text
stringlengths
2
1.42k
label
int64
0
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Lang-Bombieri; Bombieri-Lang; Diophantine geometry; Albanese; ample cotangent bundle Dupuy, T.: Examples of geometric Lang-Bombieri-Noguchi outside Mordell-Lang: non-rigid varieties with ample but not globally generated cotangent bundle. Preprint http://www.uvm.edu/~tdupuy/notes/Dupuy-LBN.pdf
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces dimensions of linear systems; line bundle; Riemann-Roch problem; effective divisor S. D. Cutkosky and V. Srinivas, On a problem of Zariski on dimensions of linear systems , Ann. of Math. (2) 137 (1993), 531-559. JSTOR:
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Gushel-Mukai fourfold; uniruledness; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces k-spanned line bundle; curvilinear cycles [BB] E. BALLICO, M. BELTRAMETTI, ''On 2-spannedness for the adjunction mapping'',Manuscripta Math., 61 (1988), 447--458
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces special varieties; geometric orbifolds; Kodaira dimension; \(C_{n,m}\)-conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces dimension of triangulated category; hereditary category; weighted projective line Oppermann, S.: The dimension of the derived category of elliptic curves and tubular weighted projective lines. Colloq. Math. 119(1), 143--156 (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces jet bundle; Hermitian metric on line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Pfaffian line bundle; conformal field theory; Verlinde formula; principally polarised Prym varieties; theta line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonical ring of a non-hyperelliptic; minimal free resolution; 2-linear projective dimension; genus; Clifford index Eisenbud, D.: Green's conjecture: an orientation for algebraists, (Sundance, UT, 1990). Research Notes Mathematics, vol. 2, pp. 51-78. Jones and Bartlett, Boston, MA (1992)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space; rank-2 stable vector bundles; fixed determinant bundle; infinitesimal deformation space; differentiable structure of algebraic surfaces; Chern class [Z2]Zuo K.,Generic smoothness of the moduli of rank two stable bundles over an algebraic surface, preprint Max-Planck-Institut (Bonn)over an algebraic surface, Math. Z.207 (1991), 629--643.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces contractions of non numerically effective extremal rays; deficiency; variety of dimension four; polarized varieties Beltrametti, M.: Contractions of non numerically effective extremal rays in dimension 4, Proc. Alg. Geom. Teubner-Texte Math. 92, 24-37, Berlin: Teubner 1986
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic curve; multiple covering; line bundle; linear series; projectively normal; normal generation Kim, S., Normal generation of line bundles on multiple coverings, J. Algebra, 323, 2337-2352, (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kobayashi hyperbolic variety; directed manifold; genus of a curve; jet bundle; jet differential; jet metric; Chern connection and curvature; negativity of jet curvature; variety of general type; Kobayashi conjecture; Green-Griffiths conjecture; Lang conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces weak del Pezzo surface; exceptional collection; line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces compactification of moduli space; equations of Kummer surfaces; principally polarized Adler-van Moerbeke surfaces T. Szemberg , Intersection of Quadrics in P5, Kummer surfaces and their moduli , Friedrich-Alexander-Universität Erlangen - Nürnberg , 1994 . Zbl 0876.14025
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; classification of complex noncomplete algebraic varieties; logarithmic Mori theory Fujita T., Algebraic Geometry 10 pp 167-- (1987)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces deformation theory; Kuranishi family; obstructions; irregular surfaces; canonically polarized surfaces
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Gieseker-Petri theorem; compact Riemann surface; genus; linear system; K3 surfaces Pareschi, Giuseppe, A proof of Lazarsfeld's theorem on curves on \(K3\) surfaces, J. Algebraic Geom., 4, 1, 195-200, (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces deficiency of surfaces; algebraic surface; genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ampleness; line bundle Mehta, V. B.; Subramanianm, S.: Nef line bundles which are not ample. Math. zeit. 219, 235-244 (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective line; vector bundle; sheaf; deformation
