filename
stringlengths 7
140
| content
stringlengths 0
76.7M
|
---|---|
code/online_challenges/src/project_euler/problem_003/problem_003.py | def main():
n = 600851475143
h = 0
c = 2
while n != 1:
if n % c == 0 and c > h:
h = c
n /= c
c += 1
print(h)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_004/README.md | # Project Euler Problem #004: Largest palindrome product
([Problem Link](https://projecteuler.net/problem=4))
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 Γ 99.
Find the largest palindrome made from the product of two 3-digit numbers.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_004/problem_004.cpp | #include <iostream>
#include <string>
int main()
{
int l = 0;
for (int i = 100; i <= 999; ++i)
for (int j = 100; j <= 999; ++j)
{
int c = i * j;
std::string cS = std::to_string(c);
if ((cS == std::string{ cS.rbegin(), cS.rend() }) && (c > l))
l = c;
}
std::cout << l << "\n";
}
|
code/online_challenges/src/project_euler/problem_004/problem_004.java | public class problem_004 {
public static void main( String[] args) {
int lar = 0;
// Nested loop to iterate for every three digit number
for(int i = 100; i <= 999; ++i) {
for(int j = 100; j <= 999; ++j) {
int prod = i * j;
int temp = prod;
int sum = 0;
// Loop to reverse the number
while (temp > 0) {
int rem = temp % 10;
sum = (sum * 10) + rem;
temp /= 10;
}
// Statement to check the palindrome condition and store the largest value
if ((prod == sum) && (prod > lar))
lar = prod;
}
}
System.out.println("The largest palindrome made from the product of two 3-digit numbers is " + lar);
}
}
|
code/online_challenges/src/project_euler/problem_004/problem_004.py | def main():
num = 0
for i in range(100, 1000):
for j in range(100, 1000):
c = i * j
cS = str(c)
if cS == cS[::-1] and c > num:
num = c
print(num)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_005/README.md | # Project Euler Problem #005: Smallest multiple
([Problem Link](https://projecteuler.net/problem=5))
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_005/problem_005.c | #include <stdio.h>
int
main(void)
{
int d = 1;
while (!(
(d % 11 == 0) &&
(d % 12 == 0) &&
(d % 13 == 0) &&
(d % 14 == 0) &&
(d % 15 == 0) &&
(d % 16 == 0) &&
(d % 17 == 0) &&
(d % 18 == 0) &&
(d % 19 == 0) &&
(d % 20 == 0)
))
++d;
printf("%d\n", d);
} |
code/online_challenges/src/project_euler/problem_005/problem_005.cpp | #include <iostream>
int main()
{
int d = 1;
while (!(
(d % 11 == 0) &&
(d % 12 == 0) &&
(d % 13 == 0) &&
(d % 14 == 0) &&
(d % 15 == 0) &&
(d % 16 == 0) &&
(d % 17 == 0) &&
(d % 18 == 0) &&
(d % 19 == 0) &&
(d % 20 == 0)
))
++d;
std::cout << d << "\n";
}
|
code/online_challenges/src/project_euler/problem_005/problem_005.java | public class Problem005 {
public static boolean isDivisible(int number) {
for(int i = 1; i <= 20; ++i) {
if(number % i != 0)
return false;
}
return true;
}
public static void main(String []args) {
int number = 1;
while(!isDivisible(number)) {
++number;
}
System.out.println(number);
}
}
|
code/online_challenges/src/project_euler/problem_005/problem_005.py | def gcd(n1, n2):
remainder = 1
while remainder != 0:
remainder = n1 % n2
n1 = n2
n2 = remainder
return n1
def lcm(n1, n2):
return (n1 * n2) / gcd(n1, n2)
def main():
num = 1
for i in range(1, 21):
num = lcm(num, i)
print(num)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_006/README.md | # Project Euler Problem #006: Sum square difference
([Problem Link](https://projecteuler.net/problem=6))
The sum of the squares of the first ten natural numbers is,
<p align="center">
1<sup>2</sup> + 2<sup>2</sup> + ... + 10<sup>2</sup> = 385
</p>
The square of the sum of the first ten natural numbers is,
<p align="center">
(1 + 2 + ... + 10)<sup>2</sup> = 55<sup>2</sup> = 3025
</p>
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 β 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_006/problem_006.cpp | #include <iostream>
int main()
{
long long int sumOfSquares = 0LL;
long int squareOfSum = 0LL;
for (int n = 1; n <= 100; ++n)
{
sumOfSquares += (n * n);
squareOfSum += n;
}
squareOfSum *= squareOfSum;
std::cout << (squareOfSum - sumOfSquares) << "\n";
}
|
code/online_challenges/src/project_euler/problem_006/problem_006.java | import java.util.*;
import java.lang.*;
import java.io.*;
class Problem006{
public static void main(String[] args) {
int sum = 0;
int sqsum = 0;
for (int i = 1; i <= 100; i++) {
sqsum += i * i;
sum += i;
}
System.out.println(sum * sum - sqsum);
}
}
|
code/online_challenges/src/project_euler/problem_006/problem_006.py | def main():
sum_of_squares = 0
square_of_sum = 0
for n in range(1, 101):
sum_of_squares += n * n
square_of_sum += n
square_of_sum *= square_of_sum
print(square_of_sum - sum_of_squares)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_007/README.md | # Project Euler Problem #007: 10001st prime
([Problem Link](https://projecteuler.net/problem=7))
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10 001st prime number?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_007/problem_007.cpp | #include <cmath>
#include <iostream>
#include <vector>
std::vector<long long int> primesUpto(size_t limit) // Function that implements the Sieve of Eratosthenes
{
std::vector<bool> primesBoolArray(limit, true);
std::vector<long long int> primesUptoLimit;
primesBoolArray[0] = primesBoolArray[1] = false;
size_t sqrtLimit = std::sqrt(limit) + 1;
for (size_t i = 0; i < sqrtLimit; ++i)
if (primesBoolArray[i])
for (size_t j = (2 * i); j < limit; j += i)
primesBoolArray[j] = false;
for (size_t i = 0; i < primesBoolArray.size(); ++i)
if (primesBoolArray[i])
primesUptoLimit.push_back(i);
return primesUptoLimit;
}
int main()
{
std::vector<long long int> primes = primesUpto(1000000); // Arbitrary limit
std::cout << primes[10000] << "\n";
}
|
code/online_challenges/src/project_euler/problem_007/problem_007.js | /* Part of Cosmos by OpenGenus Foundation */
const primes = [];
let n = 2;
while (primes.length < 10001) {
// if this number is not divisible by any prime currently in the array
if (primes.reduce((isPrime, prime) => isPrime && n % prime !== 0, true)) {
primes.push(n);
}
n++;
}
console.log(primes[10000]);
|
code/online_challenges/src/project_euler/problem_007/problem_007.py | def main():
n = 10001
x = 2
list_of_primes = []
while len(list_of_primes) < n:
if all(x % prime for prime in list_of_primes):
list_of_primes.append(x)
x += 1
print(list_of_primes[-1])
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_008/README.md | # Project Euler Problem #008: Largest product in a series
([Problem Link](https://projecteuler.net/problem=8))
The four adjacent digits in the 1000-digit number that have the greatest product are 9 Γ 9 Γ 8 Γ 9 = 5832.
<p align="center">
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
</p>
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_008/problem_008.java | // Part of Cosmos by OpenGenus
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
// TODO Auto-generated method stub
String num="7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
int k=13;
int size=num.length();
int[] finale=new int[size];
long largest=0l;
for(int d=0;d<size;d++)
{
finale[d] = num.charAt(d) - '0';
}
for(int j=0;j<size-k+1;j++)
{
long temp=1l;
for(int r=j;r<k+j;r++)
{
long tempt=(long)finale[r];
temp=temp*tempt;
}
if(temp>largest)
{
largest=temp;
}
}
System.out.println(largest);
}
}
|
code/online_challenges/src/project_euler/problem_008/problem_008.py | def main():
numbers = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"
largest_product = 0
for i in range(0, len(numbers) - 13):
current_product = 1
for j in range(i, i + 13):
current_product *= int(numbers[j : j + 1])
if current_product > largest_product:
largest_product = current_product
print(largest_product)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_009/README.md | # Project Euler Problem #009: Special Pythagorean triplet
([Problem Link](https://projecteuler.net/problem=9))
A Pythagorean triplet is a set of three natural numbers, _a_ < _b_ < _c_, for which,
_a_<sup>2</sup> + _b_<sup>2</sup> = _c_<sup>2</sup>
For example, 3<sup>2</sup> + 4<sup>2</sup> = 9 + 16 = 25 = 5<sup>2</sup>.
There exists exactly one Pythagorean triplet for which _a_ + _b_ + _c_ = 1000.
Find the product _abc_.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_009/problem_009.cpp | #include <iostream>
int main()
{
for (int i = 1; i < 1000; ++i)
for (int j = 1; j < 1000; ++j)
{
for (int k = 1; k < 1000; ++k)
if (((i * i) + (j * j) == (k * k)) && ((i + j + k) == 1000))
{
std::cout << i * j * k << "\n";
goto OutsideLoop;
}
}
OutsideLoop: // Need this for breaking outside all three loops
return 0;
}
|
code/online_challenges/src/project_euler/problem_009/problem_009.java | // Part of Cosmos by OpenGenus
public class Solution{
public static void main(String[] args) {
// TODO Auto-generated method stub
long largest=0l;
int flag=0;
long sum=1000;
for(long a=1;a<sum/3;a++)
{
long asq=a*a;
long b=((a*a)-(a-sum)*(a-sum))/(2*(a-sum));
long bsq=b*b;
long c=sum-a-b;
long csq=c*c;
if(asq+bsq==csq)
{
flag=1;
if(a*b*c>largest)
{
largest=a*b*c;
}
}
}
if(largest!=0)
{
System.out.println(largest);
}
if(flag==0)
{
System.out.println(-1);
}
}
}
|
code/online_challenges/src/project_euler/problem_009/problem_009.py | def main():
sum_total = 1000
for c in range(sum_total):
for b in range(c):
for a in range(b):
if (a + b + c == sum_total) and (a ** 2 + b ** 2 == c ** 2):
print(a * b * c)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_010/README.md | # Project Euler Problem #010: Summation of primes
([Problem Link](https://projecteuler.net/problem=10))
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_010/problem_010.cpp | #include <cmath>
#include <iostream>
#include <vector>
long long int sumOfPrimesUpto(size_t limit) // Function that implements the Sieve of Eratosthenes
{
std::vector<bool> primesBoolArray(limit, true);
long long int sum = 0;
primesBoolArray[0] = primesBoolArray[1] = false;
for (size_t i = 2; i < limit; ++i)
if (primesBoolArray[i])
{
sum += i;
for (size_t j = (2 * i); j < limit; j += i)
primesBoolArray[j] = false;
}
return sum;
}
int main()
{
std::cout << sumOfPrimesUpto(2000000) << "\n";
}
|
code/online_challenges/src/project_euler/problem_010/problem_010.java | // Part of Cosmos by OpenGenus
public class Solution {
static boolean checkp(int x)
{
if(x==0 || x==1)
return false;
if (x==2)
{
return true;
}
if(x%2==0)
{
return false;
}
else
{
for (int i=3; i*i<=x; )
{
if (x%i == 0)
{
return false;
}
i=i+2;
}
}
return true;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
long sum=0l;
for(int j=2;j<=2000000;j++)
{
if(checkp(j)==true)
{
sum+=j;
}
}
System.out.println(sum);
}
}
|
code/online_challenges/src/project_euler/problem_010/problem_010.py | def main():
n = 2000000
sum = 0
prime = [True] * n
for p in range(2, n):
if prime[p]:
sum += p
for i in range(p * p, n, p):
prime[i] = False
print(sum)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_011/README.md | # Project Euler Problem #011: Largest product in a grid
([Problem Link](https://projecteuler.net/problem=11))
In the 20Γ20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 Γ 63 Γ 78 Γ 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20Γ20 grid?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
--- |
code/online_challenges/src/project_euler/problem_011/problem_011.cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int n = 20;
int a[n][n];
// Passing the 20 * 20 array as input
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
cin >> a[i][j];
}
}
int dr[8] = {1, 1, 0, -1, -1, -1, 0, 1};
int dc[8] = {0, 1, 1, 1, 0, -1, -1, -1};
int ans = 0;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
for(int k = 0; k < 8; k++)
{
int prod = 1, flag = 0;
for(int steps = 0; steps < 4; steps++)
{
int u = i + steps * dr[k], v = j + steps * dc[k];
if(u >= 0 && u < n && v >= 0 && v < n)
{
prod *= a[u][v];
}
else
{
flag = 1;
}
}
if(flag == 0)
{
ans = max(ans, prod);
}
}
}
}
cout << ans;
}
|
code/online_challenges/src/project_euler/problem_012/README.md | # Project Euler Problem #012: Highly divisible triangular number
([Problem Link](https://projecteuler.net/problem=12))
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_012/problem_012.cpp | #include <iostream>
#include <cmath>
int main()
{
int divisorCount = 0;
int triangleNumberIndex = 0;
int triangleNumber = 0;
while (divisorCount < 500)
{
divisorCount = 0;
++triangleNumberIndex;
triangleNumber += triangleNumberIndex;
for (int i = 1; i < std::sqrt(triangleNumber) + 1; ++i)
if (triangleNumber % i == 0)
divisorCount += (i * i == triangleNumber) ? 1 : 2;
}
std::cout << triangleNumber << "\n";
return 0;
}
|
code/online_challenges/src/project_euler/problem_012/problem_012.py | import math
def main():
i = 1
triangle_number = 0
divisor_count = 0
while divisor_count < 500:
triangle_number += i
i += 1
divisor_count = 0
for z in range(1, int(math.sqrt(triangle_number))):
if triangle_number % z == 0:
divisor_count += 2
print(triangle_number)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_013/README.md | # Project Euler Problem #13: Large Sum
([Problem Link](https://projecteuler.net/problem=13))
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
```
37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690
```
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_013/problem_013.py | def main():
numbers = [
37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690,
]
total = sum(numbers)
print(str(total)[:10])
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_014/README.md | # Project Euler Problem #014: Longest Collatz sequence
([Problem Link](https://projecteuler.net/problem=14))
The following iterative sequence is defined for the set of positive integers:
_n_ β _n_/2 (_n_ is even)
_n_ β 3 _n_ + 1 (_n_ is odd)
Using the rule above and starting with 13, we generate the following sequence:
<p align="center">
13 β 40 β 20 β 10 β 5 β 16 β 8 β 4 β 2 β 1
</p>
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_014/problem_014.cpp | #include <iostream>
long long int collatzSequenceSize(long long int n)
{
long long int result = 0;
while (n != 1)
{
n = (n % 2 == 0) ? n / 2 : n * 3 + 1;
++result;
}
return result;
}
int main()
{
long long int l = 0;
long long int lSize = 0;
for (long long int i = 1; i < 1000000; ++i)
{
long long int currentSize = collatzSequenceSize(i);
if (currentSize > lSize)
{
l = i;
lSize = currentSize;
}
}
std::cout << l << "\n";
}
|
code/online_challenges/src/project_euler/problem_014/problem_014.py | def main():
dic = {n: 0 for n in range(1, 1000000)}
for n in range(3, 1000000, 1):
count = 0
number = n
while True:
if n < number:
dic[number] = dic[n] + count
break
if n % 2 == 0:
n = n / 2
count += 1
else:
n = (3 * n) + 1
count += 1
print(dic.values().index(max(dic.values())) + 1)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_016/README.md | # Project Euler Problem #016: Power digit sum
([Problem Link](https://projecteuler.net/problem=16))
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_016/problem_016.py | def main():
n = 2 ** 1000
s = list(str(n))
ans = 0
for i in s:
ans += int(i)
print(ans)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_017/README.md | # Project Euler Problem #17: Number letter counts
([Problem Link](https://projecteuler.net/problem=17))
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.
If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
--- |
code/online_challenges/src/project_euler/problem_017/problem_017.cpp | #include <bits/stdc++.h>
using namespace std;
int num_letters_func(int n)
{
int num_letters[91];
num_letters[1] = 3;
num_letters[2] = 3;
num_letters[3] = 5;
num_letters[4] = 4;
num_letters[5] = 4;
num_letters[6] = 3;
num_letters[7] = 5;
num_letters[8] = 5;
num_letters[9] = 4;
num_letters[10] = 3;
num_letters[11] = 6;
num_letters[12] = 6;
num_letters[13] = 8;
num_letters[14] = 8;
num_letters[15] = 7;
num_letters[16] = 7;
num_letters[17] = 9;
num_letters[18] = 8;
num_letters[19] = 8;
num_letters[20] = 6;
num_letters[30] = 6;
num_letters[40] = 5;
num_letters[50] = 5;
num_letters[60] = 5;
num_letters[70] = 7;
num_letters[80] = 6;
num_letters[90] = 6;
if(n <= 19)
{
return num_letters[n];
}
else if(n <= 99)
{
int first = n / 10, second = n % 10;
int ret = num_letters[first * 10];
if(second != 0)
{
ret += num_letters[second];
}
return ret;
}
else if(n <= 999)
{
int first = n / 100;
int ret = num_letters[first] + 7;
if(n % 100 == 0)
{
return ret;
}
else
{
return ret + 3 + num_letters_func(n % 100);
}
}
else
{
// if n = 1000
return 11;
}
}
int main()
{
int n = 1000;
int ans = 0;
for(int i = 1; i <= n; i++)
{
ans += num_letters_func(i);
}
cout << ans;
}
|
code/online_challenges/src/project_euler/problem_018/README.md | # Project Euler Problem #18: Maximum path sum I
([Problem Link](https://projecteuler.net/problem=18))
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
<p align="center">
<b>3</b>
<b>7</b> 4
2 <b>4</b> 6
8 5 <b>9</b> 3
</p>
That is, `3 + 7 + 4 + 9 = 23`.
Find the maximum total from top to bottom of the triangle below:
<p align="center">
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
6 3 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
</p>
**NOTE:** As there are only 16384 routes, it is possible to solve this problem by trying every route. However, [Problem 67](https://projecteuler.net/problem=67), is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
--- |
code/online_challenges/src/project_euler/problem_018/problem_018.py | def main():
prob = [
[75],
[95, 64],
[17, 47, 82],
[18, 35, 87, 10],
[20, 4, 82, 47, 65],
[19, 1, 23, 75, 3, 34],
[88, 2, 77, 73, 7, 63, 67],
[99, 65, 4, 28, 6, 16, 70, 92],
[41, 41, 26, 56, 83, 40, 80, 70, 33],
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
[63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
[4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23],
]
for i in range(13, -1, -1):
for j in range(len(prob[i])):
prob[i][j] += max(prob[i + 1][j], prob[i + 1][j + 1])
print(prob[0][0])
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_019/problem_019.java | import java.util.HashMap;
import java.util.Map;
class Problem019 {
public static void main(String args[]){
Map<Integer, String> L = new HashMap<Integer, String>();
L.put(1, "Sun");
L.put(2, "Mon");
L.put(3, "Tue");
L.put(4, "Wed");
L.put(5, "Thurs");
L.put(6, "Fri");
L.put(7, "Sat");
// Start at Monday, 1st, 1900
int counter = 1;
int tally = 0;
// Year
for (int yr = 1900; yr < 2001; ++ yr)
{
System.out.println("Year = " + yr);
// Month
for (int month = 1; month < 13; month ++)
{
int y = findDays(month, yr);
// Number of month days
for (int monthDays = 1; monthDays <= y; monthDays ++)
{
// Start at Monday, 1st, 1900
counter = (counter % 7) + 1;
if ((monthDays == 1) && (L.get(counter) == "Sun"))
{
System.out.println("month_days = " + monthDays);
if( yr != 1900)
tally += 1;
}
}
}
System.out.println();
}
System.out.println("tally = " + tally );
}
public static int findDays(int month, int yr){
int d = 0;
if ((month == 1) || (month == 3) || (month == 5) || (month == 7) ||
(month == 8) || (month == 10) || (month == 12))
{
d = 31;
}
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
{
d = 30;
}
else if (month == 2)
{
d = (yr % 4 == 0 && (yr % 100 != 0 || yr % 400 == 0)) ? 29 : 28;
}
else
{
throw new ArithmeticException("Month is out of bound !");
}
return d;
}
}
|
code/online_challenges/src/project_euler/problem_020/README.md | # Project Euler Problem 20: Factorial digit sum
([Problem Link](https://projecteuler.net/problem=20))
n! means n Γ (n β 1) Γ ... Γ 3 Γ 2 Γ 1
For example, 10! = 10 Γ 9 Γ ... Γ 3 Γ 2 Γ 1 = 3628800,
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
Find the sum of the digits in the number 100!
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_020/problem_020.java | import java.math.BigInteger;
public class Problem_020 {
public static BigInteger factorial(BigInteger number) {
if (number.equals(BigInteger.ZERO))
return BigInteger.ONE;
return (number.multiply(factorial(number.subtract(BigInteger.ONE))));
}
public static BigInteger addDigits(BigInteger n) {
BigInteger sum = BigInteger.ZERO;
while(!n.equals(BigInteger.ZERO)) {
sum = sum.add(n.mod(BigInteger.TEN));
n = n.divide(BigInteger.TEN);
}
return sum;
}
public static void main(String []args) {
BigInteger sum = BigInteger.ZERO;
sum = addDigits(factorial(BigInteger.valueOf(100)));
System.out.println(sum.toString());
}
}
|
code/online_challenges/src/project_euler/problem_020/problem_020.py | def main():
factorial = 1
for i in range(100):
factorial *= i + 1
digit_sum = 0
while factorial > 0:
digit_sum += factorial % 10
factorial = factorial // 10
print(digit_sum)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_021/README.md | # Project Euler Problem #021: Amicable numbers
([Problem Link](https://projecteuler.net/problem=21))
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a β b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_021/problem_021.cpp | #include <iostream>
int sumProperDivisors(int n)
{
int sum = 0;
for (int i = 1; i * i <= n; ++i)
if (n % i == 0)
{
sum += i;
if (n / i != i)
sum += n / i;
}
return sum - n;
}
bool isAmicableNumber(int n)
{
int m = sumProperDivisors(n);
return m != n && sumProperDivisors(m) == n;
}
int main()
{
int result = 0;
for (int i = 1; i < 10000; ++i)
if (isAmicableNumber(i))
result += i;
std::cout << result << std::endl;
return 0;
}
|
code/online_challenges/src/project_euler/problem_022/README.md | # Project Euler Problem #022: Names scores
([Problem Link](https://projecteuler.net/problem=22))
Using ([names.txt](https://projecteuler.net/project/resources/p022_names.txt))(right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.
For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 Γ 53 = 49714.
