metadata
language:
- en
license: mit
tags:
- two-tower
- semantic-search
- document-retrieval
- information-retrieval
- dual-encoder
mlx7-two-tower-data
This repository contains datasets used for training Two-Tower (Dual Encoder) models for document retrieval.
Dataset Description
The datasets provided here are structured for training dual encoder models with various sampling strategies:
- classic_triplets: 48.2 MB
- intra_query_neg: 47.6 MB
- multi_pos_multi_neg: 126.5 MB
Dataset Details
- classic_triplets.parquet: Standard triplet format with (query, positive_document, negative_document)
- intra_query_neg.parquet: Negative examples selected from within the same query batch
- multi_pos_multi_neg.parquet: Multiple positive and negative examples per query
Usage
import pandas as pd
# Load a dataset
df = pd.read_parquet("classic_triplets.parquet")
# View the schema
print(df.columns)
# Example of working with the data
queries = df["q_text"].tolist()
positive_docs = df["d_pos_text"].tolist()
negative_docs = df["d_neg_text"].tolist()
Data Source and Preparation
These datasets are derived from the MS MARCO passage retrieval dataset, processed to create effective training examples for two-tower models.
Dataset Structure
The datasets follow a common schema with the following fields:
q_text
: Query textd_pos_text
: Positive (relevant) document textd_neg_text
: Negative (non-relevant) document text
Additional fields may be present in specific datasets.
Citation
If you use this dataset in your research, please cite the original MS MARCO dataset:
@article{msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Nguyen, Tri and Rosenberg, Matthew and Song, Xia and Gao, Jianfeng and Tiwary, Saurabh and Majumder, Rangan and Deng, Li},
journal={arXiv preprint arXiv:1611.09268},
year={2016}
}