filename
stringlengths
7
140
content
stringlengths
0
76.7M
code/online_challenges/src/project_euler/problem_003/problem_003.py
def main(): n = 600851475143 h = 0 c = 2 while n != 1: if n % c == 0 and c > h: h = c n /= c c += 1 print(h) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_004/README.md
# Project Euler Problem #004: Largest palindrome product ([Problem Link](https://projecteuler.net/problem=4)) A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 Γ— 99. Find the largest palindrome made from the product of two 3-digit numbers. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_004/problem_004.cpp
#include <iostream> #include <string> int main() { int l = 0; for (int i = 100; i <= 999; ++i) for (int j = 100; j <= 999; ++j) { int c = i * j; std::string cS = std::to_string(c); if ((cS == std::string{ cS.rbegin(), cS.rend() }) && (c > l)) l = c; } std::cout << l << "\n"; }
code/online_challenges/src/project_euler/problem_004/problem_004.java
public class problem_004 { public static void main( String[] args) { int lar = 0; // Nested loop to iterate for every three digit number for(int i = 100; i <= 999; ++i) { for(int j = 100; j <= 999; ++j) { int prod = i * j; int temp = prod; int sum = 0; // Loop to reverse the number while (temp > 0) { int rem = temp % 10; sum = (sum * 10) + rem; temp /= 10; } // Statement to check the palindrome condition and store the largest value if ((prod == sum) && (prod > lar)) lar = prod; } } System.out.println("The largest palindrome made from the product of two 3-digit numbers is " + lar); } }
code/online_challenges/src/project_euler/problem_004/problem_004.py
def main(): num = 0 for i in range(100, 1000): for j in range(100, 1000): c = i * j cS = str(c) if cS == cS[::-1] and c > num: num = c print(num) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_005/README.md
# Project Euler Problem #005: Smallest multiple ([Problem Link](https://projecteuler.net/problem=5)) 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_005/problem_005.c
#include <stdio.h> int main(void) { int d = 1; while (!( (d % 11 == 0) && (d % 12 == 0) && (d % 13 == 0) && (d % 14 == 0) && (d % 15 == 0) && (d % 16 == 0) && (d % 17 == 0) && (d % 18 == 0) && (d % 19 == 0) && (d % 20 == 0) )) ++d; printf("%d\n", d); }
code/online_challenges/src/project_euler/problem_005/problem_005.cpp
#include <iostream> int main() { int d = 1; while (!( (d % 11 == 0) && (d % 12 == 0) && (d % 13 == 0) && (d % 14 == 0) && (d % 15 == 0) && (d % 16 == 0) && (d % 17 == 0) && (d % 18 == 0) && (d % 19 == 0) && (d % 20 == 0) )) ++d; std::cout << d << "\n"; }
code/online_challenges/src/project_euler/problem_005/problem_005.java
public class Problem005 { public static boolean isDivisible(int number) { for(int i = 1; i <= 20; ++i) { if(number % i != 0) return false; } return true; } public static void main(String []args) { int number = 1; while(!isDivisible(number)) { ++number; } System.out.println(number); } }
code/online_challenges/src/project_euler/problem_005/problem_005.py
def gcd(n1, n2): remainder = 1 while remainder != 0: remainder = n1 % n2 n1 = n2 n2 = remainder return n1 def lcm(n1, n2): return (n1 * n2) / gcd(n1, n2) def main(): num = 1 for i in range(1, 21): num = lcm(num, i) print(num) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_006/README.md
# Project Euler Problem #006: Sum square difference ([Problem Link](https://projecteuler.net/problem=6)) The sum of the squares of the first ten natural numbers is, <p align="center"> 1<sup>2</sup> + 2<sup>2</sup> + ... + 10<sup>2</sup> = 385 </p> The square of the sum of the first ten natural numbers is, <p align="center"> (1 + 2 + ... + 10)<sup>2</sup> = 55<sup>2</sup> = 3025 </p> Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 βˆ’ 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_006/problem_006.cpp
#include <iostream> int main() { long long int sumOfSquares = 0LL; long int squareOfSum = 0LL; for (int n = 1; n <= 100; ++n) { sumOfSquares += (n * n); squareOfSum += n; } squareOfSum *= squareOfSum; std::cout << (squareOfSum - sumOfSquares) << "\n"; }
code/online_challenges/src/project_euler/problem_006/problem_006.java
import java.util.*; import java.lang.*; import java.io.*; class Problem006{ public static void main(String[] args) { int sum = 0; int sqsum = 0; for (int i = 1; i <= 100; i++) { sqsum += i * i; sum += i; } System.out.println(sum * sum - sqsum); } }
code/online_challenges/src/project_euler/problem_006/problem_006.py
def main(): sum_of_squares = 0 square_of_sum = 0 for n in range(1, 101): sum_of_squares += n * n square_of_sum += n square_of_sum *= square_of_sum print(square_of_sum - sum_of_squares) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_007/README.md
# Project Euler Problem #007: 10001st prime ([Problem Link](https://projecteuler.net/problem=7)) By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10 001st prime number? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_007/problem_007.cpp
#include <cmath> #include <iostream> #include <vector> std::vector<long long int> primesUpto(size_t limit) // Function that implements the Sieve of Eratosthenes { std::vector<bool> primesBoolArray(limit, true); std::vector<long long int> primesUptoLimit; primesBoolArray[0] = primesBoolArray[1] = false; size_t sqrtLimit = std::sqrt(limit) + 1; for (size_t i = 0; i < sqrtLimit; ++i) if (primesBoolArray[i]) for (size_t j = (2 * i); j < limit; j += i) primesBoolArray[j] = false; for (size_t i = 0; i < primesBoolArray.size(); ++i) if (primesBoolArray[i]) primesUptoLimit.push_back(i); return primesUptoLimit; } int main() { std::vector<long long int> primes = primesUpto(1000000); // Arbitrary limit std::cout << primes[10000] << "\n"; }
code/online_challenges/src/project_euler/problem_007/problem_007.js
/* Part of Cosmos by OpenGenus Foundation */ const primes = []; let n = 2; while (primes.length < 10001) { // if this number is not divisible by any prime currently in the array if (primes.reduce((isPrime, prime) => isPrime && n % prime !== 0, true)) { primes.push(n); } n++; } console.log(primes[10000]);
code/online_challenges/src/project_euler/problem_007/problem_007.py
def main(): n = 10001 x = 2 list_of_primes = [] while len(list_of_primes) < n: if all(x % prime for prime in list_of_primes): list_of_primes.append(x) x += 1 print(list_of_primes[-1]) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_008/README.md
# Project Euler Problem #008: Largest product in a series ([Problem Link](https://projecteuler.net/problem=8)) The four adjacent digits in the 1000-digit number that have the greatest product are 9 Γ— 9 Γ— 8 Γ— 9 = 5832. <p align="center"> 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 </p> Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_008/problem_008.java
// Part of Cosmos by OpenGenus import java.math.BigInteger; import java.util.ArrayList; import java.util.Scanner; public class Solution { public static void main(String[] args) { // TODO Auto-generated method stub String num="7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"; int k=13; int size=num.length(); int[] finale=new int[size]; long largest=0l; for(int d=0;d<size;d++) { finale[d] = num.charAt(d) - '0'; } for(int j=0;j<size-k+1;j++) { long temp=1l; for(int r=j;r<k+j;r++) { long tempt=(long)finale[r]; temp=temp*tempt; } if(temp>largest) { largest=temp; } } System.out.println(largest); } }
code/online_challenges/src/project_euler/problem_008/problem_008.py
def main(): numbers = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450" largest_product = 0 for i in range(0, len(numbers) - 13): current_product = 1 for j in range(i, i + 13): current_product *= int(numbers[j : j + 1]) if current_product > largest_product: largest_product = current_product print(largest_product) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_009/README.md
# Project Euler Problem #009: Special Pythagorean triplet ([Problem Link](https://projecteuler.net/problem=9)) A Pythagorean triplet is a set of three natural numbers, _a_ < _b_ < _c_, for which, _a_<sup>2</sup> + _b_<sup>2</sup> = _c_<sup>2</sup> For example, 3<sup>2</sup> + 4<sup>2</sup> = 9 + 16 = 25 = 5<sup>2</sup>. There exists exactly one Pythagorean triplet for which _a_ + _b_ + _c_ = 1000. Find the product _abc_. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_009/problem_009.cpp
#include <iostream> int main() { for (int i = 1; i < 1000; ++i) for (int j = 1; j < 1000; ++j) { for (int k = 1; k < 1000; ++k) if (((i * i) + (j * j) == (k * k)) && ((i + j + k) == 1000)) { std::cout << i * j * k << "\n"; goto OutsideLoop; } } OutsideLoop: // Need this for breaking outside all three loops return 0; }
code/online_challenges/src/project_euler/problem_009/problem_009.java
// Part of Cosmos by OpenGenus public class Solution{ public static void main(String[] args) { // TODO Auto-generated method stub long largest=0l; int flag=0; long sum=1000; for(long a=1;a<sum/3;a++) { long asq=a*a; long b=((a*a)-(a-sum)*(a-sum))/(2*(a-sum)); long bsq=b*b; long c=sum-a-b; long csq=c*c; if(asq+bsq==csq) { flag=1; if(a*b*c>largest) { largest=a*b*c; } } } if(largest!=0) { System.out.println(largest); } if(flag==0) { System.out.println(-1); } } }
code/online_challenges/src/project_euler/problem_009/problem_009.py
def main(): sum_total = 1000 for c in range(sum_total): for b in range(c): for a in range(b): if (a + b + c == sum_total) and (a ** 2 + b ** 2 == c ** 2): print(a * b * c) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_010/README.md
# Project Euler Problem #010: Summation of primes ([Problem Link](https://projecteuler.net/problem=10)) The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_010/problem_010.cpp
#include <cmath> #include <iostream> #include <vector> long long int sumOfPrimesUpto(size_t limit) // Function that implements the Sieve of Eratosthenes { std::vector<bool> primesBoolArray(limit, true); long long int sum = 0; primesBoolArray[0] = primesBoolArray[1] = false; for (size_t i = 2; i < limit; ++i) if (primesBoolArray[i]) { sum += i; for (size_t j = (2 * i); j < limit; j += i) primesBoolArray[j] = false; } return sum; } int main() { std::cout << sumOfPrimesUpto(2000000) << "\n"; }
code/online_challenges/src/project_euler/problem_010/problem_010.java
// Part of Cosmos by OpenGenus public class Solution { static boolean checkp(int x) { if(x==0 || x==1) return false; if (x==2) { return true; } if(x%2==0) { return false; } else { for (int i=3; i*i<=x; ) { if (x%i == 0) { return false; } i=i+2; } } return true; } public static void main(String[] args) { // TODO Auto-generated method stub long sum=0l; for(int j=2;j<=2000000;j++) { if(checkp(j)==true) { sum+=j; } } System.out.println(sum); } }
code/online_challenges/src/project_euler/problem_010/problem_010.py
def main(): n = 2000000 sum = 0 prime = [True] * n for p in range(2, n): if prime[p]: sum += p for i in range(p * p, n, p): prime[i] = False print(sum) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_011/README.md
# Project Euler Problem #011: Largest product in a grid ([Problem Link](https://projecteuler.net/problem=11)) In the 20Γ—20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is 26 Γ— 63 Γ— 78 Γ— 14 = 1788696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20Γ—20 grid? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_011/problem_011.cpp
#include <bits/stdc++.h> using namespace std; int main() { int n = 20; int a[n][n]; // Passing the 20 * 20 array as input for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { cin >> a[i][j]; } } int dr[8] = {1, 1, 0, -1, -1, -1, 0, 1}; int dc[8] = {0, 1, 1, 1, 0, -1, -1, -1}; int ans = 0; for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { for(int k = 0; k < 8; k++) { int prod = 1, flag = 0; for(int steps = 0; steps < 4; steps++) { int u = i + steps * dr[k], v = j + steps * dc[k]; if(u >= 0 && u < n && v >= 0 && v < n) { prod *= a[u][v]; } else { flag = 1; } } if(flag == 0) { ans = max(ans, prod); } } } } cout << ans; }
code/online_challenges/src/project_euler/problem_012/README.md
# Project Euler Problem #012: Highly divisible triangular number ([Problem Link](https://projecteuler.net/problem=12)) The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_012/problem_012.cpp
#include <iostream> #include <cmath> int main() { int divisorCount = 0; int triangleNumberIndex = 0; int triangleNumber = 0; while (divisorCount < 500) { divisorCount = 0; ++triangleNumberIndex; triangleNumber += triangleNumberIndex; for (int i = 1; i < std::sqrt(triangleNumber) + 1; ++i) if (triangleNumber % i == 0) divisorCount += (i * i == triangleNumber) ? 1 : 2; } std::cout << triangleNumber << "\n"; return 0; }
code/online_challenges/src/project_euler/problem_012/problem_012.py
import math def main(): i = 1 triangle_number = 0 divisor_count = 0 while divisor_count < 500: triangle_number += i i += 1 divisor_count = 0 for z in range(1, int(math.sqrt(triangle_number))): if triangle_number % z == 0: divisor_count += 2 print(triangle_number) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_013/README.md
# Project Euler Problem #13: Large Sum ([Problem Link](https://projecteuler.net/problem=13)) Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. ``` 37107287533902102798797998220837590246510135740250 46376937677490009712648124896970078050417018260538 74324986199524741059474233309513058123726617309629 91942213363574161572522430563301811072406154908250 23067588207539346171171980310421047513778063246676 89261670696623633820136378418383684178734361726757 28112879812849979408065481931592621691275889832738 44274228917432520321923589422876796487670272189318 47451445736001306439091167216856844588711603153276 70386486105843025439939619828917593665686757934951 62176457141856560629502157223196586755079324193331 64906352462741904929101432445813822663347944758178 92575867718337217661963751590579239728245598838407 58203565325359399008402633568948830189458628227828 80181199384826282014278194139940567587151170094390 35398664372827112653829987240784473053190104293586 86515506006295864861532075273371959191420517255829 71693888707715466499115593487603532921714970056938 54370070576826684624621495650076471787294438377604 53282654108756828443191190634694037855217779295145 36123272525000296071075082563815656710885258350721 45876576172410976447339110607218265236877223636045 17423706905851860660448207621209813287860733969412 81142660418086830619328460811191061556940512689692 51934325451728388641918047049293215058642563049483 62467221648435076201727918039944693004732956340691 15732444386908125794514089057706229429197107928209 55037687525678773091862540744969844508330393682126 18336384825330154686196124348767681297534375946515 80386287592878490201521685554828717201219257766954 78182833757993103614740356856449095527097864797581 16726320100436897842553539920931837441497806860984 48403098129077791799088218795327364475675590848030 87086987551392711854517078544161852424320693150332 59959406895756536782107074926966537676326235447210 69793950679652694742597709739166693763042633987085 41052684708299085211399427365734116182760315001271 65378607361501080857009149939512557028198746004375 35829035317434717326932123578154982629742552737307 94953759765105305946966067683156574377167401875275 88902802571733229619176668713819931811048770190271 25267680276078003013678680992525463401061632866526 36270218540497705585629946580636237993140746255962 24074486908231174977792365466257246923322810917141 91430288197103288597806669760892938638285025333403 34413065578016127815921815005561868836468420090470 23053081172816430487623791969842487255036638784583 11487696932154902810424020138335124462181441773470 63783299490636259666498587618221225225512486764533 67720186971698544312419572409913959008952310058822 95548255300263520781532296796249481641953868218774 76085327132285723110424803456124867697064507995236 37774242535411291684276865538926205024910326572967 23701913275725675285653248258265463092207058596522 29798860272258331913126375147341994889534765745501 18495701454879288984856827726077713721403798879715 38298203783031473527721580348144513491373226651381 34829543829199918180278916522431027392251122869539 40957953066405232632538044100059654939159879593635 29746152185502371307642255121183693803580388584903 41698116222072977186158236678424689157993532961922 62467957194401269043877107275048102390895523597457 23189706772547915061505504953922979530901129967519 86188088225875314529584099251203829009407770775672 11306739708304724483816533873502340845647058077308 82959174767140363198008187129011875491310547126581 97623331044818386269515456334926366572897563400500 42846280183517070527831839425882145521227251250327 55121603546981200581762165212827652751691296897789 32238195734329339946437501907836945765883352399886 75506164965184775180738168837861091527357929701337 62177842752192623401942399639168044983993173312731 32924185707147349566916674687634660915035914677504 99518671430235219628894890102423325116913619626622 73267460800591547471830798392868535206946944540724 76841822524674417161514036427982273348055556214818 97142617910342598647204516893989422179826088076852 87783646182799346313767754307809363333018982642090 10848802521674670883215120185883543223812876952786 71329612474782464538636993009049310363619763878039 62184073572399794223406235393808339651327408011116 66627891981488087797941876876144230030984490851411 60661826293682836764744779239180335110989069790714 85786944089552990653640447425576083659976645795096 66024396409905389607120198219976047599490197230297 64913982680032973156037120041377903785566085089252 16730939319872750275468906903707539413042652315011 94809377245048795150954100921645863754710598436791 78639167021187492431995700641917969777599028300699 15368713711936614952811305876380278410754449733078 40789923115535562561142322423255033685442488917353 44889911501440648020369068063960672322193204149535 41503128880339536053299340368006977710650566631954 81234880673210146739058568557934581403627822703280 82616570773948327592232845941706525094512325230608 22918802058777319719839450180888072429661980811197 77158542502016545090413245809786882778948721859617 72107838435069186155435662884062257473692284509516 20849603980134001723930671666823555245252804609722 53503534226472524250874054075591789781264330331690 ``` --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_013/problem_013.py
def main(): numbers = [ 37107287533902102798797998220837590246510135740250, 46376937677490009712648124896970078050417018260538, 74324986199524741059474233309513058123726617309629, 91942213363574161572522430563301811072406154908250, 23067588207539346171171980310421047513778063246676, 89261670696623633820136378418383684178734361726757, 28112879812849979408065481931592621691275889832738, 44274228917432520321923589422876796487670272189318, 47451445736001306439091167216856844588711603153276, 70386486105843025439939619828917593665686757934951, 62176457141856560629502157223196586755079324193331, 64906352462741904929101432445813822663347944758178, 92575867718337217661963751590579239728245598838407, 58203565325359399008402633568948830189458628227828, 80181199384826282014278194139940567587151170094390, 35398664372827112653829987240784473053190104293586, 86515506006295864861532075273371959191420517255829, 71693888707715466499115593487603532921714970056938, 54370070576826684624621495650076471787294438377604, 53282654108756828443191190634694037855217779295145, 36123272525000296071075082563815656710885258350721, 45876576172410976447339110607218265236877223636045, 17423706905851860660448207621209813287860733969412, 81142660418086830619328460811191061556940512689692, 51934325451728388641918047049293215058642563049483, 62467221648435076201727918039944693004732956340691, 15732444386908125794514089057706229429197107928209, 55037687525678773091862540744969844508330393682126, 18336384825330154686196124348767681297534375946515, 80386287592878490201521685554828717201219257766954, 78182833757993103614740356856449095527097864797581, 16726320100436897842553539920931837441497806860984, 48403098129077791799088218795327364475675590848030, 87086987551392711854517078544161852424320693150332, 59959406895756536782107074926966537676326235447210, 69793950679652694742597709739166693763042633987085, 41052684708299085211399427365734116182760315001271, 65378607361501080857009149939512557028198746004375, 35829035317434717326932123578154982629742552737307, 94953759765105305946966067683156574377167401875275, 88902802571733229619176668713819931811048770190271, 25267680276078003013678680992525463401061632866526, 36270218540497705585629946580636237993140746255962, 24074486908231174977792365466257246923322810917141, 91430288197103288597806669760892938638285025333403, 34413065578016127815921815005561868836468420090470, 23053081172816430487623791969842487255036638784583, 11487696932154902810424020138335124462181441773470, 63783299490636259666498587618221225225512486764533, 67720186971698544312419572409913959008952310058822, 95548255300263520781532296796249481641953868218774, 76085327132285723110424803456124867697064507995236, 37774242535411291684276865538926205024910326572967, 23701913275725675285653248258265463092207058596522, 29798860272258331913126375147341994889534765745501, 18495701454879288984856827726077713721403798879715, 38298203783031473527721580348144513491373226651381, 34829543829199918180278916522431027392251122869539, 40957953066405232632538044100059654939159879593635, 29746152185502371307642255121183693803580388584903, 41698116222072977186158236678424689157993532961922, 62467957194401269043877107275048102390895523597457, 23189706772547915061505504953922979530901129967519, 86188088225875314529584099251203829009407770775672, 11306739708304724483816533873502340845647058077308, 82959174767140363198008187129011875491310547126581, 97623331044818386269515456334926366572897563400500, 42846280183517070527831839425882145521227251250327, 55121603546981200581762165212827652751691296897789, 32238195734329339946437501907836945765883352399886, 75506164965184775180738168837861091527357929701337, 62177842752192623401942399639168044983993173312731, 32924185707147349566916674687634660915035914677504, 99518671430235219628894890102423325116913619626622, 73267460800591547471830798392868535206946944540724, 76841822524674417161514036427982273348055556214818, 97142617910342598647204516893989422179826088076852, 87783646182799346313767754307809363333018982642090, 10848802521674670883215120185883543223812876952786, 71329612474782464538636993009049310363619763878039, 62184073572399794223406235393808339651327408011116, 66627891981488087797941876876144230030984490851411, 60661826293682836764744779239180335110989069790714, 85786944089552990653640447425576083659976645795096, 66024396409905389607120198219976047599490197230297, 64913982680032973156037120041377903785566085089252, 16730939319872750275468906903707539413042652315011, 94809377245048795150954100921645863754710598436791, 78639167021187492431995700641917969777599028300699, 15368713711936614952811305876380278410754449733078, 40789923115535562561142322423255033685442488917353, 44889911501440648020369068063960672322193204149535, 41503128880339536053299340368006977710650566631954, 81234880673210146739058568557934581403627822703280, 82616570773948327592232845941706525094512325230608, 22918802058777319719839450180888072429661980811197, 77158542502016545090413245809786882778948721859617, 72107838435069186155435662884062257473692284509516, 20849603980134001723930671666823555245252804609722, 53503534226472524250874054075591789781264330331690, ] total = sum(numbers) print(str(total)[:10]) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_014/README.md
