HpackDecodingError::kNameHuffmanError); QUICHE_CODE_COUNT_N(decompress_failure_3, 19, 23); } } void HpackWholeEntryBuffer::OnNameEnd() { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnNameEnd"; QUICHE_DCHECK_EQ(maybe_name_index_, 0u); if (!error_detected_ && !name_.OnEnd()) { ReportError(HpackDecodingError::kNameHuffmanError); QUICHE_CODE_COUNT_N(decompress_failure_3, 20, 23); } } void HpackWholeEntryBuffer::OnValueStart(bool huffman_encoded, size_t len) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnValueStart: huffman_encoded=" << (huffman_encoded ? "true" : "false") << ", len=" << len; if (!error_detected_) { if (len > max_string_size_bytes_) { QUICHE_DVLOG(1) << "Value length (" << len << ") of [" << name_.GetStringIfComplete() << "] is longer than permitted (" << max_string_size_bytes_ << ")"; ReportError(HpackDecodingError::kValueTooLong); QUICHE_CODE_COUNT_N(decompress_failure_3, 21, 23); return; } value_.OnStart(huffman_encoded, len); } } void HpackWholeEntryBuffer::OnValueData(const char* data, size_t len) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnValueData: len=" << len << " data:\n" << quiche::QuicheTextUtils::HexDump( absl::string_view(data, len)); if (!error_detected_ && !value_.OnData(data, len)) { ReportError(HpackDecodingError::kValueHuffmanError); QUICHE_CODE_COUNT_N(decompress_failure_3, 22, 23); } } void HpackWholeEntryBuffer::OnValueEnd() { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnValueEnd"; if (error_detected_) { return; } if (!value_.OnEnd()) { ReportError(HpackDecodingError::kValueHuffmanError); QUICHE_CODE_COUNT_N(decompress_failure_3, 23, 23); return; } if (maybe_name_index_ == 0) { listener_->OnLiteralNameAndValue(entry_type_, &name_, &value_); name_.Reset(); } else { listener_->OnNameIndexAndLiteralValue(entry_type_, maybe_name_index_, &value_); } value_.Reset(); } void HpackWholeEntryBuffer::OnDynamicTableSizeUpdate(size_t size) { QUICHE_DVLOG(2) << "HpackWholeEntryBuffer::OnDynamicTableSizeUpdate: size=" << size; listener_->OnDynamicTableSizeUpdate(size); } void HpackWholeEntryBuffer::ReportError(HpackDecodingError error) { if (!error_detected_) { QUICHE_DVLOG(1) << "HpackWholeEntryBuffer::ReportError: " << HpackDecodingErrorToString(error); error_detected_ = true; listener_->OnHpackDecodeError(error); listener_ = HpackWholeEntryNoOpListener::NoOpListener(); } } }
#include "quiche/http2/hpack/decoder/hpack_whole_entry_buffer.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::_; using ::testing::AllOf; using ::testing::InSequence; using ::testing::Property; using ::testing::StrictMock; namespace http2 { namespace test { namespace { constexpr size_t kMaxStringSize = 20; class MockHpackWholeEntryListener : public HpackWholeEntryListener { public: ~MockHpackWholeEntryListener() override = default; MOCK_METHOD(void, OnIndexedHeader, (size_t index), (override)); MOCK_METHOD(void, OnNameIndexAndLiteralValue, (HpackEntryType entry_type, size_t name_index, HpackDecoderStringBuffer* value_buffer), (override)); MOCK_METHOD(void, OnLiteralNameAndValue, (HpackEntryType entry_type, HpackDecoderStringBuffer* name_buffer, HpackDecoderStringBuffer* value_buffer), (override)); MOCK_METHOD(void, OnDynamicTableSizeUpdate, (size_t size), (override)); MOCK_METHOD(void, OnHpackDecodeError, (HpackDecodingError error), (override)); }; class HpackWholeEntryBufferTest : public quiche::test::QuicheTest { protected: HpackWholeEntryBufferTest() : entry_buffer_(&listener_, kMaxStringSize) {} ~HpackWholeEntryBufferTest() override = default; StrictMock<MockHpackWholeEntryListener> listener_; HpackWholeEntryBuffer entry_buffer_; }; TEST_F(HpackWholeEntryBufferTest, OnIndexedHeader) { { InSequence seq; EXPECT_CALL(listener_, OnIndexedHeader(17)); entry_buffer_.OnIndexedHeader(17); } { InSequence seq; EXPECT_CALL(listener_, OnIndexedHeader(62)); entry_buffer_.OnIndexedHeader(62); } { InSequence seq; EXPECT_CALL(listener_, OnIndexedHeader(62)); entry_buffer_.OnIndexedHeader(62); } { InSequence seq; EXPECT_CALL(listener_, OnIndexedHeader(128)); entry_buffer_.OnIndexedHeader(128); } StrictMock<MockHpackWholeEntryListener> listener2; entry_buffer_.set_listener(&listener2); { InSequence seq; EXPECT_CALL(listener2, OnIndexedHeader(100)); entry_buffer_.OnIndexedHeader(100); } } TEST_F(HpackWholeEntryBufferTest, OnDynamicTableSizeUpdate) { { InSequence seq; EXPECT_CALL(listener_, OnDynamicTableSizeUpdate(4096)); entry_buffer_.OnDynamicTableSizeUpdate(4096); } { InSequence seq; EXPECT_CALL(listener_, OnDynamicTableSizeUpdate(0)); entry_buffer_.OnDynamicTableSizeUpdate(0); } { InSequence seq; EXPECT_CALL(listener_, OnDynamicTableSizeUpdate(1024)); entry_buffer_.OnDynamicTableSizeUpdate(1024); } { InSequence seq; EXPECT_CALL(listener_, OnDynamicTableSizeUpdate(1024)); entry_buffer_.OnDynamicTableSizeUpdate(1024); } StrictMock<MockHpackWholeEntryListener> listener2; entry_buffer_.set_listener(&listener2); { InSequence seq; EXPECT_CALL(listener2, OnDynamicTableSizeUpdate(0)); entry_buffer_.OnDynamicTableSizeUpdate(0); } } TEST_F(HpackWholeEntryBufferTest, OnNameIndexAndLiteralValue) { entry_buffer_.OnStartLiteralHeader(HpackEntryType::kNeverIndexedLiteralHeader, 123); entry_buffer_.OnValueStart(false, 10); entry_buffer_.OnValueData("some data.", 10); entry_buffer_.BufferStringsIfUnbuffered(); EXPECT_CALL( listener_, OnNameIndexAndLiteralValue( HpackEntryType::kNeverIndexedLiteralHeader, 123, AllOf(Property(&HpackDecoderStringBuffer::str, "some data."), Property(&HpackDecoderStringBuffer::BufferedLength, 10)))); entry_buffer_.OnValueEnd(); } TEST_F(HpackWholeEntryBufferTest, OnLiteralNameAndValue) { entry_buffer_.OnStartLiteralHeader(HpackEntryType::kIndexedLiteralHeader, 0); entry_buffer_.OnNameStart(false, 9); entry_buffer_.OnNameData("some-", 5); entry_buffer_.OnNameData("name", 4); entry_buffer_.OnNameEnd(); entry_buffer_.OnValueStart(false, 12); entry_buffer_.OnValueData("Header Value", 12); EXPECT_CALL( listener_, OnLiteralNameAndValue( HpackEntryType::kIndexedLiteralHeader, AllOf(Property(&HpackDecoderStringBuffer::str, "some-name"), Property(&HpackDecoderStringBuffer::BufferedLength, 9)), AllOf(Property(&HpackDecoderStringBuffer::str, "Header Value"), Property(&HpackDecoderStringBuffer::BufferedLength, 0)))); entry_buffer_.OnValueEnd(); } TEST_F(HpackWholeEntryBufferTest, NameTooLong) { entry_buffer_.OnStartLiteralHeader(HpackEntryType::kIndexedLiteralHeader, 0); EXPECT_CALL(listener_, OnHpackDecodeError(HpackDecodingError::kNameTooLong)); entry_buffer_.OnNameStart(false, kMaxStringSize + 1); } TEST_F(HpackWholeEntryBufferTest, ValueTooLong) { entry_buffer_.OnStartLiteralHeader(HpackEntryType::kIndexedLiteralHeader, 0); EXPECT_CALL(listener_, OnHpackDecodeError(HpackDecodingError::kValueTooLong)); entry_buffer_.OnNameStart(false, 4); entry_buffer_.OnNameData("path", 4); entry_buffer_.OnNameEnd(); entry_buffer_.OnValueStart(false, kMaxStringSize + 1); } TEST_F(HpackWholeEntryBufferTest, ValueTooLongWithoutName) { entry_buffer_.OnStartLiteralHeader(HpackEntryType::kIndexedLiteralHeader, 1); EXPECT_CALL(listener_, OnHpackDecodeError(HpackDecodingError::kValueTooLong)); entry_buffer_.OnValueStart(false, kMaxStringSize + 1); } TEST_F(HpackWholeEntryBufferTest, NameHuffmanError) { const char data[] = "\xff\xff\xff"; entry_buffer_.OnStartLiteralHeader(HpackEntryType::kUnindexedLiteralHeader, 0); entry_buffer_.OnNameStart(true, 4); entry_buffer_.OnNameData(data, 3); EXPECT_CALL(listener_, OnHpackDecodeError(HpackDecodingError::kNameHuffmanError)); entry_buffer_.OnNameData(data, 1); EXPECT_CALL(listener_, OnDynamicTableSizeUpdate(8096)).Times(0); entry_buffer_.OnDynamicTableSizeUpdate(8096); } TEST_F(HpackWholeEntryBufferTest, ValueHuffmanError) { const char data[] = "\x00\x00\x00"; entry_buffer_.OnStartLiteralHeader(HpackEntryType::kNeverIndexedLiteralHeader, 61); entry_buffer_.OnValueStart(true, 3); entry_buffer_.OnValueData(data, 3); EXPECT_CALL(listener_, OnHpackDecodeError(HpackDecodingError::kValueHuffmanError)); entry_buffer_.OnValueEnd(); EXPECT_CALL(listener_, OnIndexedHeader(17)).Times(0); entry_buffer_.OnIndexedHeader(17); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_whole_entry_buffer.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_whole_entry_buffer_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
95152f6f-c076-41eb-920e-fe5928becd50
cpp
google/quiche
hpack_decoder_state
quiche/http2/hpack/decoder/hpack_decoder_state.cc
quiche/http2/hpack/decoder/hpack_decoder_state_test.cc
#include "quiche/http2/hpack/decoder/hpack_decoder_state.h" #include <string> #include <utility> #include "quiche/http2/http2_constants.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { namespace { std::string ExtractString(HpackDecoderStringBuffer* string_buffer) { if (string_buffer->IsBuffered()) { return string_buffer->ReleaseString(); } else { auto result = std::string(string_buffer->str()); string_buffer->Reset(); return result; } } } HpackDecoderState::HpackDecoderState(HpackDecoderListener* listener) : listener_(listener), final_header_table_size_(Http2SettingsInfo::DefaultHeaderTableSize()), lowest_header_table_size_(final_header_table_size_), require_dynamic_table_size_update_(false), allow_dynamic_table_size_update_(true), saw_dynamic_table_size_update_(false), error_(HpackDecodingError::kOk) { QUICHE_CHECK(listener_); } HpackDecoderState::~HpackDecoderState() = default; void HpackDecoderState::ApplyHeaderTableSizeSetting( uint32_t header_table_size) { QUICHE_DVLOG(2) << "HpackDecoderState::ApplyHeaderTableSizeSetting(" << header_table_size << ")"; QUICHE_DCHECK_LE(lowest_header_table_size_, final_header_table_size_); if (header_table_size < lowest_header_table_size_) { lowest_header_table_size_ = header_table_size; } final_header_table_size_ = header_table_size; QUICHE_DVLOG(2) << "low water mark: " << lowest_header_table_size_; QUICHE_DVLOG(2) << "final limit: " << final_header_table_size_; } void HpackDecoderState::OnHeaderBlockStart() { QUICHE_DVLOG(2) << "HpackDecoderState::OnHeaderBlockStart"; QUICHE_DCHECK(error_ == HpackDecodingError::kOk) << HpackDecodingErrorToString(error_); QUICHE_DCHECK_LE(lowest_header_table_size_, final_header_table_size_); allow_dynamic_table_size_update_ = true; saw_dynamic_table_size_update_ = false; require_dynamic_table_size_update_ = (lowest_header_table_size_ < decoder_tables_.current_header_table_size() || final_header_table_size_ < decoder_tables_.header_table_size_limit()); QUICHE_DVLOG(2) << "HpackDecoderState::OnHeaderListStart " << "require_dynamic_table_size_update_=" << require_dynamic_table_size_update_; listener_->OnHeaderListStart(); } void HpackDecoderState::OnIndexedHeader(size_t index) { QUICHE_DVLOG(2) << "HpackDecoderState::OnIndexedHeader: " << index; if (error_ != HpackDecodingError::kOk) { return; } if (require_dynamic_table_size_update_) { ReportError(HpackDecodingError::kMissingDynamicTableSizeUpdate); return; } allow_dynamic_table_size_update_ = false; const HpackStringPair* entry = decoder_tables_.Lookup(index); if (entry != nullptr) { listener_->OnHeader(entry->name, entry->value); } else { ReportError(HpackDecodingError::kInvalidIndex); } } void HpackDecoderState::OnNameIndexAndLiteralValue( HpackEntryType entry_type, size_t name_index, HpackDecoderStringBuffer* value_buffer) { QUICHE_DVLOG(2) << "HpackDecoderState::OnNameIndexAndLiteralValue " << entry_type << ", " << name_index << ", " << value_buffer->str(); if (error_ != HpackDecodingError::kOk) { return; } if (require_dynamic_table_size_update_) { ReportError(HpackDecodingError::kMissingDynamicTableSizeUpdate); return; } allow_dynamic_table_size_update_ = false; const HpackStringPair* entry = decoder_tables_.Lookup(name_index); if (entry != nullptr) { std::string value(ExtractString(value_buffer)); listener_->OnHeader(entry->name, value); if (entry_type == HpackEntryType::kIndexedLiteralHeader) { decoder_tables_.Insert(entry->name, std::move(value)); } } else { ReportError(HpackDecodingError::kInvalidNameIndex); } } void HpackDecoderState::OnLiteralNameAndValue( HpackEntryType entry_type, HpackDecoderStringBuffer* name_buffer, HpackDecoderStringBuffer* value_buffer) { QUICHE_DVLOG(2) << "HpackDecoderState::OnLiteralNameAndValue " << entry_type << ", " << name_buffer->str() << ", " << value_buffer->str(); if (error_ != HpackDecodingError::kOk) { return; } if (require_dynamic_table_size_update_) { ReportError(HpackDecodingError::kMissingDynamicTableSizeUpdate); return; } allow_dynamic_table_size_update_ = false; std::string name(ExtractString(name_buffer)); std::string value(ExtractString(value_buffer)); listener_->OnHeader(name, value); if (entry_type == HpackEntryType::kIndexedLiteralHeader) { decoder_tables_.Insert(std::move(name), std::move(value)); } } void HpackDecoderState::OnDynamicTableSizeUpdate(size_t size_limit) { QUICHE_DVLOG(2) << "HpackDecoderState::OnDynamicTableSizeUpdate " << size_limit << ", required=" << (require_dynamic_table_size_update_ ? "true" : "false") << ", allowed=" << (allow_dynamic_table_size_update_ ? "true" : "false"); if (error_ != HpackDecodingError::kOk) { return; } QUICHE_DCHECK_LE(lowest_header_table_size_, final_header_table_size_); if (!allow_dynamic_table_size_update_) { ReportError(HpackDecodingError::kDynamicTableSizeUpdateNotAllowed); return; } if (require_dynamic_table_size_update_) { if (size_limit > lowest_header_table_size_) { ReportError(HpackDecodingError:: kInitialDynamicTableSizeUpdateIsAboveLowWaterMark); return; } require_dynamic_table_size_update_ = false; } else if (size_limit > final_header_table_size_) { ReportError( HpackDecodingError::kDynamicTableSizeUpdateIsAboveAcknowledgedSetting); return; } decoder_tables_.DynamicTableSizeUpdate(size_limit); if (saw_dynamic_table_size_update_) { allow_dynamic_table_size_update_ = false; } else { saw_dynamic_table_size_update_ = true; } lowest_header_table_size_ = final_header_table_size_; } void HpackDecoderState::OnHpackDecodeError(HpackDecodingError error) { QUICHE_DVLOG(2) << "HpackDecoderState::OnHpackDecodeError " << HpackDecodingErrorToString(error); if (error_ == HpackDecodingError::kOk) { ReportError(error); } } void HpackDecoderState::OnHeaderBlockEnd() { QUICHE_DVLOG(2) << "HpackDecoderState::OnHeaderBlockEnd"; if (error_ != HpackDecodingError::kOk) { return; } if (require_dynamic_table_size_update_) { ReportError(HpackDecodingError::kMissingDynamicTableSizeUpdate); } else { listener_->OnHeaderListEnd(); } } void HpackDecoderState::ReportError(HpackDecodingError error) { QUICHE_DVLOG(2) << "HpackDecoderState::ReportError is new=" << (error_ == HpackDecodingError::kOk ? "true" : "false") << ", error: " << HpackDecodingErrorToString(error); if (error_ == HpackDecodingError::kOk) { listener_->OnHeaderErrorDetected(HpackDecodingErrorToString(error)); error_ = error; } } }
#include "quiche/http2/hpack/decoder/hpack_decoder_state.h" #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; using ::testing::AssertionSuccess; using ::testing::Eq; using ::testing::Mock; using ::testing::StrictMock; namespace http2 { namespace test { class HpackDecoderStatePeer { public: static HpackDecoderTables* GetDecoderTables(HpackDecoderState* state) { return &state->decoder_tables_; } }; namespace { class MockHpackDecoderListener : public HpackDecoderListener { public: MOCK_METHOD(void, OnHeaderListStart, (), (override)); MOCK_METHOD(void, OnHeader, (absl::string_view name, absl::string_view value), (override)); MOCK_METHOD(void, OnHeaderListEnd, (), (override)); MOCK_METHOD(void, OnHeaderErrorDetected, (absl::string_view error_message), (override)); }; enum StringBacking { UNBUFFERED, BUFFERED }; class HpackDecoderStateTest : public quiche::test::QuicheTest { protected: HpackDecoderStateTest() : decoder_state_(&listener_) {} HpackDecoderTables* GetDecoderTables() { return HpackDecoderStatePeer::GetDecoderTables(&decoder_state_); } const HpackStringPair* Lookup(size_t index) { return GetDecoderTables()->Lookup(index); } size_t current_header_table_size() { return GetDecoderTables()->current_header_table_size(); } size_t header_table_size_limit() { return GetDecoderTables()->header_table_size_limit(); } void set_header_table_size_limit(size_t size) { GetDecoderTables()->DynamicTableSizeUpdate(size); } void SetStringBuffer(absl::string_view s, StringBacking backing, HpackDecoderStringBuffer* string_buffer) { string_buffer->OnStart(false, s.size()); EXPECT_TRUE(string_buffer->OnData(s.data(), s.size())); EXPECT_TRUE(string_buffer->OnEnd()); if (backing == BUFFERED) { string_buffer->BufferStringIfUnbuffered(); } } void SetName(absl::string_view s, StringBacking backing) { SetStringBuffer(s, backing, &name_buffer_); } void SetValue(absl::string_view s, StringBacking backing) { SetStringBuffer(s, backing, &value_buffer_); } void SendStartAndVerifyCallback() { EXPECT_CALL(listener_, OnHeaderListStart()); decoder_state_.OnHeaderBlockStart(); Mock::VerifyAndClearExpectations(&listener_); } void SendSizeUpdate(size_t size) { decoder_state_.OnDynamicTableSizeUpdate(size); Mock::VerifyAndClearExpectations(&listener_); } void SendIndexAndVerifyCallback(size_t index, HpackEntryType , absl::string_view expected_name, absl::string_view expected_value) { EXPECT_CALL(listener_, OnHeader(Eq(expected_name), Eq(expected_value))); decoder_state_.OnIndexedHeader(index); Mock::VerifyAndClearExpectations(&listener_); } void SendValueAndVerifyCallback(size_t name_index, HpackEntryType entry_type, absl::string_view name, absl::string_view value, StringBacking value_backing) { SetValue(value, value_backing); EXPECT_CALL(listener_, OnHeader(Eq(name), Eq(value))); decoder_state_.OnNameIndexAndLiteralValue(entry_type, name_index, &value_buffer_); Mock::VerifyAndClearExpectations(&listener_); } void SendNameAndValueAndVerifyCallback(HpackEntryType entry_type, absl::string_view name, StringBacking name_backing, absl::string_view value, StringBacking value_backing) { SetName(name, name_backing); SetValue(value, value_backing); EXPECT_CALL(listener_, OnHeader(Eq(name), Eq(value))); decoder_state_.OnLiteralNameAndValue(entry_type, &name_buffer_, &value_buffer_); Mock::VerifyAndClearExpectations(&listener_); } void SendEndAndVerifyCallback() { EXPECT_CALL(listener_, OnHeaderListEnd()); decoder_state_.OnHeaderBlockEnd(); Mock::VerifyAndClearExpectations(&listener_); } AssertionResult VerifyEntry(size_t dynamic_index, absl::string_view name, absl::string_view value) { const HpackStringPair* entry = Lookup(dynamic_index + kFirstDynamicTableIndex - 1); HTTP2_VERIFY_NE(entry, nullptr); HTTP2_VERIFY_EQ(entry->name, name); HTTP2_VERIFY_EQ(entry->value, value); return AssertionSuccess(); } AssertionResult VerifyNoEntry(size_t dynamic_index) { const HpackStringPair* entry = Lookup(dynamic_index + kFirstDynamicTableIndex - 1); HTTP2_VERIFY_EQ(entry, nullptr); return AssertionSuccess(); } AssertionResult VerifyDynamicTableContents( const std::vector<std::pair<absl::string_view, absl::string_view>>& entries) { size_t index = 1; for (const auto& entry : entries) { HTTP2_VERIFY_SUCCESS(VerifyEntry(index, entry.first, entry.second)); ++index; } HTTP2_VERIFY_SUCCESS(VerifyNoEntry(index)); return AssertionSuccess(); } StrictMock<MockHpackDecoderListener> listener_; HpackDecoderState decoder_state_; HpackDecoderStringBuffer name_buffer_, value_buffer_; }; TEST_F(HpackDecoderStateTest, C3_RequestExamples) { SendStartAndVerifyCallback(); SendIndexAndVerifyCallback(2, HpackEntryType::kIndexedHeader, ":method", "GET"); SendIndexAndVerifyCallback(6, HpackEntryType::kIndexedHeader, ":scheme", "http"); SendIndexAndVerifyCallback(4, HpackEntryType::kIndexedHeader, ":path", "/"); SendValueAndVerifyCallback(1, HpackEntryType::kIndexedLiteralHeader, ":authority", "www.example.com", UNBUFFERED); SendEndAndVerifyCallback(); ASSERT_TRUE(VerifyDynamicTableContents({{":authority", "www.example.com"}})); ASSERT_EQ(57u, current_header_table_size()); SendStartAndVerifyCallback(); SendIndexAndVerifyCallback(2, HpackEntryType::kIndexedHeader, ":method", "GET"); SendIndexAndVerifyCallback(6, HpackEntryType::kIndexedHeader, ":scheme", "http"); SendIndexAndVerifyCallback(4, HpackEntryType::kIndexedHeader, ":path", "/"); SendIndexAndVerifyCallback(62, HpackEntryType::kIndexedHeader, ":authority", "www.example.com"); SendValueAndVerifyCallback(24, HpackEntryType::kIndexedLiteralHeader, "cache-control", "no-cache", UNBUFFERED); SendEndAndVerifyCallback(); ASSERT_TRUE(VerifyDynamicTableContents( {{"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(110u, current_header_table_size()); SendStartAndVerifyCallback(); SendIndexAndVerifyCallback(2, HpackEntryType::kIndexedHeader, ":method", "GET"); SendIndexAndVerifyCallback(7, HpackEntryType::kIndexedHeader, ":scheme", "https"); SendIndexAndVerifyCallback(5, HpackEntryType::kIndexedHeader, ":path", "/index.html"); SendIndexAndVerifyCallback(63, HpackEntryType::kIndexedHeader, ":authority", "www.example.com"); SendNameAndValueAndVerifyCallback(HpackEntryType::kIndexedLiteralHeader, "custom-key", UNBUFFERED, "custom-value", UNBUFFERED); SendEndAndVerifyCallback(); ASSERT_TRUE(VerifyDynamicTableContents({{"custom-key", "custom-value"}, {"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(164u, current_header_table_size()); } TEST_F(HpackDecoderStateTest, C5_ResponseExamples) { set_header_table_size_limit(256); SendStartAndVerifyCallback(); SendValueAndVerifyCallback(8, HpackEntryType::kIndexedLiteralHeader, ":status", "302", BUFFERED); SendValueAndVerifyCallback(24, HpackEntryType::kIndexedLiteralHeader, "cache-control", "private", UNBUFFERED); SendValueAndVerifyCallback(33, HpackEntryType::kIndexedLiteralHeader, "date", "Mon, 21 Oct 2013 20:13:21 GMT", UNBUFFERED); SendValueAndVerifyCallback(46, HpackEntryType::kIndexedLiteralHeader, "location", "https: SendEndAndVerifyCallback(); ASSERT_TRUE( VerifyDynamicTableContents({{"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}, {":status", "302"}})); ASSERT_EQ(222u, current_header_table_size()); SendStartAndVerifyCallback(); SendValueAndVerifyCallback(8, HpackEntryType::kIndexedLiteralHeader, ":status", "307", BUFFERED); SendIndexAndVerifyCallback(65, HpackEntryType::kIndexedHeader, "cache-control", "private"); SendIndexAndVerifyCallback(64, HpackEntryType::kIndexedHeader, "date", "Mon, 21 Oct 2013 20:13:21 GMT"); SendIndexAndVerifyCallback(63, HpackEntryType::kIndexedHeader, "location", "https: SendEndAndVerifyCallback(); ASSERT_TRUE( VerifyDynamicTableContents({{":status", "307"}, {"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}})); ASSERT_EQ(222u, current_header_table_size()); SendStartAndVerifyCallback(); SendIndexAndVerifyCallback(8, HpackEntryType::kIndexedHeader, ":status", "200"); SendIndexAndVerifyCallback(65, HpackEntryType::kIndexedHeader, "cache-control", "private"); SendValueAndVerifyCallback(33, HpackEntryType::kIndexedLiteralHeader, "date", "Mon, 21 Oct 2013 20:13:22 GMT", BUFFERED); SendIndexAndVerifyCallback(64, HpackEntryType::kIndexedHeader, "location", "https: SendValueAndVerifyCallback(26, HpackEntryType::kIndexedLiteralHeader, "content-encoding", "gzip", UNBUFFERED); SendValueAndVerifyCallback( 55, HpackEntryType::kIndexedLiteralHeader, "set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1", BUFFERED); SendEndAndVerifyCallback(); ASSERT_TRUE(VerifyDynamicTableContents( {{"set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1"}, {"content-encoding", "gzip"}, {"date", "Mon, 21 Oct 2013 20:13:22 GMT"}})); ASSERT_EQ(215u, current_header_table_size()); } TEST_F(HpackDecoderStateTest, OptionalTableSizeChanges) { SendStartAndVerifyCallback(); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); SendSizeUpdate(1024); EXPECT_EQ(1024u, header_table_size_limit()); SendSizeUpdate(0); EXPECT_EQ(0u, header_table_size_limit()); EXPECT_CALL(listener_, OnHeaderErrorDetected( Eq("Dynamic table size update not allowed"))); SendSizeUpdate(0); } TEST_F(HpackDecoderStateTest, RequiredTableSizeChangeBeforeHeader) { EXPECT_EQ(4096u, decoder_state_.GetCurrentHeaderTableSizeSetting()); decoder_state_.ApplyHeaderTableSizeSetting(1024); decoder_state_.ApplyHeaderTableSizeSetting(2048); EXPECT_EQ(2048u, decoder_state_.GetCurrentHeaderTableSizeSetting()); SendStartAndVerifyCallback(); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); SendSizeUpdate(1024); EXPECT_EQ(1024u, header_table_size_limit()); SendSizeUpdate(1500); EXPECT_EQ(1500u, header_table_size_limit()); SendEndAndVerifyCallback(); decoder_state_.ApplyHeaderTableSizeSetting(1024); EXPECT_EQ(1024u, decoder_state_.GetCurrentHeaderTableSizeSetting()); SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected(Eq("Missing dynamic table size update"))); decoder_state_.OnIndexedHeader(1); decoder_state_.OnIndexedHeader(1); decoder_state_.OnDynamicTableSizeUpdate(1); SetValue("value", UNBUFFERED); decoder_state_.OnNameIndexAndLiteralValue( HpackEntryType::kIndexedLiteralHeader, 4, &value_buffer_); SetName("name", UNBUFFERED); decoder_state_.OnLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, &name_buffer_, &value_buffer_); decoder_state_.OnHeaderBlockEnd(); decoder_state_.OnHpackDecodeError(HpackDecodingError::kIndexVarintError); } TEST_F(HpackDecoderStateTest, InvalidRequiredSizeUpdate) { decoder_state_.ApplyHeaderTableSizeSetting(1024); SendStartAndVerifyCallback(); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); EXPECT_CALL( listener_, OnHeaderErrorDetected( Eq("Initial dynamic table size update is above low water mark"))); SendSizeUpdate(2048); } TEST_F(HpackDecoderStateTest, RequiredTableSizeChangeBeforeEnd) { decoder_state_.ApplyHeaderTableSizeSetting(1024); SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected(Eq("Missing dynamic table size update"))); decoder_state_.OnHeaderBlockEnd(); } TEST_F(HpackDecoderStateTest, InvalidOptionalSizeUpdate) { SendStartAndVerifyCallback(); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); EXPECT_CALL(listener_, OnHeaderErrorDetected(Eq( "Dynamic table size update is above acknowledged setting"))); SendSizeUpdate(Http2SettingsInfo::DefaultHeaderTableSize() + 1); } TEST_F(HpackDecoderStateTest, InvalidStaticIndex) { SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected( Eq("Invalid index in indexed header field representation"))); decoder_state_.OnIndexedHeader(0); } TEST_F(HpackDecoderStateTest, InvalidDynamicIndex) { SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected( Eq("Invalid index in indexed header field representation"))); decoder_state_.OnIndexedHeader(kFirstDynamicTableIndex); } TEST_F(HpackDecoderStateTest, InvalidNameIndex) { SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected(Eq("Invalid index in literal header field " "with indexed name representation"))); SetValue("value", UNBUFFERED); decoder_state_.OnNameIndexAndLiteralValue( HpackEntryType::kIndexedLiteralHeader, kFirstDynamicTableIndex, &value_buffer_); } TEST_F(HpackDecoderStateTest, ErrorsSuppressCallbacks) { SendStartAndVerifyCallback(); EXPECT_CALL(listener_, OnHeaderErrorDetected(Eq("Name Huffman encoding error"))); decoder_state_.OnHpackDecodeError(HpackDecodingError::kNameHuffmanError); decoder_state_.OnIndexedHeader(1); decoder_state_.OnDynamicTableSizeUpdate(1); SetValue("value", UNBUFFERED); decoder_state_.OnNameIndexAndLiteralValue( HpackEntryType::kIndexedLiteralHeader, 4, &value_buffer_); SetName("name", UNBUFFERED); decoder_state_.OnLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, &name_buffer_, &value_buffer_); decoder_state_.OnHeaderBlockEnd(); decoder_state_.OnHpackDecodeError(HpackDecodingError::kIndexVarintError); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_state.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_state_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
f69aa326-3804-4aaf-a389-a40eb316c0c6
cpp
tensorflow/tensorflow
decode_jpeg
tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg.cc
tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg_test.cc
#include <algorithm> #include <cstddef> #include <memory> #include <vector> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg_register.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/libjpeg_decoder.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace acceleration { namespace decode_jpeg_kernel { void* Init(TfLiteContext* context, const char* buffer, size_t length) { if (!buffer) { return nullptr; } #define RET_ENSURE(context, condition) \ do { \ if (!(condition)) { \ TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \ __LINE__, #condition); \ return nullptr; \ } \ } while (0) const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); const flexbuffers::Map m = flexbuffers::GetRoot(buffer_t, length).AsMap(); RET_ENSURE(context, m["height"].IsInt()); RET_ENSURE(context, m["width"].IsInt()); RET_ENSURE(context, m["num_images"].IsInt()); RET_ENSURE(context, m["channels"].IsInt()); OpData* op_data = new OpData(); op_data->height = m["height"].AsInt32(); op_data->width = m["width"].AsInt32(); op_data->num_images = m["num_images"].AsInt32(); op_data->channels = m["channels"].AsInt32(); return op_data; #undef RET_ENSURE } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, op_data); TF_LITE_ENSURE(context, op_data->height > 0); TF_LITE_ENSURE(context, op_data->width > 0); TF_LITE_ENSURE(context, op_data->num_images > 0); TF_LITE_ENSURE(context, op_data->channels == 3 || op_data->channels == 4); TF_LITE_ENSURE_EQ(context, node->inputs->size, 1); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); const TfLiteTensor* input_buffer; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_buffer)); TfLiteTensor* output_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor)); TF_LITE_ENSURE_TYPES_EQ(context, input_buffer->type, kTfLiteString); TF_LITE_ENSURE_TYPES_EQ(context, output_tensor->type, kTfLiteUInt8); TF_LITE_ENSURE_EQ(context, NumDimensions(input_buffer), 1); TF_LITE_ENSURE_EQ(context, input_buffer->dims->data[0], op_data->num_images); TfLiteIntArray* new_dims = TfLiteIntArrayCreate(4); new_dims->data[0] = op_data->num_images; new_dims->data[1] = op_data->height; new_dims->data[2] = op_data->width; new_dims->data[3] = op_data->channels; output_tensor->type = kTfLiteUInt8; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output_tensor, new_dims)); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input_buffer; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_buffer)); TF_LITE_ENSURE(context, input_buffer); TF_LITE_ENSURE(context, input_buffer->data.raw); const int channels = op_data->channels; const int decode_channels = 3; TfLiteTensor* output_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor)); unsigned char* output_arr = GetTensorData<unsigned char>(output_tensor); Status decoder_status; std::unique_ptr<LibjpegDecoder> decoder = LibjpegDecoder::Create(decoder_status); if (decoder_status.code != kTfLiteOk) { TF_LITE_KERNEL_LOG(context, decoder_status.error_message.c_str()); return kTfLiteError; } const int kDecodedImageSize = op_data->width * op_data->height * decode_channels; const int kOutputImageSize = op_data->width * op_data->height * channels; int output_array_offset = 0; for (int img = 0; img < op_data->num_images; ++img) { tflite::StringRef inputref = tflite::GetString(input_buffer, img); unsigned char* decoded = output_arr + output_array_offset; Status decode_status = decoder->DecodeImage( inputref, {op_data->height, op_data->width, decode_channels}, decoded, kDecodedImageSize); if (channels == 4) { size_t height = op_data->height; size_t src_offset = kDecodedImageSize; size_t dst_offset = kOutputImageSize; while (height--) { size_t width = op_data->width; while (width--) { src_offset -= decode_channels; dst_offset -= channels; std::copy_n(decoded + src_offset, decode_channels, decoded + dst_offset); decoded[dst_offset + 3] = 255; } } } output_array_offset += kOutputImageSize; if (decode_status.code != kTfLiteOk) { TF_LITE_KERNEL_LOG(context, decode_status.error_message.c_str()); return kTfLiteError; } } return kTfLiteOk; } TfLiteRegistration* Register_DECODE_JPEG() { static TfLiteRegistration r = { decode_jpeg_kernel::Init, decode_jpeg_kernel::Free, decode_jpeg_kernel::Prepare, decode_jpeg_kernel::Eval}; return &r; } } } }
#include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg_register.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_chessboard_jpeg.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_test_card_jpeg.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/libjpeg_decoder_test_helper.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace acceleration { namespace decode_jpeg_kernel { namespace { using testing::ElementsAre; const int kHeight = 300, kWidth = 250, kChannels = 3; const int kDecodedSize = kHeight * kWidth * kChannels; class DecodeJPEGOpModel : public SingleOpModel { public: DecodeJPEGOpModel(const TensorData& input, const TensorData& output, int num_images, int height, int width, int channels) { input_id_ = AddInput(input); output_id_ = AddOutput(output); flexbuffers::Builder fbb; fbb.Map([&] { fbb.Int("num_images", num_images); fbb.Int("height", height); fbb.Int("width", width); fbb.Int("channels", channels); }); fbb.Finish(); SetCustomOp("DECODE_JPEG", fbb.GetBuffer(), tflite::acceleration::decode_jpeg_kernel::Register_DECODE_JPEG); BuildInterpreter({GetShape(input_id_)}); } int input_buffer_id() { return input_id_; } int output_id() { return output_id_; } std::vector<uint8_t> GetOutput() { return ExtractVector<uint8_t>(output_id_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_id_); } protected: int input_id_; int shapes_id_; int output_id_; }; TEST(DecodeJpegTest, TestMultipleJPEGImages) { std::string chessboard_image( reinterpret_cast<const char*>(g_tflite_acceleration_chessboard_jpeg), g_tflite_acceleration_chessboard_jpeg_len); std::string test_card_image( reinterpret_cast<const char*>(g_tflite_acceleration_test_card_jpeg), g_tflite_acceleration_test_card_jpeg_len); const int kNumImages = 2; DecodeJPEGOpModel model({TensorType_STRING, {kNumImages}}, {TensorType_UINT8, {}}, kNumImages, kHeight, kWidth, kChannels); model.PopulateStringTensor(model.input_buffer_id(), {chessboard_image, test_card_image}); ASSERT_EQ(model.Invoke(), kTfLiteOk); ASSERT_THAT(model.GetOutputShape(), ElementsAre(kNumImages, kHeight, kWidth, kChannels)); std::vector<uint8_t> output_flattened = model.GetOutput(); std::vector<uint8_t> img1(output_flattened.begin(), output_flattened.begin() + kDecodedSize); EXPECT_THAT(img1, HasChessboardPatternWithTolerance(12)); std::vector<uint8_t> img2(output_flattened.begin() + kDecodedSize, output_flattened.end()); EXPECT_THAT(img2, HasRainbowPatternWithTolerance(5)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
188d98db-14ee-4116-be46-fa26ccb5f35a
cpp
tensorflow/tensorflow
summary_image_op
tensorflow/core/kernels/summary_image_op.cc
tensorflow/core/kernels/summary_image_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/png/png_io.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { class SummaryImageOp : public OpKernel { public: typedef Eigen::Tensor<uint8, 2, Eigen::RowMajor> Uint8Image; explicit SummaryImageOp(OpKernelConstruction* context) : OpKernel(context) { int64_t max_images_tmp; OP_REQUIRES_OK(context, context->GetAttr("max_images", &max_images_tmp)); OP_REQUIRES(context, max_images_tmp < (1LL << 31), errors::InvalidArgument("max_images must be < 2^31")); max_images_ = static_cast<int32>(max_images_tmp); const TensorProto* proto; OP_REQUIRES_OK(context, context->GetAttr("bad_color", &proto)); OP_REQUIRES_OK(context, context->device()->MakeTensorFromProto( *proto, AllocatorAttributes(), &bad_color_)); OP_REQUIRES(context, bad_color_.dtype() == DT_UINT8, errors::InvalidArgument("bad_color must be uint8, got ", DataTypeString(bad_color_.dtype()))); OP_REQUIRES( context, TensorShapeUtils::IsVector(bad_color_.shape()), errors::InvalidArgument("bad_color must be a vector, got shape ", bad_color_.shape().DebugString())); } void Compute(OpKernelContext* c) override { const Tensor& tags = c->input(0); const Tensor& tensor = c->input(1); OP_REQUIRES(c, TensorShapeUtils::IsScalar(tags.shape()), errors::InvalidArgument("Tags must be a scalar")); OP_REQUIRES(c, tensor.dims() == 4 && (tensor.dim_size(3) == 1 || tensor.dim_size(3) == 3 || tensor.dim_size(3) == 4), errors::InvalidArgument( "Tensor must be 4-D with last dim 1, 3, or 4, not ", tensor.shape().DebugString())); const string& base_tag = tags.scalar<tstring>()(); OP_REQUIRES(c, tensor.dim_size(0) < (1LL << 31) && tensor.dim_size(1) < (1LL << 31) && tensor.dim_size(2) < (1LL << 31) && (tensor.dim_size(1) * tensor.dim_size(2)) < (1LL << 29), errors::InvalidArgument("Tensor too large for summary ", tensor.shape().DebugString())); const int batch_size = static_cast<int>(tensor.dim_size(0)); const int h = static_cast<int>(tensor.dim_size(1)); const int w = static_cast<int>(tensor.dim_size(2)); const int hw = h * w; const int depth = static_cast<int>(tensor.dim_size(3)); OP_REQUIRES(c, hw > 0 && depth > 0, errors::InvalidArgument( "input tensor must have non-zero dims. Found: [", batch_size, ", ", h, ", ", w, ", ", depth, "].")); Summary s; if (tensor.dtype() == DT_UINT8) { auto ith_image = [&tensor, batch_size, hw, depth](int i) { auto values = tensor.shaped<uint8, 3>({batch_size, hw, depth}); return typename TTypes<uint8>::ConstMatrix( &values(i, 0, 0), Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth)); }; OP_REQUIRES_OK( c, AddImages(base_tag, batch_size, w, h, depth, ith_image, &s)); } else if (tensor.dtype() == DT_HALF) { NormalizeAndAddImages<Eigen::half>(c, tensor, h, w, hw, depth, batch_size, base_tag, &s); } else if (tensor.dtype() == DT_FLOAT) { NormalizeAndAddImages<float>(c, tensor, h, w, hw, depth, batch_size, base_tag, &s); } else { NormalizeAndAddImages<double>(c, tensor, h, w, hw, depth, batch_size, base_tag, &s); } Tensor* summary_tensor = nullptr; OP_REQUIRES_OK(c, c->allocate_output(0, TensorShape({}), &summary_tensor)); CHECK(SerializeToTString(s, &summary_tensor->scalar<tstring>()())); } template <class T> void NormalizeAndAddImages(OpKernelContext* c, const Tensor& tensor, int h, int w, int hw, int depth, int batch_size, const string& base_tag, Summary* s) { OP_REQUIRES(c, bad_color_.dim_size(0) >= depth, errors::InvalidArgument( "expected depth <= bad_color.size, got depth = ", depth, ", bad_color.size = ", bad_color_.dim_size(0))); auto bad_color_full = bad_color_.vec<uint8>(); typename TTypes<uint8>::ConstVec bad_color(bad_color_full.data(), depth); Uint8Image image(hw, depth); auto ith_image = [&tensor, &image, bad_color, batch_size, hw, depth](int i) { auto tensor_eigen = tensor.template shaped<T, 3>({batch_size, hw, depth}); typename TTypes<T>::ConstMatrix values( &tensor_eigen(i, 0, 0), Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth)); NormalizeFloatImage<T>(hw, depth, values, bad_color, &image); return image; }; OP_REQUIRES_OK(c, AddImages(base_tag, batch_size, w, h, depth, ith_image, s)); } Status AddImages(const string& tag, int batch_size, int w, int h, int depth, const std::function<Uint8Image(int)>& ith_image, Summary* s) { const int N = std::min<int>(max_images_, batch_size); for (int i = 0; i < N; ++i) { Summary::Value* v = s->add_value(); if (max_images_ > 1) { v->set_tag(strings::StrCat(tag, "/image/", i)); } else { v->set_tag(strings::StrCat(tag, "/image")); } auto image = ith_image(i); Summary::Image* si = v->mutable_image(); si->set_height(h); si->set_width(w); si->set_colorspace(depth); const int channel_bits = 8; const int compression = -1; if (!png::WriteImageToBuffer( image.data(), w, h, w * depth, depth, channel_bits, compression, si->mutable_encoded_image_string(), nullptr)) { return errors::Internal("PNG encoding failed"); } } return absl::OkStatus(); } template <class T> static void NormalizeFloatImage(int hw, int depth, typename TTypes<T>::ConstMatrix values, typename TTypes<uint8>::ConstVec bad_color, Uint8Image* image) { if (!image->size()) return; float image_min = std::numeric_limits<float>::infinity(); float image_max = -image_min; for (int i = 0; i < hw; i++) { bool finite = true; for (int j = 0; j < depth; j++) { if (!Eigen::numext::isfinite(values(i, j))) { finite = false; break; } } if (finite) { for (int j = 0; j < depth; j++) { float value(values(i, j)); image_min = std::min(image_min, value); image_max = std::max(image_max, value); } } } const float kZeroThreshold = 1e-6; T scale, offset; if (image_min < 0) { float max_val = std::max(std::abs(image_min), std::abs(image_max)); scale = T(max_val < kZeroThreshold ? 0.0f : 127.0f / max_val); offset = T(128.0f); } else { scale = T(image_max < kZeroThreshold ? 0.0f : 255.0f / image_max); offset = T(0.0f); } for (int i = 0; i < hw; i++) { bool finite = true; for (int j = 0; j < depth; j++) { if (!Eigen::numext::isfinite(values(i, j))) { finite = false; break; } } if (finite) { image->chip<0>(i) = (values.template chip<0>(i) * scale + offset) .template cast<uint8>(); } else { image->chip<0>(i) = bad_color; } } } private: int32 max_images_; Tensor bad_color_; }; REGISTER_KERNEL_BUILDER(Name("ImageSummary").Device(DEVICE_CPU), SummaryImageOp); }
#include <functional> #include <memory> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/histogram/histogram.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void EXPECT_SummaryMatches(const Summary& actual, const string& expected_str) { Summary expected; CHECK(protobuf::TextFormat::ParseFromString(expected_str, &expected)); EXPECT_EQ(expected.DebugString(), actual.DebugString()); } class SummaryImageOpTest : public OpsTestBase { protected: void MakeOp(int max_images) { TF_ASSERT_OK(NodeDefBuilder("myop", "ImageSummary") .Input(FakeInput()) .Input(FakeInput()) .Attr("max_images", max_images) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } void CheckAndRemoveEncodedImages(Summary* summary) { for (int i = 0; i < summary->value_size(); ++i) { Summary::Value* value = summary->mutable_value(i); ASSERT_TRUE(value->has_image()) << "No image for value: " << value->tag(); ASSERT_FALSE(value->image().encoded_image_string().empty()) << "No encoded_image_string for value: " << value->tag(); if (VLOG_IS_ON(2)) { TF_CHECK_OK(WriteStringToFile( Env::Default(), strings::StrCat("/tmp/", value->tag(), ".png"), value->image().encoded_image_string())); } value->mutable_image()->clear_encoded_image_string(); } } }; TEST_F(SummaryImageOpTest, ThreeGrayImagesOutOfFive4dInput) { MakeOp(3 ); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>(TensorShape({5, 2, 1, 1}), {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedImages(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/image/0' image { width: 1 height: 2 colorspace: 1} } value { tag: 'tag/image/1' image { width: 1 height: 2 colorspace: 1} } value { tag: 'tag/image/2' image { width: 1 height: 2 colorspace: 1} } )"); } TEST_F(SummaryImageOpTest, OneGrayImage4dInput) { MakeOp(1 ); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>(TensorShape({5 , 2, 1, 1 }), {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedImages(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/image' image { width: 1 height: 2 colorspace: 1} })"); } TEST_F(SummaryImageOpTest, OneColorImage4dInput) { MakeOp(1 ); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>( TensorShape({1 , 5 , 2 , 3 }), { 1.0f, 0.1f, 0.2f, 1.0f, 0.3f, 0.4f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, }); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedImages(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/image' image { width: 2 height: 5 colorspace: 3} })"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_image_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_image_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1d31f4c3-4a06-4301-8ccf-985a4a4f853b
cpp
google/quiche
tcp_cubic_sender_bytes
quiche/quic/core/congestion_control/tcp_cubic_sender_bytes.cc
quiche/quic/core/congestion_control/tcp_cubic_sender_bytes_test.cc
#include "quiche/quic/core/congestion_control/tcp_cubic_sender_bytes.h" #include <algorithm> #include <cstdint> #include <string> #include "quiche/quic/core/congestion_control/prr_sender.h" #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { const QuicByteCount kMaxBurstBytes = 3 * kDefaultTCPMSS; const float kRenoBeta = 0.7f; const QuicByteCount kDefaultMinimumCongestionWindow = 2 * kDefaultTCPMSS; } TcpCubicSenderBytes::TcpCubicSenderBytes( const QuicClock* clock, const RttStats* rtt_stats, bool reno, QuicPacketCount initial_tcp_congestion_window, QuicPacketCount max_congestion_window, QuicConnectionStats* stats) : rtt_stats_(rtt_stats), stats_(stats), reno_(reno), num_connections_(kDefaultNumConnections), min4_mode_(false), last_cutback_exited_slowstart_(false), slow_start_large_reduction_(false), no_prr_(false), cubic_(clock), num_acked_packets_(0), congestion_window_(initial_tcp_congestion_window * kDefaultTCPMSS), min_congestion_window_(kDefaultMinimumCongestionWindow), max_congestion_window_(max_congestion_window * kDefaultTCPMSS), slowstart_threshold_(max_congestion_window * kDefaultTCPMSS), initial_tcp_congestion_window_(initial_tcp_congestion_window * kDefaultTCPMSS), initial_max_tcp_congestion_window_(max_congestion_window * kDefaultTCPMSS), min_slow_start_exit_window_(min_congestion_window_) {} TcpCubicSenderBytes::~TcpCubicSenderBytes() {} void TcpCubicSenderBytes::SetFromConfig(const QuicConfig& config, Perspective perspective) { if (perspective == Perspective::IS_SERVER && config.HasReceivedConnectionOptions()) { if (ContainsQuicTag(config.ReceivedConnectionOptions(), kMIN4)) { min4_mode_ = true; SetMinCongestionWindowInPackets(1); } if (ContainsQuicTag(config.ReceivedConnectionOptions(), kSSLR)) { slow_start_large_reduction_ = true; } if (ContainsQuicTag(config.ReceivedConnectionOptions(), kNPRR)) { no_prr_ = true; } } } void TcpCubicSenderBytes::AdjustNetworkParameters(const NetworkParams& params) { if (params.bandwidth.IsZero() || params.rtt.IsZero()) { return; } SetCongestionWindowFromBandwidthAndRtt(params.bandwidth, params.rtt); } float TcpCubicSenderBytes::RenoBeta() const { return (num_connections_ - 1 + kRenoBeta) / num_connections_; } void TcpCubicSenderBytes::OnCongestionEvent( bool rtt_updated, QuicByteCount prior_in_flight, QuicTime event_time, const AckedPacketVector& acked_packets, const LostPacketVector& lost_packets, QuicPacketCount , QuicPacketCount ) { if (rtt_updated && InSlowStart() && hybrid_slow_start_.ShouldExitSlowStart( rtt_stats_->latest_rtt(), rtt_stats_->min_rtt(), GetCongestionWindow() / kDefaultTCPMSS)) { ExitSlowstart(); } for (const LostPacket& lost_packet : lost_packets) { OnPacketLost(lost_packet.packet_number, lost_packet.bytes_lost, prior_in_flight); } for (const AckedPacket& acked_packet : acked_packets) { OnPacketAcked(acked_packet.packet_number, acked_packet.bytes_acked, prior_in_flight, event_time); } } void TcpCubicSenderBytes::OnPacketAcked(QuicPacketNumber acked_packet_number, QuicByteCount acked_bytes, QuicByteCount prior_in_flight, QuicTime event_time) { largest_acked_packet_number_.UpdateMax(acked_packet_number); if (InRecovery()) { if (!no_prr_) { prr_.OnPacketAcked(acked_bytes); } return; } MaybeIncreaseCwnd(acked_packet_number, acked_bytes, prior_in_flight, event_time); if (InSlowStart()) { hybrid_slow_start_.OnPacketAcked(acked_packet_number); } } void TcpCubicSenderBytes::OnPacketSent( QuicTime , QuicByteCount , QuicPacketNumber packet_number, QuicByteCount bytes, HasRetransmittableData is_retransmittable) { if (InSlowStart()) { ++(stats_->slowstart_packets_sent); } if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) { return; } if (InRecovery()) { prr_.OnPacketSent(bytes); } QUICHE_DCHECK(!largest_sent_packet_number_.IsInitialized() || largest_sent_packet_number_ < packet_number); largest_sent_packet_number_ = packet_number; hybrid_slow_start_.OnPacketSent(packet_number); } bool TcpCubicSenderBytes::CanSend(QuicByteCount bytes_in_flight) { if (!no_prr_ && InRecovery()) { return prr_.CanSend(GetCongestionWindow(), bytes_in_flight, GetSlowStartThreshold()); } if (GetCongestionWindow() > bytes_in_flight) { return true; } if (min4_mode_ && bytes_in_flight < 4 * kDefaultTCPMSS) { return true; } return false; } QuicBandwidth TcpCubicSenderBytes::PacingRate( QuicByteCount ) const { QuicTime::Delta srtt = rtt_stats_->SmoothedOrInitialRtt(); const QuicBandwidth bandwidth = QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); return bandwidth * (InSlowStart() ? 2 : (no_prr_ && InRecovery() ? 1 : 1.25)); } QuicBandwidth TcpCubicSenderBytes::BandwidthEstimate() const { QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); if (srtt.IsZero()) { return QuicBandwidth::Zero(); } return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); } bool TcpCubicSenderBytes::InSlowStart() const { return GetCongestionWindow() < GetSlowStartThreshold(); } bool TcpCubicSenderBytes::IsCwndLimited(QuicByteCount bytes_in_flight) const { const QuicByteCount congestion_window = GetCongestionWindow(); if (bytes_in_flight >= congestion_window) { return true; } const QuicByteCount available_bytes = congestion_window - bytes_in_flight; const bool slow_start_limited = InSlowStart() && bytes_in_flight > congestion_window / 2; return slow_start_limited || available_bytes <= kMaxBurstBytes; } bool TcpCubicSenderBytes::InRecovery() const { return largest_acked_packet_number_.IsInitialized() && largest_sent_at_last_cutback_.IsInitialized() && largest_acked_packet_number_ <= largest_sent_at_last_cutback_; } void TcpCubicSenderBytes::OnRetransmissionTimeout(bool packets_retransmitted) { largest_sent_at_last_cutback_.Clear(); if (!packets_retransmitted) { return; } hybrid_slow_start_.Restart(); HandleRetransmissionTimeout(); } std::string TcpCubicSenderBytes::GetDebugState() const { return ""; } void TcpCubicSenderBytes::OnApplicationLimited( QuicByteCount ) {} void TcpCubicSenderBytes::SetCongestionWindowFromBandwidthAndRtt( QuicBandwidth bandwidth, QuicTime::Delta rtt) { QuicByteCount new_congestion_window = bandwidth.ToBytesPerPeriod(rtt); congestion_window_ = std::max(min_congestion_window_, std::min(new_congestion_window, kMaxResumptionCongestionWindow * kDefaultTCPMSS)); } void TcpCubicSenderBytes::SetInitialCongestionWindowInPackets( QuicPacketCount congestion_window) { congestion_window_ = congestion_window * kDefaultTCPMSS; } void TcpCubicSenderBytes::SetMinCongestionWindowInPackets( QuicPacketCount congestion_window) { min_congestion_window_ = congestion_window * kDefaultTCPMSS; } void TcpCubicSenderBytes::SetNumEmulatedConnections(int num_connections) { num_connections_ = std::max(1, num_connections); cubic_.SetNumConnections(num_connections_); } void TcpCubicSenderBytes::ExitSlowstart() { slowstart_threshold_ = congestion_window_; } void TcpCubicSenderBytes::OnPacketLost(QuicPacketNumber packet_number, QuicByteCount lost_bytes, QuicByteCount prior_in_flight) { if (largest_sent_at_last_cutback_.IsInitialized() && packet_number <= largest_sent_at_last_cutback_) { if (last_cutback_exited_slowstart_) { ++stats_->slowstart_packets_lost; stats_->slowstart_bytes_lost += lost_bytes; if (slow_start_large_reduction_) { congestion_window_ = std::max(congestion_window_ - lost_bytes, min_slow_start_exit_window_); slowstart_threshold_ = congestion_window_; } } QUIC_DVLOG(1) << "Ignoring loss for largest_missing:" << packet_number << " because it was sent prior to the last CWND cutback."; return; } ++stats_->tcp_loss_events; last_cutback_exited_slowstart_ = InSlowStart(); if (InSlowStart()) { ++stats_->slowstart_packets_lost; } if (!no_prr_) { prr_.OnPacketLost(prior_in_flight); } if (slow_start_large_reduction_ && InSlowStart()) { QUICHE_DCHECK_LT(kDefaultTCPMSS, congestion_window_); if (congestion_window_ >= 2 * initial_tcp_congestion_window_) { min_slow_start_exit_window_ = congestion_window_ / 2; } congestion_window_ = congestion_window_ - kDefaultTCPMSS; } else if (reno_) { congestion_window_ = congestion_window_ * RenoBeta(); } else { congestion_window_ = cubic_.CongestionWindowAfterPacketLoss(congestion_window_); } if (congestion_window_ < min_congestion_window_) { congestion_window_ = min_congestion_window_; } slowstart_threshold_ = congestion_window_; largest_sent_at_last_cutback_ = largest_sent_packet_number_; num_acked_packets_ = 0; QUIC_DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_ << " slowstart threshold: " << slowstart_threshold_; } QuicByteCount TcpCubicSenderBytes::GetCongestionWindow() const { return congestion_window_; } QuicByteCount TcpCubicSenderBytes::GetSlowStartThreshold() const { return slowstart_threshold_; } void TcpCubicSenderBytes::MaybeIncreaseCwnd( QuicPacketNumber , QuicByteCount acked_bytes, QuicByteCount prior_in_flight, QuicTime event_time) { QUIC_BUG_IF(quic_bug_10439_1, InRecovery()) << "Never increase the CWND during recovery."; if (!IsCwndLimited(prior_in_flight)) { cubic_.OnApplicationLimited(); return; } if (congestion_window_ >= max_congestion_window_) { return; } if (InSlowStart()) { congestion_window_ += kDefaultTCPMSS; QUIC_DVLOG(1) << "Slow start; congestion window: " << congestion_window_ << " slowstart threshold: " << slowstart_threshold_; return; } if (reno_) { ++num_acked_packets_; if (num_acked_packets_ * num_connections_ >= congestion_window_ / kDefaultTCPMSS) { congestion_window_ += kDefaultTCPMSS; num_acked_packets_ = 0; } QUIC_DVLOG(1) << "Reno; congestion window: " << congestion_window_ << " slowstart threshold: " << slowstart_threshold_ << " congestion window count: " << num_acked_packets_; } else { congestion_window_ = std::min( max_congestion_window_, cubic_.CongestionWindowAfterAck(acked_bytes, congestion_window_, rtt_stats_->min_rtt(), event_time)); QUIC_DVLOG(1) << "Cubic; congestion window: " << congestion_window_ << " slowstart threshold: " << slowstart_threshold_; } } void TcpCubicSenderBytes::HandleRetransmissionTimeout() { cubic_.ResetCubicState(); slowstart_threshold_ = congestion_window_ / 2; congestion_window_ = min_congestion_window_; } void TcpCubicSenderBytes::OnConnectionMigration() { hybrid_slow_start_.Restart(); prr_ = PrrSender(); largest_sent_packet_number_.Clear(); largest_acked_packet_number_.Clear(); largest_sent_at_last_cutback_.Clear(); last_cutback_exited_slowstart_ = false; cubic_.ResetCubicState(); num_acked_packets_ = 0; congestion_window_ = initial_tcp_congestion_window_; max_congestion_window_ = initial_max_tcp_congestion_window_; slowstart_threshold_ = initial_max_tcp_congestion_window_; } CongestionControlType TcpCubicSenderBytes::GetCongestionControlType() const { return reno_ ? kRenoBytes : kCubicBytes; } }
#include "quiche/quic/core/congestion_control/tcp_cubic_sender_bytes.h" #include <algorithm> #include <cstdint> #include <memory> #include <utility> #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/congestion_control/send_algorithm_interface.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/quic_config_peer.h" namespace quic { namespace test { const uint32_t kInitialCongestionWindowPackets = 10; const uint32_t kMaxCongestionWindowPackets = 200; const uint32_t kDefaultWindowTCP = kInitialCongestionWindowPackets * kDefaultTCPMSS; const float kRenoBeta = 0.7f; class TcpCubicSenderBytesPeer : public TcpCubicSenderBytes { public: TcpCubicSenderBytesPeer(const QuicClock* clock, bool reno) : TcpCubicSenderBytes(clock, &rtt_stats_, reno, kInitialCongestionWindowPackets, kMaxCongestionWindowPackets, &stats_) {} const HybridSlowStart& hybrid_slow_start() const { return hybrid_slow_start_; } float GetRenoBeta() const { return RenoBeta(); } RttStats rtt_stats_; QuicConnectionStats stats_; }; class TcpCubicSenderBytesTest : public QuicTest { protected: TcpCubicSenderBytesTest() : one_ms_(QuicTime::Delta::FromMilliseconds(1)), sender_(new TcpCubicSenderBytesPeer(&clock_, true)), packet_number_(1), acked_packet_number_(0), bytes_in_flight_(0) {} int SendAvailableSendWindow() { return SendAvailableSendWindow(kDefaultTCPMSS); } int SendAvailableSendWindow(QuicPacketLength ) { int packets_sent = 0; bool can_send = sender_->CanSend(bytes_in_flight_); while (can_send) { sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, QuicPacketNumber(packet_number_++), kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA); ++packets_sent; bytes_in_flight_ += kDefaultTCPMSS; can_send = sender_->CanSend(bytes_in_flight_); } return packets_sent; } void AckNPackets(int n) { sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60), QuicTime::Delta::Zero(), clock_.Now()); AckedPacketVector acked_packets; LostPacketVector lost_packets; for (int i = 0; i < n; ++i) { ++acked_packet_number_; acked_packets.push_back( AckedPacket(QuicPacketNumber(acked_packet_number_), kDefaultTCPMSS, QuicTime::Zero())); } sender_->OnCongestionEvent(true, bytes_in_flight_, clock_.Now(), acked_packets, lost_packets, 0, 0); bytes_in_flight_ -= n * kDefaultTCPMSS; clock_.AdvanceTime(one_ms_); } void LoseNPackets(int n) { LoseNPackets(n, kDefaultTCPMSS); } void LoseNPackets(int n, QuicPacketLength packet_length) { AckedPacketVector acked_packets; LostPacketVector lost_packets; for (int i = 0; i < n; ++i) { ++acked_packet_number_; lost_packets.push_back( LostPacket(QuicPacketNumber(acked_packet_number_), packet_length)); } sender_->OnCongestionEvent(false, bytes_in_flight_, clock_.Now(), acked_packets, lost_packets, 0, 0); bytes_in_flight_ -= n * packet_length; } void LosePacket(uint64_t packet_number) { AckedPacketVector acked_packets; LostPacketVector lost_packets; lost_packets.push_back( LostPacket(QuicPacketNumber(packet_number), kDefaultTCPMSS)); sender_->OnCongestionEvent(false, bytes_in_flight_, clock_.Now(), acked_packets, lost_packets, 0, 0); bytes_in_flight_ -= kDefaultTCPMSS; } const QuicTime::Delta one_ms_; MockClock clock_; std::unique_ptr<TcpCubicSenderBytesPeer> sender_; uint64_t packet_number_; uint64_t acked_packet_number_; QuicByteCount bytes_in_flight_; }; TEST_F(TcpCubicSenderBytesTest, SimpleSender) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); EXPECT_TRUE(sender_->CanSend(0)); EXPECT_TRUE(sender_->CanSend(0)); EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); SendAvailableSendWindow(); EXPECT_FALSE(sender_->CanSend(sender_->GetCongestionWindow())); } TEST_F(TcpCubicSenderBytesTest, ApplicationLimitedSlowStart) { const int kNumberOfAcks = 5; EXPECT_TRUE(sender_->CanSend(0)); EXPECT_TRUE(sender_->CanSend(0)); SendAvailableSendWindow(); for (int i = 0; i < kNumberOfAcks; ++i) { AckNPackets(2); } QuicByteCount bytes_to_send = sender_->GetCongestionWindow(); EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2, bytes_to_send); } TEST_F(TcpCubicSenderBytesTest, ExponentialSlowStart) { const int kNumberOfAcks = 20; EXPECT_TRUE(sender_->CanSend(0)); EXPECT_EQ(QuicBandwidth::Zero(), sender_->BandwidthEstimate()); EXPECT_TRUE(sender_->CanSend(0)); for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } const QuicByteCount cwnd = sender_->GetCongestionWindow(); EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks, cwnd); EXPECT_EQ(QuicBandwidth::FromBytesAndTimeDelta( cwnd, sender_->rtt_stats_.smoothed_rtt()), sender_->BandwidthEstimate()); } TEST_F(TcpCubicSenderBytesTest, SlowStartPacketLoss) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS; expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; QUIC_DLOG(INFO) << "number_packets: " << number_of_packets_in_window; AckNPackets(packets_in_recovery_window); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); AckNPackets(number_of_packets_in_window - 2); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); AckNPackets(1); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_TRUE(sender_->hybrid_slow_start().started()); sender_->OnRetransmissionTimeout(true); EXPECT_FALSE(sender_->hybrid_slow_start().started()); } TEST_F(TcpCubicSenderBytesTest, SlowStartPacketLossWithLargeReduction) { QuicConfig config; QuicTagVector options; options.push_back(kSSLR); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = (kDefaultWindowTCP / (2 * kDefaultTCPMSS)) - 1; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window -= kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(5); expected_send_window -= 5 * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(10); expected_send_window -= 10 * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS; size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; QUIC_DLOG(INFO) << "number_packets: " << number_of_packets_in_window; AckNPackets(packets_in_recovery_window); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); AckNPackets(number_of_packets_in_window - 1); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); AckNPackets(1); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_TRUE(sender_->hybrid_slow_start().started()); sender_->OnRetransmissionTimeout(true); EXPECT_FALSE(sender_->hybrid_slow_start().started()); } TEST_F(TcpCubicSenderBytesTest, SlowStartHalfPacketLossWithLargeReduction) { QuicConfig config; QuicTagVector options; options.push_back(kSSLR); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(kDefaultTCPMSS / 2); AckNPackets(2); } SendAvailableSendWindow(kDefaultTCPMSS / 2); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window -= kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(10, kDefaultTCPMSS / 2); expected_send_window -= 5 * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, SlowStartPacketLossWithMaxHalfReduction) { QuicConfig config; QuicTagVector options; options.push_back(kSSLR); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = kInitialCongestionWindowPackets / 2; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window -= kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(kNumberOfAcks * 2); expected_send_window -= (kNumberOfAcks * 2 - 1) * kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(5); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, NoPRRWhenLessThanOnePacketInFlight) { SendAvailableSendWindow(); LoseNPackets(kInitialCongestionWindowPackets - 1); AckNPackets(1); EXPECT_EQ(2, SendAvailableSendWindow()); EXPECT_TRUE(sender_->CanSend(0)); } TEST_F(TcpCubicSenderBytesTest, SlowStartPacketLossPRR) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); size_t send_window_before_loss = expected_send_window; expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); size_t remaining_packets_in_recovery = send_window_before_loss / kDefaultTCPMSS - 2; for (size_t i = 0; i < remaining_packets_in_recovery; ++i) { AckNPackets(1); SendAvailableSendWindow(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; for (size_t i = 0; i < number_of_packets_in_window; ++i) { AckNPackets(1); EXPECT_EQ(1, SendAvailableSendWindow()); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } AckNPackets(1); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, SlowStartBurstPacketLossPRR) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); size_t send_window_after_loss = kRenoBeta * expected_send_window; size_t num_packets_to_lose = (expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1; LoseNPackets(num_packets_to_lose); EXPECT_TRUE(sender_->CanSend(bytes_in_flight_)); AckNPackets(1); expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_EQ(2, SendAvailableSendWindow()); LoseNPackets(1); AckNPackets(1); EXPECT_EQ(2, SendAvailableSendWindow()); LoseNPackets(1); AckNPackets(1); EXPECT_EQ(2, SendAvailableSendWindow()); for (int i = 0; i < kNumberOfAcks; ++i) { AckNPackets(1); EXPECT_EQ(1, SendAvailableSendWindow()); } } TEST_F(TcpCubicSenderBytesTest, RTOCongestionWindow) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); sender_->OnRetransmissionTimeout(true); EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_EQ(5u * kDefaultTCPMSS, sender_->GetSlowStartThreshold()); } TEST_F(TcpCubicSenderBytesTest, RTOCongestionWindowNoRetransmission) { EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); sender_->OnRetransmissionTimeout(false); EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, TcpCubicResetEpochOnQuiescence) { const int kMaxCongestionWindow = 50; const QuicByteCount kMaxCongestionWindowBytes = kMaxCongestionWindow * kDefaultTCPMSS; int num_sent = SendAvailableSendWindow(); QuicByteCount saved_cwnd = sender_->GetCongestionWindow(); LoseNPackets(1); EXPECT_GT(saved_cwnd, sender_->GetCongestionWindow()); for (int i = 1; i < num_sent; ++i) { AckNPackets(1); } EXPECT_EQ(0u, bytes_in_flight_); saved_cwnd = sender_->GetCongestionWindow(); num_sent = SendAvailableSendWindow(); for (int i = 0; i < num_sent; ++i) { AckNPackets(1); } EXPECT_LT(saved_cwnd, sender_->GetCongestionWindow()); EXPECT_GT(kMaxCongestionWindowBytes, sender_->GetCongestionWindow()); EXPECT_EQ(0u, bytes_in_flight_); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100000)); saved_cwnd = sender_->GetCongestionWindow(); SendAvailableSendWindow(); AckNPackets(1); EXPECT_NEAR(saved_cwnd, sender_->GetCongestionWindow(), kDefaultTCPMSS); EXPECT_GT(kMaxCongestionWindowBytes, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, MultipleLossesInOneWindow) { SendAvailableSendWindow(); const QuicByteCount initial_window = sender_->GetCongestionWindow(); LosePacket(acked_packet_number_ + 1); const QuicByteCount post_loss_window = sender_->GetCongestionWindow(); EXPECT_GT(initial_window, post_loss_window); LosePacket(acked_packet_number_ + 3); EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); LosePacket(packet_number_ - 1); EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); LosePacket(packet_number_); EXPECT_GT(post_loss_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, ConfigureMaxInitialWindow) { QuicConfig config; QuicTagVector options; options.push_back(kIW10); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); EXPECT_EQ(10u * kDefaultTCPMSS, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, SetInitialCongestionWindow) { EXPECT_NE(3u * kDefaultTCPMSS, sender_->GetCongestionWindow()); sender_->SetInitialCongestionWindowInPackets(3); EXPECT_EQ(3u * kDefaultTCPMSS, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) { sender_->SetNumEmulatedConnections(2); const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window = expected_send_window * sender_->GetRenoBeta(); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); for (int i = 0; i < 10; ++i) { SendAvailableSendWindow(); EXPECT_TRUE(sender_->InRecovery()); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } EXPECT_FALSE(sender_->InRecovery()); size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS; SendAvailableSendWindow(); AckNPackets(packets_in_send_window / 2 - 2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; packets_in_send_window += 1; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); SendAvailableSendWindow(); AckNPackets(packets_in_send_window / 2 - 1); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 5; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); for (int i = 0; i < 10; ++i) { SendAvailableSendWindow(); EXPECT_TRUE(sender_->InRecovery()); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } EXPECT_FALSE(sender_->InRecovery()); for (uint64_t i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) { SendAvailableSendWindow(); AckNPackets(2); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } SendAvailableSendWindow(); AckNPackets(2); expected_send_window += kDefaultTCPMSS; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, BandwidthResumption) { const QuicPacketCount kNumberOfPackets = 123; const QuicBandwidth kBandwidthEstimate = QuicBandwidth::FromBytesPerSecond(kNumberOfPackets * kDefaultTCPMSS); const QuicTime::Delta kRttEstimate = QuicTime::Delta::FromSeconds(1); SendAlgorithmInterface::NetworkParams network_param; network_param.bandwidth = kBandwidthEstimate; network_param.rtt = kRttEstimate; sender_->AdjustNetworkParameters(network_param); EXPECT_EQ(kNumberOfPackets * kDefaultTCPMSS, sender_->GetCongestionWindow()); SendAlgorithmInterface::NetworkParams network_param_no_bandwidth; network_param_no_bandwidth.bandwidth = QuicBandwidth::Zero(); network_param_no_bandwidth.rtt = kRttEstimate; sender_->AdjustNetworkParameters(network_param_no_bandwidth); EXPECT_EQ(kNumberOfPackets * kDefaultTCPMSS, sender_->GetCongestionWindow()); const QuicBandwidth kUnreasonableBandwidth = QuicBandwidth::FromBytesPerSecond((kMaxResumptionCongestionWindow + 1) * kDefaultTCPMSS); SendAlgorithmInterface::NetworkParams network_param_large_bandwidth; network_param_large_bandwidth.bandwidth = kUnreasonableBandwidth; network_param_large_bandwidth.rtt = QuicTime::Delta::FromSeconds(1); sender_->AdjustNetworkParameters(network_param_large_bandwidth); EXPECT_EQ(kMaxResumptionCongestionWindow * kDefaultTCPMSS, sender_->GetCongestionWindow()); } TEST_F(TcpCubicSenderBytesTest, PaceBelowCWND) { QuicConfig config; QuicTagVector options; options.push_back(kMIN4); QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); sender_->OnRetransmissionTimeout(true); EXPECT_EQ(kDefaultTCPMSS, sender_->GetCongestionWindow()); EXPECT_TRUE(sender_->CanSend(kDefaultTCPMSS)); EXPECT_TRUE(sender_->CanSend(2 * kDefaultTCPMSS)); EXPECT_TRUE(sender_->CanSend(3 * kDefaultTCPMSS)); EXPECT_FALSE(sender_->CanSend(4 * kDefaultTCPMSS)); } TEST_F(TcpCubicSenderBytesTest, NoPRR) { QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); sender_->rtt_stats_.UpdateRtt(rtt, QuicTime::Delta::Zero(), QuicTime::Zero()); sender_->SetNumEmulatedConnections(1); QuicTagVector options; options.push_back(kNPRR); QuicConfig config; QuicConfigPeer::SetReceivedConnectionOptions(&config, options); sender_->SetFromConfig(config, Perspective::IS_SERVER); SendAvailableSendWindow(); LoseNPackets(9); AckNPackets(1); EXPECT_EQ(kRenoBeta * kDefaultWindowTCP, sender_->GetCongestionWindow()); const QuicPacketCount window_in_packets = kRenoBeta * kDefaultWindowTCP / kDefaultTCPMSS; const QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(kRenoBeta * kDefaultWindowTCP, sender_->rtt_stats_.smoothed_rtt()); EXPECT_EQ(expected_pacing_rate, sender_->PacingRate(0)); EXPECT_EQ(window_in_packets, static_cast<uint64_t>(SendAvailableSendWindow())); EXPECT_EQ(expected_pacing_rate, sender_->PacingRate(kRenoBeta * kDefaultWindowTCP)); } TEST_F(TcpCubicSenderBytesTest, ResetAfterConnectionMigration) { sender_->SetNumEmulatedConnections(1); const int kNumberOfAcks = 10; for (int i = 0; i < kNumberOfAcks; ++i) { SendAvailableSendWindow(); AckNPackets(2); } SendAvailableSendWindow(); QuicByteCount expected_send_window = kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); LoseNPackets(1); expected_send_window *= kRenoBeta; EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); EXPECT_EQ(expected_send_window, sender_->GetSlowStartThreshold()); sender_->OnConnectionMigration(); EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); EXPECT_EQ(kMaxCongestionWindowPackets * kDefaultTCPMSS, sender_->GetSlowStartThreshold()); EXPECT_FALSE(sender_->hybrid_slow_start().started()); } TEST_F(TcpCubicSenderBytesTest, DefaultMaxCwnd) { RttStats rtt_stats; QuicConnectionStats stats; std::unique_ptr<SendAlgorithmInterface> sender(SendAlgorithmInterface::Create( &clock_, &rtt_stats, nullptr, kCubicBytes, QuicRandom::GetInstance(), &stats, kInitialCongestionWindow, nullptr)); AckedPacketVector acked_packets; LostPacketVector missing_packets; QuicPacketCount max_congestion_window = GetQuicFlag(quic_max_congestion_window); for (uint64_t i = 1; i < max_congestion_window; ++i) { acked_packets.clear(); acked_packets.push_back( AckedPacket(QuicPacketNumber(i), 1350, QuicTime::Zero())); sender->OnCongestionEvent(true, sender->GetCongestionWindow(), clock_.Now(), acked_packets, missing_packets, 0, 0); } EXPECT_EQ(max_congestion_window, sender->GetCongestionWindow() / kDefaultTCPMSS); } TEST_F(TcpCubicSenderBytesTest, LimitCwndIncreaseInCongestionAvoidance) { sender_ = std::make_unique<TcpCubicSenderBytesPeer>(&clock_, false); int num_sent = SendAvailableSendWindow(); QuicByteCount saved_cwnd = sender_->GetCongestionWindow(); LoseNPackets(1); EXPECT_GT(saved_cwnd, sender_->GetCongestionWindow()); for (int i = 1; i < num_sent; ++i) { AckNPackets(1); } EXPECT_EQ(0u, bytes_in_flight_); saved_cwnd = sender_->GetCongestionWindow(); num_sent = SendAvailableSendWindow(); while (sender_->GetCongestionWindow() == saved_cwnd) { AckNPackets(1); SendAvailableSendWindow(); } EXPECT_GE(bytes_in_flight_, sender_->GetCongestionWindow()); saved_cwnd = sender_->GetCongestionWindow(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(2000)); AckNPackets(2); EXPECT_EQ(saved_cwnd + kDefaultTCPMSS, sender_->GetCongestionWindow()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/tcp_cubic_sender_bytes.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/tcp_cubic_sender_bytes_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6