filename
stringlengths 7
140
| content
stringlengths 0
76.7M
|
---|---|
code/mathematical_algorithms/mathematical_algorithms/Solve_x_y/README.md | # Find (x, y) solutions for 1/x + 1/y=1/n
## Summary
Find number of possible solution of 1/x + 1/y=1/n
- Given n is a positive integer
- x,y where x>=y and positive integer
## Solve
- y is a smallest number integer among denominators
- the smallest positive integer of y is y = n+1
- Therefore x = (n*y)/(y-n)
## Example
Given a positive integer (n):5
- (x=30,y=6) solution for 1/5 = 1/30+1/6
- (x=10,y=10) solution for 1/5 = 1/10+1/10
### Let solve to find all (x, y) solution in Python
|
code/mathematical_algorithms/mathematical_algorithms/automorphic_number.c | #include<stdio.h>
int main(){
int n;
printf("Enter the number\n");
scanf("%d",&n);
int digit_count=0;
for(int i=n;i>0;i/=10){
digit_count++;
}
int square_of_n=n*n;
//digit extraction from behind in square
int digits=0;
int power=0;
for(int i=square_of_n;i>0;i/=10){
if(power+1<=digit_count){
digits+=(i%10)*pow(10,power);
power++;
}
}
if(digits==n){
printf("\n%d is automorphic\n",n);
}
else{
printf("%d is not automorphic\n",n);
}
} |
code/mathematical_algorithms/mathematical_algorithms/factorial/factorial.pl | # Part of Cosmos by OpenGenus Foundation
$num = 6;
$factorial = 1;
for( $a = $num; $a > 0; $a = $a - 1 ) {
$factorial = $factorial * $a;
}
print $factorial;
|
code/mathematical_algorithms/src/2sum/2sum.c | /*
* Given an array and a sum, returns two numbers from the array that add-up to sum.
* Part of Cosmos by OpenGenus Foundation.
* Author : ABDOUS Kamel
*/
#include <stdio.h>
#include <stdlib.h>
int
max(int a, int b)
{
if (a <= b)
return (b);
else
return (a);
}
/* -------------------------------------- AVL TREE --------------------------------------------------- */
/* This code was taken from cosmos/code/data_structures/avl_tree/AVL_tree.cpp and adapted to work in C */
typedef struct AVLNode
{
int data;
struct AVLNode* left;
struct AVLNode* right;
int height;
} AVLNode;
// helper function to return height of a node
int getHeight(AVLNode* node)
{
if(node){
return node->height;
}
return -1;
}
// LL rotation rooted at X
AVLNode* LL_rotation(AVLNode* X)
{
AVLNode* W = X->left;
X->left = W->right;
W->right = X;
X->height = max(getHeight(X->left), getHeight(X->right)) + 1;
W->height = max(getHeight(W->left), getHeight(X)) + 1;
return W; //new root
}
// RR rotation rooted at X
AVLNode* RR_rotation(AVLNode* X)
{
AVLNode* W = X->right;
X->right = W->left;
W->left = X;
X->height = max(getHeight(X->left), getHeight(X->right)) + 1;
W->height = max(getHeight(X), getHeight(W->right));
return W; //new root
}
// LR rotation rooted at X
AVLNode* LR_rotation(AVLNode* X)
{
X->left = RR_rotation(X->left);
return LL_rotation(X);
}
// RL rotation rooted at X
AVLNode* RL_rotation(AVLNode* X)
{
X->right = LL_rotation(X->right);
return RR_rotation(X);
}
int AVLFind(AVLNode* root, int data)
{
while(root != NULL)
{
if(root->data == data)
return 1;
else if(root->data < data)
root = root->right;
else
root = root->left;
}
return 0;
}
// function to insert a node into the AVL tree
AVLNode* insertIntoAVL(AVLNode* root, int data)
{
if(root == NULL) {
AVLNode* newNode = (AVLNode*)(malloc(sizeof(*newNode)));
newNode->data = data;
newNode->height = 0;
newNode->left = newNode->right = NULL;
root = newNode;
}
else if(data < root->data) {
root->left = insertIntoAVL(root->left, data);
if(getHeight(root->left) - getHeight(root->right) == 2)
{
if(data < root->left->data)
root = LL_rotation(root);
else
root = LR_rotation(root);
}
}
else if(data > root->data) {
root->right = insertIntoAVL(root->right, data);
if(getHeight(root->right) - getHeight(root->left) == 2)
{
if(data > root->right->data)
root = RR_rotation(root);
else
root = RL_rotation(root);
}
}
root->height = max(getHeight(root->left), getHeight(root->right)) + 1;
return root;
}
// function to free allocated memory
void deleteTree(AVLNode *root)
{
if(root == NULL)
return;
deleteTree(root->left);
deleteTree(root->right);
free(root);
}
/* ----------------------------------------END OF AVL TREE ------------------------------------------------ */
int
twoSum(int array[], int size, int sum, int* a, int* b)
{
int i;
AVLNode* map = (AVLNode*)(malloc(sizeof(*map)));
map->data = array[0];
map->height = 0;
map->left = map->right = NULL;
for (i = 1; i < size; ++i) {
if (AVLFind(map, sum - array[i])) {
*a = array[i];
*b = sum - array[i];
deleteTree(map);
return (0);
}
else
map = insertIntoAVL(map, array[i]);
}
deleteTree(map);
return (-1);
}
int
main()
{
int a[] = {1, 2, 3, 3, 5, 6};
int b, c;
twoSum(a, 6, 9, &b, &c);
printf("%d %d\n", b, c);
return (0);
}
|
code/mathematical_algorithms/src/2sum/2sum.cpp | //Given an array and a sum, print two numbers from the array that add-up to sum
#include <iostream>
#include <map>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
#define ll long long
map<ll, ll> m;
//Function to find two numbers which add up to sum
void twoSum(ll a[], ll sum, int n)
{
for (int i = 0; i < n; i++)
if (m[sum - a[i]])
{
cout << "The two numbers are ";
cout << a[i] << " " << sum - a[i] << endl;
return;
}
}
int main()
{
ll a[] = {1, 2, 3, 4, 5};
int n = sizeof(a) / sizeof(ll);
ll sum = 8;
for (int i = 0; i < n; i++)
m[a[i]] = 1;
twoSum(a, sum, n);
return 0;
}
|
code/mathematical_algorithms/src/2sum/2sum.go | package main
import "fmt"
// twoSum returns two numbers which add up to sum
func twoSum(list []float64, sum float64) (a float64, b float64, hasResult bool) {
n := len(list)
m := make(map[float64]bool, 0)
for i := 0; i < n; i++ {
m[list[i]] = true
}
for i := 0; i < n; i++ {
if m[sum-list[i]] {
return list[i], sum - list[i], true
}
}
return 0.0, 0.0, false
}
func main() {
list := []float64{1, 2, 3, 4, 5}
sum := 8.0
a, b, hasResult := twoSum(list, sum)
if hasResult {
fmt.Printf("Two numbers are (%f, %f).\n", a, b)
} else {
fmt.Println("There are no results.")
}
} |
code/mathematical_algorithms/src/2sum/2sum.java | // Part of Cosmos by OpenGenus Foundation
public class two_sum {
private static int[] two_sum(int[] arr, int target) {
if (arr == null || arr.length < 2) return new int[]{0, 0};//Condition to check
HashMap<Integer, Integer> map = new HashMap<>();//Map Interface
for (int i = 0; i < arr.length; i++) {//Loop total total length of array
if (map.containsKey(arr[i])) {//Checking for a definite key
return new int[]{map.get(arr[i]), i};
} else {
map.put(target - arr[i], i);
}
}
return new int[]{0, 0};
}
//Driver's code
public static void main(String[] args) {//Main method
int[] arr1 = {3, 5, 7, 0, -3, -2, -3};//Initializing
int[] arr2 = {3, 5, 0, -3, -2, -3};//Initializing
System.out.println(Arrays.toString(two_sum(arr1, 4)));//Output condition
System.out.println(Arrays.toString(two_sum(arr2, 4)));//Output condition
}
}
|
code/mathematical_algorithms/src/2sum/2sum.js | /*Part of cosmos by OpenGenus Foundation*/
function get2sum(a, b) {
return a + b;
}
console.log(get2sum(2, 3));
|
code/mathematical_algorithms/src/2sum/2sum.py | # Part of Cosmos by OpenGenus Foundation
# Given an array of integers, return the indices of the two numbers such that they add up to a specific target.
def two_sum(array, target):
indices = {}
for i, n in enumerate(array):
if target - n in indices:
return (indices[target - n], i)
indices[n] = i
return (None, None)
print(two_sum([3, 5, 7, 0, -3, -2, -3], 4))
print(two_sum([3, 5, 0, -3, -2, -3], 4))
|
code/mathematical_algorithms/src/2sum/2sum.rb | # Part of Cosmos by OpenGenus Foundation
# Given an array of integers, return the indices of the two numbers such that they add up to a specific target.
def two_sum(list, target)
buffer = {}
list.each_with_index do |val, idx|
return [buffer[target - val], idx] if buffer.key?(target - val)
buffer[val] = idx
end
[nil, nil]
end
p two_sum([3, 5, 7, 0, -3, -2, -3], 4)
p two_sum([3, 5, 0, -3, -2, -3], 4)
|
code/mathematical_algorithms/src/2sum/2sum.rs | use std::collections::HashMap;
// Part of Cosmos by OpenGenus Foundation
fn main() {
// 2 results - for `7` and both `-3` numbers
two_sum(vec![3, 5, 7, 0, -3, -2, -3], 4);
// No results
two_sum(vec![3, 5, 0, -3, -2, -3], 4);
}
fn two_sum(numbers: Vec<i32>, target: i32) {
let mut indices: HashMap<i32, usize> = HashMap::new();
println!("Numbers: {:?}", numbers);
for (i, number) in numbers.iter().enumerate() {
let hash_index = target - number;
if indices.get(&hash_index).is_some() {
println!("Found two indices that sum-up to {}: {} and {}", target, indices.get(&hash_index).unwrap(), i);
}
indices.insert(*number, i);
}
}
|
code/mathematical_algorithms/src/Binary_GCD_Algorithm/Binary_GCD_Iterative.cpp | // Iterative Approach
#include <bits/stdc++.h>
using namespace std;
//GCD Function
int gcd(int x, int y)
{
if (x == 0)
return y;
if (y == 0)
return x;
/*Finding K, where K is the
greatest power of 2
that divides both a and b. */
int k;
for (k = 0; ((x | y) && 1) == 0; ++k)
{
x >>= 1;
y >>= 1;
}
/* Dividing x by 2 until x becomes odd */
while ((x > 1) == 0)
x >>= 1;
/* From here on, 'x' is always odd. */
do {
/* If y is even, remove all factor of 2 in y */
while ((y > 1) == 0)
y >>= 1;
// Now x and y are both odd
if (x > y)
swap(x, y); // Swap u and v.
x = (y - a);
} while (y != 0);
return x << k;
}
// Driver code
int main()
{
int x = 72, b = 12;
cout<<"Gcd of given numbers is "<< gcd(x, y));
return 0;
}
|
code/mathematical_algorithms/src/Binary_GCD_Algorithm/Binary_GCD_Recursive.cpp | // Recursive program
#include <bits/stdc++.h>
using namespace std;
// Function to implement the
// Stein's Algorithm
int gcd(int x, int y)
{
if (x == y)
return x;
if (x == 0)
return y;
if (y == 0)
return x;
// look for factors of 2
if (~x & 1) // x is even
{
if (y & 1) // y is odd
return gcd(x >> 1, y);
else // both x and y are even
return gcd(x >> 1, y >> 1) << 1;
}
if (~y & 1) // x is odd, y is even
return gcd(x, y >> 1);
// reduce larger number
if (x > y)
return gcd((x - y) >> 1, y);
return gcd((y - x) >> 1, x);
}
// Driver code
int main()
{
int a = 34, b = 17;
cout<<"Gcd of given numbers is"<<gcd(a, b));
return 0;
}
|
code/mathematical_algorithms/src/Binary_GCD_Algorithm/Binary_GCD_Recursive.py | def gcd(a, b):
if (a == b):
return a
if (a == 0):
return b
if (b == 0):
return a
if ((~a & 1) == 1):
if ((b & 1) == 1):
return gcd(a >> 1, b)
else:
return (gcd(a >> 1, b >> 1) << 1)
if ((~b & 1) == 1):
return gcd(a, b >> 1)
if (a > b):
return gcd((a - b) >> 1, b)
return gcd((b - a) >> 1, a)
a, b = 34, 17
print("Gcd of given numbers is ",
gcd(a, b))
|
code/mathematical_algorithms/src/Binary_GCD_Algorithm/README.md | This article at Opengenus on Binary GCD Algorithm or Stien's Algorithm gives an entire overview of the algorithm, along with the following :
* Background/Mathematical Concept related to the algorithm
* PseudoCode
* Detailed Example Explanation
* Implementation
* Complexity
* Efficiency
* Applications
This algorithm is basically a variation of the standard GCD algorithm and uses arithmetic shifts and operations instead of the conventional multiplication and division operations.
[Read the article to find out more interesting facts related to this algorithm](https://iq.opengenus.org/binary-gcd-algorithm/)
|
code/mathematical_algorithms/src/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
Collaborative effort by [OpenGenus](https://github.com/opengenus) |
code/mathematical_algorithms/src/add_polynomials/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
Collaborative effort by [OpenGenus](https://github.com/opengenus) |
code/mathematical_algorithms/src/add_polynomials/add_polynomials.c | /* Part of Cosmos by OpenGenus Foundation */
#include <stdio.h>
#include <stdlib.h>
/*
* Node structure containing power and coefficient of variable.
*/
struct Node
{
int coeff;
int pow;
struct Node *next;
};
/*
* Function to create new node.
*/
void
create_node(int x, int y, struct Node **temp)
{
struct Node *r, *z;
z = *temp;
if (z == NULL) {
r = (struct Node*)malloc(sizeof(struct Node));
r->coeff = x;
r->pow = y;
*temp = r;
r->next = (struct Node*)malloc(sizeof(struct Node));
r = r->next;
r->next = NULL;
}
else {
r->coeff = x;
r->pow = y;
r->next = (struct Node*)malloc(sizeof(struct Node));
r = r->next;
r->next = NULL;
}
}
/*
* Function Adding two polynomial numbers
*/
void
polyadd(struct Node *poly1, struct Node *poly2, struct Node *poly)
{
while (poly1->next && poly2->next) {
/* If power of 1st polynomial is greater then 2nd, then store 1st as it is
and move its pointer. */
if (poly1->pow > poly2->pow) {
poly->pow = poly1->pow;
poly->coeff = poly1->coeff;
poly1 = poly1->next;
}
/* If power of 2nd polynomial is greater then 1st, then store 2nd as it is
and move its pointer */
else if (poly1->pow < poly2->pow) {
poly->pow = poly2->pow;
poly->coeff = poly2->coeff;
poly2 = poly2->next;
}
/* If power of both polynomial numbers is same then add their coefficients. */
else {
poly->pow = poly1->pow;
poly->coeff = poly1->coeff+poly2->coeff;
poly1 = poly1->next;
poly2 = poly2->next;
}
/* Dynamically create new node */
poly->next = (struct Node *)malloc(sizeof(struct Node));
poly = poly->next;
poly->next = NULL;
}
while (poly1->next || poly2->next) {
if (poly1->next) {
poly->pow = poly1->pow;
poly->coeff = poly1->coeff;
poly1 = poly1->next;
}
if (poly2->next) {
poly->pow = poly2->pow;
poly->coeff = poly2->coeff;
poly2 = poly2->next;
}
poly->next = (struct Node *)malloc(sizeof(struct Node));
poly = poly->next;
poly->next = NULL;
}
}
/* Display Linked list. */
void
show(struct Node *node)
{
while (node->next != NULL) {
printf("%dx^%d", node->coeff, node->pow);
node = node->next;
if (node->next != NULL)
printf(" + ");
}
}
/* Driver program. */
int
main()
{
struct Node *poly1 = NULL, *poly2 = NULL, *poly = NULL;
/* Create first list of 5x^2 + 4x^1 + 2x^0 */
create_node(5,2,&poly1);
create_node(4,1,&poly1);
create_node(2,0,&poly1);
/* Create second list of 5x^1 + 5x^0 */
create_node(5,1,&poly2);
create_node(5,0,&poly2);
printf("1st Number: ");
show(poly1);
printf("\n2nd Number: ");
show(poly2);
poly = (struct Node *)malloc(sizeof(struct Node));
/* Function add two polynomial numbers */
polyadd(poly1, poly2, poly);
/* Display resultant List */
printf("\nAdded polynomial: ");
show(poly);
return (0);
}
|
code/mathematical_algorithms/src/add_polynomials/add_polynomials.cpp | /* Part of Cosmos by OpenGenus Foundation */
/* Contributed by Vaibhav Jain (vaibhav29498) */
/* Refactored by Adeen Shukla (adeen-s) */
#include <iostream>
#include <stddef.h>
using namespace std;
struct term
{
int coeff;
int pow;
term* next;
term(int, int);
};
term::term(int c, int p)
{
coeff = c;
pow = p;
next = NULL;
}
class polynomial {
term* head;
public:
polynomial();
void insert_term(int, int);
void print();
friend polynomial operator+(polynomial, polynomial);
};
polynomial::polynomial()
{
head = NULL;
}
void polynomial::insert_term(int c, int p)
{
if (head == NULL)
{
head = new term(c, p);
return;
}
if (p > head->pow)
{
term* t = new term(c, p);
t->next = head;
head = t;
return;
}
term* cur = head;
while (cur != NULL)
{
if (cur->pow == p)
{
cur->coeff += c;
return;
}
if ((cur->next == NULL) || (cur->next->pow < p))
{
term* t = new term(c, p);
t->next = cur->next;
cur->next = t;
return;
}
cur = cur->next;
}
}
void polynomial::print()
{
term* t = head;
while (t != NULL)
{
cout << t->coeff;
if (t->pow)
cout << "x^" << t->pow;
if (t->next != NULL)
cout << "+";
t = t->next;
}
cout << endl;
}
polynomial operator+(polynomial p1, polynomial p2)
{
polynomial p;
term *t1 = p1.head, *t2 = p2.head;
while ((t1 != NULL) && (t2 != NULL))
{
if (t1->pow > t2->pow)
{
p.insert_term(t1->coeff, t1->pow);
t1 = t1->next;
}
else if (t1->pow < t2->pow)
{
p.insert_term(t2->coeff, t2->pow);
t2 = t2->next;
}
else
{
p.insert_term(t1->coeff + t2->coeff, t1->pow);
t1 = t1->next;
t2 = t2->next;
}
}
while (t1 != NULL)
{
p.insert_term(t1->coeff, t1->pow);
t1 = t1->next;
}
while (t2 != NULL)
{
p.insert_term(t2->coeff, t2->pow);
t2 = t2->next;
}
return p;
}
int main()
{
polynomial p1, p2;
p1.insert_term(7, 4);
p1.insert_term(4, 5);
p1.insert_term(10, 0);
p1.insert_term(9, 2);
cout << "First polynomial:";
p1.print();
p2.insert_term(5, 0);
p2.insert_term(6, 5);
p2.insert_term(7, 0);
p2.insert_term(3, 2);
cout << "Second polynomial:";
p2.print();
polynomial p3 = p1 + p2;
cout << "Sum:";
p3.print();
return 0;
}
|
code/mathematical_algorithms/src/add_polynomials/add_polynomials.go | /* Part of Cosmos by OpenGenus Foundation */
package main
import "fmt"
type PolyNode struct {
Coeff int
Pow int
}
type polynomial struct {
Data []PolyNode
}
func (p *polynomial) AddNode(coeff, pow int) {
//Find a sutible location.