# Project Euler Problem #014: Longest Collatz sequence ([Problem Link](https://projecteuler.net/problem=14)) The following iterative sequence is defined for the set of positive integers: _n_ β†’ _n_/2 (_n_ is even) _n_ β†’ 3 _n_ + 1 (_n_ is odd) Using the rule above and starting with 13, we generate the following sequence: <p align="center"> 13 β†’ 40 β†’ 20 β†’ 10 β†’ 5 β†’ 16 β†’ 8 β†’ 4 β†’ 2 β†’ 1 </p> It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_014/problem_014.cpp
#include <iostream> long long int collatzSequenceSize(long long int n) { long long int result = 0; while (n != 1) { n = (n % 2 == 0) ? n / 2 : n * 3 + 1; ++result; } return result; } int main() { long long int l = 0; long long int lSize = 0; for (long long int i = 1; i < 1000000; ++i) { long long int currentSize = collatzSequenceSize(i); if (currentSize > lSize) { l = i; lSize = currentSize; } } std::cout << l << "\n"; }
code/online_challenges/src/project_euler/problem_014/problem_014.py
def main(): dic = {n: 0 for n in range(1, 1000000)} for n in range(3, 1000000, 1): count = 0 number = n while True: if n < number: dic[number] = dic[n] + count break if n % 2 == 0: n = n / 2 count += 1 else: n = (3 * n) + 1 count += 1 print(dic.values().index(max(dic.values())) + 1) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_016/README.md
# Project Euler Problem #016: Power digit sum ([Problem Link](https://projecteuler.net/problem=16)) 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_016/problem_016.py
def main(): n = 2 ** 1000 s = list(str(n)) ans = 0 for i in s: ans += int(i) print(ans) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_017/README.md
# Project Euler Problem #17: Number letter counts ([Problem Link](https://projecteuler.net/problem=17)) If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_017/problem_017.cpp
#include <bits/stdc++.h> using namespace std; int num_letters_func(int n) { int num_letters[91]; num_letters[1] = 3; num_letters[2] = 3; num_letters[3] = 5; num_letters[4] = 4; num_letters[5] = 4; num_letters[6] = 3; num_letters[7] = 5; num_letters[8] = 5; num_letters[9] = 4; num_letters[10] = 3; num_letters[11] = 6; num_letters[12] = 6; num_letters[13] = 8; num_letters[14] = 8; num_letters[15] = 7; num_letters[16] = 7; num_letters[17] = 9; num_letters[18] = 8; num_letters[19] = 8; num_letters[20] = 6; num_letters[30] = 6; num_letters[40] = 5; num_letters[50] = 5; num_letters[60] = 5; num_letters[70] = 7; num_letters[80] = 6; num_letters[90] = 6; if(n <= 19) { return num_letters[n]; } else if(n <= 99) { int first = n / 10, second = n % 10; int ret = num_letters[first * 10]; if(second != 0) { ret += num_letters[second]; } return ret; } else if(n <= 999) { int first = n / 100; int ret = num_letters[first] + 7; if(n % 100 == 0) { return ret; } else { return ret + 3 + num_letters_func(n % 100); } } else { // if n = 1000 return 11; } } int main() { int n = 1000; int ans = 0; for(int i = 1; i <= n; i++) { ans += num_letters_func(i); } cout << ans; }
code/online_challenges/src/project_euler/problem_018/README.md
# Project Euler Problem #18: Maximum path sum I ([Problem Link](https://projecteuler.net/problem=18)) By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. <p align="center"> <b>3</b> <b>7</b> 4 2 <b>4</b> 6 8 5 <b>9</b> 3 </p> That is, `3 + 7 + 4 + 9 = 23`. Find the maximum total from top to bottom of the triangle below: <p align="center"> 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 6 3 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 </p> **NOTE:** As there are only 16384 routes, it is possible to solve this problem by trying every route. However, [Problem 67](https://projecteuler.net/problem=67), is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_018/problem_018.py
def main(): prob = [ [75], [95, 64], [17, 47, 82], [18, 35, 87, 10], [20, 4, 82, 47, 65], [19, 1, 23, 75, 3, 34], [88, 2, 77, 73, 7, 63, 67], [99, 65, 4, 28, 6, 16, 70, 92], [41, 41, 26, 56, 83, 40, 80, 70, 33], [41, 48, 72, 33, 47, 32, 37, 16, 94, 29], [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14], [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48], [63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31], [4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23], ] for i in range(13, -1, -1): for j in range(len(prob[i])): prob[i][j] += max(prob[i + 1][j], prob[i + 1][j + 1]) print(prob[0][0]) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_019/problem_019.java
import java.util.HashMap; import java.util.Map; class Problem019 { public static void main(String args[]){ Map<Integer, String> L = new HashMap<Integer, String>(); L.put(1, "Sun"); L.put(2, "Mon"); L.put(3, "Tue"); L.put(4, "Wed"); L.put(5, "Thurs"); L.put(6, "Fri"); L.put(7, "Sat"); // Start at Monday, 1st, 1900 int counter = 1; int tally = 0; // Year for (int yr = 1900; yr < 2001; ++ yr) { System.out.println("Year = " + yr); // Month for (int month = 1; month < 13; month ++) { int y = findDays(month, yr); // Number of month days for (int monthDays = 1; monthDays <= y; monthDays ++) { // Start at Monday, 1st, 1900 counter = (counter % 7) + 1; if ((monthDays == 1) && (L.get(counter) == "Sun")) { System.out.println("month_days = " + monthDays); if( yr != 1900) tally += 1; } } } System.out.println(); } System.out.println("tally = " + tally ); } public static int findDays(int month, int yr){ int d = 0; if ((month == 1) || (month == 3) || (month == 5) || (month == 7) || (month == 8) || (month == 10) || (month == 12)) { d = 31; } else if ((month == 4) || (month == 6) || (month == 9) || (month == 11)) { d = 30; } else if (month == 2) { d = (yr % 4 == 0 && (yr % 100 != 0 || yr % 400 == 0)) ? 29 : 28; } else { throw new ArithmeticException("Month is out of bound !"); } return d; } }
code/online_challenges/src/project_euler/problem_020/README.md
# Project Euler Problem 20: Factorial digit sum ([Problem Link](https://projecteuler.net/problem=20)) n! means n Γ— (n βˆ’ 1) Γ— ... Γ— 3 Γ— 2 Γ— 1 For example, 10! = 10 Γ— 9 Γ— ... Γ— 3 Γ— 2 Γ— 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_020/problem_020.java
import java.math.BigInteger; public class Problem_020 { public static BigInteger factorial(BigInteger number) { if (number.equals(BigInteger.ZERO)) return BigInteger.ONE; return (number.multiply(factorial(number.subtract(BigInteger.ONE)))); } public static BigInteger addDigits(BigInteger n) { BigInteger sum = BigInteger.ZERO; while(!n.equals(BigInteger.ZERO)) { sum = sum.add(n.mod(BigInteger.TEN)); n = n.divide(BigInteger.TEN); } return sum; } public static void main(String []args) { BigInteger sum = BigInteger.ZERO; sum = addDigits(factorial(BigInteger.valueOf(100))); System.out.println(sum.toString()); } }
code/online_challenges/src/project_euler/problem_020/problem_020.py
def main(): factorial = 1 for i in range(100): factorial *= i + 1 digit_sum = 0 while factorial > 0: digit_sum += factorial % 10 factorial = factorial // 10 print(digit_sum) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_021/README.md
# Project Euler Problem #021: Amicable numbers ([Problem Link](https://projecteuler.net/problem=21)) Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a β‰  b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_021/problem_021.cpp
#include <iostream> int sumProperDivisors(int n) { int sum = 0; for (int i = 1; i * i <= n; ++i) if (n % i == 0) { sum += i; if (n / i != i) sum += n / i; } return sum - n; } bool isAmicableNumber(int n) { int m = sumProperDivisors(n); return m != n && sumProperDivisors(m) == n; } int main() { int result = 0; for (int i = 1; i < 10000; ++i) if (isAmicableNumber(i)) result += i; std::cout << result << std::endl; return 0; }
code/online_challenges/src/project_euler/problem_022/README.md
# Project Euler Problem #022: Names scores ([Problem Link](https://projecteuler.net/problem=22)) Using ([names.txt](https://projecteuler.net/project/resources/p022_names.txt))(right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 Γ— 53 = 49714. What is the total of all the name scores in the file? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_022/problem_022.py
def main(): names = [ "MARY", "PATRICIA", "LINDA", "BARBARA", "ELIZABETH", "JENNIFER", "MARIA", "SUSAN", "MARGARET", "DOROTHY", "LISA", "NANCY", "KAREN", "BETTY", "HELEN", "SANDRA", "DONNA", "CAROL", "RUTH", "SHARON", "MICHELLE", "LAURA", "SARAH", "KIMBERLY", "DEBORAH", "JESSICA", "SHIRLEY", "CYNTHIA", "ANGELA", "MELISSA", "BRENDA", "AMY", "ANNA", "REBECCA", "VIRGINIA", "KATHLEEN", "PAMELA", "MARTHA", "DEBRA", "AMANDA", "STEPHANIE", "CAROLYN", "CHRISTINE", "MARIE", "JANET", "CATHERINE", "FRANCES", "ANN", "JOYCE", "DIANE", "ALICE", "JULIE", "HEATHER", "TERESA", "DORIS", "GLORIA", "EVELYN", "JEAN", "CHERYL", "MILDRED", "KATHERINE", "JOAN", "ASHLEY", "JUDITH", "ROSE", "JANICE", "KELLY", "NICOLE", "JUDY", "CHRISTINA", "KATHY", "THERESA", "BEVERLY", "DENISE", "TAMMY", "IRENE", "JANE", "LORI", "RACHEL", "MARILYN", "ANDREA", "KATHRYN", "LOUISE", "SARA", "ANNE", "JACQUELINE", "WANDA", "BONNIE", "JULIA", "RUBY", "LOIS", "TINA", "PHYLLIS", "NORMA", "PAULA", "DIANA", "ANNIE", "LILLIAN", "EMILY", "ROBIN", "PEGGY", "CRYSTAL", "GLADYS", "RITA", "DAWN", "CONNIE", "FLORENCE", "TRACY", "EDNA", "TIFFANY", "CARMEN", "ROSA", "CINDY", "GRACE", "WENDY", "VICTORIA", "EDITH", "KIM", "SHERRY", "SYLVIA", "JOSEPHINE", "THELMA", "SHANNON", "SHEILA", "ETHEL", "ELLEN", "ELAINE", "MARJORIE", "CARRIE", "CHARLOTTE", "MONICA", "ESTHER", "PAULINE", "EMMA", "JUANITA", "ANITA", "RHONDA", "HAZEL", "AMBER", "EVA", "DEBBIE", "APRIL", "LESLIE", "CLARA", "LUCILLE", "JAMIE", "JOANNE", "ELEANOR", "VALERIE", "DANIELLE", "MEGAN", "ALICIA", "SUZANNE", "MICHELE", "GAIL", "BERTHA", "DARLENE", "VERONICA", "JILL", "ERIN", "GERALDINE", "LAUREN", "CATHY", "JOANN", "LORRAINE", "LYNN", "SALLY", "REGINA", "ERICA", "BEATRICE", "DOLORES", "BERNICE", "AUDREY", "YVONNE", "ANNETTE", "JUNE", "SAMANTHA", "MARION", "DANA", "STACY", "ANA", "RENEE", "IDA", "VIVIAN", "ROBERTA", "HOLLY", "BRITTANY", "MELANIE", "LORETTA", "YOLANDA", "JEANETTE", "LAURIE", "KATIE", "KRISTEN", "VANESSA", "ALMA", "SUE", "ELSIE", "BETH", "JEANNE", "VICKI", "CARLA", "TARA", "ROSEMARY", "EILEEN", "TERRI", "GERTRUDE", "LUCY", "TONYA", "ELLA", "STACEY", "WILMA", "GINA", "KRISTIN", "JESSIE", "NATALIE", "AGNES", "VERA", "WILLIE", "CHARLENE", "BESSIE", "DELORES", "MELINDA", "PEARL", "ARLENE", "MAUREEN", "COLLEEN", "ALLISON", "TAMARA", "JOY", "GEORGIA", "CONSTANCE", "LILLIE", "CLAUDIA", "JACKIE", "MARCIA", "TANYA", "NELLIE", "MINNIE", "MARLENE", "HEIDI", "GLENDA", "LYDIA", "VIOLA", "COURTNEY", "MARIAN", "STELLA", "CAROLINE", "DORA", "JO", "VICKIE", "MATTIE", "TERRY", "MAXINE", "IRMA", "MABEL", "MARSHA", "MYRTLE", "LENA", "CHRISTY", "DEANNA", "PATSY", "HILDA", "GWENDOLYN", "JENNIE", "NORA", "MARGIE", "NINA", "CASSANDRA", "LEAH", "PENNY", "KAY", "PRISCILLA", "NAOMI", "CAROLE", "BRANDY", "OLGA", "BILLIE", "DIANNE", "TRACEY", "LEONA", "JENNY", "FELICIA", "SONIA", "MIRIAM", "VELMA", "BECKY", "BOBBIE", "VIOLET", "KRISTINA", "TONI", "MISTY", "MAE", "SHELLY", "DAISY", "RAMONA", "SHERRI", "ERIKA", "KATRINA", "CLAIRE", "LINDSEY", "LINDSAY", "GENEVA", "GUADALUPE", "BELINDA", "MARGARITA", "SHERYL", "CORA", "FAYE", "ADA", "NATASHA", "SABRINA", "ISABEL", "MARGUERITE", "HATTIE", "HARRIET", "MOLLY", "CECILIA", "KRISTI", "BRANDI", "BLANCHE", "SANDY", "ROSIE", "JOANNA", "IRIS", "EUNICE", "ANGIE", "INEZ", "LYNDA", "MADELINE", "AMELIA", "ALBERTA", "GENEVIEVE", "MONIQUE", "JODI", "JANIE", "MAGGIE", "KAYLA", "SONYA", "JAN", "LEE", "KRISTINE", "CANDACE", "FANNIE", "MARYANN", "OPAL", "ALISON", "YVETTE", "MELODY", "LUZ", "SUSIE", "OLIVIA", "FLORA", "SHELLEY", "KRISTY", "MAMIE", "LULA", "LOLA", "VERNA", "BEULAH", "ANTOINETTE", "CANDICE", "JUANA", "JEANNETTE", "PAM", "KELLI", "HANNAH", "WHITNEY", "BRIDGET", "KARLA", "CELIA", "LATOYA", "PATTY", "SHELIA", "GAYLE", "DELLA", "VICKY", "LYNNE", "SHERI", "MARIANNE", "KARA", "JACQUELYN", "ERMA", "BLANCA", "MYRA", "LETICIA", "PAT", "KRISTA", "ROXANNE", "ANGELICA", "JOHNNIE", "ROBYN", "FRANCIS", "ADRIENNE", "ROSALIE", "ALEXANDRA", "BROOKE", "BETHANY", "SADIE", "BERNADETTE", "TRACI", "JODY", "KENDRA", "JASMINE", "NICHOLE", "RACHAEL", "CHELSEA", "MABLE", "ERNESTINE", "MURIEL", "MARCELLA", "ELENA", "KRYSTAL", "ANGELINA", "NADINE", "KARI", "ESTELLE", "DIANNA", "PAULETTE", "LORA", "MONA", "DOREEN", "ROSEMARIE", "ANGEL", "DESIREE", "ANTONIA", "HOPE", "GINGER", "JANIS", "BETSY", "CHRISTIE", "FREDA", "MERCEDES", "MEREDITH", "LYNETTE", "TERI", "CRISTINA", "EULA", "LEIGH", "MEGHAN", "SOPHIA", "ELOISE", "ROCHELLE", "GRETCHEN", "CECELIA", "RAQUEL", "HENRIETTA", "ALYSSA", "JANA", "KELLEY", "GWEN", "KERRY", "JENNA", "TRICIA", "LAVERNE", "OLIVE", "ALEXIS", "TASHA", "SILVIA", "ELVIRA", "CASEY", "DELIA", "SOPHIE", "KATE", "PATTI", "LORENA", "KELLIE", "SONJA", "LILA", "LANA", "DARLA", "MAY", "MINDY", "ESSIE", "MANDY", "LORENE", "ELSA", "JOSEFINA", "JEANNIE", "MIRANDA", "DIXIE", "LUCIA", "MARTA", "FAITH", "LELA", "JOHANNA", "SHARI", "CAMILLE", "TAMI", "SHAWNA", "ELISA", "EBONY", "MELBA", "ORA", "NETTIE", "TABITHA", "OLLIE", "JAIME", "WINIFRED", "KRISTIE", "MARINA", "ALISHA", "AIMEE", "RENA", "MYRNA", "MARLA", "TAMMIE", "LATASHA", "BONITA", "PATRICE", "RONDA", "SHERRIE", "ADDIE", "FRANCINE", "DELORIS", "STACIE", "ADRIANA", "CHERI", "SHELBY", "ABIGAIL", "CELESTE", "JEWEL", "CARA", "ADELE", "REBEKAH", "LUCINDA", "DORTHY", "CHRIS", "EFFIE", "TRINA", "REBA", "SHAWN", "SALLIE", "AURORA", "LENORA", "ETTA", "LOTTIE", "KERRI", "TRISHA", "NIKKI", "ESTELLA", "FRANCISCA", "JOSIE", "TRACIE", "MARISSA", "KARIN", "BRITTNEY", "JANELLE", "LOURDES", "LAUREL", "HELENE", "FERN", "ELVA", "CORINNE", "KELSEY", "INA", "BETTIE", "ELISABETH", "AIDA", "CAITLIN", "INGRID", "IVA", "EUGENIA", "CHRISTA", "GOLDIE", "CASSIE", "MAUDE", "JENIFER", "THERESE", "FRANKIE", "DENA", "LORNA", "JANETTE", "LATONYA", "CANDY", "MORGAN", "CONSUELO", "TAMIKA", "ROSETTA", "DEBORA", "CHERIE", "POLLY", "DINA", "JEWELL", "FAY", "JILLIAN", "DOROTHEA", "NELL", "TRUDY", "ESPERANZA", "PATRICA", "KIMBERLEY", "SHANNA", "HELENA", "CAROLINA", "CLEO", "STEFANIE", "ROSARIO", "OLA", "JANINE", "MOLLIE", "LUPE", "ALISA", "LOU", "MARIBEL", "SUSANNE", "BETTE", "SUSANA", "ELISE", "CECILE", "ISABELLE", "LESLEY", "JOCELYN", "PAIGE", "JONI", "RACHELLE", "LEOLA", "DAPHNE", "ALTA", "ESTER", "PETRA", "GRACIELA", "IMOGENE", "JOLENE", "KEISHA", "LACEY", "GLENNA", "GABRIELA", "KERI", "URSULA", "LIZZIE", "KIRSTEN", "SHANA", "ADELINE", "MAYRA", "JAYNE", "JACLYN", "GRACIE", "SONDRA", "CARMELA", "MARISA", "ROSALIND", "CHARITY", "TONIA", "BEATRIZ", "MARISOL", "CLARICE", "JEANINE", "SHEENA", "ANGELINE", "FRIEDA", "LILY", "ROBBIE", "SHAUNA", "MILLIE", "CLAUDETTE", "CATHLEEN", "ANGELIA", "GABRIELLE", "AUTUMN", "KATHARINE", "SUMMER", "JODIE", "STACI", "LEA", "CHRISTI", "JIMMIE", "JUSTINE", "ELMA", "LUELLA", "MARGRET", "DOMINIQUE", "SOCORRO", "RENE", "MARTINA", "MARGO", "MAVIS", "CALLIE", "BOBBI", "MARITZA", "LUCILE", "LEANNE", "JEANNINE", "DEANA", "AILEEN", "LORIE", "LADONNA", "WILLA", "MANUELA", "GALE", "SELMA", "DOLLY", "SYBIL", "ABBY", "LARA", "DALE", "IVY", "DEE", "WINNIE", "MARCY", "LUISA", "JERI", "MAGDALENA", "OFELIA", "MEAGAN", "AUDRA", "MATILDA", "LEILA", "CORNELIA", "BIANCA", "SIMONE", "BETTYE", "RANDI", "VIRGIE", "LATISHA", "BARBRA", "GEORGINA", "ELIZA", "LEANN", "BRIDGETTE", "RHODA", "HALEY", "ADELA", "NOLA", "BERNADINE", "FLOSSIE", "ILA", "GRETA", "RUTHIE", "NELDA", "MINERVA", "LILLY", "TERRIE", "LETHA", "HILARY", "ESTELA", "VALARIE", "BRIANNA", "ROSALYN", "EARLINE", "CATALINA", "AVA", "MIA", "CLARISSA", "LIDIA", "CORRINE", "ALEXANDRIA", "CONCEPCION", "TIA", "SHARRON", "RAE", "DONA", "ERICKA", "JAMI", "ELNORA", "CHANDRA", "LENORE", "NEVA", "MARYLOU", "MELISA", "TABATHA", "SERENA", "AVIS", "ALLIE", "SOFIA", "JEANIE", "ODESSA", "NANNIE", "HARRIETT", "LORAINE", "PENELOPE", "MILAGROS", "EMILIA", "BENITA", "ALLYSON", "ASHLEE", "TANIA", "TOMMIE", "ESMERALDA", "KARINA", "EVE", "PEARLIE", "ZELMA", "MALINDA", "NOREEN", "TAMEKA", "SAUNDRA", "HILLARY", "AMIE", "ALTHEA", "ROSALINDA", "JORDAN", "LILIA", "ALANA", "GAY", "CLARE", "ALEJANDRA", "ELINOR", "MICHAEL", "LORRIE", "JERRI", "DARCY", "EARNESTINE", "CARMELLA", "TAYLOR", "NOEMI", "MARCIE", "LIZA", "ANNABELLE", "LOUISA", "EARLENE", "MALLORY", "CARLENE", "NITA", "SELENA", "TANISHA", "KATY", "JULIANNE", "JOHN", "LAKISHA", "EDWINA", "MARICELA", "MARGERY", "KENYA", "DOLLIE", "ROXIE", "ROSLYN", "KATHRINE", "NANETTE", "CHARMAINE", "LAVONNE", "ILENE", "KRIS", "TAMMI", "SUZETTE", "CORINE", "KAYE", "JERRY", "MERLE", "CHRYSTAL", "LINA", "DEANNE", "LILIAN", "JULIANA", "ALINE", "LUANN", "KASEY", "MARYANNE", "EVANGELINE", "COLETTE", "MELVA", "LAWANDA", "YESENIA", "NADIA", "MADGE", "KATHIE", "EDDIE", "OPHELIA", "VALERIA", "NONA", "MITZI", "MARI", "GEORGETTE", "CLAUDINE", "FRAN", "ALISSA", "ROSEANN", "LAKEISHA", "SUSANNA", "REVA", "DEIDRE", "CHASITY", "SHEREE", "CARLY", "JAMES", "ELVIA", "ALYCE", "DEIRDRE", "GENA", "BRIANA", "ARACELI", "KATELYN", "ROSANNE", "WENDI", "TESSA", "BERTA", "MARVA", "IMELDA", "MARIETTA", "MARCI", "LEONOR", "ARLINE", "SASHA", "MADELYN", "JANNA", "JULIETTE", "DEENA", "AURELIA", "JOSEFA", "AUGUSTA", "LILIANA", "YOUNG", "CHRISTIAN", "LESSIE", "AMALIA", "SAVANNAH", "ANASTASIA", "VILMA", "NATALIA", "ROSELLA", "LYNNETTE", "CORINA", "ALFREDA", "LEANNA", "CAREY", "AMPARO", "COLEEN", "TAMRA", "AISHA", "WILDA", "KARYN", "CHERRY", "QUEEN", "MAURA", "MAI", "EVANGELINA", "ROSANNA", "HALLIE", "ERNA", "ENID", "MARIANA", "LACY", "JULIET", "JACKLYN", "FREIDA", "MADELEINE", "MARA", "HESTER", "CATHRYN", "LELIA", "CASANDRA", "BRIDGETT", "ANGELITA", "JANNIE", "DIONNE", "ANNMARIE", "KATINA", "BERYL", "PHOEBE", "MILLICENT", "KATHERYN", "DIANN", "CARISSA", "MARYELLEN", "LIZ", "LAURI", "HELGA", "GILDA", "ADRIAN", "RHEA", "MARQUITA", "HOLLIE", "TISHA", "TAMERA", "ANGELIQUE", "FRANCESCA", "BRITNEY", "KAITLIN", "LOLITA", "FLORINE", "ROWENA", "REYNA", "TWILA", "FANNY", "JANELL", "INES", "CONCETTA", "BERTIE", "ALBA", "BRIGITTE", "ALYSON", "VONDA", "PANSY", "ELBA", "NOELLE", "LETITIA", "KITTY", "DEANN", "BRANDIE", "LOUELLA", "LETA", "FELECIA", "SHARLENE", "LESA", "BEVERLEY", "ROBERT", "ISABELLA", "HERMINIA", "TERRA", "CELINA", "TORI", "OCTAVIA", "JADE", "DENICE", "GERMAINE", "SIERRA", "MICHELL", "CORTNEY", "NELLY", "DORETHA", "SYDNEY", "DEIDRA", "MONIKA", "LASHONDA", "JUDI", "CHELSEY", "ANTIONETTE", "MARGOT", "BOBBY", "ADELAIDE", "NAN", "LEEANN", "ELISHA", "DESSIE", "LIBBY", "KATHI", "GAYLA", "LATANYA", "MINA", "MELLISA", "KIMBERLEE", "JASMIN", "RENAE", "ZELDA", "ELDA", "MA", "JUSTINA", "GUSSIE", "EMILIE", "CAMILLA", "ABBIE", "ROCIO", "KAITLYN", "JESSE", "EDYTHE", "ASHLEIGH", "SELINA", "LAKESHA", "GERI", "ALLENE", "PAMALA", "MICHAELA", "DAYNA", "CARYN", "ROSALIA", "SUN", "JACQULINE", "REBECA", "MARYBETH", "KRYSTLE", "IOLA", "DOTTIE", "BENNIE", "BELLE", "AUBREY", "GRISELDA", "ERNESTINA", "ELIDA", "ADRIANNE", "DEMETRIA", "DELMA", "CHONG", "JAQUELINE", "DESTINY", "ARLEEN", "VIRGINA", "RETHA", "FATIMA", "TILLIE", "ELEANORE", "CARI", "TREVA", "BIRDIE", "WILHELMINA", "ROSALEE", "MAURINE", "LATRICE", "YONG", "JENA", "TARYN", "ELIA", "DEBBY", "MAUDIE", "JEANNA", "DELILAH", "CATRINA", "SHONDA", "HORTENCIA", "THEODORA", "TERESITA", "ROBBIN", "DANETTE", "MARYJANE", "FREDDIE", "DELPHINE", "BRIANNE", "NILDA", "DANNA", "CINDI", "BESS", "IONA", "HANNA", "ARIEL", "WINONA", "VIDA", "ROSITA", "MARIANNA", "WILLIAM", "RACHEAL", "GUILLERMINA", "ELOISA", "CELESTINE", "CAREN", "MALISSA", "LONA", "CHANTEL", "SHELLIE", "MARISELA", "LEORA", "AGATHA", "SOLEDAD", "MIGDALIA", "IVETTE", "CHRISTEN", "ATHENA", "JANEL", "CHLOE", "VEDA", "PATTIE", "TESSIE", "TERA", "MARILYNN", "LUCRETIA", "KARRIE", "DINAH", "DANIELA", "ALECIA", "ADELINA", "VERNICE", "SHIELA", "PORTIA", "MERRY", "LASHAWN", "DEVON", "DARA", "TAWANA", "OMA", "VERDA", "CHRISTIN", "ALENE", "ZELLA", "SANDI", "RAFAELA", "MAYA", "KIRA", "CANDIDA", "ALVINA", "SUZAN", "SHAYLA", "LYN", "LETTIE", "ALVA", "SAMATHA", "ORALIA", "MATILDE", "MADONNA", "LARISSA", "VESTA", "RENITA", "INDIA", "DELOIS", "SHANDA", "PHILLIS", "LORRI", "ERLINDA", "CRUZ", "CATHRINE", "BARB", "ZOE", "ISABELL", "IONE", "GISELA", "CHARLIE", "VALENCIA", "ROXANNA", "MAYME", "KISHA", "ELLIE", "MELLISSA", "DORRIS", "DALIA", "BELLA", "ANNETTA", "ZOILA", "RETA", "REINA", "LAURETTA", "KYLIE", "CHRISTAL", "PILAR", "CHARLA", "ELISSA", "TIFFANI", "TANA", "PAULINA", "LEOTA", "BREANNA", "JAYME", "CARMEL", "VERNELL", "TOMASA", "MANDI", "DOMINGA", "SANTA", "MELODIE", "LURA", "ALEXA", "TAMELA", "RYAN", "MIRNA", "KERRIE", "VENUS", "NOEL", "FELICITA", "CRISTY", "CARMELITA", "BERNIECE", "ANNEMARIE", "TIARA", "ROSEANNE", "MISSY", "CORI", "ROXANA", "PRICILLA", "KRISTAL", "JUNG", "ELYSE", "HAYDEE", "ALETHA", "BETTINA", "MARGE", "GILLIAN", "FILOMENA", "CHARLES", "ZENAIDA", "HARRIETTE", "CARIDAD", "VADA", "UNA", "ARETHA", "PEARLINE", "MARJORY", "MARCELA", "FLOR", "EVETTE", "ELOUISE", "ALINA", "TRINIDAD", "DAVID", "DAMARIS", "CATHARINE", "CARROLL", "BELVA", "NAKIA", "MARLENA", "LUANNE", "LORINE", "KARON", "DORENE", "DANITA", "BRENNA", "TATIANA", "SAMMIE", "LOUANN", "LOREN", "JULIANNA", "ANDRIA", "PHILOMENA", "LUCILA", "LEONORA", "DOVIE", "ROMONA", "MIMI", "JACQUELIN", "GAYE", "TONJA", "MISTI", "JOE", "GENE", "CHASTITY", "STACIA", "ROXANN", "MICAELA", "NIKITA", "MEI", "VELDA", "MARLYS", "JOHNNA", "AURA", "LAVERN", "IVONNE", "HAYLEY", "NICKI", "MAJORIE", "HERLINDA", "GEORGE", "ALPHA", "YADIRA", "PERLA", "GREGORIA", "DANIEL", "ANTONETTE", "SHELLI", "MOZELLE", "MARIAH", "JOELLE", "CORDELIA", "JOSETTE", "CHIQUITA", "TRISTA", "LOUIS", "LAQUITA", "GEORGIANA", "CANDI", "SHANON", "LONNIE", "HILDEGARD", "CECIL", "VALENTINA", "STEPHANY", "MAGDA", "KAROL", "GERRY", "GABRIELLA", "TIANA", "ROMA", "RICHELLE", "RAY", "PRINCESS", "OLETA", "JACQUE", "IDELLA", "ALAINA", "SUZANNA", "JOVITA", "BLAIR", "TOSHA", "RAVEN", "NEREIDA", "MARLYN", "KYLA", "JOSEPH", "DELFINA", "TENA", "STEPHENIE", "SABINA", "NATHALIE", "MARCELLE", "GERTIE", "DARLEEN", "THEA", "SHARONDA", "SHANTEL", "BELEN", "VENESSA", "ROSALINA", "ONA", "GENOVEVA", "COREY", "CLEMENTINE", "ROSALBA", "RENATE", "RENATA", "MI", "IVORY", "GEORGIANNA", "FLOY", "DORCAS", "ARIANA", "TYRA", "THEDA", "MARIAM", "JULI", "JESICA", "DONNIE", "VIKKI", "VERLA", "ROSELYN", "MELVINA", "JANNETTE", "GINNY", "DEBRAH", "CORRIE", "ASIA", "VIOLETA", "MYRTIS", "LATRICIA", "COLLETTE", "CHARLEEN", "ANISSA", "VIVIANA", "TWYLA", "PRECIOUS", "NEDRA", "LATONIA", "LAN", "HELLEN", "FABIOLA", "ANNAMARIE", "ADELL", "SHARYN", "CHANTAL", "NIKI", "MAUD", "LIZETTE", "LINDY", "KIA", "KESHA", "JEANA", "DANELLE", "CHARLINE", "CHANEL", "CARROL", "VALORIE", "LIA", "DORTHA", "CRISTAL", "SUNNY", "LEONE", "LEILANI", "GERRI", "DEBI", "ANDRA", "KESHIA", "IMA", "EULALIA", "EASTER", "DULCE", "NATIVIDAD", "LINNIE", "KAMI", "GEORGIE", "CATINA", "BROOK", "ALDA", "WINNIFRED", "SHARLA", "RUTHANN", "MEAGHAN", "MAGDALENE", "LISSETTE", "ADELAIDA", "VENITA", "TRENA", "SHIRLENE", "SHAMEKA", "ELIZEBETH", "DIAN", "SHANTA", "MICKEY", "LATOSHA", "CARLOTTA", "WINDY", "SOON", "ROSINA", "MARIANN", "LEISA", "JONNIE", "DAWNA", "CATHIE", "BILLY", "ASTRID", "SIDNEY", "LAUREEN", "JANEEN", "HOLLI", "FAWN", "VICKEY", "TERESSA", "SHANTE", "RUBYE", "MARCELINA", "CHANDA", "CARY", "TERESE", "SCARLETT", "MARTY", "MARNIE", "LULU", "LISETTE", "JENIFFER", "ELENOR", "DORINDA", "DONITA", "CARMAN", "BERNITA", "ALTAGRACIA", "ALETA", "ADRIANNA", "ZORAIDA", "RONNIE", "NICOLA", "LYNDSEY", "KENDALL", "JANINA", "CHRISSY", "AMI", "STARLA", "PHYLIS", "PHUONG", "KYRA", "CHARISSE", "BLANCH", "SANJUANITA", "RONA", "NANCI", "MARILEE", "MARANDA", "CORY", "BRIGETTE", "SANJUANA", "MARITA", "KASSANDRA", "JOYCELYN", "IRA", "FELIPA", "CHELSIE", "BONNY", "MIREYA", "LORENZA", "KYONG", "ILEANA", "CANDELARIA", "TONY", "TOBY", "SHERIE", "OK", "MARK", "LUCIE", "LEATRICE", "LAKESHIA", "GERDA", "EDIE", "BAMBI", "MARYLIN", "LAVON", "HORTENSE", "GARNET", "EVIE", "TRESSA", "SHAYNA", "LAVINA", "KYUNG", "JEANETTA", "SHERRILL", "SHARA", "PHYLISS", "MITTIE", "ANABEL", "ALESIA", "THUY", "TAWANDA", "RICHARD", "JOANIE", "TIFFANIE", "LASHANDA", "KARISSA", "ENRIQUETA", "DARIA", "DANIELLA", "CORINNA", "ALANNA", "ABBEY", "ROXANE", "ROSEANNA", "MAGNOLIA", "LIDA", "KYLE", "JOELLEN", "ERA", "CORAL", "CARLEEN", "TRESA", "PEGGIE", "NOVELLA", "NILA", "MAYBELLE", "JENELLE", "CARINA", "NOVA", "MELINA", "MARQUERITE", "MARGARETTE", "JOSEPHINA", "EVONNE", "DEVIN", "CINTHIA", "ALBINA", "TOYA", "TAWNYA", "SHERITA", "SANTOS", "MYRIAM", "LIZABETH", "LISE", "KEELY", "JENNI", "GISELLE", "CHERYLE", "ARDITH", "ARDIS", "ALESHA", "ADRIANE", "SHAINA", "LINNEA", "KAROLYN", "HONG", "FLORIDA", "FELISHA", "DORI", "DARCI", "ARTIE", "ARMIDA", "ZOLA", "XIOMARA", "VERGIE", "SHAMIKA", "NENA", "NANNETTE", "MAXIE", "LOVIE", "JEANE", "JAIMIE", "INGE", "FARRAH", "ELAINA", "CAITLYN", "STARR", "FELICITAS", "CHERLY", "CARYL", "YOLONDA", "YASMIN", "TEENA", "PRUDENCE", "PENNIE", "NYDIA", "MACKENZIE", "ORPHA", "MARVEL", "LIZBETH", "LAURETTE", "JERRIE", "HERMELINDA", "CAROLEE", "TIERRA", "MIRIAN", "META", "MELONY", "KORI", "JENNETTE", "JAMILA", "ENA", "ANH", "YOSHIKO", "SUSANNAH", "SALINA", "RHIANNON", "JOLEEN", "CRISTINE", "ASHTON", "ARACELY", "TOMEKA", "SHALONDA", "MARTI", "LACIE", "KALA", "JADA", "ILSE", "HAILEY", "BRITTANI", "ZONA", "SYBLE", "SHERRYL", "RANDY", "NIDIA", "MARLO", "KANDICE", "KANDI", "DEB", "DEAN", "AMERICA", "ALYCIA", "TOMMY", "RONNA", "NORENE", "MERCY", "JOSE", "INGEBORG", "GIOVANNA", "GEMMA", "CHRISTEL", "AUDRY", "ZORA", "VITA", "VAN", "TRISH", "STEPHAINE", "SHIRLEE", "SHANIKA", "MELONIE", "MAZIE", "JAZMIN", "INGA", "HOA", "HETTIE", "GERALYN", "FONDA", "ESTRELLA", "ADELLA", "SU", "SARITA", "RINA", "MILISSA", "MARIBETH", "GOLDA", "EVON", "ETHELYN", "ENEDINA", "CHERISE", "CHANA", "VELVA", "TAWANNA", "SADE", "MIRTA", "LI", "KARIE", "JACINTA", "ELNA", "DAVINA", "CIERRA", "ASHLIE", "ALBERTHA", "TANESHA", "STEPHANI", "NELLE", "MINDI", "LU", "LORINDA", "LARUE", "FLORENE", "DEMETRA", "DEDRA", "CIARA", "CHANTELLE", "ASHLY", "SUZY", "ROSALVA", "NOELIA", "LYDA", "LEATHA", "KRYSTYNA", "KRISTAN", "KARRI", "DARLINE", "DARCIE", "CINDA", "CHEYENNE", "CHERRIE", "AWILDA", "ALMEDA", "ROLANDA", "LANETTE", "JERILYN", "GISELE", "EVALYN", "CYNDI", "CLETA", "CARIN", "ZINA", "ZENA", "VELIA", "TANIKA", "PAUL", "CHARISSA", "THOMAS", "TALIA", "MARGARETE", "LAVONDA", "KAYLEE", "KATHLENE", "JONNA", "IRENA", "ILONA", "IDALIA", "CANDIS", "CANDANCE", "BRANDEE", "ANITRA", "ALIDA", "SIGRID", "NICOLETTE", "MARYJO", "LINETTE", "HEDWIG", "CHRISTIANA", "CASSIDY", "ALEXIA", "TRESSIE", "MODESTA", "LUPITA", "LITA", "GLADIS", "EVELIA", "DAVIDA", "CHERRI", "CECILY", "ASHELY", "ANNABEL", "AGUSTINA", "WANITA", "SHIRLY", "ROSAURA", "HULDA", "EUN", "BAILEY", "YETTA", "VERONA", "THOMASINA", "SIBYL", "SHANNAN", "MECHELLE", "LUE", "LEANDRA", "LANI", "KYLEE", "KANDY", "JOLYNN", "FERNE", "EBONI", "CORENE", "ALYSIA", "ZULA", "NADA", "MOIRA", "LYNDSAY", "LORRETTA", "JUAN", "JAMMIE", "HORTENSIA", "GAYNELL", "CAMERON", "ADRIA", "VINA", "VICENTA", "TANGELA", "STEPHINE", "NORINE", "NELLA", "LIANA", "LESLEE", "KIMBERELY", "ILIANA", "GLORY", "FELICA", "EMOGENE", "ELFRIEDE", "EDEN", "EARTHA", "CARMA", "BEA", "OCIE", "MARRY", "LENNIE", "KIARA", "JACALYN", "CARLOTA", "ARIELLE", "YU", "STAR", "OTILIA", "KIRSTIN", "KACEY", "JOHNETTA", "JOEY", "JOETTA", "JERALDINE", "JAUNITA", "ELANA", "DORTHEA", "CAMI", "AMADA", "ADELIA", "VERNITA", "TAMAR", "SIOBHAN", "RENEA", "RASHIDA", "OUIDA", "ODELL", "NILSA", "MERYL", "KRISTYN", "JULIETA", "DANICA", "BREANNE", "AUREA", "ANGLEA", "SHERRON", "ODETTE", "MALIA", "LORELEI", "LIN", "LEESA", "KENNA", "KATHLYN", "FIONA", "CHARLETTE", "SUZIE", "SHANTELL", "SABRA", "RACQUEL", "MYONG", "MIRA", "MARTINE", "LUCIENNE", "LAVADA", "JULIANN", "JOHNIE", "ELVERA", "DELPHIA", "CLAIR", "CHRISTIANE", "CHAROLETTE", "CARRI", "AUGUSTINE", "ASHA", "ANGELLA", "PAOLA", "NINFA", "LEDA", "LAI", "EDA", "SUNSHINE", "STEFANI", "SHANELL", "PALMA", "MACHELLE", "LISSA", "KECIA", "KATHRYNE", "KARLENE", "JULISSA", "JETTIE", "JENNIFFER", "HUI", "CORRINA", "CHRISTOPHER", "CAROLANN", "ALENA", "TESS", "ROSARIA", "MYRTICE", "MARYLEE", "LIANE", "KENYATTA", "JUDIE", "JANEY", "IN", "ELMIRA", "ELDORA", "DENNA", "CRISTI", "CATHI", "ZAIDA", "VONNIE", "VIVA", "VERNIE", "ROSALINE", "MARIELA", "LUCIANA", "LESLI", "KARAN", "FELICE", "DENEEN", "ADINA", "WYNONA", "TARSHA", "SHERON", "SHASTA", "SHANITA", "SHANI", "SHANDRA", "RANDA", "PINKIE", "PARIS", "NELIDA", "MARILOU", "LYLA", "LAURENE", "LACI", "JOI", "JANENE", "DOROTHA", "DANIELE", "DANI", "CAROLYNN", "CARLYN", "BERENICE", "AYESHA", "ANNELIESE", "ALETHEA", "THERSA", "TAMIKO", "RUFINA", "OLIVA", "MOZELL", "MARYLYN", "MADISON", "KRISTIAN", "KATHYRN", "KASANDRA", "KANDACE", "JANAE", "GABRIEL", "DOMENICA", "DEBBRA", "DANNIELLE", "CHUN", "BUFFY", "BARBIE", "ARCELIA", "AJA", "ZENOBIA", "SHAREN", "SHAREE", "PATRICK", "PAGE", "MY", "LAVINIA", "KUM", "KACIE", "JACKELINE", "HUONG", "FELISA", "EMELIA", "ELEANORA", "CYTHIA", "CRISTIN", "CLYDE", "CLARIBEL", "CARON", "ANASTACIA", "ZULMA", "ZANDRA", "YOKO", "TENISHA", "SUSANN", "SHERILYN", "SHAY", "SHAWANDA", "SABINE", "ROMANA", "MATHILDA", "LINSEY", "KEIKO", "JOANA", "ISELA", "GRETTA", "GEORGETTA", "EUGENIE", "DUSTY", "DESIRAE", "DELORA", "CORAZON", "ANTONINA", "ANIKA", "WILLENE", "TRACEE", "TAMATHA", "REGAN", "NICHELLE", "MICKIE", "MAEGAN", "LUANA", "LANITA", "KELSIE", "EDELMIRA", "BREE", "AFTON", "TEODORA", "TAMIE", "SHENA", "MEG", "LINH", "KELI", "KACI", "DANYELLE", "BRITT", "ARLETTE", "ALBERTINE", "ADELLE", "TIFFINY", "STORMY", "SIMONA", "NUMBERS", "NICOLASA", "NICHOL", "NIA", "NAKISHA", "MEE", "MAIRA", "LOREEN", "KIZZY", "JOHNNY", "JAY", "FALLON", "CHRISTENE", "BOBBYE", "ANTHONY", "YING", "VINCENZA", "TANJA", "RUBIE", "RONI", "QUEENIE", "MARGARETT", "KIMBERLI", "IRMGARD", "IDELL", "HILMA", "EVELINA", "ESTA", "EMILEE", "DENNISE", "DANIA", "CARL", "CARIE", "ANTONIO", "WAI", "SANG", "RISA", "RIKKI", "PARTICIA", "MUI", "MASAKO", "MARIO", "LUVENIA", "LOREE", "LONI", "LIEN", "KEVIN", "GIGI", "FLORENCIA", "DORIAN", "DENITA", "DALLAS", "CHI", "BILLYE", "ALEXANDER", "TOMIKA", "SHARITA", "RANA", "NIKOLE", "NEOMA", "MARGARITE", "MADALYN", "LUCINA", "LAILA", "KALI", "JENETTE", "GABRIELE", "EVELYNE", "ELENORA", "CLEMENTINA", "ALEJANDRINA", "ZULEMA", "VIOLETTE", "VANNESSA", "THRESA", "RETTA", "PIA", "PATIENCE", "NOELLA", "NICKIE", "JONELL", "DELTA", "CHUNG", "CHAYA", "CAMELIA", "BETHEL", "ANYA", "ANDREW", "THANH", "SUZANN", "SPRING", "SHU", "MILA", "LILLA", "LAVERNA", "KEESHA", "KATTIE", "GIA", "GEORGENE", "EVELINE", "ESTELL", "ELIZBETH", "VIVIENNE", "VALLIE", "TRUDIE", "STEPHANE", "MICHEL", "MAGALY", "MADIE", "KENYETTA", "KARREN", "JANETTA", "HERMINE", "HARMONY", "DRUCILLA", "DEBBI", "CELESTINA", "CANDIE", "BRITNI", "BECKIE", "AMINA", "ZITA", "YUN", "YOLANDE", "VIVIEN", "VERNETTA", "TRUDI", "SOMMER", "PEARLE", "PATRINA", "OSSIE", "NICOLLE", "LOYCE", "LETTY", "LARISA", "KATHARINA", "JOSELYN", "JONELLE", "JENELL", "IESHA", "HEIDE", "FLORINDA", "FLORENTINA", "FLO", "ELODIA", "DORINE", "BRUNILDA", "BRIGID", "ASHLI", "ARDELLA", "TWANA", "THU", "TARAH", "SUNG", "SHEA", "SHAVON", "SHANE", "SERINA", "RAYNA", "RAMONITA", "NGA", "MARGURITE", "LUCRECIA", "KOURTNEY", "KATI", "JESUS", "JESENIA", "DIAMOND", "CRISTA", "AYANA", "ALICA", "ALIA", "VINNIE", "SUELLEN", "ROMELIA", "RACHELL", "PIPER", "OLYMPIA", "MICHIKO", "KATHALEEN", "JOLIE", "JESSI", "JANESSA", "HANA", "HA", "ELEASE", "CARLETTA", "BRITANY", "SHONA", "SALOME", "ROSAMOND", "REGENA", "RAINA", "NGOC", "NELIA", "LOUVENIA", "LESIA", "LATRINA", "LATICIA", "LARHONDA", "JINA", "JACKI", "HOLLIS", "HOLLEY", "EMMY", "DEEANN", "CORETTA", "ARNETTA", "VELVET", "THALIA", "SHANICE", "NETA", "MIKKI", "MICKI", "LONNA", "LEANA", "LASHUNDA", "KILEY", "JOYE", "JACQULYN", "IGNACIA", "HYUN", "HIROKO", "HENRY", "HENRIETTE", "ELAYNE", "DELINDA", "DARNELL", "DAHLIA", "COREEN", "CONSUELA", "CONCHITA", "CELINE", "BABETTE", "AYANNA", "ANETTE", "ALBERTINA", "SKYE", "SHAWNEE", "SHANEKA", "QUIANA", "PAMELIA", "MIN", "MERRI", "MERLENE", "MARGIT", "KIESHA", "KIERA", "KAYLENE", "JODEE", "JENISE", "ERLENE", "EMMIE", "ELSE", "DARYL", "DALILA", "DAISEY", "CODY", "CASIE", "BELIA", "BABARA", "VERSIE", "VANESA", "SHELBA", "SHAWNDA", "SAM", "NORMAN", "NIKIA", "NAOMA", "MARNA", "MARGERET", "MADALINE", "LAWANA", "KINDRA", "JUTTA", "JAZMINE", "JANETT", "HANNELORE", "GLENDORA", "GERTRUD", "GARNETT", "FREEDA", "FREDERICA", "FLORANCE", "FLAVIA", "DENNIS", "CARLINE", "BEVERLEE", "ANJANETTE", "VALDA", "TRINITY", "TAMALA", "STEVIE", "SHONNA", "SHA", "SARINA", "ONEIDA", "MICAH", "MERILYN", "MARLEEN", "LURLINE", "LENNA", "KATHERIN", "JIN", "JENI", "HAE", "GRACIA", "GLADY", "FARAH", "ERIC", "ENOLA", "EMA", "DOMINQUE", "DEVONA", "DELANA", "CECILA", "CAPRICE", "ALYSHA", "ALI", "ALETHIA", "VENA", "THERESIA", "TAWNY", "SONG", "SHAKIRA", "SAMARA", "SACHIKO", "RACHELE", "PAMELLA", "NICKY", "MARNI", "MARIEL", "MAREN", "MALISA", "LIGIA", "LERA", "LATORIA", "LARAE", "KIMBER", "KATHERN", "KAREY", "JENNEFER", "JANETH", "HALINA", "FREDIA", "DELISA", "DEBROAH", "CIERA", "CHIN", "ANGELIKA", "ANDREE", "ALTHA", "YEN", "VIVAN", "TERRESA", "TANNA", "SUK", "SUDIE", "SOO", "SIGNE", "SALENA", "RONNI", "REBBECCA", "MYRTIE", "MCKENZIE", "MALIKA", "MAIDA", "LOAN", "LEONARDA", "KAYLEIGH", "FRANCE", "ETHYL", "ELLYN", "DAYLE", "CAMMIE", "BRITTNI", "BIRGIT", "AVELINA", "ASUNCION", "ARIANNA", "AKIKO", "VENICE", "TYESHA", "TONIE", "TIESHA", "TAKISHA", "STEFFANIE", "SINDY", "SANTANA", "MEGHANN", "MANDA", "MACIE", "LADY", "KELLYE", "KELLEE", "JOSLYN", "JASON", "INGER", "INDIRA", "GLINDA", "GLENNIS", "FERNANDA", "FAUSTINA", "ENEIDA", "ELICIA", "DOT", "DIGNA", "DELL", "ARLETTA", "ANDRE", "WILLIA", "TAMMARA", "TABETHA", "SHERRELL", "SARI", "REFUGIO", "REBBECA", "PAULETTA", "NIEVES", "NATOSHA", "NAKITA", "MAMMIE", "KENISHA", "KAZUKO", "KASSIE", "GARY", "EARLEAN", "DAPHINE", "CORLISS", "CLOTILDE", "CAROLYNE", "BERNETTA", "AUGUSTINA", "AUDREA", "ANNIS", "ANNABELL", "YAN", "TENNILLE", "TAMICA", "SELENE", "SEAN", "ROSANA", "REGENIA", "QIANA", "MARKITA", "MACY", "LEEANNE", "LAURINE", "KYM", "JESSENIA", "JANITA", "GEORGINE", "GENIE", "EMIKO", "ELVIE", "DEANDRA", "DAGMAR", "CORIE", "COLLEN", "CHERISH", "ROMAINE", "PORSHA", "PEARLENE", "MICHELINE", "MERNA", "MARGORIE", "MARGARETTA", "LORE", "KENNETH", "JENINE", "HERMINA", "FREDERICKA", "ELKE", "DRUSILLA", "DORATHY", "DIONE", "DESIRE", "CELENA", "BRIGIDA", "ANGELES", "ALLEGRA", "THEO", "TAMEKIA", "SYNTHIA", "STEPHEN", "SOOK", "SLYVIA", "ROSANN", "REATHA", "RAYE", "MARQUETTA", "MARGART", "LING", "LAYLA", "KYMBERLY", "KIANA", "KAYLEEN", "KATLYN", "KARMEN", "JOELLA", "IRINA", "EMELDA", "ELENI", "DETRA", "CLEMMIE", "CHERYLL", "CHANTELL", "CATHEY", "ARNITA", "ARLA", "ANGLE", "ANGELIC", "ALYSE", "ZOFIA", "THOMASINE", "TENNIE", "SON", "SHERLY", "SHERLEY", "SHARYL", "REMEDIOS", "PETRINA", "NICKOLE", "MYUNG", "MYRLE", "MOZELLA", "LOUANNE", "LISHA", "LATIA", "LANE", "KRYSTA", "JULIENNE", "JOEL", "JEANENE", "JACQUALINE", "ISAURA", "GWENDA", "EARLEEN", "DONALD", "CLEOPATRA", "CARLIE", "AUDIE", "ANTONIETTA", "ALISE", "ALEX", "VERDELL", "VAL", "TYLER", "TOMOKO", "THAO", "TALISHA", "STEVEN", "SO", "SHEMIKA", "SHAUN", "SCARLET", "SAVANNA", "SANTINA", "ROSIA", "RAEANN", "ODILIA", "NANA", "MINNA", "MAGAN", "LYNELLE", "LE", "KARMA", "JOEANN", "IVANA", "INELL", "ILANA", "HYE", "HONEY", "HEE", "GUDRUN", "FRANK", "DREAMA", "CRISSY", "CHANTE", "CARMELINA", "ARVILLA", "ARTHUR", "ANNAMAE", "ALVERA", "ALEIDA", "AARON", "YEE", "YANIRA", "VANDA", "TIANNA", "TAM", "STEFANIA", "SHIRA", "PERRY", "NICOL", "NANCIE", "MONSERRATE", "MINH", "MELYNDA", "MELANY", "MATTHEW", "LOVELLA", "LAURE", "KIRBY", "KACY", "JACQUELYNN", "HYON", "GERTHA", "FRANCISCO", "ELIANA", "CHRISTENA", "CHRISTEEN", "CHARISE", "CATERINA", "CARLEY", "CANDYCE", "ARLENA", "AMMIE", "YANG", "WILLETTE", "VANITA", "TUYET", "TINY", "SYREETA", "SILVA", "SCOTT", "RONALD", "PENNEY", "NYLA", "MICHAL", "MAURICE", "MARYAM", "MARYA", "MAGEN", "LUDIE", "LOMA", "LIVIA", "LANELL", "KIMBERLIE", "JULEE", "DONETTA", "DIEDRA", "DENISHA", "DEANE", "DAWNE", "CLARINE", "CHERRYL", "BRONWYN", "BRANDON", "ALLA", "VALERY", "TONDA", "SUEANN", "SORAYA", "SHOSHANA", "SHELA", "SHARLEEN", "SHANELLE", "NERISSA", "MICHEAL", "MERIDITH", "MELLIE", "MAYE", "MAPLE", "MAGARET", "LUIS", "LILI", "LEONILA", "LEONIE", "LEEANNA", "LAVONIA", "LAVERA", "KRISTEL", "KATHEY", "KATHE", "JUSTIN", "JULIAN", "JIMMY", "JANN", "ILDA", "HILDRED", "HILDEGARDE", "GENIA", "FUMIKO", "EVELIN", "ERMELINDA", "ELLY", "DUNG", "DOLORIS", "DIONNA", "DANAE", "BERNEICE", "ANNICE", "ALIX", "VERENA", "VERDIE", "TRISTAN", "SHAWNNA", "SHAWANA", "SHAUNNA", "ROZELLA", "RANDEE", "RANAE", "MILAGRO", "LYNELL", "LUISE", "LOUIE", "LOIDA", "LISBETH", "KARLEEN", "JUNITA", "JONA", "ISIS", "HYACINTH", "HEDY", "GWENN", "ETHELENE", "ERLINE", "EDWARD", "DONYA", "DOMONIQUE", "DELICIA", "DANNETTE", "CICELY", "BRANDA", "BLYTHE", "BETHANN", "ASHLYN", "ANNALEE", "ALLINE", "YUKO", "VELLA", "TRANG", "TOWANDA", "TESHA", "SHERLYN", "NARCISA", "MIGUELINA", "MERI", "MAYBELL", "MARLANA", "MARGUERITA", "MADLYN", "LUNA", "LORY", "LORIANN", "LIBERTY", "LEONORE", "LEIGHANN", "LAURICE", "LATESHA", "LARONDA", "KATRICE", "KASIE", "KARL", "KALEY", "JADWIGA", "GLENNIE", "GEARLDINE", "FRANCINA", "EPIFANIA", "DYAN", "DORIE", "DIEDRE", "DENESE", "DEMETRICE", "DELENA", "DARBY", "CRISTIE", "CLEORA", "CATARINA", "CARISA", "BERNIE", "BARBERA", "ALMETA", "TRULA", "TEREASA", "SOLANGE", "SHEILAH", "SHAVONNE", "SANORA", "ROCHELL", "MATHILDE", "MARGARETA", "MAIA", "LYNSEY", "LAWANNA", "LAUNA", "KENA", "KEENA", "KATIA", "JAMEY", "GLYNDA", "GAYLENE", "ELVINA", "ELANOR", "DANUTA", "DANIKA", "CRISTEN", "CORDIE", "COLETTA", "CLARITA", "CARMON", "BRYNN", "AZUCENA", "AUNDREA", "ANGELE", "YI", "WALTER", "VERLIE", "VERLENE", "TAMESHA", "SILVANA", "SEBRINA", "SAMIRA", "REDA", "RAYLENE", "PENNI", "PANDORA", "NORAH", "NOMA", "MIREILLE", "MELISSIA", "MARYALICE", "LARAINE", "KIMBERY", "KARYL", "KARINE", "KAM", "JOLANDA", "JOHANA", "JESUSA", "JALEESA", "JAE", "JACQUELYNE", "IRISH", "ILUMINADA", "HILARIA", "HANH", "GENNIE", "FRANCIE", "FLORETTA", "EXIE", "EDDA", "DREMA", "DELPHA", "BEV", "BARBAR", "ASSUNTA", "ARDELL", "ANNALISA", "ALISIA", "YUKIKO", "YOLANDO", "WONDA", "WEI", "WALTRAUD", "VETA", "TEQUILA", "TEMEKA", "TAMEIKA", "SHIRLEEN", "SHENITA", "PIEDAD", "OZELLA", "MIRTHA", "MARILU", "KIMIKO", "JULIANE", "JENICE", "JEN", "JANAY", "JACQUILINE", "HILDE", "FE", "FAE", "EVAN", "EUGENE", "ELOIS", "ECHO", "DEVORAH", "CHAU", "BRINDA", "BETSEY", "ARMINDA", "ARACELIS", "APRYL", "ANNETT", "ALISHIA", "VEOLA", "USHA", "TOSHIKO", "THEOLA", "TASHIA", "TALITHA", "SHERY", "RUDY", "RENETTA", "REIKO", "RASHEEDA", "OMEGA", "OBDULIA", "MIKA", "MELAINE", "MEGGAN", "MARTIN", "MARLEN", "MARGET", "MARCELINE", "MANA", "MAGDALEN", "LIBRADA", "LEZLIE", "LEXIE", "LATASHIA", "LASANDRA", "KELLE", "ISIDRA", "ISA", "INOCENCIA", "GWYN", "FRANCOISE", "ERMINIA", "ERINN", "DIMPLE", "DEVORA", "CRISELDA", "ARMANDA", "ARIE", "ARIANE", "ANGELO", "ANGELENA", "ALLEN", "ALIZA", "ADRIENE", "ADALINE", "XOCHITL", "TWANNA", "TRAN", "TOMIKO", "TAMISHA", "TAISHA", "SUSY", "SIU", "RUTHA", "ROXY", "RHONA", "RAYMOND", "OTHA", "NORIKO", "NATASHIA", "MERRIE", "MELVIN", "MARINDA", "MARIKO", "MARGERT", "LORIS", "LIZZETTE", "LEISHA", "KAILA", "KA", "JOANNIE", "JERRICA", "JENE", "JANNET", "JANEE", "JACINDA", "HERTA", "ELENORE", "DORETTA", "DELAINE", "DANIELL", "CLAUDIE", "CHINA", "BRITTA", "APOLONIA", "AMBERLY", "ALEASE", "YURI", "YUK", "WEN", "WANETA", "UTE", "TOMI", "SHARRI", "SANDIE", "ROSELLE", "REYNALDA", "RAGUEL", "PHYLICIA", "PATRIA", "OLIMPIA", "ODELIA", "MITZIE", "MITCHELL", "MISS", "MINDA", "MIGNON", "MICA", "MENDY", "MARIVEL", "MAILE", "LYNETTA", "LAVETTE", "LAURYN", "LATRISHA", "LAKIESHA", "KIERSTEN", "KARY", "JOSPHINE", "JOLYN", "JETTA", "JANISE", "JACQUIE", "IVELISSE", "GLYNIS", "GIANNA", "GAYNELLE", "EMERALD", "DEMETRIUS", "DANYELL", "DANILLE", "DACIA", "CORALEE", "CHER", "CEOLA", "BRETT", "BELL", "ARIANNE", "ALESHIA", "YUNG", "WILLIEMAE", "TROY", "TRINH", "THORA", "TAI", "SVETLANA", "SHERIKA", "SHEMEKA", "SHAUNDA", "ROSELINE", "RICKI", "MELDA", "MALLIE", "LAVONNA", "LATINA", "LARRY", "LAQUANDA", "LALA", "LACHELLE", "KLARA", "KANDIS", "JOHNA", "JEANMARIE", "JAYE", "HANG", "GRAYCE", "GERTUDE", "EMERITA", "EBONIE", "CLORINDA", "CHING", "CHERY", "CAROLA", "BREANN", "BLOSSOM", "BERNARDINE", "BECKI", "ARLETHA", "ARGELIA", "ARA", "ALITA", "YULANDA", "YON", "YESSENIA", "TOBI", "TASIA", "SYLVIE", "SHIRL", "SHIRELY", "SHERIDAN", "SHELLA", "SHANTELLE", "SACHA", "ROYCE", "REBECKA", "REAGAN", "PROVIDENCIA", "PAULENE", "MISHA", "MIKI", "MARLINE", "MARICA", "LORITA", "LATOYIA", "LASONYA", "KERSTIN", "KENDA", "KEITHA", "KATHRIN", "JAYMIE", "JACK", "GRICELDA", "GINETTE", "ERYN", "ELINA", "ELFRIEDA", "DANYEL", "CHEREE", "CHANELLE", "BARRIE", "AVERY", "AURORE", "ANNAMARIA", "ALLEEN", "AILENE", "AIDE", "YASMINE", "VASHTI", "VALENTINE", "TREASA", "TORY", "TIFFANEY", "SHERYLL", "SHARIE", "SHANAE", "SAU", "RAISA", "PA", "NEDA", "MITSUKO", "MIRELLA", "MILDA", "MARYANNA", "MARAGRET", "MABELLE", "LUETTA", "LORINA", "LETISHA", "LATARSHA", "LANELLE", "LAJUANA", "KRISSY", "KARLY", "KARENA", "JON", "JESSIKA", "JERICA", "JEANELLE", "JANUARY", "JALISA", "JACELYN", "IZOLA", "IVEY", "GREGORY", "EUNA", "ETHA", "DREW", "DOMITILA", "DOMINICA", "DAINA", "CREOLA", "CARLI", "CAMIE", "BUNNY", "BRITTNY", "ASHANTI", "ANISHA", "ALEEN", "ADAH", "YASUKO", "WINTER", "VIKI", "VALRIE", "TONA", "TINISHA", "THI", "TERISA", "TATUM", "TANEKA", "SIMONNE", "SHALANDA", "SERITA", "RESSIE", "REFUGIA", "PAZ", "OLENE", "NA", "MERRILL", "MARGHERITA", "MANDIE", "MAN", "MAIRE", "LYNDIA", "LUCI", "LORRIANE", "LORETA", "LEONIA", "LAVONA", "LASHAWNDA", "LAKIA", "KYOKO", "KRYSTINA", "KRYSTEN", "KENIA", "KELSI", "JUDE", "JEANICE", "ISOBEL", "GEORGIANN", "GENNY", "FELICIDAD", "EILENE", "DEON", "DELOISE", "DEEDEE", "DANNIE", "CONCEPTION", "CLORA", "CHERILYN", "CHANG", "CALANDRA", "BERRY", "ARMANDINA", "ANISA", "ULA", "TIMOTHY", "TIERA", "THERESSA", "STEPHANIA", "SIMA", "SHYLA", "SHONTA", "SHERA", "SHAQUITA", "SHALA", "SAMMY", "ROSSANA", "NOHEMI", "NERY", "MORIAH", "MELITA", "MELIDA", "MELANI", "MARYLYNN", "MARISHA", "MARIETTE", "MALORIE", "MADELENE", "LUDIVINA", "LORIA", "LORETTE", "LORALEE", "LIANNE", "LEON", "LAVENIA", "LAURINDA", "LASHON", "KIT", "KIMI", "KEILA", "KATELYNN", "KAI", "JONE", "JOANE", "JI", "JAYNA", "JANELLA", "JA", "HUE", "HERTHA", "FRANCENE", "ELINORE", "DESPINA", "DELSIE", "DEEDRA", "CLEMENCIA", "CARRY", "CAROLIN", "CARLOS", "BULAH", "BRITTANIE", "BOK", "BLONDELL", "BIBI", "BEAULAH", "BEATA", "ANNITA", "AGRIPINA", "VIRGEN", "VALENE", "UN", "TWANDA", "TOMMYE", "TOI", "TARRA", "TARI", "TAMMERA", "SHAKIA", "SADYE", "RUTHANNE", "ROCHEL", "RIVKA", "PURA", "NENITA", "NATISHA", "MING", "MERRILEE", "MELODEE", "MARVIS", "LUCILLA", "LEENA", "LAVETA", "LARITA", "LANIE", "KEREN", "ILEEN", "GEORGEANN", "GENNA", "GENESIS", "FRIDA", "EWA", "EUFEMIA", "EMELY", "ELA", "EDYTH", "DEONNA", "DEADRA", "DARLENA", "CHANELL", "CHAN", "CATHERN", "CASSONDRA", "CASSAUNDRA", "BERNARDA", "BERNA", "ARLINDA", "ANAMARIA", "ALBERT", "WESLEY", "VERTIE", "VALERI", "TORRI", "TATYANA", "STASIA", "SHERISE", "SHERILL", "SEASON", "SCOTTIE", "SANDA", "RUTHE", "ROSY", "ROBERTO", "ROBBI", "RANEE", "QUYEN", "PEARLY", "PALMIRA", "ONITA", "NISHA", "NIESHA", "NIDA", "NEVADA", "NAM", "MERLYN", "MAYOLA", "MARYLOUISE", "MARYLAND", "MARX", "MARTH", "MARGENE", "MADELAINE", "LONDA", "LEONTINE", "LEOMA", "LEIA", "LAWRENCE", "LAURALEE", "LANORA", "LAKITA", "KIYOKO", "KETURAH", "KATELIN", "KAREEN", "JONIE", "JOHNETTE", "JENEE", "JEANETT", "IZETTA", "HIEDI", "HEIKE", "HASSIE", "HAROLD", "GIUSEPPINA", "GEORGANN", "FIDELA", "FERNANDE", "ELWANDA", "ELLAMAE", "ELIZ", "DUSTI", "DOTTY", "CYNDY", "CORALIE", "CELESTA", "ARGENTINA", "ALVERTA", "XENIA", "WAVA", "VANETTA", "TORRIE", "TASHINA", "TANDY", "TAMBRA", "TAMA", "STEPANIE", "SHILA", "SHAUNTA", "SHARAN", "SHANIQUA", "SHAE", "SETSUKO", "SERAFINA", "SANDEE", "ROSAMARIA", "PRISCILA", "OLINDA", "NADENE", "MUOI", "MICHELINA", "MERCEDEZ", "MARYROSE", "MARIN", "MARCENE", "MAO", "MAGALI", "MAFALDA", "LOGAN", "LINN", "LANNIE", "KAYCE", "KAROLINE", "KAMILAH", "KAMALA", "JUSTA", "JOLINE", "JENNINE", "JACQUETTA", "IRAIDA", "GERALD", "GEORGEANNA", "FRANCHESCA", "FAIRY", "EMELINE", "ELANE", "EHTEL", "EARLIE", "DULCIE", "DALENE", "CRIS", "CLASSIE", "CHERE", "CHARIS", "CAROYLN", "CARMINA", "CARITA", "BRIAN", "BETHANIE", "AYAKO", "ARICA", "AN", "ALYSA", "ALESSANDRA", "AKILAH", "ADRIEN", "ZETTA", "YOULANDA", "YELENA", "YAHAIRA", "XUAN", "WENDOLYN", "VICTOR", "TIJUANA", "TERRELL", "TERINA", "TERESIA", "SUZI", "SUNDAY", "SHERELL", "SHAVONDA", "SHAUNTE", "SHARDA", "SHAKITA", "SENA", "RYANN", "RUBI", "RIVA", "REGINIA", "REA", "RACHAL", "PARTHENIA", "PAMULA", "MONNIE", "MONET", "MICHAELE", "MELIA", "MARINE", "MALKA", "MAISHA", "LISANDRA", "LEO", "LEKISHA", "LEAN", "LAURENCE", "LAKENDRA", "KRYSTIN", "KORTNEY", "KIZZIE", "KITTIE", "KERA", "KENDAL", "KEMBERLY", "KANISHA", "JULENE", "JULE", "JOSHUA", "JOHANNE", "JEFFREY", "JAMEE", "HAN", "HALLEY", "GIDGET", "GALINA", "FREDRICKA", "FLETA", "FATIMAH", "EUSEBIA", "ELZA", "ELEONORE", "DORTHEY", "DORIA", "DONELLA", "DINORAH", "DELORSE", "CLARETHA", "CHRISTINIA", "CHARLYN", "BONG", "BELKIS", "AZZIE", "ANDERA", "AIKO", "ADENA", "YER", "YAJAIRA", "WAN", "VANIA", "ULRIKE", "TOSHIA", "TIFANY", "STEFANY", "SHIZUE", "SHENIKA", "SHAWANNA", "SHAROLYN", "SHARILYN", "SHAQUANA", "SHANTAY", "SEE", "ROZANNE", "ROSELEE", "RICKIE", "REMONA", "REANNA", "RAELENE", "QUINN", "PHUNG", "PETRONILA", "NATACHA", "NANCEY", "MYRL", "MIYOKO", "MIESHA", "MERIDETH", "MARVELLA", "MARQUITTA", "MARHTA", "MARCHELLE", "LIZETH", "LIBBIE", "LAHOMA", "LADAWN", "KINA", "KATHELEEN", "KATHARYN", "KARISA", "KALEIGH", "JUNIE", "JULIEANN", "JOHNSIE", "JANEAN", "JAIMEE", "JACKQUELINE", "HISAKO", "HERMA", "HELAINE", "GWYNETH", "GLENN", "GITA", "EUSTOLIA", "EMELINA", "ELIN", "EDRIS", "DONNETTE", "DONNETTA", "DIERDRE", "DENAE", "DARCEL", "CLAUDE", "CLARISA", "CINDERELLA", "CHIA", "CHARLESETTA", "CHARITA", "CELSA", "CASSY", "CASSI", "CARLEE", "BRUNA", "BRITTANEY", "BRANDE", "BILLI", "BAO", "ANTONETTA", "ANGLA", "ANGELYN", "ANALISA", "ALANE", "WENONA", "WENDIE", "VERONIQUE", "VANNESA", "TOBIE", "TEMPIE", "SUMIKO", "SULEMA", "SPARKLE", "SOMER", "SHEBA", "SHAYNE", "SHARICE", "SHANEL", "SHALON", "SAGE", "ROY", "ROSIO", "ROSELIA", "RENAY", "REMA", "REENA", "PORSCHE", "PING", "PEG", "OZIE", "ORETHA", "ORALEE", "ODA", "NU", "NGAN", "NAKESHA", "MILLY", "MARYBELLE", "MARLIN", "MARIS", "MARGRETT", "MARAGARET", "MANIE", "LURLENE", "LILLIA", "LIESELOTTE", "LAVELLE", "LASHAUNDA", "LAKEESHA", "KEITH", "KAYCEE", "KALYN", "JOYA", "JOETTE", "JENAE", "JANIECE", "ILLA", "GRISEL", "GLAYDS", "GENEVIE", "GALA", "FREDDA", "FRED", "ELMER", "ELEONOR", "DEBERA", "DEANDREA", "DAN", "CORRINNE", "CORDIA", "CONTESSA", "COLENE", "CLEOTILDE", "CHARLOTT", "CHANTAY", "CECILLE", "BEATRIS", "AZALEE", "ARLEAN", "ARDATH", "ANJELICA", "ANJA", "ALFREDIA", "ALEISHA", "ADAM", "ZADA", "YUONNE", "XIAO", "WILLODEAN", "WHITLEY", "VENNIE", "VANNA", "TYISHA", "TOVA", "TORIE", "TONISHA", "TILDA", "TIEN", "TEMPLE", "SIRENA", "SHERRIL", "SHANTI", "SHAN", "SENAIDA", "SAMELLA", "ROBBYN", "RENDA", "REITA", "PHEBE", "PAULITA", "NOBUKO", "NGUYET", "NEOMI", "MOON", "MIKAELA", "MELANIA", "MAXIMINA", "MARG", "MAISIE", "LYNNA", "LILLI", "LAYNE", "LASHAUN", "LAKENYA", "LAEL", "KIRSTIE", "KATHLINE", "KASHA", "KARLYN", "KARIMA", "JOVAN", "JOSEFINE", "JENNELL", "JACQUI", "JACKELYN", "HYO", "HIEN", "GRAZYNA", "FLORRIE", "FLORIA", "ELEONORA", "DWANA", "DORLA", "DONG", "DELMY", "DEJA", "DEDE", "DANN", "CRYSTA", "CLELIA", "CLARIS", "CLARENCE", "CHIEKO", "CHERLYN", "CHERELLE", "CHARMAIN", "CHARA", "CAMMY", "BEE", "ARNETTE", "ARDELLE", "ANNIKA", "AMIEE", "AMEE", "ALLENA", "YVONE", "YUKI", "YOSHIE", "YEVETTE", "YAEL", "WILLETTA", "VONCILE", "VENETTA", "TULA", "TONETTE", "TIMIKA", "TEMIKA", "TELMA", "TEISHA", "TAREN", "TA", "STACEE", "SHIN", "SHAWNTA", "SATURNINA", "RICARDA", "POK", "PASTY", "ONIE", "NUBIA", "MORA", "MIKE", "MARIELLE", "MARIELLA", "MARIANELA", "MARDELL", "MANY", "LUANNA", "LOISE", "LISABETH", "LINDSY", "LILLIANA", "LILLIAM", "LELAH", "LEIGHA", "LEANORA", "LANG", "KRISTEEN", "KHALILAH", "KEELEY", "KANDRA", "JUNKO", "JOAQUINA", "JERLENE", "JANI", "JAMIKA", "JAME", "HSIU", "HERMILA", "GOLDEN", "GENEVIVE", "EVIA", "EUGENA", "EMMALINE", "ELFREDA", "ELENE", "DONETTE", "DELCIE", "DEEANNA", "DARCEY", "CUC", "CLARINDA", "CIRA", "CHAE", "CELINDA", "CATHERYN", "CATHERIN", "CASIMIRA", "CARMELIA", "CAMELLIA", "BREANA", "BOBETTE", "BERNARDINA", "BEBE", "BASILIA", "ARLYNE", "AMAL", "ALAYNA", "ZONIA", "ZENIA", "YURIKO", "YAEKO", "WYNELL", "WILLOW", "WILLENA", "VERNIA", "TU", "TRAVIS", "TORA", "TERRILYN", "TERICA", "TENESHA", "TAWNA", "TAJUANA", "TAINA", "STEPHNIE", "SONA", "SOL", "SINA", "SHONDRA", "SHIZUKO", "SHERLENE", "SHERICE", "SHARIKA", "ROSSIE", "ROSENA", "RORY", "RIMA", "RIA", "RHEBA", "RENNA", "PETER", "NATALYA", "NANCEE", "MELODI", "MEDA", "MAXIMA", "MATHA", "MARKETTA", "MARICRUZ", "MARCELENE", "MALVINA", "LUBA", "LOUETTA", "LEIDA", "LECIA", "LAURAN", "LASHAWNA", "LAINE", "KHADIJAH", "KATERINE", "KASI", "KALLIE", "JULIETTA", "JESUSITA", "JESTINE", "JESSIA", "JEREMY", "JEFFIE", "JANYCE", "ISADORA", "GEORGIANNE", "FIDELIA", "EVITA", "EURA", "EULAH", "ESTEFANA", "ELSY", "ELIZABET", "ELADIA", "DODIE", "DION", "DIA", "DENISSE", "DELORAS", "DELILA", "DAYSI", "DAKOTA", "CURTIS", "CRYSTLE", "CONCHA", "COLBY", "CLARETTA", "CHU", "CHRISTIA", "CHARLSIE", "CHARLENA", "CARYLON", "BETTYANN", "ASLEY", "ASHLEA", "AMIRA", "AI", "AGUEDA", "AGNUS", "YUETTE", "VINITA", "VICTORINA", "TYNISHA", "TREENA", "TOCCARA", "TISH", "THOMASENA", "TEGAN", "SOILA", "SHILOH", "SHENNA", "SHARMAINE", "SHANTAE", "SHANDI", "SEPTEMBER", "SARAN", "SARAI", "SANA", "SAMUEL", "SALLEY", "ROSETTE", "ROLANDE", "REGINE", "OTELIA", "OSCAR", "OLEVIA", "NICHOLLE", "NECOLE", "NAIDA", "MYRTA", "MYESHA", "MITSUE", "MINTA", "MERTIE", "MARGY", "MAHALIA", "MADALENE", "LOVE", "LOURA", "LOREAN", "LEWIS", "LESHA", "LEONIDA", "LENITA", "LAVONE", "LASHELL", "LASHANDRA", "LAMONICA", "KIMBRA", "KATHERINA", "KARRY", "KANESHA", "JULIO", "JONG", "JENEVA", "JAQUELYN", "HWA", "GILMA", "GHISLAINE", "GERTRUDIS", "FRANSISCA", "FERMINA", "ETTIE", "ETSUKO", "ELLIS", "ELLAN", "ELIDIA", "EDRA", "DORETHEA", "DOREATHA", "DENYSE", "DENNY", "DEETTA", "DAINE", "CYRSTAL", "CORRIN", "CAYLA", "CARLITA", "CAMILA", "BURMA", "BULA", "BUENA", "BLAKE", "BARABARA", "AVRIL", "AUSTIN", "ALAINE", "ZANA", "WILHEMINA", "WANETTA", "VIRGIL", "VI", "VERONIKA", "VERNON", "VERLINE", "VASILIKI", "TONITA", "TISA", "TEOFILA", "TAYNA", "TAUNYA", "TANDRA", "TAKAKO", "SUNNI", "SUANNE", "SIXTA", "SHARELL", "SEEMA", "RUSSELL", "ROSENDA", "ROBENA", "RAYMONDE", "PEI", "PAMILA", "OZELL", "NEIDA", "NEELY", "MISTIE", "MICHA", "MERISSA", "MAURITA", "MARYLN", "MARYETTA", "MARSHALL", "MARCELL", "MALENA", "MAKEDA", "MADDIE", "LOVETTA", "LOURIE", "LORRINE", "LORILEE", "LESTER", "LAURENA", "LASHAY", "LARRAINE", "LAREE", "LACRESHA", "KRISTLE", "KRISHNA", "KEVA", "KEIRA", "KAROLE", "JOIE", "JINNY", "JEANNETTA", "JAMA", "HEIDY", "GILBERTE", "GEMA", "FAVIOLA", "EVELYNN", "ENDA", "ELLI", "ELLENA", "DIVINA", "DAGNY", "COLLENE", "CODI", "CINDIE", "CHASSIDY", "CHASIDY", "CATRICE", "CATHERINA", "CASSEY", "CAROLL", "CARLENA", "CANDRA", "CALISTA", "BRYANNA", "BRITTENY", "BEULA", "BARI", "AUDRIE", "AUDRIA", "ARDELIA", "ANNELLE", "ANGILA", "ALONA", "ALLYN", "DOUGLAS", "ROGER", "JONATHAN", "RALPH", "NICHOLAS", "BENJAMIN", "BRUCE", "HARRY", "WAYNE", "STEVE", "HOWARD", "ERNEST", "PHILLIP", "TODD", "CRAIG", "ALAN", "PHILIP", "EARL", "DANNY", "BRYAN", "STANLEY", "LEONARD", "NATHAN", "MANUEL", "RODNEY", "MARVIN", "VINCENT", "JEFFERY", "JEFF", "CHAD", "JACOB", "ALFRED", "BRADLEY", "HERBERT", "FREDERICK", "EDWIN", "DON", "RICKY", "RANDALL", "BARRY", "BERNARD", "LEROY", "MARCUS", "THEODORE", "CLIFFORD", "MIGUEL", "JIM", "TOM", "CALVIN", "BILL", "LLOYD", "DEREK", "WARREN", "DARRELL", "JEROME", "FLOYD", "ALVIN", "TIM", "GORDON", "GREG", "JORGE", "DUSTIN", "PEDRO", "DERRICK", "ZACHARY", "HERMAN", "GLEN", "HECTOR", "RICARDO", "RICK", "BRENT", "RAMON", "GILBERT", "MARC", "REGINALD", "RUBEN", "NATHANIEL", "RAFAEL", "EDGAR", "MILTON", "RAUL", "BEN", "CHESTER", "DUANE", "FRANKLIN", "BRAD", "RON", "ROLAND", "ARNOLD", "HARVEY", "JARED", "ERIK", "DARRYL", "NEIL", "JAVIER", "FERNANDO", "CLINTON", "TED", "MATHEW", "TYRONE", "DARREN", "LANCE", "KURT", "ALLAN", "NELSON", "GUY", "CLAYTON", "HUGH", "MAX", "DWAYNE", "DWIGHT", "ARMANDO", "FELIX", "EVERETT", "IAN", "WALLACE", "KEN", "BOB", "ALFREDO", "ALBERTO", "DAVE", "IVAN", "BYRON", "ISAAC", "MORRIS", "CLIFTON", "WILLARD", "ROSS", "ANDY", "SALVADOR", "KIRK", "SERGIO", "SETH", "KENT", "TERRANCE", "EDUARDO", "TERRENCE", "ENRIQUE", "WADE", "STUART", "FREDRICK", "ARTURO", "ALEJANDRO", "NICK", "LUTHER", "WENDELL", "JEREMIAH", "JULIUS", "OTIS", "TREVOR", "OLIVER", "LUKE", "HOMER", "GERARD", "DOUG", "KENNY", "HUBERT", "LYLE", "MATT", "ALFONSO", "ORLANDO", "REX", "CARLTON", "ERNESTO", "NEAL", "PABLO", "LORENZO", "OMAR", "WILBUR", "GRANT", "HORACE", "RODERICK", "ABRAHAM", "WILLIS", "RICKEY", "ANDRES", "CESAR", "JOHNATHAN", "MALCOLM", "RUDOLPH", "DAMON", "KELVIN", "PRESTON", "ALTON", "ARCHIE", "MARCO", "WM", "PETE", "RANDOLPH", "GARRY", "GEOFFREY", "JONATHON", "FELIPE", "GERARDO", "ED", "DOMINIC", "DELBERT", "COLIN", "GUILLERMO", "EARNEST", "LUCAS", "BENNY", "SPENCER", "RODOLFO", "MYRON", "EDMUND", "GARRETT", "SALVATORE", "CEDRIC", "LOWELL", "GREGG", "SHERMAN", "WILSON", "SYLVESTER", "ROOSEVELT", "ISRAEL", "JERMAINE", "FORREST", "WILBERT", "LELAND", "SIMON", "CLARK", "IRVING", "BRYANT", "OWEN", "RUFUS", "WOODROW", "KRISTOPHER", "MACK", "LEVI", "MARCOS", "GUSTAVO", "JAKE", "LIONEL", "GILBERTO", "CLINT", "NICOLAS", "ISMAEL", "ORVILLE", "ERVIN", "DEWEY", "AL", "WILFRED", "JOSH", "HUGO", "IGNACIO", "CALEB", "TOMAS", "SHELDON", "ERICK", "STEWART", "DOYLE", "DARREL", "ROGELIO", "TERENCE", "SANTIAGO", "ALONZO", "ELIAS", "BERT", "ELBERT", "RAMIRO", "CONRAD", "NOAH", "GRADY", "PHIL", "CORNELIUS", "LAMAR", "ROLANDO", "CLAY", "PERCY", "DEXTER", "BRADFORD", "DARIN", "AMOS", "MOSES", "IRVIN", "SAUL", "ROMAN", "RANDAL", "TIMMY", "DARRIN", "WINSTON", "BRENDAN", "ABEL", "DOMINICK", "BOYD", "EMILIO", "ELIJAH", "DOMINGO", "EMMETT", "MARLON", "EMANUEL", "JERALD", "EDMOND", "EMIL", "DEWAYNE", "WILL", "OTTO", "TEDDY", "REYNALDO", "BRET", "JESS", "TRENT", "HUMBERTO", "EMMANUEL", "STEPHAN", "VICENTE", "LAMONT", "GARLAND", "MILES", "EFRAIN", "HEATH", "RODGER", "HARLEY", "ETHAN", "ELDON", "ROCKY", "PIERRE", "JUNIOR", "FREDDY", "ELI", "BRYCE", "ANTOINE", "STERLING", "CHASE", "GROVER", "ELTON", "CLEVELAND", "DYLAN", "CHUCK", "DAMIAN", "REUBEN", "STAN", "AUGUST", "LEONARDO", "JASPER", "RUSSEL", "ERWIN", "BENITO", "HANS", "MONTE", "BLAINE", "ERNIE", "CURT", "QUENTIN", "AGUSTIN", "MURRAY", "JAMAL", "ADOLFO", "HARRISON", "TYSON", "BURTON", "BRADY", "ELLIOTT", "WILFREDO", "BART", "JARROD", "VANCE", "DENIS", "DAMIEN", "JOAQUIN", "HARLAN", "DESMOND", "ELLIOT", "DARWIN", "GREGORIO", "BUDDY", "XAVIER", "KERMIT", "ROSCOE", "ESTEBAN", "ANTON", "SOLOMON", "SCOTTY", "NORBERT", "ELVIN", "WILLIAMS", "NOLAN", "ROD", "QUINTON", "HAL", "BRAIN", "ROB", "ELWOOD", "KENDRICK", "DARIUS", "MOISES", "FIDEL", "THADDEUS", "CLIFF", "MARCEL", "JACKSON", "RAPHAEL", "BRYON", "ARMAND", "ALVARO", "JEFFRY", "DANE", "JOESPH", "THURMAN", "NED", "RUSTY", "MONTY", "FABIAN", "REGGIE", "MASON", "GRAHAM", "ISAIAH", "VAUGHN", "GUS", "LOYD", "DIEGO", "ADOLPH", "NORRIS", "MILLARD", "ROCCO", "GONZALO", "DERICK", "RODRIGO", "WILEY", "RIGOBERTO", "ALPHONSO", "TY", "NOE", "VERN", "REED", "JEFFERSON", "ELVIS", "BERNARDO", "MAURICIO", "HIRAM", "DONOVAN", "BASIL", "RILEY", "NICKOLAS", "MAYNARD", "SCOT", "VINCE", "QUINCY", "EDDY", "SEBASTIAN", "FEDERICO", "ULYSSES", "HERIBERTO", "DONNELL", "COLE", "DAVIS", "GAVIN", "EMERY", "WARD", "ROMEO", "JAYSON", "DANTE", "CLEMENT", "COY", "MAXWELL", "JARVIS", "BRUNO", "ISSAC", "DUDLEY", "BROCK", "SANFORD", "CARMELO", "BARNEY", "NESTOR", "STEFAN", "DONNY", "ART", "LINWOOD", "BEAU", "WELDON", "GALEN", "ISIDRO", "TRUMAN", "DELMAR", "JOHNATHON", "SILAS", "FREDERIC", "DICK", "IRWIN", "MERLIN", "CHARLEY", "MARCELINO", "HARRIS", "CARLO", "TRENTON", "KURTIS", "HUNTER", "AURELIO", "WINFRED", "VITO", "COLLIN", "DENVER", "CARTER", "LEONEL", "EMORY", "PASQUALE", "MOHAMMAD", "MARIANO", "DANIAL", "LANDON", "DIRK", "BRANDEN", "ADAN", "BUFORD", "GERMAN", "WILMER", "EMERSON", "ZACHERY", "FLETCHER", "JACQUES", "ERROL", "DALTON", "MONROE", "JOSUE", "EDWARDO", "BOOKER", "WILFORD", "SONNY", "SHELTON", "CARSON", "THERON", "RAYMUNDO", "DAREN", "HOUSTON", "ROBBY", "LINCOLN", "GENARO", "BENNETT", "OCTAVIO", "CORNELL", "HUNG", "ARRON", "ANTONY", "HERSCHEL", "GIOVANNI", "GARTH", "CYRUS", "CYRIL", "RONNY", "LON", "FREEMAN", "DUNCAN", "KENNITH", "CARMINE", "ERICH", "CHADWICK", "WILBURN", "RUSS", "REID", "MYLES", "ANDERSON", "MORTON", "JONAS", "FOREST", "MITCHEL", "MERVIN", "ZANE", "RICH", "JAMEL", "LAZARO", "ALPHONSE", "RANDELL", "MAJOR", "JARRETT", "BROOKS", "ABDUL", "LUCIANO", "SEYMOUR", "EUGENIO", "MOHAMMED", "VALENTIN", "CHANCE", "ARNULFO", "LUCIEN", "FERDINAND", "THAD", "EZRA", "ALDO", "RUBIN", "ROYAL", "MITCH", "EARLE", "ABE", "WYATT", "MARQUIS", "LANNY", "KAREEM", "JAMAR", "BORIS", "ISIAH", "EMILE", "ELMO", "ARON", "LEOPOLDO", "EVERETTE", "JOSEF", "ELOY", "RODRICK", "REINALDO", "LUCIO", "JERROD", "WESTON", "HERSHEL", "BARTON", "PARKER", "LEMUEL", "BURT", "JULES", "GIL", "ELISEO", "AHMAD", "NIGEL", "EFREN", "ANTWAN", "ALDEN", "MARGARITO", "COLEMAN", "DINO", "OSVALDO", "LES", "DEANDRE", "NORMAND", "KIETH", "TREY", "NORBERTO", "NAPOLEON", "JEROLD", "FRITZ", "ROSENDO", "MILFORD", "CHRISTOPER", "ALFONZO", "LYMAN", "JOSIAH", "BRANT", "WILTON", "RICO", "JAMAAL", "DEWITT", "BRENTON", "OLIN", "FOSTER", "FAUSTINO", "CLAUDIO", "JUDSON", "GINO", "EDGARDO", "ALEC", "TANNER", "JARRED", "DONN", "TAD", "PRINCE", "PORFIRIO", "ODIS", "LENARD", "CHAUNCEY", "TOD", "MEL", "MARCELO", "KORY", "AUGUSTUS", "KEVEN", "HILARIO", "BUD", "SAL", "ORVAL", "MAURO", "ZACHARIAH", "OLEN", "ANIBAL", "MILO", "JED", "DILLON", "AMADO", "NEWTON", "LENNY", "RICHIE", "HORACIO", "BRICE", "MOHAMED", "DELMER", "DARIO", "REYES", "MAC", "JONAH", "JERROLD", "ROBT", "HANK", "RUPERT", "ROLLAND", "KENTON", "DAMION", "ANTONE", "WALDO", "FREDRIC", "BRADLY", "KIP", "BURL", "WALKER", "TYREE", "JEFFEREY", "AHMED", "WILLY", "STANFORD", "OREN", "NOBLE", "MOSHE", "MIKEL", "ENOCH", "BRENDON", "QUINTIN", "JAMISON", "FLORENCIO", "DARRICK", "TOBIAS", "HASSAN", "GIUSEPPE", "DEMARCUS", "CLETUS", "TYRELL", "LYNDON", "KEENAN", "WERNER", "GERALDO", "COLUMBUS", "CHET", "BERTRAM", "MARKUS", "HUEY", "HILTON", "DWAIN", "DONTE", "TYRON", "OMER", "ISAIAS", "HIPOLITO", "FERMIN", "ADALBERTO", "BO", "BARRETT", "TEODORO", "MCKINLEY", "MAXIMO", "GARFIELD", "RALEIGH", "LAWERENCE", "ABRAM", "RASHAD", "KING", "EMMITT", "DARON", "SAMUAL", "MIQUEL", "EUSEBIO", "DOMENIC", "DARRON", "BUSTER", "WILBER", "RENATO", "JC", "HOYT", "HAYWOOD", "EZEKIEL", "CHAS", "FLORENTINO", "ELROY", "CLEMENTE", "ARDEN", "NEVILLE", "EDISON", "DESHAWN", "NATHANIAL", "JORDON", "DANILO", "CLAUD", "SHERWOOD", "RAYMON", "RAYFORD", "CRISTOBAL", "AMBROSE", "TITUS", "HYMAN", "FELTON", "EZEQUIEL", "ERASMO", "STANTON", "LONNY", "LEN", "IKE", "MILAN", "LINO", "JAROD", "HERB", "ANDREAS", "WALTON", "RHETT", "PALMER", "DOUGLASS", "CORDELL", "OSWALDO", "ELLSWORTH", "VIRGILIO", "TONEY", "NATHANAEL", "DEL", "BENEDICT", "MOSE", "JOHNSON", "ISREAL", "GARRET", "FAUSTO", "ASA", "ARLEN", "ZACK", "WARNER", "MODESTO", "FRANCESCO", "MANUAL", "GAYLORD", "GASTON", "FILIBERTO", "DEANGELO", "MICHALE", "GRANVILLE", "WES", "MALIK", "ZACKARY", "TUAN", "ELDRIDGE", "CRISTOPHER", "CORTEZ", "ANTIONE", "MALCOM", "LONG", "KOREY", "JOSPEH", "COLTON", "WAYLON", "VON", "HOSEA", "SHAD", "SANTO", "RUDOLF", "ROLF", "REY", "RENALDO", "MARCELLUS", "LUCIUS", "KRISTOFER", "BOYCE", "BENTON", "HAYDEN", "HARLAND", "ARNOLDO", "RUEBEN", "LEANDRO", "KRAIG", "JERRELL", "JEROMY", "HOBERT", "CEDRICK", "ARLIE", "WINFORD", "WALLY", "LUIGI", "KENETH", "JACINTO", "GRAIG", "FRANKLYN", "EDMUNDO", "SID", "PORTER", "LEIF", "JERAMY", "BUCK", "WILLIAN", "VINCENZO", "SHON", "LYNWOOD", "JERE", "HAI", "ELDEN", "DORSEY", "DARELL", "BRODERICK", "ALONSO", ] total_sum = 0 temp_sum = 0 names.sort() for i in range(len(names)): for j in names[i]: temp_sum += ord(j) - ord("A") + 1 total_sum += (i + 1) * temp_sum temp_sum = 0 print(total_sum) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_023/README.md
# Project Euler Problem #023: Non-abundant sums ([Problem Link](https://projecteuler.net/problem=23)) A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n. As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit. Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_023/problem_023.cpp
#include <bits/stdc++.h> using namespace std; int isAbundant(int x) { int sum = 0; for(int i = 1; i * i <= x; i++) { if(x % i == 0) { if((x / i) == i) { sum += i; } else { sum += i + (x / i); } } } sum -= x; if(sum > x) { return true; } return false; } int main() { int max = 28123; vector<int> abundant; for(int i = 1; i <= max; i++) { if(isAbundant(i)) { abundant.push_back(i); } } int isSumAbundant[max + 1] = {}; for(int i = 0; i < abundant.size(); i++) { for(int j = i; j < abundant.size(); j++) { if(abundant[i] + abundant[j] <= max) { isSumAbundant[abundant[i] + abundant[j]] = 1; } } } int ans = 0; for(int i = 1; i <= max; i++) { if(isSumAbundant[i] == 0) { ans += i; } } cout << ans; }