What is the total of all the name scores in the file?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_022/problem_022.py | def main():
names = [
"MARY",
"PATRICIA",
"LINDA",
"BARBARA",
"ELIZABETH",
"JENNIFER",
"MARIA",
"SUSAN",
"MARGARET",
"DOROTHY",
"LISA",
"NANCY",
"KAREN",
"BETTY",
"HELEN",
"SANDRA",
"DONNA",
"CAROL",
"RUTH",
"SHARON",
"MICHELLE",
"LAURA",
"SARAH",
"KIMBERLY",
"DEBORAH",
"JESSICA",
"SHIRLEY",
"CYNTHIA",
"ANGELA",
"MELISSA",
"BRENDA",
"AMY",
"ANNA",
"REBECCA",
"VIRGINIA",
"KATHLEEN",
"PAMELA",
"MARTHA",
"DEBRA",
"AMANDA",
"STEPHANIE",
"CAROLYN",
"CHRISTINE",
"MARIE",
"JANET",
"CATHERINE",
"FRANCES",
"ANN",
"JOYCE",
"DIANE",
"ALICE",
"JULIE",
"HEATHER",
"TERESA",
"DORIS",
"GLORIA",
"EVELYN",
"JEAN",
"CHERYL",
"MILDRED",
"KATHERINE",
"JOAN",
"ASHLEY",
"JUDITH",
"ROSE",
"JANICE",
"KELLY",
"NICOLE",
"JUDY",
"CHRISTINA",
"KATHY",
"THERESA",
"BEVERLY",
"DENISE",
"TAMMY",
"IRENE",
"JANE",
"LORI",
"RACHEL",
"MARILYN",
"ANDREA",
"KATHRYN",
"LOUISE",
"SARA",
"ANNE",
"JACQUELINE",
"WANDA",
"BONNIE",
"JULIA",
"RUBY",
"LOIS",
"TINA",
"PHYLLIS",
"NORMA",
"PAULA",
"DIANA",
"ANNIE",
"LILLIAN",
"EMILY",
"ROBIN",
"PEGGY",
"CRYSTAL",
"GLADYS",
"RITA",
"DAWN",
"CONNIE",
"FLORENCE",
"TRACY",
"EDNA",
"TIFFANY",
"CARMEN",
"ROSA",
"CINDY",
"GRACE",
"WENDY",
"VICTORIA",
"EDITH",
"KIM",
"SHERRY",
"SYLVIA",
"JOSEPHINE",
"THELMA",
"SHANNON",
"SHEILA",
"ETHEL",
"ELLEN",
"ELAINE",
"MARJORIE",
"CARRIE",
"CHARLOTTE",
"MONICA",
"ESTHER",
"PAULINE",
"EMMA",
"JUANITA",
"ANITA",
"RHONDA",
"HAZEL",
"AMBER",
"EVA",
"DEBBIE",
"APRIL",
"LESLIE",
"CLARA",
"LUCILLE",
"JAMIE",
"JOANNE",
"ELEANOR",
"VALERIE",
"DANIELLE",
"MEGAN",
"ALICIA",
"SUZANNE",
"MICHELE",
"GAIL",
"BERTHA",
"DARLENE",
"VERONICA",
"JILL",
"ERIN",
"GERALDINE",
"LAUREN",
"CATHY",
"JOANN",
"LORRAINE",
"LYNN",
"SALLY",
"REGINA",
"ERICA",
"BEATRICE",
"DOLORES",
"BERNICE",
"AUDREY",
"YVONNE",
"ANNETTE",
"JUNE",
"SAMANTHA",
"MARION",
"DANA",
"STACY",
"ANA",
"RENEE",
"IDA",
"VIVIAN",
"ROBERTA",
"HOLLY",
"BRITTANY",
"MELANIE",
"LORETTA",
"YOLANDA",
"JEANETTE",
"LAURIE",
"KATIE",
"KRISTEN",
"VANESSA",
"ALMA",
"SUE",
"ELSIE",
"BETH",
"JEANNE",
"VICKI",
"CARLA",
"TARA",
"ROSEMARY",
"EILEEN",
"TERRI",
"GERTRUDE",
"LUCY",
"TONYA",
"ELLA",
"STACEY",
"WILMA",
"GINA",
"KRISTIN",
"JESSIE",
"NATALIE",
"AGNES",
"VERA",
"WILLIE",
"CHARLENE",
"BESSIE",
"DELORES",
"MELINDA",
"PEARL",
"ARLENE",
"MAUREEN",
"COLLEEN",
"ALLISON",
"TAMARA",
"JOY",
"GEORGIA",
"CONSTANCE",
"LILLIE",
"CLAUDIA",
"JACKIE",
"MARCIA",
"TANYA",
"NELLIE",
"MINNIE",
"MARLENE",
"HEIDI",
"GLENDA",
"LYDIA",
"VIOLA",
"COURTNEY",
"MARIAN",
"STELLA",
"CAROLINE",
"DORA",
"JO",
"VICKIE",
"MATTIE",
"TERRY",
"MAXINE",
"IRMA",
"MABEL",
"MARSHA",
"MYRTLE",
"LENA",
"CHRISTY",
"DEANNA",
"PATSY",
"HILDA",
"GWENDOLYN",
"JENNIE",
"NORA",
"MARGIE",
"NINA",
"CASSANDRA",
"LEAH",
"PENNY",
"KAY",
"PRISCILLA",
"NAOMI",
"CAROLE",
"BRANDY",
"OLGA",
"BILLIE",
"DIANNE",
"TRACEY",
"LEONA",
"JENNY",
"FELICIA",
"SONIA",
"MIRIAM",
"VELMA",
"BECKY",
"BOBBIE",
"VIOLET",
"KRISTINA",
"TONI",
"MISTY",
"MAE",
"SHELLY",
"DAISY",
"RAMONA",
"SHERRI",
"ERIKA",
"KATRINA",
"CLAIRE",
"LINDSEY",
"LINDSAY",
"GENEVA",
"GUADALUPE",
"BELINDA",
"MARGARITA",
"SHERYL",
"CORA",
"FAYE",
"ADA",
"NATASHA",
"SABRINA",
"ISABEL",
"MARGUERITE",
"HATTIE",
"HARRIET",
"MOLLY",
"CECILIA",
"KRISTI",
"BRANDI",
"BLANCHE",
"SANDY",
"ROSIE",
"JOANNA",
"IRIS",
"EUNICE",
"ANGIE",
"INEZ",
"LYNDA",
"MADELINE",
"AMELIA",
"ALBERTA",
"GENEVIEVE",
"MONIQUE",
"JODI",
"JANIE",
"MAGGIE",
"KAYLA",
"SONYA",
"JAN",
"LEE",
"KRISTINE",
"CANDACE",
"FANNIE",
"MARYANN",
"OPAL",
"ALISON",
"YVETTE",
"MELODY",
"LUZ",
"SUSIE",
"OLIVIA",
"FLORA",
"SHELLEY",
"KRISTY",
"MAMIE",
"LULA",
"LOLA",
"VERNA",
"BEULAH",
"ANTOINETTE",
"CANDICE",
"JUANA",
"JEANNETTE",
"PAM",
"KELLI",
"HANNAH",
"WHITNEY",
"BRIDGET",
"KARLA",
"CELIA",
"LATOYA",
"PATTY",
"SHELIA",
"GAYLE",
"DELLA",
"VICKY",
"LYNNE",
"SHERI",
"MARIANNE",
"KARA",
"JACQUELYN",
"ERMA",
"BLANCA",
"MYRA",
"LETICIA",
"PAT",
"KRISTA",
"ROXANNE",
"ANGELICA",
"JOHNNIE",
"ROBYN",
"FRANCIS",
"ADRIENNE",
"ROSALIE",
"ALEXANDRA",
"BROOKE",
"BETHANY",
"SADIE",
"BERNADETTE",
"TRACI",
"JODY",
"KENDRA",
"JASMINE",
"NICHOLE",
"RACHAEL",
"CHELSEA",
"MABLE",
"ERNESTINE",
"MURIEL",
"MARCELLA",
"ELENA",
"KRYSTAL",
"ANGELINA",
"NADINE",
"KARI",
"ESTELLE",
"DIANNA",
"PAULETTE",
"LORA",
"MONA",
"DOREEN",
"ROSEMARIE",
"ANGEL",
"DESIREE",
"ANTONIA",
"HOPE",
"GINGER",
"JANIS",
"BETSY",
"CHRISTIE",
"FREDA",
"MERCEDES",
"MEREDITH",
"LYNETTE",
"TERI",
"CRISTINA",
"EULA",
"LEIGH",
"MEGHAN",
"SOPHIA",
"ELOISE",
"ROCHELLE",
"GRETCHEN",
"CECELIA",
"RAQUEL",
"HENRIETTA",
"ALYSSA",
"JANA",
"KELLEY",
"GWEN",
"KERRY",
"JENNA",
"TRICIA",
"LAVERNE",
"OLIVE",
"ALEXIS",
"TASHA",
"SILVIA",
"ELVIRA",
"CASEY",
"DELIA",
"SOPHIE",
"KATE",
"PATTI",
"LORENA",
"KELLIE",
"SONJA",
"LILA",
"LANA",
"DARLA",
"MAY",
"MINDY",
"ESSIE",
"MANDY",
"LORENE",
"ELSA",
"JOSEFINA",
"JEANNIE",
"MIRANDA",
"DIXIE",
"LUCIA",
"MARTA",
"FAITH",
"LELA",
"JOHANNA",
"SHARI",
"CAMILLE",
"TAMI",
"SHAWNA",
"ELISA",
"EBONY",
"MELBA",
"ORA",
"NETTIE",
"TABITHA",
"OLLIE",
"JAIME",
"WINIFRED",
"KRISTIE",
"MARINA",
"ALISHA",
"AIMEE",
"RENA",
"MYRNA",
"MARLA",
"TAMMIE",
"LATASHA",
"BONITA",
"PATRICE",
"RONDA",
"SHERRIE",
"ADDIE",
"FRANCINE",
"DELORIS",
"STACIE",
"ADRIANA",
"CHERI",
"SHELBY",
"ABIGAIL",
"CELESTE",
"JEWEL",
"CARA",
"ADELE",
"REBEKAH",
"LUCINDA",
"DORTHY",
"CHRIS",
"EFFIE",
"TRINA",
"REBA",
"SHAWN",
"SALLIE",
"AURORA",
"LENORA",
"ETTA",
"LOTTIE",
"KERRI",
"TRISHA",
"NIKKI",
"ESTELLA",
"FRANCISCA",
"JOSIE",
"TRACIE",
"MARISSA",
"KARIN",
"BRITTNEY",
"JANELLE",
"LOURDES",
"LAUREL",
"HELENE",
"FERN",
"ELVA",
"CORINNE",
"KELSEY",
"INA",
"BETTIE",
"ELISABETH",
"AIDA",
"CAITLIN",
"INGRID",
"IVA",
"EUGENIA",
"CHRISTA",
"GOLDIE",
"CASSIE",
"MAUDE",
"JENIFER",
"THERESE",
"FRANKIE",
"DENA",
"LORNA",
"JANETTE",
"LATONYA",
"CANDY",
"MORGAN",
"CONSUELO",
"TAMIKA",
"ROSETTA",
"DEBORA",
"CHERIE",
"POLLY",
"DINA",
"JEWELL",
"FAY",
"JILLIAN",
"DOROTHEA",
"NELL",
"TRUDY",
"ESPERANZA",
"PATRICA",
"KIMBERLEY",
"SHANNA",
"HELENA",
"CAROLINA",
"CLEO",
"STEFANIE",
"ROSARIO",
"OLA",
"JANINE",
"MOLLIE",
"LUPE",
"ALISA",
"LOU",
"MARIBEL",
"SUSANNE",
"BETTE",
"SUSANA",
"ELISE",
"CECILE",
"ISABELLE",
"LESLEY",
"JOCELYN",
"PAIGE",
"JONI",
"RACHELLE",
"LEOLA",
"DAPHNE",
"ALTA",
"ESTER",
"PETRA",
"GRACIELA",
"IMOGENE",
"JOLENE",
"KEISHA",
"LACEY",
"GLENNA",
"GABRIELA",
"KERI",
"URSULA",
"LIZZIE",
"KIRSTEN",
"SHANA",
"ADELINE",
"MAYRA",
"JAYNE",
"JACLYN",
"GRACIE",
"SONDRA",
"CARMELA",
"MARISA",
"ROSALIND",
"CHARITY",
"TONIA",
"BEATRIZ",
"MARISOL",
"CLARICE",
"JEANINE",
"SHEENA",
"ANGELINE",
"FRIEDA",
"LILY",
"ROBBIE",
"SHAUNA",
"MILLIE",
"CLAUDETTE",
"CATHLEEN",
"ANGELIA",
"GABRIELLE",
"AUTUMN",
"KATHARINE",
"SUMMER",
"JODIE",
"STACI",
"LEA",
"CHRISTI",
"JIMMIE",
"JUSTINE",
"ELMA",
"LUELLA",
"MARGRET",
"DOMINIQUE",
"SOCORRO",
"RENE",
"MARTINA",
"MARGO",
"MAVIS",
"CALLIE",
"BOBBI",
"MARITZA",
"LUCILE",
"LEANNE",
"JEANNINE",
"DEANA",
"AILEEN",
"LORIE",
"LADONNA",
"WILLA",
"MANUELA",
"GALE",
"SELMA",
"DOLLY",
"SYBIL",
"ABBY",
"LARA",
"DALE",
"IVY",
"DEE",
"WINNIE",
"MARCY",
"LUISA",
"JERI",
"MAGDALENA",
"OFELIA",
"MEAGAN",
"AUDRA",
"MATILDA",
"LEILA",
"CORNELIA",
"BIANCA",
"SIMONE",
"BETTYE",
"RANDI",
"VIRGIE",
"LATISHA",
"BARBRA",
"GEORGINA",
"ELIZA",
"LEANN",
"BRIDGETTE",
"RHODA",
"HALEY",
"ADELA",
"NOLA",
"BERNADINE",
"FLOSSIE",
"ILA",
"GRETA",
"RUTHIE",
"NELDA",
"MINERVA",
"LILLY",
"TERRIE",
"LETHA",
"HILARY",
"ESTELA",
"VALARIE",
"BRIANNA",
"ROSALYN",
"EARLINE",
"CATALINA",
"AVA",
"MIA",
"CLARISSA",
"LIDIA",
"CORRINE",
"ALEXANDRIA",
"CONCEPCION",
"TIA",
"SHARRON",
"RAE",
"DONA",
"ERICKA",
"JAMI",
"ELNORA",
"CHANDRA",
"LENORE",
"NEVA",
"MARYLOU",
"MELISA",
"TABATHA",
"SERENA",
"AVIS",
"ALLIE",
"SOFIA",
"JEANIE",
"ODESSA",
"NANNIE",
"HARRIETT",
"LORAINE",
"PENELOPE",
"MILAGROS",
"EMILIA",
"BENITA",
"ALLYSON",
"ASHLEE",
"TANIA",
"TOMMIE",
"ESMERALDA",
"KARINA",
"EVE",
"PEARLIE",
"ZELMA",
"MALINDA",
"NOREEN",
"TAMEKA",
"SAUNDRA",
"HILLARY",
"AMIE",
"ALTHEA",
"ROSALINDA",
"JORDAN",
"LILIA",
"ALANA",
"GAY",
"CLARE",
"ALEJANDRA",
"ELINOR",
"MICHAEL",
"LORRIE",
"JERRI",
"DARCY",
"EARNESTINE",
"CARMELLA",
"TAYLOR",
"NOEMI",
"MARCIE",
"LIZA",
"ANNABELLE",
"LOUISA",
"EARLENE",
"MALLORY",
"CARLENE",
"NITA",
"SELENA",
"TANISHA",
"KATY",
"JULIANNE",
"JOHN",
"LAKISHA",
"EDWINA",
"MARICELA",
"MARGERY",
"KENYA",
"DOLLIE",
"ROXIE",
"ROSLYN",
"KATHRINE",
"NANETTE",
"CHARMAINE",
"LAVONNE",
"ILENE",
"KRIS",
"TAMMI",
"SUZETTE",
"CORINE",
"KAYE",
"JERRY",
"MERLE",
"CHRYSTAL",
"LINA",
"DEANNE",
"LILIAN",
"JULIANA",
"ALINE",
"LUANN",
"KASEY",
"MARYANNE",
"EVANGELINE",
"COLETTE",
"MELVA",
"LAWANDA",
"YESENIA",
"NADIA",
"MADGE",
"KATHIE",
"EDDIE",
"OPHELIA",
"VALERIA",
"NONA",
"MITZI",
"MARI",
"GEORGETTE",
"CLAUDINE",
"FRAN",
"ALISSA",
"ROSEANN",
"LAKEISHA",
"SUSANNA",
"REVA",
"DEIDRE",
"CHASITY",
"SHEREE",
"CARLY",
"JAMES",
"ELVIA",
"ALYCE",
"DEIRDRE",
"GENA",
"BRIANA",
"ARACELI",
"KATELYN",
"ROSANNE",
"WENDI",
"TESSA",
"BERTA",
"MARVA",
"IMELDA",
"MARIETTA",
"MARCI",
"LEONOR",
"ARLINE",
"SASHA",
"MADELYN",
"JANNA",
"JULIETTE",
"DEENA",
"AURELIA",
"JOSEFA",
"AUGUSTA",
"LILIANA",
"YOUNG",
"CHRISTIAN",
"LESSIE",
"AMALIA",
"SAVANNAH",
"ANASTASIA",
"VILMA",
"NATALIA",
"ROSELLA",
"LYNNETTE",
"CORINA",
"ALFREDA",
"LEANNA",
"CAREY",
"AMPARO",
"COLEEN",
"TAMRA",
"AISHA",
"WILDA",
"KARYN",
"CHERRY",
"QUEEN",
"MAURA",
"MAI",
"EVANGELINA",
"ROSANNA",
"HALLIE",
"ERNA",
"ENID",
"MARIANA",
"LACY",
"JULIET",
"JACKLYN",
"FREIDA",
"MADELEINE",
"MARA",
"HESTER",
"CATHRYN",
"LELIA",
"CASANDRA",
"BRIDGETT",
"ANGELITA",
"JANNIE",
"DIONNE",
"ANNMARIE",
"KATINA",
"BERYL",
"PHOEBE",
"MILLICENT",
"KATHERYN",
"DIANN",
"CARISSA",
"MARYELLEN",
"LIZ",
"LAURI",
"HELGA",
"GILDA",
"ADRIAN",
"RHEA",
"MARQUITA",
"HOLLIE",
"TISHA",
"TAMERA",
"ANGELIQUE",
"FRANCESCA",
"BRITNEY",
"KAITLIN",
"LOLITA",
"FLORINE",
"ROWENA",
"REYNA",
"TWILA",
"FANNY",
"JANELL",
"INES",
"CONCETTA",
"BERTIE",
"ALBA",
"BRIGITTE",
"ALYSON",
"VONDA",
"PANSY",
"ELBA",
"NOELLE",
"LETITIA",
"KITTY",
"DEANN",
"BRANDIE",
"LOUELLA",
"LETA",
"FELECIA",
"SHARLENE",
"LESA",
"BEVERLEY",
"ROBERT",
"ISABELLA",
"HERMINIA",
"TERRA",
"CELINA",
"TORI",
"OCTAVIA",
"JADE",
"DENICE",
"GERMAINE",
"SIERRA",
"MICHELL",
"CORTNEY",
"NELLY",
"DORETHA",
"SYDNEY",
"DEIDRA",
"MONIKA",
"LASHONDA",
"JUDI",
"CHELSEY",
"ANTIONETTE",
"MARGOT",
"BOBBY",
"ADELAIDE",
"NAN",
"LEEANN",
"ELISHA",
"DESSIE",
"LIBBY",
"KATHI",
"GAYLA",
"LATANYA",
"MINA",
"MELLISA",
"KIMBERLEE",
"JASMIN",
"RENAE",
"ZELDA",
"ELDA",
"MA",
"JUSTINA",
"GUSSIE",
"EMILIE",
"CAMILLA",
"ABBIE",
"ROCIO",
"KAITLYN",
"JESSE",
"EDYTHE",
"ASHLEIGH",
"SELINA",
"LAKESHA",
"GERI",
"ALLENE",
"PAMALA",
"MICHAELA",
"DAYNA",
"CARYN",
"ROSALIA",
"SUN",
"JACQULINE",
"REBECA",
"MARYBETH",
"KRYSTLE",
"IOLA",
"DOTTIE",
"BENNIE",
"BELLE",
"AUBREY",
"GRISELDA",
"ERNESTINA",
"ELIDA",
"ADRIANNE",
"DEMETRIA",
"DELMA",
"CHONG",
"JAQUELINE",
"DESTINY",
"ARLEEN",
"VIRGINA",
"RETHA",
"FATIMA",
"TILLIE",
"ELEANORE",
"CARI",
"TREVA",
"BIRDIE",
"WILHELMINA",
"ROSALEE",
"MAURINE",
"LATRICE",
"YONG",
"JENA",
"TARYN",
"ELIA",
"DEBBY",
"MAUDIE",
"JEANNA",
"DELILAH",
"CATRINA",
"SHONDA",
"HORTENCIA",
"THEODORA",
"TERESITA",
"ROBBIN",
"DANETTE",
"MARYJANE",
"FREDDIE",
"DELPHINE",
"BRIANNE",
"NILDA",
"DANNA",
"CINDI",
"BESS",
"IONA",
"HANNA",
"ARIEL",
"WINONA",
"VIDA",
"ROSITA",
"MARIANNA",
"WILLIAM",
"RACHEAL",
"GUILLERMINA",
"ELOISA",
"CELESTINE",
"CAREN",
"MALISSA",
"LONA",
"CHANTEL",
"SHELLIE",
"MARISELA",
"LEORA",
"AGATHA",
"SOLEDAD",
"MIGDALIA",
"IVETTE",
"CHRISTEN",
"ATHENA",
"JANEL",
"CHLOE",
"VEDA",
"PATTIE",
"TESSIE",
"TERA",
"MARILYNN",
"LUCRETIA",
"KARRIE",
"DINAH",
"DANIELA",
"ALECIA",
"ADELINA",
"VERNICE",
"SHIELA",
"PORTIA",
"MERRY",
"LASHAWN",
"DEVON",
"DARA",
"TAWANA",
"OMA",
"VERDA",
"CHRISTIN",
"ALENE",
"ZELLA",
"SANDI",
"RAFAELA",
"MAYA",
"KIRA",
"CANDIDA",
"ALVINA",
"SUZAN",
"SHAYLA",
"LYN",
"LETTIE",
"ALVA",
"SAMATHA",
"ORALIA",
"MATILDE",
"MADONNA",
"LARISSA",
"VESTA",
"RENITA",
"INDIA",
"DELOIS",
"SHANDA",
"PHILLIS",
"LORRI",
"ERLINDA",
"CRUZ",
"CATHRINE",
"BARB",
"ZOE",
"ISABELL",
"IONE",
"GISELA",
"CHARLIE",
"VALENCIA",
"ROXANNA",
"MAYME",
"KISHA",
"ELLIE",
"MELLISSA",
"DORRIS",
"DALIA",
"BELLA",
"ANNETTA",
"ZOILA",
"RETA",
"REINA",
"LAURETTA",
"KYLIE",
"CHRISTAL",
"PILAR",
"CHARLA",
"ELISSA",
"TIFFANI",
"TANA",
"PAULINA",
"LEOTA",
"BREANNA",
"JAYME",
"CARMEL",
"VERNELL",
"TOMASA",
"MANDI",
"DOMINGA",
"SANTA",
"MELODIE",
"LURA",
"ALEXA",
"TAMELA",
"RYAN",
"MIRNA",
"KERRIE",
"VENUS",
"NOEL",
"FELICITA",
"CRISTY",
"CARMELITA",
"BERNIECE",
"ANNEMARIE",
"TIARA",
"ROSEANNE",
"MISSY",
"CORI",
"ROXANA",
"PRICILLA",
"KRISTAL",
"JUNG",
"ELYSE",
"HAYDEE",
"ALETHA",
"BETTINA",
"MARGE",
"GILLIAN",
"FILOMENA",
"CHARLES",
"ZENAIDA",
"HARRIETTE",
"CARIDAD",
"VADA",
"UNA",
"ARETHA",
"PEARLINE",
"MARJORY",
"MARCELA",
"FLOR",
"EVETTE",
"ELOUISE",
"ALINA",
"TRINIDAD",
"DAVID",
"DAMARIS",
"CATHARINE",
"CARROLL",
"BELVA",
"NAKIA",
"MARLENA",
"LUANNE",
"LORINE",
"KARON",
"DORENE",
"DANITA",
"BRENNA",
"TATIANA",
"SAMMIE",
"LOUANN",
"LOREN",
"JULIANNA",
"ANDRIA",
"PHILOMENA",
"LUCILA",
"LEONORA",
"DOVIE",
"ROMONA",
"MIMI",
"JACQUELIN",
"GAYE",
"TONJA",
"MISTI",
"JOE",
"GENE",
"CHASTITY",
"STACIA",
"ROXANN",
"MICAELA",
"NIKITA",
"MEI",
"VELDA",
"MARLYS",
"JOHNNA",
"AURA",
"LAVERN",
"IVONNE",
"HAYLEY",
"NICKI",
"MAJORIE",
"HERLINDA",
"GEORGE",
"ALPHA",
"YADIRA",
"PERLA",
"GREGORIA",
"DANIEL",
"ANTONETTE",
"SHELLI",
"MOZELLE",
"MARIAH",
"JOELLE",
"CORDELIA",
"JOSETTE",
"CHIQUITA",
"TRISTA",
"LOUIS",
"LAQUITA",
"GEORGIANA",
"CANDI",
"SHANON",
"LONNIE",
"HILDEGARD",
"CECIL",
"VALENTINA",
"STEPHANY",
"MAGDA",
"KAROL",
"GERRY",
"GABRIELLA",
"TIANA",
"ROMA",
"RICHELLE",
"RAY",
"PRINCESS",
"OLETA",
"JACQUE",
"IDELLA",
"ALAINA",
"SUZANNA",
"JOVITA",
"BLAIR",
"TOSHA",
"RAVEN",
"NEREIDA",
"MARLYN",
"KYLA",
"JOSEPH",
"DELFINA",
"TENA",
"STEPHENIE",
"SABINA",
"NATHALIE",
"MARCELLE",
"GERTIE",
"DARLEEN",
"THEA",
"SHARONDA",
"SHANTEL",
"BELEN",
"VENESSA",
"ROSALINA",
"ONA",
"GENOVEVA",
"COREY",
"CLEMENTINE",
"ROSALBA",
"RENATE",
"RENATA",
"MI",
"IVORY",
"GEORGIANNA",
"FLOY",
"DORCAS",
"ARIANA",
"TYRA",
"THEDA",
"MARIAM",
"JULI",
"JESICA",
"DONNIE",
"VIKKI",
"VERLA",
"ROSELYN",
"MELVINA",
"JANNETTE",
"GINNY",
"DEBRAH",
"CORRIE",
"ASIA",
"VIOLETA",
"MYRTIS",
"LATRICIA",
"COLLETTE",
"CHARLEEN",
"ANISSA",
"VIVIANA",
"TWYLA",
"PRECIOUS",
"NEDRA",
"LATONIA",
"LAN",
"HELLEN",
"FABIOLA",
"ANNAMARIE",
"ADELL",
"SHARYN",
"CHANTAL",
"NIKI",
"MAUD",
"LIZETTE",
"LINDY",
"KIA",
"KESHA",
"JEANA",
"DANELLE",
"CHARLINE",
"CHANEL",
"CARROL",
"VALORIE",
"LIA",
"DORTHA",
"CRISTAL",
"SUNNY",
"LEONE",
"LEILANI",
"GERRI",
"DEBI",
"ANDRA",
"KESHIA",
"IMA",
"EULALIA",
"EASTER",
"DULCE",
"NATIVIDAD",
"LINNIE",
"KAMI",
"GEORGIE",
"CATINA",
"BROOK",
"ALDA",
"WINNIFRED",
"SHARLA",
"RUTHANN",
"MEAGHAN",
"MAGDALENE",
"LISSETTE",
"ADELAIDA",
"VENITA",
"TRENA",
"SHIRLENE",
"SHAMEKA",
"ELIZEBETH",
"DIAN",
"SHANTA",
"MICKEY",
"LATOSHA",
"CARLOTTA",
"WINDY",
"SOON",
"ROSINA",
"MARIANN",
"LEISA",
"JONNIE",
"DAWNA",
"CATHIE",
"BILLY",
"ASTRID",
"SIDNEY",
"LAUREEN",
"JANEEN",
"HOLLI",
"FAWN",
"VICKEY",
"TERESSA",
"SHANTE",
"RUBYE",
"MARCELINA",
"CHANDA",
"CARY",
"TERESE",
"SCARLETT",
"MARTY",
"MARNIE",
"LULU",
"LISETTE",
"JENIFFER",
"ELENOR",
"DORINDA",
"DONITA",
"CARMAN",
"BERNITA",
"ALTAGRACIA",
"ALETA",
"ADRIANNA",
"ZORAIDA",
"RONNIE",
"NICOLA",
"LYNDSEY",
"KENDALL",
"JANINA",
"CHRISSY",
"AMI",
"STARLA",
"PHYLIS",
"PHUONG",
"KYRA",
"CHARISSE",
"BLANCH",
"SANJUANITA",
"RONA",
"NANCI",
"MARILEE",
"MARANDA",
"CORY",
"BRIGETTE",
"SANJUANA",
"MARITA",
"KASSANDRA",
"JOYCELYN",
"IRA",
"FELIPA",
"CHELSIE",
"BONNY",
"MIREYA",
"LORENZA",
"KYONG",
"ILEANA",
"CANDELARIA",
"TONY",
"TOBY",
"SHERIE",
"OK",
"MARK",
"LUCIE",
"LEATRICE",
"LAKESHIA",
"GERDA",
"EDIE",
"BAMBI",
"MARYLIN",
"LAVON",
"HORTENSE",
"GARNET",
"EVIE",
"TRESSA",
"SHAYNA",
"LAVINA",
"KYUNG",
"JEANETTA",
"SHERRILL",
"SHARA",
"PHYLISS",
"MITTIE",
"ANABEL",
"ALESIA",
"THUY",
"TAWANDA",
"RICHARD",
"JOANIE",
"TIFFANIE",
"LASHANDA",
"KARISSA",
"ENRIQUETA",
"DARIA",
"DANIELLA",
"CORINNA",
"ALANNA",
"ABBEY",
"ROXANE",
"ROSEANNA",
"MAGNOLIA",
"LIDA",
"KYLE",
"JOELLEN",
"ERA",
"CORAL",
"CARLEEN",
"TRESA",
"PEGGIE",
"NOVELLA",
"NILA",
"MAYBELLE",
"JENELLE",
"CARINA",
"NOVA",
"MELINA",
"MARQUERITE",
"MARGARETTE",
"JOSEPHINA",
"EVONNE",
"DEVIN",
"CINTHIA",
"ALBINA",
"TOYA",
"TAWNYA",
"SHERITA",
"SANTOS",
"MYRIAM",
"LIZABETH",
"LISE",
"KEELY",
"JENNI",
"GISELLE",
"CHERYLE",
"ARDITH",
"ARDIS",
"ALESHA",
"ADRIANE",
"SHAINA",
"LINNEA",
"KAROLYN",
"HONG",
"FLORIDA",
"FELISHA",
"DORI",
"DARCI",
"ARTIE",
"ARMIDA",
"ZOLA",
"XIOMARA",
"VERGIE",
"SHAMIKA",
"NENA",
"NANNETTE",
"MAXIE",
"LOVIE",
"JEANE",
"JAIMIE",
"INGE",
"FARRAH",
"ELAINA",
"CAITLYN",
"STARR",
"FELICITAS",
"CHERLY",
"CARYL",
"YOLONDA",
"YASMIN",
"TEENA",
"PRUDENCE",
"PENNIE",
"NYDIA",
"MACKENZIE",
"ORPHA",
"MARVEL",
"LIZBETH",
"LAURETTE",
"JERRIE",
"HERMELINDA",
"CAROLEE",
"TIERRA",
"MIRIAN",
"META",
"MELONY",
"KORI",
"JENNETTE",
"JAMILA",
"ENA",
"ANH",
"YOSHIKO",
"SUSANNAH",
"SALINA",
"RHIANNON",
"JOLEEN",
"CRISTINE",
"ASHTON",
"ARACELY",
"TOMEKA",
"SHALONDA",
"MARTI",
"LACIE",
"KALA",
"JADA",
"ILSE",
"HAILEY",
"BRITTANI",
"ZONA",
"SYBLE",
"SHERRYL",
"RANDY",
"NIDIA",
"MARLO",
"KANDICE",
"KANDI",
"DEB",
"DEAN",
"AMERICA",
"ALYCIA",
"TOMMY",
"RONNA",
"NORENE",
"MERCY",
"JOSE",
"INGEBORG",
"GIOVANNA",
"GEMMA",
"CHRISTEL",
"AUDRY",
"ZORA",
"VITA",
"VAN",
"TRISH",
"STEPHAINE",
"SHIRLEE",
"SHANIKA",
"MELONIE",
"MAZIE",
"JAZMIN",
"INGA",
"HOA",
"HETTIE",
"GERALYN",
"FONDA",
"ESTRELLA",
"ADELLA",
"SU",
"SARITA",
"RINA",
"MILISSA",
"MARIBETH",
"GOLDA",
"EVON",
"ETHELYN",
"ENEDINA",
"CHERISE",
"CHANA",
"VELVA",
"TAWANNA",
"SADE",
"MIRTA",
"LI",
"KARIE",
"JACINTA",
"ELNA",
"DAVINA",
"CIERRA",
"ASHLIE",
"ALBERTHA",
"TANESHA",
"STEPHANI",
"NELLE",
"MINDI",
"LU",
"LORINDA",
"LARUE",
"FLORENE",
"DEMETRA",
"DEDRA",
"CIARA",
"CHANTELLE",
"ASHLY",
"SUZY",
"ROSALVA",
"NOELIA",
"LYDA",
"LEATHA",
"KRYSTYNA",
"KRISTAN",
"KARRI",
"DARLINE",
"DARCIE",
"CINDA",
"CHEYENNE",
"CHERRIE",
"AWILDA",
"ALMEDA",
"ROLANDA",
"LANETTE",
"JERILYN",
"GISELE",
"EVALYN",
"CYNDI",
"CLETA",
"CARIN",
"ZINA",
"ZENA",
"VELIA",
"TANIKA",
"PAUL",
"CHARISSA",
"THOMAS",
"TALIA",
"MARGARETE",
"LAVONDA",
"KAYLEE",
"KATHLENE",
"JONNA",
"IRENA",
"ILONA",
"IDALIA",
"CANDIS",
"CANDANCE",
"BRANDEE",
"ANITRA",
"ALIDA",
"SIGRID",
"NICOLETTE",
"MARYJO",
"LINETTE",
"HEDWIG",
"CHRISTIANA",
"CASSIDY",
"ALEXIA",
"TRESSIE",
"MODESTA",
"LUPITA",
"LITA",
"GLADIS",
"EVELIA",
"DAVIDA",
"CHERRI",
"CECILY",
"ASHELY",
"ANNABEL",
"AGUSTINA",
"WANITA",
"SHIRLY",
"ROSAURA",
"HULDA",
"EUN",
"BAILEY",
"YETTA",
"VERONA",
"THOMASINA",
"SIBYL",
"SHANNAN",
"MECHELLE",
"LUE",
"LEANDRA",
"LANI",
"KYLEE",
"KANDY",
"JOLYNN",
"FERNE",
"EBONI",
"CORENE",
"ALYSIA",
"ZULA",
"NADA",
"MOIRA",
"LYNDSAY",
"LORRETTA",
"JUAN",
"JAMMIE",
"HORTENSIA",
"GAYNELL",
"CAMERON",
"ADRIA",
"VINA",
"VICENTA",
"TANGELA",
"STEPHINE",
"NORINE",
"NELLA",
"LIANA",
"LESLEE",
"KIMBERELY",
"ILIANA",
"GLORY",
"FELICA",
"EMOGENE",
"ELFRIEDE",
"EDEN",
"EARTHA",
"CARMA",
"BEA",
"OCIE",
"MARRY",
"LENNIE",
"KIARA",
"JACALYN",
"CARLOTA",
"ARIELLE",
"YU",
"STAR",
"OTILIA",
"KIRSTIN",
"KACEY",
"JOHNETTA",
"JOEY",
"JOETTA",
"JERALDINE",
"JAUNITA",
"ELANA",
"DORTHEA",
"CAMI",
"AMADA",
"ADELIA",
"VERNITA",
"TAMAR",
"SIOBHAN",
"RENEA",
"RASHIDA",
"OUIDA",
"ODELL",
"NILSA",
"MERYL",
"KRISTYN",
"JULIETA",
"DANICA",
"BREANNE",
"AUREA",
"ANGLEA",
"SHERRON",
"ODETTE",
"MALIA",
"LORELEI",
"LIN",
"LEESA",
"KENNA",
"KATHLYN",
"FIONA",
"CHARLETTE",
"SUZIE",
"SHANTELL",
"SABRA",
"RACQUEL",
"MYONG",
"MIRA",
"MARTINE",
"LUCIENNE",
"LAVADA",
"JULIANN",
"JOHNIE",
"ELVERA",
"DELPHIA",
"CLAIR",
"CHRISTIANE",
"CHAROLETTE",
"CARRI",
"AUGUSTINE",
"ASHA",
"ANGELLA",
"PAOLA",
"NINFA",
"LEDA",
"LAI",
"EDA",
"SUNSHINE",
"STEFANI",
"SHANELL",
"PALMA",
"MACHELLE",
"LISSA",
"KECIA",
"KATHRYNE",
"KARLENE",
"JULISSA",
"JETTIE",
"JENNIFFER",
"HUI",
"CORRINA",
"CHRISTOPHER",
"CAROLANN",
"ALENA",
"TESS",
"ROSARIA",
"MYRTICE",
"MARYLEE",
"LIANE",
"KENYATTA",
"JUDIE",
"JANEY",
"IN",
"ELMIRA",
"ELDORA",
"DENNA",
"CRISTI",
"CATHI",
"ZAIDA",
"VONNIE",
"VIVA",
"VERNIE",
"ROSALINE",
"MARIELA",
"LUCIANA",
"LESLI",
"KARAN",
"FELICE",
"DENEEN",
"ADINA",
"WYNONA",
"TARSHA",
"SHERON",
"SHASTA",
"SHANITA",
"SHANI",
"SHANDRA",
"RANDA",
"PINKIE",
"PARIS",
"NELIDA",
"MARILOU",
"LYLA",
"LAURENE",
"LACI",
"JOI",
"JANENE",
"DOROTHA",
"DANIELE",
"DANI",
"CAROLYNN",
"CARLYN",
"BERENICE",
"AYESHA",
"ANNELIESE",
"ALETHEA",
"THERSA",
"TAMIKO",
"RUFINA",
"OLIVA",
"MOZELL",
"MARYLYN",
"MADISON",
"KRISTIAN",
"KATHYRN",
"KASANDRA",
"KANDACE",
"JANAE",
"GABRIEL",
"DOMENICA",
"DEBBRA",
"DANNIELLE",
"CHUN",
"BUFFY",
"BARBIE",
"ARCELIA",
"AJA",
"ZENOBIA",
"SHAREN",
"SHAREE",
"PATRICK",
"PAGE",
"MY",
"LAVINIA",
"KUM",
"KACIE",
"JACKELINE",
"HUONG",
"FELISA",
"EMELIA",
"ELEANORA",
"CYTHIA",
"CRISTIN",
"CLYDE",
"CLARIBEL",
"CARON",
"ANASTACIA",
"ZULMA",
"ZANDRA",
"YOKO",
"TENISHA",
"SUSANN",
"SHERILYN",
"SHAY",
"SHAWANDA",
"SABINE",
"ROMANA",
"MATHILDA",
"LINSEY",
"KEIKO",
"JOANA",
"ISELA",
"GRETTA",
"GEORGETTA",
"EUGENIE",
"DUSTY",
"DESIRAE",
"DELORA",
"CORAZON",
"ANTONINA",
"ANIKA",
"WILLENE",
"TRACEE",
"TAMATHA",
"REGAN",
"NICHELLE",
"MICKIE",
"MAEGAN",
"LUANA",
"LANITA",
"KELSIE",
"EDELMIRA",
"BREE",
"AFTON",
"TEODORA",
"TAMIE",
"SHENA",
"MEG",
"LINH",
"KELI",
"KACI",
"DANYELLE",
"BRITT",
"ARLETTE",
"ALBERTINE",
"ADELLE",
"TIFFINY",
"STORMY",
"SIMONA",
"NUMBERS",
"NICOLASA",
"NICHOL",
"NIA",
"NAKISHA",
"MEE",
"MAIRA",
"LOREEN",
"KIZZY",
"JOHNNY",
"JAY",
"FALLON",
"CHRISTENE",
"BOBBYE",
"ANTHONY",
"YING",
"VINCENZA",
"TANJA",
"RUBIE",
"RONI",
"QUEENIE",
"MARGARETT",
"KIMBERLI",
"IRMGARD",
"IDELL",
"HILMA",
"EVELINA",
"ESTA",
"EMILEE",
"DENNISE",
"DANIA",
"CARL",
"CARIE",
"ANTONIO",
"WAI",
"SANG",
"RISA",
"RIKKI",
"PARTICIA",
"MUI",
"MASAKO",
"MARIO",
"LUVENIA",
"LOREE",
"LONI",
"LIEN",
"KEVIN",
"GIGI",
"FLORENCIA",
"DORIAN",
"DENITA",
"DALLAS",
"CHI",
"BILLYE",
"ALEXANDER",
"TOMIKA",
"SHARITA",
"RANA",
"NIKOLE",
"NEOMA",
"MARGARITE",
"MADALYN",
"LUCINA",
"LAILA",
"KALI",
"JENETTE",
"GABRIELE",
"EVELYNE",
"ELENORA",
"CLEMENTINA",
"ALEJANDRINA",
"ZULEMA",
"VIOLETTE",
"VANNESSA",
"THRESA",
"RETTA",
"PIA",
"PATIENCE",
"NOELLA",
"NICKIE",
"JONELL",
"DELTA",
"CHUNG",
"CHAYA",
"CAMELIA",
"BETHEL",
"ANYA",
"ANDREW",
"THANH",
"SUZANN",
"SPRING",
"SHU",
"MILA",
"LILLA",
"LAVERNA",
"KEESHA",
"KATTIE",
"GIA",
"GEORGENE",
"EVELINE",
"ESTELL",
"ELIZBETH",
"VIVIENNE",
"VALLIE",
"TRUDIE",
"STEPHANE",
"MICHEL",
"MAGALY",
"MADIE",
"KENYETTA",
"KARREN",
"JANETTA",
"HERMINE",
"HARMONY",
"DRUCILLA",
"DEBBI",
"CELESTINA",
"CANDIE",
"BRITNI",
"BECKIE",
"AMINA",
"ZITA",
"YUN",
"YOLANDE",
"VIVIEN",
"VERNETTA",
"TRUDI",
"SOMMER",
"PEARLE",
"PATRINA",
"OSSIE",
"NICOLLE",
"LOYCE",
"LETTY",
"LARISA",
"KATHARINA",
"JOSELYN",
"JONELLE",
"JENELL",
"IESHA",
"HEIDE",
"FLORINDA",
"FLORENTINA",
"FLO",
"ELODIA",
"DORINE",
"BRUNILDA",
"BRIGID",
"ASHLI",
"ARDELLA",
"TWANA",
"THU",
"TARAH",
"SUNG",
"SHEA",
"SHAVON",
"SHANE",
"SERINA",
"RAYNA",
"RAMONITA",
"NGA",
"MARGURITE",
"LUCRECIA",
"KOURTNEY",
"KATI",
"JESUS",
"JESENIA",
"DIAMOND",
"CRISTA",
"AYANA",
"ALICA",
"ALIA",
"VINNIE",
"SUELLEN",
"ROMELIA",
"RACHELL",
"PIPER",
"OLYMPIA",
"MICHIKO",
"KATHALEEN",
"JOLIE",
"JESSI",
"JANESSA",
"HANA",
"HA",
"ELEASE",
"CARLETTA",
"BRITANY",
"SHONA",
"SALOME",
"ROSAMOND",
"REGENA",
"RAINA",
"NGOC",
"NELIA",
"LOUVENIA",
"LESIA",
"LATRINA",
"LATICIA",
"LARHONDA",
"JINA",
"JACKI",
"HOLLIS",
"HOLLEY",
"EMMY",
"DEEANN",
"CORETTA",
"ARNETTA",
"VELVET",
"THALIA",
"SHANICE",
"NETA",
"MIKKI",
"MICKI",
"LONNA",
"LEANA",
"LASHUNDA",
"KILEY",
"JOYE",
"JACQULYN",
"IGNACIA",
"HYUN",
"HIROKO",
"HENRY",
"HENRIETTE",
"ELAYNE",
"DELINDA",
"DARNELL",
"DAHLIA",
"COREEN",
"CONSUELA",
"CONCHITA",
"CELINE",
"BABETTE",
"AYANNA",
"ANETTE",
"ALBERTINA",
"SKYE",
"SHAWNEE",
"SHANEKA",
"QUIANA",
"PAMELIA",
"MIN",
"MERRI",
"MERLENE",
"MARGIT",
"KIESHA",
"KIERA",
"KAYLENE",
"JODEE",
"JENISE",
"ERLENE",
"EMMIE",
"ELSE",
"DARYL",
"DALILA",
"DAISEY",
"CODY",
"CASIE",
"BELIA",
"BABARA",
"VERSIE",
"VANESA",
"SHELBA",
"SHAWNDA",
"SAM",
"NORMAN",
"NIKIA",
"NAOMA",
"MARNA",
"MARGERET",
"MADALINE",
"LAWANA",
"KINDRA",
"JUTTA",
"JAZMINE",
"JANETT",
"HANNELORE",
"GLENDORA",
"GERTRUD",
"GARNETT",
"FREEDA",
"FREDERICA",
"FLORANCE",
"FLAVIA",
"DENNIS",
"CARLINE",
"BEVERLEE",
"ANJANETTE",
"VALDA",
"TRINITY",
"TAMALA",
"STEVIE",
"SHONNA",
"SHA",
"SARINA",
"ONEIDA",
"MICAH",
"MERILYN",
"MARLEEN",
"LURLINE",
"LENNA",
"KATHERIN",
"JIN",
"JENI",
"HAE",
"GRACIA",
"GLADY",
"FARAH",
"ERIC",
"ENOLA",
"EMA",
"DOMINQUE",
"DEVONA",
"DELANA",
"CECILA",
"CAPRICE",
"ALYSHA",
"ALI",
"ALETHIA",
"VENA",
"THERESIA",
"TAWNY",
"SONG",
"SHAKIRA",
"SAMARA",
"SACHIKO",
"RACHELE",
"PAMELLA",
"NICKY",
"MARNI",
"MARIEL",
"MAREN",
"MALISA",
"LIGIA",
"LERA",
"LATORIA",
"LARAE",
"KIMBER",
"KATHERN",
"KAREY",
"JENNEFER",
"JANETH",
"HALINA",
"FREDIA",
"DELISA",
"DEBROAH",
"CIERA",
"CHIN",
"ANGELIKA",
"ANDREE",
"ALTHA",
"YEN",
"VIVAN",
"TERRESA",
"TANNA",
"SUK",
"SUDIE",
"SOO",
"SIGNE",
"SALENA",
"RONNI",
"REBBECCA",
"MYRTIE",
"MCKENZIE",
"MALIKA",
"MAIDA",
"LOAN",
"LEONARDA",
"KAYLEIGH",
"FRANCE",
"ETHYL",
"ELLYN",
"DAYLE",
"CAMMIE",
"BRITTNI",
"BIRGIT",
"AVELINA",
"ASUNCION",
"ARIANNA",
"AKIKO",
"VENICE",
"TYESHA",
"TONIE",
"TIESHA",
"TAKISHA",
"STEFFANIE",
"SINDY",
"SANTANA",
"MEGHANN",
"MANDA",
"MACIE",
"LADY",
"KELLYE",
"KELLEE",
"JOSLYN",
"JASON",
"INGER",
"INDIRA",
"GLINDA",
"GLENNIS",
"FERNANDA",
"FAUSTINA",
"ENEIDA",
"ELICIA",
"DOT",
"DIGNA",
"DELL",
"ARLETTA",
"ANDRE",
"WILLIA",
"TAMMARA",
"TABETHA",
"SHERRELL",
"SARI",
"REFUGIO",
"REBBECA",
"PAULETTA",
"NIEVES",
"NATOSHA",
"NAKITA",
"MAMMIE",
"KENISHA",
"KAZUKO",
"KASSIE",
"GARY",
"EARLEAN",
"DAPHINE",
"CORLISS",
"CLOTILDE",
"CAROLYNE",
"BERNETTA",
"AUGUSTINA",
"AUDREA",
"ANNIS",
"ANNABELL",
"YAN",
"TENNILLE",
"TAMICA",
"SELENE",
"SEAN",
"ROSANA",
"REGENIA",
"QIANA",
"MARKITA",
"MACY",
"LEEANNE",
"LAURINE",
"KYM",
"JESSENIA",
"JANITA",
"GEORGINE",
"GENIE",
"EMIKO",
"ELVIE",
"DEANDRA",
"DAGMAR",
"CORIE",
"COLLEN",
"CHERISH",
"ROMAINE",
"PORSHA",
"PEARLENE",
"MICHELINE",
"MERNA",
"MARGORIE",
"MARGARETTA",
"LORE",
"KENNETH",
"JENINE",
"HERMINA",
"FREDERICKA",
"ELKE",
"DRUSILLA",
"DORATHY",
"DIONE",
"DESIRE",
"CELENA",
"BRIGIDA",
"ANGELES",
"ALLEGRA",
"THEO",
"TAMEKIA",
"SYNTHIA",
"STEPHEN",
"SOOK",
"SLYVIA",
"ROSANN",
"REATHA",
"RAYE",
"MARQUETTA",
"MARGART",
"LING",
"LAYLA",
"KYMBERLY",
"KIANA",
"KAYLEEN",
"KATLYN",
"KARMEN",
"JOELLA",
"IRINA",
"EMELDA",
"ELENI",
"DETRA",
"CLEMMIE",
"CHERYLL",
"CHANTELL",
"CATHEY",
"ARNITA",
"ARLA",
"ANGLE",
"ANGELIC",
"ALYSE",
"ZOFIA",
"THOMASINE",
"TENNIE",
"SON",
"SHERLY",
"SHERLEY",
"SHARYL",
"REMEDIOS",
"PETRINA",
"NICKOLE",
"MYUNG",
"MYRLE",
"MOZELLA",
"LOUANNE",
"LISHA",
"LATIA",
"LANE",
"KRYSTA",
"JULIENNE",
"JOEL",
"JEANENE",
"JACQUALINE",
"ISAURA",
"GWENDA",
"EARLEEN",
"DONALD",
"CLEOPATRA",
"CARLIE",
"AUDIE",
"ANTONIETTA",
"ALISE",
"ALEX",
"VERDELL",
"VAL",
"TYLER",
"TOMOKO",
"THAO",
"TALISHA",
"STEVEN",
"SO",
"SHEMIKA",
"SHAUN",
"SCARLET",
"SAVANNA",
"SANTINA",
"ROSIA",
"RAEANN",
"ODILIA",
"NANA",
"MINNA",
"MAGAN",
"LYNELLE",
"LE",
"KARMA",
"JOEANN",
"IVANA",
"INELL",
"ILANA",
"HYE",
"HONEY",
"HEE",
"GUDRUN",
"FRANK",
"DREAMA",
"CRISSY",
"CHANTE",
"CARMELINA",
"ARVILLA",
"ARTHUR",
"ANNAMAE",
"ALVERA",
"ALEIDA",
"AARON",
"YEE",
"YANIRA",
"VANDA",
"TIANNA",
"TAM",
"STEFANIA",
"SHIRA",
"PERRY",
"NICOL",
"NANCIE",
"MONSERRATE",
"MINH",
"MELYNDA",
"MELANY",
"MATTHEW",
"LOVELLA",
"LAURE",
"KIRBY",
"KACY",
"JACQUELYNN",
"HYON",
"GERTHA",
"FRANCISCO",
"ELIANA",
"CHRISTENA",
"CHRISTEEN",
"CHARISE",
"CATERINA",
"CARLEY",
"CANDYCE",
"ARLENA",
"AMMIE",
"YANG",
"WILLETTE",
"VANITA",
"TUYET",
"TINY",
"SYREETA",
"SILVA",
"SCOTT",
"RONALD",
"PENNEY",
"NYLA",
"MICHAL",
"MAURICE",
"MARYAM",
"MARYA",
"MAGEN",
"LUDIE",
"LOMA",
"LIVIA",
"LANELL",
"KIMBERLIE",
"JULEE",
"DONETTA",
"DIEDRA",
"DENISHA",
"DEANE",
"DAWNE",
"CLARINE",
"CHERRYL",
"BRONWYN",
"BRANDON",
"ALLA",
"VALERY",
"TONDA",
"SUEANN",
"SORAYA",
"SHOSHANA",
"SHELA",
"SHARLEEN",
"SHANELLE",
"NERISSA",
"MICHEAL",
"MERIDITH",
"MELLIE",
"MAYE",
"MAPLE",
"MAGARET",
"LUIS",
"LILI",
"LEONILA",
"LEONIE",
"LEEANNA",
"LAVONIA",
"LAVERA",
"KRISTEL",
"KATHEY",
"KATHE",
"JUSTIN",
"JULIAN",
"JIMMY",
"JANN",
"ILDA",
"HILDRED",
"HILDEGARDE",
"GENIA",
"FUMIKO",
"EVELIN",
"ERMELINDA",
"ELLY",
"DUNG",
"DOLORIS",
"DIONNA",
"DANAE",
"BERNEICE",
"ANNICE",
"ALIX",
"VERENA",
"VERDIE",
"TRISTAN",
"SHAWNNA",
"SHAWANA",
"SHAUNNA",
"ROZELLA",
"RANDEE",
"RANAE",
"MILAGRO",
"LYNELL",
"LUISE",
"LOUIE",
"LOIDA",
"LISBETH",
"KARLEEN",
"JUNITA",
"JONA",
"ISIS",
"HYACINTH",
"HEDY",
"GWENN",
"ETHELENE",
"ERLINE",
"EDWARD",
"DONYA",
"DOMONIQUE",
"DELICIA",
"DANNETTE",
"CICELY",
"BRANDA",
"BLYTHE",
"BETHANN",
"ASHLYN",
"ANNALEE",
"ALLINE",
"YUKO",
"VELLA",
"TRANG",
"TOWANDA",
"TESHA",
"SHERLYN",
"NARCISA",
"MIGUELINA",
"MERI",
"MAYBELL",
"MARLANA",
"MARGUERITA",
"MADLYN",
"LUNA",
"LORY",
"LORIANN",
"LIBERTY",
"LEONORE",
"LEIGHANN",
"LAURICE",
"LATESHA",
"LARONDA",
"KATRICE",
"KASIE",
"KARL",
"KALEY",
"JADWIGA",
"GLENNIE",
"GEARLDINE",
"FRANCINA",
"EPIFANIA",
"DYAN",
"DORIE",
"DIEDRE",
"DENESE",
"DEMETRICE",
"DELENA",
"DARBY",
"CRISTIE",
"CLEORA",
"CATARINA",
"CARISA",
"BERNIE",
"BARBERA",
"ALMETA",
"TRULA",
"TEREASA",
"SOLANGE",
"SHEILAH",
"SHAVONNE",
"SANORA",
"ROCHELL",
"MATHILDE",
"MARGARETA",
"MAIA",
"LYNSEY",
"LAWANNA",
"LAUNA",
"KENA",
"KEENA",
"KATIA",
"JAMEY",
"GLYNDA",
"GAYLENE",
"ELVINA",
"ELANOR",
"DANUTA",
"DANIKA",
"CRISTEN",
"CORDIE",
"COLETTA",
"CLARITA",
"CARMON",
"BRYNN",
"AZUCENA",
"AUNDREA",
"ANGELE",
"YI",
"WALTER",
"VERLIE",
"VERLENE",
"TAMESHA",
"SILVANA",
"SEBRINA",
"SAMIRA",
"REDA",
"RAYLENE",
"PENNI",
"PANDORA",
"NORAH",
"NOMA",
"MIREILLE",
"MELISSIA",
"MARYALICE",
"LARAINE",
"KIMBERY",
"KARYL",
"KARINE",
"KAM",
"JOLANDA",
"JOHANA",
"JESUSA",
"JALEESA",
"JAE",
"JACQUELYNE",
"IRISH",
"ILUMINADA",
"HILARIA",
"HANH",
"GENNIE",
"FRANCIE",
"FLORETTA",
"EXIE",
"EDDA",
"DREMA",
"DELPHA",
"BEV",
"BARBAR",
"ASSUNTA",
"ARDELL",
"ANNALISA",
"ALISIA",
"YUKIKO",
"YOLANDO",
"WONDA",
"WEI",
"WALTRAUD",
"VETA",
"TEQUILA",
"TEMEKA",
"TAMEIKA",
"SHIRLEEN",
"SHENITA",
"PIEDAD",
"OZELLA",
"MIRTHA",
"MARILU",
"KIMIKO",
"JULIANE",
"JENICE",
"JEN",
"JANAY",
"JACQUILINE",
"HILDE",
"FE",
"FAE",
"EVAN",
"EUGENE",
"ELOIS",
"ECHO",
"DEVORAH",
"CHAU",
"BRINDA",
"BETSEY",
"ARMINDA",
"ARACELIS",
"APRYL",
"ANNETT",
"ALISHIA",
"VEOLA",
"USHA",
"TOSHIKO",
"THEOLA",
"TASHIA",
"TALITHA",
"SHERY",
"RUDY",
"RENETTA",
"REIKO",
"RASHEEDA",
"OMEGA",
"OBDULIA",
"MIKA",
"MELAINE",
"MEGGAN",
"MARTIN",
"MARLEN",
"MARGET",
"MARCELINE",
"MANA",
"MAGDALEN",
"LIBRADA",
"LEZLIE",
"LEXIE",
"LATASHIA",
"LASANDRA",
"KELLE",
"ISIDRA",
"ISA",
"INOCENCIA",
"GWYN",
"FRANCOISE",
"ERMINIA",
"ERINN",
"DIMPLE",
"DEVORA",
"CRISELDA",
"ARMANDA",
"ARIE",
"ARIANE",
"ANGELO",
"ANGELENA",
"ALLEN",
"ALIZA",
"ADRIENE",
"ADALINE",
"XOCHITL",
"TWANNA",
"TRAN",
"TOMIKO",
"TAMISHA",
"TAISHA",
"SUSY",
"SIU",
"RUTHA",
"ROXY",
"RHONA",
"RAYMOND",
"OTHA",
"NORIKO",
"NATASHIA",
"MERRIE",
"MELVIN",
"MARINDA",
"MARIKO",
"MARGERT",
"LORIS",
"LIZZETTE",
"LEISHA",
"KAILA",
"KA",
"JOANNIE",
"JERRICA",
"JENE",
"JANNET",
"JANEE",
"JACINDA",
"HERTA",
"ELENORE",
"DORETTA",
"DELAINE",
"DANIELL",
"CLAUDIE",
"CHINA",
"BRITTA",
"APOLONIA",
"AMBERLY",
"ALEASE",
"YURI",
"YUK",
"WEN",
"WANETA",
"UTE",
"TOMI",
"SHARRI",
"SANDIE",
"ROSELLE",
"REYNALDA",
"RAGUEL",
"PHYLICIA",
"PATRIA",
"OLIMPIA",
"ODELIA",
"MITZIE",
"MITCHELL",
"MISS",
"MINDA",
"MIGNON",
"MICA",
"MENDY",
"MARIVEL",
"MAILE",
"LYNETTA",
"LAVETTE",
"LAURYN",
"LATRISHA",
"LAKIESHA",
"KIERSTEN",
"KARY",
"JOSPHINE",
"JOLYN",
"JETTA",
"JANISE",
"JACQUIE",
"IVELISSE",
"GLYNIS",
"GIANNA",
"GAYNELLE",
"EMERALD",
"DEMETRIUS",
"DANYELL",
"DANILLE",
"DACIA",
"CORALEE",
"CHER",
"CEOLA",
"BRETT",
"BELL",
"ARIANNE",
"ALESHIA",
"YUNG",
"WILLIEMAE",
"TROY",
"TRINH",
"THORA",
"TAI",
"SVETLANA",
"SHERIKA",
"SHEMEKA",
"SHAUNDA",
"ROSELINE",
"RICKI",
"MELDA",
"MALLIE",
"LAVONNA",
"LATINA",
"LARRY",
"LAQUANDA",
"LALA",
"LACHELLE",
"KLARA",
"KANDIS",
"JOHNA",
"JEANMARIE",
"JAYE",
"HANG",
"GRAYCE",
"GERTUDE",
"EMERITA",
"EBONIE",
"CLORINDA",
"CHING",
"CHERY",
"CAROLA",
"BREANN",
"BLOSSOM",
"BERNARDINE",
"BECKI",
"ARLETHA",
"ARGELIA",
"ARA",
"ALITA",
"YULANDA",
"YON",
"YESSENIA",
"TOBI",
"TASIA",
"SYLVIE",
"SHIRL",
"SHIRELY",
"SHERIDAN",
"SHELLA",
"SHANTELLE",
"SACHA",
"ROYCE",
"REBECKA",
"REAGAN",
"PROVIDENCIA",
"PAULENE",
"MISHA",
"MIKI",
"MARLINE",
"MARICA",
"LORITA",
"LATOYIA",
"LASONYA",
"KERSTIN",
"KENDA",
"KEITHA",
"KATHRIN",
"JAYMIE",
"JACK",
"GRICELDA",
"GINETTE",
"ERYN",
"ELINA",
"ELFRIEDA",
"DANYEL",
"CHEREE",
"CHANELLE",
"BARRIE",
"AVERY",
"AURORE",
"ANNAMARIA",
"ALLEEN",
"AILENE",
"AIDE",
"YASMINE",
"VASHTI",
"VALENTINE",
"TREASA",
"TORY",
"TIFFANEY",
"SHERYLL",
"SHARIE",
"SHANAE",
"SAU",
"RAISA",
"PA",
"NEDA",
"MITSUKO",
"MIRELLA",
"MILDA",
"MARYANNA",
"MARAGRET",
"MABELLE",
"LUETTA",
"LORINA",
"LETISHA",
"LATARSHA",
"LANELLE",
"LAJUANA",
"KRISSY",
"KARLY",
"KARENA",
"JON",
"JESSIKA",
"JERICA",
"JEANELLE",
"JANUARY",
"JALISA",
"JACELYN",
"IZOLA",
"IVEY",
"GREGORY",
"EUNA",
"ETHA",
"DREW",
"DOMITILA",
"DOMINICA",
"DAINA",
"CREOLA",
"CARLI",
"CAMIE",
"BUNNY",
"BRITTNY",
"ASHANTI",
"ANISHA",
"ALEEN",
"ADAH",
"YASUKO",
"WINTER",
"VIKI",
"VALRIE",
"TONA",
"TINISHA",
"THI",
"TERISA",
"TATUM",
"TANEKA",
"SIMONNE",
"SHALANDA",
"SERITA",
"RESSIE",
"REFUGIA",
"PAZ",
"OLENE",
"NA",
"MERRILL",
"MARGHERITA",
"MANDIE",
"MAN",
"MAIRE",
"LYNDIA",
"LUCI",
"LORRIANE",
"LORETA",
"LEONIA",
"LAVONA",
"LASHAWNDA",
"LAKIA",
"KYOKO",
"KRYSTINA",
"KRYSTEN",
"KENIA",
"KELSI",
"JUDE",
"JEANICE",
"ISOBEL",
"GEORGIANN",
"GENNY",
"FELICIDAD",
"EILENE",
"DEON",
"DELOISE",
"DEEDEE",
"DANNIE",
"CONCEPTION",
"CLORA",
"CHERILYN",
"CHANG",
"CALANDRA",
"BERRY",
"ARMANDINA",
"ANISA",
"ULA",
"TIMOTHY",
"TIERA",
"THERESSA",
"STEPHANIA",
"SIMA",
"SHYLA",
"SHONTA",
"SHERA",
"SHAQUITA",
"SHALA",
"SAMMY",
"ROSSANA",
"NOHEMI",
"NERY",
"MORIAH",
"MELITA",
"MELIDA",
"MELANI",
"MARYLYNN",
"MARISHA",
"MARIETTE",
"MALORIE",
"MADELENE",
"LUDIVINA",
"LORIA",
"LORETTE",
"LORALEE",
"LIANNE",
"LEON",
"LAVENIA",
"LAURINDA",
"LASHON",
"KIT",
"KIMI",
"KEILA",
"KATELYNN",
"KAI",
"JONE",
"JOANE",
"JI",
"JAYNA",
"JANELLA",
"JA",
"HUE",
"HERTHA",
"FRANCENE",
"ELINORE",
"DESPINA",
"DELSIE",
"DEEDRA",
"CLEMENCIA",
"CARRY",
"CAROLIN",
"CARLOS",
"BULAH",
"BRITTANIE",
"BOK",
"BLONDELL",
"BIBI",
"BEAULAH",
"BEATA",
"ANNITA",
"AGRIPINA",
"VIRGEN",
"VALENE",
"UN",
"TWANDA",
"TOMMYE",
"TOI",
"TARRA",
"TARI",
"TAMMERA",
"SHAKIA",
"SADYE",
"RUTHANNE",
"ROCHEL",
"RIVKA",
"PURA",
"NENITA",
"NATISHA",
"MING",
"MERRILEE",
"MELODEE",
"MARVIS",
"LUCILLA",
"LEENA",
"LAVETA",
"LARITA",
"LANIE",
"KEREN",
"ILEEN",
"GEORGEANN",
"GENNA",
"GENESIS",
"FRIDA",
"EWA",
"EUFEMIA",
"EMELY",
"ELA",
"EDYTH",
"DEONNA",
"DEADRA",
"DARLENA",
"CHANELL",
"CHAN",
"CATHERN",
"CASSONDRA",
"CASSAUNDRA",
"BERNARDA",
"BERNA",
"ARLINDA",
"ANAMARIA",
"ALBERT",
"WESLEY",
"VERTIE",
"VALERI",
"TORRI",
"TATYANA",
"STASIA",
"SHERISE",
"SHERILL",
"SEASON",
"SCOTTIE",
"SANDA",
"RUTHE",
"ROSY",
"ROBERTO",
"ROBBI",
"RANEE",
"QUYEN",
"PEARLY",
"PALMIRA",
"ONITA",
"NISHA",
"NIESHA",
"NIDA",
"NEVADA",
"NAM",
"MERLYN",
"MAYOLA",
"MARYLOUISE",
"MARYLAND",
"MARX",
"MARTH",
"MARGENE",
"MADELAINE",
"LONDA",
"LEONTINE",
"LEOMA",
"LEIA",
"LAWRENCE",
"LAURALEE",
"LANORA",
"LAKITA",
"KIYOKO",
"KETURAH",
"KATELIN",
"KAREEN",
"JONIE",
"JOHNETTE",
"JENEE",
"JEANETT",
"IZETTA",
"HIEDI",
"HEIKE",
"HASSIE",
"HAROLD",
"GIUSEPPINA",
"GEORGANN",
"FIDELA",
"FERNANDE",
"ELWANDA",
"ELLAMAE",
"ELIZ",
"DUSTI",
"DOTTY",
"CYNDY",
"CORALIE",
"CELESTA",
"ARGENTINA",
"ALVERTA",
"XENIA",
"WAVA",
"VANETTA",
"TORRIE",
"TASHINA",
"TANDY",
"TAMBRA",
"TAMA",
"STEPANIE",
"SHILA",
"SHAUNTA",
"SHARAN",
"SHANIQUA",
"SHAE",
"SETSUKO",
"SERAFINA",
"SANDEE",
"ROSAMARIA",
"PRISCILA",
"OLINDA",
"NADENE",
"MUOI",
"MICHELINA",
"MERCEDEZ",
"MARYROSE",
"MARIN",
"MARCENE",
"MAO",
"MAGALI",
"MAFALDA",
"LOGAN",
"LINN",
"LANNIE",
"KAYCE",
"KAROLINE",
"KAMILAH",
"KAMALA",
"JUSTA",
"JOLINE",
"JENNINE",
"JACQUETTA",
"IRAIDA",
"GERALD",
"GEORGEANNA",
"FRANCHESCA",
"FAIRY",
"EMELINE",
"ELANE",
"EHTEL",
"EARLIE",
"DULCIE",
"DALENE",
"CRIS",
"CLASSIE",
"CHERE",
"CHARIS",
"CAROYLN",
"CARMINA",
"CARITA",
"BRIAN",
"BETHANIE",
"AYAKO",
"ARICA",
"AN",
"ALYSA",
"ALESSANDRA",
"AKILAH",
"ADRIEN",
"ZETTA",
"YOULANDA",
"YELENA",
"YAHAIRA",
"XUAN",
"WENDOLYN",
"VICTOR",
"TIJUANA",
"TERRELL",
"TERINA",
"TERESIA",
"SUZI",
"SUNDAY",
"SHERELL",
"SHAVONDA",
"SHAUNTE",
"SHARDA",
"SHAKITA",
"SENA",
"RYANN",
"RUBI",
"RIVA",
"REGINIA",
"REA",
"RACHAL",
"PARTHENIA",
"PAMULA",
"MONNIE",
"MONET",
"MICHAELE",
"MELIA",
"MARINE",
"MALKA",
"MAISHA",
"LISANDRA",
"LEO",
"LEKISHA",
"LEAN",
"LAURENCE",
"LAKENDRA",
"KRYSTIN",
"KORTNEY",
"KIZZIE",
"KITTIE",
"KERA",
"KENDAL",
"KEMBERLY",
"KANISHA",
"JULENE",
"JULE",
"JOSHUA",
"JOHANNE",
"JEFFREY",
"JAMEE",
"HAN",
"HALLEY",
"GIDGET",
"GALINA",
"FREDRICKA",
"FLETA",
"FATIMAH",
"EUSEBIA",
"ELZA",
"ELEONORE",
"DORTHEY",
"DORIA",
"DONELLA",
"DINORAH",
"DELORSE",
"CLARETHA",
"CHRISTINIA",
"CHARLYN",
"BONG",
"BELKIS",
"AZZIE",
"ANDERA",
"AIKO",
"ADENA",
"YER",
"YAJAIRA",
"WAN",
"VANIA",
"ULRIKE",
"TOSHIA",
"TIFANY",
"STEFANY",
"SHIZUE",
"SHENIKA",
"SHAWANNA",
"SHAROLYN",
"SHARILYN",
"SHAQUANA",
"SHANTAY",
"SEE",
"ROZANNE",
"ROSELEE",
"RICKIE",
"REMONA",
"REANNA",
"RAELENE",
"QUINN",
"PHUNG",
"PETRONILA",
"NATACHA",
"NANCEY",
"MYRL",
"MIYOKO",
"MIESHA",
"MERIDETH",
"MARVELLA",
"MARQUITTA",
"MARHTA",
"MARCHELLE",
"LIZETH",
"LIBBIE",
"LAHOMA",
"LADAWN",
"KINA",
"KATHELEEN",
"KATHARYN",
"KARISA",
"KALEIGH",
"JUNIE",
"JULIEANN",
"JOHNSIE",
"JANEAN",
"JAIMEE",
"JACKQUELINE",
"HISAKO",
"HERMA",
"HELAINE",
"GWYNETH",
"GLENN",
"GITA",
"EUSTOLIA",
"EMELINA",
"ELIN",
"EDRIS",
"DONNETTE",
"DONNETTA",
"DIERDRE",
"DENAE",
"DARCEL",
"CLAUDE",
"CLARISA",
"CINDERELLA",
"CHIA",
"CHARLESETTA",
"CHARITA",
"CELSA",
"CASSY",
"CASSI",
"CARLEE",
"BRUNA",
"BRITTANEY",
"BRANDE",
"BILLI",
"BAO",
"ANTONETTA",
"ANGLA",
"ANGELYN",
"ANALISA",
"ALANE",
"WENONA",
"WENDIE",
"VERONIQUE",
"VANNESA",
"TOBIE",
"TEMPIE",
"SUMIKO",
"SULEMA",
"SPARKLE",
"SOMER",
"SHEBA",
"SHAYNE",
"SHARICE",
"SHANEL",
"SHALON",
"SAGE",
"ROY",
"ROSIO",
"ROSELIA",
"RENAY",
"REMA",
"REENA",
"PORSCHE",
"PING",
"PEG",
"OZIE",
"ORETHA",
"ORALEE",
"ODA",
"NU",
"NGAN",
"NAKESHA",
"MILLY",
"MARYBELLE",
"MARLIN",
"MARIS",
"MARGRETT",
"MARAGARET",
"MANIE",
"LURLENE",
"LILLIA",
"LIESELOTTE",
"LAVELLE",
"LASHAUNDA",
"LAKEESHA",
"KEITH",
"KAYCEE",
"KALYN",
"JOYA",
"JOETTE",
"JENAE",
"JANIECE",
"ILLA",
"GRISEL",
"GLAYDS",
"GENEVIE",
"GALA",
"FREDDA",
"FRED",
"ELMER",
"ELEONOR",
"DEBERA",
"DEANDREA",
"DAN",
"CORRINNE",
"CORDIA",
"CONTESSA",
"COLENE",
"CLEOTILDE",
"CHARLOTT",
"CHANTAY",
"CECILLE",
"BEATRIS",
"AZALEE",
"ARLEAN",
"ARDATH",
"ANJELICA",
"ANJA",
"ALFREDIA",
"ALEISHA",
"ADAM",
"ZADA",
"YUONNE",
"XIAO",
"WILLODEAN",
"WHITLEY",
"VENNIE",
"VANNA",
"TYISHA",
"TOVA",
"TORIE",
"TONISHA",
"TILDA",
"TIEN",
"TEMPLE",
"SIRENA",
"SHERRIL",
"SHANTI",
"SHAN",
"SENAIDA",
"SAMELLA",
"ROBBYN",
"RENDA",
"REITA",
"PHEBE",
"PAULITA",
"NOBUKO",
"NGUYET",
"NEOMI",
"MOON",
"MIKAELA",
"MELANIA",
"MAXIMINA",
"MARG",
"MAISIE",
"LYNNA",
"LILLI",
"LAYNE",
"LASHAUN",
"LAKENYA",
"LAEL",
"KIRSTIE",
"KATHLINE",
"KASHA",
"KARLYN",
"KARIMA",
"JOVAN",
"JOSEFINE",
"JENNELL",
"JACQUI",
"JACKELYN",
"HYO",
"HIEN",
"GRAZYNA",
"FLORRIE",
"FLORIA",
"ELEONORA",
"DWANA",
"DORLA",
"DONG",
"DELMY",
"DEJA",
"DEDE",
"DANN",
"CRYSTA",
"CLELIA",
"CLARIS",
"CLARENCE",
"CHIEKO",
"CHERLYN",
"CHERELLE",
"CHARMAIN",
"CHARA",
"CAMMY",
"BEE",
"ARNETTE",
"ARDELLE",
"ANNIKA",
"AMIEE",
"AMEE",
"ALLENA",
"YVONE",
"YUKI",
"YOSHIE",
"YEVETTE",
"YAEL",
"WILLETTA",
"VONCILE",
"VENETTA",
"TULA",
"TONETTE",
"TIMIKA",
"TEMIKA",
"TELMA",
"TEISHA",
"TAREN",
"TA",
"STACEE",
"SHIN",
"SHAWNTA",
"SATURNINA",
"RICARDA",
"POK",
"PASTY",
"ONIE",
"NUBIA",
"MORA",
"MIKE",
"MARIELLE",
"MARIELLA",
"MARIANELA",
"MARDELL",
"MANY",
"LUANNA",
"LOISE",
"LISABETH",
"LINDSY",
"LILLIANA",
"LILLIAM",
"LELAH",
"LEIGHA",
"LEANORA",
"LANG",
"KRISTEEN",
"KHALILAH",
"KEELEY",
"KANDRA",
"JUNKO",
"JOAQUINA",
"JERLENE",
"JANI",
"JAMIKA",
"JAME",
"HSIU",
"HERMILA",
"GOLDEN",
"GENEVIVE",
"EVIA",
"EUGENA",
"EMMALINE",
"ELFREDA",
"ELENE",
"DONETTE",
"DELCIE",
"DEEANNA",
"DARCEY",
"CUC",
"CLARINDA",
"CIRA",
"CHAE",
"CELINDA",
"CATHERYN",
"CATHERIN",
"CASIMIRA",
"CARMELIA",
"CAMELLIA",
"BREANA",
"BOBETTE",
"BERNARDINA",
"BEBE",
"BASILIA",
"ARLYNE",
"AMAL",
"ALAYNA",
"ZONIA",
"ZENIA",
"YURIKO",
"YAEKO",
"WYNELL",
"WILLOW",
"WILLENA",
"VERNIA",
"TU",
"TRAVIS",
"TORA",
"TERRILYN",
"TERICA",
"TENESHA",
"TAWNA",
"TAJUANA",
"TAINA",
"STEPHNIE",
"SONA",
"SOL",
"SINA",
"SHONDRA",
"SHIZUKO",
"SHERLENE",
"SHERICE",
"SHARIKA",
"ROSSIE",
"ROSENA",
"RORY",
"RIMA",
"RIA",
"RHEBA",
"RENNA",
"PETER",
"NATALYA",
"NANCEE",
"MELODI",
"MEDA",
"MAXIMA",
"MATHA",
"MARKETTA",
"MARICRUZ",
"MARCELENE",
"MALVINA",
"LUBA",
"LOUETTA",
"LEIDA",
"LECIA",
"LAURAN",
"LASHAWNA",
"LAINE",
"KHADIJAH",
"KATERINE",
"KASI",
"KALLIE",
"JULIETTA",
"JESUSITA",
"JESTINE",
"JESSIA",
"JEREMY",
"JEFFIE",
"JANYCE",
"ISADORA",
"GEORGIANNE",
"FIDELIA",
"EVITA",
"EURA",
"EULAH",
"ESTEFANA",
"ELSY",
"ELIZABET",
"ELADIA",
"DODIE",
"DION",
"DIA",
"DENISSE",
"DELORAS",
"DELILA",
"DAYSI",
"DAKOTA",
"CURTIS",
"CRYSTLE",
"CONCHA",
"COLBY",
"CLARETTA",
"CHU",
"CHRISTIA",
"CHARLSIE",
"CHARLENA",
"CARYLON",
"BETTYANN",
"ASLEY",
"ASHLEA",
"AMIRA",
"AI",
"AGUEDA",
"AGNUS",
"YUETTE",
"VINITA",
"VICTORINA",
"TYNISHA",
"TREENA",
"TOCCARA",
"TISH",
"THOMASENA",
"TEGAN",
"SOILA",
"SHILOH",
"SHENNA",
"SHARMAINE",
"SHANTAE",
"SHANDI",
"SEPTEMBER",
"SARAN",
"SARAI",
"SANA",
"SAMUEL",
"SALLEY",
"ROSETTE",
"ROLANDE",
"REGINE",
"OTELIA",
"OSCAR",
"OLEVIA",
"NICHOLLE",
"NECOLE",
"NAIDA",
"MYRTA",
"MYESHA",
"MITSUE",
"MINTA",
"MERTIE",
"MARGY",
"MAHALIA",
"MADALENE",
"LOVE",
"LOURA",
"LOREAN",
"LEWIS",
"LESHA",
"LEONIDA",
"LENITA",
"LAVONE",
"LASHELL",
"LASHANDRA",
"LAMONICA",
"KIMBRA",
"KATHERINA",
"KARRY",
"KANESHA",
"JULIO",
"JONG",
"JENEVA",
"JAQUELYN",
"HWA",
"GILMA",
"GHISLAINE",
"GERTRUDIS",
"FRANSISCA",
"FERMINA",
"ETTIE",
"ETSUKO",
"ELLIS",
"ELLAN",
"ELIDIA",
"EDRA",
"DORETHEA",
"DOREATHA",
"DENYSE",
"DENNY",
"DEETTA",
"DAINE",
"CYRSTAL",
"CORRIN",
"CAYLA",
"CARLITA",
"CAMILA",
"BURMA",
"BULA",
"BUENA",
"BLAKE",
"BARABARA",
"AVRIL",
"AUSTIN",
"ALAINE",
"ZANA",
"WILHEMINA",
"WANETTA",
"VIRGIL",
"VI",
"VERONIKA",
"VERNON",
"VERLINE",
"VASILIKI",
"TONITA",
"TISA",
"TEOFILA",
"TAYNA",
"TAUNYA",
"TANDRA",
"TAKAKO",
"SUNNI",
"SUANNE",
"SIXTA",
"SHARELL",
"SEEMA",
"RUSSELL",
"ROSENDA",
"ROBENA",
"RAYMONDE",
"PEI",
"PAMILA",
"OZELL",
"NEIDA",
"NEELY",
"MISTIE",
"MICHA",
"MERISSA",
"MAURITA",
"MARYLN",
"MARYETTA",
"MARSHALL",
"MARCELL",
"MALENA",
"MAKEDA",
"MADDIE",
"LOVETTA",
"LOURIE",
"LORRINE",
"LORILEE",
"LESTER",
"LAURENA",
"LASHAY",
"LARRAINE",
"LAREE",
"LACRESHA",
"KRISTLE",
"KRISHNA",
"KEVA",
"KEIRA",
"KAROLE",
"JOIE",
"JINNY",
"JEANNETTA",
"JAMA",
"HEIDY",
"GILBERTE",
"GEMA",
"FAVIOLA",
"EVELYNN",
"ENDA",
"ELLI",
"ELLENA",
"DIVINA",
"DAGNY",
"COLLENE",
"CODI",
"CINDIE",
"CHASSIDY",
"CHASIDY",
"CATRICE",
"CATHERINA",
"CASSEY",
"CAROLL",
"CARLENA",
"CANDRA",
"CALISTA",
"BRYANNA",
"BRITTENY",
"BEULA",
"BARI",
"AUDRIE",
"AUDRIA",
"ARDELIA",
"ANNELLE",
"ANGILA",
"ALONA",
"ALLYN",
"DOUGLAS",
"ROGER",
"JONATHAN",
"RALPH",
"NICHOLAS",
"BENJAMIN",
"BRUCE",
"HARRY",
"WAYNE",
"STEVE",
"HOWARD",
"ERNEST",
"PHILLIP",
"TODD",
"CRAIG",
"ALAN",
"PHILIP",
"EARL",
"DANNY",
"BRYAN",
"STANLEY",
"LEONARD",
"NATHAN",
"MANUEL",
"RODNEY",
"MARVIN",
"VINCENT",
"JEFFERY",
"JEFF",
"CHAD",
"JACOB",
"ALFRED",
"BRADLEY",
"HERBERT",
"FREDERICK",
"EDWIN",
"DON",
"RICKY",
"RANDALL",
"BARRY",
"BERNARD",
"LEROY",
"MARCUS",
"THEODORE",
"CLIFFORD",
"MIGUEL",
"JIM",
"TOM",
"CALVIN",
"BILL",
"LLOYD",
"DEREK",
"WARREN",
"DARRELL",
"JEROME",
"FLOYD",
"ALVIN",
"TIM",
"GORDON",
"GREG",
"JORGE",
"DUSTIN",
"PEDRO",
"DERRICK",
"ZACHARY",
"HERMAN",
"GLEN",
"HECTOR",
"RICARDO",
"RICK",
"BRENT",
"RAMON",
"GILBERT",
"MARC",
"REGINALD",
"RUBEN",
"NATHANIEL",
"RAFAEL",
"EDGAR",
"MILTON",
"RAUL",
"BEN",
"CHESTER",
"DUANE",
"FRANKLIN",
"BRAD",
"RON",
"ROLAND",
"ARNOLD",
"HARVEY",
"JARED",
"ERIK",
"DARRYL",
"NEIL",
"JAVIER",
"FERNANDO",
"CLINTON",
"TED",
"MATHEW",
"TYRONE",
"DARREN",
"LANCE",
"KURT",
"ALLAN",
"NELSON",
"GUY",
"CLAYTON",
"HUGH",
"MAX",
"DWAYNE",
"DWIGHT",
"ARMANDO",
"FELIX",
"EVERETT",
"IAN",
"WALLACE",
"KEN",
"BOB",
"ALFREDO",
"ALBERTO",
"DAVE",
"IVAN",
"BYRON",
"ISAAC",
"MORRIS",
"CLIFTON",
"WILLARD",
"ROSS",
"ANDY",
"SALVADOR",
"KIRK",
"SERGIO",
"SETH",
"KENT",
"TERRANCE",
"EDUARDO",
"TERRENCE",
"ENRIQUE",
"WADE",
"STUART",
"FREDRICK",
"ARTURO",
"ALEJANDRO",
"NICK",
"LUTHER",
"WENDELL",
"JEREMIAH",
"JULIUS",
"OTIS",
"TREVOR",
"OLIVER",
"LUKE",
"HOMER",
"GERARD",
"DOUG",
"KENNY",
"HUBERT",
"LYLE",
"MATT",
"ALFONSO",
"ORLANDO",
"REX",
"CARLTON",
"ERNESTO",
"NEAL",
"PABLO",
"LORENZO",
"OMAR",
"WILBUR",
"GRANT",
"HORACE",
"RODERICK",
"ABRAHAM",
"WILLIS",
"RICKEY",
"ANDRES",
"CESAR",
"JOHNATHAN",
"MALCOLM",
"RUDOLPH",
"DAMON",
"KELVIN",
"PRESTON",
"ALTON",
"ARCHIE",
"MARCO",
"WM",
"PETE",
"RANDOLPH",
"GARRY",
"GEOFFREY",
"JONATHON",
"FELIPE",
"GERARDO",
"ED",
"DOMINIC",
"DELBERT",
"COLIN",
"GUILLERMO",
"EARNEST",
"LUCAS",
"BENNY",
"SPENCER",
"RODOLFO",
"MYRON",
"EDMUND",
"GARRETT",
"SALVATORE",
"CEDRIC",
"LOWELL",
"GREGG",
"SHERMAN",
"WILSON",
"SYLVESTER",
"ROOSEVELT",
"ISRAEL",
"JERMAINE",
"FORREST",
"WILBERT",
"LELAND",
"SIMON",
"CLARK",
"IRVING",
"BRYANT",
"OWEN",
"RUFUS",
"WOODROW",
"KRISTOPHER",
"MACK",
"LEVI",
"MARCOS",
"GUSTAVO",
"JAKE",
"LIONEL",
"GILBERTO",
"CLINT",
"NICOLAS",
"ISMAEL",
"ORVILLE",
"ERVIN",
"DEWEY",
"AL",
"WILFRED",
"JOSH",
"HUGO",
"IGNACIO",
"CALEB",
"TOMAS",
"SHELDON",
"ERICK",
"STEWART",
"DOYLE",
"DARREL",
"ROGELIO",
"TERENCE",
"SANTIAGO",
"ALONZO",
"ELIAS",
"BERT",
"ELBERT",
"RAMIRO",
"CONRAD",
"NOAH",
"GRADY",
"PHIL",
"CORNELIUS",
"LAMAR",
"ROLANDO",
"CLAY",
"PERCY",
"DEXTER",
"BRADFORD",
"DARIN",
"AMOS",
"MOSES",
"IRVIN",
"SAUL",
"ROMAN",
"RANDAL",
"TIMMY",
"DARRIN",
"WINSTON",
"BRENDAN",
"ABEL",
"DOMINICK",
"BOYD",
"EMILIO",
"ELIJAH",
"DOMINGO",
"EMMETT",
"MARLON",
"EMANUEL",
"JERALD",
"EDMOND",
"EMIL",
"DEWAYNE",
"WILL",
"OTTO",
"TEDDY",
"REYNALDO",
"BRET",
"JESS",
"TRENT",
"HUMBERTO",
"EMMANUEL",
"STEPHAN",
"VICENTE",
"LAMONT",
"GARLAND",
"MILES",
"EFRAIN",
"HEATH",
"RODGER",
"HARLEY",
"ETHAN",
"ELDON",
"ROCKY",
"PIERRE",
"JUNIOR",
"FREDDY",
"ELI",
"BRYCE",
"ANTOINE",
"STERLING",
"CHASE",
"GROVER",
"ELTON",
"CLEVELAND",
"DYLAN",
"CHUCK",
"DAMIAN",
"REUBEN",
"STAN",
"AUGUST",
"LEONARDO",
"JASPER",
"RUSSEL",
"ERWIN",
"BENITO",
"HANS",
"MONTE",
"BLAINE",
"ERNIE",
"CURT",
"QUENTIN",
"AGUSTIN",
"MURRAY",
"JAMAL",
"ADOLFO",
"HARRISON",
"TYSON",
"BURTON",
"BRADY",
"ELLIOTT",
"WILFREDO",
"BART",
"JARROD",
"VANCE",
"DENIS",
"DAMIEN",
"JOAQUIN",
"HARLAN",
"DESMOND",
"ELLIOT",
"DARWIN",
"GREGORIO",
"BUDDY",
"XAVIER",
"KERMIT",
"ROSCOE",
"ESTEBAN",
"ANTON",
"SOLOMON",
"SCOTTY",
"NORBERT",
"ELVIN",
"WILLIAMS",
"NOLAN",
"ROD",
"QUINTON",
"HAL",
"BRAIN",
"ROB",
"ELWOOD",
"KENDRICK",
"DARIUS",
"MOISES",
"FIDEL",
"THADDEUS",
"CLIFF",
"MARCEL",
"JACKSON",
"RAPHAEL",
"BRYON",
"ARMAND",
"ALVARO",
"JEFFRY",
"DANE",
"JOESPH",
"THURMAN",
"NED",
"RUSTY",
"MONTY",
"FABIAN",
"REGGIE",
"MASON",
"GRAHAM",
"ISAIAH",
"VAUGHN",
"GUS",
"LOYD",
"DIEGO",
"ADOLPH",
"NORRIS",
"MILLARD",
"ROCCO",
"GONZALO",
"DERICK",
"RODRIGO",
"WILEY",
"RIGOBERTO",
"ALPHONSO",
"TY",
"NOE",
"VERN",
"REED",
"JEFFERSON",
"ELVIS",
"BERNARDO",
"MAURICIO",
"HIRAM",
"DONOVAN",
"BASIL",
"RILEY",
"NICKOLAS",
"MAYNARD",
"SCOT",
"VINCE",
"QUINCY",
"EDDY",
"SEBASTIAN",
"FEDERICO",
"ULYSSES",
"HERIBERTO",
"DONNELL",
"COLE",
"DAVIS",
"GAVIN",
"EMERY",
"WARD",
"ROMEO",
"JAYSON",
"DANTE",
"CLEMENT",
"COY",
"MAXWELL",
"JARVIS",
"BRUNO",
"ISSAC",
"DUDLEY",
"BROCK",
"SANFORD",
"CARMELO",
"BARNEY",
"NESTOR",
"STEFAN",
"DONNY",
"ART",
"LINWOOD",
"BEAU",
"WELDON",
"GALEN",
"ISIDRO",
"TRUMAN",
"DELMAR",
"JOHNATHON",
"SILAS",
"FREDERIC",
"DICK",
"IRWIN",
"MERLIN",
"CHARLEY",
"MARCELINO",
"HARRIS",
"CARLO",
"TRENTON",
"KURTIS",
"HUNTER",
"AURELIO",
"WINFRED",
"VITO",
"COLLIN",
"DENVER",
"CARTER",
"LEONEL",
"EMORY",
"PASQUALE",
"MOHAMMAD",
"MARIANO",
"DANIAL",
"LANDON",
"DIRK",
"BRANDEN",
"ADAN",
"BUFORD",
"GERMAN",
"WILMER",
"EMERSON",
"ZACHERY",
"FLETCHER",
"JACQUES",
"ERROL",
"DALTON",
"MONROE",
"JOSUE",
"EDWARDO",
"BOOKER",
"WILFORD",
"SONNY",
"SHELTON",
"CARSON",
"THERON",
"RAYMUNDO",
"DAREN",
"HOUSTON",
"ROBBY",
"LINCOLN",
"GENARO",
"BENNETT",
"OCTAVIO",
"CORNELL",
"HUNG",
"ARRON",
"ANTONY",
"HERSCHEL",
"GIOVANNI",
"GARTH",
"CYRUS",
"CYRIL",
"RONNY",
"LON",
"FREEMAN",
"DUNCAN",
"KENNITH",
"CARMINE",
"ERICH",
"CHADWICK",
"WILBURN",
"RUSS",
"REID",
"MYLES",
"ANDERSON",
"MORTON",
"JONAS",
"FOREST",
"MITCHEL",
"MERVIN",
"ZANE",
"RICH",
"JAMEL",
"LAZARO",
"ALPHONSE",
"RANDELL",
"MAJOR",
"JARRETT",
"BROOKS",
"ABDUL",
"LUCIANO",
"SEYMOUR",
"EUGENIO",
"MOHAMMED",
"VALENTIN",
"CHANCE",
"ARNULFO",
"LUCIEN",
"FERDINAND",
"THAD",
"EZRA",
"ALDO",
"RUBIN",
"ROYAL",
"MITCH",
"EARLE",
"ABE",
"WYATT",
"MARQUIS",
"LANNY",
"KAREEM",
"JAMAR",
"BORIS",
"ISIAH",
"EMILE",
"ELMO",
"ARON",
"LEOPOLDO",
"EVERETTE",
"JOSEF",
"ELOY",
"RODRICK",
"REINALDO",
"LUCIO",
"JERROD",
"WESTON",
"HERSHEL",
"BARTON",
"PARKER",
"LEMUEL",
"BURT",
"JULES",
"GIL",
"ELISEO",
"AHMAD",
"NIGEL",
"EFREN",
"ANTWAN",
"ALDEN",
"MARGARITO",
"COLEMAN",
"DINO",
"OSVALDO",
"LES",
"DEANDRE",
"NORMAND",
"KIETH",
"TREY",
"NORBERTO",
"NAPOLEON",
"JEROLD",
"FRITZ",
"ROSENDO",
"MILFORD",
"CHRISTOPER",
"ALFONZO",
"LYMAN",
"JOSIAH",
"BRANT",
"WILTON",
"RICO",
"JAMAAL",
"DEWITT",
"BRENTON",
"OLIN",
"FOSTER",
"FAUSTINO",
"CLAUDIO",
"JUDSON",
"GINO",
"EDGARDO",
"ALEC",
"TANNER",
"JARRED",
"DONN",
"TAD",
"PRINCE",
"PORFIRIO",
"ODIS",
"LENARD",
"CHAUNCEY",
"TOD",
"MEL",
"MARCELO",
"KORY",
"AUGUSTUS",
"KEVEN",
"HILARIO",
"BUD",
"SAL",
"ORVAL",
"MAURO",
"ZACHARIAH",
"OLEN",
"ANIBAL",
"MILO",
"JED",
"DILLON",
"AMADO",
"NEWTON",
"LENNY",
"RICHIE",
"HORACIO",
"BRICE",
"MOHAMED",
"DELMER",
"DARIO",
"REYES",
"MAC",
"JONAH",
"JERROLD",
"ROBT",
"HANK",
"RUPERT",
"ROLLAND",
"KENTON",
"DAMION",
"ANTONE",
"WALDO",
"FREDRIC",
"BRADLY",
"KIP",
"BURL",
"WALKER",
"TYREE",
"JEFFEREY",
"AHMED",
"WILLY",
"STANFORD",
"OREN",
"NOBLE",
"MOSHE",
"MIKEL",
"ENOCH",
"BRENDON",
"QUINTIN",
"JAMISON",
"FLORENCIO",
"DARRICK",
"TOBIAS",
"HASSAN",
"GIUSEPPE",
"DEMARCUS",
"CLETUS",
"TYRELL",
"LYNDON",
"KEENAN",
"WERNER",
"GERALDO",
"COLUMBUS",
"CHET",
"BERTRAM",
"MARKUS",
"HUEY",
"HILTON",
"DWAIN",
"DONTE",
"TYRON",
"OMER",
"ISAIAS",
"HIPOLITO",
"FERMIN",
"ADALBERTO",
"BO",
"BARRETT",
"TEODORO",
"MCKINLEY",
"MAXIMO",
"GARFIELD",
"RALEIGH",
"LAWERENCE",
"ABRAM",
"RASHAD",
"KING",
"EMMITT",
"DARON",
"SAMUAL",
"MIQUEL",
"EUSEBIO",
"DOMENIC",
"DARRON",
"BUSTER",
"WILBER",
"RENATO",
"JC",
"HOYT",
"HAYWOOD",
"EZEKIEL",
"CHAS",
"FLORENTINO",
"ELROY",
"CLEMENTE",
"ARDEN",
"NEVILLE",
"EDISON",
"DESHAWN",
"NATHANIAL",
"JORDON",
"DANILO",
"CLAUD",
"SHERWOOD",
"RAYMON",
"RAYFORD",
"CRISTOBAL",
"AMBROSE",
"TITUS",
"HYMAN",
"FELTON",
"EZEQUIEL",
"ERASMO",
"STANTON",
"LONNY",
"LEN",
"IKE",
"MILAN",
"LINO",
"JAROD",
"HERB",
"ANDREAS",
"WALTON",
"RHETT",
"PALMER",
"DOUGLASS",
"CORDELL",
"OSWALDO",
"ELLSWORTH",
"VIRGILIO",
"TONEY",
"NATHANAEL",
"DEL",
"BENEDICT",
"MOSE",
"JOHNSON",
"ISREAL",
"GARRET",
"FAUSTO",
"ASA",
"ARLEN",
"ZACK",
"WARNER",
"MODESTO",
"FRANCESCO",
"MANUAL",
"GAYLORD",
"GASTON",
"FILIBERTO",
"DEANGELO",
"MICHALE",
"GRANVILLE",
"WES",
"MALIK",
"ZACKARY",
"TUAN",
"ELDRIDGE",
"CRISTOPHER",
"CORTEZ",
"ANTIONE",
"MALCOM",
"LONG",
"KOREY",
"JOSPEH",
"COLTON",
"WAYLON",
"VON",
"HOSEA",
"SHAD",
"SANTO",
"RUDOLF",
"ROLF",
"REY",
"RENALDO",
"MARCELLUS",
"LUCIUS",
"KRISTOFER",
"BOYCE",
"BENTON",
"HAYDEN",
"HARLAND",
"ARNOLDO",
"RUEBEN",
"LEANDRO",
"KRAIG",
"JERRELL",
"JEROMY",
"HOBERT",
"CEDRICK",
"ARLIE",
"WINFORD",
"WALLY",
"LUIGI",
"KENETH",
"JACINTO",
"GRAIG",
"FRANKLYN",
"EDMUNDO",
"SID",
"PORTER",
"LEIF",
"JERAMY",
"BUCK",
"WILLIAN",
"VINCENZO",
"SHON",
"LYNWOOD",
"JERE",
"HAI",
"ELDEN",
"DORSEY",
"DARELL",
"BRODERICK",
"ALONSO",
]
total_sum = 0
temp_sum = 0
names.sort()
for i in range(len(names)):
for j in names[i]:
temp_sum += ord(j) - ord("A") + 1
total_sum += (i + 1) * temp_sum
temp_sum = 0
print(total_sum)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_023/README.md | # Project Euler Problem #023: Non-abundant sums
([Problem Link](https://projecteuler.net/problem=23))
A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_023/problem_023.cpp | #include <bits/stdc++.h>
using namespace std;
int isAbundant(int x)
{
int sum = 0;
for(int i = 1; i * i <= x; i++)
{
if(x % i == 0)
{
if((x / i) == i)
{
sum += i;
}
else
{
sum += i + (x / i);
}
}
}
sum -= x;
if(sum > x)
{
return true;
}
return false;
}
int main()
{
int max = 28123;
vector<int> abundant;
for(int i = 1; i <= max; i++)
{
if(isAbundant(i))
{
abundant.push_back(i);
}
}
int isSumAbundant[max + 1] = {};
for(int i = 0; i < abundant.size(); i++)
{
for(int j = i; j < abundant.size(); j++)
{
if(abundant[i] + abundant[j] <= max)
{
isSumAbundant[abundant[i] + abundant[j]] = 1;
}
}
}
int ans = 0;
for(int i = 1; i <= max; i++)
{
if(isSumAbundant[i] == 0)
{
ans += i;
}
}
cout << ans;
}
|
code/online_challenges/src/project_euler/problem_024/README.md | # Project Euler Problem #024: Lexicographic permutations
([Problem Link](https://projecteuler.net/problem=24))
A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are:
```012 021 102 120 201 210```
What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_024/problem_024.py | from itertools import permutations
def main():
result = list(map("".join, permutations("0123456789")))
print(result[999999])
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_025/README.md | # Project Euler Problem #025: 1000-digit Fibonacci number
([Problem Link](https://projecteuler.net/problem=25))
The Fibonacci sequence is defined by the recurrence relation:
<p align="center">
F<sub>n</sub> = F<sub>nβ1</sub> + F<sub>nβ2</sub>, where F<sub>1</sub> = 1 and F<sub>2</sub> = 1.
</p>
Hence the first 12 terms will be:
<p align="center">
F<sub>1</sub> = 1
F<sub>2</sub> = 1
F<sub>3</sub> = 2
F<sub>4</sub> = 3
F<sub>5</sub> = 5
F<sub>6</sub> = 8
F<sub>7</sub> = 13
F<sub>8</sub> = 21
F<sub>9</sub> = 34
F<sub>10</sub> = 55
F<sub>11</sub> = 89
F<sub>12</sub> = 144
</p>
The 12th term, F<sub>12</sub>, is the first term to contain three digits.
What is the index of the first term in the Fibonacci sequence to contain 1000 digits?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_025/problem_025.cpp | #include <iostream>
#include <vector>
int main()
{
std::vector<int> prevFibonacci, currFibonacci;
prevFibonacci.reserve(1000);
currFibonacci.reserve(1000);
int count = 2;
prevFibonacci.push_back(1);
currFibonacci.push_back(1);
while (currFibonacci.size() < 1000)
{
std::vector<int> temp;
int carry = 0;
++count;
for (size_t i = 0; i < prevFibonacci.size(); ++i)
{
temp.push_back((currFibonacci[i] + prevFibonacci[i] + carry) % 10);
carry = (currFibonacci[i] + prevFibonacci[i] + carry) / 10;
}
for (size_t i = prevFibonacci.size(); i < currFibonacci.size(); i++)
{
temp.push_back((currFibonacci[i] + carry) % 10);
carry = (currFibonacci[i] + carry) / 10;
}
if (carry)
temp.push_back(carry);
prevFibonacci = currFibonacci;
currFibonacci = temp;
}
std:: cout << count << "\n";
return 0;
}
|
code/online_challenges/src/project_euler/problem_025/problem_025.py | def main(size):
last, actual = 1, 1
index = 2
while actual < size:
last, actual = actual, last + actual
index += 1
print(index)
if __name__ == "__main__":
main(10 ** 999)
|
code/online_challenges/src/project_euler/problem_026/README.md | # Project Euler Problem #026: Reciprocal cycles
([Problem Link](https://projecteuler.net/problem=26))
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_026/problem_026.cpp | #include <iostream>
#include <vector>
int main()
{
int remainder, value, position, sequenceLength = 0;
for (int i = 1000; i > 0; --i)
{
std::vector<int> cycleCheckArray;
for (int j = 0; j < i; ++j)
cycleCheckArray.push_back(0);
remainder = 1, value = 1, position = 0;
while (true)
{
value = remainder * 10;
remainder = value % i;
if (cycleCheckArray[remainder])
{
sequenceLength = position - cycleCheckArray[remainder];
break;
}
cycleCheckArray[remainder] = position;
++position;
}
if (sequenceLength == i - 1)
std::cout << i << "\n";
}
return 0;
}
|
code/online_challenges/src/project_euler/problem_027/README.md | # Project Euler Problem #027: Quadratic primes
([Problem Link](https://projecteuler.net/problem=27))
Euler discovered the remarkable quadratic formula:
<div align="center">n ^ 2 + n + 41</div>
It turns out that the formula will produce 40 primes for the consecutive integer values 0 <= n <= 39. However, when n = 40, 40 ^ 2 + 40 + 41 is divisible by 41, and certainly when n = 41, 41 ^ 2 + 41 + 41 is clearly divisible by 41.
The incredible formula n ^ 2 - 79n + 1601 was discovered, which produces 80 primes for the consecutive values 0 <= n <= 79. The product of the coefficients, β79 and 1601, is β126479.
Considering quadratics of the form:
n ^ 2 + an + b, where |a| < 1000 and |b| <= 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |-4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_027/problem_027.cpp | #include <bits/stdc++.h>
using namespace std;
bool isPrime(int n)
{
bool ans = true;
for(int i = 2; i * i <= n; i++)
{
if(n % i == 0)
{
ans = false;
break;
}
}
return ans;
}
int main()
{
int max_primes = 0;
int prod;
for(int a = -999; a <= 999; a++)
{
for(int b = -1000; b <= 1000; b++)
{
int n = 0;
while(n * n + a * n + b > 1 && isPrime(n * n + a * n + b))
{
n++;
}
if(n > max_primes)
{
max_primes = n;
prod = a * b;
}
}
}
cout << prod;
}
|
code/online_challenges/src/project_euler/problem_028/README.md | # Project Euler Problem #028: Number spiral diagonals
([Problem Link](https://projecteuler.net/problem=28))
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:
<p align="center">
<pre>
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
</pre>
</p>
It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_028/problem_028.cpp | #include <iostream>
#include <cmath>
bool isPerfectSquare(int num)
{
int sqrtNum = static_cast<int>(std::sqrt(num));
return sqrtNum * sqrtNum == num;
}
int main()
{
int limit = 1001 * 1001;
int incrementRate = 0;
int diagonalNumberSum = 0;
for (int i = 1; i <= limit; i += incrementRate) // Iterate over every diagonal number
{
diagonalNumberSum += i; // Add the current diagonal number
if ((i % 2 == 1) // If the current number is odd
&& isPerfectSquare(i)) // and it is a perfect square
// then we have reached the next spiral
incrementRate += 2;
}
std::cout << diagonalNumberSum << "\n";
}
|
code/online_challenges/src/project_euler/problem_028/problem_028.py | from math import sqrt
def is_perfect_square(integer):
sqrt_num = int(sqrt(integer))
return sqrt_num * sqrt_num == integer
def main():
limit = 1001 * 1001
increment_rate = 0
diagonal_number_sum = 0
i = 1
while i <= limit:
diagonal_number_sum += i
if i % 2 == 1 and is_perfect_square(i):
increment_rate += 2
i += increment_rate
print(diagonal_number_sum)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_034/README.md | # Project Euler Problem #034: Digit factorials
([Problem Link](https://projecteuler.net/problem=34))
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
Note: as 1! = 1 and 2! = 2 are not sums they are not included.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_034/problem_034.cpp | #include <iostream>
#include <vector>
int factorial (std::size_t n)
{
int fact = 1;
for (std::size_t i = 1; i <= n; ++i)
fact *= i;
return fact;
}
int main()
{
std::vector<int> factorials(10);
constexpr std::size_t maxDigitFactorial = 2540162;
for (int i = 0; i < 10; ++i)
factorials[i] = factorial(i);
std::size_t num = 3, sum = 0;
while (num < maxDigitFactorial)
{
std::size_t temp = 0;
for (std::size_t i = num; i > 0; i /= 10)
temp += factorials[i % 10];
if (temp == num)
sum += num;
++num;
}
std::cout << sum << "\n";
}
|
code/online_challenges/src/project_euler/problem_036/README.md | # Project Euler Problem #036: Double-base palindromes
([Problem Link](https://projecteuler.net/problem=36))
The decimal number, 585 = 10010010012 (binary), is palindromic in both bases.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_036/problem_036.cpp | #include <bitset>
#include <iostream>
#include <string>
bool isPalindrome(const std::string& str);
int main()
{
int sum = 0;
for (int i = 1; i < 1000000; ++i)
if (isPalindrome(std::to_string(i)))
{
std::string currentBinaryString = std::bitset<32>(i).to_string();
currentBinaryString.erase(0, currentBinaryString.find('1')); // Remove leading zeroes
if (isPalindrome(currentBinaryString))
sum += i;
}
std::cout << sum << "\n";
}
bool isPalindrome(const std::string& str)
{
return str == std::string{ str.rbegin(), str.rend() };
}
|
code/online_challenges/src/project_euler/problem_036/problem_036.py | def base_check(a, y):
ans = ""
while a > 0:
ans += str(a % y)
a = a // y
return ans == ans[::-1]
def palindrome(x, base):
x = str(x)
if x != x[::-1]:
return False
else:
x = int(x)
x = base_check(x, base)
x = str(x)
return x == x[::-1]
number = 1000000
base = 2
answer = 0
for i in range(1, number + 1):
if palindrome(i, base):
answer += i
print(answer)
|
code/online_challenges/src/project_euler/problem_037/README.md | # Project Euler Problem #037: Truncatable Primes
([Problem Link](https://projecteuler.net/problem=37))
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and
remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_037/problem_037.cpp | #include <array>
#include <cmath>
#include <iostream>
template<std::size_t N>
std::array<bool, N> primesUpto() // Function that implements the Sieve of Eratosthenes
{
std::array<bool, N> primesList;
std::fill(primesList.begin(), primesList.end(), true);
primesList[0] = primesList[1] = false;
std::size_t sqrtLimit = std::sqrt(N) + 1;
for (std::size_t i = 0; i < sqrtLimit; ++i)
if (primesList[i])
for (std::size_t j = i + i; j < N; j += i)
primesList[j] = false;
return primesList;
}
template<std::size_t N>
bool isTruncPrime(std::size_t number, const std::array<bool, N>& primesList)
{
for (std::size_t i = 10; i < number; i *= 10)
if (!primesList[number % i]) // If the right truncated part is not prime
return false;
for (; number >= 1; number /= 10)
if (!primesList[number]) // If the left truncated part is not prime
return false;
return true; // All truncated parts are prime, so the number is a truncatable prime
}
int main()
{
const auto primesUptoMillion = primesUpto<1000000ULL>(); // Represents all the primes up to 1 million
std::size_t numberTruncatablePrimes = 0;
std::size_t currentNumber = 11; // 2, 3, 5, and 7 are not included in the search for truncatable primes
std::size_t truncatablePrimeSum = 0;
while (numberTruncatablePrimes != 11)
{
if (primesUptoMillion[currentNumber] && // If the number itself is prime
isTruncPrime(currentNumber, primesUptoMillion)) // If the number is also a truncatable prime
{
++numberTruncatablePrimes; // Increase amount of truncatable primes
truncatablePrimeSum += currentNumber; // Add the number's sum
}
currentNumber += 2; // Only odd numbers can be prime other than 2, so no need to look at every number
}
std::cout << truncatablePrimeSum << "\n";
}
|
code/online_challenges/src/project_euler/problem_040/README.md | # Project Euler Problem #040: Champernowne's constant
([Problem Link](https://projecteuler.net/problem=40))
An irrational decimal fraction is created by concatenating the positive integers:
0.123456789101112131415161718192021...
It can be seen that the 12th digit of the fractional part is 1.
If dn represents the nth digit of the fractional part, find the value of the following expression.
d1 Γ d10 Γ d100 Γ d1000 Γ d10000 Γ d100000 Γ d1000000
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_040/problem_040.py | def main():
nums = "" # The string containing the sequence of numbers
i = 0 # Used for iteration
while len(nums) < 1000002: # Loop to add the sequence of numbers to the list
nums += str(i)
i += 1
answer = 1 # Initialising answer which will store final computed answer
i = 1 # Reset value for use in next loop
while i <= 1000000: # Loop to generate the answer
answer *= int(nums[i])
i *= 10
print(answer)
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_067/README.md | # Project Euler Problem #067: Maximum path sum II
([Problem Link](https://projecteuler.net/problem=67))
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
```
3
7 4
2 4 6
8 5 9 3
```
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom in [triangle.txt](https://projecteuler.net/project/resources/p067_triangle.txt) (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_067/problem_067.py | def main():
prob = [
[59],
[73, 41],
[52, 40, 9],
[26, 53, 6, 34],
[10, 51, 87, 86, 81],
[61, 95, 66, 57, 25, 68],
[90, 81, 80, 38, 92, 67, 73],
[30, 28, 51, 76, 81, 18, 75, 44],
[84, 14, 95, 87, 62, 81, 17, 78, 58],
[21, 46, 71, 58, 2, 79, 62, 39, 31, 9],
[56, 34, 35, 53, 78, 31, 81, 18, 90, 93, 15],
[78, 53, 4, 21, 84, 93, 32, 13, 97, 11, 37, 51],
[45, 3, 81, 79, 5, 18, 78, 86, 13, 30, 63, 99, 95],
[39, 87, 96, 28, 3, 38, 42, 17, 82, 87, 58, 7, 22, 57],
[6, 17, 51, 17, 7, 93, 9, 7, 75, 97, 95, 78, 87, 8, 53],
[67, 66, 59, 60, 88, 99, 94, 65, 55, 77, 55, 34, 27, 53, 78, 28],
[76, 40, 41, 4, 87, 16, 9, 42, 75, 69, 23, 97, 30, 60, 10, 79, 87],
[12, 10, 44, 26, 21, 36, 32, 84, 98, 60, 13, 12, 36, 16, 63, 31, 91, 35],
[70, 39, 6, 5, 55, 27, 38, 48, 28, 22, 34, 35, 62, 62, 15, 14, 94, 89, 86],
[66, 56, 68, 84, 96, 21, 34, 34, 34, 81, 62, 40, 65, 54, 62, 5, 98, 3, 2, 60],
[
38,
89,
46,
37,
99,
54,
34,
53,
36,
14,
70,
26,
2,
90,
45,
13,
31,
61,
83,
73,
47,
],
[
36,
10,
63,
96,
60,
49,
41,
5,
37,
42,
14,
58,
84,
93,
96,
17,
9,
43,
5,
43,
6,
59,
],
[
66,
57,
87,
57,
61,
28,
37,
51,
84,
73,
79,
15,
39,
95,
88,
87,
43,
39,
11,
86,
77,
74,
18,
],
[
54,
42,
5,
79,
30,
49,
99,
73,
46,
37,
50,
2,
45,
9,
54,
52,
27,
95,
27,
65,
19,
45,
26,
45,
],
[
71,
39,
17,
78,
76,
29,
52,
90,
18,
99,
78,
19,
35,
62,
71,
19,
23,
65,
93,
85,
49,
33,
75,
9,
2,
],
[
33,
24,
47,
61,
60,
55,
32,
88,
57,
55,
91,
54,
46,
57,
7,
77,
98,
52,
80,
99,
24,
25,
46,
78,
79,
5,
],
[
92,
9,
13,
55,
10,
67,
26,
78,
76,
82,
63,
49,
51,
31,
24,
68,
5,
57,
7,
54,
69,
21,
67,
43,
17,
63,
12,
],
[
24,
59,
6,
8,
98,
74,
66,
26,
61,
60,
13,
3,
9,
9,
24,
30,
71,
8,
88,
70,
72,
70,
29,
90,
11,
82,
41,
34,
],
[
66,
82,
67,
4,
36,
60,
92,
77,
91,
85,
62,
49,
59,
61,
30,
90,
29,
94,
26,
41,
89,
4,
53,
22,
83,
41,
9,
74,
90,
],
[
48,
28,
26,
37,
28,
52,
77,
26,
51,
32,
18,
98,
79,
36,
62,
13,
17,
8,
19,
54,
89,
29,
73,
68,
42,
14,
8,
16,
70,
37,
],
[
37,
60,
69,
70,
72,
71,
9,
59,
13,
60,
38,
13,
57,
36,
9,
30,
43,
89,
30,
39,
15,
2,
44,
73,
5,
73,
26,
63,
56,
86,
12,
],
[
55,
55,
85,
50,
62,
99,
84,
77,
28,
85,
3,
21,
27,
22,
19,
26,
82,
69,
54,
4,
13,
7,
85,
14,
1,
15,
70,
59,
89,
95,
10,
19,
],
[
4,
9,
31,
92,
91,
38,
92,
86,
98,
75,
21,
5,
64,
42,
62,
84,
36,
20,
73,
42,
21,
23,
22,
51,
51,
79,
25,
45,
85,
53,
3,
43,
22,
],
[
75,
63,
2,
49,
14,
12,
89,
14,
60,
78,
92,
16,
44,
82,
38,
30,
72,
11,
46,
52,
90,
27,
8,
65,
78,
3,
85,
41,
57,
79,
39,
52,
33,
48,
],
[
78,
27,
56,
56,
39,
13,
19,
43,
86,
72,
58,
95,
39,
7,
4,
34,
21,
98,
39,
15,
39,
84,
89,
69,
84,
46,
37,
57,
59,
35,
59,
50,
26,
15,
93,
],
[
42,
89,
36,
27,
78,
91,
24,
11,
17,
41,
5,
94,
7,
69,
51,
96,
3,
96,
47,
90,
90,
45,
91,
20,
50,
56,
10,
32,
36,
49,
4,
53,
85,
92,
25,
65,
],
[
52,
9,
61,
30,
61,
97,
66,
21,
96,
92,
98,
90,
6,
34,
96,
60,
32,
69,
68,
33,
75,
84,
18,
31,
71,
50,
84,
63,
3,
3,
19,
11,
28,
42,
75,
45,
45,
],
[
61,
31,
61,
68,
96,
34,
49,
39,
5,
71,
76,
59,
62,
67,
6,
47,
96,
99,
34,
21,
32,
47,
52,
7,
71,
60,
42,
72,
94,
56,
82,
83,
84,
40,
94,
87,
82,
46,
],
[
1,
20,
60,
14,
17,
38,
26,
78,
66,
81,
45,
95,
18,
51,
98,
81,
48,
16,
53,
88,
37,
52,
69,
95,
72,
93,
22,
34,
98,
20,
54,
27,
73,
61,
56,
63,
60,
34,
63,
],
[
93,
42,
94,
83,
47,
61,
27,
51,
79,
79,
45,
1,
44,
73,
31,
70,
83,
42,
88,
25,
53,
51,
30,
15,
65,
94,
80,
44,
61,
84,
12,
77,
2,
62,
2,
65,
94,
42,
14,
94,
],
[
32,
73,
9,
67,
68,
29,
74,
98,
10,
19,
85,
48,
38,
31,
85,
67,
53,
93,
93,
77,
47,
67,
39,
72,
94,
53,
18,
43,
77,
40,
78,
32,
29,
59,
24,
6,
2,
83,
50,
60,
66,
],
[
32,
1,
44,
30,
16,
51,
15,
81,
98,
15,
10,
62,
86,
79,
50,
62,
45,
60,
70,
38,
31,
85,
65,
61,
64,
6,
69,
84,
14,
22,
56,
43,
9,
48,
66,
69,
83,
91,
60,
40,
36,
61,
],
[
92,
48,
22,
99,
15,
95,
64,
43,
1,
16,
94,
2,
99,
19,
17,
69,
11,
58,
97,
56,
89,
31,
77,
45,
67,
96,
12,
73,
8,
20,
36,
47,
81,
44,
50,
64,
68,
85,
40,
81,
85,
52,
9,
],
[
91,
35,
92,
45,
32,
84,
62,
15,
19,
64,
21,
66,
6,
1,
52,
80,
62,
59,
12,
25,
88,
28,
91,
50,
40,
16,
22,
99,
92,
79,
87,
51,
21,
77,
74,
77,
7,
42,
38,
42,
74,
83,
2,
5,
],
[
46,
19,
77,
66,
24,
18,
5,
32,
2,
84,
31,
99,
92,
58,
96,
72,
91,
36,
62,
99,
55,
29,
53,
42,
12,
37,
26,
58,
89,
50,
66,
19,
82,
75,
12,
48,
24,
87,
91,
85,
2,
7,
3,
76,
86,
],
[
99,
98,
84,
93,
7,
17,
33,
61,
92,
20,
66,
60,
24,
66,
40,
30,
67,
5,
37,
29,
24,
96,
3,
27,
70,
62,
13,
4,
45,
47,
59,
88,
43,
20,
66,
15,
46,
92,
30,
4,
71,
66,
78,
70,
53,
99,
],
[
67,
60,
38,
6,
88,
4,
17,
72,
10,
99,
71,
7,
42,
25,
54,
5,
26,
64,
91,
50,
45,
71,
6,
30,
67,
48,
69,
82,
8,
56,
80,
67,
18,
46,
66,
63,
1,
20,
8,
80,
47,
7,
91,
16,
3,
79,
87,
],
[
18,
54,
78,
49,
80,
48,
77,
40,
68,
23,
60,
88,
58,
80,
33,
57,
11,
69,
55,
53,
64,
2,
94,
49,
60,
92,
16,
35,
81,
21,
82,
96,
25,
24,
96,
18,
2,
5,
49,
3,
50,
77,
6,
32,
84,
27,
18,
38,
],
[
68,
1,
50,
4,
3,
21,
42,
94,
53,
24,
89,
5,
92,
26,
52,
36,
68,
11,
85,
1,
4,
42,
2,
45,
15,
6,
50,
4,
53,
73,
25,
74,
81,
88,
98,
21,
67,
84,
79,
97,
99,
20,
95,
4,
40,
46,
2,
58,
87,
],
[
94,
10,
2,
78,
88,
52,
21,
3,
88,
60,
6,
53,
49,
71,
20,
91,
12,
65,
7,
49,
21,
22,
11,
41,
58,
99,
36,
16,
9,
48,
17,
24,
52,
36,
23,
15,
72,
16,
84,
56,
2,
99,
43,
76,
81,
71,
29,
39,
49,
17,
],
[
64,
39,
59,
84,
86,
16,
17,
66,
3,
9,
43,
6,
64,
18,
63,
29,
68,
6,
23,
7,
87,
14,
26,
35,
17,
12,
98,
41,
53,
64,
78,
18,
98,
27,
28,
84,
80,
67,
75,
62,
10,
11,
76,
90,
54,
10,
5,
54,
41,
39,
66,
],
[
43,
83,
18,
37,
32,
31,
52,
29,
95,
47,
8,
76,
35,
11,
4,
53,
35,
43,
34,
10,
52,
57,
12,
36,
20,
39,
40,
55,
78,
44,
7,
31,
38,
26,
8,
15,
56,
88,
86,
1,
52,
62,
10,
24,
32,
5,
60,
65,
53,
28,
57,
99,
],
[
3,
50,
3,
52,
7,
73,
49,
92,
66,
80,
1,
46,
8,
67,
25,
36,
73,
93,
7,
42,
25,
53,
13,
96,
76,
83,
87,
90,
54,
89,
78,
22,
78,
91,
73,
51,
69,
9,
79,
94,
83,
53,
9,
40,
69,
62,
10,
79,
49,
47,
3,
81,
30,
],
[
71,
54,
73,
33,
51,
76,
59,
54,
79,
37,
56,
45,
84,
17,
62,
21,
98,
69,
41,
95,
65,
24,
39,
37,
62,
3,
24,
48,
54,
64,
46,
82,
71,
78,
33,
67,
9,
16,
96,
68,
52,
74,
79,
68,
32,
21,
13,
78,
96,
60,
9,
69,
20,
36,
],
[
73,
26,
21,
44,
46,
38,
17,
83,
65,
98,
7,
23,
52,
46,
61,
97,
33,
13,
60,
31,
70,
15,
36,
77,
31,
58,
56,
93,
75,
68,
21,
36,
69,
53,
90,
75,
25,
82,
39,
50,
65,
94,
29,
30,
11,
33,
11,
13,
96,
2,
56,
47,
7,
49,
2,
],
[
76,
46,
73,
30,
10,
20,
60,
70,
14,
56,
34,
26,
37,
39,
48,
24,
55,
76,
84,
91,
39,
86,
95,
61,
50,
14,
53,
93,
64,
67,
37,
31,
10,
84,
42,
70,
48,
20,
10,
72,
60,
61,
84,
79,
69,
65,
99,
73,
89,
25,
85,
48,
92,
56,
97,
16,
],
[
3,
14,
80,
27,
22,
30,
44,
27,
67,
75,
79,
32,
51,
54,
81,
29,
65,
14,
19,
4,
13,
82,
4,
91,
43,
40,
12,
52,
29,
99,
7,
76,
60,
25,
1,
7,
61,
71,
37,
92,
40,
47,
99,
66,
57,
1,
43,
44,
22,
40,
53,
53,
9,
69,
26,
81,
7,
],
[
49,
80,
56,
90,
93,
87,
47,
13,
75,
28,
87,
23,
72,
79,
32,
18,
27,
20,
28,
10,
37,
59,
21,
18,
70,
4,
79,
96,
3,
31,
45,
71,
81,
6,
14,
18,
17,
5,
31,
50,
92,
79,
23,
47,
9,
39,
47,
91,
43,
54,
69,
47,
42,
95,
62,
46,
32,
85,
],
[
37,
18,
62,
85,
87,
28,
64,
5,
77,
51,
47,
26,
30,
65,
5,
70,
65,
75,
59,
80,
42,
52,
25,
20,
44,
10,
92,
17,
71,
95,
52,
14,
77,
13,
24,
55,
11,
65,
26,
91,
1,
30,
63,
15,
49,
48,
41,
17,
67,
47,
3,
68,
20,
90,
98,
32,
4,
40,
68,
],
[
90,
51,
58,
60,
6,
55,
23,
68,
5,
19,
76,
94,
82,
36,
96,
43,
38,
90,
87,
28,
33,
83,
5,
17,
70,
83,
96,
93,
6,
4,
78,
47,
80,
6,
23,
84,
75,
23,
87,
72,
99,
14,
50,
98,
92,
38,
90,
64,
61,
58,
76,
94,
36,
66,
87,
80,
51,
35,
61,
38,
],
[
57,
95,
64,
6,
53,
36,
82,
51,
40,
33,
47,
14,
7,
98,
78,
65,
39,
58,
53,
6,
50,
53,
4,
69,
40,
68,
36,
69,
75,
78,
75,
60,
3,
32,
39,
24,
74,
47,
26,
90,
13,
40,
44,
71,
90,
76,
51,
24,
36,
50,
25,
45,
70,
80,
61,
80,
61,
43,
90,
64,
11,
],
[
18,
29,
86,
56,
68,
42,
79,
10,
42,
44,
30,
12,
96,
18,
23,
18,
52,
59,
2,
99,
67,
46,
60,
86,
43,
38,
55,
17,
44,
93,
42,
21,
55,
14,
47,
34,
55,
16,
49,
24,
23,
29,
96,
51,
55,
10,
46,
53,
27,
92,
27,
46,
63,
57,
30,
65,
43,
27,
21,
20,
24,
83,
],
[
81,
72,
93,
19,
69,
52,
48,
1,
13,
83,
92,
69,
20,
48,
69,
59,
20,
62,
5,
42,
28,
89,
90,
99,
32,
72,
84,
17,
8,
87,
36,
3,
60,
31,
36,
36,
81,
26,
97,
36,
48,
54,
56,
56,
27,
16,
91,
8,
23,
11,
87,
99,
33,
47,
2,
14,
44,
73,
70,
99,
43,
35,
33,
],
[
90,
56,
61,
86,
56,
12,
70,
59,
63,
32,
1,
15,
81,
47,
71,
76,
95,
32,
65,
80,
54,
70,
34,
51,
40,
45,
33,
4,
64,
55,
78,
68,
88,
47,
31,
47,
68,
87,
3,
84,
23,
44,
89,
72,
35,
8,
31,
76,
63,
26,
90,
85,
96,
67,
65,
91,
19,
14,
17,
86,
4,
71,
32,
95,
],
[
37,
13,
4,
22,
64,
37,
37,
28,
56,
62,
86,
33,
7,
37,
10,
44,
52,
82,
52,
6,
19,
52,
57,
75,
90,
26,
91,
24,
6,
21,
14,
67,
76,
30,
46,
14,
35,
89,
89,
41,
3,
64,
56,
97,
87,
63,
22,
34,
3,
79,
17,
45,
11,
53,
25,
56,
96,
61,
23,
18,
63,
31,
37,
37,
47,
],
[
77,
23,
26,
70,
72,
76,
77,
4,
28,
64,
71,
69,
14,
85,
96,
54,
95,
48,
6,
62,
99,
83,
86,
77,
97,
75,
71,
66,
30,
19,
57,
90,
33,
1,
60,
61,
14,
12,
90,
99,
32,
77,
56,
41,
18,
14,
87,
49,
10,
14,
90,
64,
18,
50,
21,
74,
14,
16,
88,
5,
45,
73,
82,
47,
74,
44,
],
[
22,
97,
41,
13,
34,
31,
54,
61,
56,
94,
3,
24,
59,
27,
98,
77,
4,
9,
37,
40,
12,
26,
87,
9,
71,
70,
7,
18,
64,
57,
80,
21,
12,
71,
83,
94,
60,
39,
73,
79,
73,
19,
97,
32,
64,
29,
41,
7,
48,
84,
85,
67,
12,
74,
95,
20,
24,
52,
41,
67,
56,
61,
29,
93,
35,
72,
69,
],
[
72,
23,
63,
66,
1,
11,
7,
30,
52,
56,
95,
16,
65,
26,
83,
90,
50,
74,
60,
18,
16,
48,
43,
77,
37,
11,
99,
98,
30,
94,
91,
26,
62,
73,
45,
12,
87,
73,
47,
27,
1,
88,
66,
99,
21,
41,
95,
80,
2,
53,
23,
32,
61,
48,
32,
43,
43,
83,
14,
66,
95,
91,
19,
81,
80,
67,
25,
88,
],
[
8,
62,
32,
18,
92,
14,
83,
71,
37,
96,
11,
83,
39,
99,
5,
16,
23,
27,
10,
67,
2,
25,
44,
11,
55,
31,
46,
64,
41,
56,
44,
74,
26,
81,
51,
31,
45,
85,
87,
9,
81,
95,
22,
28,
76,
69,
46,
48,
64,
87,
67,
76,
27,
89,
31,
11,
74,
16,
62,
3,
60,
94,
42,
47,
9,
34,
94,
93,
72,
],
[
56,
18,
90,
18,
42,
17,
42,
32,
14,
86,
6,
53,
33,
95,
99,
35,
29,
15,
44,
20,
49,
59,
25,
54,
34,
59,
84,
21,
23,
54,
35,
90,
78,
16,
93,
13,
37,
88,
54,
19,
86,
67,
68,
55,
66,
84,
65,
42,
98,
37,
87,
56,
33,
28,
58,
38,
28,
38,
66,
27,
52,
21,
81,
15,
8,
22,
97,
32,
85,
27,
],
[
91,
53,
40,
28,
13,
34,
91,
25,
1,
63,
50,
37,
22,
49,
71,
58,
32,
28,
30,
18,
68,
94,
23,
83,
63,
62,
94,
76,
80,
41,
90,
22,
82,
52,
29,
12,
18,
56,
10,
8,
35,
14,
37,
57,
23,
65,
67,
40,
72,
39,
93,
39,
70,
89,
40,
34,
7,
46,
94,
22,
20,
5,
53,
64,
56,
30,
5,
56,
61,
88,
27,
],
[
23,
95,
11,
12,
37,
69,
68,
24,
66,
10,
87,
70,
43,
50,
75,
7,
62,
41,
83,
58,
95,
93,
89,
79,
45,
39,
2,
22,
5,
22,
95,
43,
62,
11,
68,
29,
17,
40,
26,
44,
25,
71,
87,
16,
70,
85,
19,
25,
59,
94,
90,
41,
41,
80,
61,
70,
55,
60,
84,
33,
95,
76,
42,
63,
15,
9,
3,
40,
38,
12,
3,
32,
],
[
9,
84,
56,
80,
61,
55,
85,
97,
16,
94,
82,
94,
98,
57,
84,
30,
84,
48,
93,
90,
71,
5,
95,
90,
73,
17,
30,
98,
40,
64,
65,
89,
7,
79,
9,
19,
56,
36,
42,
30,
23,
69,
73,
72,
7,
5,
27,
61,
24,
31,
43,
48,
71,
84,
21,
28,
26,
65,
65,
59,
65,
74,
77,
20,
10,
81,
61,
84,
95,
8,
52,
23,
70,
],
[
47,
81,
28,
9,
98,
51,
67,
64,
35,
51,
59,
36,
92,
82,
77,
65,
80,
24,
72,
53,
22,
7,
27,
10,
21,
28,
30,
22,
48,
82,
80,
48,
56,
20,
14,
43,
18,
25,
50,
95,
90,
31,
77,
8,
9,
48,
44,
80,
90,
22,
93,
45,
82,
17,
13,
96,
25,
26,
8,
73,
34,
99,
6,
49,
24,
6,
83,
51,
40,
14,
15,
10,
25,
1,
],
[
54,
25,
10,
81,
30,
64,
24,
74,
75,
80,
36,
75,
82,
60,
22,
69,
72,
91,
45,
67,
3,
62,
79,
54,
89,
74,
44,
83,
64,
96,
66,
73,
44,
30,
74,
50,
37,
5,
9,
97,
70,
1,
60,
46,
37,
91,
39,
75,
75,
18,
58,
52,
72,
78,
51,
81,
86,
52,
8,
97,
1,
46,
43,
66,
98,
62,
81,
18,
70,
93,
73,
8,
32,
46,
34,
],
[
96,
80,
82,
7,
59,
71,
92,
53,
19,
20,
88,
66,
3,
26,
26,
10,
24,
27,
50,
82,
94,
73,
63,
8,
51,
33,
22,
45,
19,
13,
58,
33,
90,
15,
22,
50,
36,
13,
55,
6,
35,
47,
82,
52,
33,
61,
36,
27,
28,
46,
98,
14,
73,
20,
73,
32,
16,
26,
80,
53,
47,
66,
76,
38,
94,
45,
2,
1,
22,
52,
47,
96,
64,
58,
52,
39,
],
[
88,
46,
23,
39,
74,
63,
81,
64,
20,
90,
33,
33,
76,
55,
58,
26,
10,
46,
42,
26,
74,
74,
12,
83,
32,
43,
9,
2,
73,
55,
86,
54,
85,
34,
28,
23,
29,
79,
91,
62,
47,
41,
82,
87,
99,
22,
48,
90,
20,
5,
96,
75,
95,
4,
43,
28,
81,
39,
81,
1,
28,
42,
78,
25,
39,
77,
90,
57,
58,
98,
17,
36,
73,
22,
63,
74,
51,
],
[
29,
39,
74,
94,
95,
78,
64,
24,
38,
86,
63,
87,
93,
6,
70,
92,
22,
16,
80,
64,
29,
52,
20,
27,
23,
50,
14,
13,
87,
15,
72,
96,
81,
22,
8,
49,
72,
30,
70,
24,
79,
31,
16,
64,
59,
21,
89,
34,
96,
91,
48,
76,
43,
53,
88,
1,
57,
80,
23,
81,
90,
79,
58,
1,
80,
87,
17,
99,
86,
90,
72,
63,
32,
69,
14,
28,
88,
69,
],
[
37,
17,
71,
95,
56,
93,
71,
35,
43,
45,
4,
98,
92,
94,
84,
96,
11,
30,
31,
27,
31,
60,
92,
3,
48,
5,
98,
91,
86,
94,
35,
90,
90,
8,
48,
19,
33,
28,
68,
37,
59,
26,
65,
96,
50,
68,
22,
7,
9,
49,
34,
31,
77,
49,
43,
6,
75,
17,
81,
87,
61,
79,
52,
26,
27,
72,
29,
50,
7,
98,
86,
1,
17,
10,
46,
64,
24,
18,
56,
],
[
51,
30,
25,
94,
88,
85,
79,
91,
40,
33,
63,
84,
49,
67,
98,
92,
15,
26,
75,
19,
82,
5,
18,
78,
65,
93,
61,
48,
91,
43,
59,
41,
70,
51,
22,
15,
92,
81,
67,
91,
46,
98,
11,
11,
65,
31,
66,
10,
98,
65,
83,
21,
5,
56,
5,
98,
73,
67,
46,
74,
69,
34,
8,
30,
5,
52,
7,
98,
32,
95,
30,
94,
65,
50,
24,
63,
28,
81,
99,
57,
],
[
19,
23,
61,
36,
9,
89,
71,
98,
65,
17,
30,
29,
89,
26,
79,
74,
94,
11,
44,
48,
97,
54,
81,
55,
39,
66,
69,
45,
28,
47,
13,
86,
15,
76,
74,
70,
84,
32,
36,
33,
79,
20,
78,
14,
41,
47,
89,
28,
81,
5,
99,
66,
81,
86,
38,
26,
6,
25,
13,
60,
54,
55,
23,
53,
27,
5,
89,
25,
23,
11,
13,
54,
59,
54,
56,
34,
16,
24,
53,
44,
6,
],
[
13,
40,
57,
72,
21,
15,
60,
8,
4,
19,
11,
98,
34,
45,
9,
97,
86,
71,
3,
15,
56,
19,
15,
44,
97,
31,
90,
4,
87,
87,
76,
8,
12,
30,
24,
62,
84,
28,
12,
85,
82,
53,
99,
52,
13,
94,
6,
65,
97,
86,
9,
50,
94,
68,
69,
74,
30,
67,
87,
94,
63,
7,
78,
27,
80,
36,
69,
41,
6,
92,
32,
78,
37,
82,
30,
5,
18,
87,
99,
72,
19,
99,
],
[
44,
20,
55,
77,
69,
91,
27,
31,
28,
81,
80,
27,
2,
7,
97,
23,
95,
98,
12,
25,
75,
29,
47,
71,
7,
47,
78,
39,
41,
59,
27,
76,
13,
15,
66,
61,
68,
35,
69,
86,
16,
53,
67,
63,
99,
85,
41,
56,
8,
28,
33,
40,
94,
76,
90,
85,
31,
70,
24,
65,
84,
65,
99,
82,
19,
25,
54,
37,
21,
46,
33,
2,
52,
99,
51,
33,
26,
4,
87,
2,
8,
18,
96,
],
[
54,
42,
61,
45,
91,
6,
64,
79,
80,
82,
32,
16,
83,
63,
42,
49,
19,
78,
65,
97,
40,
42,
14,
61,
49,
34,
4,
18,
25,
98,
59,
30,
82,
72,
26,
88,
54,
36,
21,
75,
3,
88,
99,
53,
46,
51,
55,
78,
22,
94,
34,
40,
68,
87,
84,
25,
30,
76,
25,
8,
92,
84,
42,
61,
40,
38,
9,
99,
40,
23,
29,
39,
46,
55,
10,
90,
35,
84,
56,
70,
63,
23,
91,
39,
],
[
52,
92,
3,
71,
89,
7,
9,
37,
68,
66,
58,
20,
44,
92,
51,
56,
13,
71,
79,
99,
26,
37,
2,
6,
16,
67,
36,
52,
58,
16,
79,
73,
56,
60,
59,
27,
44,
77,
94,
82,
20,
50,
98,
33,
9,
87,
94,
37,
40,
83,
64,
83,
58,
85,
17,
76,
53,
2,
83,
52,
22,
27,
39,
20,
48,
92,
45,
21,
9,
42,
24,
23,
12,
37,
52,
28,
50,
78,
79,
20,
86,
62,
73,
20,
59,
],
[
54,
96,
80,
15,
91,
90,
99,
70,
10,
9,
58,
90,
93,
50,
81,
99,
54,
38,
36,
10,
30,
11,
35,
84,
16,
45,
82,
18,
11,
97,
36,
43,
96,
79,
97,
65,
40,
48,
23,
19,
17,
31,
64,
52,
65,
65,
37,
32,
65,
76,
99,
79,
34,
65,
79,
27,
55,
33,
3,
1,
33,
27,
61,
28,
66,
8,
4,
70,
49,
46,
48,
83,
1,
45,
19,
96,
13,
81,
14,
21,
31,
79,
93,
85,
50,
5,
],
[
92,
92,
48,
84,
59,
98,
31,
53,
23,
27,
15,
22,
79,
95,
24,
76,
5,
79,
16,
93,
97,
89,
38,
89,
42,
83,
2,
88,
94,
95,
82,
21,
1,
97,
48,
39,
31,
78,
9,
65,
50,
56,
97,
61,
1,
7,
65,
27,
21,
23,
14,
15,
80,
97,
44,
78,
49,
35,
33,
45,
81,
74,
34,
5,
31,
57,
9,
38,
94,
7,
69,
54,
69,
32,
65,
68,
46,
68,
78,
90,
24,
28,
49,
51,
45,
86,
35,
],
[
41,
63,
89,
76,
87,
31,
86,
9,
46,
14,
87,
82,
22,
29,
47,
16,
13,
10,
70,
72,
82,
95,
48,
64,
58,
43,
13,
75,
42,
69,
21,
12,
67,
13,
64,
85,
58,
23,
98,
9,
37,
76,
5,
22,
31,
12,
66,
50,
29,
99,
86,
72,
45,
25,
10,
28,
19,
6,
90,
43,
29,
31,
67,
79,
46,
25,
74,
14,
97,
35,
76,
37,
65,
46,
23,
82,
6,
22,
30,
76,
93,
66,
94,
17,
96,
13,
20,
72,
],
[
63,
40,
78,
8,
52,
9,
90,
41,
70,
28,
36,
14,
46,
44,
85,
96,
24,
52,
58,
15,
87,
37,
5,
98,
99,
39,
13,
61,
76,
38,
44,
99,
83,
74,
90,
22,
53,
80,
56,
98,
30,
51,
63,
39,
44,
30,
91,
91,
4,
22,
27,
73,
17,
35,
53,
18,
35,
45,
54,
56,
27,
78,
48,
13,
69,
36,
44,
38,
71,
25,
30,
56,
15,
22,
73,
43,
32,
69,
59,
25,
93,
83,
45,
11,
34,
94,
44,
39,
92,
],
[
12,
36,
56,
88,
13,
96,
16,
12,
55,
54,
11,
47,
19,
78,
17,
17,
68,
81,
77,
51,
42,
55,
99,
85,
66,
27,
81,
79,
93,
42,
65,
61,
69,
74,
14,
1,
18,
56,
12,
1,
58,
37,
91,
22,
42,
66,
83,
25,
19,
4,
96,
41,
25,
45,
18,
69,
96,
88,
36,
93,
10,
12,
98,
32,
44,
83,
83,
4,
72,
91,
4,
27,
73,
7,
34,
37,
71,
60,
59,
31,
1,
54,
54,
44,
96,
93,
83,
36,
4,
45,
],
[
30,
18,
22,
20,
42,
96,
65,
79,
17,
41,
55,
69,
94,
81,
29,
80,
91,
31,
85,
25,
47,
26,
43,
49,
2,
99,
34,
67,
99,
76,
16,
14,
15,
93,
8,
32,
99,
44,
61,
77,
67,
50,
43,
55,
87,
55,
53,
72,
17,
46,
62,
25,
50,
99,
73,
5,
93,
48,
17,
31,
70,
80,
59,
9,
44,
59,
45,
13,
74,
66,
58,
94,
87,
73,
16,
14,
85,
38,
74,
99,
64,
23,
79,
28,
71,
42,
20,
37,
82,
31,
23,
],
[
51,
96,
39,
65,
46,
71,
56,
13,
29,
68,
53,
86,
45,
33,
51,
49,
12,
91,
21,
21,
76,
85,
2,
17,
98,
15,
46,
12,
60,
21,
88,
30,
92,
83,
44,
59,
42,
50,
27,
88,
46,
86,
94,
73,
45,
54,
23,
24,
14,
10,
94,
21,
20,
34,
23,
51,
4,
83,
99,
75,
90,
63,
60,
16,
22,
33,
83,
70,
11,
32,
10,
50,
29,
30,
83,
46,
11,
5,
31,
17,
86,
42,
49,
1,
44,
63,
28,
60,
7,
78,
95,
40,
],
[
44,
61,
89,
59,
4,
49,
51,
27,
69,
71,
46,
76,
44,
4,
9,
34,
56,
39,
15,
6,
94,
91,
75,
90,
65,
27,
56,
23,
74,
6,
23,
33,
36,
69,
14,
39,
5,
34,
35,
57,
33,
22,
76,
46,
56,
10,
61,
65,
98,
9,
16,
69,
4,
62,
65,
18,
99,
76,
49,
18,
72,
66,
73,
83,
82,
40,
76,
31,
89,
91,
27,
88,
17,
35,
41,
35,
32,
51,
32,
67,
52,
68,
74,
85,
80,
57,
7,
11,
62,
66,
47,
22,
67,
],
[
65,
37,
19,
97,
26,
17,
16,
24,
24,
17,
50,
37,
64,
82,
24,
36,
32,
11,
68,
34,
69,
31,
32,
89,
79,
93,
96,
68,
49,
90,
14,
23,
4,
4,
67,
99,
81,
74,
70,
74,
36,
96,
68,
9,
64,
39,
88,
35,
54,
89,
96,
58,
66,
27,
88,
97,
32,
14,
6,
35,
78,
20,
71,
6,
85,
66,
57,
2,
58,
91,
72,
5,
29,
56,
73,
48,
86,
52,
9,
93,
22,
57,
79,
42,
12,
1,
31,
68,
17,
59,
63,
76,
7,
77,
],
[
73,
81,
14,
13,
17,
20,
11,
9,
1,
83,
8,
85,
91,
70,
84,
63,
62,
77,
37,
7,
47,
1,
59,
95,
39,
69,
39,
21,
99,
9,
87,
2,
97,
16,
92,
36,
74,
71,
90,
66,
33,
73,
73,
75,
52,
91,
11,
12,
26,
53,
5,
26,
26,
48,
61,
50,
90,
65,
1,
87,
42,
47,
74,
35,
22,
73,
24,
26,
56,
70,
52,
5,
48,
41,
31,
18,
83,
27,
21,
39,
80,
85,
26,
8,
44,
2,
71,
7,
63,
22,
5,
52,
19,
8,
20,
],
[
17,
25,
21,
11,
72,
93,
33,
49,
64,
23,
53,
82,
3,
13,
91,
65,
85,
2,
40,
5,
42,
31,
77,
42,
5,
36,
6,
54,
4,
58,
7,
76,
87,
83,
25,
57,
66,
12,
74,
33,
85,
37,
74,
32,
20,
69,
3,
97,
91,
68,
82,
44,
19,
14,
89,
28,
85,
85,
80,
53,
34,
87,
58,
98,
88,
78,
48,
65,
98,
40,
11,
57,
10,
67,
70,
81,
60,
79,
74,
72,
97,
59,
79,
47,
30,
20,
54,
80,
89,
91,
14,
5,
33,
36,
79,
39,
],
[
60,
85,
59,
39,
60,
7,
57,
76,
77,
92,
6,
35,
15,
72,
23,
41,
45,
52,
95,
18,
64,
79,
86,
53,
56,
31,
69,
11,
91,
31,
84,
50,
44,
82,
22,
81,
41,
40,
30,
42,
30,
91,
48,
94,
74,
76,
64,
58,
74,
25,
96,
57,
14,
19,
3,
99,
28,
83,
15,
75,
99,
1,
89,
85,
79,
50,
3,
95,
32,
67,
44,
8,
7,
41,
62,
64,
29,
20,
14,
76,
26,
55,
48,
71,
69,
66,
19,
72,
44,
25,
14,
1,
48,
74,
12,
98,
7,
],
[
64,
66,
84,
24,
18,
16,
27,
48,
20,
14,
47,
69,
30,
86,
48,
40,
23,
16,
61,
21,
51,
50,
26,
47,
35,
33,
91,
28,
78,
64,
43,
68,
4,
79,
51,
8,
19,
60,
52,
95,
6,
68,
46,
86,
35,
97,
27,
58,
4,
65,
30,
58,
99,
12,
12,
75,
91,
39,
50,
31,
42,
64,
70,
4,
46,
7,
98,
73,
98,
93,
37,
89,
77,
91,
64,
71,
64,
65,
66,
21,
78,
62,
81,
74,
42,
20,
83,
70,
73,
95,
78,
45,
92,
27,
34,
53,
71,
15,
],
[
30,
11,
85,
31,
34,
71,
13,
48,
5,
14,
44,
3,
19,
67,
23,
73,
19,
57,
6,
90,
94,
72,
57,
69,
81,
62,
59,
68,
88,
57,
55,
69,
49,
13,
7,
87,
97,
80,
89,
5,
71,
5,
5,
26,
38,
40,
16,
62,
45,
99,
18,
38,
98,
24,
21,
26,
62,
74,
69,
4,
85,
57,
77,
35,
58,
67,
91,
79,
79,
57,
86,
28,
66,
34,
72,
51,
76,
78,
36,
95,
63,
90,
8,
78,
47,
63,
45,
31,
22,
70,
52,
48,
79,
94,
15,
77,
61,
67,
68,
],
[
23,
33,
44,
81,
80,
92,
93,
75,
94,
88,
23,
61,
39,
76,
22,
3,
28,
94,
32,
6,
49,
65,
41,
34,
18,
23,
8,
47,
62,
60,
3,
63,
33,
13,
80,
52,
31,
54,
73,
43,
70,
26,
16,
69,
57,
87,
83,
31,
3,
93,
70,
81,
47,
95,
77,
44,
29,
68,
39,
51,
56,
59,
63,
7,
25,
70,
7,
77,
43,
53,
64,
3,
94,
42,
95,
39,
18,
1,
66,
21,
16,
97,
20,
50,
90,
16,
70,
10,
95,
69,
29,
6,
25,
61,
41,
26,
15,
59,
63,
35,
],
]
for i in range(98, -1, -1):
for j in range(len(prob[i])):
prob[i][j] += max(prob[i + 1][j], prob[i + 1][j + 1])
print(prob[0][0])
if __name__ == "__main__":
main()
|
code/online_challenges/src/project_euler/problem_102/README.md | # Project Euler Problem #102: Triangle containment
([Problem Link](https://projecteuler.net/problem=102))
Three distinct points are plotted at random on a Cartesian plane, for which -1000 β€ x, y β€ 1000, such that a triangle is formed.
Consider the following two triangles:
<p align="center">
A(-340,495), B(-153,-910), C(835,-947)
X(-175,41), Y(-421,-714), Z(574,-645)
</p>
It can be verified that triangle ABC contains the origin, whereas triangle XYZ does not.
Using [triangles.txt](./triangles.txt) (right click and 'Save Link/Target As...'), a 27K text file containing the co-ordinates of one thousand "random" triangles, find the number of triangles for which the interior contains the origin.
NOTE: The first two examples in the file represent the triangles in the example given above.
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/project_euler/problem_102/problem_102.cpp | #include <cmath>
#include <iostream>
#include <fstream>
struct Coord
{
int x;
int y;
};
int doubleTriangleArea(Coord a, Coord b, Coord c) // Area doesn't actually need to be calculated either,
// just compared for equality
{
/*
* Coordinate area method for Triangle:
*
* A = | (x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2))/2 |
*
*/
return std::abs((a.x * (b.y - c.y)) + (b.x * (c.y - a.y)) + (c.x * (a.y - b.y)));
}
bool containsOrigin(Coord a, Coord b, Coord c)
{
// A triangle contains a point if the area of it as a whole is
// equivalent to the sum of the areas of the three triangles
// formed with two of the main triangle's points and the point
static Coord origin {0, 0};
return doubleTriangleArea(a, b, c) ==
(
doubleTriangleArea(origin, a, b) +
doubleTriangleArea(origin, b, c) +
doubleTriangleArea(origin, a, c)
);
}
int main()
{
std::ifstream trianglesFile("triangles.txt");
int numOriginTriangles = 0;
if (trianglesFile.is_open())
{
Coord a, b, c;
char comma; // Since each part of a coordinate is comma separated
while (trianglesFile >> a.x >> comma >> a.y >> comma >> b.x >> comma >> b.y >> comma >>
c.x >> comma >> c.y)
if (containsOrigin(a, b, c))
++numOriginTriangles;
trianglesFile.close();
}
else
std::cout <<
"Unable to open the file triangles.txt! Please check if the file exists in the appropriate location!\n";
std::cout << numOriginTriangles << "\n";
}
|
code/online_challenges/src/project_euler/problem_102/triangles.txt | -340,495,-153,-910,835,-947
-175,41,-421,-714,574,-645
-547,712,-352,579,951,-786
419,-864,-83,650,-399,171
-429,-89,-357,-930,296,-29
-734,-702,823,-745,-684,-62
-971,762,925,-776,-663,-157
162,570,628,485,-807,-896
641,91,-65,700,887,759
215,-496,46,-931,422,-30
-119,359,668,-609,-358,-494
440,929,968,214,760,-857
-700,785,838,29,-216,411
-770,-458,-325,-53,-505,633
-752,-805,349,776,-799,687
323,5,561,-36,919,-560
-907,358,264,320,204,274
-728,-466,350,969,292,-345
940,836,272,-533,748,185
411,998,813,520,316,-949
-152,326,658,-762,148,-651
330,507,-9,-628,101,174
551,-496,772,-541,-702,-45
-164,-489,-90,322,631,-59
673,366,-4,-143,-606,-704
428,-609,801,-449,740,-269
453,-924,-785,-346,-853,111
-738,555,-181,467,-426,-20
958,-692,784,-343,505,-569
620,27,263,54,-439,-726
804,87,998,859,871,-78
-119,-453,-709,-292,-115,-56
-626,138,-940,-476,-177,-274
-11,160,142,588,446,158
538,727,550,787,330,810
420,-689,854,-546,337,516
872,-998,-607,748,473,-192
653,440,-516,-985,808,-857
374,-158,331,-940,-338,-641
137,-925,-179,771,734,-715
-314,198,-115,29,-641,-39
759,-574,-385,355,590,-603
-189,-63,-168,204,289,305
-182,-524,-715,-621,911,-255
331,-816,-833,471,168,126
-514,581,-855,-220,-731,-507
129,169,576,651,-87,-458
783,-444,-881,658,-266,298
603,-430,-598,585,368,899
43,-724,962,-376,851,409
-610,-646,-883,-261,-482,-881
-117,-237,978,641,101,-747
579,125,-715,-712,208,534
672,-214,-762,372,874,533
-564,965,38,715,367,242
500,951,-700,-981,-61,-178
-382,-224,-959,903,-282,-60
-355,295,426,-331,-591,655
892,128,958,-271,-993,274
-454,-619,302,138,-790,-874
-642,601,-574,159,-290,-318
266,-109,257,-686,54,975
162,628,-478,840,264,-266
466,-280,982,1,904,-810
721,839,730,-807,777,981
-129,-430,748,263,943,96
434,-94,410,-990,249,-704
237,42,122,-732,44,-51
909,-116,-229,545,292,717
824,-768,-807,-370,-262,30
675,58,332,-890,-651,791
363,825,-717,254,684,240
405,-715,900,166,-589,422
-476,686,-830,-319,634,-807
633,837,-971,917,-764,207
-116,-44,-193,-70,908,809
-26,-252,998,408,70,-713
-601,645,-462,842,-644,-591
-160,653,274,113,-138,687
369,-273,-181,925,-167,-693
-338,135,480,-967,-13,-840
-90,-270,-564,695,161,907
607,-430,869,-713,461,-469
919,-165,-776,522,606,-708
-203,465,288,207,-339,-458
-453,-534,-715,975,838,-677
-973,310,-350,934,546,-805
-835,385,708,-337,-594,-772
-14,914,900,-495,-627,594
833,-713,-213,578,-296,699
-27,-748,484,455,915,291
270,889,739,-57,442,-516
119,811,-679,905,184,130
-678,-469,925,553,612,482
101,-571,-732,-842,644,588
-71,-737,566,616,957,-663
-634,-356,90,-207,936,622
598,443,964,-895,-58,529
847,-467,929,-742,91,10
-633,829,-780,-408,222,-30
-818,57,275,-38,-746,198
-722,-825,-549,597,-391,99
-570,908,430,873,-103,-360
342,-681,512,434,542,-528
297,850,479,609,543,-357
9,784,212,548,56,859
-152,560,-240,-969,-18,713
140,-133,34,-635,250,-163
-272,-22,-169,-662,989,-604
471,-765,355,633,-742,-118
-118,146,942,663,547,-376
583,16,162,264,715,-33
-230,-446,997,-838,561,555
372,397,-729,-318,-276,649
92,982,-970,-390,-922,922
-981,713,-951,-337,-669,670
-999,846,-831,-504,7,-128
455,-954,-370,682,-510,45
822,-960,-892,-385,-662,314
-668,-686,-367,-246,530,-341
-723,-720,-926,-836,-142,757
-509,-134,384,-221,-873,-639
-803,-52,-706,-669,373,-339
933,578,631,-616,770,555
741,-564,-33,-605,-576,275
-715,445,-233,-730,734,-704
120,-10,-266,-685,-490,-17
-232,-326,-457,-946,-457,-116
811,52,639,826,-200,147
-329,279,293,612,943,955
-721,-894,-393,-969,-642,453
-688,-826,-352,-75,371,79
-809,-979,407,497,858,-248
-485,-232,-242,-582,-81,849
141,-106,123,-152,806,-596
-428,57,-992,811,-192,478
864,393,122,858,255,-876
-284,-780,240,457,354,-107
956,605,-477,44,26,-678
86,710,-533,-815,439,327
-906,-626,-834,763,426,-48
201,-150,-904,652,475,412
-247,149,81,-199,-531,-148
923,-76,-353,175,-121,-223
427,-674,453,472,-410,585
931,776,-33,85,-962,-865
-655,-908,-902,208,869,792
-316,-102,-45,-436,-222,885
-309,768,-574,653,745,-975
896,27,-226,993,332,198
323,655,-89,260,240,-902
501,-763,-424,793,813,616
993,375,-938,-621,672,-70
-880,-466,-283,770,-824,143
63,-283,886,-142,879,-116
-964,-50,-521,-42,-306,-161
724,-22,866,-871,933,-383
-344,135,282,966,-80,917
-281,-189,420,810,362,-582
-515,455,-588,814,162,332
555,-436,-123,-210,869,-943
589,577,232,286,-554,876
-773,127,-58,-171,-452,125
-428,575,906,-232,-10,-224
437,276,-335,-348,605,878
-964,511,-386,-407,168,-220
307,513,912,-463,-423,-416
-445,539,273,886,-18,760
-396,-585,-670,414,47,364
143,-506,754,906,-971,-203
-544,472,-180,-541,869,-465
-779,-15,-396,890,972,-220
-430,-564,503,182,-119,456
89,-10,-739,399,506,499
954,162,-810,-973,127,870
890,952,-225,158,828,237
-868,952,349,465,574,750
-915,369,-975,-596,-395,-134
-135,-601,575,582,-667,640
413,890,-560,-276,-555,-562
-633,-269,561,-820,-624,499
371,-92,-784,-593,864,-717
-971,655,-439,367,754,-951
172,-347,36,279,-247,-402
633,-301,364,-349,-683,-387
-780,-211,-713,-948,-648,543
72,58,762,-465,-66,462
78,502,781,-832,713,836
-431,-64,-484,-392,208,-343
-64,101,-29,-860,-329,844
398,391,828,-858,700,395
578,-896,-326,-604,314,180
97,-321,-695,185,-357,852
854,839,283,-375,951,-209
194,96,-564,-847,162,524
-354,532,494,621,580,560
419,-678,-450,926,-5,-924
-661,905,519,621,-143,394
-573,268,296,-562,-291,-319
-211,266,-196,158,564,-183
18,-585,-398,777,-581,864
790,-894,-745,-604,-418,70
848,-339,150,773,11,851
-954,-809,-53,-20,-648,-304
658,-336,-658,-905,853,407
-365,-844,350,-625,852,-358
986,-315,-230,-159,21,180
-15,599,45,-286,-941,847
-613,-68,184,639,-987,550
334,675,-56,-861,923,340
-848,-596,960,231,-28,-34
707,-811,-994,-356,-167,-171
-470,-764,72,576,-600,-204
379,189,-542,-576,585,800
440,540,-445,-563,379,-334
-155,64,514,-288,853,106
-304,751,481,-520,-708,-694
-709,132,594,126,-844,63
723,471,421,-138,-962,892
-440,-263,39,513,-672,-954
775,809,-581,330,752,-107
-376,-158,335,-708,-514,578
-343,-769,456,-187,25,413
548,-877,-172,300,-500,928
938,-102,423,-488,-378,-969
-36,564,-55,131,958,-800
-322,511,-413,503,700,-847
-966,547,-88,-17,-359,-67
637,-341,-437,-181,527,-153
-74,449,-28,3,485,189
-997,658,-224,-948,702,-807
-224,736,-896,127,-945,-850
-395,-106,439,-553,-128,124
-841,-445,-758,-572,-489,212
633,-327,13,-512,952,771
-940,-171,-6,-46,-923,-425
-142,-442,-817,-998,843,-695
340,847,-137,-920,-988,-658
-653,217,-679,-257,651,-719
-294,365,-41,342,74,-892
690,-236,-541,494,408,-516
180,-807,225,790,494,59
707,605,-246,656,284,271
65,294,152,824,442,-442
-321,781,-540,341,316,415
420,371,-2,545,995,248
56,-191,-604,971,615,449
-981,-31,510,592,-390,-362
-317,-968,913,365,97,508
832,63,-864,-510,86,202
-483,456,-636,340,-310,676
981,-847,751,-508,-962,-31
-157,99,73,797,63,-172
220,858,872,924,866,-381
996,-169,805,321,-164,971
896,11,-625,-973,-782,76
578,-280,730,-729,307,-905
-580,-749,719,-698,967,603
-821,874,-103,-623,662,-491
-763,117,661,-644,672,-607
592,787,-798,-169,-298,690
296,644,-526,-762,-447,665
534,-818,852,-120,57,-379
-986,-549,-329,294,954,258
-133,352,-660,-77,904,-356
748,343,215,500,317,-277
311,7,910,-896,-809,795
763,-602,-753,313,-352,917
668,619,-474,-597,-650,650
-297,563,-701,-987,486,-902
-461,-740,-657,233,-482,-328
-446,-250,-986,-458,-629,520
542,-49,-327,-469,257,-947
121,-575,-634,-143,-184,521
30,504,455,-645,-229,-945
-12,-295,377,764,771,125
-686,-133,225,-25,-376,-143
-6,-46,338,270,-405,-872
-623,-37,582,467,963,898
-804,869,-477,420,-475,-303
94,41,-842,-193,-768,720
-656,-918,415,645,-357,460
-47,-486,-911,468,-608,-686
-158,251,419,-394,-655,-895
272,-695,979,508,-358,959
-776,650,-918,-467,-690,-534
-85,-309,-626,167,-366,-429
-880,-732,-186,-924,970,-875
517,645,-274,962,-804,544
721,402,104,640,478,-499
198,684,-134,-723,-452,-905
-245,745,239,238,-826,441
-217,206,-32,462,-981,-895
-51,989,526,-173,560,-676
-480,-659,-976,-580,-727,466
-996,-90,-995,158,-239,642
302,288,-194,-294,17,924
-943,969,-326,114,-500,103
-619,163,339,-880,230,421
-344,-601,-795,557,565,-779
590,345,-129,-202,-125,-58
-777,-195,159,674,775,411
-939,312,-665,810,121,855
-971,254,712,815,452,581
442,-9,327,-750,61,757
-342,869,869,-160,390,-772
620,601,565,-169,-69,-183
-25,924,-817,964,321,-970
-64,-6,-133,978,825,-379
601,436,-24,98,-115,940
-97,502,614,-574,922,513
-125,262,-946,695,99,-220
429,-721,719,-694,197,-558
326,689,-70,-908,-673,338
-468,-856,-902,-254,-358,305
-358,530,542,355,-253,-47
-438,-74,-362,963,988,788
137,717,467,622,319,-380
-86,310,-336,851,918,-288
721,395,646,-53,255,-425
255,175,912,84,-209,878
-632,-485,-400,-357,991,-608
235,-559,992,-297,857,-591
87,-71,148,130,647,578
-290,-584,-639,-788,-21,592
386,984,625,-731,-993,-336
-538,634,-209,-828,-150,-774
-754,-387,607,-781,976,-199
412,-798,-664,295,709,-537
-412,932,-880,-232,561,852
-656,-358,-198,-964,-433,-848
-762,-668,-632,186,-673,-11
-876,237,-282,-312,-83,682
403,73,-57,-436,-622,781
-587,873,798,976,-39,329
-369,-622,553,-341,817,794
-108,-616,920,-849,-679,96
290,-974,234,239,-284,-321
-22,394,-417,-419,264,58
-473,-551,69,923,591,-228
-956,662,-113,851,-581,-794
-258,-681,413,-471,-637,-817
-866,926,992,-653,-7,794
556,-350,602,917,831,-610
188,245,-906,361,492,174
-720,384,-818,329,638,-666
-246,846,890,-325,-59,-850
-118,-509,620,-762,-256,15
-787,-536,-452,-338,-399,813
458,560,525,-311,-608,-419
494,-811,-825,-127,-812,894
-801,890,-629,-860,574,925
-709,-193,-213,138,-410,-403
861,91,708,-187,5,-222
789,646,777,154,90,-49
-267,-830,-114,531,591,-698
-126,-82,881,-418,82,652
-894,130,-726,-935,393,-815
-142,563,654,638,-712,-597
-759,60,-23,977,100,-765
-305,595,-570,-809,482,762
-161,-267,53,963,998,-529
-300,-57,798,353,703,486
-990,696,-764,699,-565,719
-232,-205,566,571,977,369
740,865,151,-817,-204,-293
94,445,-768,229,537,-406
861,620,37,-424,-36,656
390,-369,952,733,-464,569
-482,-604,959,554,-705,-626
-396,-615,-991,108,272,-723
143,780,535,142,-917,-147
138,-629,-217,-908,905,115
915,103,-852,64,-468,-642
570,734,-785,-268,-326,-759
738,531,-332,586,-779,24
870,440,-217,473,-383,415
-296,-333,-330,-142,-924,950
118,120,-35,-245,-211,-652
61,634,153,-243,838,789
726,-582,210,105,983,537
-313,-323,758,234,29,848
-847,-172,-593,733,-56,617
54,255,-512,156,-575,675
-873,-956,-148,623,95,200
700,-370,926,649,-978,157
-639,-202,719,130,747,222
194,-33,955,943,505,114
-226,-790,28,-930,827,783
-392,-74,-28,714,218,-612
209,626,-888,-683,-912,495
487,751,614,933,631,445
-348,-34,-411,-106,835,321
-689,872,-29,-800,312,-542
-52,566,827,570,-862,-77
471,992,309,-402,389,912
24,520,-83,-51,555,503
-265,-317,283,-970,-472,690
606,526,137,71,-651,150
217,-518,663,66,-605,-331
-562,232,-76,-503,205,-323
842,-521,546,285,625,-186
997,-927,344,909,-546,974
-677,419,81,121,-705,771
719,-379,-944,-797,784,-155
-378,286,-317,-797,-111,964
-288,-573,784,80,-532,-646
-77,407,-248,-797,769,-816
-24,-637,287,-858,-927,-333
-902,37,894,-823,141,684
125,467,-177,-516,686,399
-321,-542,641,-590,527,-224
-400,-712,-876,-208,632,-543
-676,-429,664,-242,-269,922
-608,-273,-141,930,687,380
786,-12,498,494,310,326
-739,-617,606,-960,804,188
384,-368,-243,-350,-459,31
-550,397,320,-868,328,-279
969,-179,853,864,-110,514
910,793,302,-822,-285,488
-605,-128,218,-283,-17,-227
16,324,667,708,750,3
485,-813,19,585,71,930
-218,816,-687,-97,-732,-360
-497,-151,376,-23,3,315
-412,-989,-610,-813,372,964
-878,-280,87,381,-311,69
-609,-90,-731,-679,150,585
889,27,-162,605,75,-770
448,617,-988,0,-103,-504
-800,-537,-69,627,608,-668
534,686,-664,942,830,920
-238,775,495,932,-793,497
-343,958,-914,-514,-691,651
568,-136,208,359,728,28
286,912,-794,683,556,-102
-638,-629,-484,445,-64,-497
58,505,-801,-110,872,632
-390,777,353,267,976,369
-993,515,105,-133,358,-572
964,996,355,-212,-667,38
-725,-614,-35,365,132,-196
237,-536,-416,-302,312,477
-664,574,-210,224,48,-925
869,-261,-256,-240,-3,-698
712,385,32,-34,916,-315
895,-409,-100,-346,728,-624
-806,327,-450,889,-781,-939
-586,-403,698,318,-939,899
557,-57,-920,659,333,-51
-441,232,-918,-205,246,1
783,167,-797,-595,245,-736
-36,-531,-486,-426,-813,-160
777,-843,817,313,-228,-572
735,866,-309,-564,-81,190
-413,645,101,719,-719,218
-83,164,767,796,-430,-459
122,779,-15,-295,-96,-892
462,379,70,548,834,-312
-630,-534,124,187,-737,114
-299,-604,318,-591,936,826
-879,218,-642,-483,-318,-866
-691,62,-658,761,-895,-854
-822,493,687,569,910,-202
-223,784,304,-5,541,925
-914,541,737,-662,-662,-195
-622,615,414,358,881,-878
339,745,-268,-968,-280,-227
-364,855,148,-709,-827,472
-890,-532,-41,664,-612,577
-702,-859,971,-722,-660,-920
-539,-605,737,149,973,-802
800,42,-448,-811,152,511
-933,377,-110,-105,-374,-937
-766,152,482,120,-308,390
-568,775,-292,899,732,890
-177,-317,-502,-259,328,-511
612,-696,-574,-660,132,31
-119,563,-805,-864,179,-672
425,-627,183,-331,839,318
-711,-976,-749,152,-916,261
181,-63,497,211,262,406
-537,700,-859,-765,-928,77
892,832,231,-749,-82,613
816,216,-642,-216,-669,-912
-6,624,-937,-370,-344,268
737,-710,-869,983,-324,-274
565,952,-547,-158,374,-444
51,-683,645,-845,515,636
-953,-631,114,-377,-764,-144
-8,470,-242,-399,-675,-730
-540,689,-20,47,-607,590
-329,-710,-779,942,-388,979
123,829,674,122,203,563
46,782,396,-33,386,610
872,-846,-523,-122,-55,-190
388,-994,-525,974,127,596
781,-680,796,-34,-959,-62
-749,173,200,-384,-745,-446
379,618,136,-250,-224,970
-58,240,-921,-760,-901,-626
366,-185,565,-100,515,688
489,999,-893,-263,-637,816
838,-496,-316,-513,419,479
107,676,-15,882,98,-397
-999,941,-903,-424,670,-325
171,-979,835,178,169,-984
-609,-607,378,-681,184,402
-316,903,-575,-800,224,983
591,-18,-460,551,-167,918
-756,405,-117,441,163,-320
456,24,6,881,-836,-539
-489,-585,915,651,-892,-382
-177,-122,73,-711,-386,591
181,724,530,686,-131,241
737,288,886,216,233,33
-548,-386,-749,-153,-85,-982
-835,227,904,160,-99,25
-9,-42,-162,728,840,-963
217,-763,870,771,47,-846
-595,808,-491,556,337,-900
-134,281,-724,441,-134,708
-789,-508,651,-962,661,315
-839,-923,339,402,41,-487
300,-790,48,703,-398,-811
955,-51,462,-685,960,-717
910,-880,592,-255,-51,-776
-885,169,-793,368,-565,458
-905,940,-492,-630,-535,-988
245,797,763,869,-82,550
-310,38,-933,-367,-650,824
-95,32,-83,337,226,990
-218,-975,-191,-208,-785,-293
-672,-953,517,-901,-247,465
681,-148,261,-857,544,-923
640,341,446,-618,195,769
384,398,-846,365,671,815
578,576,-911,907,762,-859
548,-428,144,-630,-759,-146
710,-73,-700,983,-97,-889
-46,898,-973,-362,-817,-717
151,-81,-125,-900,-478,-154
483,615,-537,-932,181,-68
786,-223,518,25,-306,-12
-422,268,-809,-683,635,468
983,-734,-694,-608,-110,4
-786,-196,749,-354,137,-8
-181,36,668,-200,691,-973
-629,-838,692,-736,437,-871
-208,-536,-159,-596,8,197
-3,370,-686,170,913,-376
44,-998,-149,-993,-200,512
-519,136,859,497,536,434
77,-985,972,-340,-705,-837
-381,947,250,360,344,322
-26,131,699,750,707,384
-914,655,299,193,406,955
-883,-921,220,595,-546,794
-599,577,-569,-404,-704,489
-594,-963,-624,-460,880,-760
-603,88,-99,681,55,-328
976,472,139,-453,-531,-860
192,-290,513,-89,666,432
417,487,575,293,567,-668
655,711,-162,449,-980,972
-505,664,-685,-239,603,-592
-625,-802,-67,996,384,-636
365,-593,522,-666,-200,-431
-868,708,560,-860,-630,-355
-702,785,-637,-611,-597,960
-137,-696,-93,-803,408,406
891,-123,-26,-609,-610,518
133,-832,-198,555,708,-110
791,617,-69,487,696,315
-900,694,-565,517,-269,-416
914,135,-781,600,-71,-600
991,-915,-422,-351,-837,313
-840,-398,-302,21,590,146
62,-558,-702,-384,-625,831
-363,-426,-924,-496,792,-908
73,361,-817,-466,400,922
-626,-164,-626,860,-524,286
255,26,-944,809,-606,986
-457,-256,-103,50,-867,-871
-223,803,196,480,612,136
-820,-928,700,780,-977,721
717,332,53,-933,-128,793
-602,-648,562,593,890,702
-469,-875,-527,911,-475,-222
110,-281,-552,-536,-816,596
-981,654,413,-981,-75,-95
-754,-742,-515,894,-220,-344
795,-52,156,408,-603,76
474,-157,423,-499,-807,-791
260,688,40,-52,702,-122
-584,-517,-390,-881,302,-504
61,797,665,708,14,668
366,166,458,-614,564,-983
72,539,-378,796,381,-824
-485,201,-588,842,736,379
-149,-894,-298,705,-303,-406
660,-935,-580,521,93,633
-382,-282,-375,-841,-828,171
-567,743,-100,43,144,122
-281,-786,-749,-551,296,304
11,-426,-792,212,857,-175
594,143,-699,289,315,137
341,596,-390,107,-631,-804
-751,-636,-424,-854,193,651
-145,384,749,675,-786,517
224,-865,-323,96,-916,258
-309,403,-388,826,35,-270
-942,709,222,158,-699,-103
-589,842,-997,29,-195,-210
264,426,566,145,-217,623
217,965,507,-601,-453,507
-206,307,-982,4,64,-292
676,-49,-38,-701,550,883
5,-850,-438,659,745,-773
933,238,-574,-570,91,-33
-866,121,-928,358,459,-843
-568,-631,-352,-580,-349,189
-737,849,-963,-486,-662,970
135,334,-967,-71,-365,-792
789,21,-227,51,990,-275
240,412,-886,230,591,256
-609,472,-853,-754,959,661
401,521,521,314,929,982
-499,784,-208,71,-302,296
-557,-948,-553,-526,-864,793
270,-626,828,44,37,14
-412,224,617,-593,502,699
41,-908,81,562,-849,163
165,917,761,-197,331,-341
-687,314,799,755,-969,648
-164,25,578,439,-334,-576
213,535,874,-177,-551,24
-689,291,-795,-225,-496,-125
465,461,558,-118,-568,-909
567,660,-810,46,-485,878
-147,606,685,-690,-774,984
568,-886,-43,854,-738,616
-800,386,-614,585,764,-226
-518,23,-225,-732,-79,440
-173,-291,-689,636,642,-447
-598,-16,227,410,496,211
-474,-930,-656,-321,-420,36
-435,165,-819,555,540,144
-969,149,828,568,394,648
65,-848,257,720,-625,-851
981,899,275,635,465,-877
80,290,792,760,-191,-321
-605,-858,594,33,706,593
585,-472,318,-35,354,-927
-365,664,803,581,-965,-814
-427,-238,-480,146,-55,-606
879,-193,250,-890,336,117
-226,-322,-286,-765,-836,-218
-913,564,-667,-698,937,283
872,-901,810,-623,-52,-709
473,171,717,38,-429,-644
225,824,-219,-475,-180,234
-530,-797,-948,238,851,-623
85,975,-363,529,598,28
-799,166,-804,210,-769,851
-687,-158,885,736,-381,-461
447,592,928,-514,-515,-661
-399,-777,-493,80,-544,-78
-884,631,171,-825,-333,551
191,268,-577,676,137,-33
212,-853,709,798,583,-56
-908,-172,-540,-84,-135,-56
303,311,406,-360,-240,811
798,-708,824,59,234,-57
491,693,-74,585,-85,877
509,-65,-936,329,-51,722
-122,858,-52,467,-77,-609
850,760,547,-495,-953,-952
-460,-541,890,910,286,724
-914,843,-579,-983,-387,-460
989,-171,-877,-326,-899,458
846,175,-915,540,-1000,-982
-852,-920,-306,496,530,-18
338,-991,160,85,-455,-661
-186,-311,-460,-563,-231,-414
-932,-302,959,597,793,748
-366,-402,-788,-279,514,53
-940,-956,447,-956,211,-285
564,806,-911,-914,934,754
575,-858,-277,15,409,-714
848,462,100,-381,135,242
330,718,-24,-190,860,-78
479,458,941,108,-866,-653
212,980,962,-962,115,841
-827,-474,-206,881,323,765
506,-45,-30,-293,524,-133
832,-173,547,-852,-561,-842
-397,-661,-708,819,-545,-228
521,51,-489,852,36,-258
227,-164,189,465,-987,-882
-73,-997,641,-995,449,-615
151,-995,-638,415,257,-400
-663,-297,-748,537,-734,198
-585,-401,-81,-782,-80,-105
99,-21,238,-365,-704,-368
45,416,849,-211,-371,-1
-404,-443,795,-406,36,-933
272,-363,981,-491,-380,77
713,-342,-366,-849,643,911
-748,671,-537,813,961,-200
-194,-909,703,-662,-601,188
281,500,724,286,267,197
-832,847,-595,820,-316,637
520,521,-54,261,923,-10
4,-808,-682,-258,441,-695
-793,-107,-969,905,798,446
-108,-739,-590,69,-855,-365
380,-623,-930,817,468,713
759,-849,-236,433,-723,-931
95,-320,-686,124,-69,-329
-655,518,-210,-523,284,-866
144,303,639,70,-171,269
173,-333,947,-304,55,40
274,878,-482,-888,-835,375
-982,-854,-36,-218,-114,-230
905,-979,488,-485,-479,114
877,-157,553,-530,-47,-321
350,664,-881,442,-220,-284
434,-423,-365,878,-726,584
535,909,-517,-447,-660,-141
-966,191,50,353,182,-642
-785,-634,123,-907,-162,511
146,-850,-214,814,-704,25
692,1,521,492,-637,274
-662,-372,-313,597,983,-647
-962,-526,68,-549,-819,231
740,-890,-318,797,-666,948
-190,-12,-468,-455,948,284
16,478,-506,-888,628,-154
272,630,-976,308,433,3
-169,-391,-132,189,302,-388
109,-784,474,-167,-265,-31
-177,-532,283,464,421,-73
650,635,592,-138,1,-387
-932,703,-827,-492,-355,686
586,-311,340,-618,645,-434
-951,736,647,-127,-303,590
188,444,903,718,-931,500
-872,-642,-296,-571,337,241
23,65,152,125,880,470
512,823,-42,217,823,-263
180,-831,-380,886,607,762
722,443,-149,-216,-115,759
-19,660,-36,901,923,231
562,-322,-626,-968,194,-825
204,-920,938,784,362,150
-410,-266,-715,559,-672,124
-198,446,-140,454,-461,-447
83,-346,830,-493,-759,-382
-881,601,581,234,-134,-925
-494,914,-42,899,235,629
-390,50,956,437,774,-700
-514,514,44,-512,-576,-313
63,-688,808,-534,-570,-399
-726,572,-896,102,-294,-28
-688,757,401,406,955,-511
-283,423,-485,480,-767,908
-541,952,-594,116,-854,451
-273,-796,236,625,-626,257
-407,-493,373,826,-309,297
-750,955,-476,641,-809,713
8,415,695,226,-111,2
733,209,152,-920,401,995
921,-103,-919,66,871,-947
-907,89,-869,-214,851,-559
-307,748,524,-755,314,-711
188,897,-72,-763,482,103
545,-821,-232,-596,-334,-754
-217,-788,-820,388,-200,-662
779,160,-723,-975,-142,-998
-978,-519,-78,-981,842,904
-504,-736,-295,21,-472,-482
391,115,-705,574,652,-446
813,-988,865,830,-263,487
194,80,774,-493,-761,-872
-415,-284,-803,7,-810,670
-484,-4,881,-872,55,-852
-379,822,-266,324,-48,748
-304,-278,406,-60,959,-89
404,756,577,-643,-332,658
291,460,125,491,-312,83
311,-734,-141,582,282,-557
-450,-661,-981,710,-177,794
328,264,-787,971,-743,-407
-622,518,993,-241,-738,229
273,-826,-254,-917,-710,-111
809,770,96,368,-818,725
-488,773,502,-342,534,745
-28,-414,236,-315,-484,363
179,-466,-566,713,-683,56
560,-240,-597,619,916,-940
893,473,872,-868,-642,-461
799,489,383,-321,-776,-833
980,490,-508,764,-512,-426
917,961,-16,-675,440,559
-812,212,784,-987,-132,554
-886,454,747,806,190,231
910,341,21,-66,708,725
29,929,-831,-494,-303,389
-103,492,-271,-174,-515,529
-292,119,419,788,247,-951
483,543,-347,-673,664,-549
-926,-871,-437,337,162,-877
299,472,-771,5,-88,-643
-103,525,-725,-998,264,22
-505,708,550,-545,823,347
-738,931,59,147,-156,-259
456,968,-162,889,132,-911
535,120,968,-517,-864,-541
24,-395,-593,-766,-565,-332
834,611,825,-576,280,629
211,-548,140,-278,-592,929
-999,-240,-63,-78,793,573
-573,160,450,987,529,322
63,353,315,-187,-461,577
189,-950,-247,656,289,241
209,-297,397,664,-805,484
-655,452,435,-556,917,874
253,-756,262,-888,-778,-214
793,-451,323,-251,-401,-458
-396,619,-651,-287,-668,-781
698,720,-349,742,-807,546
738,280,680,279,-540,858
-789,387,530,-36,-551,-491
162,579,-427,-272,228,710
689,356,917,-580,729,217
-115,-638,866,424,-82,-194
411,-338,-917,172,227,-29
-612,63,630,-976,-64,-204
-200,911,583,-571,682,-579
91,298,396,-183,788,-955
141,-873,-277,149,-396,916
321,958,-136,573,541,-777
797,-909,-469,-877,988,-653
784,-198,129,883,-203,399
-68,-810,223,-423,-467,-512
531,-445,-603,-997,-841,641
-274,-242,174,261,-636,-158
-574,494,-796,-798,-798,99
95,-82,-613,-954,-753,986
-883,-448,-864,-401,938,-392
913,930,-542,-988,310,410
506,-99,43,512,790,-222
724,31,49,-950,260,-134
-287,-947,-234,-700,56,588
-33,782,-144,948,105,-791
548,-546,-652,-293,881,-520
691,-91,76,991,-631,742
-520,-429,-244,-296,724,-48
778,646,377,50,-188,56
-895,-507,-898,-165,-674,652
654,584,-634,177,-349,-620
114,-980,355,62,182,975
516,9,-442,-298,274,-579
-238,262,-431,-896,506,-850
47,748,846,821,-537,-293
839,726,593,285,-297,840
634,-486,468,-304,-887,-567
-864,914,296,-124,335,233
88,-253,-523,-956,-554,803
-587,417,281,-62,-409,-363
-136,-39,-292,-768,-264,876
-127,506,-891,-331,-744,-430
778,584,-750,-129,-479,-94
-876,-771,-987,-757,180,-641
-777,-694,411,-87,329,190
-347,-999,-882,158,-754,232
-105,918,188,237,-110,-591
-209,703,-838,77,838,909
-995,-339,-762,750,860,472
185,271,-289,173,811,-300
2,65,-656,-22,36,-139
765,-210,883,974,961,-905
-212,295,-615,-840,77,474
211,-910,-440,703,-11,859
-559,-4,-196,841,-277,969
-73,-159,-887,126,978,-371
-569,633,-423,-33,512,-393
503,143,-383,-109,-649,-998
-663,339,-317,-523,-2,596
690,-380,570,378,-652,132
72,-744,-930,399,-525,935
865,-983,115,37,995,826
594,-621,-872,443,188,-241
-1000,291,754,234,-435,-869
-868,901,654,-907,59,181
-868,-793,-431,596,-446,-564
900,-944,-680,-796,902,-366
331,430,943,853,-851,-942
315,-538,-354,-909,139,721
170,-884,-225,-818,-808,-657
-279,-34,-533,-871,-972,552
691,-986,-800,-950,654,-747
603,988,899,841,-630,591
876,-949,809,562,602,-536
-693,363,-189,495,738,-1000
-383,431,-633,297,665,959
-740,686,-207,-803,188,-520
-820,226,31,-339,10,121
-312,-844,624,-516,483,621
-822,-529,69,-278,800,328
834,-82,-759,420,811,-264
-960,-240,-921,561,173,46
-324,909,-790,-814,-2,-785
976,334,-290,-891,704,-581
150,-798,689,-823,237,-639
-551,-320,876,-502,-622,-628
-136,845,904,595,-702,-261
-857,-377,-522,-101,-943,-805
-682,-787,-888,-459,-752,-985
-571,-81,623,-133,447,643
-375,-158,72,-387,-324,-696
-660,-650,340,188,569,526
727,-218,16,-7,-595,-988
-966,-684,802,-783,-272,-194
115,-566,-888,47,712,180
-237,-69,45,-272,981,-812
48,897,439,417,50,325
348,616,180,254,104,-784
-730,811,-548,612,-736,790
138,-810,123,930,65,865
-768,-299,-49,-895,-692,-418
487,-531,802,-159,-12,634
808,-179,552,-73,470,717
720,-644,886,-141,625,144
-485,-505,-347,-244,-916,66
600,-565,995,-5,324,227
-771,-35,904,-482,753,-303
-701,65,426,-763,-504,-479
409,733,-823,475,64,718
865,975,368,893,-413,-433
812,-597,-970,819,813,624
193,-642,-381,-560,545,398
711,28,-316,771,717,-865
-509,462,809,-136,786,635
618,-49,484,169,635,547
-747,685,-882,-496,-332,82
-501,-851,870,563,290,570
-279,-829,-509,397,457,816
-508,80,850,-188,483,-326
860,-100,360,119,-205,787
-870,21,-39,-827,-185,932
826,284,-136,-866,-330,-97
-944,-82,745,899,-97,365
929,262,564,632,-115,632
244,-276,713,330,-897,-214
-890,-109,664,876,-974,-907
716,249,816,489,723,141
-96,-560,-272,45,-70,645
762,-503,414,-828,-254,-646
909,-13,903,-422,-344,-10
658,-486,743,545,50,674
-241,507,-367,18,-48,-241
886,-268,884,-762,120,-486
-412,-528,879,-647,223,-393
851,810,234,937,-726,797
-999,942,839,-134,-996,-189
100,979,-527,-521,378,800
544,-844,-832,-530,-77,-641
43,889,31,442,-934,-503
-330,-370,-309,-439,173,547
169,945,62,-753,-542,-597
208,751,-372,-647,-520,70
765,-840,907,-257,379,918
334,-135,-689,730,-427,618
137,-508,66,-695,78,169
-962,-123,400,-417,151,969
328,689,666,427,-555,-642
-907,343,605,-341,-647,582
-667,-363,-571,818,-265,-399
525,-938,904,898,725,692
-176,-802,-858,-9,780,275
580,170,-740,287,691,-97
365,557,-375,361,-288,859
193,737,842,-808,520,282
-871,65,-799,836,179,-720
958,-144,744,-789,797,-48
122,582,662,912,68,757
595,241,-801,513,388,186
-103,-677,-259,-731,-281,-857
921,319,-696,683,-88,-997
775,200,78,858,648,768
316,821,-763,68,-290,-741
564,664,691,504,760,787
694,-119,973,-385,309,-760
777,-947,-57,990,74,19
971,626,-496,-781,-602,-239
-651,433,11,-339,939,294
-965,-728,560,569,-708,-247 |
code/online_challenges/src/rosalind/README.md | # Cosmos Rosalind
> Solutions to Rosalind bioinformatics challenges. http://rosalind.info/problems/list-view/
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/online_challenges/src/rosalind/complement_dna_strand/complement_dna.rs | fn complement_dna(dna: &str) -> String {
dna.chars()
.rev()
.map(|c| match c {
'A' => 'T',
'T' => 'A',
'C' => 'G',
'G' => 'C',
_ => ' ',
})
.collect()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn sample_test() {
assert_eq!(complement_dna("AAAACCCGGT"), "ACCGGGTTTT");
}
}
|
code/online_challenges/src/rosalind/complement_dna_strand/complement_dna_strand.exs | defmodule ComplementDnaStrand do
def complement(strand) do
strand = strand |> String.reverse |> String.codepoints
Enum.map(strand, fn nucleotide ->
case nucleotide do
"A" -> "T"
"T" -> "A"
"G" -> "C"
"C" -> "G"
end
end)
|> List.to_string
end
end
IO.puts ComplementDnaStrand.complement("")
|
code/online_challenges/test/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/operating_system/src/README.md | # Operating Systems
Operating Systems are software programs that communicate with the hardware and other application programs. They are responsible for a number of functions such as resource allocation in multi-user systems, management of files and processes (a 'process' is used to refer to a program in execution), handling Input-Ouput requests by different processes and main memory management among other roles. Operating system is one of the most crucial system components of a computer and provides the basic functionality for the device, right from the boot procedure. Additionally, it has many algorithms which enable it to make decisions about CPU scheduling such as First Come First Serve (FCFS) scheduling, Shortest Job First scheduling and Multilevel queue scheduling among others.
Computer desktop operating systems used nowadays include Windows, OS X and Linux.
# cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/operating_system/src/concurrency/dining_philosophers/README.md | # Dining philosophers problem
Dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.
## Problem statement
Consider there are five philosophers sitting around a circular dining table. The dining table has five chopsticks and a bowl of rice in the middle as shown in the below figure.

At any instant, a philosopher is either eating or thinking. When a philosopher wants to eat, he uses two chopsticks - one from their left and one from their right. When a philosopher wants to think, he keeps down both chopsticks at their original place.
|
code/operating_system/src/concurrency/dining_philosophers/dining_philosophers.c | /* Dining Philosophers Problem*/
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
void *func(int n);
pthread_t philosopher[5];
pthread_mutex_t chopstick[5];
int main()
{
int i, k;
void *msg;
for (i = 1; i <= 5; i++) {
k = pthread_mutex_init(&chopstick[i], NULL);
if (k == -1) {
printf("\n Mutex initialization failed");
exit(1);
}
}
for (i = 1; i <= 5; i++) {
k = pthread_create(&philosopher[i], NULL, (void *) func, (int *) i);
if (k != 0) {
printf("\n Thread creation error \n");
exit(1);
}
}
for (i = 1; i <= 5; i++) {
k = pthread_join(philosopher[i], &msg);
if (k != 0) {
printf("\n Thread join failed \n");
exit(1);
}
}
for (i = 1; i <= 5; i++) {
k = pthread_mutex_destroy(&chopstick[i]);
if (k != 0) {
printf("\n Mutex Destroyed \n");
exit(1);
}
}
return 0;
}
void *func(int n)
{
printf("\nPhilosopher %d is thinking", n);
pthread_mutex_lock(&chopstick[n]);
pthread_mutex_lock(&chopstick[(n + 1) % 5]);
printf("\nPhilosopher %d is eating", n);
sleep(3);
pthread_mutex_unlock(&chopstick[n]);
pthread_mutex_unlock(&chopstick[(n + 1) % 5]);
printf("\nPhilosopher %d Finished eating", n);
}
|
code/operating_system/src/concurrency/monitors/monitors_system_v/main.c | /*
* Part of Cosmos by OpenGenus Foundation.
* Implementation of Hoare monitors using System V IPC.
* An example of how to use monitors.
* Author : ABDOUS Kamel
*/
#include "monitors.h"
#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <string.h>
#include <errno.h>
#define NB_CONDS 1
typedef struct
{
int arrived;
} shm_mem;
int main()
{
monitor mtor;
create_monitor("p", 1, 2, NB_CONDS, sizeof(shm_mem), &mtor);
if (!fork()) {
printf("P1 starts.\n");
/* init_monitor not necessary, just for the example. */
init_monitor("p", 1, 2, &mtor);
sleep(1);
enter_monitor(&mtor);
shm_mem* shm_ptr = mtor_shmat(&mtor);
/* Don't wait if P2 arruved */
if (!shm_ptr->arrived) {
printf("P1 waits for P2.\n");
mtor_wait(&mtor, 0);
}
printf("P1 continues, arrived = %d\n", shm_ptr->arrived);
mtor_shmdt(shm_ptr);
exit_monitor(&mtor);
exit(0);
}
if (!fork()) {
printf("P2 starts.\n");
/* init_monitor not necessary, just for the example. */
init_monitor("p", 1, 2, &mtor);
sleep(3);
enter_monitor(&mtor);
shm_mem* shm_ptr = mtor_shmat(&mtor);
shm_ptr->arrived = 1;
mtor_shmdt(shm_ptr);
printf("P2 wakes P1.\n");
mtor_signal(&mtor, 0);
exit_monitor(&mtor);
exit(0);
}
while (wait(NULL) != -1) ;
free_monitor(&mtor);
return (0);
}
|
code/operating_system/src/concurrency/monitors/monitors_system_v/monitors.c | /*
* Part of Cosmos by OpenGenus Foundation.
* Implementation of Hoare monitors using System V IPC.
* Author : ABDOUS Kamel
*/
#include "monitors.h"
static struct sembuf mutex_up = {MTOR_MUTEX, 1, 0},
mutex_down = {MTOR_MUTEX, -1, 0},
sig_up = {MTOR_SIG_SEM, 1, 0},
sig_down = {MTOR_SIG_SEM, -1, 0},
cond_up = {0, 1, 0},
cond_down = {0, -1, 0};
union semun {
int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* Array for GETALL, SETALL */
struct seminfo *__buf; /* Buffer for IPC_INFO
(Linux-specific) */
};
/*
* Create a brand new monitor, with [nb_conds] conditions and a shared memory
* of size [shm_size].
* [ftok_path] is used for generating a system V key for both shared memory and semaphores.
* [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores.
* @return 0 on success, -1 on failure.
*/
int
create_monitor(char* ftok_path, int shm_proj, int sem_proj,
int nb_conds, size_t shm_size, monitor* mtor)
{
key_t shm_key = ftok(ftok_path, shm_proj);
if (shm_key == -1)
return (-1);
key_t sems_key = ftok(ftok_path, sem_proj);
if (sems_key == -1)
return (-1);
mtor->sh_mem = shmget(shm_key, shm_size, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);
if (mtor->sh_mem == -1)
return (-1);
/* First two semaphores are for internal usage, others are for conditions */
mtor->sems_array = semget(sems_key, EXTRA_SEMS_NB + nb_conds, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);
if (mtor->sems_array == -1) {
shmctl(mtor->sh_mem, IPC_RMID, NULL);
return (-1);
}
/* Init mutex semaphore */
union semun mutex_init;
mutex_init.val = 1;
if (semctl(mtor->sems_array, MTOR_MUTEX, SETVAL, mutex_init) == -1) {
free_monitor(mtor);
return (-1);
}
return (0);
}
/*
* This function can be used to retrieve a monitor created by another process.
* [ftok_path] is used for retrieving a system V key for both shared memory and semaphores.
* [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores.
* @return 0 on success, -1 on failure.
*/
int
init_monitor(char* ftok_path, int shm_proj, int sem_proj, monitor* mtor)
{
key_t shm_key = ftok(ftok_path, shm_proj);
if (shm_key == -1)
return (-1);
key_t sems_key = ftok(ftok_path, sem_proj);
if (sems_key == -1)
return (-1);
mtor->sh_mem = shmget(shm_key, 0, S_IRUSR | S_IWUSR);
if (mtor->sh_mem == -1)
return (-1);
mtor->sems_array = semget(sems_key, 0, S_IRUSR | S_IWUSR);
if (mtor->sems_array == -1)
return (-1);
}
/*
* Free allocated semaphores and shared memory for the given monitor.
* @return 0 on success, -1 on failure.
*/
int
free_monitor(monitor* mtor)
{
int ret = shmctl(mtor->sh_mem, IPC_RMID, NULL);
ret = semctl(mtor->sems_array, 0, IPC_RMID);
return (ret);
}
/*
* Ask to enter the monitor.
* Only one process can be in the monitor.
* @return 0 on success, -1 on failure.
* Failure means that the demand failed, not that the process doesn't enter.
*/
int
enter_monitor(monitor* mtor)
{
return (semop(mtor->sems_array, &mutex_down, 1));
}
/*
* Ask to leave the monitor.
* Note that while leaving a monitor, pending processes on signal take precedence
* over processes that asked to enter the monitor.
* @return 0 on success, -1 on failure.
* Failure means that the demand failed, not that the process doesn't enter.
*/
int
exit_monitor(monitor* mtor)
{
int nb_sig_wait = semctl(mtor->sems_array, MTOR_SIG_SEM, GETNCNT);
/* semctl error */
if (nb_sig_wait == -1)
return (-1);
/* Wake a pending process on signal */
else if (nb_sig_wait > 0) {
if (semop(mtor->sems_array, &sig_up, 1) == -1)
return (-1);
else
return (0);
}
/* Wake a pending process on monitor entrance */
else
return (semop(mtor->sems_array, &mutex_up, 1));
}
/*
* @return 1 if cond is empty (no process is waiting on it),
* 0 if not empty, -1 on failure.
*/
int
mtor_empty(monitor* mtor, int cond)
{
return (semctl(mtor->sems_array, EXTRA_SEMS_NB + cond, GETNCNT));
}
/*
* Cause the process to wait for [cond].
* Note that while leaving a monitor, pending processes on signal take precedence
* over processes that asked to enter the monitor.
* @return 0 on success, -1 on failure.
*/
int
mtor_wait(monitor* mtor, int cond)
{
if (exit_monitor(mtor) == -1)
return (-1);
/* Do wait */
cond_down.sem_num = EXTRA_SEMS_NB + cond;
return (semop(mtor->sems_array, &cond_down, 1));
}
/*
* If no process is waiting for [cond], do nothing.
* If any, wake it and block on signal semaphore.
* @return 0 on success, -1 on failure.
*/
int
mtor_signal(monitor* mtor, int cond)
{
int cond_empty = mtor_empty(mtor, cond);
/* Wake a pending process on cond */
if (cond_empty > 0) {
cond_up.sem_num = EXTRA_SEMS_NB + cond;
if (semop(mtor->sems_array, &cond_up, 1) == -1)
return (-1);
/* Wait on signal */
return (semop(mtor->sems_array, &sig_down, 1));
}
return (cond_empty);
}
/*
* Use this function to attach monitor shared memory.
* @return Adress of the attached shared memory segment, NULL on failure.
*/
void*
mtor_shmat(monitor* mtor)
{
return (shmat(mtor->sh_mem, NULL, 0));
}
/*
* Use this function to detach monitor shared memory.
* @return 0 on success, -1 on failure.
*/
int
mtor_shmdt(void* shm_ptr)
{
return (shmdt(shm_ptr));
}
|
code/operating_system/src/concurrency/monitors/monitors_system_v/monitors.h | /*
* Part of Cosmos by OpenGenus Foundation.
* Implementation of Hoare monitors using System V IPC.
* Author : ABDOUS Kamel
*/
#ifndef MONITORS_H
#define MONITORS_H
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <fcntl.h>
/* Type of shared memory identificator */
typedef int SHM_ID;
/* Type of a semaphore identificator */
typedef int SEM_ID;
/* Number of monitor management semaphores */
#define EXTRA_SEMS_NB 2
/* Monitor mutual exclusion semaphore */
#define MTOR_MUTEX 0
/* Monitor signal semaphore */
#define MTOR_SIG_SEM 1
typedef struct
{
SHM_ID sh_mem;
SEM_ID sems_array;
} monitor;
/*
* Create a brand new monitor, with [nb_conds] conditions and a shared memory
* of size [shm_size].
* [ftok_path] is used for generating a system V key for both shared memory and semaphores.
* [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores.
* @return 0 on success, -1 on failure.
*/
int
create_monitor(char* ftok_path, int shm_proj, int sem_proj,
int nb_conds, size_t shm_size, monitor* mtor);
/*
* This function can be used to retrieve a monitor created by another process.
* [ftok_path] is used for retrieving a system V key for both shared memory and semaphores.
* [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores.
* @return 0 on success, -1 on failure.
*/
int
init_monitor(char* ftok_path, int shm_proj, int sem_proj, monitor* mtor);
/*
* Free allocated semaphores and shared memory for the given monitor.
* @return 0 on success, -1 on failure.
*/
int
free_monitor(monitor* mtor);
/*
* Ask to enter the monitor.
* Only one process can be in the monitor.
* @return 0 on success, -1 on failure.
* Failure means that the demand failed, not that the process doesn't enter.
*/
int
enter_monitor(monitor* mtor);
/*
* Ask to leave the monitor.
* Note that while leaving a monitor, pending processes on signal take precedence
* over processes that asked to enter the monitor.
* @return 0 on success, -1 on failure.
* Failure means that the demand failed, not that the process doesn't enter.
*/
int
exit_monitor(monitor* mtor);
/*
* @return 1 if cond is empty (no process is waiting on it),
* 0 if not empty, -1 on failure.
*/
int
mtor_empty(monitor* mtor, int cond);
/*
* Cause the process to wait for [cond].
* Note that while leaving a monitor, pending processes on signal take precedence
* over processes that asked to enter the monitor.
* @return 0 on success, -1 on failure.
*/
int
mtor_wait(monitor* mtor, int cond);
/*
* If no process is waiting for [cond], do nothing.
* If any, wake it and block on signal semaphore.
* @return 0 on success, -1 on failure.
*/
int
mtor_signal(monitor* mtor, int cond);
/*
* Use this function to attach monitor shared memory.
* @return Adress of the attached shared memory segment, NULL on failure.
*/
void*
mtor_shmat(monitor* mtor);
/*
* Use this function to detach monitor shared memory.
* @return 0 on success, -1 on failure.
*/
int
mtor_shmdt(void* shm_ptr);
#endif // MONITORS_H
|
code/operating_system/src/concurrency/peterson_algorithm_for_mutual_exclusion/peterson_algorithm_in_c/mythreads.h | // mythread.h (A wrapper header file with assert
// statements)
#ifndef __MYTHREADS_h__
#define __MYTHREADS_h__
#include <pthread.h>
#include <assert.h>
#include <sched.h>
void Pthread_mutex_lock(pthread_mutex_t *m)
{
int rc = pthread_mutex_lock(m);
assert(rc == 0);
}
void Pthread_mutex_unlock(pthread_mutex_t *m)
{
int rc = pthread_mutex_unlock(m);
assert(rc == 0);
}
void Pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg)
{
int rc = pthread_create(thread, attr, start_routine, arg);
assert(rc == 0);
}
void Pthread_join(pthread_t thread, void **value_ptr)
{
int rc = pthread_join(thread, value_ptr);
assert(rc == 0);
}
#endif // __MYTHREADS_h__
|
code/operating_system/src/concurrency/peterson_algorithm_for_mutual_exclusion/peterson_algorithm_in_c/peterson_algo_mutual_exclusion_in_c.c | // Peterson's algorithm
// C implementation
// Here mythreads.h is a file externally included by me with some assertion statements
#include <stdio.h>
#include <pthread.h>
#include"mythreads.h"
int flag[2];
int turn;
const int MAX = 1e9;
int ans = 0;
void lock_init()
{
// Initialize lock by reseting the desire of
// both the threads to acquire the locks.
// And, giving turn to one of them.
flag[0] = flag[1] = 0;
turn = 0;
}
// Executed before entering critical section
void lock(int self)
{
// Set flag[self] = 1 saying you want to acquire lock
flag[self] = 1;
// But, first give the other thread the chance to
// acquire lock
turn = 1-self;
// Wait until the other thread looses the desire
// to acquire lock or it is your turn to get the lock.
while (flag[1-self]==1 && turn==1-self) ;
}
// Executed after leaving critical section
void unlock(int self)
{
// You do not desire to acquire lock in future.
// This will allow the other thread to acquire
// the lock.
flag[self] = 0;
}
// A Sample function run by two threads created
// in main()
void* func(void *s)
{
int i = 0;
int self = (int *)s;
printf("Thread Entered: %d\n", self);
lock(self);
// Critical section (Only one thread
// can enter here at a time)
for (i=0; i<MAX; i++)
ans++;
unlock(self);
}
// Driver code
int main()
{
// Initialized the lock then fork 2 threads
pthread_t p1, p2;
lock_init();
// Create two threads (both run func)
pthread_create(&p1, NULL, func, (void*)0);
pthread_create(&p2, NULL, func, (void*)1);
// Wait for the threads to end.
pthread_join(p1, NULL);
pthread_join(p2, NULL);
printf("Actual Count: %d | Expected Count: %d\n",
ans, MAX*2);
return 0;
}
|
code/operating_system/src/concurrency/producer_consumer/producer_consumer.cpp | #include <iostream>
#include <ctime>
#include <cstdlib>
#include <thread>
#include <mutex>
#include <vector>
#include <condition_variable>
const int N = 100;
std::vector<int> shared_buffer(N);
std::mutex lock_buffer;
std::condition_variable cond;
void producer()
{
while (true)
{
std::unique_lock<std::mutex> guard_producer(lock_buffer);
if (shared_buffer.size() == N)
cond.wait(guard_producer);
int item_produced = rand() % 100 + 1; // ranges 1 to 100
shared_buffer.push_back(item_produced);
if (shared_buffer.size() == 1)
cond.notify_one();
std::cout << "Item " << item_produced
<< " was inserted into the buffer" << std::endl;
}
}
void consumer()
{
while (true)
{
std::unique_lock<std::mutex> guard_consumer(lock_buffer);
if (shared_buffer.empty())
cond.wait(guard_consumer);
int item_consumed = shared_buffer.back(); // gets item
shared_buffer.pop_back(); // removes item
if (shared_buffer.size() == N - 1)
cond.notify_one();
std::cout << "Item " << item_consumed
<< " was removed from the buffer" << std::endl;
}
}
int main()
{
srand (time(0));
std::thread t_consumer(producer);
std::thread t_producer(consumer);
t_consumer.join();
t_producer.join();
return 0;
}
|
code/operating_system/src/concurrency/readers_writers/readers_writers.cpp | #include <iostream>
#include <vector>
#include <thread>
#include <mutex>
#include <chrono>
#define N 5 // # of processes (readers & writes)
std::mutex mu; // controlling access to the number of processes
std::mutex db; // controlling acess to the database
std::mutex print_mu; // guards the cout << I/O
int rc = 0; // # of processes reading or waiting to
void read_db(int i)
{
std::lock_guard<std::mutex> guard {print_mu};
std::cout << "Reader #" << i << " is reading to the database" << std::endl;
}
void write_db(int i)
{
std::lock_guard<std::mutex> guard {print_mu};
std::cout << "Writer #" << i << " is writing to the database" << std::endl;
}
void reader(int i)
{
while (true)
{
std::unique_lock<std::mutex> lock_mu {mu};
std::unique_lock<std::mutex> lock_db {db, std::defer_lock};
rc = rc + 1;
if (rc == 1)
lock_db.lock();
lock_mu.unlock();
read_db(i);
lock_mu.lock();
rc = rc - 1;
if (rc == 0)
lock_db.unlock();
lock_mu.unlock();
}
}
void writer(int i)
{
while (true)
{
std::unique_lock<std::mutex> lock_db {db};
write_db(i);
lock_db.unlock();
}
}
int main()
{
std::thread writers[N];
std::thread readers[N];
for (size_t i = 0; i < N; i++)
{
writers[i] = std::thread(writer, i);
readers[i] = std::thread(reader, i);
}
for (size_t i = 0; i < N; i++)
{
writers[i].join();
readers[i].join();
}
return 0;
}
|
code/operating_system/src/deadlocks/bankers_algorithm/README.md | # Banker's Algorithm
## Description
Banker's algorithm is an conservative algorithm to check if a resource can be granted to a process if it is not used by any process in the system. It is used for deadlock management.
## Logic
The algorithm relies on the following quantities:
* *R(k)*: total amount of resource R<sub>k</sub> presesnt in the system.
* *T<sub>i</sub>(k)*: total amount of resource R<sub>k</sub> that process P<sub>i</sub> will need during its execution.
* *A<sub>i</sub>(k)*: amount of R<sub>k</sub> currently allocated to process P<sub>i</sub>.
* *C(k)*: total amount of resource R<sub>k</sub> available currently in the system.
* *N<sub>i</sub>(k)*: amount of resource R<sub>k</sub> that process P<sub>i</sub> currently need to complete.
When a process request a certain resource R<sub>k</sub>, the banker's algorithm will determine if grant the resource will lead the system to **safe state**. The safe state is defined as for an arbitary sequence of execution of all processes in the system, if for each processes in the system, it is possible to allocate enough resources to finish each process, then the state is said to be safe. Clearly, if grant the resource will lead to safe state, deadlocks are avoided.The algorithm check if grant the resource will lead to safe state by checking if there is a sequence of execution that all processes will finish.
```
stateIsSafe():
W(k) <- C(k) for each resource
Pi <- init to CannotFinish
while Pi exists and Pi CannotFinish and Ni(k) <= W(k) for all k
Pi <- CanFinish
W(k) <- W(k) + Ai(k) for all k
endwhile
if Pi CanFinish for all i
return true
else
return false
endif
end
```
|
code/operating_system/src/deadlocks/bankers_algorithm/banker_safety.cpp | // Part of Cosmos by OpenGenus Foundation.
// Banker's Algorithm: Safety Algorithm
#include <cstdio>
int main()
{
// Initialize
int available[10], allocation [10][10], maximum[10][10];
int noOfProcesses, noOfResources, need[10][10];
int work[10], finish[10] = {0}, i;
//Inputs
printf("Enter no. of processes ... ");
scanf("%d", &noOfProcesses );
printf("Enter no. of resources available ... ");
scanf("%d", &noOfResources);
printf("Enter instances ...\n");
for (i = 0; i < noOfResources; i++)
{
printf("Resource %d: ", i + 1);
scanf("%d", &available[i]);
//Initializing Work
work[i] = available[i];
}
printf("Enter allocation array ... \n");
for (i = 0; i < noOfProcesses; i++)
for (int j = 0; j < noOfResources; j++)
scanf("%d", &allocation[i][j]);
printf("Enter maximum array ... \n");
for (i = 0; i < noOfProcesses; i++)
for (int j = 0; j < noOfResources; j++)
scanf("%d", &maximum[i][j]);
printf("Need matrix is ... \n");
for (i = 0; i < noOfProcesses; i++)
{
for (int j = 0; j < noOfResources; j++)
{
need[i][j] = maximum[i][j] - allocation[i][j];
printf("%d ", need[i][j]);
}
printf("\n");
}
// Safety Algorithm
int processesNotCompleted = noOfProcesses;
int cp = 0, op[10];
while (processesNotCompleted)
{
int aProcessCompleted = 0;
for (int x = 0; x < noOfProcesses; x++)
//Check if process is yet to finish
if (!finish[x])
{
int possible = 1;
for (int y = 0; y < noOfResources; y++)
if (need[x][y] > work[y])
possible = 0;
// and if it's possible to complete a process
if (possible)
{
printf("Work after executing process %d : ", x);
for (int y = 0; y < noOfResources; y++)
{
work[y] += allocation[x][y];
printf("%d ", work[y]);
}
printf("\n");
finish[x] = 1;
op[cp++] = x;
processesNotCompleted--;
aProcessCompleted = 1;
}
}
// if it's not possible to complete a proceess
if (!aProcessCompleted)
break;
}
// if all proccesses not completed
if (processesNotCompleted)
printf("Safe sequence not possible !");
// else if all processes completed
else
{
printf("Safe Sequence is : ");
for (i = 0; i < cp; i++)
printf("P%d ", op[i]);
}
return 0;
}
|
code/operating_system/src/memory_management/least_recently_used/lru.c | #include<stdio.h>
int frame[3]={0,0,0},pref[3]={0,0,0},page[20];
int hita(int a) // counts hit
{
int n=1,i=0;
for(i=0;i<3;i++)
{
if(frame[i]==a)
{
n=0;
break;
}
else
continue;
}printf("%d",n);
return n;
}
void initi(int a,int i)
{int z=0,min=0,j=0;
for(j=0;j<3;j++) //setting up preference table
{
for(z=i;z>=0;z--)
{
if(frame[j]==page[i])
pref[j]=z;
}
}
min=pref[0];
for(j=0;j<3;j++) //finds out lowest prefernce value
{if(min>pref[j])
min=pref[j];
else
continue;
}
frame[min]=a;
}
void main()
{
int hit=0,temp=0,miss=0,i=0,n=0;
printf("ENter the no of pages");//takes input
for(i=0;i<8;i++)
scanf("%d",&page[i]);
for(i=0;i<3;i++)//intialize first frames
{
frame[i]=page[i];
miss++;
}
for(i=3;i<8;i++)
{
temp=hita(page[i]);
if(temp==0)
hit++;
else
{miss++;
initi(frame[i],i);}
}
printf("hit=%d and miss=%d",hit,miss);
}
|
code/operating_system/src/memory_management/least_recently_used/lru.cpp | /*
Least Recently Used Page Replacement Algorithm implemented using a stack
*/
#include <bits/stdc++.h>
using namespace std;
/*
A function that finds and returns the index of the current page in the page table
If it is not present it would return -1
*/
int find(int current_page,vector<int>& page_table){
for(int i=0;i<page_table.size();i++)
if(page_table[i]==current_page)
return i;
return -1;
}
int main(){
int frames,pages,page_fault=0,page_hit=0;
cout<<"Enter the number of Frames"<<endl;
cin>>frames;
cout<<"Enter the number of Page numbers in memory references"<<"\nNote : The page number has to be non - negative "<<endl;
cin>>pages;
vector<int>page_numbers(pages,-1); // Stores the sequence of page numbers given as I/P by the user
// Note : The page number has to be non - negative
cout<<"Enter the sequence of memory references i.e page numbers"<<endl;
// Storing the sequence of page numbers
for(int i=0;i<pages;i++){
cin>>page_numbers[i];
}
// Initialising the storage matrix
int matrix[frames][pages]; // A storage matrix, that we will use to visualise the LRU algorithm and the stack
for(int i=0;i<frames;i++){
for(int j=0;j<pages;j++)
matrix[i][j] = 0;
}
vector<int>page_table(frames,-1); // page_table is the stack that is used for LRU Page Replacement
// Note I'm using -1 as my reference to indicate that the frame is empty
/*
Loops through each page number from the sequence given by user and implements demand paging i.e
replaces Least Recently Used (LRU) page for this page if there is a shortage of pages, else would
add the page to the stack i.e allot a frame
*/
for(int i=0;i<pages;i++){
int index_of_current_page; // The index of the page if present,else -1
int current_page = page_numbers[i];
index_of_current_page = find(current_page,page_table);
// If current page is not there in the page table i.e a page fault
if(index_of_current_page ==-1){
page_fault++;
page_table.erase(page_table.begin()); // Erase the LRU Page i.e the bottom of the stack
}
// The current page is already present in the page table i.e page hit
else{
page_hit++;
page_table.erase(page_table.begin() + index_of_current_page);
}
/*
Update the page to the top of the stack -> this is indepent of page fault or page hit
Because the top of the stack contains the Most Recently used page and bottom of the stack hold the
Least Recently used page
*/
page_table.push_back(current_page);
// Storing the snapshot of the present page table in the matrix
for(int j=0;j<frames;j++)
matrix[j][i] = page_table[frames-j-1];
}
cout<<"\n \n";
// Displaying all the snapshots of the page table taken for each time unit i.e page hit or page fault
for(int i=0;i<frames;i++){
if(i==frames-1)
cout<<"LRU Page ->"<<" ";
else
cout<<" ";
for(int j=0;j<pages;j++){
printf("%2d ",matrix[i][j]);
}
cout<<endl;
}
float page_hit_ratio = page_hit;
page_hit_ratio = page_hit_ratio/pages;
float page_fault_ratio = page_fault;
page_fault_ratio = page_fault_ratio/pages;
cout<<"Page Hit ratio : "<<page_hit_ratio<<endl;
cout<<"Page Fault ratio : "<<page_fault_ratio<<endl;
cout<<"Note I'm using -1 as my reference to indicate that the frame is empty"<<endl;
return 0;
}
// Note I'm using -1 as my reference to indicate that the frame is empty in the page table and it would reflect in the output also
/*
Example :
I/P :
Frames : 3, Number of pages in sequence : 20
Memory reference sequence of page numbers : 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
O/P :
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
-1 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0
LRU Page -> -1 -1 7 0 1 2 2 3 0 4 2 2 0 3 3 1 2 0 1 7
Page Hit ratio : 0.4
Page Fault ratio : 0.6
*/ |
code/operating_system/src/memory_management/memory_mapping/mapping.c | #ifdef USE_MAP_ANON
#define _BSD_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
/*Point to previous shared memory*/
int *addr;
#ifdef USE_MAP_ANON /*Using MAP_ANONYMOUS*/
addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
exit(EXIT_FAILURE);
}
#else /*Map /dev/zero*/
int fd;
fd = open("/dev/zero", O_RDWR);
if (fd == -1) {
fprintf(stderr, "open() failed\n");
exit(EXIT_FAILURE);
}
addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
exit(EXIT_FAILURE);
}
if (close(fd) == -1) {
fprintf(stderr, "close() failed\n");
exit(EXIT_FAILURE);
}
#endif
*addr = 1; /*Init an int var in this block of memory*/
switch(fork()) { /*Parent process mapping each other*/
case -1:
fprintf(stderr, "fork() failed\n");
exit(EXIT_FAILURE);
case 0: /*Sub process increase the int var and stop*/
printf("Child started, value = %d\n", *addr);
(*addr)++;
if (munmap(addr, sizeof(int)) == -1) {
fprintf(stderr, "munmap()() failed\n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
default: /*Father process wait for the child to finish*/
if (wait(NULL) == -1) {
fprintf(stderr, "wait() failed\n");
exit(EXIT_FAILURE);
}
printf("In parent, value = %d\n", *addr);
if (munmap(addr, sizeof(int)) == -1) {
fprintf(stderr, "munmap()() failed\n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.