index := -1
for i, data := range p.Data {
if pow > data.Pow {
index = i
break
}
}
if index == -1 {
p.Data = append(p.Data, PolyNode{Coeff: coeff, Pow: pow})
} else {
res := append([]PolyNode{}, p.Data[index:]...)
p.Data = append(p.Data[:index], PolyNode{Coeff: coeff, Pow: pow})
p.Data = append(p.Data, res...)
}
}
func (p *polynomial) Show() {
for i, data := range p.Data {
if i != 0 {
fmt.Printf(" + ")
}
fmt.Printf("%dx^%d", data.Coeff, data.Pow)
}
fmt.Printf("\n")
}
func (p *polynomial) Length() int {
return len(p.Data)
}
func (p *polynomial) GetNode(index int) PolyNode {
return p.Data[index]
}
func Addpolynomial(p1, p2 polynomial) polynomial {
ans := polynomial{}
i, j := 0, 0
for i, j = 0, 0; i < p1.Length() && j < p2.Length(); {
p1N := p1.GetNode(i)
p2N := p2.GetNode(j)
coeff := 0
pow := 0
if p1N.Pow == p2N.Pow {
pow = p1N.Pow
coeff = p1N.Coeff + p2N.Coeff
i++
j++
} else if p1N.Pow > p2N.Pow {
pow = p1N.Pow
coeff = p1N.Coeff
i++
} else {
pow = p2N.Pow
coeff = p2N.Coeff
j++
}
ans.AddNode(coeff, pow)
}
for ; i < p1.Length(); i++ {
pN := p1.GetNode(i)
ans.AddNode(pN.Coeff, pN.Pow)
}
for ; j < p2.Length(); j++ {
pN := p2.GetNode(j)
ans.AddNode(pN.Coeff, pN.Pow)
}
return ans
}
func main() {
p1 := polynomial{}
p2 := polynomial{}
p1.AddNode(2, 11)
p1.AddNode(2, 5)
p1.AddNode(12, 4)
p1.AddNode(3, 1)
p1.AddNode(8, 2)
fmt.Printf("polynomial one is ")
p1.Show()
p2.AddNode(1, 7)
p2.AddNode(-4, 6)
p2.AddNode(3, 4)
p2.AddNode(4, 2)
p2.AddNode(8, 0)
fmt.Printf("polynomial two is ")
p2.Show()
ans := Addpolynomial(p1, p2)
fmt.Printf("The sum of above two polynomial is ")
ans.Show()
}
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.c | #include <stdio.h>
int
main()
{
printf("Amicable Numbers below 10000 are:- \n");
int m, i, j;
for (m = 1; m <= 10000; m++) {
int x = m;
int sum1 = 0, sum2 = 0;
for (i = 1; i < x; i++)
if (x % i == 0)
sum1 += i;
int y = sum1;
for (j = 1; j < y; j++)
if (y % j == 0)
sum2 += j;
if (sum2 == x && x != y)
printf("%d \n", x);
}
return (0);
} |
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.cpp | // Part of Cosmos by OpenGenus Foundation
//Program to Calculate Amicable Numbers under 10000 and find sum of them
#include <iostream>
using namespace std;
int main()
{
int n, k;
int i = 1, s1 = 0, s2 = 0, sum = 0;
for (k = 1; k <= 10000; k++)
{
n = k;
while (i < n)
{
if (n % i == 0)
s1 = s1 + i;
i++;
}
i = 1;
if (s1 == n)
continue;
while (i < s1)
{
if (s1 % i == 0)
s2 = s2 + i;
i++;
}
if (n == s2)
{
cout << n << endl;
sum += n;
}
s1 = 0;
s2 = 0;
}
cout << "\nSum of Amicable numbers under 10000 is : " << sum;
}
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.cs | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace amicable_numbers
{
class Program
{
static void amicable_numbers(int from, int to)
{
for(int i = from; i < to; i++)
{
int x = i, y;
int sum1 = 0, sum2 = 0;
for (int j = 1; j < x; j++)
{
if (x % j == 0)
sum1 += j;
}
y = sum1;
for (int j = 1; j < y; j++)
{
if (y % j == 0)
sum2 += j;
}
if (sum2 == x && x != y)
{
Console.WriteLine(x);
}
}
}
static void Main(string[] args)
{
int num1 = 10;
int num2 = 2000;
Console.WriteLine("amicable nunmbers between {0} and {1} are", num1, num2);
amicable_numbers(num1, num2);
Console.ReadKey();
}
}
}
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.go | package main
import (
"fmt"
)
// Get all prime factors of a given number n
func PrimeFactors(n int) (pfs []int) {
// Get the number of 2s that divide n
for n%2 == 0 {
pfs = append(pfs, 2)
n = n / 2
}
// n must be odd at this point. so we can skip one element
// (note i = i + 2)
for i := 3; i*i <= n; i = i + 2 {
// while i divides n, append i and divide n
for n%i == 0 {
pfs = append(pfs, i)
n = n / i
}
}
// This condition is to handle the case when n is a prime number
// greater than 2
if n > 2 {
pfs = append(pfs, n)
}
return
}
// return p^i
func Power(p, i int) int {
result := 1
for j := 0; j < i; j++ {
result *= p
}
return result
}
// formula comes from https://math.stackexchange.com/a/22723
func SumOfProperDivisors(n int) int {
pfs := PrimeFactors(n)
// key: prime
// value: prime exponents
m := make(map[int]int)
for _, prime := range pfs {
_, ok := m[prime]
if ok {
m[prime] += 1
} else {
m[prime] = 1
}
}
sumOfAllFactors := 1
for prime, exponents := range m {
sumOfAllFactors *= (Power(prime, exponents+1) - 1) / (prime - 1)
}
return sumOfAllFactors - n
}
func AmicableNumbersUnder10000() (amicables []int) {
for i := 3; i < 10000; i++ {
s := SumOfProperDivisors(i)
if s == i {
continue
}
if SumOfProperDivisors(s) == i {
amicables = append(amicables, i)
}
}
return
}
func main() {
amicables := AmicableNumbersUnder10000()
fmt.Println(amicables)
sum := 0
for i := 0; i < len(amicables); i++ {
sum += amicables[i]
}
fmt.Println(sum)
}
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.java | import java.util.Set;
import java.util.TreeSet;
public class Amicable_numbers {
public static void main(String[] args) {
System.out.println("The sum of amicable numbers less than 1000 is " + getAmicableSum(10000));
}
// returns the sum of all divisors less than n
public static int getDivisorSum(int n) {
Set<Integer> divisors = new TreeSet<Integer>();
int root = (int) Math.ceil(Math.sqrt(n));
for (int i = 1; i < root + 1; i++) {
if ((double) n % i == 0 && i < n) {
divisors.add(i);
if (n / i < n) {
divisors.add(n / i);
}
}
}
int divisorSum = 0;
for (int i : divisors) {
divisorSum += i;
}
return divisorSum;
}
// returns the sum of all amicable numbers less than max
private static int getAmicableSum(int max) {
int sum = 0;
for (int i = 1; i < max; i++) {
int a = getDivisorSum(i);
int b = getDivisorSum(a);
if (i == b && a != b) {
sum += i;
}
}
return sum;
}
}
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.js | function check(a, b) {
let sum = 0;
for (let i = 1; i < a; i++) {
if (a % i == 0) {
sum += i;
}
}
if (sum == b) {
return true;
}
}
function ami_check(a, b) {
if (check(a, b)) {
if (check(b, a)) {
console.log("Numbers are Amicable");
} else {
console.log("Numbers are not Amicable");
}
} else {
console.log("Numbers are not Amicable");
}
}
ami_check(17296, 18416);
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.py | def ami_check(x, y):
if x == y:
return False # 1
sum_x = sum(e for e in range(1, x // 2 + 1) if x % e == 0) # 2
sum_y = sum(e for e in range(1, y // 2 + 1) if y % e == 0) # 2
return sum_x == y and sum_y == x # 3
if __name__ == "__main__":
print(ami_check(220, 284))
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.rb | def sum_of_proper_divisors(num)
(1..(num / 2)).select { |i| num % i == 0 }.inject(:+)
end
def ami_check(num1, num2)
if num1 == num2
false
else
sum_of_proper_divisors(num1) == num2 && sum_of_proper_divisors(num2) == num1
end
end
puts ami_check(66_928, 66_992)
|
code/mathematical_algorithms/src/amicable_numbers/amicable_numbers.rs | fn sum_of_divisors(a: u64) -> u64 {
let mut sum = 0;
// let max = (a as f64).sqrt() as u64;
// TODO: Optimize by checking up to sqrt of a and using iterators
for i in 1..a {
if a % i == 0 {
sum += i;
}
}
sum
}
fn is_amicable(a: u64, b: u64) -> bool {
sum_of_divisors(a) == b && sum_of_divisors(b) == a
}
#[test]
fn test_amicable() {
assert!(!is_amicable(23, 234));
assert!(is_amicable(220, 284));
assert!(is_amicable(1184, 1210));
assert!(is_amicable(17296, 18416));
}
|
code/mathematical_algorithms/src/armstrong_num_range/README.md | # Finding all armstrong numbers in a given range
## [Article for finding all armstrong numbers in a given range](https://iq.opengenus.org/find-all-armstrong-numbers-in-a-range/)
Armstrong Number, also known as Narcissistic Number in a given number base is a number that is the sum of its own digits, each raised to the power of the number of digits.