code/online_challenges/src/project_euler/problem_024/README.md
# Project Euler Problem #024: Lexicographic permutations ([Problem Link](https://projecteuler.net/problem=24)) A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: ```012 021 102 120 201 210``` What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_024/problem_024.py
from itertools import permutations def main(): result = list(map("".join, permutations("0123456789"))) print(result[999999]) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_025/README.md
# Project Euler Problem #025: 1000-digit Fibonacci number ([Problem Link](https://projecteuler.net/problem=25)) The Fibonacci sequence is defined by the recurrence relation: <p align="center"> F<sub>n</sub> = F<sub>nβˆ’1</sub> + F<sub>nβˆ’2</sub>, where F<sub>1</sub> = 1 and F<sub>2</sub> = 1. </p> Hence the first 12 terms will be: <p align="center"> F<sub>1</sub> = 1 F<sub>2</sub> = 1 F<sub>3</sub> = 2 F<sub>4</sub> = 3 F<sub>5</sub> = 5 F<sub>6</sub> = 8 F<sub>7</sub> = 13 F<sub>8</sub> = 21 F<sub>9</sub> = 34 F<sub>10</sub> = 55 F<sub>11</sub> = 89 F<sub>12</sub> = 144 </p> The 12th term, F<sub>12</sub>, is the first term to contain three digits. What is the index of the first term in the Fibonacci sequence to contain 1000 digits? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_025/problem_025.cpp
#include <iostream> #include <vector> int main() { std::vector<int> prevFibonacci, currFibonacci; prevFibonacci.reserve(1000); currFibonacci.reserve(1000); int count = 2; prevFibonacci.push_back(1); currFibonacci.push_back(1); while (currFibonacci.size() < 1000) { std::vector<int> temp; int carry = 0; ++count; for (size_t i = 0; i < prevFibonacci.size(); ++i) { temp.push_back((currFibonacci[i] + prevFibonacci[i] + carry) % 10); carry = (currFibonacci[i] + prevFibonacci[i] + carry) / 10; } for (size_t i = prevFibonacci.size(); i < currFibonacci.size(); i++) { temp.push_back((currFibonacci[i] + carry) % 10); carry = (currFibonacci[i] + carry) / 10; } if (carry) temp.push_back(carry); prevFibonacci = currFibonacci; currFibonacci = temp; } std:: cout << count << "\n"; return 0; }
code/online_challenges/src/project_euler/problem_025/problem_025.py
def main(size): last, actual = 1, 1 index = 2 while actual < size: last, actual = actual, last + actual index += 1 print(index) if __name__ == "__main__": main(10 ** 999)
code/online_challenges/src/project_euler/problem_026/README.md
# Project Euler Problem #026: Reciprocal cycles ([Problem Link](https://projecteuler.net/problem=26)) A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_026/problem_026.cpp
#include <iostream> #include <vector> int main() { int remainder, value, position, sequenceLength = 0; for (int i = 1000; i > 0; --i) { std::vector<int> cycleCheckArray; for (int j = 0; j < i; ++j) cycleCheckArray.push_back(0); remainder = 1, value = 1, position = 0; while (true) { value = remainder * 10; remainder = value % i; if (cycleCheckArray[remainder]) { sequenceLength = position - cycleCheckArray[remainder]; break; } cycleCheckArray[remainder] = position; ++position; } if (sequenceLength == i - 1) std::cout << i << "\n"; } return 0; }
code/online_challenges/src/project_euler/problem_027/README.md
# Project Euler Problem #027: Quadratic primes ([Problem Link](https://projecteuler.net/problem=27)) Euler discovered the remarkable quadratic formula: <div align="center">n ^ 2 + n + 41</div> It turns out that the formula will produce 40 primes for the consecutive integer values 0 <= n <= 39. However, when n = 40, 40 ^ 2 + 40 + 41 is divisible by 41, and certainly when n = 41, 41 ^ 2 + 41 + 41 is clearly divisible by 41. The incredible formula n ^ 2 - 79n + 1601 was discovered, which produces 80 primes for the consecutive values 0 <= n <= 79. The product of the coefficients, βˆ’79 and 1601, is βˆ’126479. Considering quadratics of the form: n ^ 2 + an + b, where |a| < 1000 and |b| <= 1000 where |n| is the modulus/absolute value of n e.g. |11| = 11 and |-4| = 4 Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_027/problem_027.cpp
#include <bits/stdc++.h> using namespace std; bool isPrime(int n) { bool ans = true; for(int i = 2; i * i <= n; i++) { if(n % i == 0) { ans = false; break; } } return ans; } int main() { int max_primes = 0; int prod; for(int a = -999; a <= 999; a++) { for(int b = -1000; b <= 1000; b++) { int n = 0; while(n * n + a * n + b > 1 && isPrime(n * n + a * n + b)) { n++; } if(n > max_primes) { max_primes = n; prod = a * b; } } } cout << prod; }
code/online_challenges/src/project_euler/problem_028/README.md
# Project Euler Problem #028: Number spiral diagonals ([Problem Link](https://projecteuler.net/problem=28)) Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: <p align="center"> <pre> 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 </pre> </p> It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_028/problem_028.cpp
#include <iostream> #include <cmath> bool isPerfectSquare(int num) { int sqrtNum = static_cast<int>(std::sqrt(num)); return sqrtNum * sqrtNum == num; } int main() { int limit = 1001 * 1001; int incrementRate = 0; int diagonalNumberSum = 0; for (int i = 1; i <= limit; i += incrementRate) // Iterate over every diagonal number { diagonalNumberSum += i; // Add the current diagonal number if ((i % 2 == 1) // If the current number is odd && isPerfectSquare(i)) // and it is a perfect square // then we have reached the next spiral incrementRate += 2; } std::cout << diagonalNumberSum << "\n"; }
code/online_challenges/src/project_euler/problem_028/problem_028.py
from math import sqrt def is_perfect_square(integer): sqrt_num = int(sqrt(integer)) return sqrt_num * sqrt_num == integer def main(): limit = 1001 * 1001 increment_rate = 0 diagonal_number_sum = 0 i = 1 while i <= limit: diagonal_number_sum += i if i % 2 == 1 and is_perfect_square(i): increment_rate += 2 i += increment_rate print(diagonal_number_sum) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_034/README.md
# Project Euler Problem #034: Digit factorials ([Problem Link](https://projecteuler.net/problem=34)) 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_034/problem_034.cpp
#include <iostream> #include <vector> int factorial (std::size_t n) { int fact = 1; for (std::size_t i = 1; i <= n; ++i) fact *= i; return fact; } int main() { std::vector<int> factorials(10); constexpr std::size_t maxDigitFactorial = 2540162; for (int i = 0; i < 10; ++i) factorials[i] = factorial(i); std::size_t num = 3, sum = 0; while (num < maxDigitFactorial) { std::size_t temp = 0; for (std::size_t i = num; i > 0; i /= 10) temp += factorials[i % 10]; if (temp == num) sum += num; ++num; } std::cout << sum << "\n"; }
code/online_challenges/src/project_euler/problem_036/README.md
# Project Euler Problem #036: Double-base palindromes ([Problem Link](https://projecteuler.net/problem=36)) The decimal number, 585 = 10010010012 (binary), is palindromic in both bases. Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_036/problem_036.cpp
#include <bitset> #include <iostream> #include <string> bool isPalindrome(const std::string& str); int main() { int sum = 0; for (int i = 1; i < 1000000; ++i) if (isPalindrome(std::to_string(i))) { std::string currentBinaryString = std::bitset<32>(i).to_string(); currentBinaryString.erase(0, currentBinaryString.find('1')); // Remove leading zeroes if (isPalindrome(currentBinaryString)) sum += i; } std::cout << sum << "\n"; } bool isPalindrome(const std::string& str) { return str == std::string{ str.rbegin(), str.rend() }; }
code/online_challenges/src/project_euler/problem_036/problem_036.py
def base_check(a, y): ans = "" while a > 0: ans += str(a % y) a = a // y return ans == ans[::-1] def palindrome(x, base): x = str(x) if x != x[::-1]: return False else: x = int(x) x = base_check(x, base) x = str(x) return x == x[::-1] number = 1000000 base = 2 answer = 0 for i in range(1, number + 1): if palindrome(i, base): answer += i print(answer)
code/online_challenges/src/project_euler/problem_037/README.md
# Project Euler Problem #037: Truncatable Primes ([Problem Link](https://projecteuler.net/problem=37)) The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Find the sum of the only eleven primes that are both truncatable from left to right and right to left. NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_037/problem_037.cpp
#include <array> #include <cmath> #include <iostream> template<std::size_t N> std::array<bool, N> primesUpto() // Function that implements the Sieve of Eratosthenes { std::array<bool, N> primesList; std::fill(primesList.begin(), primesList.end(), true); primesList[0] = primesList[1] = false; std::size_t sqrtLimit = std::sqrt(N) + 1; for (std::size_t i = 0; i < sqrtLimit; ++i) if (primesList[i]) for (std::size_t j = i + i; j < N; j += i) primesList[j] = false; return primesList; } template<std::size_t N> bool isTruncPrime(std::size_t number, const std::array<bool, N>& primesList) { for (std::size_t i = 10; i < number; i *= 10) if (!primesList[number % i]) // If the right truncated part is not prime return false; for (; number >= 1; number /= 10) if (!primesList[number]) // If the left truncated part is not prime return false; return true; // All truncated parts are prime, so the number is a truncatable prime } int main() { const auto primesUptoMillion = primesUpto<1000000ULL>(); // Represents all the primes up to 1 million std::size_t numberTruncatablePrimes = 0; std::size_t currentNumber = 11; // 2, 3, 5, and 7 are not included in the search for truncatable primes std::size_t truncatablePrimeSum = 0; while (numberTruncatablePrimes != 11) { if (primesUptoMillion[currentNumber] && // If the number itself is prime isTruncPrime(currentNumber, primesUptoMillion)) // If the number is also a truncatable prime { ++numberTruncatablePrimes; // Increase amount of truncatable primes truncatablePrimeSum += currentNumber; // Add the number's sum } currentNumber += 2; // Only odd numbers can be prime other than 2, so no need to look at every number } std::cout << truncatablePrimeSum << "\n"; }
code/online_challenges/src/project_euler/problem_040/README.md
# Project Euler Problem #040: Champernowne's constant ([Problem Link](https://projecteuler.net/problem=40)) An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 Γ— d10 Γ— d100 Γ— d1000 Γ— d10000 Γ— d100000 Γ— d1000000 --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_040/problem_040.py
def main(): nums = "" # The string containing the sequence of numbers i = 0 # Used for iteration while len(nums) < 1000002: # Loop to add the sequence of numbers to the list nums += str(i) i += 1 answer = 1 # Initialising answer which will store final computed answer i = 1 # Reset value for use in next loop while i <= 1000000: # Loop to generate the answer answer *= int(nums[i]) i *= 10 print(answer) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_067/README.md
# Project Euler Problem #067: Maximum path sum II ([Problem Link](https://projecteuler.net/problem=67)) By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. ``` 3 7 4 2 4 6 8 5 9 3 ``` That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in [triangle.txt](https://projecteuler.net/project/resources/p067_triangle.txt) (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_067/problem_067.py
def main(): prob = [ [59], [73, 41], [52, 40, 9], [26, 53, 6, 34], [10, 51, 87, 86, 81], [61, 95, 66, 57, 25, 68], [90, 81, 80, 38, 92, 67, 73], [30, 28, 51, 76, 81, 18, 75, 44], [84, 14, 95, 87, 62, 81, 17, 78, 58], [21, 46, 71, 58, 2, 79, 62, 39, 31, 9], [56, 34, 35, 53, 78, 31, 81, 18, 90, 93, 15], [78, 53, 4, 21, 84, 93, 32, 13, 97, 11, 37, 51], [45, 3, 81, 79, 5, 18, 78, 86, 13, 30, 63, 99, 95], [39, 87, 96, 28, 3, 38, 42, 17, 82, 87, 58, 7, 22, 57], [6, 17, 51, 17, 7, 93, 9, 7, 75, 97, 95, 78, 87, 8, 53], [67, 66, 59, 60, 88, 99, 94, 65, 55, 77, 55, 34, 27, 53, 78, 28], [76, 40, 41, 4, 87, 16, 9, 42, 75, 69, 23, 97, 30, 60, 10, 79, 87], [12, 10, 44, 26, 21, 36, 32, 84, 98, 60, 13, 12, 36, 16, 63, 31, 91, 35], [70, 39, 6, 5, 55, 27, 38, 48, 28, 22, 34, 35, 62, 62, 15, 14, 94, 89, 86], [66, 56, 68, 84, 96, 21, 34, 34, 34, 81, 62, 40, 65, 54, 62, 5, 98, 3, 2, 60], [ 38, 89, 46, 37, 99, 54, 34, 53, 36, 14, 70, 26, 2, 90, 45, 13, 31, 61, 83, 73, 47, ], [ 36, 10, 63, 96, 60, 49, 41, 5, 37, 42, 14, 58, 84, 93, 96, 17, 9, 43, 5, 43, 6, 59, ], [ 66, 57, 87, 57, 61, 28, 37, 51, 84, 73, 79, 15, 39, 95, 88, 87, 43, 39, 11, 86, 77, 74, 18, ], [ 54, 42, 5, 79, 30, 49, 99, 73, 46, 37, 50, 2, 45, 9, 54, 52, 27, 95, 27, 65, 19, 45, 26, 45, ], [ 71, 39, 17, 78, 76, 29, 52, 90, 18, 99, 78, 19, 35, 62, 71, 19, 23, 65, 93, 85, 49, 33, 75, 9, 2, ], [ 33, 24, 47, 61, 60, 55, 32, 88, 57, 55, 91, 54, 46, 57, 7, 77, 98, 52, 80, 99, 24, 25, 46, 78, 79, 5, ], [ 92, 9, 13, 55, 10, 67, 26, 78, 76, 82, 63, 49, 51, 31, 24, 68, 5, 57, 7, 54, 69, 21, 67, 43, 17, 63, 12, ], [ 24, 59, 6, 8, 98, 74, 66, 26, 61, 60, 13, 3, 9, 9, 24, 30, 71, 8, 88, 70, 72, 70, 29, 90, 11, 82, 41, 34, ], [ 66, 82, 67, 4, 36, 60, 92, 77, 91, 85, 62, 49, 59, 61, 30, 90, 29, 94, 26, 41, 89, 4, 53, 22, 83, 41, 9, 74, 90, ], [ 48, 28, 26, 37, 28, 52, 77, 26, 51, 32, 18, 98, 79, 36, 62, 13, 17, 8, 19, 54, 89, 29, 73, 68, 42, 14, 8, 16, 70, 37, ], [ 37, 60, 69, 70, 72, 71, 9, 59, 13, 60, 38, 13, 57, 36, 9, 30, 43, 89, 30, 39, 15, 2, 44, 73, 5, 73, 26, 63, 56, 86, 12, ], [ 55, 55, 85, 50, 62, 99, 84, 77, 28, 85, 3, 21, 27, 22, 19, 26, 82, 69, 54, 4, 13, 7, 85, 14, 1, 15, 70, 59, 89, 95, 10, 19, ], [ 4, 9, 31, 92, 91, 38, 92, 86, 98, 75, 21, 5, 64, 42, 62, 84, 36, 20, 73, 42, 21, 23, 22, 51, 51, 79, 25, 45, 85, 53, 3, 43, 22, ], [ 75, 63, 2, 49, 14, 12, 89, 14, 60, 78, 92, 16, 44, 82, 38, 30, 72, 11, 46, 52, 90, 27, 8, 65, 78, 3, 85, 41, 57, 79, 39, 52, 33, 48, ], [ 78, 27, 56, 56, 39, 13, 19, 43, 86, 72, 58, 95, 39, 7, 4, 34, 21, 98, 39, 15, 39, 84, 89, 69, 84, 46, 37, 57, 59, 35, 59, 50, 26, 15, 93, ], [ 42, 89, 36, 27, 78, 91, 24, 11, 17, 41, 5, 94, 7, 69, 51, 96, 3, 96, 47, 90, 90, 45, 91, 20, 50, 56, 10, 32, 36, 49, 4, 53, 85, 92, 25, 65, ], [ 52, 9, 61, 30, 61, 97, 66, 21, 96, 92, 98, 90, 6, 34, 96, 60, 32, 69, 68, 33, 75, 84, 18, 31, 71, 50, 84, 63, 3, 3, 19, 11, 28, 42, 75, 45, 45, ], [ 61, 31, 61, 68, 96, 34, 49, 39, 5, 71, 76, 59, 62, 67, 6, 47, 96, 99, 34, 21, 32, 47, 52, 7, 71, 60, 42, 72, 94, 56, 82, 83, 84, 40, 94, 87, 82, 46, ], [ 1, 20, 60, 14, 17, 38, 26, 78, 66, 81, 45, 95, 18, 51, 98, 81, 48, 16, 53, 88, 37, 52, 69, 95, 72, 93, 22, 34, 98, 20, 54, 27, 73, 61, 56, 63, 60, 34, 63, ], [ 93, 42, 94, 83, 47, 61, 27, 51, 79, 79, 45, 1, 44, 73, 31, 70, 83, 42, 88, 25, 53, 51, 30, 15, 65, 94, 80, 44, 61, 84, 12, 77, 2, 62, 2, 65, 94, 42, 14, 94, ], [ 32, 73, 9, 67, 68, 29, 74, 98, 10, 19, 85, 48, 38, 31, 85, 67, 53, 93, 93, 77, 47, 67, 39, 72, 94, 53, 18, 43, 77, 40, 78, 32, 29, 59, 24, 6, 2, 83, 50, 60, 66, ], [ 32, 1, 44, 30, 16, 51, 15, 81, 98, 15, 10, 62, 86, 79, 50, 62, 45, 60, 70, 38, 31, 85, 65, 61, 64, 6, 69, 84, 14, 22, 56, 43, 9, 48, 66, 69, 83, 91, 60, 40, 36, 61, ], [ 92, 48, 22, 99, 15, 95, 64, 43, 1, 16, 94, 2, 99, 19, 17, 69, 11, 58, 97, 56, 89, 31, 77, 45, 67, 96, 12, 73, 8, 20, 36, 47, 81, 44, 50, 64, 68, 85, 40, 81, 85, 52, 9, ], [ 91, 35, 92, 45, 32, 84, 62, 15, 19, 64, 21, 66, 6, 1, 52, 80, 62, 59, 12, 25, 88, 28, 91, 50, 40, 16, 22, 99, 92, 79, 87, 51, 21, 77, 74, 77, 7, 42, 38, 42, 74, 83, 2, 5, ], [ 46, 19, 77, 66, 24, 18, 5, 32, 2, 84, 31, 99, 92, 58, 96, 72, 91, 36, 62, 99, 55, 29, 53, 42, 12, 37, 26, 58, 89, 50, 66, 19, 82, 75, 12, 48, 24, 87, 91, 85, 2, 7, 3, 76, 86, ], [ 99, 98, 84, 93, 7, 17, 33, 61, 92, 20, 66, 60, 24, 66, 40, 30, 67, 5, 37, 29, 24, 96, 3, 27, 70, 62, 13, 4, 45, 47, 59, 88, 43, 20, 66, 15, 46, 92, 30, 4, 71, 66, 78, 70, 53, 99, ], [ 67, 60, 38, 6, 88, 4, 17, 72, 10, 99, 71, 7, 42, 25, 54, 5, 26, 64, 91, 50, 45, 71, 6, 30, 67, 48, 69, 82, 8, 56, 80, 67, 18, 46, 66, 63, 1, 20, 8, 80, 47, 7, 91, 16, 3, 79, 87, ], [ 18, 54, 78, 49, 80, 48, 77, 40, 68, 23, 60, 88, 58, 80, 33, 57, 11, 69, 55, 53, 64, 2, 94, 49, 60, 92, 16, 35, 81, 21, 82, 96, 25, 24, 96, 18, 2, 5, 49, 3, 50, 77, 6, 32, 84, 27, 18, 38, ], [ 68, 1, 50, 4, 3, 21, 42, 94, 53, 24, 89, 5, 92, 26, 52, 36, 68, 11, 85, 1, 4, 42, 2, 45, 15, 6, 50, 4, 53, 73, 25, 74, 81, 88, 98, 21, 67, 84, 79, 97, 99, 20, 95, 4, 40, 46, 2, 58, 87, ], [ 94, 10, 2, 78, 88, 52, 21, 3, 88, 60, 6, 53, 49, 71, 20, 91, 12, 65, 7, 49, 21, 22, 11, 41, 58, 99, 36, 16, 9, 48, 17, 24, 52, 36, 23, 15, 72, 16, 84, 56, 2, 99, 43, 76, 81, 71, 29, 39, 49, 17, ], [ 64, 39, 59, 84, 86, 16, 17, 66, 3, 9, 43, 6, 64, 18, 63, 29, 68, 6, 23, 7, 87, 14, 26, 35, 17, 12, 98, 41, 53, 64, 78, 18, 98, 27, 28, 84, 80, 67, 75, 62, 10, 11, 76, 90, 54, 10, 5, 54, 41, 39, 66, ], [ 43, 83, 18, 37, 32, 31, 52, 29, 95, 47, 8, 76, 35, 11, 4, 53, 35, 43, 34, 10, 52, 57, 12, 36, 20, 39, 40, 55, 78, 44, 7, 31, 38, 26, 8, 15, 56, 88, 86, 1, 52, 62, 10, 24, 32, 5, 60, 65, 53, 28, 57, 99, ], [ 3, 50, 3, 52, 7, 73, 49, 92, 66, 80, 1, 46, 8, 67, 25, 36, 73, 93, 7, 42, 25, 53, 13, 96, 76, 83, 87, 90, 54, 89, 78, 22, 78, 91, 73, 51, 69, 9, 79, 94, 83, 53, 9, 40, 69, 62, 10, 79, 49, 47, 3, 81, 30, ], [ 71, 54, 73, 33, 51, 76, 59, 54, 79, 37, 56, 45, 84, 17, 62, 21, 98, 69, 41, 95, 65, 24, 39, 37, 62, 3, 24, 48, 54, 64, 46, 82, 71, 78, 33, 67, 9, 16, 96, 68, 52, 74, 79, 68, 32, 21, 13, 78, 96, 60, 9, 69, 20, 36, ], [ 73, 26, 21, 44, 46, 38, 17, 83, 65, 98, 7, 23, 52, 46, 61, 97, 33, 13, 60, 31, 70, 15, 36, 77, 31, 58, 56, 93, 75, 68, 21, 36, 69, 53, 90, 75, 25, 82, 39, 50, 65, 94, 29, 30, 11, 33, 11, 13, 96, 2, 56, 47, 7, 49, 2, ], [ 76, 46, 73, 30, 10, 20, 60, 70, 14, 56, 34, 26, 37, 39, 48, 24, 55, 76, 84, 91, 39, 86, 95, 61, 50, 14, 53, 93, 64, 67, 37, 31, 10, 84, 42, 70, 48, 20, 10, 72, 60, 61, 84, 79, 69, 65, 99, 73, 89, 25, 85, 48, 92, 56, 97, 16, ], [ 3, 14, 80, 27, 22, 30, 44, 27, 67, 75, 79, 32, 51, 54, 81, 29, 65, 14, 19, 4, 13, 82, 4, 91, 43, 40, 12, 52, 29, 99, 7, 76, 60, 25, 1, 7, 61, 71, 37, 92, 40, 47, 99, 66, 57, 1, 43, 44, 22, 40, 53, 53, 9, 69, 26, 81, 7, ], [ 49, 80, 56, 90, 93, 87, 47, 13, 75, 28, 87, 23, 72, 79, 32, 18, 27, 20, 28, 10, 37, 59, 21, 18, 70, 4, 79, 96, 3, 31, 45, 71, 81, 6, 14, 18, 17, 5, 31, 50, 92, 79, 23, 47, 9, 39, 47, 91, 43, 54, 69, 47, 42, 95, 62, 46, 32, 85, ], [ 37, 18, 62, 85, 87, 28, 64, 5, 77, 51, 47, 26, 30, 65, 5, 70, 65, 75, 59, 80, 42, 52, 25, 20, 44, 10, 92, 17, 71, 95, 52, 14, 77, 13, 24, 55, 11, 65, 26, 91, 1, 30, 63, 15, 49, 48, 41, 17, 67, 47, 3, 68, 20, 90, 98, 32, 4, 40, 68, ], [ 90, 51, 58, 60, 6, 55, 23, 68, 5, 19, 76, 94, 82, 36, 96, 43, 38, 90, 87, 28, 33, 83, 5, 17, 70, 83, 96, 93, 6, 4, 78, 47, 80, 6, 23, 84, 75, 23, 87, 72, 99, 14, 50, 98, 92, 38, 90, 64, 61, 58, 76, 94, 36, 66, 87, 80, 51, 35, 61, 38, ], [ 57, 95, 64, 6, 53, 36, 82, 51, 40, 33, 47, 14, 7, 98, 78, 65, 39, 58, 53, 6, 50, 53, 4, 69, 40, 68, 36, 69, 75, 78, 75, 60, 3, 32, 39, 24, 74, 47, 26, 90, 13, 40, 44, 71, 90, 76, 51, 24, 36, 50, 25, 45, 70, 80, 61, 80, 61, 43, 90, 64, 11, ], [ 18, 29, 86, 56, 68, 42, 79, 10, 42, 44, 30, 12, 96, 18, 23, 18, 52, 59, 2, 99, 67, 46, 60, 86, 43, 38, 55, 17, 44, 93, 42, 21, 55, 14, 47, 34, 55, 16, 49, 24, 23, 29, 96, 51, 55, 10, 46, 53, 27, 92, 27, 46, 63, 57, 30, 65, 43, 27, 21, 20, 24, 83, ], [ 81, 72, 93, 19, 69, 52, 48, 1, 13, 83, 92, 69, 20, 48, 69, 59, 20, 62, 5, 42, 28, 89, 90, 99, 32, 72, 84, 17, 8, 87, 36, 3, 60, 31, 36, 36, 81, 26, 97, 36, 48, 54, 56, 56, 27, 16, 91, 8, 23, 11, 87, 99, 33, 47, 2, 14, 44, 73, 70, 99, 43, 35, 33, ], [ 90, 56, 61, 86, 56, 12, 70, 59, 63, 32, 1, 15, 81, 47, 71, 76, 95, 32, 65, 80, 54, 70, 34, 51, 40, 45, 33, 4, 64, 55, 78, 68, 88, 47, 31, 47, 68, 87, 3, 84, 23, 44, 89, 72, 35, 8, 31, 76, 63, 26, 90, 85, 96, 67, 65, 91, 19, 14, 17, 86, 4, 71, 32, 95, ], [ 37, 13, 4, 22, 64, 37, 37, 28, 56, 62, 86, 33, 7, 37, 10, 44, 52, 82, 52, 6, 19, 52, 57, 75, 90, 26, 91, 24, 6, 21, 14, 67, 76, 30, 46, 14, 35, 89, 89, 41, 3, 64, 56, 97, 87, 63, 22, 34, 3, 79, 17, 45, 11, 53, 25, 56, 96, 61, 23, 18, 63, 31, 37, 37, 47, ], [ 77, 23, 26, 70, 72, 76, 77, 4, 28, 64, 71, 69, 14, 85, 96, 54, 95, 48, 6, 62, 99, 83, 86, 77, 97, 75, 71, 66, 30, 19, 57, 90, 33, 1, 60, 61, 14, 12, 90, 99, 32, 77, 56, 41, 18, 14, 87, 49, 10, 14, 90, 64, 18, 50, 21, 74, 14, 16, 88, 5, 45, 73, 82, 47, 74, 44, ], [ 22, 97, 41, 13, 34, 31, 54, 61, 56, 94, 3, 24, 59, 27, 98, 77, 4, 9, 37, 40, 12, 26, 87, 9, 71, 70, 7, 18, 64, 57, 80, 21, 12, 71, 83, 94, 60, 39, 73, 79, 73, 19, 97, 32, 64, 29, 41, 7, 48, 84, 85, 67, 12, 74, 95, 20, 24, 52, 41, 67, 56, 61, 29, 93, 35, 72, 69, ], [ 72, 23, 63, 66, 1, 11, 7, 30, 52, 56, 95, 16, 65, 26, 83, 90, 50, 74, 60, 18, 16, 48, 43, 77, 37, 11, 99, 98, 30, 94, 91, 26, 62, 73, 45, 12, 87, 73, 47, 27, 1, 88, 66, 99, 21, 41, 95, 80, 2, 53, 23, 32, 61, 48, 32, 43, 43, 83, 14, 66, 95, 91, 19, 81, 80, 67, 25, 88, ], [ 8, 62, 32, 18, 92, 14, 83, 71, 37, 96, 11, 83, 39, 99, 5, 16, 23, 27, 10, 67, 2, 25, 44, 11, 55, 31, 46, 64, 41, 56, 44, 74, 26, 81, 51, 31, 45, 85, 87, 9, 81, 95, 22, 28, 76, 69, 46, 48, 64, 87, 67, 76, 27, 89, 31, 11, 74, 16, 62, 3, 60, 94, 42, 47, 9, 34, 94, 93, 72, ], [ 