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces finite morphism; deformation; Galois covering; ample vector bundle; Fano manifold; surjective endomorphism Nie C X, Wu C X. Space-like hyperspaces with parallel conformal second fundamental forms in the conformal space (in Chinese). Acta Math Sinica Chin Ser, 2008, 51: 685--692
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized variety; vanishing theorems; Mori-Kawamata theory; \(\Delta\)- genus; classification of Del Pezzo manifolds Fujita, T., \textit{Classification Theories of Polarized Varieties}, 155, (1990), Cambridge University Press, Cambridge (UK)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Sklyanin algebras; graded noncommutative algebras; regularity; Yang- Baxter equation; elliptic curve; line bundle; survey; irreducible finite dimensional \(A\)-modules; category of finitely generated graded modules; point modules; cyclic modules; Hilbert series; projective variety; irreducible modules Smith, S. P., The four-dimensional Sklyanin algebras, \(K\)-Theory. Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part I (Antwerp, 1992), 8, 1, 65-80, (1994)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces reductive group; line bundle; wonderful compactification; equivariant compactification Tchoudjem, A.: Cohomologie des fibrés en droites sur LES compactifications des groupes réductifs. Ann. sci. École norm. Sup. 37, 415-448 (2004)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces integral lattices; Kodaira dimension; modular varieties; reflective modular forms; orthogonal group
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stable curve; gonality; Brill-Noether theory; balanced line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces affine threefold; logarithmic Kodaira dimension; \#-Minimal Model Program T. Kishimoto, On the logarithmic Kodaira dimension of affine threefolds, Int. J. Math. (in press)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces arithmetic intersection theory; determinant line bundle; arithmetic Hodge index theorem; arithmetic Riemann-Roch theorem; arithmetic height functions
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjunction; polarized surface; ample divisor; hyperplane sections A. Lanteri-M. Palleschi, About the adjunction process for polarized algebraic surfaces Jour, für di Reine und Angew. Math.352 (1984), p 15-23
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces semistable vector bundle; brill-Noether theory; genus 6; Clifford index; gonality
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonically polarized surfaces; automorphisms; vector fields; positive characteristic
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces pluricanonical maps; threefolds of general type; Kodaira dimension; canonical complete linear system; stable canonical map
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces real algebraic set; algebraic vector bundle; ample vector bundle; nonsingular projective complexification; algebraic cohomology class; transversality Kucharz, W.; Rusek, K., An application of ample vector bundles in real algebraic geometry, Proc. Am. Math. Soc., 139, 1155-1161, (2011)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces open algebraic surface; logarithmic Kodaira dimension; logarithmic plurigenus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef subschemes; ample subschemes; Fujita vanishing theorem; intersection theory; movable cone; partially positive line bundles; partial ampleness
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces multiplier ideals; symmetric powers of a very ample vector bundle; vanishing theorem
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of curves; covering of the elliptic curve; Jacobian; Humbert surface; moduli space of principally polarized abelian surfaces; period matrix Murabayashi, N.: The moduli space of curves of genus two covering elliptic curves. Man. Math. 84, 125--133 (1994)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space; singular quadrics; Hilbert scheme of curves; Brill-Noether theory; Kodaira's dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces irregular surfaces of general type; low genus fibrations; Albanese pencil; canonical map Takahashi T.: Certain algebraic surfaces of general type with irregularity one and their canonical mappings. Tohoku Math. J., 50, 261--290 (1998)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces base-point-free theorem; semi-ample line bundles; positive characteristic; finite fields; minimal model program; log canonical Martinelli, D; Nakamura, Y; Witaszek, J, On the basepoint-free theorem for log canonical threefolds over the algebraic closure of a finite field, Algebra Number Theory, 9, 725-747, (2015)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli spaces; curves of low genus; plane quartics; Del Pezzo surfaces; configurations of point sets; equivariant cohomology