This article covers various topics such as :
* What is an Armstrong Number?
* How to find calculate Armstrong Number?
* Checking if an number is an Armstrong Number
* ALgorithm for finding Armstrong Numbers in a given range
* Implementation in Python and C
* Complexity
* Applications
This article will give you the knowledge of how to find out the armstrong numbers in a given range.
|
code/mathematical_algorithms/src/armstrong_num_range/amstrong_num_range.c | #include <math.h>
#include <stdio.h>
int main()
{
int lower, upper, i, temp1, temp2, rem, num = 0;
float sum_pow = 0.0;
/* Accept the lower and upper range from the user */
printf("Enter lower range: ");
scanf("%d", &lower);
printf("Enter upper range: ");
scanf("%d", &upper);
printf("Armstrong numbers between %d and %d are: ", lower, upper);
for (i = lower ; i <= upper; ++i)
{
temp1 = i;
temp2 = i;
// calculate number of digits
while (temp1 != 0)
{
temp1 /= 10;
++num;
}
// calculate sum of nth power of its digits
while (temp2 != 0) {
rem = temp2 % 10;
sum_pow += pow(rem, num);
temp2 /= 10;
}
// check if it is an Armstrong number
if ((int)sum_pow == i) {
printf("%d ", i);
}
num = 0;
sum_pow = 0;
}
return 0;
}
|
code/mathematical_algorithms/src/armstrong_num_range/amstrong_num_range.py | sum_pow = 0.0
#Accept the lower and upper range from the user
lower = int(input("Enter lower range: "))
upper = int(input("Enter upper range: "))
print(f"Armstrong numbers between {lower} and {upper} are: ")
for i in range(lower,upper+1):
temp1 = i
temp2 = i
#calculate number of digits
num = len(str(temp1))
#calculate sum of nth power of its digits
while temp2 != 0:
rem = int(temp2 % 10)
sum_pow = sum_pow + pow(rem,num)
temp2 = int(temp2 / 10)
#check if it is an Armstrong number
if int(sum_pow) == i:
print(i)
sum_pow = 0.0
|
code/mathematical_algorithms/src/armstrong_numbers/README.md | # Armstrong Number
An Armstrong Number is a number of three digits, such that the
sum of the cubes of it's digits is equal to the number itself. It's a specific case of Narcissistic Numbers.
For example 407 is an Armstrong Number; because 4³ + 0³ + 7³ = 64 + 0 + 343 = 407.
## Further Reading
[Wikipedia - Narcissistic/ Armstrong Number](https://en.wikipedia.org/wiki/Narcissistic_number)
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_number.php | <?php
function is_armstrong($number)
{
$sum = 0;
$dupli = $number;
while($dupli != 0)
{
$digit = $dupli % 10;
$sum += $digit * $digit * $digit;
$dupli/=10;
}
return ($sum == $number);
}
if (is_armstrong(371))
echo "yes";
else
echo "no";
?>
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.c | /* Part of Cosmos by OpenGenus Foundation */
#include <stdio.h>
int
main()
{
int number, originalNumber, remainder, result = 0;
printf("Enter a three digit integer: ");
scanf("%d", &number);
originalNumber = number;
while (originalNumber != 0) {
remainder = originalNumber % 10;
result += remainder * remainder * remainder;
originalNumber /= 10;
}
if (result == number)
printf("%d is an Armstrong number.", number);
else
printf("%d is not an Armstrong number.", number);
return (0);
}
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.cpp | #include <iostream>
#include <cmath>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
int main()
{
int initialNumber;
int number;
cout << "Enter a three digit number: ";
cin >> initialNumber;
number = initialNumber;
int lastDigitCubed = pow(number % 10, 3);
number /= 10;
int middleDigitCubed = pow(number % 10, 3);
number /= 10;
int firstDigitCubed = pow(number % 10, 3);
bool isArmstrongNumber = (firstDigitCubed + middleDigitCubed + lastDigitCubed) == initialNumber;
cout << initialNumber << " is " << (isArmstrongNumber ? "" : "not ") <<
"an Armstrong number." << endl;
}
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.cs | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
/*
* Armstrong number is a number that is equal to the sum of cubes of its digits.
* For example 0, 1, 153, 370, 371 and 407 are the Armstrong numbers.
*
* */
namespace armstrong
{
class armstrong
{
int number;
public armstrong(int number)
{
this.number = number;
}
public bool check()
{
if (number == getcSum())
return true;
return false;
}
int getcSum()
{
int dupli = number;
int sum = 0;
while (dupli != 0)
{
sum += getcube(dupli % 10);
dupli /= 10;
}
return sum;
}
int getcube(int number)
{
return number * number * number;
}
}
class Program
{
static void Main(string[] args)
{
int num = 15;
armstrong arm = new armstrong(num);
if (arm.check())
Console.WriteLine("{0} is an armstrong number", num);
else
Console.WriteLine("{0} is not an armstrong number", num);
Console.ReadKey(); // pauses the program
}
}
}
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.go | package main
import (
"fmt"
"math"
)
// Part of Cosmos by OpenGenus Foundation
// Lists all possible armstrong numbers from 0 to 999
func listAM() {
count := 0
for a := 0; a < 10; a++ {
for b := 0; b < 10; b++ {
for c := 0; c < 10; c++ {
abc := (a * 100) + (b * 10) + (c)
if abc == (cube(a) + cube(b) + cube(c)) {
count++
fmt.Printf("%d: %d\n", count, abc)
}
}
}
}
}
func cube(n int) int {
return int(math.Pow(float64(n), 3.0))
}
func main() {
listAM()
}
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.java | import java.util.Scanner;
class Main { //Main function
public static void main(String args[]) {
Scanner in = new Scanner(System.in);//Input from keyboard through Scanner class in Java
System.out.println("Enter a 3-digit number : ");//Asking from user to enter a 3-digit number
int number = in.nextInt();//Reading Integer input through keyboard using method
int a = number % 10;//Getting remainder for number at unit place
int b = (number / 10) % 10;//Number for ten's place
int c = number / 100;//Number for hundretth place
if ((a*a*a + b*b*b + c*c*c) == number) {//Condition to check
System.out.println(number + " is a armstrong number.");//Output return
}
else {
System.out.println(number + " is not a armstrong number.");//Output return
}
in.close();//Closing Scanner class
}
}
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.js | const readline = require("readline");
const ioInterface = readline.createInterface({
input: process.stdin,
output: process.stdout
});
ioInterface.question("Enter a three digit integer: ", answer => {
var armstrong = answer
.split("")
.map(num => parseInt(num) ** 3)
.reduce((elem, sum) => elem + sum);
console.log(
`${answer} is ${
armstrong == parseInt(answer) ? "" : "not "
}an Armstrong number.`
);
ioInterface.close();
});
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.py | """
Armstrong Number - In case of an Armstrong number of 3 digits, the sum of
cubes of each digits is equal to the number itself.
"""
# Part of Cosmos by OpenGenus Foundation
def Armstrong(num):
order = len(str(num))
sum = 0
temp = num
while temp > 0:
digit = temp % 10
sum = sum + digit ** order
temp = temp // 10
if sum == num:
return True
else:
return False
if __name__ == "__main__":
Armstrong(407)
|
code/mathematical_algorithms/src/armstrong_numbers/armstrong_numbers.rb | # created by AnkDos
# You can Simply use '**' to cube ,ex. 3**3=27 ,so cube(remainder) can be written as (reminder**3)
def cube(num)
num * num * num
end
def Is_armstrong(num)
quotient = 1
reminder = 0
sum = 0
hold = num
while quotient > 0
quotient = num / 10
reminder = num % 10
sum += cube(reminder)
num = quotient
end
hold == sum
end
puts Is_armstrong(153).to_s # output => true
|
code/mathematical_algorithms/src/automorphic_numbers/README.md | # Automorphic Number
In mathematics an automorphic number (sometimes referred to as a circular number) is a number whose square "ends"
in the same digits as the number itself. For example,
+ 5<sup>2</sup> = 2**5**
+ 6<sup>2</sup> = 3**6**
+ 76<sup>2</sup> = 57**76**
+ 376<sup>2</sup> = 141**376**
+ 890625<sup>2</sup> = 793212**890625**
So 5, 6, 76, 376 and 890625 are automorphic numbers.
<br/><br/><br/><br/><br/>
---
<p align="center">A massive collaborative effort by <a target="_blank" href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a></p>
---
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.c | /*
* Part of Cosmos by OpenGenus.
* Implementing automorphic numbers in C.
* run code with gcc automorphicnumbers.c -lm as I use math library.
*/
#include <stdio.h>
#include <math.h>
int
main()
{
long long int n , p, count=0, q;
unsigned long long int k;
/* The number is given by user for checking automorphism. */
scanf("%lld",&n);
p = n;
while (p) {
/* While here we count that our number is in which range bsically we count number of digits in our number. */
count++;
p = p / 10;
}
/* The ten power number just after our number for calculating mod value. */
q = pow(10, count);
k = n * n;
k = k % q;
if (k == n)
printf("Given number is automorphic.\n");
else
printf("Given number is not automorphic.\n");
return (0);
}
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.cpp | #include <iostream>
#include <string>
#include <algorithm> // For std::equal
using namespace std;
/*
* In mathematics an automorphic number (sometimes referred to as a circular number) is a number
* whose square "ends" in the same digits as the number itself.
* For example, 5^2 = 25, 6^2 = 36, 76^2 = 5776, 376^2 = 141376,and 890625^2 = 793212890625,
* so 5, 6, 76 and 890625
*/
// Part of Cosmos by OpenGenus Foundation
int main()
{
long long int number; // May have to deal with large numbers
cout << "Enter a number: ";
cin >> number;
unsigned long long int numberSquared = number * number; // Squares can get really big
string numberString = to_string(number);
string numberSquaredString = to_string(numberSquared);
bool isAutomorphic = std::equal(numberString.rbegin(),
numberString.rend(), numberSquaredString.rbegin()); // Checks if the number is at the end of the number squared
cout << number << " is " << (isAutomorphic ? "" : "not ") << "an automorphic number." << endl;
}
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.cs | /* Part of Cosmos by OpenGenus Foundation */
using System;
namespace AutomophicCSharp
{
class Automorphic
{
static void Main (string[] args)
{
for(double i=0; i<=10000000; i++)
{
if(isAutomorphic(i))
{
Console.WriteLine(String.Format("{0} is automorphic - {1}", i, i*i));
}
}
}
static bool isAutomorphic(double value)
{
// convert the value to a string
string stringValue = value.ToString();
// get the square as a string
string stringSquared = (value * value).ToString();
return stringSquared.EndsWith(stringValue);
}
}
} |
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.go | package main
import (
"fmt"
"strconv"
)
func main() {
for num := 0; num <= 1000000; num++ {
if isAutomorphic(num) {
fmt.Println(num, " ", (num * num))
}
}
}
func isAutomorphic(num int) bool {
strNum := strconv.Itoa(num)
strSquareNum := strconv.Itoa(num * num)
lenNum := len(strNum)
lenSquareNum := len(strSquareNum)
return strNum == strSquareNum[lenSquareNum-lenNum:]
}
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.hs | --Automorphic number
--An automorphic number is a number whose square "ends" in the same digits as the number itself.
--Ex: 5^2 = 25, 6^2 = 36, 76^2 = 5776, 376^2 = 141376
--Compile: ghc --make automorphic.hs -o automorphic
module Main where
--Check number for automorphism
automorphic :: Integer -> Bool
automorphic n = (==) n $ automParse (n^2) n
--Return last # digit values of number, # determined by second input
automParse :: Integer -> Integer -> Integer
automParse n = mod n . (10 ^) . subtract 1 . numDigits
--Return number of digits in a number
numDigits :: Integer -> Integer
numDigits = (1+) . round . logBase 10 . fromIntegral
--Infinite list of valid automorphic numbers. Beware high indices.
--Ex: take 6 automList = [5,6,76,376,625,9376]
automList = filter automorphic [1..]
main :: IO ()
main = do
putStrLn "Enter a number: "
num <- readLn
case automorphic num of
True -> putStrLn "Number is automorphic."
False -> putStrLn "Number is not automorphic."
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.java | // Part of Cosmos by OpenGenus Foundation
class AutomorphicNumber{
public static void main(String[] args){
// From range 0 to 1000000,
// it will find which one is Automorphic Number.
// If it is Automorphic Number,
// then program will print it with its square value.
for(long x=0; x<=1000000; x++)
if(automorphic(x))
// Square numbers can get really big.
// So, if you want to try with a bigger number, I suggest
// to use java.math.BigInteger instead of long data type.
System.out.println(x+" "+(x*x));
}
public static boolean automorphic(long num){
// Convert num into string data type.
String strNum = Long.toString(num);
// Convert num^2 into string data type. Like in the comment before,
// use BigInteger, if you want to try a really big number.
String strSquareNum = Long.toString(num*num);
// Find the length of both converted num and num^2.
int lenNum = strNum.length();
int lenSquareNum = strSquareNum.length();
// Return the value of (the last lenNum digits of num^2 == num)
return strSquareNum.substring(lenSquareNum-lenNum).equals(strNum);
}
}
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.js | /**
In mathematics an automorphic number (sometimes referred to as a circular number) is a number
whose square "ends" in the same digits as the number itself.
For example, 5^2 = 25, 6^2 = 36, 76^2 = 5776, 376^2 = 141376,and 890625^2 = 793212890625,
so 5, 6, 76 and 890625
*/
// Part of Cosmos by OpenGenus Foundation
const readline = require("readline");
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
rl.question("Enter a Number: ", num => {
if (automorphic(num)) console.log(`${num} is an automorphic number.`);
else console.log(`${num} is not an automorphic number.`);
rl.close();
});
function automorphic(num) {
return Math.pow(num, 2) % Math.pow(10, num.toString().length) == num;
}
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.php | <?php
function isAutomorphic(int $num)
{
return endsWith(strval($num * $num), strval($num));
}
function endsWith($haystack, $needle)
{
$length = strlen($needle);
return $length === 0 ||
(substr($haystack, -$length) === $needle);
}
echo "Automorphic number\n";
$test_data = [
0 => true,
9 => false,
5 => true,
6 => true,
7 => false,
8 => false,
25 => true,
30 => false,
];
foreach ($test_data as $input => $expected) {
$result = isAutomorphic($input);
printf(
" input %d, expected %s, got %s: %s\n",
$input,
($expected ? 'true' : 'false'),
($result ? 'true' : 'false'),
($expected === $result) ? 'OK' : 'FAIL'
);
} |
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.py | """
In mathematics an automorphic number (sometimes referred to as a circular number) is a number
whose square "ends" in the same digits as the number itself.
For example, 5^2 = 25, 6^2 = 36, 76^2 = 5776, 376^2 = 141376,and 890625^2 = 793212890625,
so 5, 6, 76 and 890625
"""
# Part of Cosmos by OpenGenus Foundation
def automorphic(num):
order = len(str(num))
square_num = num ** 2
str_num = str(square_num)
if str_num[len(str_num) - order :] == str(num):
return True
else:
return False
if __name__ == "__main__":
if automorphic(138):
print("Automorphic Number")
else:
print("Not Automorphic Number")
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.rb | def is_automorphic(x)
x2 = (x**2).to_s; x = x.to_s
x2_len = x2.length; x_len = x.length
x == x2[x2.length - x.length..x2.length]
end
## tests
# automorphic
[5, 6, 76, 376, 890_625].each do |num|
num_squared = num**2
puts "#{num}^2 = #{num_squared} -> Automorphic: #{is_automorphic(num)}"
end
# not automorphic
[2, 8, 75, 377, 890_620].each do |num|
num_squared = num**2
puts "#{num}^2 = #{num_squared} -> Automorphic: #{is_automorphic(num)}"
end
|
code/mathematical_algorithms/src/automorphic_numbers/automorphic_numbers.swift | #!/usr/bin/env swift
// Part of Cosmos by OpenGenus Foundation
func automorphic(num:Int)-> Bool{
let strNum = String(num)
let strSquaredNum = String(num*num)
let check = strSquaredNum.hasSuffix(strNum)
if(check){
return true
}
else{
return false
}
}
let number = Int(readLine()!)
let result = automorphic(num:number!)
if(result == true){
print("Automorphic number")
}
else{
print("Not automorphic number")
}
|
code/mathematical_algorithms/src/average_stream_numbers/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
Collaborative effort by [OpenGenus](https://github.com/opengenus) |
code/mathematical_algorithms/src/average_stream_numbers/average_stream_numbers.c | #include <stdio.h>
float
getAvg(float prev_avg, int x, int n)
{
return (((prev_avg * n) + x) / (n + 1));
}
void
streamAvg(float arr[], int n)
{
float avg = 0;
for (int i = 0; i < n; i++) {
avg = getAvg(avg, arr[i], i);
printf("Average of %d numbers is %f \n", i + 1, avg);
}
}
int
main()
{
int n;
printf("Enter Array Size \n");
scanf("%d", &n);
float arr[n];
printf("Enter %d Integers \n", n);
for (int i = 0; i < n; i++)
scanf("%f", &arr[i]);
streamAvg(arr, n);
return (0);
}
|
code/mathematical_algorithms/src/average_stream_numbers/average_stream_numbers.cpp | #include <iostream>
#include <vector>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
double getAverage(double num)
{
static double sum = 0, n = 0;
sum += num;
return sum / ++n;
}
void streamAverage(vector<double> arr)
{
double average = 0;
for (size_t i = 0; i < arr.size(); i++)
{
average = getAverage(arr[i]);
cout << "Average of " << i + 1 << " numbers is " << average << endl;
}
}
int main()
{
vector<double> arr{10, 20, 30, 40, 50, 60};
streamAverage(arr);
return 0;
}
|
code/mathematical_algorithms/src/average_stream_numbers/average_stream_numbers.go | package main
// Part of Cosmos by OpenGenus Foundation
import "fmt"
func averageStreamNumbers(input []int) {
average := 0
sum := 0
n := 0
getAverage := func(input int) int {
sum += input
n++
return sum / n
}
for i := range input {
average = getAverage(input[i])
fmt.Printf("Average of %d numbers is %d\n", i+1, average)
}
}
func main() {
input := []int{10, 20, 30, 40, 50, 60, 70, 80}
averageStreamNumbers(input)
}
|
code/mathematical_algorithms/src/average_stream_numbers/average_stream_numbers.js | /* Part of Cosmos by OpenGenus Foundation */
function iterativeAverage(arr) {
let sum = 0
arr.forEach((eachnum, index) => {
sum += eachnum
console.log(`Average of ${index + 1} numbers is ${sum/(index + 1)}`)
})
}
iterativeAverage([1, 9, 20, 13, 45]) |
code/mathematical_algorithms/src/average_stream_numbers/average_stream_numbers.py | # Part of Cosmos by OpenGenus Foundation
def newAvg(prevAvg, newN, newX):
return (prevAvg * (newN - 1) + newX) / newN
def main():
L = [1, 9, 20, 13, 45]
avg = 0
for i in range(len(L)):
avg = newAvg(avg, (i + 1), L[i])
print(avg)
main()
|
code/mathematical_algorithms/src/babylonian_method/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
Collaborative effort by [OpenGenus](https://github.com/opengenus) |
code/mathematical_algorithms/src/babylonian_method/babylonian_method.c |
#include<stdio.h>
double
squareRoot(double num)
{
double error = 0.0000001;
double x = num;
while ((x - num / x) > error)
x = (x + num / x) / 2;
return (x);
}
int
main()
{
double num = 0;
printf("Enter number for finding square root:");
scanf("%lf", &num);
printf("Square root of %lf is %lf\n", num, squareRoot(num));
return (0);
}
|
code/mathematical_algorithms/src/babylonian_method/babylonian_method.cpp | #include <iostream>
using namespace std;
float squareRoot(int x)
{
float i = x;
float e = 0.000001;
while (i - (x / i) > e)
i = (i + (x / i)) / 2;
return i;
}
int main()
{
int x;
cin >> x;
cout << "Square root of " << x << " is " << squareRoot(x);
return 0;
}
|
code/mathematical_algorithms/src/babylonian_method/babylonian_method.go | package main
import "fmt"
func squareRoot(n int) float64 {
x := float64(n)
nF := float64(n)
e := 0.000001
for x - (nF/x) > e {
x = ((nF/x)+x)/2
}
return x
}
func main() {
a := 90
fmt.Printf("The square root of %v is %v \n", a, squareRoot(a))
}
|
code/mathematical_algorithms/src/babylonian_method/babylonian_method.java | import java.util.*;
class Babylonian{
public static void main(String args[] ) throws Exception {
Scanner s = new Scanner(System.in);
double n = s.nextDouble();
System.out.println("The square root of " + n + " is " + squareRoot(n));
}
/*Returns the square root of n*/
public static double squareRoot(double n)
{
double x = n;
double y = 1;
double acc = 0.000001; /* acc decides the accuracy level*/
while(x - y > acc)
{
x = (x + y)/2;
y = n/x;
}
return x;
}
} |
code/mathematical_algorithms/src/babylonian_method/babylonian_method.js | function b_sqrt(n, e = 1e-5) {
var x = n;
while (x - n / x > e) {
x = (n / x + x) / 2;
}
return x;
}
console.log(b_sqrt(90));
|
code/mathematical_algorithms/src/babylonian_method/babylonian_method.py | def squareRoot(n):
x = n
y = 1
e = 0.000001
while x - y > e:
x = (x + y) / 2
y = n / x
return x
print(squareRoot(50))
|
code/mathematical_algorithms/src/binary_to_decimal/Conversion_from_Binary_to_Decimal.cpp | #include <bits/stdc++.h>
using namespace std;
int binary_to_decimal(int number)
{
int i, remainder, store, output;
remainder = 1;
store = 1;
output = 0;
for (i = 0; number > 0; i++)
{
remainder = number % 10;
store = remainder * (pow(2, i));
output = output + store;
number = number / 10;
}
return output;
}
int main()
{
int numberInput;
cin >> numberInput;
cout << binary_to_decimal(numberInput) << endl;
return 0;
}
|
code/mathematical_algorithms/src/binary_to_decimal/Conversion_from_Binary_to_Decimal.py | def check_binary(st):
p = set(st)
s = {'0', '1'}
if s==p or p=={'0'} or p=={'1'}:
return 1
else:
return 0
def binary_to_decimal(number):
i = 0
output = 0
while number > 0:
rem = int(number % 10)
store = rem * pow(2,i)
output = output + store
number = int(number / 10)
i = i + 1
return output
numberInput = int(input("Enter the binary number: "))
while check_binary(str(numberInput)) != 1:
print("Sorry, You entered non binary number")
numberInput = int(input("Enter the binary number: "))
print(f"{numberInput} in decimal is {binary_to_decimal(numberInput)}")
|
code/mathematical_algorithms/src/binomial_coefficient/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
Collaborative effort by [OpenGenus](https://github.com/opengenus) |
code/mathematical_algorithms/src/binomial_coefficient/binomial_coefficient.c | #include <stdio.h>
long long int a[101][101];
void
pascal()
{
int i, j;
for (i = 0; i < 101; i++) {
for (j = 0; j <= i; j++) {
if (j == 0 || j == i)
a[i][j] = 1;
else
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
}
}
}
int
main()
{
int n, r;
printf("Enter n: ");
scanf("%d", &n);
printf("Enter r: ");
scanf("%d", &r);
pascal();
printf("%dC%d = %lli\n", n, r, a[n][r]);
return (0);
}
|
code/mathematical_algorithms/src/binomial_coefficient/binomial_coefficient.cpp | #include <iostream>
using namespace std;
//Calculation C(n, r) modulo any number (prime or composite) using pascal triangle
//Pre-computation : O(n^2)
const int MAX = 1e3 + 3;
const int MOD = 1e9 + 7;
int ncr[MAX][MAX];
void pascal()
{
for (int i = 0; i < MAX; ++i)
{
ncr[i][0] = ncr[i][i] = 1;
for (int j = 1; j < i; ++j)
{
ncr[i][j] = ncr[i - 1][j - 1] + ncr[i - 1][j];
if (ncr[i][j] >= MOD)
ncr[i][j] -= MOD;
}
}
}
int main()
{
pascal();
cout << "Binomial Coefficient of (10, 5) is " << ncr[10][5] << "\n";
return 0;
}
|
code/mathematical_algorithms/src/binomial_coefficient/binomial_coefficient.go | package main
// Part of Cosmos by OpenGenus Foundation
import (
"fmt"
)
func binomialCoefficient(n int, k int) float64 {
bc := make([][]float64, n+1)
for i := range bc {
bc[i] = make([]float64, n+1)
}
for i := 0; i <= n; i++ {
bc[i][0] = 1;
}
for i := 0; i <= n; i++ {
bc[i][i] = 1;
}
for i := 1; i <= n; i++ {
for j := 1; j < i; j++ {
bc[i][j] = bc[i-1][j-1] + bc[i-1][j]
}
}
return bc[n][k];
}
func main() {
fmt.Println(binomialCoefficient(10,5))
}
|
code/mathematical_algorithms/src/binomial_coefficient/binomial_coefficient.java | public class BinomialCoefficient {
// Part of Cosmos by OpenGenus Foundation
public long solve(int n, int k) {
long bc[][] = new long[n+1][n+1];
for(int i = 0; i <= n; i++) {
bc[i][0] = 1;
}
for(int j = 0; j <= n; j++) {
bc[j][j] = 1;
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j < i; j++) {
bc[i][j] = bc[i-1][j-1] + bc[i-1][j];
}
}
return bc[n][k];
}
public static void main(String[] args) {
BinomialCoefficient solver = new BinomialCoefficient();
System.out.println(solver.solve(10,5));
}
}
|
code/mathematical_algorithms/src/binomial_coefficient/binomial_coefficient.py | # Part of Cosmos by OpenGenus Foundation
def binomialCoeff(n, k):
C = [0 for i in range(k + 1)]
C[0] = 1
for i in range(1, n + 1):
j = min(i, k)
while j > 0:
C[j] = C[j] + C[j - 1]
j -= 1
return C[k]
n = int(input())
k = int(input())
print(binomialCoeff(n, k))
|
code/mathematical_algorithms/src/catalan_number/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
# Catalan Number
The Catalan numbers are a sequence of natural numbers that have applications in the area of combinatorial mathematics.
The firsts Catalan numbers are: 1, 1, 2, 5, 14, 42, 132, 429, 1430...
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/mathematical_algorithms/src/catalan_number/catalan_number.c | /* Part of Cosmos by OpenGenus Foundation. */
#include <stdio.h>
/*
* Returns value of Binomial Coefficient C(n, k).
*/
unsigned long int
binomial_Coeff(unsigned int n, unsigned int k)
{
unsigned long int res = 1;
int i ;
/* Since C(n, k) = C(n, n-k) */
if (k > n - k)
k = n - k;
/* Calculate value of nCk */
for (i = 0; i < k; ++i) {
res *= (n - i);
res /= (i + 1);
}
return (res);
}
/*
* A Binomial coefficient based function to find nth catalan
* O(n) time Solution.
*/
unsigned long int
catalan(unsigned int n)
{
/* Calculate value of 2nCn */
unsigned long int c = binomial_Coeff(2 * n, n);
/* return 2nCn/(n+1) */
return (c / (n+1));
}
/* Driver program to test above functions. */
int
main()
{
unsigned int n;
printf("Input n \nNth Catalan you want :");
scanf("%d", &n);
printf("Nth Catalan number is: %lu", catalan(n));
return (0);
}
|
code/mathematical_algorithms/src/catalan_number/catalan_number.java | // Part of Cosmos by OpenGenus Foundation
import java.util.HashMap;
import java.util.Map;
public class CatalanNumber {
private static final Map<Long, Double> facts = new HashMap<Long, Double>();
private static final Map<Long, Double> catsI = new HashMap<Long, Double>();
private static final Map<Long, Double> catsR1 = new HashMap<Long, Double>();
private static final Map<Long, Double> catsR2 = new HashMap<Long, Double>();
static{//pre-load the memoization maps with some answers
facts.put(0L, 1D);
facts.put(1L, 1D);
facts.put(2L, 2D);
catsI.put(0L, 1D);
catsR1.put(0L, 1D);
catsR2.put(0L, 1D);
}
private static double fact(long n){
if(facts.containsKey(n)){
return facts.get(n);
}
double fact = 1;
for(long i = 2; i <= n; i++){
fact *= i; //could be further optimized, but it would probably be ugly
}
facts.put(n, fact);
return fact;
}
private static double catI(long n){
if(!catsI.containsKey(n)){
catsI.put(n, fact(2 * n)/(fact(n+1)*fact(n)));
}
return catsI.get(n);
}
private static double catR1(long n){
if(catsR1.containsKey(n)){
return catsR1.get(n);
}
double sum = 0;
for(int i = 0; i < n; i++){
sum += catR1(i) * catR1(n - 1 - i);
}
catsR1.put(n, sum);
return sum;
}
private static double catR2(long n){
if(!catsR2.containsKey(n)){
catsR2.put(n, ((2.0*(2*(n-1) + 1))/(n + 1)) * catR2(n-1));
}
return catsR2.get(n);
}
public static void main(String[] args){
for(int i = 0; i <= 15; i++){
System.out.println(catI(i));
System.out.println(catR1(i));
System.out.println(catR2(i));
}
}
} |
code/mathematical_algorithms/src/catalan_number/catalan_number.js | function binomial_Coeff(n, k) {
let res = 1;
if (k > n - k) {
k = n - k;
}
for (let i = 0; i < k; i++) {
res *= n - i;
res /= i + 1;
}
return res;
}
function catalan(n) {
const c = binomial_Coeff(2 * n, n);
return c / (n + 1);
}
for (let j = 0; j < 10; j++) {
console.log(catalan(j));
}
|
code/mathematical_algorithms/src/catalan_number/catalan_number.py | # Part of Cosmos by OpenGenus Foundation
def catalan(n):
if n <= 1:
return 1
res = 0
for i in range(n):
res += catalan(i) * catalan(n - i - 1)
return res
for i in range(10):
print(catalan(i), emd=" ")
|
code/mathematical_algorithms/src/catalan_number/catalan_number.rb | def catalan(num)
return 1 if num <= 1
ans = 0
i = 0
while i < num
first = catalan i
second = catalan num - i - 1
ans += (first * second)
i += 1
end
ans
end
Integer x = 1
while x <= 10
res = catalan x
puts res
x += 1
end
|
code/mathematical_algorithms/src/catalan_number/catalan_number.scala |
object Catalan {
def number(n: Int): BigInt = {
if (n < 2) {
1
}
else {
val (top, bottom) = (2 to n).foldLeft((BigInt(1), BigInt(1))) {
case ((topProd: BigInt, bottomProd: BigInt), k: Int) => (topProd * (n + k), bottomProd * k)
}
top / bottom
}
}
// to test
// var c = catalan(3)
// println(c)
def recursive(n: Int): Int = {
if (n <= 1) 1
else (0 until n).map(i => recursive(i) * recursive(n - i - 1)).sum
}
}
object Main {
def main(args: Array[String]): Unit = {
for (n <- 0 until 20) {
println(s"${n}: ${Catalan.number(n)}")
}
}
}
|
code/mathematical_algorithms/src/catalan_number/catalan_number2.py | def catalanNum(n):
if n <= 1:
return 1
result = 0
for i in range(n):
result += catalanNum(i) * catalanNum(n - i - 1)
return result
for i in range(15):
print(catalanNum(i))
|
code/mathematical_algorithms/src/catalan_number/catalan_number_dynamic.cpp | #include <iostream>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
int main()
{
int n;
cin >> n;
long long cat[100000];
cat[0] = 1;
cout << cat[0];
for (int i = 1; i <= n; i++)
{
cat[i] = 2 * (4 * i + 1) * cat[i - 1] / (i + 2);
cout << cat[i] << endl;
}
}
|
code/mathematical_algorithms/src/catalan_number/catalan_number_recursive.cpp | #include <iostream>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
int main()
{
int n;
cin >> n;
long long cat[100000];
cat[0] = 1;
cout << cat[0];
for (int i = 1; i <= n; i++)
{
cat[i] = 0;
for (int j = 0; j < i; j++)
cat[i] += cat[j] * cat[i - j - 1];
cout << cat[i] << endl;
}
}
|
code/mathematical_algorithms/src/check_good_array_GCD_problem/GCD_related_problems.py | import math
class Solution:
def isGoodArray(self, nums: List[int]) -> bool:
'''
' 1. This problem is equivalent to "find two number and its linear combination equal to 1",
' Because If we can find two number and take coefficient of other numbers is zero.
'
' 2. Then this problem be considered as "find two number and they are coprime",
' Bacause this the EX_GCD conclude
'
' 3. So far, we should solve "find two number are coprime from a array",
' we can to calculate all number gcd whether is equal 1,
' exmaple1: gcd(a1, gcd(a2, gcd(a3, a4))) If its result is 1, then exist two or more number is coprime
' because once its intermediate result has 1 when the array have coprime number pair, then gcd(1, anynumber) = 1
'''
ans = nums[0]
for num in nums:
ans = math.gcd(ans, num)
return ans == 1
|
code/mathematical_algorithms/src/check_good_array_GCD_problem/readme.md | Problem Description
Given an array `nums` of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand.
Return `True` if the array is good otherwise return `False`.
Example
```
Input: nums = [12,5,7,23]
Output: true
Explanation: Pick numbers 5 and 7.
5*3 + 7*(-2) = 1
```
```
Input: nums = [3,6]
Output: false
```
|
code/mathematical_algorithms/src/check_is_square/check_is_square.c | #include <stdio.h>
#include <math.h>
int
main()
{
int n, sqrt_n;
scanf("%d", &n);
sqrt_n = sqrt(n);
if (sqrt_n * sqrt_n == n)
printf("Natural Square number \n");
else
printf("Not a Natural Square \n");
return (0);
} |
code/mathematical_algorithms/src/check_is_square/check_is_square.cpp | // Part of Cosmos by OpenGenus Foundation
#include <iostream>
using namespace std;
typedef long long int lld;
bool IsSquare(lld number)
{
lld min = 1;
lld max = number;
lld mid = min + (max - min) / 2;
if (number == 0 || number == 1)
return true;
while (min < max)
{
if (mid * mid > number)
{
max = mid - 1;
mid = min + (max - min) / 2;
}
else if (mid * mid < number)
{
min = mid + 1;
mid = min + (max - min) / 2;
}
if (mid * mid == number)
return true;
}
return false;
}
int main()
{
int t;
cout << "Enter the number of testcases:" << '\n';
cin >> t;
lld number;
while (t--)
{
cin >> number;
if (IsSquare(number))
cout << "Natural Square number" << '\n';
else
cout << "Not a Natural Square" << '\n';
}
return 0;
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.cs | // Part of Cosmos by OpenGenus Foundation
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace finding_is_square
{
/// <summary>
/// Class to check if number is a perfect square or not
/// </summary>
class is_square
{
/// <summary>
/// an array to store numbers
/// </summary>
int[] numbers;
/// <summary>
/// constructor
/// </summary>
/// <param name="number">numbers to be processed</param>
public is_square(int[] number)
{
numbers = number;
}
/// <summary>
/// method to check if perfect square or not
/// </summary>
public void check_sq()
{
foreach (int number in numbers) // traversing the whole integer array
{
if (Math.Sqrt(number).ToString().Contains(".")) // converting double to string to chk if it contains . or not
Console.WriteLine("number {0} is not a perfect square", number);
else
Console.WriteLine("number {0} is a perfect square", number);
}
}
}
class Program
{
static void Main(string[] args)
{
// making an array of numbers to check
int[] numbers = { 56, 90, 100, 80, 16 };
// creating an object of is_square class and initializing with test inputs
is_square sq = new is_square(numbers);
sq.check_sq(); // checking
Console.ReadKey(); // pausing
}
}
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.go | // Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
import "math"
func isSquare(input int) bool {
if input < 0 {
return false
}
root := int(math.Sqrt(float64(input)))
return root*root == input
}
func main() {
fmt.Printf("%d is square :%v\n", 16, isSquare(16))
fmt.Printf("%d is square :%v\n", 13, isSquare(13))
fmt.Printf("%d is square :%v\n", 316, isSquare(316))
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.java | // Part of Cosmos by OpenGenus Foundation
import java.util.Scanner;
public class CheckisSquare{
private static boolean checkIsSquare(int n){
if (n < 0) {
return false;
} else {
int start = 0;
int end = n;
while (start <= end) {
int mid = start + (end - start) / 2;
long val = (long) mid * (long) mid;
if (val == n)
return true;
else if (val < n)
start = mid + 1;
else
end = mid - 1;
}
}
return false;
}
public static void main(String[] args) {
System.out.print("Please enter number: ");
Scanner enterN = new Scanner(System.in);
int n = enterN.nextInt();
if (checkIsSquare(n)) {
System.out.println("True");
} else {
System.out.println("False");
}
}
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.js | let isPerfectSquare = num => Math.sqrt(num) === Math.floor(Math.sqrt(num));
console.log(isPerfectSquare(0)); // should output true
console.log(isPerfectSquare(1)); // should output true
console.log(isPerfectSquare(2)); // should output false
console.log(isPerfectSquare(4)); // should output true
console.log(isPerfectSquare(8)); // should output false
console.log(isPerfectSquare(16)); // should output true
console.log(isPerfectSquare(32)); // should output false
console.log(isPerfectSquare(64)); // should output true
|
code/mathematical_algorithms/src/check_is_square/check_is_square.kt | /*
* Part of Cosmos by OpenGenus Foundation
*/
import kotlin.math.*
fun checkSquare(number: Int) : Boolean {
return sqrt(number.toDouble()) == floor(sqrt(number.toDouble()));
}
fun main() {
println(checkSquare(0)); // true
println(checkSquare(1)); // true
println(checkSquare(2)); // false
println(checkSquare(4)); // true
println(checkSquare(8)); // false
println(checkSquare(16)); // true
println(checkSquare(32)); // false
println(checkSquare(64)); // true
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.php | <?php
// Part of Cosmos by OpenGenus Foundation
// function to check if a number is
function check($numbers)
{
foreach ($numbers as $number) // traversing through each number
{
$chk = (string)sqrt($number) ; // sqrt returns float which is converted to string by explixit type casting
if(strpos($chk,".")) // checking if there is decimal or not
echo "$number is not a perfect square<br>";
else
echo "$number is a perfect square<br>";
}
}
// array of numbers to be performed
$numbers = array(1,2,3,4,5,6,7,8,9,10);
check($numbers); // calling the function
?>
|
code/mathematical_algorithms/src/check_is_square/check_is_square.py | # Part of Cosmos by OpenGenus Foundation
import sys
def checkIfSquare(n):
start = 0
end = int(n)
while start <= end:
mid = (start + end) // 2
val = mid * mid
if val == int(n):
return True
elif val < int(n):
start = mid + 1
else:
end = mid - 1
return False
version = sys.version_info[0]
print("Enter a positive number :")
n = input()
if checkIfSquare(n):
print("Yes")
else:
print("No")
|
code/mathematical_algorithms/src/check_is_square/check_is_square.rs | // Part of Cosmos by OpenGenus Foundation
//-- Function to check if a number is square
//-- Accepts integers, and converts it internally to float
use std::f64;
fn check_square(n: i64 ) -> bool {
if n < 0 { return false; }
let nc = n as f64;
let r = nc.sqrt().round();
if r * r == nc { return true; }
false
}
fn main() {
let test = vec!(1,2,3,4,5,6,7,8,9,10);
for t in test { println!("{}: {}", t, check_square(t)); }
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.ruby | # let isPerfectSquare = num => Math.sqrt(num) === Math.floor(Math.sqrt(num))
# console.log(isPerfectSquare(0)) // should output true
# console.log(isPerfectSquare(1)) // should output true
# console.log(isPerfectSquare(2)) // should output false
# console.log(isPerfectSquare(4)) // should output true
# console.log(isPerfectSquare(8)) // should output false
# console.log(isPerfectSquare(16)) // should output true
# console.log(isPerfectSquare(32)) // should output false
# console.log(isPerfectSquare(64)) // should output true
def perfect_square?(num)
Math.sqrt(num) % 1 == 0
end
puts perfect_square?(0) # should output true
puts perfect_square?(1) # should output true
puts perfect_square?(2) # should output false
puts perfect_square?(4) # should output true
puts perfect_square?(8) # should output false
puts perfect_square?(16) # should output true
puts perfect_square?(32) # should output false
puts perfect_square?(64) # should output true
|
code/mathematical_algorithms/src/check_is_square/check_is_square.scala | // Part of Cosmos by OpenGenus Foundation
object FindingSquare extends App{
def findingSquare(num:Int):Boolean = {
for(x <- 1 to num if x * x <= num){
if(x * x == num) return true
}
false
}
def printResult(num:Int){
findingSquare(num) match{
case true => println(s"$num is perfect square")
case false => println(s"$num is not perfect square")
}
}
printResult(3)
printResult(4)
}
|
code/mathematical_algorithms/src/check_is_square/check_is_square.swift | #!/usr/bin/env swift
// Part of Cosmos by OpenGenus Foundation
import Darwin
func findingSquare(num : Int) -> Bool {
let x = Int(sqrt(Double(num)))
for i in 0...x{
if(i*i == num){
return true
}
}
return false
}
let number = Int(readLine()!)
let result = findingSquare(num: number!)
if(result){
print("A perfect square")
}
else{
print("Not a perfect square")
}
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.