56, 18, 90, 18, 42, 17, 42, 32, 14, 86, 6, 53, 33, 95, 99, 35, 29, 15, 44, 20, 49, 59, 25, 54, 34, 59, 84, 21, 23, 54, 35, 90, 78, 16, 93, 13, 37, 88, 54, 19, 86, 67, 68, 55, 66, 84, 65, 42, 98, 37, 87, 56, 33, 28, 58, 38, 28, 38, 66, 27, 52, 21, 81, 15, 8, 22, 97, 32, 85, 27, ], [ 91, 53, 40, 28, 13, 34, 91, 25, 1, 63, 50, 37, 22, 49, 71, 58, 32, 28, 30, 18, 68, 94, 23, 83, 63, 62, 94, 76, 80, 41, 90, 22, 82, 52, 29, 12, 18, 56, 10, 8, 35, 14, 37, 57, 23, 65, 67, 40, 72, 39, 93, 39, 70, 89, 40, 34, 7, 46, 94, 22, 20, 5, 53, 64, 56, 30, 5, 56, 61, 88, 27, ], [ 23, 95, 11, 12, 37, 69, 68, 24, 66, 10, 87, 70, 43, 50, 75, 7, 62, 41, 83, 58, 95, 93, 89, 79, 45, 39, 2, 22, 5, 22, 95, 43, 62, 11, 68, 29, 17, 40, 26, 44, 25, 71, 87, 16, 70, 85, 19, 25, 59, 94, 90, 41, 41, 80, 61, 70, 55, 60, 84, 33, 95, 76, 42, 63, 15, 9, 3, 40, 38, 12, 3, 32, ], [ 9, 84, 56, 80, 61, 55, 85, 97, 16, 94, 82, 94, 98, 57, 84, 30, 84, 48, 93, 90, 71, 5, 95, 90, 73, 17, 30, 98, 40, 64, 65, 89, 7, 79, 9, 19, 56, 36, 42, 30, 23, 69, 73, 72, 7, 5, 27, 61, 24, 31, 43, 48, 71, 84, 21, 28, 26, 65, 65, 59, 65, 74, 77, 20, 10, 81, 61, 84, 95, 8, 52, 23, 70, ], [ 47, 81, 28, 9, 98, 51, 67, 64, 35, 51, 59, 36, 92, 82, 77, 65, 80, 24, 72, 53, 22, 7, 27, 10, 21, 28, 30, 22, 48, 82, 80, 48, 56, 20, 14, 43, 18, 25, 50, 95, 90, 31, 77, 8, 9, 48, 44, 80, 90, 22, 93, 45, 82, 17, 13, 96, 25, 26, 8, 73, 34, 99, 6, 49, 24, 6, 83, 51, 40, 14, 15, 10, 25, 1, ], [ 54, 25, 10, 81, 30, 64, 24, 74, 75, 80, 36, 75, 82, 60, 22, 69, 72, 91, 45, 67, 3, 62, 79, 54, 89, 74, 44, 83, 64, 96, 66, 73, 44, 30, 74, 50, 37, 5, 9, 97, 70, 1, 60, 46, 37, 91, 39, 75, 75, 18, 58, 52, 72, 78, 51, 81, 86, 52, 8, 97, 1, 46, 43, 66, 98, 62, 81, 18, 70, 93, 73, 8, 32, 46, 34, ], [ 96, 80, 82, 7, 59, 71, 92, 53, 19, 20, 88, 66, 3, 26, 26, 10, 24, 27, 50, 82, 94, 73, 63, 8, 51, 33, 22, 45, 19, 13, 58, 33, 90, 15, 22, 50, 36, 13, 55, 6, 35, 47, 82, 52, 33, 61, 36, 27, 28, 46, 98, 14, 73, 20, 73, 32, 16, 26, 80, 53, 47, 66, 76, 38, 94, 45, 2, 1, 22, 52, 47, 96, 64, 58, 52, 39, ], [ 88, 46, 23, 39, 74, 63, 81, 64, 20, 90, 33, 33, 76, 55, 58, 26, 10, 46, 42, 26, 74, 74, 12, 83, 32, 43, 9, 2, 73, 55, 86, 54, 85, 34, 28, 23, 29, 79, 91, 62, 47, 41, 82, 87, 99, 22, 48, 90, 20, 5, 96, 75, 95, 4, 43, 28, 81, 39, 81, 1, 28, 42, 78, 25, 39, 77, 90, 57, 58, 98, 17, 36, 73, 22, 63, 74, 51, ], [ 29, 39, 74, 94, 95, 78, 64, 24, 38, 86, 63, 87, 93, 6, 70, 92, 22, 16, 80, 64, 29, 52, 20, 27, 23, 50, 14, 13, 87, 15, 72, 96, 81, 22, 8, 49, 72, 30, 70, 24, 79, 31, 16, 64, 59, 21, 89, 34, 96, 91, 48, 76, 43, 53, 88, 1, 57, 80, 23, 81, 90, 79, 58, 1, 80, 87, 17, 99, 86, 90, 72, 63, 32, 69, 14, 28, 88, 69, ], [ 37, 17, 71, 95, 56, 93, 71, 35, 43, 45, 4, 98, 92, 94, 84, 96, 11, 30, 31, 27, 31, 60, 92, 3, 48, 5, 98, 91, 86, 94, 35, 90, 90, 8, 48, 19, 33, 28, 68, 37, 59, 26, 65, 96, 50, 68, 22, 7, 9, 49, 34, 31, 77, 49, 43, 6, 75, 17, 81, 87, 61, 79, 52, 26, 27, 72, 29, 50, 7, 98, 86, 1, 17, 10, 46, 64, 24, 18, 56, ], [ 51, 30, 25, 94, 88, 85, 79, 91, 40, 33, 63, 84, 49, 67, 98, 92, 15, 26, 75, 19, 82, 5, 18, 78, 65, 93, 61, 48, 91, 43, 59, 41, 70, 51, 22, 15, 92, 81, 67, 91, 46, 98, 11, 11, 65, 31, 66, 10, 98, 65, 83, 21, 5, 56, 5, 98, 73, 67, 46, 74, 69, 34, 8, 30, 5, 52, 7, 98, 32, 95, 30, 94, 65, 50, 24, 63, 28, 81, 99, 57, ], [ 19, 23, 61, 36, 9, 89, 71, 98, 65, 17, 30, 29, 89, 26, 79, 74, 94, 11, 44, 48, 97, 54, 81, 55, 39, 66, 69, 45, 28, 47, 13, 86, 15, 76, 74, 70, 84, 32, 36, 33, 79, 20, 78, 14, 41, 47, 89, 28, 81, 5, 99, 66, 81, 86, 38, 26, 6, 25, 13, 60, 54, 55, 23, 53, 27, 5, 89, 25, 23, 11, 13, 54, 59, 54, 56, 34, 16, 24, 53, 44, 6, ], [ 13, 40, 57, 72, 21, 15, 60, 8, 4, 19, 11, 98, 34, 45, 9, 97, 86, 71, 3, 15, 56, 19, 15, 44, 97, 31, 90, 4, 87, 87, 76, 8, 12, 30, 24, 62, 84, 28, 12, 85, 82, 53, 99, 52, 13, 94, 6, 65, 97, 86, 9, 50, 94, 68, 69, 74, 30, 67, 87, 94, 63, 7, 78, 27, 80, 36, 69, 41, 6, 92, 32, 78, 37, 82, 30, 5, 18, 87, 99, 72, 19, 99, ], [ 44, 20, 55, 77, 69, 91, 27, 31, 28, 81, 80, 27, 2, 7, 97, 23, 95, 98, 12, 25, 75, 29, 47, 71, 7, 47, 78, 39, 41, 59, 27, 76, 13, 15, 66, 61, 68, 35, 69, 86, 16, 53, 67, 63, 99, 85, 41, 56, 8, 28, 33, 40, 94, 76, 90, 85, 31, 70, 24, 65, 84, 65, 99, 82, 19, 25, 54, 37, 21, 46, 33, 2, 52, 99, 51, 33, 26, 4, 87, 2, 8, 18, 96, ], [ 54, 42, 61, 45, 91, 6, 64, 79, 80, 82, 32, 16, 83, 63, 42, 49, 19, 78, 65, 97, 40, 42, 14, 61, 49, 34, 4, 18, 25, 98, 59, 30, 82, 72, 26, 88, 54, 36, 21, 75, 3, 88, 99, 53, 46, 51, 55, 78, 22, 94, 34, 40, 68, 87, 84, 25, 30, 76, 25, 8, 92, 84, 42, 61, 40, 38, 9, 99, 40, 23, 29, 39, 46, 55, 10, 90, 35, 84, 56, 70, 63, 23, 91, 39, ], [ 52, 92, 3, 71, 89, 7, 9, 37, 68, 66, 58, 20, 44, 92, 51, 56, 13, 71, 79, 99, 26, 37, 2, 6, 16, 67, 36, 52, 58, 16, 79, 73, 56, 60, 59, 27, 44, 77, 94, 82, 20, 50, 98, 33, 9, 87, 94, 37, 40, 83, 64, 83, 58, 85, 17, 76, 53, 2, 83, 52, 22, 27, 39, 20, 48, 92, 45, 21, 9, 42, 24, 23, 12, 37, 52, 28, 50, 78, 79, 20, 86, 62, 73, 20, 59, ], [ 54, 96, 80, 15, 91, 90, 99, 70, 10, 9, 58, 90, 93, 50, 81, 99, 54, 38, 36, 10, 30, 11, 35, 84, 16, 45, 82, 18, 11, 97, 36, 43, 96, 79, 97, 65, 40, 48, 23, 19, 17, 31, 64, 52, 65, 65, 37, 32, 65, 76, 99, 79, 34, 65, 79, 27, 55, 33, 3, 1, 33, 27, 61, 28, 66, 8, 4, 70, 49, 46, 48, 83, 1, 45, 19, 96, 13, 81, 14, 21, 31, 79, 93, 85, 50, 5, ], [ 92, 92, 48, 84, 59, 98, 31, 53, 23, 27, 15, 22, 79, 95, 24, 76, 5, 79, 16, 93, 97, 89, 38, 89, 42, 83, 2, 88, 94, 95, 82, 21, 1, 97, 48, 39, 31, 78, 9, 65, 50, 56, 97, 61, 1, 7, 65, 27, 21, 23, 14, 15, 80, 97, 44, 78, 49, 35, 33, 45, 81, 74, 34, 5, 31, 57, 9, 38, 94, 7, 69, 54, 69, 32, 65, 68, 46, 68, 78, 90, 24, 28, 49, 51, 45, 86, 35, ], [ 41, 63, 89, 76, 87, 31, 86, 9, 46, 14, 87, 82, 22, 29, 47, 16, 13, 10, 70, 72, 82, 95, 48, 64, 58, 43, 13, 75, 42, 69, 21, 12, 67, 13, 64, 85, 58, 23, 98, 9, 37, 76, 5, 22, 31, 12, 66, 50, 29, 99, 86, 72, 45, 25, 10, 28, 19, 6, 90, 43, 29, 31, 67, 79, 46, 25, 74, 14, 97, 35, 76, 37, 65, 46, 23, 82, 6, 22, 30, 76, 93, 66, 94, 17, 96, 13, 20, 72, ], [ 63, 40, 78, 8, 52, 9, 90, 41, 70, 28, 36, 14, 46, 44, 85, 96, 24, 52, 58, 15, 87, 37, 5, 98, 99, 39, 13, 61, 76, 38, 44, 99, 83, 74, 90, 22, 53, 80, 56, 98, 30, 51, 63, 39, 44, 30, 91, 91, 4, 22, 27, 73, 17, 35, 53, 18, 35, 45, 54, 56, 27, 78, 48, 13, 69, 36, 44, 38, 71, 25, 30, 56, 15, 22, 73, 43, 32, 69, 59, 25, 93, 83, 45, 11, 34, 94, 44, 39, 92, ], [ 12, 36, 56, 88, 13, 96, 16, 12, 55, 54, 11, 47, 19, 78, 17, 17, 68, 81, 77, 51, 42, 55, 99, 85, 66, 27, 81, 79, 93, 42, 65, 61, 69, 74, 14, 1, 18, 56, 12, 1, 58, 37, 91, 22, 42, 66, 83, 25, 19, 4, 96, 41, 25, 45, 18, 69, 96, 88, 36, 93, 10, 12, 98, 32, 44, 83, 83, 4, 72, 91, 4, 27, 73, 7, 34, 37, 71, 60, 59, 31, 1, 54, 54, 44, 96, 93, 83, 36, 4, 45, ], [ 30, 18, 22, 20, 42, 96, 65, 79, 17, 41, 55, 69, 94, 81, 29, 80, 91, 31, 85, 25, 47, 26, 43, 49, 2, 99, 34, 67, 99, 76, 16, 14, 15, 93, 8, 32, 99, 44, 61, 77, 67, 50, 43, 55, 87, 55, 53, 72, 17, 46, 62, 25, 50, 99, 73, 5, 93, 48, 17, 31, 70, 80, 59, 9, 44, 59, 45, 13, 74, 66, 58, 94, 87, 73, 16, 14, 85, 38, 74, 99, 64, 23, 79, 28, 71, 42, 20, 37, 82, 31, 23, ], [ 51, 96, 39, 65, 46, 71, 56, 13, 29, 68, 53, 86, 45, 33, 51, 49, 12, 91, 21, 21, 76, 85, 2, 17, 98, 15, 46, 12, 60, 21, 88, 30, 92, 83, 44, 59, 42, 50, 27, 88, 46, 86, 94, 73, 45, 54, 23, 24, 14, 10, 94, 21, 20, 34, 23, 51, 4, 83, 99, 75, 90, 63, 60, 16, 22, 33, 83, 70, 11, 32, 10, 50, 29, 30, 83, 46, 11, 5, 31, 17, 86, 42, 49, 1, 44, 63, 28, 60, 7, 78, 95, 40, ], [ 44, 61, 89, 59, 4, 49, 51, 27, 69, 71, 46, 76, 44, 4, 9, 34, 56, 39, 15, 6, 94, 91, 75, 90, 65, 27, 56, 23, 74, 6, 23, 33, 36, 69, 14, 39, 5, 34, 35, 57, 33, 22, 76, 46, 56, 10, 61, 65, 98, 9, 16, 69, 4, 62, 65, 18, 99, 76, 49, 18, 72, 66, 73, 83, 82, 40, 76, 31, 89, 91, 27, 88, 17, 35, 41, 35, 32, 51, 32, 67, 52, 68, 74, 85, 80, 57, 7, 11, 62, 66, 47, 22, 67, ], [ 65, 37, 19, 97, 26, 17, 16, 24, 24, 17, 50, 37, 64, 82, 24, 36, 32, 11, 68, 34, 69, 31, 32, 89, 79, 93, 96, 68, 49, 90, 14, 23, 4, 4, 67, 99, 81, 74, 70, 74, 36, 96, 68, 9, 64, 39, 88, 35, 54, 89, 96, 58, 66, 27, 88, 97, 32, 14, 6, 35, 78, 20, 71, 6, 85, 66, 57, 2, 58, 91, 72, 5, 29, 56, 73, 48, 86, 52, 9, 93, 22, 57, 79, 42, 12, 1, 31, 68, 17, 59, 63, 76, 7, 77, ], [ 73, 81, 14, 13, 17, 20, 11, 9, 1, 83, 8, 85, 91, 70, 84, 63, 62, 77, 37, 7, 47, 1, 59, 95, 39, 69, 39, 21, 99, 9, 87, 2, 97, 16, 92, 36, 74, 71, 90, 66, 33, 73, 73, 75, 52, 91, 11, 12, 26, 53, 5, 26, 26, 48, 61, 50, 90, 65, 1, 87, 42, 47, 74, 35, 22, 73, 24, 26, 56, 70, 52, 5, 48, 41, 31, 18, 83, 27, 21, 39, 80, 85, 26, 8, 44, 2, 71, 7, 63, 22, 5, 52, 19, 8, 20, ], [ 17, 25, 21, 11, 72, 93, 33, 49, 64, 23, 53, 82, 3, 13, 91, 65, 85, 2, 40, 5, 42, 31, 77, 42, 5, 36, 6, 54, 4, 58, 7, 76, 87, 83, 25, 57, 66, 12, 74, 33, 85, 37, 74, 32, 20, 69, 3, 97, 91, 68, 82, 44, 19, 14, 89, 28, 85, 85, 80, 53, 34, 87, 58, 98, 88, 78, 48, 65, 98, 40, 11, 57, 10, 67, 70, 81, 60, 79, 74, 72, 97, 59, 79, 47, 30, 20, 54, 80, 89, 91, 14, 5, 33, 36, 79, 39, ], [ 60, 85, 59, 39, 60, 7, 57, 76, 77, 92, 6, 35, 15, 72, 23, 41, 45, 52, 95, 18, 64, 79, 86, 53, 56, 31, 69, 11, 91, 31, 84, 50, 44, 82, 22, 81, 41, 40, 30, 42, 30, 91, 48, 94, 74, 76, 64, 58, 74, 25, 96, 57, 14, 19, 3, 99, 28, 83, 15, 75, 99, 1, 89, 85, 79, 50, 3, 95, 32, 67, 44, 8, 7, 41, 62, 64, 29, 20, 14, 76, 26, 55, 48, 71, 69, 66, 19, 72, 44, 25, 14, 1, 48, 74, 12, 98, 7, ], [ 64, 66, 84, 24, 18, 16, 27, 48, 20, 14, 47, 69, 30, 86, 48, 40, 23, 16, 61, 21, 51, 50, 26, 47, 35, 33, 91, 28, 78, 64, 43, 68, 4, 79, 51, 8, 19, 60, 52, 95, 6, 68, 46, 86, 35, 97, 27, 58, 4, 65, 30, 58, 99, 12, 12, 75, 91, 39, 50, 31, 42, 64, 70, 4, 46, 7, 98, 73, 98, 93, 37, 89, 77, 91, 64, 71, 64, 65, 66, 21, 78, 62, 81, 74, 42, 20, 83, 70, 73, 95, 78, 45, 92, 27, 34, 53, 71, 15, ], [ 30, 11, 85, 31, 34, 71, 13, 48, 5, 14, 44, 3, 19, 67, 23, 73, 19, 57, 6, 90, 94, 72, 57, 69, 81, 62, 59, 68, 88, 57, 55, 69, 49, 13, 7, 87, 97, 80, 89, 5, 71, 5, 5, 26, 38, 40, 16, 62, 45, 99, 18, 38, 98, 24, 21, 26, 62, 74, 69, 4, 85, 57, 77, 35, 58, 67, 91, 79, 79, 57, 86, 28, 66, 34, 72, 51, 76, 78, 36, 95, 63, 90, 8, 78, 47, 63, 45, 31, 22, 70, 52, 48, 79, 94, 15, 77, 61, 67, 68, ], [ 23, 33, 44, 81, 80, 92, 93, 75, 94, 88, 23, 61, 39, 76, 22, 3, 28, 94, 32, 6, 49, 65, 41, 34, 18, 23, 8, 47, 62, 60, 3, 63, 33, 13, 80, 52, 31, 54, 73, 43, 70, 26, 16, 69, 57, 87, 83, 31, 3, 93, 70, 81, 47, 95, 77, 44, 29, 68, 39, 51, 56, 59, 63, 7, 25, 70, 7, 77, 43, 53, 64, 3, 94, 42, 95, 39, 18, 1, 66, 21, 16, 97, 20, 50, 90, 16, 70, 10, 95, 69, 29, 6, 25, 61, 41, 26, 15, 59, 63, 35, ], ] for i in range(98, -1, -1): for j in range(len(prob[i])): prob[i][j] += max(prob[i + 1][j], prob[i + 1][j + 1]) print(prob[0][0]) if __name__ == "__main__": main()
code/online_challenges/src/project_euler/problem_102/README.md
# Project Euler Problem #102: Triangle containment ([Problem Link](https://projecteuler.net/problem=102)) Three distinct points are plotted at random on a Cartesian plane, for which -1000 ≀ x, y ≀ 1000, such that a triangle is formed. Consider the following two triangles: <p align="center"> A(-340,495), B(-153,-910), C(835,-947) X(-175,41), Y(-421,-714), Z(574,-645) </p> It can be verified that triangle ABC contains the origin, whereas triangle XYZ does not. Using [triangles.txt](./triangles.txt) (right click and 'Save Link/Target As...'), a 27K text file containing the co-ordinates of one thousand "random" triangles, find the number of triangles for which the interior contains the origin. NOTE: The first two examples in the file represent the triangles in the example given above. --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/project_euler/problem_102/problem_102.cpp
#include <cmath> #include <iostream> #include <fstream> struct Coord { int x; int y; }; int doubleTriangleArea(Coord a, Coord b, Coord c) // Area doesn't actually need to be calculated either, // just compared for equality { /* * Coordinate area method for Triangle: * * A = | (x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2))/2 | * */ return std::abs((a.x * (b.y - c.y)) + (b.x * (c.y - a.y)) + (c.x * (a.y - b.y))); } bool containsOrigin(Coord a, Coord b, Coord c) { // A triangle contains a point if the area of it as a whole is // equivalent to the sum of the areas of the three triangles // formed with two of the main triangle's points and the point static Coord origin {0, 0}; return doubleTriangleArea(a, b, c) == ( doubleTriangleArea(origin, a, b) + doubleTriangleArea(origin, b, c) + doubleTriangleArea(origin, a, c) ); } int main() { std::ifstream trianglesFile("triangles.txt"); int numOriginTriangles = 0; if (trianglesFile.is_open()) { Coord a, b, c; char comma; // Since each part of a coordinate is comma separated while (trianglesFile >> a.x >> comma >> a.y >> comma >> b.x >> comma >> b.y >> comma >> c.x >> comma >> c.y) if (containsOrigin(a, b, c)) ++numOriginTriangles; trianglesFile.close(); } else std::cout << "Unable to open the file triangles.txt! Please check if the file exists in the appropriate location!\n"; std::cout << numOriginTriangles << "\n"; }
code/online_challenges/src/project_euler/problem_102/triangles.txt
-340,495,-153,-910,835,-947 -175,41,-421,-714,574,-645 -547,712,-352,579,951,-786 419,-864,-83,650,-399,171 -429,-89,-357,-930,296,-29 -734,-702,823,-745,-684,-62 -971,762,925,-776,-663,-157 162,570,628,485,-807,-896 641,91,-65,700,887,759 215,-496,46,-931,422,-30 -119,359,668,-609,-358,-494 440,929,968,214,760,-857 -700,785,838,29,-216,411 -770,-458,-325,-53,-505,633 -752,-805,349,776,-799,687 323,5,561,-36,919,-560 -907,358,264,320,204,274 -728,-466,350,969,292,-345 940,836,272,-533,748,185 411,998,813,520,316,-949 -152,326,658,-762,148,-651 330,507,-9,-628,101,174 551,-496,772,-541,-702,-45 -164,-489,-90,322,631,-59 673,366,-4,-143,-606,-704 428,-609,801,-449,740,-269 453,-924,-785,-346,-853,111 -738,555,-181,467,-426,-20 958,-692,784,-343,505,-569 620,27,263,54,-439,-726 804,87,998,859,871,-78 -119,-453,-709,-292,-115,-56 -626,138,-940,-476,-177,-274 -11,160,142,588,446,158 538,727,550,787,330,810 420,-689,854,-546,337,516 872,-998,-607,748,473,-192 653,440,-516,-985,808,-857 374,-158,331,-940,-338,-641 137,-925,-179,771,734,-715 -314,198,-115,29,-641,-39 759,-574,-385,355,590,-603 -189,-63,-168,204,289,305 -182,-524,-715,-621,911,-255 331,-816,-833,471,168,126 -514,581,-855,-220,-731,-507 129,169,576,651,-87,-458 783,-444,-881,658,-266,298 603,-430,-598,585,368,899 43,-724,962,-376,851,409 -610,-646,-883,-261,-482,-881 -117,-237,978,641,101,-747 579,125,-715,-712,208,534 672,-214,-762,372,874,533 -564,965,38,715,367,242 500,951,-700,-981,-61,-178 -382,-224,-959,903,-282,-60 -355,295,426,-331,-591,655 892,128,958,-271,-993,274 -454,-619,302,138,-790,-874 -642,601,-574,159,-290,-318 266,-109,257,-686,54,975 162,628,-478,840,264,-266 466,-280,982,1,904,-810 721,839,730,-807,777,981 -129,-430,748,263,943,96 434,-94,410,-990,249,-704 237,42,122,-732,44,-51 909,-116,-229,545,292,717 824,-768,-807,-370,-262,30 675,58,332,-890,-651,791 363,825,-717,254,684,240 405,-715,900,166,-589,422 -476,686,-830,-319,634,-807 633,837,-971,917,-764,207 -116,-44,-193,-70,908,809 -26,-252,998,408,70,-713 -601,645,-462,842,-644,-591 -160,653,274,113,-138,687 369,-273,-181,925,-167,-693 -338,135,480,-967,-13,-840 -90,-270,-564,695,161,907 607,-430,869,-713,461,-469 919,-165,-776,522,606,-708 -203,465,288,207,-339,-458 -453,-534,-715,975,838,-677 -973,310,-350,934,546,-805 -835,385,708,-337,-594,-772 -14,914,900,-495,-627,594 833,-713,-213,578,-296,699 -27,-748,484,455,915,291 270,889,739,-57,442,-516 119,811,-679,905,184,130 -678,-469,925,553,612,482 101,-571,-732,-842,644,588 -71,-737,566,616,957,-663 -634,-356,90,-207,936,622 598,443,964,-895,-58,529 847,-467,929,-742,91,10 -633,829,-780,-408,222,-30 -818,57,275,-38,-746,198 -722,-825,-549,597,-391,99 -570,908,430,873,-103,-360 342,-681,512,434,542,-528 297,850,479,609,543,-357 9,784,212,548,56,859 -152,560,-240,-969,-18,713 140,-133,34,-635,250,-163 -272,-22,-169,-662,989,-604 471,-765,355,633,-742,-118 -118,146,942,663,547,-376 583,16,162,264,715,-33 -230,-446,997,-838,561,555 372,397,-729,-318,-276,649 92,982,-970,-390,-922,922 -981,713,-951,-337,-669,670 -999,846,-831,-504,7,-128 455,-954,-370,682,-510,45 822,-960,-892,-385,-662,314 -668,-686,-367,-246,530,-341 -723,-720,-926,-836,-142,757 -509,-134,384,-221,-873,-639 -803,-52,-706,-669,373,-339 933,578,631,-616,770,555 741,-564,-33,-605,-576,275 -715,445,-233,-730,734,-704 120,-10,-266,-685,-490,-17 -232,-326,-457,-946,-457,-116 811,52,639,826,-200,147 -329,279,293,612,943,955 -721,-894,-393,-969,-642,453 -688,-826,-352,-75,371,79 -809,-979,407,497,858,-248 -485,-232,-242,-582,-81,849 141,-106,123,-152,806,-596 -428,57,-992,811,-192,478 864,393,122,858,255,-876 -284,-780,240,457,354,-107 956,605,-477,44,26,-678 86,710,-533,-815,439,327 -906,-626,-834,763,426,-48 201,-150,-904,652,475,412 -247,149,81,-199,-531,-148 923,-76,-353,175,-121,-223 427,-674,453,472,-410,585 931,776,-33,85,-962,-865 -655,-908,-902,208,869,792 -316,-102,-45,-436,-222,885 -309,768,-574,653,745,-975 896,27,-226,993,332,198 323,655,-89,260,240,-902 501,-763,-424,793,813,616 993,375,-938,-621,672,-70 -880,-466,-283,770,-824,143 63,-283,886,-142,879,-116 -964,-50,-521,-42,-306,-161 724,-22,866,-871,933,-383 -344,135,282,966,-80,917 -281,-189,420,810,362,-582 -515,455,-588,814,162,332 555,-436,-123,-210,869,-943 589,577,232,286,-554,876 -773,127,-58,-171,-452,125 -428,575,906,-232,-10,-224 437,276,-335,-348,605,878 -964,511,-386,-407,168,-220 307,513,912,-463,-423,-416 -445,539,273,886,-18,760 -396,-585,-670,414,47,364 143,-506,754,906,-971,-203 -544,472,-180,-541,869,-465 -779,-15,-396,890,972,-220 -430,-564,503,182,-119,456 89,-10,-739,399,506,499 954,162,-810,-973,127,870 890,952,-225,158,828,237 -868,952,349,465,574,750 -915,369,-975,-596,-395,-134 -135,-601,575,582,-667,640 413,890,-560,-276,-555,-562 -633,-269,561,-820,-624,499 371,-92,-784,-593,864,-717 -971,655,-439,367,754,-951 172,-347,36,279,-247,-402 633,-301,364,-349,-683,-387 -780,-211,-713,-948,-648,543 72,58,762,-465,-66,462 78,502,781,-832,713,836 -431,-64,-484,-392,208,-343 -64,101,-29,-860,-329,844 398,391,828,-858,700,395 578,-896,-326,-604,314,180 97,-321,-695,185,-357,852 854,839,283,-375,951,-209 194,96,-564,-847,162,524 -354,532,494,621,580,560 419,-678,-450,926,-5,-924 -661,905,519,621,-143,394 -573,268,296,-562,-291,-319 -211,266,-196,158,564,-183 18,-585,-398,777,-581,864 790,-894,-745,-604,-418,70 848,-339,150,773,11,851 -954,-809,-53,-20,-648,-304 658,-336,-658,-905,853,407 -365,-844,350,-625,852,-358 986,-315,-230,-159,21,180 -15,599,45,-286,-941,847 -613,-68,184,639,-987,550 334,675,-56,-861,923,340 -848,-596,960,231,-28,-34 707,-811,-994,-356,-167,-171 -470,-764,72,576,-600,-204 379,189,-542,-576,585,800 440,540,-445,-563,379,-334 -155,64,514,-288,853,106 -304,751,481,-520,-708,-694 -709,132,594,126,-844,63 723,471,421,-138,-962,892 -440,-263,39,513,-672,-954 775,809,-581,330,752,-107 -376,-158,335,-708,-514,578 -343,-769,456,-187,25,413 548,-877,-172,300,-500,928 938,-102,423,-488,-378,-969 -36,564,-55,131,958,-800 -322,511,-413,503,700,-847 -966,547,-88,-17,-359,-67 637,-341,-437,-181,527,-153 -74,449,-28,3,485,189 -997,658,-224,-948,702,-807 -224,736,-896,127,-945,-850 -395,-106,439,-553,-128,124 -841,-445,-758,-572,-489,212 633,-327,13,-512,952,771 -940,-171,-6,-46,-923,-425 -142,-442,-817,-998,843,-695 340,847,-137,-920,-988,-658 -653,217,-679,-257,651,-719 -294,365,-41,342,74,-892 690,-236,-541,494,408,-516 180,-807,225,790,494,59 707,605,-246,656,284,271 65,294,152,824,442,-442 -321,781,-540,341,316,415 420,371,-2,545,995,248 56,-191,-604,971,615,449 -981,-31,510,592,-390,-362 -317,-968,913,365,97,508 832,63,-864,-510,86,202 -483,456,-636,340,-310,676 981,-847,751,-508,-962,-31 -157,99,73,797,63,-172 220,858,872,924,866,-381 996,-169,805,321,-164,971 896,11,-625,-973,-782,76 578,-280,730,-729,307,-905 -580,-749,719,-698,967,603 -821,874,-103,-623,662,-491 -763,117,661,-644,672,-607 592,787,-798,-169,-298,690 296,644,-526,-762,-447,665 534,-818,852,-120,57,-379 -986,-549,-329,294,954,258 -133,352,-660,-77,904,-356 748,343,215,500,317,-277 311,7,910,-896,-809,795 763,-602,-753,313,-352,917 668,619,-474,-597,-650,650 -297,563,-701,-987,486,-902 -461,-740,-657,233,-482,-328 -446,-250,-986,-458,-629,520 542,-49,-327,-469,257,-947 121,-575,-634,-143,-184,521 30,504,455,-645,-229,-945 -12,-295,377,764,771,125 -686,-133,225,-25,-376,-143 -6,-46,338,270,-405,-872 -623,-37,582,467,963,898 -804,869,-477,420,-475,-303 94,41,-842,-193,-768,720 -656,-918,415,645,-357,460 -47,-486,-911,468,-608,-686 -158,251,419,-394,-655,-895 272,-695,979,508,-358,959 -776,650,-918,-467,-690,-534 -85,-309,-626,167,-366,-429 -880,-732,-186,-924,970,-875 517,645,-274,962,-804,544 721,402,104,640,478,-499 198,684,-134,-723,-452,-905 -245,745,239,238,-826,441 -217,206,-32,462,-981,-895 -51,989,526,-173,560,-676 -480,-659,-976,-580,-727,466 -996,-90,-995,158,-239,642 302,288,-194,-294,17,924 -943,969,-326,114,-500,103 -619,163,339,-880,230,421 -344,-601,-795,557,565,-779 590,345,-129,-202,-125,-58 -777,-195,159,674,775,411 -939,312,-665,810,121,855 -971,254,712,815,452,581 442,-9,327,-750,61,757 -342,869,869,-160,390,-772 620,601,565,-169,-69,-183 -25,924,-817,964,321,-970 -64,-6,-133,978,825,-379 601,436,-24,98,-115,940 -97,502,614,-574,922,513 -125,262,-946,695,99,-220 429,-721,719,-694,197,-558 326,689,-70,-908,-673,338 -468,-856,-902,-254,-358,305 -358,530,542,355,-253,-47 -438,-74,-362,963,988,788 137,717,467,622,319,-380 -86,310,-336,851,918,-288 721,395,646,-53,255,-425 255,175,912,84,-209,878 -632,-485,-400,-357,991,-608 235,-559,992,-297,857,-591 87,-71,148,130,647,578 -290,-584,-639,-788,-21,592 386,984,625,-731,-993,-336 -538,634,-209,-828,-150,-774 -754,-387,607,-781,976,-199 412,-798,-664,295,709,-537 -412,932,-880,-232,561,852 -656,-358,-198,-964,-433,-848 -762,-668,-632,186,-673,-11 -876,237,-282,-312,-83,682 403,73,-57,-436,-622,781 -587,873,798,976,-39,329 -369,-622,553,-341,817,794 -108,-616,920,-849,-679,96 290,-974,234,239,-284,-321 -22,394,-417,-419,264,58 -473,-551,69,923,591,-228 -956,662,-113,851,-581,-794 -258,-681,413,-471,-637,-817 -866,926,992,-653,-7,794 556,-350,602,917,831,-610 188,245,-906,361,492,174 -720,384,-818,329,638,-666 -246,846,890,-325,-59,-850 -118,-509,620,-762,-256,15 -787,-536,-452,-338,-399,813 458,560,525,-311,-608,-419 494,-811,-825,-127,-812,894 -801,890,-629,-860,574,925 -709,-193,-213,138,-410,-403 861,91,708,-187,5,-222 789,646,777,154,90,-49 -267,-830,-114,531,591,-698 -126,-82,881,-418,82,652 -894,130,-726,-935,393,-815 -142,563,654,638,-712,-597 -759,60,-23,977,100,-765 -305,595,-570,-809,482,762 -161,-267,53,963,998,-529 -300,-57,798,353,703,486 -990,696,-764,699,-565,719 -232,-205,566,571,977,369 740,865,151,-817,-204,-293 94,445,-768,229,537,-406 861,620,37,-424,-36,656 390,-369,952,733,-464,569 -482,-604,959,554,-705,-626 -396,-615,-991,108,272,-723 143,780,535,142,-917,-147 138,-629,-217,-908,905,115 915,103,-852,64,-468,-642 570,734,-785,-268,-326,-759 738,531,-332,586,-779,24 870,440,-217,473,-383,415 -296,-333,-330,-142,-924,950 118,120,-35,-245,-211,-652 61,634,153,-243,838,789 726,-582,210,105,983,537 -313,-323,758,234,29,848 -847,-172,-593,733,-56,617 54,255,-512,156,-575,675 -873,-956,-148,623,95,200 700,-370,926,649,-978,157 -639,-202,719,130,747,222 194,-33,955,943,505,114 -226,-790,28,-930,827,783 -392,-74,-28,714,218,-612 209,626,-888,-683,-912,495 487,751,614,933,631,445 -348,-34,-411,-106,835,321 -689,872,-29,-800,312,-542 -52,566,827,570,-862,-77 471,992,309,-402,389,912 24,520,-83,-51,555,503 -265,-317,283,-970,-472,690 606,526,137,71,-651,150 217,-518,663,66,-605,-331 -562,232,-76,-503,205,-323 842,-521,546,285,625,-186 997,-927,344,909,-546,974 -677,419,81,121,-705,771 719,-379,-944,-797,784,-155 -378,286,-317,-797,-111,964 -288,-573,784,80,-532,-646 -77,407,-248,-797,769,-816 -24,-637,287,-858,-927,-333 -902,37,894,-823,141,684 125,467,-177,-516,686,399 -321,-542,641,-590,527,-224 -400,-712,-876,-208,632,-543 -676,-429,664,-242,-269,922 -608,-273,-141,930,687,380 786,-12,498,494,310,326 -739,-617,606,-960,804,188 384,-368,-243,-350,-459,31 -550,397,320,-868,328,-279 969,-179,853,864,-110,514 910,793,302,-822,-285,488 -605,-128,218,-283,-17,-227 16,324,667,708,750,3 485,-813,19,585,71,930 -218,816,-687,-97,-732,-360 -497,-151,376,-23,3,315 -412,-989,-610,-813,372,964 -878,-280,87,381,-311,69 -609,-90,-731,-679,150,585 889,27,-162,605,75,-770 448,617,-988,0,-103,-504 -800,-537,-69,627,608,-668 534,686,-664,942,830,920 -238,775,495,932,-793,497 -343,958,-914,-514,-691,651 568,-136,208,359,728,28 286,912,-794,683,556,-102 -638,-629,-484,445,-64,-497 58,505,-801,-110,872,632 -390,777,353,267,976,369 -993,515,105,-133,358,-572 964,996,355,-212,-667,38 -725,-614,-35,365,132,-196 237,-536,-416,-302,312,477 -664,574,-210,224,48,-925 869,-261,-256,-240,-3,-698 712,385,32,-34,916,-315 895,-409,-100,-346,728,-624 -806,327,-450,889,-781,-939 -586,-403,698,318,-939,899 557,-57,-920,659,333,-51 -441,232,-918,-205,246,1 783,167,-797,-595,245,-736 -36,-531,-486,-426,-813,-160 777,-843,817,313,-228,-572 735,866,-309,-564,-81,190 -413,645,101,719,-719,218 -83,164,767,796,-430,-459 122,779,-15,-295,-96,-892 462,379,70,548,834,-312 -630,-534,124,187,-737,114 -299,-604,318,-591,936,826 -879,218,-642,-483,-318,-866 -691,62,-658,761,-895,-854 -822,493,687,569,910,-202 -223,784,304,-5,541,925 -914,541,737,-662,-662,-195 -622,615,414,358,881,-878 339,745,-268,-968,-280,-227 -364,855,148,-709,-827,472 -890,-532,-41,664,-612,577 -702,-859,971,-722,-660,-920 -539,-605,737,149,973,-802 800,42,-448,-811,152,511 -933,377,-110,-105,-374,-937 -766,152,482,120,-308,390 -568,775,-292,899,732,890 -177,-317,-502,-259,328,-511 612,-696,-574,-660,132,31 -119,563,-805,-864,179,-672 425,-627,183,-331,839,318 -711,-976,-749,152,-916,261 181,-63,497,211,262,406 -537,700,-859,-765,-928,77 892,832,231,-749,-82,613 816,216,-642,-216,-669,-912 -6,624,-937,-370,-344,268 737,-710,-869,983,-324,-274 565,952,-547,-158,374,-444 51,-683,645,-845,515,636 -953,-631,114,-377,-764,-144 -8,470,-242,-399,-675,-730 -540,689,-20,47,-607,590 -329,-710,-779,942,-388,979 123,829,674,122,203,563 46,782,396,-33,386,610 872,-846,-523,-122,-55,-190 388,-994,-525,974,127,596 781,-680,796,-34,-959,-62 -749,173,200,-384,-745,-446 379,618,136,-250,-224,970 -58,240,-921,-760,-901,-626 366,-185,565,-100,515,688 489,999,-893,-263,-637,816 838,-496,-316,-513,419,479 107,676,-15,882,98,-397 -999,941,-903,-424,670,-325 171,-979,835,178,169,-984 -609,-607,378,-681,184,402 -316,903,-575,-800,224,983 591,-18,-460,551,-167,918 -756,405,-117,441,163,-320 456,24,6,881,-836,-539 -489,-585,915,651,-892,-382 -177,-122,73,-711,-386,591 181,724,530,686,-131,241 737,288,886,216,233,33 -548,-386,-749,-153,-85,-982 -835,227,904,160,-99,25 -9,-42,-162,728,840,-963 217,-763,870,771,47,-846 -595,808,-491,556,337,-900 -134,281,-724,441,-134,708 -789,-508,651,-962,661,315 -839,-923,339,402,41,-487 300,-790,48,703,-398,-811 955,-51,462,-685,960,-717 910,-880,592,-255,-51,-776 -885,169,-793,368,-565,458 -905,940,-492,-630,-535,-988 245,797,763,869,-82,550 -310,38,-933,-367,-650,824 -95,32,-83,337,226,990 -218,-975,-191,-208,-785,-293 -672,-953,517,-901,-247,465 681,-148,261,-857,544,-923 640,341,446,-618,195,769 384,398,-846,365,671,815 578,576,-911,907,762,-859 548,-428,144,-630,-759,-146 710,-73,-700,983,-97,-889 -46,898,-973,-362,-817,-717 151,-81,-125,-900,-478,-154 483,615,-537,-932,181,-68 786,-223,518,25,-306,-12 -422,268,-809,-683,635,468 983,-734,-694,-608,-110,4 -786,-196,749,-354,137,-8 -181,36,668,-200,691,-973 -629,-838,692,-736,437,-871 -208,-536,-159,-596,8,197 -3,370,-686,170,913,-376 44,-998,-149,-993,-200,512 -519,136,859,497,536,434 77,-985,972,-340,-705,-837 -381,947,250,360,344,322 -26,131,699,750,707,384 -914,655,299,193,406,955 -883,-921,220,595,-546,794 -599,577,-569,-404,-704,489 -594,-963,-624,-460,880,-760 -603,88,-99,681,55,-328 976,472,139,-453,-531,-860 192,-290,513,-89,666,432 417,487,575,293,567,-668 655,711,-162,449,-980,972 -505,664,-685,-239,603,-592 -625,-802,-67,996,384,-636 365,-593,522,-666,-200,-431 -868,708,560,-860,-630,-355 -702,785,-637,-611,-597,960 -137,-696,-93,-803,408,406 891,-123,-26,-609,-610,518 133,-832,-198,555,708,-110 791,617,-69,487,696,315 -900,694,-565,517,-269,-416 914,135,-781,600,-71,-600 991,-915,-422,-351,-837,313 -840,-398,-302,21,590,146 62,-558,-702,-384,-625,831 -363,-426,-924,-496,792,-908 73,361,-817,-466,400,922 -626,-164,-626,860,-524,286 255,26,-944,809,-606,986 -457,-256,-103,50,-867,-871 -223,803,196,480,612,136 -820,-928,700,780,-977,721 717,332,53,-933,-128,793 -602,-648,562,593,890,702 -469,-875,-527,911,-475,-222 110,-281,-552,-536,-816,596 -981,654,413,-981,-75,-95 -754,-742,-515,894,-220,-344 795,-52,156,408,-603,76 474,-157,423,-499,-807,-791 260,688,40,-52,702,-122 -584,-517,-390,-881,302,-504 61,797,665,708,14,668 366,166,458,-614,564,-983 72,539,-378,796,381,-824 -485,201,-588,842,736,379 -149,-894,-298,705,-303,-406 660,-935,-580,521,93,633 -382,-282,-375,-841,-828,171 -567,743,-100,43,144,122 -281,-786,-749,-551,296,304 11,-426,-792,212,857,-175 594,143,-699,289,315,137 341,596,-390,107,-631,-804 -751,-636,-424,-854,193,651 -145,384,749,675,-786,517 224,-865,-323,96,-916,258 -309,403,-388,826,35,-270 -942,709,222,158,-699,-103 -589,842,-997,29,-195,-210 264,426,566,145,-217,623 217,965,507,-601,-453,507 -206,307,-982,4,64,-292 676,-49,-38,-701,550,883 5,-850,-438,659,745,-773 933,238,-574,-570,91,-33 -866,121,-928,358,459,-843 -568,-631,-352,-580,-349,189 -737,849,-963,-486,-662,970 135,334,-967,-71,-365,-792 789,21,-227,51,990,-275 240,412,-886,230,591,256 -609,472,-853,-754,959,661 401,521,521,314,929,982 -499,784,-208,71,-302,296 -557,-948,-553,-526,-864,793 270,-626,828,44,37,14 -412,224,617,-593,502,699 41,-908,81,562,-849,163 165,917,761,-197,331,-341 -687,314,799,755,-969,648 -164,25,578,439,-334,-576 213,535,874,-177,-551,24 -689,291,-795,-225,-496,-125 465,461,558,-118,-568,-909 567,660,-810,46,-485,878 -147,606,685,-690,-774,984 568,-886,-43,854,-738,616 -800,386,-614,585,764,-226 -518,23,-225,-732,-79,440 -173,-291,-689,636,642,-447 -598,-16,227,410,496,211 -474,-930,-656,-321,-420,36 -435,165,-819,555,540,144 -969,149,828,568,394,648 65,-848,257,720,-625,-851 981,899,275,635,465,-877 80,290,792,760,-191,-321 -605,-858,594,33,706,593 585,-472,318,-35,354,-927 -365,664,803,581,-965,-814 -427,-238,-480,146,-55,-606 879,-193,250,-890,336,117 -226,-322,-286,-765,-836,-218 -913,564,-667,-698,937,283 872,-901,810,-623,-52,-709 473,171,717,38,-429,-644 225,824,-219,-475,-180,234 -530,-797,-948,238,851,-623 85,975,-363,529,598,28 -799,166,-804,210,-769,851 -687,-158,885,736,-381,-461 447,592,928,-514,-515,-661 -399,-777,-493,80,-544,-78 -884,631,171,-825,-333,551 191,268,-577,676,137,-33 212,-853,709,798,583,-56 -908,-172,-540,-84,-135,-56 303,311,406,-360,-240,811 798,-708,824,59,234,-57 491,693,-74,585,-85,877 509,-65,-936,329,-51,722 -122,858,-52,467,-77,-609 850,760,547,-495,-953,-952 -460,-541,890,910,286,724 -914,843,-579,-983,-387,-460 989,-171,-877,-326,-899,458 846,175,-915,540,-1000,-982 -852,-920,-306,496,530,-18 338,-991,160,85,-455,-661 -186,-311,-460,-563,-231,-414 -932,-302,959,597,793,748 -366,-402,-788,-279,514,53 -940,-956,447,-956,211,-285 564,806,-911,-914,934,754 575,-858,-277,15,409,-714 848,462,100,-381,135,242 330,718,-24,-190,860,-78 479,458,941,108,-866,-653 212,980,962,-962,115,841 -827,-474,-206,881,323,765 506,-45,-30,-293,524,-133 832,-173,547,-852,-561,-842 -397,-661,-708,819,-545,-228 521,51,-489,852,36,-258 227,-164,189,465,-987,-882 -73,-997,641,-995,449,-615 151,-995,-638,415,257,-400 -663,-297,-748,537,-734,198 -585,-401,-81,-782,-80,-105 99,-21,238,-365,-704,-368 45,416,849,-211,-371,-1 -404,-443,795,-406,36,-933 272,-363,981,-491,-380,77 713,-342,-366,-849,643,911 -748,671,-537,813,961,-200 -194,-909,703,-662,-601,188 281,500,724,286,267,197 -832,847,-595,820,-316,637 520,521,-54,261,923,-10 4,-808,-682,-258,441,-695 -793,-107,-969,905,798,446 -108,-739,-590,69,-855,-365 380,-623,-930,817,468,713 759,-849,-236,433,-723,-931 95,-320,-686,124,-69,-329 -655,518,-210,-523,284,-866 144,303,639,70,-171,269 173,-333,947,-304,55,40 274,878,-482,-888,-835,375 -982,-854,-36,-218,-114,-230 905,-979,488,-485,-479,114 877,-157,553,-530,-47,-321 350,664,-881,442,-220,-284 434,-423,-365,878,-726,584 535,909,-517,-447,-660,-141 -966,191,50,353,182,-642 -785,-634,123,-907,-162,511 146,-850,-214,814,-704,25 692,1,521,492,-637,274 -662,-372,-313,597,983,-647 -962,-526,68,-549,-819,231 740,-890,-318,797,-666,948 -190,-12,-468,-455,948,284 16,478,-506,-888,628,-154 272,630,-976,308,433,3 -169,-391,-132,189,302,-388 109,-784,474,-167,-265,-31 -177,-532,283,464,421,-73 650,635,592,-138,1,-387 -932,703,-827,-492,-355,686 586,-311,340,-618,645,-434 -951,736,647,-127,-303,590 188,444,903,718,-931,500 -872,-642,-296,-571,337,241 23,65,152,125,880,470 512,823,-42,217,823,-263 180,-831,-380,886,607,762 722,443,-149,-216,-115,759 -19,660,-36,901,923,231 562,-322,-626,-968,194,-825 204,-920,938,784,362,150 -410,-266,-715,559,-672,124 -198,446,-140,454,-461,-447 83,-346,830,-493,-759,-382 -881,601,581,234,-134,-925 -494,914,-42,899,235,629 -390,50,956,437,774,-700 -514,514,44,-512,-576,-313 63,-688,808,-534,-570,-399 -726,572,-896,102,-294,-28 -688,757,401,406,955,-511 -283,423,-485,480,-767,908 -541,952,-594,116,-854,451 -273,-796,236,625,-626,257 -407,-493,373,826,-309,297 -750,955,-476,641,-809,713 8,415,695,226,-111,2 733,209,152,-920,401,995 921,-103,-919,66,871,-947 -907,89,-869,-214,851,-559 -307,748,524,-755,314,-711 188,897,-72,-763,482,103 545,-821,-232,-596,-334,-754 -217,-788,-820,388,-200,-662 779,160,-723,-975,-142,-998 -978,-519,-78,-981,842,904 -504,-736,-295,21,-472,-482 391,115,-705,574,652,-446 813,-988,865,830,-263,487 194,80,774,-493,-761,-872 -415,-284,-803,7,-810,670 -484,-4,881,-872,55,-852 -379,822,-266,324,-48,748 -304,-278,406,-60,959,-89 404,756,577,-643,-332,658 291,460,125,491,-312,83 311,-734,-141,582,282,-557 -450,-661,-981,710,-177,794 328,264,-787,971,-743,-407 -622,518,993,-241,-738,229 273,-826,-254,-917,-710,-111 809,770,96,368,-818,725 -488,773,502,-342,534,745 -28,-414,236,-315,-484,363 179,-466,-566,713,-683,56 560,-240,-597,619,916,-940 893,473,872,-868,-642,-461 799,489,383,-321,-776,-833 980,490,-508,764,-512,-426 917,961,-16,-675,440,559 -812,212,784,-987,-132,554 -886,454,747,806,190,231 910,341,21,-66,708,725 29,929,-831,-494,-303,389 -103,492,-271,-174,-515,529 -292,119,419,788,247,-951 483,543,-347,-673,664,-549 -926,-871,-437,337,162,-877 299,472,-771,5,-88,-643 -103,525,-725,-998,264,22 -505,708,550,-545,823,347 -738,931,59,147,-156,-259 456,968,-162,889,132,-911 535,120,968,-517,-864,-541 24,-395,-593,-766,-565,-332 834,611,825,-576,280,629 211,-548,140,-278,-592,929 -999,-240,-63,-78,793,573 -573,160,450,987,529,322 63,353,315,-187,-461,577 189,-950,-247,656,289,241 209,-297,397,664,-805,484 -655,452,435,-556,917,874 253,-756,262,-888,-778,-214 793,-451,323,-251,-401,-458 -396,619,-651,-287,-668,-781 698,720,-349,742,-807,546 738,280,680,279,-540,858 -789,387,530,-36,-551,-491 162,579,-427,-272,228,710 689,356,917,-580,729,217 -115,-638,866,424,-82,-194 411,-338,-917,172,227,-29 -612,63,630,-976,-64,-204 -200,911,583,-571,682,-579 91,298,396,-183,788,-955 141,-873,-277,149,-396,916 321,958,-136,573,541,-777 797,-909,-469,-877,988,-653 784,-198,129,883,-203,399 -68,-810,223,-423,-467,-512 531,-445,-603,-997,-841,641 -274,-242,174,261,-636,-158 -574,494,-796,-798,-798,99 95,-82,-613,-954,-753,986 -883,-448,-864,-401,938,-392 913,930,-542,-988,310,410 506,-99,43,512,790,-222 724,31,49,-950,260,-134 -287,-947,-234,-700,56,588 -33,782,-144,948,105,-791 548,-546,-652,-293,881,-520 691,-91,76,991,-631,742 -520,-429,-244,-296,724,-48 778,646,377,50,-188,56 -895,-507,-898,-165,-674,652 654,584,-634,177,-349,-620 114,-980,355,62,182,975 516,9,-442,-298,274,-579 -238,262,-431,-896,506,-850 47,748,846,821,-537,-293 839,726,593,285,-297,840 634,-486,468,-304,-887,-567 -864,914,296,-124,335,233 88,-253,-523,-956,-554,803 -587,417,281,-62,-409,-363 -136,-39,-292,-768,-264,876 -127,506,-891,-331,-744,-430 778,584,-750,-129,-479,-94 -876,-771,-987,-757,180,-641 -777,-694,411,-87,329,190 -347,-999,-882,158,-754,232 -105,918,188,237,-110,-591 -209,703,-838,77,838,909 -995,-339,-762,750,860,472 185,271,-289,173,811,-300 2,65,-656,-22,36,-139 765,-210,883,974,961,-905 -212,295,-615,-840,77,474 211,-910,-440,703,-11,859 -559,-4,-196,841,-277,969 -73,-159,-887,126,978,-371 -569,633,-423,-33,512,-393 503,143,-383,-109,-649,-998 -663,339,-317,-523,-2,596 690,-380,570,378,-652,132 72,-744,-930,399,-525,935 865,-983,115,37,995,826 594,-621,-872,443,188,-241 -1000,291,754,234,-435,-869 -868,901,654,-907,59,181 -868,-793,-431,596,-446,-564 900,-944,-680,-796,902,-366 331,430,943,853,-851,-942 315,-538,-354,-909,139,721 170,-884,-225,-818,-808,-657 -279,-34,-533,-871,-972,552 691,-986,-800,-950,654,-747 603,988,899,841,-630,591 876,-949,809,562,602,-536 -693,363,-189,495,738,-1000 -383,431,-633,297,665,959 -740,686,-207,-803,188,-520 -820,226,31,-339,10,121 -312,-844,624,-516,483,621 -822,-529,69,-278,800,328 834,-82,-759,420,811,-264 -960,-240,-921,561,173,46 -324,909,-790,-814,-2,-785 976,334,-290,-891,704,-581 150,-798,689,-823,237,-639 -551,-320,876,-502,-622,-628 -136,845,904,595,-702,-261 -857,-377,-522,-101,-943,-805 -682,-787,-888,-459,-752,-985 -571,-81,623,-133,447,643 -375,-158,72,-387,-324,-696 -660,-650,340,188,569,526 727,-218,16,-7,-595,-988 -966,-684,802,-783,-272,-194 115,-566,-888,47,712,180 -237,-69,45,-272,981,-812 48,897,439,417,50,325 348,616,180,254,104,-784 -730,811,-548,612,-736,790 138,-810,123,930,65,865 -768,-299,-49,-895,-692,-418 487,-531,802,-159,-12,634 808,-179,552,-73,470,717 720,-644,886,-141,625,144 -485,-505,-347,-244,-916,66 600,-565,995,-5,324,227 -771,-35,904,-482,753,-303 -701,65,426,-763,-504,-479 409,733,-823,475,64,718 865,975,368,893,-413,-433 812,-597,-970,819,813,624 193,-642,-381,-560,545,398 711,28,-316,771,717,-865 -509,462,809,-136,786,635 618,-49,484,169,635,547 -747,685,-882,-496,-332,82 -501,-851,870,563,290,570 -279,-829,-509,397,457,816 -508,80,850,-188,483,-326 860,-100,360,119,-205,787 -870,21,-39,-827,-185,932 826,284,-136,-866,-330,-97 -944,-82,745,899,-97,365 929,262,564,632,-115,632 244,-276,713,330,-897,-214 -890,-109,664,876,-974,-907 716,249,816,489,723,141 -96,-560,-272,45,-70,645 762,-503,414,-828,-254,-646 909,-13,903,-422,-344,-10 658,-486,743,545,50,674 -241,507,-367,18,-48,-241 886,-268,884,-762,120,-486 -412,-528,879,-647,223,-393 851,810,234,937,-726,797 -999,942,839,-134,-996,-189 100,979,-527,-521,378,800 544,-844,-832,-530,-77,-641 43,889,31,442,-934,-503 -330,-370,-309,-439,173,547 169,945,62,-753,-542,-597 208,751,-372,-647,-520,70 765,-840,907,-257,379,918 334,-135,-689,730,-427,618 137,-508,66,-695,78,169 -962,-123,400,-417,151,969 328,689,666,427,-555,-642 -907,343,605,-341,-647,582 -667,-363,-571,818,-265,-399 525,-938,904,898,725,692 -176,-802,-858,-9,780,275 580,170,-740,287,691,-97 365,557,-375,361,-288,859 193,737,842,-808,520,282 -871,65,-799,836,179,-720 958,-144,744,-789,797,-48 122,582,662,912,68,757 595,241,-801,513,388,186 -103,-677,-259,-731,-281,-857 921,319,-696,683,-88,-997 775,200,78,858,648,768 316,821,-763,68,-290,-741 564,664,691,504,760,787 694,-119,973,-385,309,-760 777,-947,-57,990,74,19 971,626,-496,-781,-602,-239 -651,433,11,-339,939,294 -965,-728,560,569,-708,-247
code/online_challenges/src/rosalind/README.md
# Cosmos Rosalind > Solutions to Rosalind bioinformatics challenges. http://rosalind.info/problems/list-view/ --- <p align="center"> A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a> </p> ---
code/online_challenges/src/rosalind/complement_dna_strand/complement_dna.rs
fn complement_dna(dna: &str) -> String { dna.chars() .rev() .map(|c| match c { 'A' => 'T', 'T' => 'A', 'C' => 'G', 'G' => 'C', _ => ' ', }) .collect() } #[cfg(test)] mod tests { use super::*; #[test] fn sample_test() { assert_eq!(complement_dna("AAAACCCGGT"), "ACCGGGTTTT"); } }
code/online_challenges/src/rosalind/complement_dna_strand/complement_dna_strand.exs
defmodule ComplementDnaStrand do def complement(strand) do strand = strand |> String.reverse |> String.codepoints Enum.map(strand, fn nucleotide -> case nucleotide do "A" -> "T" "T" -> "A" "G" -> "C" "C" -> "G" end end) |> List.to_string end end IO.puts ComplementDnaStrand.complement("")
code/online_challenges/test/README.md
# cosmos Your personal library of every algorithm and data structure code that you will ever encounter
code/operating_system/src/README.md
# Operating Systems Operating Systems are software programs that communicate with the hardware and other application programs. They are responsible for a number of functions such as resource allocation in multi-user systems, management of files and processes (a 'process' is used to refer to a program in execution), handling Input-Ouput requests by different processes and main memory management among other roles. Operating system is one of the most crucial system components of a computer and provides the basic functionality for the device, right from the boot procedure. Additionally, it has many algorithms which enable it to make decisions about CPU scheduling such as First Come First Serve (FCFS) scheduling, Shortest Job First scheduling and Multilevel queue scheduling among others. Computer desktop operating systems used nowadays include Windows, OS X and Linux. # cosmos Your personal library of every algorithm and data structure code that you will ever encounter
code/operating_system/src/concurrency/dining_philosophers/README.md
# Dining philosophers problem Dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them. ## Problem statement Consider there are five philosophers sitting around a circular dining table. The dining table has five chopsticks and a bowl of rice in the middle as shown in the below figure. ![Dining Philosophers' Problem](https://spin.atomicobject.com/wp-content/uploads/dining-philosophers-problem-small.jpg) At any instant, a philosopher is either eating or thinking. When a philosopher wants to eat, he uses two chopsticks - one from their left and one from their right. When a philosopher wants to think, he keeps down both chopsticks at their original place.