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonical divisor; Hurwitz scheme; Chern classes; Kodaira dimension; moduli space of curves of general type \textsc{D. Eisenbud and B. Ulrich}, The regularity of the conductor, In: A Celebration of Algebraic Geometry, 267-280 Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces families of surfaces; famlies of polarized algebraic varieties; vanishing theorem E. Bedulev and E. Viehweg, ''On the Shafarevich conjecture for surfaces of general type over function fields,'' Invent. Math., vol. 139, iss. 3, pp. 603-615, 2000.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic curves over an algebraic number field; Galois module of \(p\)-torsion points; height conjecture; asymptotic Fermat conjecture; principally polarized abelian variety; curves of genus 2 G. Frey, On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2, in Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), Internat. Press, Cambridge, MA, 1995, pp. 79--98.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized \(K3\) surfaces; hyperplane sections; Brill-Noether general curves
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces numerical classification; elliptic surfaces; singular fibers of pencils of curves; curves of genus three Kazuhiro Uematsu, Numerical classification of singular fibers in genus 3 pencils, J. Math. Kyoto Univ. 39 (1999), no. 4, 763 -- 782.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces product of elliptic curves; principally polarized abelian surfaces; Jacobians; family of curves Birkenhake, A family of abelian surfaces and curves of genus 4, Manuscripta Math. 85 pp 393-- (1994)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; complex Monge-Ampère equations; canonical measures; minimal model program with scaling; rough initial data; degenerate initial data; crepant singularities; projective variety
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kähler surfaces; geometric genus; splitting formula; elliptic surfaces; Yau-Zaslow conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces birationally very ample line bundles; factorization of morphism
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonically polarized surfaces; automorphisms; moduli; vector fields; positive characteristic Tziolas, N.: Automorphisms of Smooth Canonically Polarized Surfaces in Positive Characteristic \textbf{(preprint)}. arXiv:1506.08843
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vector bundles on projective surfaces; stable coherent sheaves; moduli spaces; gauge field theory; Donaldson polynomials; Seiberg-Witten invariants; Grauert-Mülich theorem; semi-stable sheaves; geometric invariant theory; conformal quantum field theory; Verlinde formula; Seiberg-Witten theory; Picard groups; determinantal line bundles; Gieseker-Maruyama moduli spaces; Donaldson-Uhlenbeck compactification; differential forms on moduli spaces of stable sheaves; birational properties Hu D.~Huybrechts and M.~Lehn. \newblock \em Geometry of moduli spaces of sheaves, Vol. E31 of \em Aspects in Mathematics. \newblock Vieweg, 1997.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vector bundle; Euclidean ring; arithmetic surface; projective line; filtration; reduction
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces big cotangent bundle; surfaces of general type; canonical singularities
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces upper bound for the dimension of an irreducible component of moduli space; abelian fundamental group of the complement of the branch locus; moduli spaces of surfaces of general type; deformations of Galois covers Catanese, F., On the moduli spaces of surfaces of general type, \textit{J. Differential Geom.}, 19, 2, 483-515, (1984)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Riemann-Roch inequalities; semi-ample line bundles; Hilbert polynomial; semi-ample Cartier divisor; bounded intersection numbers J. Kollár and T. Matsusaka, Riemann-Roch type inequalities, Amer. J. Math. 105 (1983), no. 1, 229-252.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normality of a semigroup; line bundle S. S. Kannan and S. K. Pattanayak, Projective normality of finite group quotients and EGZ theorem, manuscript.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces global semianalytic sets; basic semianalytic sets; excellent rings; moduli of Riemann surfaces; Quillen metric; determinant bundle Andradas, C.; Bröcker, L.; Ruiz, J. M., Minimal generation of basic open semianalytic sets, Invent. Math., 92, 2, 409-430, (1988)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kaehler criteria; projective criteria; logarithmic transformations; torus quasi bundle; abelian variety; elliptic surfaces
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Einstein moduli space; del Pezzo manifold; Kodaira embedding theorem; Euler characteristic; Todd genus; signature; integral cohomology class, Betti number; Stiefel-Whitney class
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Klein surfaces; Yang-Mills equations; vector bundle; Poincaré polynomials Liu, Chiu-Chu Melissa; Schaffhauser, Florent, The Yang-Mills equations over Klein surfaces, J. topol., 6, 3, 569-643, (2013)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces genus 2 curves; \(K3\) surfaces; Tate-Shafarevich group; Brauer-Manin obstruction G. A. Corn and T. M. Corn, \textit{Mathematical Handbook for Scientists and Engineers} (McGraw-Hill, New York, 1961).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Jacobian; line bundles; divisors; spin structures; Klein surfaces; Riemann surface; hyperelliptic surfaces; \(p\)-gonal surfaces
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ADE bundle; ADE singularity; singularities of surfaces; simple Lie algebra; Lie algebra bundle; minimal resolution of an ADE singularity Chen, YX; Leung, NC, ADE bundles over surfaces with ADE singularities, Int. Math. Res. Not., 15, 4049-4084, (2014)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stable vector bundle; semistable vector bundle; Riemann surface; \(\tau\)-stability; stable pairs; moment map; Harder-Narasimhan filtration; quasi-free \(U(1)\) action; vortex equation; moduli spaces of stable vector bundles on curves; moduli spaces of stable pairs on Riemann surfaces S. Bradlow, G. Daskalopoulos and R. Wentworth, Birational equivalences of vortex moduli, Topology 35 (1996), no. 3, 731-748.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces gauged sheaves over global field; adeles; divisors; metrized line bundle; Haar measures; Riemann-Roch formula; Serre duality
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces log-terminal singularity; minimal model; Kodaira dimension; divisor; log canonical quotient singularities; automorphism group; plurigenera of 3-folds Kollár, János, Families of varieties of general type
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces homogeneous complex manifold; k-ampleness; ample vector bundle; bundle convexity; complex Lie group; parabolic; homogeneous vector bundle; weights [Sn2] Snow, D.: On the ampleness of homogeneous vector bundles. Trans. AMS294, 585--594 (1986)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces characterization of projective space; first Chern class; extremal rational curves; ample vector bundle Thomas Peternell, A characterization of \?_{\?} by vector bundles, Math. Z. 205 (1990), no. 3, 487 -- 490.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Riemann surface; moduli space of semistable vector bundles on curves; non-abelian theta-function; determinant line bundle; theta divisor; trisecant identity Ben-Zvi, David and Biswas, Indranil, Theta functions and {S}zegő kernels, International Mathematics Research Notices, 2003, 24, 1305-1340, (2003)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces abelian surface; projective normality; primitive line bundle; theta group DOI: 10.1007/s002290050131
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(J\)-map; classification of minimal elliptic surfaces over a curve; minimal elliptic surfaces; genus 2 curve; singular fiber
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normal bundle; ampleness; line congruence; Grassmannian
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces central simple algebras; Henselian fields; quaternion algebras; conic bundle surfaces; real closed fields; ramification; Fadeev reciprocity law
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces automorphism group; fundamental group; Fuchsian group; normal surface singularity; logarithmic Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces special curves; canonical line bundle H. Clemens, Curves on higher-dimensional complex projective manifolds, In: ``Proceedings of the International Congress of Mathematicians'', (2) 1 (Berkeley, Calif., 1986), 634-640. Zbl0682.14024 MR934266
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Newton-Okounkov bodies; pseudoeffective divisors; Itaka-Kodaira dimension; valuations S. Choi, Y. Hyun, J. Park, and J. Won, Okounkov bodies associated to pseudoeffective divisors, preprint, arXiv:1508.03922. OKOUNKOV BODIES AND ZARISKI DECOMPOSITIONS ON SURFACES1697
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stable surface; Gorenstein stable surface; surfaces on the Noether line; algebraic surface; plane curves; surface of general type; KSBA- compactification; moduli space of stable surfaces; degeneration of mixed Hodge structures
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Albanese mapping; Kodaira dimension; classification of algebraic varieties
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces hyperelliptic curve; genus 2; Gauss-Manin connection; Kodaira-Spencer map Foucault, F.: Equations de Picard -- Fuchs et courbes de genre deux. C. R. Acad. sci. Paris sér. I math. 314, 617-619 (1992)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces wild \(p\)-cyclic action; surface with zero geometric genus and irregularity; \(p\)-torsion of elliptic surface Keum, J, Wild \(p\)-cyclic actions on smooth projective surfaces with \(p_g=q=0\), J. Algebra, 244, 45-58, (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces crystalline cohomology; formal Brauer group; Torelli theorem for polarized ordinary K3 surfaces Nygaard, N. O.: The Torelli theorem for ordinary K3 surfaces over finite fields. Arithmetic and geometry, 267-276 (1983)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample cotangent bundle; abelian variety; algebraic surface; complete intersection
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces maximal orders; Kodaira dimension; ramification; birational divisor
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; moduli space; Prym variety G. Farkas and K. Ludwig, ''The Kodaira dimension of the moduli space of Prym varieties,'' J. Eur. Math. Soc. \((\)JEMS\()\), vol. 12, iss. 3, pp. 755-795, 2010.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces effective cone; nef cone; birational morphism; determinant line bundle; Bridgeland wall-crossing Li, C., Zhao, X.: Birational models of moduli spaces of coherent sheaves on the projective plane (2016). arXiv:1603.05035
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces embedding; very ample divisor; conic bundle; Del Pezzo surface
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized pairs; ample divisor; adjunctions; scrolls over curves; Del Pezzo manifolds; threefolds [Io]P. Ionescu, ``Generalized adjunction and applications{'',Math. Proc. Camb. Phil. Soc., 99 (1986), 457--472.}
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces group variety; Lehmer's problem; Lang-Silverman conjecture; lower bounds for the height of a point; canonical height; admissible line bundle; Abelian variety; torus Bertrand D., ''Minimal heights and polarizations on group varieties''
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic plane curve; genus; unicuspidal curve; bivariate polynomials; discriminant; Newton polygon; Abhyankar-Moh's embedding line theorem
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic curve; linear system; nonspecial line bundle; secant plane; syzygy; Green-Lazarfeld conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized normal varieties; ample Cartier divisor; Riemann-Roch; linear system Matsusaka, T., On polarized normal varieties, I., Nagoya Math. J., 104, 175-211, (1986)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic surface of general type; Severi inequality; Severi line; double covers; irregular varieties; maximal Albanese dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(\Delta\)-genus; polarized surfaces; linear system; finite base locus; rational map; desingularization of a quadric surface M. YOSHIOKA, Polarized surfaces of zl-genus 3 and degree 5, Tohoku Math. J. 44 (1992), 597-612
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quasihomogeneous singularity; graded algebra; Kodaira dimension Flenner, H; Zaidenberg, M, \textit{log-canonical forms and log canonical singularities}, Math. Nachr., 254/255, 107-125, (2003)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of curves; Kodaira dimension; difference variety; Jacobian variety Farkas, G.; Verra, A.: The universal difference variety over m\?g. Rend. circ. Mat. Palermo (2) 62, 97-110 (2013)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rational homology plane; logarithmic Kodaira dimension K. Palka: Classification of singular \(\mathbf{Q}\)-homology planes I, Structure and singularities , Israel J. Math. (2013), 1-33, http://dx.doi.org/10.1007/s11856-012-0123-z, arXiv:
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal surfaces of general type; base points; dimension of the bicanonical image Lopes, M. Mendes; Pardini, R.: A survey on the bicanonical map of surfaces with pg=0 and K2\?2, , 277-287 (2002)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Riemann surface; line bundle; Chern classes
0