text
stringlengths
105
4.44k
label
int64
0
9
label_text
stringclasses
10 values
Cation-exchange capacity is defined as the amount of positive charge that can be exchanged per mass of soil, usually measured in cmol/kg. Some texts use the older, equivalent units me/100g or meq/100g. CEC is measured in moles of electric charge, so a cation-exchange capacity of 10 cmol/kg could hold 10 cmol of Na cations (with 1 unit of charge per cation) per kilogram of soil, but only 5 cmol Ca (2 units of charge per cation). Cation-exchange capacity arises from various negative charges on soil particle surfaces, especially those of clay minerals and soil organic matter. Phyllosilicate clays consist of layered sheets of aluminium and silicon oxides. The replacement of aluminium or silicon atoms by other elements with lower charge (e.g. Al replaced by Mg) can give the clay structure a net negative charge. This charge does not involve deprotonation and is therefore pH-independent, and called permanent charge. In addition, the edges of these sheets expose many acidic hydroxyl groups that are deprotonated to leave negative charges at the pH levels in many soils. Organic matter also makes a very significant contribution to cation exchange, due to its large number of charged functional groups. CEC is typically higher near the soil surface, where organic matter content is highest, and declines with depth. The CEC of organic matter is highly pH-dependent. Cations are adsorbed to soil surfaces by the electrostatic interaction between their positive charge and the negative charge of the surface, but they retain a shell of water molecules and do not form direct chemical bonds with the surface. Exchangeable cations thus form part of the diffuse layer above the charged surface. The binding is relatively weak, and a cation can easily be displaced from the surface by other cations from the surrounding solution.
9
Geochemistry
Many organic chemicals are thermodynamically unstable in the presence of oxygen; however, their rate of spontaneous oxidation is slow at room temperature. In the language of physical chemistry, such reactions are kinetically limited. This kinetic stability allows the accumulation of complex environmental structures in the environment. Upon the absorption of light, triplet oxygen converts to singlet oxygen, a highly reactive form of the gas, which effects spin-allowed oxidations. In the atmosphere, the organic compounds are degraded by hydroxyl radicals, which are produced from water and ozone. Photochemical reactions are initiated by the absorption of a photon, typically in the wavelength range 290–700 nm (at the surface of the Earth). The energy of an absorbed photon is transferred to electrons in the molecule and briefly changes their configuration (i.e., promotes the molecule from a ground state to an excited state). The excited state represents what is essentially a new molecule. Often excited state molecules are not kinetically stable in the presence of O or HO and can spontaneously decompose (oxidize or hydrolyze). Sometimes molecules decompose to produce high energy, unstable fragments that can react with other molecules around them. The two processes are collectively referred to as direct photolysis or indirect photolysis, and both mechanisms contribute to the removal of pollutants. The United States federal standard for testing plastic for photodegradation is 40 CFR Ch. I (7–1–03 Edition) PART 238.
5
Photochemistry
Cancer cells are characterized by a reprogramming of energy metabolism. Over the last decade, understanding of the metabolic changes that occur in cancer has increased dramatically, and there is great interest in targeting metabolism for cancer therapy. PKM2 plays a key role in modulating glucose metabolism to support cell proliferation. PKM2, like other PK isoforms, catalyzes the last energy-generating step in glycolysis, but is unique in its capacity to be regulated. PKM2 is regulated on several cellular levels, including gene expression, alternative splicing and post-translational modification. In addition, PKM2 is regulated by key metabolic intermediates and interacts with more than twenty different proteins. Hence, this isoenzyme is an important regulator of glycolysis and additional functions in other novel roles that have recently emerged. Recent evidence indicates that intervening in the complex regulatory network of PKM2 has severe consequences on tumor cell proliferation, indicating the potential of this enzyme as a target for tumor therapy.
1
Biochemistry
Blood alcohol content (BAC), also called blood alcohol concentration or blood alcohol level, is a measurement of alcohol intoxication used for legal or medical purposes. BAC is expressed as mass of alcohol per volume of blood. In the US and many international publications, BAC levels are written as a percentage such as 0.08%, meaning that there is 0.08 g of alcohol for every 100 of blood. In different countries, the maximum permitted BAC when driving ranges from the limit of detection (zero tolerance) to 0.08%. BAC levels above 0.40% are potentially fatal.
1
Biochemistry
The story is often told of Napoleons men freezing in the bitter Russian Winter, their clothes falling apart as tin pest ate the buttons. This appears to be an urban legend, as there is no evidence of any failing buttons, and thus they cannot have been a contributing factor in the failure of the invasion. Uniform buttons of that era were generally bone for enlisted, and brass for officers. Critics of the theory point out that any tin that might have been used would have been quite impure, and thus more tolerant of low temperatures. Laboratory tests of the time required for unalloyed tin to develop significant tin pest damage at lowered temperatures is about 18 months, which is more than twice the length of the invasion. Nevertheless, some of the regiments in the campaign did have tin buttons and the temperature reached sufficiently low values (below −40 °C or °F). In the event, none of the many survivors tales mention problems with buttons and it has been suggested that the legend is an amalgamation of reports of blocks of Banca tin completely disintegrated in a customs warehouse in St. Petersburg in 1868, and earlier Russian reports that cast-in buttons for military uniforms also disintegrated, and the desperate state of Napoleon's army, having turned soldiers into ragged beggars.
8
Metallurgy
δO from biomineralized tissues may also be used in reconstructing past environmental conditions. In vertebrates, apatite from bone mineral, tooth enamel and dentin contains phosphate [PO] groups which may preserve the oxygen isotope ratios of environmental water. Fractionation of oxygen isotopes in these tissues may be affected by biological factors such as body temperature and diet.
9
Geochemistry
Knockouts are accomplished through a variety of techniques. Originally, naturally occurring mutations were identified and then gene loss or inactivation had to be established by DNA sequencing or other methods.
1
Biochemistry
* Cholera toxin is an AB toxin that has five B subunints and one A subunit. The toxin acts by the following mechanism: First, the B subunit ring of the cholera toxin binds to GM1 gangliosides on the surface of target cells. If a cell lacks GM1 the toxin most likely binds to other types of glycans, such as Lewis Y and Lewis X, attached to proteins instead of lipids.
1
Biochemistry
Although allozymes can detect variations in DNA, it is by an indirect method and not very accurate. DNA-based markers were developed in the 1960s. These markers are much more effective at distinguishing between DNA variants. Today these are the most commonly used markers. DNA-based markers work by surveying nucleotides, which can serve a variety of functions, such as detecting differences in nucleotides or even quantifying the number of mutations.
1
Biochemistry
Controversy has swirled around the provenance of the copper oxhide ingots. Lead isotope analysis (LIA) suggests that the late LBA ingots (that is, after 1250 BC) are composed of Cypriot copper, specifically copper from the Apilki mine and its surrounding area. The Gelidonya ingots' ratios are consistent with Cypriot ores while the Uluburun ingots fall on the periphery of the Cypriot isotopic field. On the other hand, Late Minoan I ingots found on Crete have Paleozoic lead isotope ratios and are more consistent with ore sources in Afghanistan, Iran, or Central Asia. The controversy settles on the validity of LIA. Paul Budd argues that LBA copper is the product of such extensive mixing and recycling that LIA, which works best for metals from a single ore deposit, is unfeasible. Some scholars worry that the 1250 BC date is too limiting. They note that Cyprus was smelting copper on a large scale in the early LBA and had the potential to export the metal to Crete and other places at this time. Furthermore, copper ore is more plentiful on Cyprus than on Sardinia and far more plentiful than on Crete. Archaeologists have discovered numerous Cypriot exports to Sardinia including metalworking tools and prestige metal objects. Due to the heavy corrosion of tin oxhide ingots and the limited data for lead isotopic studies of tin, the provenance of the tin ingots has been uncertain. The fact that scholars have been unable to pinpoint Bronze Age tin ore deposits compounds this problem.
8
Metallurgy
The most naïve way of specifying, e.g., a protein in a biological model is to specify each of its states explicitly and use each of them as a molecular species in a simulation framework that allows transitions from state to state. For instance, if a protein can be ligand-bound or not, exist in two conformational states (e.g. open or closed) and be located in two possible subcellular areas (e.g. cytosolic or membrane-bound), then the eight possible resulting states can be explicitly enumerated as: *bound, open, cytosol *bound, open, membrane *bound, closed, cytosol *bound, closed, membrane *unbound, open, cytosol *unbound, open, membrane *unbound, closed, cytosol *unbound, closed, membrane Enumerating all possible states is a lengthy and potentially error-prone process. For macromolecular complexes that can adopt multiple states, enumerating each state quickly becomes tedious, if not impossible. Moreover, the addition of a single additional modification or feature to the model of the complex under investigation will double the number of possible states (if the modification is binary), and it will more than double the number of transitions that need to be specified.
1
Biochemistry
Gold clusters in cluster chemistry can be either discrete molecules or larger colloidal particles. Both types are described as nanoparticles, with diameters of less than one micrometer. A nanocluster is a collective group made up of a specific number of atoms or molecules held together by some interaction mechanism. Gold nanoclusters have potential applications in optoelectronics and catalysis.
7
Physical Chemistry
Contrary to a neutral solute, the partition coefficient of an ion depends on the Galvani potential difference between the two phases:
7
Physical Chemistry
Cucurbituril's host–guest properties have been explored for drug delivery vehicles. The potential of this application has been explored with cucurbit[7]uril that forms an inclusion compound with the important cancer fighting drug oxaliplatin. CB[7] was employed despite the fact that it is more difficult to isolate since it has much greater solubility in water and its larger cavity size can accommodate the drug molecule. The resulting complex was found to have increased stability and greater selectivity that may lead to fewer side effects.
6
Supramolecular Chemistry
Jiao et al. enabled the formation of a C–N bond via cross-coupling using air as an oxidant and a copper catalyst. No conditions are known for a C–N cross-coupling that breaks a sp or sp C–COOH bond.
0
Organic Chemistry
Dynamic heteroatom bond formation, presents useful reactions in the dynamic covalent reaction toolbox. Boronic acid condensation (BAC) and disulfide exchange constitute the two main reactions in this category.
6
Supramolecular Chemistry
Tomlin was a student of mathematics and of the history of science and philosophy of science at the University of Leeds, where she earned a combined bachelors degree in those topics in 1987. She continued at Leeds as a graduate student in physical chemistry, completing her dissertation Bifurcation analysis for non-linear chemical kinetics' in 1990. After earning her doctorate, and performing post-doctoral research at Leeds and Princeton University, she returned to Leeds as a lecturer in the Department of Fuel and Energy in 1994.
7
Physical Chemistry
Butyric acid (pK 4.82) is fully ionized at physiological pH, so its anion is the material that is mainly relevant in biological systems. It is one of two primary endogenous agonists of human hydroxycarboxylic acid receptor 2 (, also known as GPR109A), a G protein-coupled receptor (GPCR), Like other short-chain fatty acids (SCFAs), butyrate is an agonist at the free fatty acid receptors FFAR2 and FFAR3, which function as nutrient sensors that facilitate the homeostatic control of energy balance; however, among the group of SCFAs, only butyrate is an agonist of HCA. It is also an HDAC inhibitor (specifically, HDAC1, HDAC2, HDAC3, and HDAC8), a drug that inhibits the function of histone deacetylase enzymes, thereby favoring an acetylated state of histones in cells. Histone acetylation loosens the structure of chromatin by reducing the electrostatic attraction between histones and DNA. In general, it is thought that transcription factors will be unable to access regions where histones are tightly associated with DNA (i.e., non-acetylated, e.g., heterochromatin). Therefore, butyric acid is thought to enhance the transcriptional activity at promoters, which are typically silenced or downregulated due to histone deacetylase activity.
1
Biochemistry
In the Arrhenius theory, acids are defined as substances that dissociate in aqueous solutions to give H (hydrogen ions or protons), while bases are defined as substances that dissociate in aqueous solutions to give OH (hydroxide ions). In 1923 physical chemists Johannes Nicolaus Brønsted in Denmark and Thomas Martin Lowry in England both independently proposed the theory named after them. In the Brønsted–Lowry theory acids and bases are defined by the way they react with each other, generalising them. This is best illustrated by an equilibrium equation. : acid + base ⇌ conjugate base + conjugate acid. With an acid, HA, the equation can be written symbolically as: The equilibrium sign, ⇌, is used because the reaction can occur in both forward and backward directions (is reversible). The acid, HA, is a proton donor which can lose a proton to become its conjugate base, A. The base, B, is a proton acceptor which can become its conjugate acid, HB. Most acid–base reactions are fast, so the substances in the reaction are usually in dynamic equilibrium with each other.
7
Physical Chemistry
Particle size analysis, particle size measurement, or simply particle sizing, is the collective name of the technical procedures, or laboratory techniques which determines the size range, and/or the average, or mean size of the particles in a powder or liquid sample. Particle size analysis is part of particle science, and it is generally carried out in particle technology laboratories. The particle size measurement is typically achieved by means of devices, called Particle Size Analyzers (PSA), which are based on different technologies, such as high definition image processing, analysis of Brownian motion, gravitational settling of the particle and light scattering (Rayleigh and Mie scattering) of the particles. The particle size can have considerable importance in a number of industries including the chemical, food, mining, forestry, agriculture, cosmetics, pharmaceutical, energy, and aggregate industries.
3
Analytical Chemistry
Coelenteramide is the oxidized product, or oxyluciferin, of the bioluminescent reactions in many marine organisms that use coelenterazine. It was first isolated as a blue fluorescent protein from Aequorea victoria after the animals were stimulated to emit light. Under basic conditions, the compound will break down further into coelenteramine and 4-hydroxyphenylacetic acid. It is an aminopyrazine.
1
Biochemistry
The maximum absorption of light is near 670 nm. The specifics of absorption depend on a number of factors, including protonation, adsorption to other materials, and metachromasy - the formation of dimers and higher-order aggregates depending on concentration and other interactions:
3
Analytical Chemistry
The ferric chloride test is used to determine the presence of phenols in a given sample or compound (for instance natural phenols in a plant extract). Enols, hydroxamic acids, oximes, and sulfinic acids give positive results as well. The bromine test is useful to confirm the result, although modern spectroscopic techniques (e.g. NMR and IR spectroscopy) are far superior in determining the identity of the unknown. The quantity of total phenols may be spectroscopically determined by the Folin–Ciocalteau assay.
3
Analytical Chemistry
This section summarizes the coefficients for some common materials. For isotropic materials the coefficients linear thermal expansion α and volumetric thermal expansion α are related by . For liquids usually the coefficient of volumetric expansion is listed and linear expansion is calculated here for comparison. For common materials like many metals and compounds, the thermal expansion coefficient is inversely proportional to the melting point. In particular, for metals the relation is: for halides and oxides In the table below, the range for α is from 10 K for hard solids to 10 K for organic liquids. The coefficient α varies with the temperature and some materials have a very high variation; see for example the variation vs. temperature of the volumetric coefficient for a semicrystalline polypropylene (PP) at different pressure, and the variation of the linear coefficient vs. temperature for some steel grades (from bottom to top: ferritic stainless steel, martensitic stainless steel, carbon steel, duplex stainless steel, austenitic steel). The highest linear coefficient in a solid has been reported for a Ti-Nb alloy. (The formula is usually used for solids.)
7
Physical Chemistry
It is a gaseous mixture of 60-80% tetrafluoroethane (R-134a), 10-30% pentafluoroethane (R-125) and 10-30% carbon dioxide (CO). Its physical properties are similar to those of Halon 1301.
2
Environmental Chemistry
The different sets of transcriptional repression and activation which characterize a and α cells are caused by the presence of one of two alleles of a mating-type locus called MAT: MATa or MATα located on chromosome III. The MAT locus is usually divided into five regions (W, X, Y, Z1, and Z2) based on the sequences shared among the two mating types. The difference lies in the Y region (Ya and Yα), which contains most of the genes and promoters. The MATa allele of MAT encodes a gene called a1, which in haploids direct the transcription of the a-specific transcriptional program (such as expressing STE2 and repressing STE3) that defines an a cell. The MATα allele of MAT encodes the α1 and α2 genes, which in haploids direct the transcription of the α-specific transcriptional program (such as expressing STE3, repressing STE2, producing prepro-α-factor) which causes the cell to be an α cell. S. cerevisiae has an a2 gene with no apparent function that shares much of its sequence with α2; however, other yeasts like Candida albicans do have a functional and distinct MATa2 gene.
1
Biochemistry
Thiosulfate ions are stable only in neutral or alkaline solutions, but not in acidic solutions, due to disproportionation to sulfite ions and sulfur, the sulfite ions being dehydrated to sulfur dioxide: This reaction may be used to generate an aqueous suspension of sulfur and demonstrate the Rayleigh scattering of light in physics. If white light is shone from below, blue light is seen from sideways and orange light from above, due to the same mechanisms that color the sky at midday and dusk. Thiosulfate ions react with iodine to give tetrathionate ions: This reaction is key for iodometry. With bromine (X = Br) and chlorine (X = Cl), thiosulfate ions are oxidized to sulfate ions:
8
Metallurgy
Reverse electron flow is the transfer of electrons through the electron transport chain through the reverse redox reactions. Usually requiring a significant amount of energy to be used, this can reduce the oxidized forms of electron donors. For example, NAD can be reduced to NADH by Complex I. There are several factors that have been shown to induce reverse electron flow. However, more work needs to be done to confirm this. One example is blockage of ATP synthase, resulting in a build-up of protons and therefore a higher proton-motive force, inducing reverse electron flow.
1
Biochemistry
Electrons form notional shells around the nucleus. These are normally in a ground state but can be excited by the absorption of energy from light (photons), magnetic fields, or interaction with a colliding particle (typically ions or other electrons). Electrons that populate a shell are said to be in a bound state. The energy necessary to remove an electron from its shell (taking it to infinity) is called the binding energy. Any quantity of energy absorbed by the electron in excess of this amount is converted to kinetic energy according to the conservation of energy. The atom is said to have undergone the process of ionization. If the electron absorbs a quantity of energy less than the binding energy, it will be transferred to an excited state. After a certain time, the electron in an excited state will "jump" (undergo a transition) to a lower state. In a neutral atom, the system will emit a photon of the difference in energy, since energy is conserved. If an inner electron has absorbed more than the binding energy (so that the atom ionizes), then a more outer electron may undergo a transition to fill the inner orbital. In this case, a visible photon or a characteristic X-ray is emitted, or a phenomenon known as the Auger effect may take place, where the released energy is transferred to another bound electron, causing it to go into the continuum. The Auger effect allows one to multiply ionize an atom with a single photon. There are rather strict selection rules as to the electronic configurations that can be reached by excitation by light — however, there are no such rules for excitation by collision processes.
7
Physical Chemistry
Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; , PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate: :PEP + HCO → oxaloacetate + Pi This reaction is used for carbon fixation in CAM (crassulacean acid metabolism) and C4 carbon fixation| organisms, as well as to regulate flux through the citric acid cycle (also known as Krebs or TCA cycle) in bacteria and plants. The enzyme structure and its two step catalytic, irreversible mechanism have been well studied. PEP carboxylase is highly regulated, both by phosphorylation and allostery.
5
Photochemistry
Several authors have reported the existence of supramultiplicative behavior in signaling cascades (i.e. the ultrasensitivity of the combination of layers is higher than the product of individual ultrasensitivities), but in many cases the ultimate origin of supramultiplicativity remained elusive. Altszyler et al. (2017) framework naturally suggested a general scenario where supramultiplicative behavior could take place. This could occur when, for a given module, the corresponding Hill's input working range was located in an input region with local ultrasensitivities higher than the global ultrasensitivity of the respective dose-response curve.
1
Biochemistry
The earlier Pantle & Buck method (1955) uses the same saprobic values s of each species, but not the weighting factor g. The Pantle-Buck saprobity index S, ranging from 0 to 4, is thus calculated: </div> where the abundance A is expressed as one of nine subjective categories, ranging from "very rare" to "mass development". It does not require the organisms to be counted – which can save a lot of time – but raises the issues of intra- and inter-rater reliability.
2
Environmental Chemistry
Sialic acids are found at all cell surfaces of vertebrates and some invertebrates, and also at certain bacteria that interact with vertebrates. Many viruses such as the Ad26 serotype of adenoviruses (Adenoviridae), rotaviruses (Reoviridae) and influenza viruses (Orthomyxoviridae) can use host-sialylated structures for binding to their target host cell. Sialic acids provide a good target for these viruses since they are highly conserved and are abundant in large numbers in virtually all cells. Unsurprisingly, sialic acids also play an important role in several human viral infections. The influenza viruses have hemagglutinin activity (HA) glycoproteins on their surfaces that bind to sialic acids found on the surface of human erythrocytes and on the cell membranes of the upper respiratory tract. This is the basis of hemagglutination when viruses are mixed with blood cells, and entry of the virus into cells of the upper respiratory tract. Widely used anti-influenza drugs (oseltamivir and zanamivir) are sialic acid analogs that interfere with release of newly generated viruses from infected cells by inhibiting the viral enzyme neuraminidase. Some bacteria also use host-sialylated structures for binding and recognition. For example, evidence indicates that free sialic acids can behave as a signal to some specific bacteria, like Pneumococcus. Free sialic acid possibly can help the bacterium to recognize that it has reached a vertebrate environment suitable for its colonization. Modifications of Sias, such as the N-glycolyl group at the 5 position or O-acetyl groups on the side chain, may reduce the action of bacterial sialidases.
0
Organic Chemistry
Red-short, hot-short refers to brittleness of steels at red-hot temperatures. It is often caused by high sulfur levels, in which case it is also known as sulfur embrittlement.
8
Metallurgy
Anti-Ro/SSA antibodies are found in 40–90% of patients with systematic lupus erythematosus (SLE). The antibodies can be detected years before symptoms of SLE surface, making them an effective diagnostic tool. In patients with SLE, high levels of Anti-Ro/SSA are correlated with elevated levels of IFN-α. The presence of Anti-Ro/SSA antibodies also correlates with symptoms of photosensitivity, cutaneous vasculitis, and hematological disorders. In individuals with cutaneous lupus erythematosus (CLE), a subcategory of lupus erythematosus, elevated levels of Ro52 are found regardless of expression of Anti-Ro autoantibodies.
1
Biochemistry
Photolysis, i.e., photochemical decomposition is a chemical reaction where the compound is broken down by the photons. This decomposition occurs when a photon of sufficient energy encounters a colorant molecule bond with a suitable dissociation energy. The reaction causes homolytic cleavage in the chromophoric system resulting in the fading of the colourant.
5
Photochemistry
The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry. These include near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. The deposition of reactive gaseous mercury (RGM) in snow from oxidation by enhanced halogens increases the bioavailability of mercury. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ozone depletion events. Human-induced climate change affects the quantity of snow and ice cover in the Arctic, altering the intensity of nitrogen oxide emissions. Increment in background levels of nitrogen oxide apparently strengthens the consumption of ozone and the enhancement of halogens.
2
Environmental Chemistry
After his Berlin, Dresden and New York years, Zervas decided to return to Greece in 1937. He was immediately appointed full Professor of Organic Chemistry and Biochemistry at the Aristotle University of Thessaloniki in recognition of his distinguished international work. He stayed in this position until 1939, when he was invited to the Professorship of Organic Chemistry at the University of Athens and also appointed director of the Laboratory of Organic Chemistry of the same institution. He continued conducting research, despite the severe limitations he often faced from the lack of equipment and funding. Concurrent to research, Zervas taught organic chemistry, oversaw the laboratory and guided many generations of young chemists as doctoral advisor for the 29 years he held the post at the University of Athens. During the Axis occupation of Greece Zervas played an active part in the Greek Resistance as a member of EDES; he was imprisoned twice, first by the Italian and then by the German occupying forces, and his laboratory was destroyed. Following the liberation of Greece, Zervas managed to secure a small part of the American postwar aid for repairs in the University of Athens and the Athens Polytechnic, and thus rebuilt his laboratory in 1948–1951. In the following years, guided by a sense of personal and professional duty, Zervas voluntarily took on a variety of responsibilities within the Greek state. At his own insistence, he never got paid for these posts and kept receiving only his professorial salary. Some notable positions he held in chronological order until 1968 include: *Member of the State Committee on Vocational Education (1948–1951) *Member of numerous committees for the foundation of new industries in postwar Greece (throughout the 1950s) *First Vice-President of the National Hellenic Research Foundation (1958–1968), of which he was a key founder *Minister of Industry in the Paraskevopoulos technocratic caretaker government (1963–1964) *President of the Greek Atomic Energy Commission (1964–1965) The democratic ideals of Zervas made him a target of the military junta established in 1967, which removed him from his position in the University of Athens in 1968 after almost three decades of dedicated research and teaching. In response, the Academy of Athens of which Zervas had been a member since 1956 elected him as its president in 1970. After his term as President of the Academy, Zervas retired in 1971.
0
Organic Chemistry
Plasma treatment of surfaces is essentially a dry etching of the surface. This is achieved by filling a chamber with gas, such as oxygen, fluorine, or chlorine, and accelerating ions species from an ion source through plasma. The ion acceleration towards the surface forms deep grooves within the surface. In addition to the topography, plasma treatment can also provide surface functionalization by using different gases to deposit different elements on surfaces. Surface roughness is dependent on the duration of plasma etching.
7
Physical Chemistry
Plastic crystals were discovered in 1938 by J. Timmermans by their anomalously low melting entropy. He found that organic substances having a melting entropy lower than approximately 17 J·K·mol (~2Rg) are having peculiar properties. Timmermans named them . Michils showed in 1948 that these organic compounds are easily deformed and accordingly named them, plastic crystals (). Perfluorocyclohexane for example is plastic to such a degree that it will start to flow under its own weight.
7
Physical Chemistry
The reactions are due to collisions of reactant species. The frequency with which the molecules or ions collide depends upon their concentrations. The more crowded the molecules are, the more likely they are to collide and react with one another. Thus, an increase in the concentrations of the reactants will usually result in the corresponding increase in the reaction rate, while a decrease in the concentrations will usually have a reverse effect. For example, combustion will occur more rapidly in pure oxygen than in air (21% oxygen). The rate equation shows the detailed dependence of the reaction rate on the concentrations of reactants and other species present. The mathematical forms depend on the reaction mechanism. The actual rate equation for a given reaction is determined experimentally and provides information about the reaction mechanism. The mathematical expression of the rate equation is often given by Here is the reaction rate constant, is the molar concentration of reactant i and is the partial order of reaction for this reactant. The partial order for a reactant can only be determined experimentally and is often not indicated by its stoichiometric coefficient.
7
Physical Chemistry
In the pedosphere it is safe to assume that gases are in equilibrium with the atmosphere. Because plant roots and soil microbes release CO to the soil, the concentration of bicarbonate () in soil waters is much greater than that in equilibrium with the atmosphere, the high concentration of CO and the occurrence of metals in soil solutions results in lower pH levels in the soil. Gases that escape from the pedosphere to the atmosphere include the gaseous byproducts of carbonate dissolution, decomposition, redox reactions and microbial photosynthesis. The main inputs from the atmosphere are aeolian sedimentation, rainfall and gas diffusion. Eolian sedimentation includes anything that can be entrained by wind or that stays suspended in air and includes a wide variety of aerosol particles, biological particles like pollen, and dust particles. Nitrogen is the most abundant constituent in rain (after water), as water vapor utilizes aerosol particles to nucleate rain droplets.
9
Geochemistry
Euhedral crystals have flat faces with sharp angles. The flat faces (also called facets) are oriented in a specific way relative to the underlying atomic arrangement of the crystal: They are planes of relatively low Miller index. This occurs because some surface orientations are more stable than others (lower surface energy). As a crystal grows, new atoms attach easily to the rougher and less stable parts of the surface, but less easily to the flat, stable surfaces. Therefore, the flat surfaces tend to grow larger and smoother, until the whole crystal surface consists of these plane surfaces. (See diagram on right.)
3
Analytical Chemistry
Affinity purification of albumin and macroglobulin contamination is helpful in removing excess albumin and α-macroglobulin contamination, when performing mass spectrometry. In affinity purification of serum albumin, the stationary used for collecting or attracting serum proteins can be Cibacron Blue-Sepharose. Then the serum proteins can be eluted from the adsorbent with a buffer containing thiocyanate (SCN).
3
Analytical Chemistry
The mixed reactants pass an observation cell that allows the reaction to be followed spectrophotometrically, typically by ultraviolet spectroscopy, fluorescence spectroscopy, circular dichroism or light scattering, and it is now common to combine several of these. Observation cuvette with a short light path (0.75 to 1.5mm) are usually preferred for fluorescence measurements to reduce self-absorption effects. Observation cuvette with longer light path (0.5 cm to 1 cm) are preferred for absorbance measurements. Modern stopped-flow can accommodate different models of cells and it is possible to change the cuvette between two experiments. For stopped-flow X-ray measurements, a quartz capillary with thin wall is used to minimize quartz absorption. Simultaneous x-ray and absorbance measurements are possible in the same capillary.
7
Physical Chemistry
The mathematical expression of the Langmuir adsorption isotherm involving only one sorbing species can be demonstrated in different ways: the kinetics approach, the thermodynamics approach, and the statistical mechanics approach respectively. In case of two competing adsorbed species, the competitive adsorption model is required, while when a sorbed species dissociates into two distinct entities, the dissociative adsorption model need to be used.
7
Physical Chemistry
In polymer chemistry, systems have been described based on addition polymerization with 1,4-benzenedithiol and 1,4-diethynylbenzene, in the synthesis of other addition polymer systems in the synthesis of dendrimers, in star polymers, in graft polymerization, block copolymers, and in polymer networks. Another reported application is the synthesis of macrocycles via dithiol coupling.
0
Organic Chemistry
The scientific community has been quick to harness RNA silencing as a research tool. The strategic targeting of mRNA can provide a large amount of information about gene function and its ability to be turned on and off. Induced RNA silencing can serve as a controlled method for suppressing gene expression. Since the machinery is conserved across most eukaryotes, these experiments scale well to a range of model organisms. In practice, expressing synthetic short hairpin RNAs can be used to reach stable knock-down. If promoters can be made to express these designer short hairpin RNAs, the result is often potent, stable, and controlled gene knock-down in both in vitro and in vivo contexts. Short hairpin RNA vector systems can be seen as roughly analogous in scope to using cDNA overexpression systems. Overall, synthetic and natural small RNAs have proven to be an important tool for studying gene function in cells as well as animals. Bioinformatics approaches to identify small RNAs and their targets have returned several hundred, if not thousands of, small RNA candidates predicted to affect gene expression in plants, C. elegans, D. melanogaster, zebrafish, mouse, rat, and human. These methods are largely directed to identifying small RNA candidates for knock-out experiments but may have broader applications. One bioinformatics approach evaluated sequence conservation criteria by filtering seed complementary target-binding sites. The cited study predicted that approximately one third of mammalian genes were to be regulated by, in this case, miRNAs.
1
Biochemistry
The gag-onc fusion protein is a general term for a fusion protein formed from a group-specific antigen (gag) gene and that of an oncogene (onc), a gene that plays a role in the development of a cancer. The name is also written as Gag-v-Onc, with "v" indicating that the Onc sequence resides in a viral genome. Onc is a generic placeholder for a given specific oncogene, such as C-jun. (In the case of a fusion with C-jun, the resulting "gag-jun" protein is known alternatively as p65).
1
Biochemistry
William Carl Lineberger (born December 5, 1939-[https://jila.colorado.edu/news-events/news/remembering-jila-fellow-w-carl-lineberger October 17, 2023]) was an American chemist. A native of Hamlet, North Carolina, William Carl Lineberger was born to parents Caleb Henry and Evelyn Pelot Cooper Lineberger on December 5, 1939. His mother was a former teacher and his father was a railroad worker. Through his mother, Lineberger is of French Huguenot descent. As a child, Lineberger was a Boy Scout and made Eagle rank. After completing his bachelors, masters and doctoral degrees at the Georgia Institute of Technology, Lineberger began teaching at his alma mater, leaving for a research position at the U. S. Army Ballistic Research Laboratory and later the Joint Institute for Laboratory Astrophysics. The University of Colorado at Boulder, one of two joint operators of JILA, hired Lineberger as an assistant professor in 1970. He was named E. U. Condon Distinguished Professor of Chemistry at the University of Colorado in 1985. Over the course of his career, Lineberger received several awards. Among them are: the Herbert P. Broida Prize (1981) awarded by the American Physical Society, the Earle K. Plyler Prize for Molecular Spectroscopy (1992), Irving Langmuir Award (1996) and Peter Debye Award (2004) of the American Chemical Society, and the William F. Meggers Award in Spectroscopy (1989) from the Optical Society of America. Lineberger received the NAS Award in Chemical Sciences in 2015. Linberger is a member of the American Chemical Society as well as the National Academy of Sciences (1983) and American Academy of Arts and Sciences (1995). He is a fellow of the American Association for the Advancement of Science and the American Physical Society (1973). From 2011 to 2016, Lineberger served on the National Science Board and was nominated for a second term by Barack Obama in 2016.
7
Physical Chemistry
A number of enzymatic dynamic kinetic resolutions have been reported. A prime example using PSL effectively resolves racemic acyloins in the presence of triethylamine and vinyl acetate as the acylating agent. As shown below, the product was isolated in 75% yield and 97% ee. Without the presence of the base, regular kinetic resolution occurred, resulting in 45% yield of >99% ee acylated product and 53% of the starting material in 92% ee. Another excellent, though not high-yielding, example is the kinetic resolution of (±)-8-amino-5,6,7,8-tetrahydroquinoline. When exposed to Candida antarctica lipase B (CALB) in toluene and ethyl acetate for 3–24 hours, normal kinetic resolution occurs, resulting in 45% yield of 97% ee of starting material and 45% yield of >97% ee acylated amine product. However, when the reaction is allowed to stir for 40–48 hours, racemic starting material and >60% of >95% ee acylated product are recovered. Here, the unreacted starting material racemizes in situ via a dimeric enamine, resulting in a recovery of greater than 50% yield of the enantiopure acylated amine product.
4
Stereochemistry
LD is very similar to Circular Dichroism (CD), but with two important differences. (i) CD spectroscopy uses circularly polarized light whereas LD uses linearly polarized light. (ii) In CD experiments molecules are usually free in solution so they are randomly oriented. The observed spectrum is then a function only of the chiral or asymmetric nature of the molecules in the solution. With biomacromolecules CD is particularly useful for determining the secondary structure. By way of contrast, in LD experiments the molecules need to have a preferential orientation otherwise the LD=0. With biomacromolecules flow orientation is often used, other methods include stretched films, magnetic fields, and squeezed gels. Thus LD gives information such as alignment on a surface or the binding of a small molecule to a flow-oriented macromolecule, endowing it with different functionality from other spectroscopic techniques. The differences between LD and CD are complementary and can be a potent means for elucidating the structure of biological molecules when used in conjunction with one another, the combination of techniques revealing far more information than a single technique in isolation. For example, CD tells us when a membrane peptide or protein folds whereas LD tells when it inserts into a membrane.
7
Physical Chemistry
MGI evolved from a project funded by the National Center for Human Genome Research in 1989 to combine the databases of several Jackson Laboratory scientists and create a tool for visualizing data on the mouse genome. The result of that project, led by Joseph H. Nadeau, Larry E. Mobraaten, and Janan T. Eppig, was called the "Encyclopedia of the Mouse Genome" and distributed via floppy disk semi-annually to around 300 scientists around the world. In 1992, that group joined with the team responsible for developing the "Genomic Database for Mouse", led by Muriel T. Davisson and Thomas H. Roderick, to start the "Mouse Genome Informatics" project. That project resulted in the first online release of the "Mouse Genome Database" in 1994.
1
Biochemistry
The molecular demon switches mainly between two conformations. The first, or basic state, upon recognizing and binding the ligand or substrate following an induced fit, undergoes a change in conformation which leads to the second quasi-stable state: the protein-ligand complex. In order to reset the protein to its original, basic state, it needs ATP. When ATP is consumed or hydrolyzed, the ligand is released and the demon acquires again information reverting to its basic state. The cycle may start again.
6
Supramolecular Chemistry
In crystallography, the Sayre equation, named after David Sayre who introduced it in 1952, is a mathematical relationship that allows one to calculate probable values for the phases of some diffracted beams. It is used when employing direct methods to solve a structure. Its formulation is the following: which states how the structure factor for a beam can be calculated as the sum of the products of pairs of structure factors whose indices sum to the desired values of . Since weak diffracted beams will contribute a little to the sum, this method can be a powerful way of finding the phase of related beams, if some of the initial phases are already known by other methods. In particular, for three such related beams in a centrosymmetric structure, the phases can only be 0 or and the Sayre equation reduces to the triplet relationship: where the indicates the sign of the structure factor (positive if the phase is 0 and negative if it is ) and the sign indicates that there is a certain degree of probability that the relationship is true, which becomes higher the stronger the beams are.
3
Analytical Chemistry
Leaching is a process widely used in extractive metallurgy where ore is treated with chemicals to convert the valuable metals within the ore, into soluble salts while the impurity remains insoluble. These can then be washed out and processed to give the pure metal; the materials left over are commonly known as tailings. Compared to pyrometallurgy, leaching is easier to perform, requires less energy and is potentially less harmful as no gaseous pollution occurs. Drawbacks of leaching include its lower efficiency and the often significant quantities of waste effluent and tailings produced, which are usually either highly acidic or alkali as well as toxic (e.g. bauxite tailings). There are four types of leaching: # Cyanide leaching (e.g. gold ore) # Ammonia leaching (e.g. crushed ore) # Alkali leaching (e.g. bauxite ore) # Acid leaching (e.g. sulfide ore) Leaching is also notable in the extraction of rare earth elements, which consists of lanthanides, yttrium and scandium.
8
Metallurgy
Unidirectional spreading of mTEC-derived TRAs onto additional APCs via antigen transfer increases the probability of encounter between potential autoreactive T cell and its corresponding TRA and therefore enhances processes of central tolerance. Furthermore, antigen transfer enables TRA processing and presentation by different cellular microenvironments. Despite relevance of antigen transfer, seminal study was published, showing mTECs to form fully established central tolerance without support of additional APCs.
1
Biochemistry
The method uses seasonal water balance components as input data. These are related to the surface hydrology (like rainfall, evaporation, irrigation, use of drain and well water for irrigation, runoff), and the aquifer hydrology (like upward seepage, natural drainage, pumping from wells). The other water balance components (like downward percolation, upward capillary rise, subsurface drainage) are given as output.<br> The quantity of drainage water, as an output, is determined by two drainage intensity factors for drainage above and below drain level respectively (to be given with the input data), a drainage reduction factor (to simulate a limited operation of the drainage system), and the height of the water table, resulting from the computed water balance. Variation of the drainage intensity factors and the drainage reduction factor gives the opportunity to simulate the effect of different drainage options.
9
Geochemistry
At the lower end of the spectrum, relatively harmless stink bombs consist of a mixture of ammonium sulfide, vinegar and bicarbonate, which smells strongly of rotten eggs. When exposed to air, the ammonium sulfide reacts with moisture, hydrolyzes, and a mixture of hydrogen sulfide (rotten egg smell) and ammonia is released. Another mixture consists of hydrogen sulfide and ammonia mixed together directly. Other popular substances on which to base stink bombs are thiols with lower molecular weight such as methyl mercaptan and ethyl mercaptan—the chemicals that are added in minute quantities to natural gas in order to make gas leaks detectable by smell. A variation on this idea is the scent bomb, or perfume bomb, filled with an overpowering "cheap perfume" smell. At the upper end of the spectrum, the governments of Israel and the United States of America are developing stink bombs for use by their law enforcement agencies and militaries as riot control and area denial weapons. Using stink bombs for these purposes has advantages over traditional riot control agents: unlike pepper spray and tear gas, stink bombs are believed not to be dangerous, although their psychological effects can make people sick. Prank stink bombs and perfume bombs are usually sold as a 1- or 2-mL sealed glass ampoule, which can be broken by throwing against a hard surface or by crushing under one's shoe sole, thus releasing the malodorous liquid contained therein. Another variety of prank stink bomb comprises two bags, one smaller and inside the other. The inner one contains a liquid and the outer one a powder. When the inner one is ruptured by squeezing it, the liquid reacts with the powder, producing hydrogen sulfide, which expands and bursts the outer bag, releasing an unpleasant odor.
1
Biochemistry
Evolved gas analysis (EGA) is a method used to study the gas evolved from a heated sample that undergoes decomposition or desorption. It is either possible just to detect evolved gases using evolved gas detection (EGD) or to analyse explicitly which gases evolved using evolved gas analysis (EGA). Therefore different analytical methods can be employed such as mass spectrometry, Fourier transform spectroscopy, gas chromatography, or optical in-situ evolved gas analysis. By coupling the thermal analysis instrument, e. g. TGA (thermogravimetry) or DSC (differential scanning calorimetry), with a fast Quadrupole Mass Spectrometer (QMS) the detection of gas separation and identification of the separated components are possible in exact time correlation with the other thermal analysis signals. DSC/TGA-QMS or TGA-QMS yields information on the composition (mass numbers of elements and molecules) of the evolved gases. It allows fast and easy interpretation of atomic/inorganic vapors and standard gases like H, HO, CO, etc. Fragmentation, interpretation of organic molecules is sometimes difficult. The combination with an FTIR (Fourier transform infrared spectrometer) has become popular, especially in the polymer producing, chemical and pharmaceutical industry. DSC/TGA-FTIR or TGA-FTIR yields information on the composition (absorption bands) of the evolved gases (bonding conditions). The advantage is an easy interpretation (spectra data bases) of organic vapors without fragmentation. Symmetrical molecules can not be detected. An EGA instrument named the Thermal and Evolved-Gas Analyzer was flown on the Phoenix Lander probe that reached Mars in May 2008. Its purpose was to study Martian soil samples. An EGA instrument was contained within the Sample Analysis at Mars (SAM) instrument suite onboard Curiosity Rover which landed on Mars in 2012. The instrument's goal was to understand the habitability and past climates of Mars. SAM detected complex organic carbon on the surface of Mars at Gale Crater in a 3.5 billion year old mudstone.
3
Analytical Chemistry
Several studies have suggested that vanillin can affect the performance of antibiotics in laboratory conditions.
0
Organic Chemistry
Enzyme activity is a measure of the quantity of active enzyme present and is thus dependent on various physical conditions, which should be specified. It is calculated using the following formula: where : = Enzyme activity : = Moles of substrate converted per unit time : = Rate of the reaction : = Reaction volume The SI unit is the katal, 1 katal = 1 mol s (mole per second), but this is an excessively large unit. A more practical and commonly used value is enzyme unit (U) = 1 μmol min (micromole per minute). 1 U corresponds to 16.67 nanokatals. Enzyme activity as given in katal generally refers to that of the assumed natural target substrate of the enzyme. Enzyme activity can also be given as that of certain standardized substrates, such as gelatin, then measured in gelatin digesting units (GDU), or milk proteins, then measured in milk clotting units (MCU). The units GDU and MCU are based on how fast one gram of the enzyme will digest gelatin or milk proteins, respectively. 1 GDU approximately equals 1.5 MCU. An increased amount of substrate will increase the rate of reaction with enzymes, however once past a certain point, the rate of reaction will level out because the amount of active sites available has stayed constant.
1
Biochemistry
Polymers can be classified in many ways. Polymers, strictly speaking, comprise most solid matter: minerals (i.e. most of the Earth's crust) are largely polymers, metals are 3-d polymers, organisms, living and dead, are composed largely of polymers and water. Often polymers are classified according to their origin: * biopolymers * synthetic polymers * inorganic polymers Biopolymers are the structural and functional materials that comprise most of the organic matter in organisms. One major class of biopolymers are proteins, which are derived from amino acids. Polysaccharides, such as cellulose, chitin, and starch, are biopolymers derived from sugars. The polynucleic acids DNA and RNA are derived from phosphorylated sugars with pendant nucleotides that carry genetic information. Synthetic polymers are the structural materials manifested in plastics, synthetic fibers, paints, building materials, furniture, mechanical parts, and adhesives. Synthetic polymers may be divided into thermoplastic polymers and thermoset plastics. Thermoplastic polymers include polyethylene, teflon, polystyrene, polypropylene, polyester, polyurethane, Poly(methyl methacrylate), polyvinyl chloride, nylons, and rayon. Thermoset plastics include vulcanized rubber, bakelite, Kevlar, and polyepoxide. Almost all synthetic polymers are derived from petrochemicals.
7
Physical Chemistry
The collision rates for fine particles (50 - 80 μm) can be accurately modeled, but there is no current theory that accurately models bubble-particle collision for particles as large as 300 μm, which are commonly used in flotation processes. For fine particles, Stokes law underestimates collision probability while the potential equation based on surface charge overestimates collision probability so an intermediate equation is used. It is important to know the collision rates in the system since this step precedes the adsorption where a three phase system is formed.
8
Metallurgy
Because the glycocalyx is so prominent throughout the cardiovascular system, disruption to this structure has detrimental effects that can cause disease. Certain stimuli that cause atheroma may lead to enhanced sensitivity of vasculature. Initial dysfunction of the glycocalyx can be caused by hyperglycemia or oxidized low-density lipoproteins (LDLs), which then causes atherothrombosis. In microvasculature, dysfunction of the glycocalyx leads to internal fluid imbalance, and potentially edema. In arterial vascular tissue, glycocalyx disruption causes inflammation and atherothrombosis. Experiments have been performed to test precisely how the glycocalyx can be altered or damaged. One particular study used an isolated perfused heart model designed to facilitate detection of the state of the vascular barrier portion, and sought to cause insult-induced shedding of the glycocalyx to ascertain the cause-and-effect relationship between glycocalyx shedding and vascular permeability. Hypoxic perfusion of the glycocalyx was thought to be sufficient to initiate a degradation mechanism of the endothelial barrier. The study found that flow of oxygen throughout the blood vessels did not have to be completely absent (ischemic hypoxia), but that minimal levels of oxygen were sufficient to cause the degradation. Shedding of the glycocalyx can be triggered by inflammatory stimuli, such as tumor necrosis factor-alpha. Whatever the stimulus is, however, shedding of the glycocalyx leads to a drastic increase in vascular permeability. Vascular walls being permeable is disadvantageous, since that would enable passage of some macromolecules or other harmful antigens. Other sources of damage to the endothelial glycocalyx have been observed in several pathological conditions such as inflammation, hyperglycemia, ischemia-reperfusion, viral infections and sepsis. Some key components of the glycocalyx such as syndecans, heparan sulphate, chondroitin sulphate and hyaluronan can be shed of the endothelial layer by enzymes. Hyaluronidase, hepararanse/heparinase, matrix and membrane-type matrix metalloproteases, thrombin, plasmin and elastase are some examples of enzymes that can induce shedding of the glycocalyx and these sheddases can therefor contribute to degradation of the glycocalyx layer in several pathological conditions. Research shows that plasma hyaluronidase activity is decreased in experimental as well as in clinical septic shock and is therefore not considered to be a sheddase in sepsis. Concomitant, the endogenous plasma inhibition of hyaluronidase is increased and could serve as a protection against glycocalyx shedding. Fluid shear stress is also a potential problem if the glycocalyx is degraded for any reason. This type of frictional stress is caused by the movement of viscous fluid (i.e. blood) along the lumen boundary. Another similar experiment was carried out to determine what kinds of stimuli cause fluid shear stress. The initial measurement was taken with intravital microscopy, which showed a slow-moving plasma layer, the glycocalyx, of 1 μm thick. Light dye damaged the glycocalyx minimally, but that small change increased capillary hematocrit. Thus, fluorescence light microscopy should not be used to study the glycocalyx because that particular method uses a dye. The glycocalyx can also be reduced in thickness when treated with oxidized LDL. These stimuli, along with many other factors, can cause damage to the delicate glycocalyx. These studies are evidence that the glycocalyx plays a crucial role in cardiovascular system health.
1
Biochemistry
Levonorgestrel is used in combination with an estrogen in menopausal hormone therapy. It is used under the brand name Klimonorm as a combined oral tablet with estradiol valerate and under the brand name Climara Pro as a combined transdermal patch with estradiol.
4
Stereochemistry
DABCO (1,4-diazabicyclo[2.2.2]octane), also known as triethylenediamine or TEDA, is a bicyclic organic compound with the formula N(CH). This colorless solid is a highly nucleophilic tertiary amine base, which is used as a catalyst and reagent in polymerization and organic synthesis. It is similar in structure to quinuclidine, but the latter has one of the nitrogen atoms replaced by a carbon atom. Regarding their structures, both DABCO and quinuclidine are unusual in that the methylene hydrogen atoms are eclipsed within each of the three ethylene linkages. Furthermore, the diazacyclohexane rings, of which there are three, adopt the boat conformations, not the usual chair conformations.
0
Organic Chemistry
Ketones (and aldehydes) absorb strongly in the infra-red spectrum near 1750 cm, which is assigned to ν ("carbonyl stretching frequency"). The energy of the peak is lower for aryl and unsaturated ketones. Whereas H NMR spectroscopy is generally not useful for establishing the presence of a ketone, C NMR spectra exhibit signals somewhat downfield of 200 ppm depending on structure. Such signals are typically weak due to the absence of nuclear Overhauser effects. Since aldehydes resonate at similar chemical shifts, multiple resonance experiments are employed to definitively distinguish aldehydes and ketones.
0
Organic Chemistry
Giant tube worms use bacteria in their trophosome to fix carbon dioxide (using hydrogen sulfide as their energy source) and produce sugars and amino acids. Some reactions produce sulfur: :hydrogen sulfide chemosynthesis: ::18H + 6CO + 3 → CHO (carbohydrate) + 12H + 18 Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of sulfur in the process. In bacteria capable of chemoautotrophy (a form a chemosynthesis), such as purple sulfur bacteria, yellow globules of sulfur are present and visible in the cytoplasm.
1
Biochemistry
The chemical reaction of lipid peroxidation consists of three phases: initiation, propagation, and termination. In the initiation phase, a pro-oxidant hydroxyl radical () abstracts the hydrogen at the allylic position (–CH–CH=CH) or methine bridge (=CH−) on the stable lipid substrate, typically a polyunsaturated fatty acid (PUFA), to form the lipid radical () and water (HO). In the propagation phase, the lipid radical () reacts with molecular oxygen () to form a lipid hydroperoxyl radical (). The lipid hydroperoxyl radical () can further abstract hydrogen from a new PUFA substrate, forming another lipid radical () and now finally a lipid hydroperoxide (LOOH). The lipid hydroperoxyl radical () can also undergo a variety of reactions to produce new radicals. The additional lipid radical () continues the chain reaction, whilst the lipid hydroperoxide (LOOH) is the primary end product. The formation of lipid radicals is sensitive to the kinetic isotope effect. Reinforced lipids in the membrane can suppress the chain reaction of lipid peroxidation. The termination step can vary, in both its actual chemical reaction and when it will occur. Lipid peroxidation is a self-propagating chain reaction and will proceed until the lipid substrate is consumed and the last two remaining radicals combine, or a reaction which terminates it occurs. Termination can occur when two lipid hydroperoxyl radicals () react to form peroxide and oxygen (O). Termination can also occur when the concentration of radical species is high. The primary products of lipid peroxidation are lipid hydroperoxides (LOOH).
1
Biochemistry
The retinoblastoma protein is involved in the growth and development of mammalian hair cells of the cochlea, and appears to be related to the cells' inability to regenerate. Embryonic hair cells require pRb, among other important proteins, to exit the cell-cycle and stop dividing, which allows maturation of the auditory system. Once wild-type mammals have reached adulthood, their cochlear hair cells become incapable of proliferation. In studies where the gene for pRb is deleted in mice cochlea, hair cells continue to proliferate in early adulthood. Though this may seem to be a positive development, pRb-knockdown mice tend to develop severe hearing loss due to degeneration of the organ of Corti. For this reason, pRb seems to be instrumental for completing the development of mammalian hair cells and keeping them alive. However, it is clear that without pRb, hair cells have the ability to proliferate, which is why pRb is known as a tumor suppressor. Temporarily and precisely turning off pRb in adult mammals with damaged hair cells may lead to propagation and therefore successful regeneration. Suppressing function of the retinoblastoma protein in the adult rat cochlea has been found to cause proliferation of supporting cells and hair cells. pRb can be downregulated by activating the sonic hedgehog pathway, which phosphorylates the proteins and reduces gene transcription.
1
Biochemistry
Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. Anoxic waters can be contrasted with hypoxic waters, which are low (but not lacking) in dissolved oxygen. This condition is generally found in areas that have restricted water exchange. In most cases, oxygen is prevented from reaching the deeper levels by a physical barrier, as well as by a pronounced density stratification, in which, for instance, heavier hypersaline waters rest at the bottom of a basin. Anoxic conditions will occur if the rate of oxidation of organic matter by bacteria is greater than the supply of dissolved oxygen. Anoxic waters are a natural phenomenon, and have occurred throughout geological history. The Permian–Triassic extinction event, a mass extinction of species from the worlds oceans, may have resulted from widespread anoxic conditions combined with ocean acidification driven by a massive release of carbon dioxide into Earths atmosphere. Many lakes have a permanent or temporary anoxic layer created by respiration depleting oxygen at depth and thermal stratification preventing its resupply. Anoxic basins exist in the Baltic Sea, the Black Sea, the Cariaco Trench, various fjord valleys, and elsewhere. Eutrophication has likely increased the extent of anoxic zones in areas including the Baltic Sea, the Gulf of Mexico, and Hood Canal in Washington State.
9
Geochemistry
Certain aspects of the lipid pump such as the diapause depth and duration of zooplankton can vary among regions that have different overwintering temperatures and resident community characteristics. There are other subarctic regions that have shown similar carbon export rates to those found in the temperate North Atlantic (1–4 g C m y) via seasonally-migrating zooplankton. For instance, C. glacialis and C. hyperboreus are the most dominant zooplankton species found in the Arctic Ocean at similar latitudes, and they contribute to a 3.1 g C m y flux of lipid carbon below 100 m during overwintering. A slightly higher maximum flux in lipid carbon (2–4.3 g C m y) below 150 m was observed in the subarctic North Pacific and was primarily attributed to the Neocalanus genus of copepods. In these areas, N. flemingeri, N. cristatus, and N. plumchrus are the primary contributors to the lipid pump, whereas, the subantarctic Southern Ocean consists primarily of N. tonsus contributing to a lipid carbon flux of 1.7–9.3 g C m y out of the euphotic zone. The rates or magnitude of these processes may slightly vary due to characteristic differences between these subpolar regions, which have largely been under-studied relative to their contributions to the lipid pump.
9
Geochemistry
The anthracene molecule admits three resonance structures, each with a circle in one ring and two sets of double bonds in the other two. Following the rule at point 4 exposed above, anthracene is better described by a superposition of these three equivalent structures, and an arrow is drawn to indicate the presence of a migrating π-sextet. Following the same line of reasoning, one can find migrating π-sextets in other molecules of the acene series, such as tetracene, pentacene, and hexacene.
7
Physical Chemistry
In medicine, the term "labile" means susceptible to alteration or destruction. For example, a heat-labile protein is one that can be changed or destroyed at high temperatures. The opposite of labile in this context is "stable".
1
Biochemistry
Injection formulations of esomeprazole are used for gastroprotection in veterinary medicine. In goats administered the drug by intravenous or subcutaneous injection rapid elimination was noted. In that study the sulfone metabolite was detectable for several hours after injection of the parent drug.
4
Stereochemistry
When a cell is subjected to stressful conditions, the ATF4 gene is expressed. The ATF4 transcription factor has the ability to form dimers with many different proteins that influence gene expression and cell fate. ATF4 binds to C/EBP‐ATF response element (CARE) sequences which work together to increase the transcription of stress-responsive genes. However, when undergoing amino acid starvation, the sequences will act as amino acid response elements instead. ATF4 will work together with other transcription factors, such as CHOP and ATF3, by forming homodimers or heterodimers, resulting in numerous observed effects. The proteins that ATF4 interacts with determines the outcome of the cell during the integrated stress response. For example, ATF4 and ATF3 work to establish homeostasis inside of the cell following stressful conditions. On the other hand, ATF4 and CHOP work together to induce cell death, as well as regulating amino acid biosynthesis, transport and metabolic processes. The presence of a leucine zipper domain (bZIP) allows ATF4 to work together with many other proteins, thus creating specific responses to different types of stressors. When a cell is undergoing the stress of hypoxia, ATF4 will interact with PHD1 and PHD3 to decrease its transcriptional activity. In addition, when a cell is undergoing amino acid starvation or endoplasmic reticulum stress, TRIP3 also interacts with ATF4 to decrease activity. One result of ATF4 and stress-response proteins expression is the induction of autophagy. During this process, the cell forms autophagosomes, or double membraned vesicles, that allow for transportation of material throughout the cell. These autophagosomes can carry unneeded organelles and proteins, as well as damaged or harmful components in an attempt by the cell to maintain homeostasis.
1
Biochemistry
The name derives from the German word umklappen (to turn over). Rudolf Peierls, in his autobiography Bird of Passage states he was the originator of this phrase and coined it during his 1929 crystal lattice studies under the tutelage of Wolfgang Pauli. Peierls wrote, "…I used the German term Umklapp (flip-over) and this rather ugly word has remained in use…". The term Umklapp appears in the 1920 paper of Wilhelm Lenz's seed paper of the Ising model.
7
Physical Chemistry
Markovnikov is best known for Markovnikovs rule, elucidated in 1869 to describe addition reactions of H-X (where X' represents a halogen) to alkenes. According to this rule, the nucleophilic X- binds to the carbon (C) atom with fewer hydrogen atoms, while the proton binds to the carbon atom with more hydrogen atoms bonded to it. Thus, hydrogen chloride (HCl) reacts with propene, CH-CH=CH to produce 2-chloropropane CHCHClCH rather than the isomeric 1-chloropropane CHCHCHCl. The rule is useful in predicting the molecular structures of products of addition reactions. Why hydrogen bromide exhibited both Markovnikov as well as reversed-order, or anti-Markovnikov, addition, however, was not understood until Morris S. Kharasch offered an explanation in 1933. It is also called The Peroxide effect sometimes. Hughes has discussed the reasons for Markovnikovs lack of recognition during his lifetime. Although he published mostly in Russian which was not understood by most Western European chemists, the 1870 article in which he first stated his rule was written in German. However the rule was included in a 4-page addendum to a 26-page article on isomeric butyric acids, and based on very slight experimental evidence even by the standards of the time. Hughes concludes that the rule was an inspired guess, unjustified by the evidence of the time, but which turned out later to be correct (in most cases). A more recent assessment, based on a reading of Markovnikovs Magistr Khimii and Doktor Khimii dissertations, contradicts this view, and points out that Markovnikov's Rule arises logically from his dissertations. Markovnikov also contributed to organic chemistry by finding carbon rings with more than six carbon atoms, a ring with four carbon atoms in 1879, and a ring with seven in 1889. Markovnikov also showed that butyric and isobutyric acids have the same chemical formula (CHO) but different structures; i.e., they are isomers.
0
Organic Chemistry
A mobility shift assay is electrophoretic separation of a protein–DNA or protein–RNA mixture on a polyacrylamide or agarose gel for a short period (about 1.5-2 hr for a 15- to 20-cm gel). The speed at which different molecules (and combinations thereof) move through the gel is determined by their size and charge, and to a lesser extent, their shape (see gel electrophoresis). The control lane (DNA probe without protein present) will contain a single band corresponding to the unbound DNA or RNA fragment. However, assuming that the protein is capable of binding to the fragment, the lane with a protein that binds present will contain another band that represents the larger, less mobile complex of nucleic acid probe bound to protein which is shifted up on the gel (since it has moved more slowly). Under the correct experimental conditions, the interaction between the DNA (or RNA) and protein is stabilized and the ratio of bound to unbound nucleic acid on the gel reflects the fraction of free and bound probe molecules as the binding reaction enters the gel. This stability is in part due to a "caging effect", in that the protein, surrounded by the gel matrix, is unable to diffuse away from the probe before they recombine. If the starting concentrations of protein and probe are known, and if the stoichiometry of the complex is known, the apparent affinity of the protein for the nucleic acid sequence may be determined. Unless the complex is very long lived under gel conditions, or dissociation during electrophoresis is taken into account, the number derived is an apparent Kd. If the protein concentration is not known but the complex stoichiometry is, the protein concentration can be determined by increasing the concentration of DNA probe until further increments do not increase the fraction of protein bound. By comparison with a set of standard dilutions of free probe run on the same gel, the number of moles of protein can be calculated.
1
Biochemistry
The complex adopts the usual "clam-shell" structure seen for other CpMX complexes. The dimetallic structure has been confirmed by Microcrystal electron diffraction. The results are consistent with FT-IR spectroscopy, which established that the hydrides are bridging. Solid state NMR spectroscopy also indicates a dimeric structure. The X-ray crystallographic structure for the methyl compound (CH)ZrH(CH) compound is analogous.
0
Organic Chemistry
It is not always possible to eliminate ion suppression by sample preparation and/or chromatographic resolution. In such cases it may be possible to compensate for the effects of ion suppression on accuracy and precision (although not for analytical sensitivity) by adopting complex calibration strategies.
3
Analytical Chemistry
The absence of long-range order in liquids is mirrored by the absence of Bragg peaks in X-ray and neutron diffraction. Under normal conditions, the diffraction pattern has circular symmetry, expressing the isotropy of the liquid. Radially, the diffraction intensity smoothly oscillates. This can be described by the static structure factor , with wavenumber given by the wavelength of the probe (photon or neutron) and the Bragg angle . The oscillations of express the short-range order of the liquid, i.e., the correlations between a molecule and "shells" of nearest neighbors, next-nearest neighbors, and so on. An equivalent representation of these correlations is the radial distribution function , which is related to the Fourier transform of . It represents a spatial average of a temporal snapshot of pair correlations in the liquid.
7
Physical Chemistry
Millon's reagent is an analytical reagent used to detect the presence of soluble proteins. A few drops of the reagent are added to the test solution, which is then heated gently. A reddish-brown coloration or precipitate indicates the presence of tyrosine residue which occur in nearly all proteins. The test was developed by the French chemist Auguste Nicolas Eugene Millon. The reagent is made by dissolving metallic mercury in nitric acid and diluting with water, forming mercuric nitrate (Hg[NO]). In the test, the phenol group in the side chain of tyrosine gets nitrated, and that product then complexes with Hg(I) or Hg(II) ions to give a red colored precipitate. Millon's test is not specific for proteins; it also gives a positive test for other compounds containing the phenol functional group. Therefore, the biuret test or the ninhydrin reaction are used along with it to confirm the presence of proteins.
3
Analytical Chemistry
Polytetrafluoroethylene (PTFE) is a polymer used in many applications including non-stick coatings, beauty products, and lubricants. PTFE is a hydrophobic molecule composed of carbon and fluorine. Carbon-fluorine bonds cause PTFE to be a low-friction material, conducive in high temperature environments and resistant to stress cracking. These properties cause PTFE to be non-reactive and used in a wide array of applications.
7
Physical Chemistry
Microarrays for transcriptomics typically fall into one of two broad categories: low-density spotted arrays or high-density short probe arrays. Transcript abundance is inferred from the intensity of fluorescence derived from fluorophore-tagged transcripts that bind to the array. Spotted low-density arrays typically feature picolitre drops of a range of purified cDNAs arrayed on the surface of a glass slide. These probes are longer than those of high-density arrays and cannot identify alternative splicing events. Spotted arrays use two different fluorophores to label the test and control samples, and the ratio of fluorescence is used to calculate a relative measure of abundance. High-density arrays use a single fluorescent label, and each sample is hybridised and detected individually. High-density arrays were popularised by the Affymetrix GeneChip array, where each transcript is quantified by several short 25-mer probes that together assay one gene. NimbleGen arrays were a high-density array produced by a maskless-photochemistry method, which permitted flexible manufacture of arrays in small or large numbers. These arrays had 100,000s of 45 to 85-mer probes and were hybridised with a one-colour labelled sample for expression analysis. Some designs incorporated up to 12 independent arrays per slide.
1
Biochemistry
Pempidine is a ganglion-blocking drug, first reported in 1958 by two research groups working independently, and introduced as an oral treatment for hypertension.
0
Organic Chemistry
Birch reduction is a possible method to reduce reduces aromatic compounds into cycloalkenes, specifically cyclohexadiene.
0
Organic Chemistry
Particles tend to move from higher chemical potential to lower chemical potential because this reduces the free energy. In this way, chemical potential is a generalization of "potentials" in physics such as gravitational potential. When a ball rolls down a hill, it is moving from a higher gravitational potential (higher internal energy thus higher potential for work) to a lower gravitational potential (lower internal energy). In the same way, as molecules move, react, dissolve, melt, etc., they will always tend naturally to go from a higher chemical potential to a lower one, changing the particle number, which is the conjugate variable to chemical potential. A simple example is a system of dilute molecules diffusing in a homogeneous environment. In this system, the molecules tend to move from areas with high concentration to low concentration, until eventually, the concentration is the same everywhere. The microscopic explanation for this is based on kinetic theory and the random motion of molecules. However, it is simpler to describe the process in terms of chemical potentials: For a given temperature, a molecule has a higher chemical potential in a higher-concentration area and a lower chemical potential in a low concentration area. Movement of molecules from higher chemical potential to lower chemical potential is accompanied by a release of free energy. Therefore, it is a spontaneous process. Another example, not based on concentration but on phase, is an ice cube on a plate above 0 °C. An HO molecule that is in the solid phase (ice) has a higher chemical potential than a water molecule that is in the liquid phase (water) above 0 °C. When some of the ice melts, HO molecules convert from solid to the warmer liquid where their chemical potential is lower, so the ice cube shrinks. At the temperature of the melting point, 0 °C, the chemical potentials in water and ice are the same; the ice cube neither grows nor shrinks, and the system is in equilibrium. A third example is illustrated by the chemical reaction of dissociation of a weak acid HA (such as acetic acid, A = CHCOO): :HA H + A Vinegar contains acetic acid. When acid molecules dissociate, the concentration of the undissociated acid molecules (HA) decreases and the concentrations of the product ions (H and A) increase. Thus the chemical potential of HA decreases and the sum of the chemical potentials of H and A increases. When the sums of chemical potential of reactants and products are equal the system is at equilibrium and there is no tendency for the reaction to proceed in either the forward or backward direction. This explains why vinegar is acidic, because acetic acid dissociates to some extent, releasing hydrogen ions into the solution. Chemical potentials are important in many aspects of multi-phase equilibrium chemistry, including melting, boiling, evaporation, solubility, osmosis, partition coefficient, liquid-liquid extraction and chromatography. In each case the chemical potential of a given species at equilibrium is the same in all phases of the system. In electrochemistry, ions do not always tend to go from higher to lower chemical potential, but they do always go from higher to lower electrochemical potential. The electrochemical potential completely characterizes all of the influences on an ions motion, while the chemical potential includes everything except' the electric force. (See below for more on this terminology.)
7
Physical Chemistry
These contrasting effects reveal the importance of the endocannabinoid system in regulating anxiety-dependent behavior. Results suggest that glutamatergic cannabinoid receptors are not only responsible for mediating aggression, but produce an anxiolytic-like function by inhibiting excessive arousal: excessive excitation produces anxiety that limited the mice from exploring both animate and inanimate objects. In contrast, GABAergic neurons appear to control an anxiogenic-like function by limiting inhibitory transmitter release. Taken together, these two sets of neurons appear to help regulate the organism's overall sense of arousal during novel situations.
1
Biochemistry
Cytochrome C1 plays a role in the electron transfer during oxidative phosphorylation. As an iron-sulfur protein approaches the b-c1 complex, it accepts an electron from the cytochrome b subunit, then undergoes a conformational change to attach to cytochrome c1. There, the electron carried by the iron-sulfur protein is transferred to the heme carried by cytochrome c1. This electron is then transferred to a heme carried by cytochrome c. This creates a reduced species of cytochrome c, which separates from the b-c1 complex and moves to the last enzyme in the electron transport chain, cytochrome c oxidase (Complex IV).
1
Biochemistry
Trichlorofluoromethane was first widely used as a refrigerant. Because of its high boiling point compared to most refrigerants, it can be used in systems with a low operating pressure, making the mechanical design of such systems less demanding than that of higher-pressure refrigerants R-12 or R-22. Trichlorofluoromethane is used as a reference compound for fluorine-19 NMR studies. Trichlorofluoromethane was formerly used in the drinking bird novelty, largely because it has a boiling point of . The replacement, dichloromethane, boiling point , requires a higher ambient temperature to work. Prior to the knowledge of the ozone depletion potential of chlorine in refrigerants and other possible harmful effects on the environment, trichlorofluoromethane was sometimes used as a cleaning/rinsing agent for low-pressure systems.
2
Environmental Chemistry
The virion is a flexible filament (worm-like chain) about 6 nm in diameter and 900 nm long. Several thousand copies of a small (50 amino-acid residues) elongated alpha-helical major coat protein subunit (the product of gene 8, or p8) in an overlapping shingle-like array form a hollow cylinder enclosing the circular single-stranded DNA genome. Each p8 subunit has a collection of basic residues near the C-terminus of the elongated protein and acidic residues near the N-terminus; these two regions are separated by about 20 hydrophobic (non-polar) residues. The shingle-like arrangement places the acidic residues of p8 near the outside surface of the cylinder, where they cause the virus particle to be negatively-charged; non-polar regions near non-polar regions of neighbouring p8 subunits, where non-polar interactions contribute to a notable physical stability of the virus particle; and basic residues near the centre of the cylinder, where they interact with the negatively-charged DNA phosphates at the core of the virion. Longer (or shorter) DNA molecules can be packaged, since more (or fewer) p8 subunits can be added during assembly as required to protect the DNA, making the phage useful for genetic studies. (This effect should not be confused with polyphage, which can package several separate and distinct DNA molecules). About 5 copies each of four minor proteins cap the two ends of the virion. The molecular structure of the virion capsid (the assembly of p8 subunit proteins) has been determined by X-ray fiber diffraction, and structural models have been deposited in the Protein Data Bank. In particular, the series of fd and Pf1 virion structures deposited in the PDB over decades illustrate the improvements in methods for fiber diffraction data collection and computational analysis. Structures of the p3 capsid protein and the p5 replication/assembly protein have also been determined from X-ray crystallography and deposited in the PDB.
1
Biochemistry
RIfS is used especially as a detection method in chemo- and biosensors. Chemosensors are particularly suitable for measurements under difficult conditions and in the gaseous phase. As sensitive layers, mostly non-selective measuring polymers are used which sort the analytes according to size (the so-called molecular sieve effect when using microporous polymers) or according to polarity (e.g. functionalized polydimethylsiloxanes). When performing non-selective measurements, a sum signal from several analytes is measured which means that multivariate data analyses such as neural networks have to be used for quantification. However, it is also possible to use selectively measuring polymers, so-called molecular imprinted polymers (MIPs) which provide artificial recognition elements. When using biosensors, polymers such as polyethylene glycols or dextrans are applied onto the layer system, and on these recognition elements for biomolecules are immobilized. Basically, any molecule can be used as recognition element (proteins such as antibodies, DNA/RNA such as aptamers, small organic molecules such as estrone, but also lipids such as phospholipid membranes). RIfS, like SPR is a label-free technique, which allows the time-resolved observation of interaction among the binding partners without the use of fluorescence or radioactive labels.
7
Physical Chemistry
Many photocathodes require excellent vacuum conditions to function and will become "poisoned" when exposed to contaminates. Additionally, using the photocathodes in high current applications will slowly damage the compounds as they are exposed to ion back-bombardment. These effects are quantified by the lifetime of the photocathode. Cathode death is modeled as a decaying exponential as a function of either time or emitted charge. Lifetime is then the time constant of the exponential.
7
Physical Chemistry
For at least 600 years, wood tar has been used as a water repellent coating for boats, ships, and roofs. In Scandinavia, it was produced as a cash crop. "Peasant Tar" might be named for the district of its production. Wood tar is still used as an additive in the flavoring of candy, alcohol, and other foods. Wood tar is microbicidal. Producing tar from wood was known in ancient Greece and has probably been used in Scandinavia since the Iron Age. Production and trade in pine-derived tar was a major contributor in the economies of Northern Europe and Colonial America. Its main use was in preserving wooden sailing vessels against rot. For centuries, dating back at least to the 14th century, tar was among Sweden's most important exports. Sweden exported 13,000 barrels of tar in 1615 and 227,000 barrels in the peak year of 1863. The largest user was the Royal Navy of the United Kingdom. Demand for tar declined with the advent of iron and steel ships. Production nearly stopped in the early 20th century. Traditional wooden boats are still sometimes tarred. The heating (dry distilling) of pine wood causes tar and pitch to drip away from the wood and leave behind charcoal. Birch bark is used to make particularly fine tar, known as "Russian oil", suitable for leather protection. The by-products of wood tar are turpentine and charcoal. When deciduous tree woods are subjected to destructive distillation, the products are methanol (wood alcohol) and charcoal. Tar kilns (, , , ) are dry distillation ovens, historically used in Scandinavia for producing tar from wood. They were built close to the forest, from limestone or from more primitive holes in the ground. The bottom is sloped into an outlet hole to allow the tar to pour out. The wood is split into dimensions of a finger, stacked densely, and finally covered tight with earth and moss. If oxygen can enter, the wood might catch fire, and the production would be ruined. On top of this, a fire is stacked and lit. After a few hours, the tar starts to pour out and continues to do so for a few days.
7
Physical Chemistry
In botany, a photoassimilate is one of a number of biological compounds formed by assimilation using light-dependent reactions. This term is most commonly used to refer to the energy-storing monosaccharides produced by photosynthesis in the leaves of plants. Only NADPH, ATP and water are made in the "light" reactions. Monosaccharides, though generally more complex sugars, are made in the "dark" reactions. The term "light" reaction can be confusing as some "dark" reactions require light to be active. Photoassimilate movement through plants from "source to sink" using xylem and phloem is of biological significance. This movement is mimicked by many infectious particles - namely viroids - to accomplish long ranged movement and consequently infection of an entire plant.
5
Photochemistry
The methods for sequence analysis of synthetic polymers differ from the sequence analysis of biopolymers (e. g. DNA or proteins). Synthetic polymers are produced by chain-growth or step-growth polymerization and show thereby polydispersity, whereas biopolymers are synthesized by complex template-based mechanisms and are sequence-defined and monodisperse. Synthetic polymers are a mixture of macromolecules of different length and sequence and are analysed via statistical measures (e. g. the degree of polymerization, comonomer composition or dyad and triad fractions).
7
Physical Chemistry
Hyperspectral imaging is part of a class of techniques commonly referred to as spectral imaging or spectral analysis. The term “hyperspectral imaging” derives from the development of NASA's Airborne Imaging Spectrometer (AIS) and AVIRIS in the mid-1980s. Although NASA prefers the earlier term “imaging spectroscopy” over “hyperspectral imaging,” use of the latter term has become more prevalent in scientific and non-scientific language. In a peer reviewed letter, experts recommend using the terms “imaging spectroscopy” or “spectral imaging” and avoiding exaggerated prefixes such as “hyper-,” “super-” and "ultra-,” to prevent misnomers in discussion. Hyperspectral imaging is related to multispectral imaging. The distinction between hyper- and multi-band is sometimes based incorrectly on an arbitrary "number of bands" or on the type of measurement. Hyperspectral imaging (HSI) uses continuous and contiguous ranges of wavelengths (e.g. 400 - 1100 nm in steps of 1 nm) whilst multiband imaging (MSI) uses a subset of targeted wavelengths at chosen locations (e.g. 400 - 1100 nm in steps of 20 nm). Multiband imaging deals with several images at discrete and somewhat narrow bands. Being "discrete and somewhat narrow" is what distinguishes multispectral imaging in the visible wavelength from color photography. A multispectral sensor may have many bands covering the spectrum from the visible to the longwave infrared. Multispectral images do not produce the "spectrum" of an object. Landsat is an excellent example of multispectral imaging. Hyperspectral deals with imaging narrow spectral bands over a continuous spectral range, producing the spectra of all pixels in the scene. A sensor with only 20 bands can also be hyperspectral when it covers the range from 500 to 700 nm with 20 bands each 10 nm wide. (While a sensor with 20 discrete bands covering the visible, near, short wave, medium wave and long wave infrared would be considered multispectral.) Ultraspectral could be reserved for interferometer type imaging sensors with a very fine spectral resolution. These sensors often have (but not necessarily) a low spatial resolution of several pixels only, a restriction imposed by the high data rate.
7
Physical Chemistry
A supersolid is a special quantum state of matter where particles form a rigid, spatially ordered structure, but also flow with zero viscosity. This is in contradiction to the intuition that flow, and in particular superfluid flow with zero viscosity, is a property exclusive to the fluid state, e.g., superconducting electron and neutron fluids, gases with Bose–Einstein condensates, or unconventional liquids such as helium-4 or helium-3 at sufficiently low temperature. For more than 50 years it was thus unclear whether the supersolid state can exist.
7
Physical Chemistry