code/operating_system/src/concurrency/dining_philosophers/dining_philosophers.c
/* Dining Philosophers Problem*/ #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> void *func(int n); pthread_t philosopher[5]; pthread_mutex_t chopstick[5]; int main() { int i, k; void *msg; for (i = 1; i <= 5; i++) { k = pthread_mutex_init(&chopstick[i], NULL); if (k == -1) { printf("\n Mutex initialization failed"); exit(1); } } for (i = 1; i <= 5; i++) { k = pthread_create(&philosopher[i], NULL, (void *) func, (int *) i); if (k != 0) { printf("\n Thread creation error \n"); exit(1); } } for (i = 1; i <= 5; i++) { k = pthread_join(philosopher[i], &msg); if (k != 0) { printf("\n Thread join failed \n"); exit(1); } } for (i = 1; i <= 5; i++) { k = pthread_mutex_destroy(&chopstick[i]); if (k != 0) { printf("\n Mutex Destroyed \n"); exit(1); } } return 0; } void *func(int n) { printf("\nPhilosopher %d is thinking", n); pthread_mutex_lock(&chopstick[n]); pthread_mutex_lock(&chopstick[(n + 1) % 5]); printf("\nPhilosopher %d is eating", n); sleep(3); pthread_mutex_unlock(&chopstick[n]); pthread_mutex_unlock(&chopstick[(n + 1) % 5]); printf("\nPhilosopher %d Finished eating", n); }
code/operating_system/src/concurrency/monitors/monitors_system_v/main.c
/* * Part of Cosmos by OpenGenus Foundation. * Implementation of Hoare monitors using System V IPC. * An example of how to use monitors. * Author : ABDOUS Kamel */ #include "monitors.h" #include <stdio.h> #include <unistd.h> #include <sys/wait.h> #include <string.h> #include <errno.h> #define NB_CONDS 1 typedef struct { int arrived; } shm_mem; int main() { monitor mtor; create_monitor("p", 1, 2, NB_CONDS, sizeof(shm_mem), &mtor); if (!fork()) { printf("P1 starts.\n"); /* init_monitor not necessary, just for the example. */ init_monitor("p", 1, 2, &mtor); sleep(1); enter_monitor(&mtor); shm_mem* shm_ptr = mtor_shmat(&mtor); /* Don't wait if P2 arruved */ if (!shm_ptr->arrived) { printf("P1 waits for P2.\n"); mtor_wait(&mtor, 0); } printf("P1 continues, arrived = %d\n", shm_ptr->arrived); mtor_shmdt(shm_ptr); exit_monitor(&mtor); exit(0); } if (!fork()) { printf("P2 starts.\n"); /* init_monitor not necessary, just for the example. */ init_monitor("p", 1, 2, &mtor); sleep(3); enter_monitor(&mtor); shm_mem* shm_ptr = mtor_shmat(&mtor); shm_ptr->arrived = 1; mtor_shmdt(shm_ptr); printf("P2 wakes P1.\n"); mtor_signal(&mtor, 0); exit_monitor(&mtor); exit(0); } while (wait(NULL) != -1) ; free_monitor(&mtor); return (0); }
code/operating_system/src/concurrency/monitors/monitors_system_v/monitors.c
/* * Part of Cosmos by OpenGenus Foundation. * Implementation of Hoare monitors using System V IPC. * Author : ABDOUS Kamel */ #include "monitors.h" static struct sembuf mutex_up = {MTOR_MUTEX, 1, 0}, mutex_down = {MTOR_MUTEX, -1, 0}, sig_up = {MTOR_SIG_SEM, 1, 0}, sig_down = {MTOR_SIG_SEM, -1, 0}, cond_up = {0, 1, 0}, cond_down = {0, -1, 0}; union semun { int val; /* Value for SETVAL */ struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */ unsigned short *array; /* Array for GETALL, SETALL */ struct seminfo *__buf; /* Buffer for IPC_INFO (Linux-specific) */ }; /* * Create a brand new monitor, with [nb_conds] conditions and a shared memory * of size [shm_size]. * [ftok_path] is used for generating a system V key for both shared memory and semaphores. * [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores. * @return 0 on success, -1 on failure. */ int create_monitor(char* ftok_path, int shm_proj, int sem_proj, int nb_conds, size_t shm_size, monitor* mtor) { key_t shm_key = ftok(ftok_path, shm_proj); if (shm_key == -1) return (-1); key_t sems_key = ftok(ftok_path, sem_proj); if (sems_key == -1) return (-1); mtor->sh_mem = shmget(shm_key, shm_size, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR); if (mtor->sh_mem == -1) return (-1); /* First two semaphores are for internal usage, others are for conditions */ mtor->sems_array = semget(sems_key, EXTRA_SEMS_NB + nb_conds, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR); if (mtor->sems_array == -1) { shmctl(mtor->sh_mem, IPC_RMID, NULL); return (-1); } /* Init mutex semaphore */ union semun mutex_init; mutex_init.val = 1; if (semctl(mtor->sems_array, MTOR_MUTEX, SETVAL, mutex_init) == -1) { free_monitor(mtor); return (-1); } return (0); } /* * This function can be used to retrieve a monitor created by another process. * [ftok_path] is used for retrieving a system V key for both shared memory and semaphores. * [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores. * @return 0 on success, -1 on failure. */ int init_monitor(char* ftok_path, int shm_proj, int sem_proj, monitor* mtor) { key_t shm_key = ftok(ftok_path, shm_proj); if (shm_key == -1) return (-1); key_t sems_key = ftok(ftok_path, sem_proj); if (sems_key == -1) return (-1); mtor->sh_mem = shmget(shm_key, 0, S_IRUSR | S_IWUSR); if (mtor->sh_mem == -1) return (-1); mtor->sems_array = semget(sems_key, 0, S_IRUSR | S_IWUSR); if (mtor->sems_array == -1) return (-1); } /* * Free allocated semaphores and shared memory for the given monitor. * @return 0 on success, -1 on failure. */ int free_monitor(monitor* mtor) { int ret = shmctl(mtor->sh_mem, IPC_RMID, NULL); ret = semctl(mtor->sems_array, 0, IPC_RMID); return (ret); } /* * Ask to enter the monitor. * Only one process can be in the monitor. * @return 0 on success, -1 on failure. * Failure means that the demand failed, not that the process doesn't enter. */ int enter_monitor(monitor* mtor) { return (semop(mtor->sems_array, &mutex_down, 1)); } /* * Ask to leave the monitor. * Note that while leaving a monitor, pending processes on signal take precedence * over processes that asked to enter the monitor. * @return 0 on success, -1 on failure. * Failure means that the demand failed, not that the process doesn't enter. */ int exit_monitor(monitor* mtor) { int nb_sig_wait = semctl(mtor->sems_array, MTOR_SIG_SEM, GETNCNT); /* semctl error */ if (nb_sig_wait == -1) return (-1); /* Wake a pending process on signal */ else if (nb_sig_wait > 0) { if (semop(mtor->sems_array, &sig_up, 1) == -1) return (-1); else return (0); } /* Wake a pending process on monitor entrance */ else return (semop(mtor->sems_array, &mutex_up, 1)); } /* * @return 1 if cond is empty (no process is waiting on it), * 0 if not empty, -1 on failure. */ int mtor_empty(monitor* mtor, int cond) { return (semctl(mtor->sems_array, EXTRA_SEMS_NB + cond, GETNCNT)); } /* * Cause the process to wait for [cond]. * Note that while leaving a monitor, pending processes on signal take precedence * over processes that asked to enter the monitor. * @return 0 on success, -1 on failure. */ int mtor_wait(monitor* mtor, int cond) { if (exit_monitor(mtor) == -1) return (-1); /* Do wait */ cond_down.sem_num = EXTRA_SEMS_NB + cond; return (semop(mtor->sems_array, &cond_down, 1)); } /* * If no process is waiting for [cond], do nothing. * If any, wake it and block on signal semaphore. * @return 0 on success, -1 on failure. */ int mtor_signal(monitor* mtor, int cond) { int cond_empty = mtor_empty(mtor, cond); /* Wake a pending process on cond */ if (cond_empty > 0) { cond_up.sem_num = EXTRA_SEMS_NB + cond; if (semop(mtor->sems_array, &cond_up, 1) == -1) return (-1); /* Wait on signal */ return (semop(mtor->sems_array, &sig_down, 1)); } return (cond_empty); } /* * Use this function to attach monitor shared memory. * @return Adress of the attached shared memory segment, NULL on failure. */ void* mtor_shmat(monitor* mtor) { return (shmat(mtor->sh_mem, NULL, 0)); } /* * Use this function to detach monitor shared memory. * @return 0 on success, -1 on failure. */ int mtor_shmdt(void* shm_ptr) { return (shmdt(shm_ptr)); }
code/operating_system/src/concurrency/monitors/monitors_system_v/monitors.h
/* * Part of Cosmos by OpenGenus Foundation. * Implementation of Hoare monitors using System V IPC. * Author : ABDOUS Kamel */ #ifndef MONITORS_H #define MONITORS_H #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/ipc.h> #include <sys/shm.h> #include <sys/sem.h> #include <sys/stat.h> #include <fcntl.h> /* Type of shared memory identificator */ typedef int SHM_ID; /* Type of a semaphore identificator */ typedef int SEM_ID; /* Number of monitor management semaphores */ #define EXTRA_SEMS_NB 2 /* Monitor mutual exclusion semaphore */ #define MTOR_MUTEX 0 /* Monitor signal semaphore */ #define MTOR_SIG_SEM 1 typedef struct { SHM_ID sh_mem; SEM_ID sems_array; } monitor; /* * Create a brand new monitor, with [nb_conds] conditions and a shared memory * of size [shm_size]. * [ftok_path] is used for generating a system V key for both shared memory and semaphores. * [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores. * @return 0 on success, -1 on failure. */ int create_monitor(char* ftok_path, int shm_proj, int sem_proj, int nb_conds, size_t shm_size, monitor* mtor); /* * This function can be used to retrieve a monitor created by another process. * [ftok_path] is used for retrieving a system V key for both shared memory and semaphores. * [shm_proj] is passed to ftok for shared memory, and [sem_proj] for semaphores. * @return 0 on success, -1 on failure. */ int init_monitor(char* ftok_path, int shm_proj, int sem_proj, monitor* mtor); /* * Free allocated semaphores and shared memory for the given monitor. * @return 0 on success, -1 on failure. */ int free_monitor(monitor* mtor); /* * Ask to enter the monitor. * Only one process can be in the monitor. * @return 0 on success, -1 on failure. * Failure means that the demand failed, not that the process doesn't enter. */ int enter_monitor(monitor* mtor); /* * Ask to leave the monitor. * Note that while leaving a monitor, pending processes on signal take precedence * over processes that asked to enter the monitor. * @return 0 on success, -1 on failure. * Failure means that the demand failed, not that the process doesn't enter. */ int exit_monitor(monitor* mtor); /* * @return 1 if cond is empty (no process is waiting on it), * 0 if not empty, -1 on failure. */ int mtor_empty(monitor* mtor, int cond); /* * Cause the process to wait for [cond]. * Note that while leaving a monitor, pending processes on signal take precedence * over processes that asked to enter the monitor. * @return 0 on success, -1 on failure. */ int mtor_wait(monitor* mtor, int cond); /* * If no process is waiting for [cond], do nothing. * If any, wake it and block on signal semaphore. * @return 0 on success, -1 on failure. */ int mtor_signal(monitor* mtor, int cond); /* * Use this function to attach monitor shared memory. * @return Adress of the attached shared memory segment, NULL on failure. */ void* mtor_shmat(monitor* mtor); /* * Use this function to detach monitor shared memory. * @return 0 on success, -1 on failure. */ int mtor_shmdt(void* shm_ptr); #endif // MONITORS_H
code/operating_system/src/concurrency/peterson_algorithm_for_mutual_exclusion/peterson_algorithm_in_c/mythreads.h
// mythread.h (A wrapper header file with assert // statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include <pthread.h> #include <assert.h> #include <sched.h> void Pthread_mutex_lock(pthread_mutex_t *m) { int rc = pthread_mutex_lock(m); assert(rc == 0); } void Pthread_mutex_unlock(pthread_mutex_t *m) { int rc = pthread_mutex_unlock(m); assert(rc == 0); } void Pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg) { int rc = pthread_create(thread, attr, start_routine, arg); assert(rc == 0); } void Pthread_join(pthread_t thread, void **value_ptr) { int rc = pthread_join(thread, value_ptr); assert(rc == 0); } #endif // __MYTHREADS_h__
code/operating_system/src/concurrency/peterson_algorithm_for_mutual_exclusion/peterson_algorithm_in_c/peterson_algo_mutual_exclusion_in_c.c
// Peterson's algorithm // C implementation // Here mythreads.h is a file externally included by me with some assertion statements #include <stdio.h> #include <pthread.h> #include"mythreads.h" int flag[2]; int turn; const int MAX = 1e9; int ans = 0; void lock_init() { // Initialize lock by reseting the desire of // both the threads to acquire the locks. // And, giving turn to one of them. flag[0] = flag[1] = 0; turn = 0; } // Executed before entering critical section void lock(int self) { // Set flag[self] = 1 saying you want to acquire lock flag[self] = 1; // But, first give the other thread the chance to // acquire lock turn = 1-self; // Wait until the other thread looses the desire // to acquire lock or it is your turn to get the lock. while (flag[1-self]==1 && turn==1-self) ; } // Executed after leaving critical section void unlock(int self) { // You do not desire to acquire lock in future. // This will allow the other thread to acquire // the lock. flag[self] = 0; } // A Sample function run by two threads created // in main() void* func(void *s) { int i = 0; int self = (int *)s; printf("Thread Entered: %d\n", self); lock(self); // Critical section (Only one thread // can enter here at a time) for (i=0; i<MAX; i++) ans++; unlock(self); } // Driver code int main() { // Initialized the lock then fork 2 threads pthread_t p1, p2; lock_init(); // Create two threads (both run func) pthread_create(&p1, NULL, func, (void*)0); pthread_create(&p2, NULL, func, (void*)1); // Wait for the threads to end. pthread_join(p1, NULL); pthread_join(p2, NULL); printf("Actual Count: %d | Expected Count: %d\n", ans, MAX*2); return 0; }
code/operating_system/src/concurrency/producer_consumer/producer_consumer.cpp
#include <iostream> #include <ctime> #include <cstdlib> #include <thread> #include <mutex> #include <vector> #include <condition_variable> const int N = 100; std::vector<int> shared_buffer(N); std::mutex lock_buffer; std::condition_variable cond; void producer() { while (true) { std::unique_lock<std::mutex> guard_producer(lock_buffer); if (shared_buffer.size() == N) cond.wait(guard_producer); int item_produced = rand() % 100 + 1; // ranges 1 to 100 shared_buffer.push_back(item_produced); if (shared_buffer.size() == 1) cond.notify_one(); std::cout << "Item " << item_produced << " was inserted into the buffer" << std::endl; } } void consumer() { while (true) { std::unique_lock<std::mutex> guard_consumer(lock_buffer); if (shared_buffer.empty()) cond.wait(guard_consumer); int item_consumed = shared_buffer.back(); // gets item shared_buffer.pop_back(); // removes item if (shared_buffer.size() == N - 1) cond.notify_one(); std::cout << "Item " << item_consumed << " was removed from the buffer" << std::endl; } } int main() { srand (time(0)); std::thread t_consumer(producer); std::thread t_producer(consumer); t_consumer.join(); t_producer.join(); return 0; }
code/operating_system/src/concurrency/readers_writers/readers_writers.cpp
#include <iostream> #include <vector> #include <thread> #include <mutex> #include <chrono> #define N 5 // # of processes (readers & writes) std::mutex mu; // controlling access to the number of processes std::mutex db; // controlling acess to the database std::mutex print_mu; // guards the cout << I/O int rc = 0; // # of processes reading or waiting to void read_db(int i) { std::lock_guard<std::mutex> guard {print_mu}; std::cout << "Reader #" << i << " is reading to the database" << std::endl; } void write_db(int i) { std::lock_guard<std::mutex> guard {print_mu}; std::cout << "Writer #" << i << " is writing to the database" << std::endl; } void reader(int i) { while (true) { std::unique_lock<std::mutex> lock_mu {mu}; std::unique_lock<std::mutex> lock_db {db, std::defer_lock}; rc = rc + 1; if (rc == 1) lock_db.lock(); lock_mu.unlock(); read_db(i); lock_mu.lock(); rc = rc - 1; if (rc == 0) lock_db.unlock(); lock_mu.unlock(); } } void writer(int i) { while (true) { std::unique_lock<std::mutex> lock_db {db}; write_db(i); lock_db.unlock(); } } int main() { std::thread writers[N]; std::thread readers[N]; for (size_t i = 0; i < N; i++) { writers[i] = std::thread(writer, i); readers[i] = std::thread(reader, i); } for (size_t i = 0; i < N; i++) { writers[i].join(); readers[i].join(); } return 0; }
code/operating_system/src/deadlocks/bankers_algorithm/README.md
# Banker's Algorithm ## Description Banker's algorithm is an conservative algorithm to check if a resource can be granted to a process if it is not used by any process in the system. It is used for deadlock management. ## Logic The algorithm relies on the following quantities: * *R(k)*: total amount of resource R<sub>k</sub> presesnt in the system. * *T<sub>i</sub>(k)*: total amount of resource R<sub>k</sub> that process P<sub>i</sub> will need during its execution. * *A<sub>i</sub>(k)*: amount of R<sub>k</sub> currently allocated to process P<sub>i</sub>. * *C(k)*: total amount of resource R<sub>k</sub> available currently in the system. * *N<sub>i</sub>(k)*: amount of resource R<sub>k</sub> that process P<sub>i</sub> currently need to complete. When a process request a certain resource R<sub>k</sub>, the banker's algorithm will determine if grant the resource will lead the system to **safe state**. The safe state is defined as for an arbitary sequence of execution of all processes in the system, if for each processes in the system, it is possible to allocate enough resources to finish each process, then the state is said to be safe. Clearly, if grant the resource will lead to safe state, deadlocks are avoided.The algorithm check if grant the resource will lead to safe state by checking if there is a sequence of execution that all processes will finish. ``` stateIsSafe(): W(k) <- C(k) for each resource Pi <- init to CannotFinish while Pi exists and Pi CannotFinish and Ni(k) <= W(k) for all k Pi <- CanFinish W(k) <- W(k) + Ai(k) for all k endwhile if Pi CanFinish for all i return true else return false endif end ```
code/operating_system/src/deadlocks/bankers_algorithm/banker_safety.cpp
// Part of Cosmos by OpenGenus Foundation. // Banker's Algorithm: Safety Algorithm #include <cstdio> int main() { // Initialize int available[10], allocation [10][10], maximum[10][10]; int noOfProcesses, noOfResources, need[10][10]; int work[10], finish[10] = {0}, i; //Inputs printf("Enter no. of processes ... "); scanf("%d", &noOfProcesses ); printf("Enter no. of resources available ... "); scanf("%d", &noOfResources); printf("Enter instances ...\n"); for (i = 0; i < noOfResources; i++) { printf("Resource %d: ", i + 1); scanf("%d", &available[i]); //Initializing Work work[i] = available[i]; } printf("Enter allocation array ... \n"); for (i = 0; i < noOfProcesses; i++) for (int j = 0; j < noOfResources; j++) scanf("%d", &allocation[i][j]); printf("Enter maximum array ... \n"); for (i = 0; i < noOfProcesses; i++) for (int j = 0; j < noOfResources; j++) scanf("%d", &maximum[i][j]); printf("Need matrix is ... \n"); for (i = 0; i < noOfProcesses; i++) { for (int j = 0; j < noOfResources; j++) { need[i][j] = maximum[i][j] - allocation[i][j]; printf("%d ", need[i][j]); } printf("\n"); } // Safety Algorithm int processesNotCompleted = noOfProcesses; int cp = 0, op[10]; while (processesNotCompleted) { int aProcessCompleted = 0; for (int x = 0; x < noOfProcesses; x++) //Check if process is yet to finish if (!finish[x]) { int possible = 1; for (int y = 0; y < noOfResources; y++) if (need[x][y] > work[y]) possible = 0; // and if it's possible to complete a process if (possible) { printf("Work after executing process %d : ", x); for (int y = 0; y < noOfResources; y++) { work[y] += allocation[x][y]; printf("%d ", work[y]); } printf("\n"); finish[x] = 1; op[cp++] = x; processesNotCompleted--; aProcessCompleted = 1; } } // if it's not possible to complete a proceess if (!aProcessCompleted) break; } // if all proccesses not completed if (processesNotCompleted) printf("Safe sequence not possible !"); // else if all processes completed else { printf("Safe Sequence is : "); for (i = 0; i < cp; i++) printf("P%d ", op[i]); } return 0; }
code/operating_system/src/memory_management/least_recently_used/lru.c
#include<stdio.h> int frame[3]={0,0,0},pref[3]={0,0,0},page[20]; int hita(int a) // counts hit { int n=1,i=0; for(i=0;i<3;i++) { if(frame[i]==a) { n=0; break; } else continue; }printf("%d",n); return n; } void initi(int a,int i) {int z=0,min=0,j=0; for(j=0;j<3;j++) //setting up preference table { for(z=i;z>=0;z--) { if(frame[j]==page[i]) pref[j]=z; } } min=pref[0]; for(j=0;j<3;j++) //finds out lowest prefernce value {if(min>pref[j]) min=pref[j]; else continue; } frame[min]=a; } void main() { int hit=0,temp=0,miss=0,i=0,n=0; printf("ENter the no of pages");//takes input for(i=0;i<8;i++) scanf("%d",&page[i]); for(i=0;i<3;i++)//intialize first frames { frame[i]=page[i]; miss++; } for(i=3;i<8;i++) { temp=hita(page[i]); if(temp==0) hit++; else {miss++; initi(frame[i],i);} } printf("hit=%d and miss=%d",hit,miss); }
code/operating_system/src/memory_management/least_recently_used/lru.cpp
/* Least Recently Used Page Replacement Algorithm implemented using a stack */ #include <bits/stdc++.h> using namespace std; /* A function that finds and returns the index of the current page in the page table If it is not present it would return -1 */ int find(int current_page,vector<int>& page_table){ for(int i=0;i<page_table.size();i++) if(page_table[i]==current_page) return i; return -1; } int main(){ int frames,pages,page_fault=0,page_hit=0; cout<<"Enter the number of Frames"<<endl; cin>>frames; cout<<"Enter the number of Page numbers in memory references"<<"\nNote : The page number has to be non - negative "<<endl; cin>>pages; vector<int>page_numbers(pages,-1); // Stores the sequence of page numbers given as I/P by the user // Note : The page number has to be non - negative cout<<"Enter the sequence of memory references i.e page numbers"<<endl; // Storing the sequence of page numbers for(int i=0;i<pages;i++){ cin>>page_numbers[i]; } // Initialising the storage matrix int matrix[frames][pages]; // A storage matrix, that we will use to visualise the LRU algorithm and the stack for(int i=0;i<frames;i++){ for(int j=0;j<pages;j++) matrix[i][j] = 0; } vector<int>page_table(frames,-1); // page_table is the stack that is used for LRU Page Replacement // Note I'm using -1 as my reference to indicate that the frame is empty /* Loops through each page number from the sequence given by user and implements demand paging i.e replaces Least Recently Used (LRU) page for this page if there is a shortage of pages, else would add the page to the stack i.e allot a frame */ for(int i=0;i<pages;i++){ int index_of_current_page; // The index of the page if present,else -1 int current_page = page_numbers[i]; index_of_current_page = find(current_page,page_table); // If current page is not there in the page table i.e a page fault if(index_of_current_page ==-1){ page_fault++; page_table.erase(page_table.begin()); // Erase the LRU Page i.e the bottom of the stack } // The current page is already present in the page table i.e page hit else{ page_hit++; page_table.erase(page_table.begin() + index_of_current_page); } /* Update the page to the top of the stack -> this is indepent of page fault or page hit Because the top of the stack contains the Most Recently used page and bottom of the stack hold the Least Recently used page */ page_table.push_back(current_page); // Storing the snapshot of the present page table in the matrix for(int j=0;j<frames;j++) matrix[j][i] = page_table[frames-j-1]; } cout<<"\n \n"; // Displaying all the snapshots of the page table taken for each time unit i.e page hit or page fault for(int i=0;i<frames;i++){ if(i==frames-1) cout<<"LRU Page ->"<<" "; else cout<<" "; for(int j=0;j<pages;j++){ printf("%2d ",matrix[i][j]); } cout<<endl; } float page_hit_ratio = page_hit; page_hit_ratio = page_hit_ratio/pages; float page_fault_ratio = page_fault; page_fault_ratio = page_fault_ratio/pages; cout<<"Page Hit ratio : "<<page_hit_ratio<<endl; cout<<"Page Fault ratio : "<<page_fault_ratio<<endl; cout<<"Note I'm using -1 as my reference to indicate that the frame is empty"<<endl; return 0; } // Note I'm using -1 as my reference to indicate that the frame is empty in the page table and it would reflect in the output also /* Example : I/P : Frames : 3, Number of pages in sequence : 20 Memory reference sequence of page numbers : 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 O/P : 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 -1 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 LRU Page -> -1 -1 7 0 1 2 2 3 0 4 2 2 0 3 3 1 2 0 1 7 Page Hit ratio : 0.4 Page Fault ratio : 0.6 */
code/operating_system/src/memory_management/memory_mapping/mapping.c
#ifdef USE_MAP_ANON #define _BSD_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/wait.h> #include <sys/mman.h> #include <fcntl.h> #include <unistd.h> int main(int argc, char *argv[]) { /*Point to previous shared memory*/ int *addr; #ifdef USE_MAP_ANON /*Using MAP_ANONYMOUS*/ addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { fprintf(stderr, "mmap() failed\n"); exit(EXIT_FAILURE); } #else /*Map /dev/zero*/ int fd; fd = open("/dev/zero", O_RDWR); if (fd == -1) { fprintf(stderr, "open() failed\n"); exit(EXIT_FAILURE); } addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (addr == MAP_FAILED) { fprintf(stderr, "mmap() failed\n"); exit(EXIT_FAILURE); } if (close(fd) == -1) { fprintf(stderr, "close() failed\n"); exit(EXIT_FAILURE); } #endif *addr = 1; /*Init an int var in this block of memory*/ switch(fork()) { /*Parent process mapping each other*/ case -1: fprintf(stderr, "fork() failed\n"); exit(EXIT_FAILURE); case 0: /*Sub process increase the int var and stop*/ printf("Child started, value = %d\n", *addr); (*addr)++; if (munmap(addr, sizeof(int)) == -1) { fprintf(stderr, "munmap()() failed\n"); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); default: /*Father process wait for the child to finish*/ if (wait(NULL) == -1) { fprintf(stderr, "wait() failed\n"); exit(EXIT_FAILURE); } printf("In parent, value = %d\n", *addr); if (munmap(addr, sizeof(int)) == -1) { fprintf(stderr, "munmap()() failed\n"); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }