Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
4,900
def run(self): obj_reaction = self._get_objective() genes = set() gene_assoc = {} for reaction in self._model.reactions: assoc = None if reaction.genes is None: continue elif isinstance(reaction.genes, string_types): assoc = boolean.Expression(reaction.genes) else: variables = [boolean.Variable(g) for g in reaction.genes] assoc = boolean.Expression(boolean.And(*variables)) genes.update(v.symbol for v in assoc.variables) gene_assoc[reaction.id] = assoc reactions = set(self._mm.reactions) start_time = time.time() testing_genes = set(self._args.gene) deleted_reactions = set() logger.info(.format( .join(sorted(testing_genes)))) for reaction in reactions: if reaction not in gene_assoc: continue assoc = gene_assoc[reaction] if any(boolean.Variable(gene) in assoc.variables for gene in testing_genes): new_assoc = assoc.substitute( lambda v: v if v.symbol not in testing_genes else False) if new_assoc.has_value() and not new_assoc.value: logger.info(.format(reaction)) deleted_reactions.add(reaction) if self._args.method in [, ]: solver = self._get_solver(quadratic=True) else: solver = self._get_solver() if self._args.method == : logger.info() prob = fluxanalysis.FluxBalanceProblem(self._mm, solver) try: prob.maximize(obj_reaction) except fluxanalysis.FluxBalanceError as e: self.report_flux_balance_error(e) wild = prob.get_flux(obj_reaction) for reaction in deleted_reactions: flux_var = prob.get_flux_var(reaction) prob.prob.add_linear_constraints(flux_var == 0) prob.maximize(obj_reaction) deleteflux = prob.get_flux(obj_reaction) elif self._args.method in [, , , ]: prob = moma.MOMAProblem(self._mm, solver) wt_fluxes = prob.get_minimal_fba_flux(obj_reaction) wild = wt_fluxes[obj_reaction] for reaction in deleted_reactions: flux_var = prob.get_flux_var(reaction) prob.prob.add_linear_constraints(flux_var == 0) try: if self._args.method == : logger.info() prob.moma(wt_fluxes) elif self._args.method == : logger.info() prob.lin_moma(wt_fluxes) elif self._args.method == : logger.info() prob.moma2(obj_reaction, wild) elif self._args.method == : logger.info() prob.lin_moma2(obj_reaction, wild) except moma.MOMAError: self.fail() deleteflux = prob.get_flux(obj_reaction) logger.info( .format(time.time() - start_time)) logger.info( .format( deleteflux + 0)) if wild != 0: logger.info( .format( abs(deleteflux / wild)))
Delete the specified gene and solve using the desired method.
4,901
def lipisha_ipn(self): if not (self.request.POST.get() == LIPISHA_API_KEY and self.request.POST.get() == LIPISHA_API_SIGNATURE): raise HTTPBadRequest return process_lipisha_payment(self.request)
Process lipisha IPN - Initiate/Acknowledge
4,902
def process_details(): results = {"argv": sys.argv, "working.directory": os.getcwd()} for key, method in { "pid": "getpid", "ppid": "getppid", "login": "getlogin", "uid": "getuid", "euid": "geteuid", "gid": "getgid", "egid": "getegid", "groups": "getgroups", }.items(): try: results[key] = getattr(os, method)() except (AttributeError, OSError): results[key] = None return results
Returns details about the current process
4,903
def _proxy(self): if self._context is None: self._context = AwsContext(self._version, sid=self._solution[], ) return self._context
Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: AwsContext for this AwsInstance :rtype: twilio.rest.accounts.v1.credential.aws.AwsContext
4,904
def submit(self, password=): url = .format(BASE_URL) try: r = requests.post(url, data=self.dumps(), headers={: }, auth=(self[][], password)) response = r.json() except requests.exceptions.HTTPError as e: logging.error(.format(e)) return Job() if in response: logging.error(.format(response[])) return Job() return Job(response)
Submits the participation to the web site. The passwords is sent as plain text. :return: the evaluation results.
4,905
def save_file(fullpath, entry): with tempfile.NamedTemporaryFile(, delete=False) as file: tmpfile = file.name for key, val in entry.items(): print(.format(key, str(val)), file=file) print(, file=file) file.write(entry.get_payload()) shutil.move(tmpfile, fullpath)
Save a message file out, without mangling the headers
4,906
def make_list_table(headers, data, title=, columns=None): results = [] add = results.append add( % title) add() if columns: add( % (.join(str(c) for c in columns))) add() add( % headers[0]) for h in headers[1:]: add( % h) for row in data: add( % row[0]) for r in row[1:]: add( % r) add() return .join(results)
Build a list-table directive. :param headers: List of header values. :param data: Iterable of row data, yielding lists or tuples with rows. :param title: Optional text to show as the table title. :param columns: Optional widths for the columns.
4,907
def version(versioninfo=False): contextkey = contextkey_info = if contextkey not in __context__: try: version_ = _git_run([, ])[] except CommandExecutionError as exc: log.error( , exc ) version_ = try: __context__[contextkey] = version_.split()[-1] except IndexError: log.error(git --version\) __context__[contextkey] = if not versioninfo: return __context__[contextkey] if contextkey_info not in __context__: ptr = __context__.setdefault(contextkey_info, []) for part in __context__[contextkey].split(): try: ptr.append(int(part)) except ValueError: ptr.append(part) return __context__[contextkey_info]
.. versionadded:: 2015.8.0 Returns the version of Git installed on the minion versioninfo : False If ``True``, return the version in a versioninfo list (e.g. ``[2, 5, 0]``) CLI Example: .. code-block:: bash salt myminion git.version
4,908
def enforce_reset(self): ub = (self.ubnd * (1.0+self.bound_tol)).to_dict() lb = (self.lbnd * (1.0 - self.bound_tol)).to_dict() val_arr = self.values for iname, name in enumerate(self.columns): val_arr[val_arr[:,iname] > ub[name],iname] = ub[name] val_arr[val_arr[:, iname] < lb[name],iname] = lb[name]
enforce parameter bounds on the ensemble by resetting violating vals to bound
4,909
def _rtg_add_summary_file(eval_files, base_dir, data): out_file = os.path.join(base_dir, "validate-summary.csv") if not utils.file_uptodate(out_file, eval_files.get("tp", eval_files.get("fp", eval_files["fn"]))): with file_transaction(data, out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: writer = csv.writer(out_handle) writer.writerow(["sample", "caller", "vtype", "metric", "value"]) base = _get_sample_and_caller(data) for metric in ["tp", "fp", "fn"]: for vtype, bcftools_types in [("SNPs", "--types snps"), ("Indels", "--exclude-types snps")]: in_file = eval_files.get(metric) if in_file and os.path.exists(in_file): cmd = ("bcftools view {bcftools_types} {in_file} | grep -v ^ count = int(subprocess.check_output(cmd.format(**locals()), shell=True)) else: count = 0 writer.writerow(base + [vtype, metric, count]) eval_files["summary"] = out_file return eval_files
Parse output TP FP and FN files to generate metrics for plotting.
4,910
def plot_lnp(fignum, s, datablock, fpars, direction_type_key): plot_net(fignum) dec_key, inc_key, tilt_key = , , if in datablock[0].keys(): dec_key, inc_key, tilt_key = , , coord = datablock[0][tilt_key] title = s if coord == : title = title + ": specimen coordinates" if coord == : title = title + ": geographic coordinates" if coord == : title = title + ": tilt corrected coordinates" DIblock, GCblock = [], [] for plotrec in datablock: if plotrec[direction_type_key] == : GCblock.append((float(plotrec[dec_key]), float(plotrec[inc_key]))) else: DIblock.append((float(plotrec[dec_key]), float(plotrec[inc_key]))) if len(DIblock) > 0: plot_di(fignum, DIblock) if len(GCblock) > 0: for pole in GCblock: plot_circ(fignum, pole, 90., ) x, y = [], [] XY = pmag.dimap(float(fpars["dec"]), float(fpars["inc"])) x.append(XY[0]) y.append(XY[1]) plt.figure(num=fignum) plt.scatter(x, y, marker=, s=80, c=) plt.title(title) Xcirc, Ycirc = [], [] Da95, Ia95 = pmag.circ(float(fpars["dec"]), float( fpars["inc"]), float(fpars["alpha95"])) for k in range(len(Da95)): XY = pmag.dimap(Da95[k], Ia95[k]) Xcirc.append(XY[0]) Ycirc.append(XY[1]) plt.plot(Xcirc, Ycirc, )
plots lines and planes on a great circle with alpha 95 and mean Parameters _________ fignum : number of plt.figure() object datablock : nested list of dictionaries with keys in 3.0 or 2.5 format 3.0 keys: dir_dec, dir_inc, dir_tilt_correction = [-1,0,100], direction_type_key =['p','l'] 2.5 keys: dec, inc, tilt_correction = [-1,0,100],direction_type_key =['p','l'] fpars : Fisher parameters calculated by, e.g., pmag.dolnp() or pmag.dolnp3_0() direction_type_key : key for dictionary direction_type ('specimen_direction_type') Effects _______ plots the site level figure
4,911
def write(series, output, scale=None): fsamp = int(series.sample_rate.decompose().value) if scale is None: scale = 1 / numpy.abs(series.value).max() data = (series.value * scale).astype() return wavfile.write(output, fsamp, data)
Write a `TimeSeries` to a WAV file Parameters ---------- series : `TimeSeries` the series to write output : `file`, `str` the file object or filename to write to scale : `float`, optional the factor to apply to scale the data to (-1.0, 1.0), pass `scale=1` to not apply any scale, otherwise the data will be auto-scaled See also -------- scipy.io.wavfile.write for details on how the WAV file is actually written Examples -------- >>> from gwpy.timeseries import TimeSeries >>> t = TimeSeries([1, 2, 3, 4, 5]) >>> t = TimeSeries.write('test.wav')
4,912
def command( commands: str or list, prefix: str or list = "/", separator: str = " ", case_sensitive: bool = False ): def func(flt, message): text = message.text or message.caption if text: for p in flt.p: if text.startswith(p): s = text.split(flt.s) c, a = s[0][len(p):], s[1:] c = c if flt.cs else c.lower() message.command = ([c] + a) if c in flt.c else None break return bool(message.command) commands = commands if type(commands) is list else [commands] commands = {c if case_sensitive else c.lower() for c in commands} prefixes = set(prefix) if prefix else {""} return create("Command", func=func, c=commands, p=prefixes, s=separator, cs=case_sensitive)
Filter commands, i.e.: text messages starting with "/" or any other custom prefix. Args: commands (``str`` | ``list``): The command or list of commands as string the filter should look for. Examples: "start", ["start", "help", "settings"]. When a message text containing a command arrives, the command itself and its arguments will be stored in the *command* field of the :class:`Message <pyrogram.Message>`. prefix (``str`` | ``list``, *optional*): A prefix or a list of prefixes as string the filter should look for. Defaults to "/" (slash). Examples: ".", "!", ["/", "!", "."]. Can be None or "" (empty string) to allow commands with no prefix at all. separator (``str``, *optional*): The command arguments separator. Defaults to " " (white space). Examples: /start first second, /start-first-second, /start.first.second. case_sensitive (``bool``, *optional*): Pass True if you want your command(s) to be case sensitive. Defaults to False. Examples: when True, command="Start" would trigger /Start but not /start.
4,913
def get_objects_for_subject(subject=None, object_category=None, relation=None, **kwargs): searchresult = search_associations(subject=subject, fetch_objects=True, rows=0, object_category=object_category, relation=relation, **kwargs ) objs = searchresult[] return objs
Convenience method: Given a subject (e.g. gene, disease, variant), return all associated objects (phenotypes, functions, interacting genes, etc)
4,914
def wrap_make_secure_channel(make_secure_channel_func, tracer=None): def call(*args, **kwargs): channel = make_secure_channel_func(*args, **kwargs) try: host = kwargs.get() tracer_interceptor = OpenCensusClientInterceptor(tracer, host) intercepted_channel = grpc.intercept_channel( channel, tracer_interceptor) return intercepted_channel except Exception: log.warning( ) return channel return call
Wrap the google.cloud._helpers.make_secure_channel.
4,915
def sample_categorical(prob, rng): ret = numpy.empty(prob.shape[0], dtype=numpy.float32) for ind in range(prob.shape[0]): ret[ind] = numpy.searchsorted(numpy.cumsum(prob[ind]), rng.rand()).clip(min=0.0, max=prob.shape[ 1] - 0.5) return ret
Sample from independent categorical distributions Each batch is an independent categorical distribution. Parameters ---------- prob : numpy.ndarray Probability of the categorical distribution. Shape --> (batch_num, category_num) rng : numpy.random.RandomState Returns ------- ret : numpy.ndarray Sampling result. Shape --> (batch_num,)
4,916
def from_zip(cls, src=, dest=): try: zf = zipfile.ZipFile(src, ) except FileNotFoundError: raise errors.InvalidPathError(src) except zipfile.BadZipFile: raise errors.InvalidZipFileError(src) [zf.extract(file, dest) for file in zf.namelist()] zf.close() return cls.from_path(dest)
Unzips a zipped app project file and instantiates it. :param src: zipfile path :param dest: destination folder to extract the zipfile content Returns A project instance.
4,917
def text_pixels(self, text, clear_screen=True, x=0, y=0, text_color=, font=None): if clear_screen: self.clear() if font is not None: if isinstance(font, str): assert font in fonts.available(), "%s is an invalid font" % font font = fonts.load(font) return self.draw.text((x, y), text, fill=text_color, font=font) else: return self.draw.text((x, y), text, fill=text_color)
Display `text` starting at pixel (x, y). The EV3 display is 178x128 pixels - (0, 0) would be the top left corner of the display - (89, 64) would be right in the middle of the display 'text_color' : PIL says it supports "common HTML color names". There are 140 HTML color names listed here that are supported by all modern browsers. This is probably a good list to start with. https://www.w3schools.com/colors/colors_names.asp 'font' : can be any font displayed here http://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/ev3dev-stretch/display.html#bitmap-fonts - If font is a string, it is the name of a font to be loaded. - If font is a Font object, returned from :meth:`ev3dev2.fonts.load`, then it is used directly. This is desirable for faster display times.
4,918
def parse( args: typing.List[str] = None, arg_parser: ArgumentParser = None ) -> dict: parser = arg_parser or create_parser() return vars(parser.parse_args(args))
Parses the arguments for the cauldron server
4,919
def authenticate(user=None): if connexion.request.is_json: user = UserAuth.from_dict(connexion.request.get_json()) credentials = mapUserAuthToCredentials(user) auth = ApitaxAuthentication.login(credentials) if(not auth): return ErrorResponse(status=401, message="Invalid credentials") access_token = create_access_token(identity={: user.username, : auth[]}) refresh_token = create_refresh_token(identity={: user.username, : auth[]}) return AuthResponse(status=201, message= + user.username + + auth[], access_token=access_token, refresh_token=refresh_token, auth=UserAuth(username=auth[].username, api_token=auth[].token))
Authenticate Authenticate with the API # noqa: E501 :param user: The user authentication object. :type user: dict | bytes :rtype: UserAuth
4,920
def remove_security_group(self, name): for group in self.security_groups: if group.isc_name == name: group.delete()
Remove a security group from container
4,921
def pformat_dict_summary_html(dict): if not dict: return html = [] for key, value in sorted(six.iteritems(dict)): if not isinstance(value, DICT_EXPANDED_TYPES): value = html.append(_format_dict_item(key, value)) return mark_safe(u.join(html))
Briefly print the dictionary keys.
4,922
def main(): args = CLI.parse_args(__doc__) if args[]: requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) logging.basicConfig(level=logging.DEBUG) if not args[]: print("No API key given. Please create an API key on <https://octopart.com/api/dashboard>") return ReturnValues.NO_APIKEY if args[] == : engine = PyPartsOctopart(args[], verbose=args[]) elif args[] == : engine = PyPartsPartsIO(args[], verbose=args[]) else: engine = PyPartsBase(args[], verbose=args[]) try: if in args or in args: return engine.part_search(args[]) elif in args: return engine.part_specs(args[]) elif in args: if args[] == : if args[]: return engine.part_datasheet(args[], command=args[], path=args[]) else: return engine.part_datasheet(args[], command=args[]) elif args[] == : return engine.part_datasheet(args[], path=args[]) elif in args: return engine.part_show(args[], printout=args[]) except OctopartException as err: print(err) return ReturnValues.RUNTIME_ERROR
entry point of the application. Parses the CLI commands and runs the actions.
4,923
def prob_t_profiles(self, profile_pair, multiplicity, t, return_log=False, ignore_gaps=True): if t<0: logP = -ttconf.BIG_NUMBER else: Qt = self.expQt(t) if len(Qt.shape)==3: res = np.einsum(, profile_pair[1], Qt, profile_pair[0]) else: res = np.einsum(, profile_pair[1], Qt, profile_pair[0]) if ignore_gaps and (self.gap_index is not None): non_gap_frac = (1-profile_pair[0][:,self.gap_index])*(1-profile_pair[1][:,self.gap_index]) logP = np.sum(multiplicity*np.log(res)*non_gap_frac) else: logP = np.sum(multiplicity*np.log(res)) return logP if return_log else np.exp(logP)
Calculate the probability of observing a node pair at a distance t Parameters ---------- profile_pair: numpy arrays Probability distributions of the nucleotides at either end of the branch. pp[0] = parent, pp[1] = child multiplicity : numpy array The number of times an alignment pattern is observed t : float Length of the branch separating parent and child ignore_gaps: bool If True, ignore mutations to and from gaps in distance calculations return_log : bool Whether or not to exponentiate the result
4,924
def normalize_lcdict_byinst( lcdict, magcols=, normto=, normkeylist=(,,,,,), debugmode=False, quiet=False ): stfccdfltfldprjexpallallzerojmaghmagkmagbmagvmagsdssgsdssrsdssizeroobjectinfoera if in lcdict and len(lcdict[]) > 0: if not quiet: LOGWARNING( ) return lcdict normkeycols = [] availablenormkeys = [] for key in normkeylist: if key in lcdict and lcdict[key] is not None: normkeycols.append(lcdict[key]) availablenormkeys.append(key) normkeycols = list(zip(*normkeycols)) allkeys = [repr(x) for x in normkeycols] allkeys = [a.replace(,).replace(,).replace(" lcapertureslcaperturesobjectinfolcaperturesobjectinfoobjectinfolcaperturesaim_%saim_%sarm_%sarm_%saep_%saep_%satf_%satf_%spsimpsrmpseppstfirm_%sirm_%siep_%siep_%sitf_%sitf_%sallredmagspsrmpsrmepdmagspseppseptfamagspstfpstfepdtfapseppseppstfpstf,t all nan. thismagsize = thismags[thisind].size thismagfinite = np.where(np.isfinite(thismags[thisind]))[0].size if thismagsize > 2 and thismagfinite > 2: medmag = np.nanmedian(thismags[thisind]) lcdict[col][thisind] = lcdict[col][thisind] - medmag if debugmode: LOGDEBUG( % (col, nkey, len(thismags[thisind]), medmag)) return lcdict
This is a function to normalize light curves across all instrument combinations present. Use this to normalize a light curve containing a variety of: - HAT station IDs ('stf') - camera IDs ('ccd') - filters ('flt') - observed field names ('fld') - HAT project IDs ('prj') - exposure times ('exp') Parameters ---------- lcdict : dict The input lcdict to process. magcols : 'all' or list of str If this is 'all', all of the columns in the lcdict that are indicated to be magnitude measurement columns are normalized. If this is a list of str, must contain the keys of the lcdict specifying which magnitude columns will be normalized. normto : {'zero', 'jmag', 'hmag', 'kmag', 'bmag', 'vmag', 'sdssg', 'sdssr', 'sdssi'} This indicates which column will be the normalization target. If this is 'zero', will normalize to 0.0 for each LC column. Otherwise, will normalize to the value of one of the other keys in the lcdict['objectinfo'][magkey], meaning the normalization will be to some form of catalog magnitude. normkeylist : list of str These are the column keys to use to form the normalization index. Measurements in the specified `magcols` with identical normalization index values will be considered as part of a single measurement 'era', and will be normalized to zero. Once all eras have been normalized this way, the final light curve will be re-normalized as specified in `normto`. debugmode : bool If True, will indicate progress as time-groups are found and processed. quiet : bool If True, will not emit any messages when processing. Returns ------- dict Returns the lcdict with the magnitude measurements normalized as specified. The normalization happens IN PLACE.
4,925
def get_event_timelines(self, event_ids, session=None, lightweight=None): url = % (self.url, ) params = { : .join(str(x) for x in event_ids), : , : , : } (response, elapsed_time) = self.request(params=params, session=session, url=url) return self.process_response(response, resources.EventTimeline, elapsed_time, lightweight)
Returns a list of event timelines based on event id's supplied. :param list event_ids: List of event id's to return :param requests.session session: Requests session object :param bool lightweight: If True will return dict not a resource :rtype: list[resources.EventTimeline]
4,926
def make_if_statement(instr, queue, stack, context): test_expr = make_expr(stack) if isinstance(instr, instrs.POP_JUMP_IF_TRUE): test_expr = ast.UnaryOp(op=ast.Not(), operand=test_expr) first_block = popwhile(op.is_not(instr.arg), queue, side=) if isinstance(first_block[-1], instrs.RETURN_VALUE): body = instrs_to_body(first_block, context) return ast.If(test=test_expr, body=body, orelse=[]) jump_to_end = expect( first_block.pop(), instrs.JUMP_FORWARD, "at end of if-block" ) body = instrs_to_body(first_block, context) end = jump_to_end.arg if instr.arg is jump_to_end.arg: orelse = [] else: orelse = instrs_to_body( popwhile(op.is_not(end), queue, side=), context, ) return ast.If(test=test_expr, body=body, orelse=orelse)
Make an ast.If block from a POP_JUMP_IF_TRUE or POP_JUMP_IF_FALSE.
4,927
def write_file(filename, contents): contents = "\n".join(contents) contents = contents.encode("utf-8") with open(filename, "wb") as f: f.write(contents)
Create a file with the specified name and write 'contents' (a sequence of strings without line terminators) to it.
4,928
def provides(self): plist = self.metadata.provides s = % (self.name, self.version) if s not in plist: plist.append(s) return plist
A set of distribution names and versions provided by this distribution. :return: A set of "name (version)" strings.
4,929
def page_models(self, constructor, paging, constraints=None, *, columns=None, order_by=None): records, count = self.page(constructor.table_name, paging, constraints, columns=columns, order_by=order_by) return ([constructor(r) for r in records], count)
Specialization of DataAccess.page that returns models instead of cursor objects.
4,930
def insert(self, packet, **kwargs): values = [ ] pd = packet._defn for defn in pd.fields: val = getattr(packet.raw, defn.name) if val is None and defn.name in pd.history: val = getattr(packet.history, defn.name) values.append(val) qmark = [] * len(values) sql = % (pd.name, .join(qmark)) self._conn.execute(sql, values)
Insert a packet into the database Arguments packet The :class:`ait.core.tlm.Packet` instance to insert into the database
4,931
def _get_db_version(self): dbname = self._cfg.get(, ) self._execute("SELECT description FROM pg_shdescription JOIN pg_database ON objoid = pg_database.oid WHERE datname = " % dbname) comment = self._curs_pg.fetchone() if comment is None: raise NipapDatabaseNoVersionError("Could not find comment of psql database %s" % dbname) db_version = None m = re.match(, comment[0]) if m: db_version = int(m.group(1)) else: raise NipapError("Could not match schema version database comment") return db_version
Get the schema version of the nipap psql db.
4,932
def slot_availability_array(events, slots): array = np.ones((len(events), len(slots))) for row, event in enumerate(events): for col, slot in enumerate(slots): if slot in event.unavailability or event.duration > slot.duration: array[row, col] = 0 return array
Return a numpy array mapping events to slots - Rows corresponds to events - Columns correspond to stags Array has value 0 if event cannot be scheduled in a given slot (1 otherwise)
4,933
def build_text_part(name, thread, struct): part_w = None width = None minw = 0 maxw = None width_tuple = struct[] if width_tuple is not None: if width_tuple[0] == : minw, maxw = width_tuple[1:] content = prepare_string(name, thread, maxw) if minw: alignment = struct[] if alignment == : content = content.ljust(minw) elif alignment == : content = content.center(minw) else: content = content.rjust(minw) text = urwid.Text(content, wrap=) width = text.pack()[0] part_w = AttrFlipWidget(text, struct) return width, part_w
create an urwid.Text widget (wrapped in approproate Attributes) to display a plain text parts in a threadline. create an urwid.Columns widget (wrapped in approproate Attributes) to display a list of tag strings, as part of a threadline. :param name: id of part to build :type name: str :param thread: the thread to get local info for :type thread: :class:`alot.db.thread.Thread` :param struct: theming attributes for this part, as provided by :class:`alot.settings.theme.Theme.get_threadline_theming` :type struct: dict :return: overall width (in characters) and a widget. :rtype: tuple[int, AttrFliwWidget]
4,934
def mul(mean1, var1, mean2, var2): mean = (var1*mean2 + var2*mean1) / (var1 + var2) var = 1 / (1/var1 + 1/var2) return (mean, var)
Multiply Gaussian (mean1, var1) with (mean2, var2) and return the results as a tuple (mean, var). Strictly speaking the product of two Gaussian PDFs is a Gaussian function, not Gaussian PDF. It is, however, proportional to a Gaussian PDF, so it is safe to treat the output as a PDF for any filter using Bayes equation, which normalizes the result anyway. Parameters ---------- mean1 : scalar mean of first Gaussian var1 : scalar variance of first Gaussian mean2 : scalar mean of second Gaussian var2 : scalar variance of second Gaussian Returns ------- mean : scalar mean of product var : scalar variance of product Examples -------- >>> mul(1, 2, 3, 4) (1.6666666666666667, 1.3333333333333333) References ---------- Bromily. "Products and Convolutions of Gaussian Probability Functions", Tina Memo No. 2003-003. http://www.tina-vision.net/docs/memos/2003-003.pdf
4,935
def EnumerateFilesystemsFromClient(args): del args for drive in win32api.GetLogicalDriveStrings().split("\x00"): if not drive: continue try: volume = win32file.GetVolumeNameForVolumeMountPoint(drive).rstrip("\\") label, _, _, _, fs_type = win32api.GetVolumeInformation(drive) except win32api.error: continue yield rdf_client_fs.Filesystem( device=volume, mount_point="/%s:/" % drive[0], type=fs_type, label=UnicodeFromCodePage(label))
List all local filesystems mounted on this system.
4,936
def DecodeValueFromAttribute(self, attribute_name, value, ts): try: attribute = Attribute.PREDICATES[attribute_name] cls = attribute.attribute_type self._AddAttributeToCache(attribute, LazyDecoder(cls, value, ts), self.synced_attributes) except KeyError: pass except (ValueError, rdfvalue.DecodeError): logging.debug("%s: %s invalid encoding. Skipping.", self.urn, attribute_name)
Given a serialized value, decode the attribute. Only attributes which have been previously defined are permitted. Args: attribute_name: The string name of the attribute. value: The serialized attribute value. ts: The timestamp of this attribute.
4,937
def fill_tree_from_xml(tag, ar_tree, namespace): for child in tag: name_elem = child.find( + namespace + ) if name_elem is not None and child is not None: fill_tree_from_xml(child, ar_tree.append_child(name_elem.text, child), namespace) if name_elem is None and child is not None: fill_tree_from_xml(child, ar_tree, namespace)
Parse the xml tree into ArTree objects.
4,938
def tournament_selection(random, population, args): num_selected = args.setdefault(, 1) tournament_size = args.setdefault(, 2) if tournament_size > len(population): tournament_size = len(population) selected = [] for _ in range(num_selected): tourn = random.sample(population, tournament_size) selected.append(max(tourn)) return selected
Return a tournament sampling of individuals from the population. This function selects ``num_selected`` individuals from the population. It selects each one by using random sampling without replacement to pull ``tournament_size`` individuals and adds the best of the tournament as its selection. If ``tournament_size`` is greater than the population size, the population size is used instead as the size of the tournament. .. Arguments: random -- the random number generator object population -- the population of individuals args -- a dictionary of keyword arguments Optional keyword arguments in args: - *num_selected* -- the number of individuals to be selected (default 1) - *tournament_size* -- the tournament size (default 2)
4,939
def delete_service(self, service_name, params=None): if not self.space.has_service_with_name(service_name): logging.warning("Service not found so... succeeded?") return True guid = self.get_instance_guid(service_name) logging.info("Deleting service %s with guid %s" % (service_name, guid)) return self.api.delete("/v2/service_instances/%s?accepts_incomplete=true" % (guid), params=params)
Delete the service of the given name. It may fail if there are any service keys or app bindings. Use purge() if you want to delete it all.
4,940
def suggest_next_locations(self, context = None, pending_X = None, ignored_X = None): self.model_parameters_iterations = None self.num_acquisitions = 0 self.context = context self._update_model(self.normalization_type) suggested_locations = self._compute_next_evaluations(pending_zipped_X = pending_X, ignored_zipped_X = ignored_X) return suggested_locations
Run a single optimization step and return the next locations to evaluate the objective. Number of suggested locations equals to batch_size. :param context: fixes specified variables to a particular context (values) for the optimization run (default, None). :param pending_X: matrix of input configurations that are in a pending state (i.e., do not have an evaluation yet) (default, None). :param ignored_X: matrix of input configurations that the user black-lists, i.e., those configurations will not be suggested again (default, None).
4,941
def sojourn_time(p): p = np.asarray(p) pii = p.diagonal() if not (1 - pii).all(): print("Sojourn times are infinite for absorbing states!") return 1 / (1 - pii)
Calculate sojourn time based on a given transition probability matrix. Parameters ---------- p : array (k, k), a Markov transition probability matrix. Returns ------- : array (k, ), sojourn times. Each element is the expected time a Markov chain spends in each states before leaving that state. Notes ----- Refer to :cite:`Ibe2009` for more details on sojourn times for Markov chains. Examples -------- >>> from giddy.markov import sojourn_time >>> import numpy as np >>> p = np.array([[.5, .25, .25], [.5, 0, .5], [.25, .25, .5]]) >>> sojourn_time(p) array([2., 1., 2.])
4,942
def set_breakpoint(self, file_name, line_number, condition=None, enabled=True): c_file_name = self.canonic(file_name) import linecache line = linecache.getline(c_file_name, line_number) if not line: return "Line %s:%d does not exist." % (c_file_name, line_number), None bp = IKBreakpoint(c_file_name, line_number, condition, enabled) if self.pending_stop or IKBreakpoint.any_active_breakpoint: self.enable_tracing() else: self.disable_tracing() return None, bp.number
Create a breakpoint, register it in the class's lists and returns a tuple of (error_message, break_number)
4,943
def setup(self, app): self.logger = app.logger self.shell.logger = self.logger if not self.command_name: raise EmptyCommandNameException() self.app = app self.arguments_declaration = self.arguments self.arguments = app.arguments if self.use_subconfig: _init_config(self) else: self.config = self.app.config
Setup properties from parent app on the command
4,944
def pre_init(self, value, obj): try: if obj._state.adding: pass return value
Convert a string value to JSON only if it needs to be deserialized. SubfieldBase metaclass has been modified to call this method instead of to_python so that we can check the obj state and determine if it needs to be deserialized
4,945
def bounds(self): bounds = [np.inf,-np.inf, np.inf,-np.inf, np.inf,-np.inf] def update_bounds(ax, nb, bounds): if nb[2*ax] < bounds[2*ax]: bounds[2*ax] = nb[2*ax] if nb[2*ax+1] > bounds[2*ax+1]: bounds[2*ax+1] = nb[2*ax+1] return bounds for i in range(self.n_blocks): try: bnds = self[i].GetBounds() for a in range(3): bounds = update_bounds(a, bnds, bounds) except AttributeError: pass return bounds
Finds min/max for bounds across blocks Returns: tuple(float): length 6 tuple of floats containing min/max along each axis
4,946
def prior_from_config(cp, variable_params, prior_section, constraint_section): logging.info("Setting up priors for each parameter") dists = distributions.read_distributions_from_config(cp, prior_section) constraints = distributions.read_constraints_from_config( cp, constraint_section) return distributions.JointDistribution(variable_params, *dists, constraints=constraints)
Gets arguments and keyword arguments from a config file. Parameters ---------- cp : WorkflowConfigParser Config file parser to read. variable_params : list List of of model parameter names. prior_section : str Section to read prior(s) from. constraint_section : str Section to read constraint(s) from. Returns ------- pycbc.distributions.JointDistribution The prior.
4,947
def WriteSerialized(cls, attribute_container): json_dict = cls.WriteSerializedDict(attribute_container) return json.dumps(json_dict)
Writes an attribute container to serialized form. Args: attribute_container (AttributeContainer): attribute container. Returns: str: A JSON string containing the serialized form.
4,948
def packageipa(env, console): ipa_path, app_path = _get_ipa(env) output_dir = path.dirname(ipa_path) if path.exists(ipa_path): console.quiet( % ipa_path) os.remove(ipa_path) zf = zipfile.ZipFile(ipa_path, mode=) payload_dir = for (dirpath, dirnames, filenames) in os.walk(app_path): for filename in filenames: filepath = path.join(dirpath, filename) prefix = path.commonprefix([filepath, path.dirname(app_path)]) write_path = path.join(payload_dir, filepath[len(prefix) + 1:]) console.quiet( % write_path) zf.write(filepath, write_path) zf.close() console.quiet( % ipa_path)
Package the built app as an ipa for distribution in iOS App Store
4,949
def _default_output_dir(): try: dataset_name = gin.query_parameter("inputs.dataset_name") except ValueError: dataset_name = "random" dir_name = "{model_name}_{dataset_name}_{timestamp}".format( model_name=gin.query_parameter("train.model").configurable.name, dataset_name=dataset_name, timestamp=datetime.datetime.now().strftime("%Y%m%d_%H%M"), ) dir_path = os.path.join("~", "trax", dir_name) print() trax.log("No --output_dir specified") return dir_path
Default output directory.
4,950
def thaicheck(word: str) -> bool: pattern = re.compile(r"[ก-ฬฮ]", re.U) res = re.findall(pattern, word) if res == []: return False if _check1(res[len(res) - 1]) or len(res) == 1: if _check2(word): word2 = list(word) i = 0 thai = True if word in [ "ฆ่า", "เฆี่ยน", "ศึก", "ศอก", "เศิก", "เศร้า", "ธ", "ณ", "ฯพณฯ", "ใหญ่", "หญ้า", "ควาย", "ความ", "กริ่งเกรง", "ผลิ", ]: return True while i < len(word2) and thai: thai = _check3(word2[i]) if not thai: return False i += 1 return True return False if word in ["กะ", "กระ", "ปะ", "ประ"]: return True return False
Check if a word is an "authentic Thai word" :param str word: word :return: True or False
4,951
def _do_connect(self): self.load_system_host_keys() if self.username is None or self.port is None: self._configure() try: self.connect(hostname=self.hostname, port=self.port, username=self.username, key_filename=self.key_filename, sock=self.proxy) except socket.error as e: raise GerritError("Failed to connect to server: %s" % e) try: version_string = self._transport.remote_version pattern = re.compile(r) self.remote_version = _extract_version(version_string, pattern) except AttributeError: self.remote_version = None
Connect to the remote.
4,952
def _unsign_data(self, data, options): if options[] not in self.signature_algorithms: raise Exception( % options[]) signature_algorithm = \ self.signature_algorithms[options[]] algorithm = self._get_algorithm_info(signature_algorithm) key_salt = if algorithm[]: key_salt = data[-algorithm[]:] data = data[:-algorithm[]] key = self._generate_key(options[], self.signature_passphrases, key_salt, algorithm) data = self._decode(data, algorithm, key) return data
Verify and remove signature
4,953
def node_list_to_coordinate_lines(G, node_list, use_geom=True): edge_nodes = list(zip(node_list[:-1], node_list[1:])) lines = [] for u, v in edge_nodes: data = min(G.get_edge_data(u, v).values(), key=lambda x: x[]) if in data and use_geom: xs, ys = data[].xy lines.append(list(zip(xs, ys))) else: line = [(x1, y1), (x2, y2)] lines.append(line) return lines
Given a list of nodes, return a list of lines that together follow the path defined by the list of nodes. Parameters ---------- G : networkx multidigraph route : list the route as a list of nodes use_geom : bool if True, use the spatial geometry attribute of the edges to draw geographically accurate edges, rather than just lines straight from node to node Returns ------- lines : list of lines given as pairs ( (x_start, y_start), (x_stop, y_stop) )
4,954
def with_timeout(timeout, d, reactor=reactor): if timeout is None or not isinstance(d, Deferred): return d ret = Deferred(canceller=lambda _: ( d.cancel(), timeout_d.cancel(), )) timeout_d = sleep(timeout, reactor) timeout_d.addCallback(lambda _: ( d.cancel(), ret.errback(Failure(Timeout())) if not ret.called else None, )) timeout_d.addErrback(lambda f: f.trap(CancelledError)) d.addCallback(lambda result: ( timeout_d.cancel(), ret.callback(result), )) d.addErrback(lambda f: ( if_(not f.check(CancelledError), lambda: ( timeout_d.cancel(), ret.errback(f), )), )) return ret
Returns a `Deferred` that is in all respects equivalent to `d`, e.g. when `cancel()` is called on it `Deferred`, the wrapped `Deferred` will also be cancelled; however, a `Timeout` will be fired after the `timeout` number of seconds if `d` has not fired by that time. When a `Timeout` is raised, `d` will be cancelled. It is up to the caller to worry about how `d` handles cancellation, i.e. whether it has full/true support for cancelling, or does cancelling it just prevent its callbacks from being fired but doesn't cancel the underlying operation.
4,955
def reset(self): self.config = None self.html = None self.parsed_tree = None self.tidied = False self.next_page_link = None self.title = None self.author = set() self.language = None self.date = None self.body = None self.failures = set() self.success = False LOGGER.debug(u)
(re)set all instance attributes to default. Every attribute is set to ``None``, except :attr:`author` and :attr:`failures` which are set to ``[]``.
4,956
async def getiter(self, url: str, url_vars: Dict[str, str] = {}, *, accept: str = sansio.accept_format(), jwt: Opt[str] = None, oauth_token: Opt[str] = None ) -> AsyncGenerator[Any, None]: data, more = await self._make_request("GET", url, url_vars, b"", accept, jwt=jwt, oauth_token=oauth_token) if isinstance(data, dict) and "items" in data: data = data["items"] for item in data: yield item if more: async for item in self.getiter(more, url_vars, accept=accept, jwt=jwt, oauth_token=oauth_token): yield item
Return an async iterable for all the items at a specified endpoint.
4,957
def serialize(ad_objects, output_format=, indent=2, attributes_only=False): if attributes_only: ad_objects = [key for key in sorted(ad_objects[0].keys())] if output_format == : return json.dumps(ad_objects, indent=indent, ensure_ascii=False, sort_keys=True) elif output_format == : return yaml.dump(sorted(ad_objects), indent=indent)
Serialize the object to the specified format :param ad_objects list: A list of ADObjects to serialize :param output_format str: The output format, json or yaml. Defaults to json :param indent int: The number of spaces to indent, defaults to 2 :param attributes only: Only serialize the attributes found in the first record of the list of ADObjects :return: A serialized, formatted representation of the list of ADObjects :rtype: str
4,958
def linear_trend_timewise(x, param): ix = x.index times_seconds = (ix - ix[0]).total_seconds() times_hours = np.asarray(times_seconds / float(3600)) linReg = linregress(times_hours, x.values) return [("attr_\"{}\"".format(config["attr"]), getattr(linReg, config["attr"])) for config in param]
Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one. This feature uses the index of the time series to fit the model, which must be of a datetime dtype. The parameters control which of the characteristics are returned. Possible extracted attributes are "pvalue", "rvalue", "intercept", "slope", "stderr", see the documentation of linregress for more information. :param x: the time series to calculate the feature of. The index must be datetime. :type x: pandas.Series :param param: contains dictionaries {"attr": x} with x an string, the attribute name of the regression model :type param: list :return: the different feature values :return type: list
4,959
def __build_cmd_maps(cls): cmd_map_all = {} cmd_map_visible = {} cmd_map_internal = {} for name in dir(cls): obj = getattr(cls, name) if iscommand(obj): for cmd in getcommands(obj): if cmd in cmd_map_all.keys(): raise PyShellError("The command already has cmd" " method , cannot register a" " second method .".format( \ cmd, cmd_map_all[cmd], obj.__name__)) cmd_map_all[cmd] = obj.__name__ if isvisiblecommand(obj): cmd_map_visible[cmd] = obj.__name__ if isinternalcommand(obj): cmd_map_internal[cmd] = obj.__name__ return cmd_map_all, cmd_map_visible, cmd_map_internal
Build the mapping from command names to method names. One command name maps to at most one method. Multiple command names can map to the same method. Only used by __init__() to initialize self._cmd_map. MUST NOT be used elsewhere. Returns: A tuple (cmd_map, hidden_cmd_map, internal_cmd_map).
4,960
def load(self, filename, params=None, force=False, depthrange=None, timerange=None, output_is_dict=True, **kwargs): if (params is not None) & isinstance(params,str): params=[params] self._filename = filename try: ncf = ncfile(self._filename, "r") except Exception,e: warn(repr(e),stacklevel=2) return {} akeys = ncf.ncattrs() attrStr=OrderedDict() for A in akeys : attrStr.update({A:ncf.getncattr(A)}) dum = ncf.variables.keys() nparam = np.shape(dum)[0] par_list = np.array([.format(v) for v in ncf.variables.keys()]) par_list = par_list.compress([len(par) != 0 for par in par_list]) nparam = par_list.size if nparam == 0 : self.Error(.format(self._filename)) ncdimlist = np.array([.format(d) for d in ncf.dimensions.keys()]) ndims = len(ncdimlist) dimStr = OrderedDict() dimStr.update({:ndims}) if ndims == 0 : self.Error(.format(self._filename)) checkedDims = np.array([, , , ]) existDim = -np.ones(4,dtype=int) if not self.use_local_dims : for i,d in enumerate(ncdimlist) : if ( (d.lower().startswith()) | (d.lower().find() != -1) ) & (d.find() ==-1) : existDim[0]=i if ( (d.lower().startswith()) | (d.lower().find() != -1) ) & (d.find() ==-1): existDim[1]=i if (d.lower().startswith()) | (d.lower().startswith()) : existDim[2]=i if (d.lower().startswith()) | (d.lower().startswith()) : existDim[3]=i identified = existDim > -1 for i,d in enumerate(existDim) : if identified[i] : dimStr.update({ncdimlist[d]:len(ncf.dimensions[ncdimlist[d]])}) cmd = \ self.message(4, .format(checkedDims[i],cmd)) locals()[checkedDims[i]]=load_ncVar(ncdimlist[d], nc=ncf,**kwargs) missdims=set(ncdimlist) missdims.difference_update(ncdimlist[existDim[identified]]) missdims=list(missdims) for i,d in enumerate(missdims) : dimStr.update({d:len(ncf.dimensions[d])}) if ncf.variables.has_key(d) : cmd = \ self.message(4, .format(d,cmd)) locals()[d]=load_ncVar(d, nc=ncf,**kwargs) else : self.message(1, .format(d)) ndim=len(ncf.dimensions[d]) cmd = self.message(4, .format(d,cmd)) locals()[d]={:{:1,d:ndim}, :np.arange(ndim)} dimlist=ncdimlist.copy() if identified.sum() > 0 : dimlist[existDim[identified]]=checkedDims[identified] else : dimlist = dimlist[[]] if params is not None : if force : par_list = [i.upper() for i in params] else :par_list = list(set(params).intersection(par_list)) else : par_list = par_list.tolist() for d in ncdimlist[existDim[identified]] : par_list.pop(par_list.index(d)) self.message(2, + str(nparam) + + str(par_list)) if (existDim[0] > -1) & (existDim[1] > -1): llind, flag = in_limits(lon[],lat[], limit=self.limit) if isinstance(flag,tuple) : lon[] = recale(lon[].compress(flag[0]),degrees=True) lon[][lon[].keys()[1]] = flag[0].sum() lat[] = lat[].compress(flag[1]) lat[][lat[].keys()[1]] = flag[1].sum() else : lon[] = recale(lon[].compress(flag),degrees=True) lon[][lon[].keys()[1]] = flag.sum() lat[] = lat[].compress(flag) lat[][lat[].keys()[1]] = flag.sum() locals()[ncdimlist[existDim[0]]]=lon.copy() locals()[ncdimlist[existDim[1]]]=lat.copy() dimStr.update({ncdimlist[existDim[0]]:len(lon[])}) dimStr.update({ncdimlist[existDim[1]]:len(lat[])}) if (existDim[2] > -1): if (timerange is not None) : timeflag = (time[] >= np.min(timerange)) & (time[] <= np.max(timerange)) else : timeflag = np.ones(len(time[]), dtype=bool) if timeflag.sum() == 0 : self.Error(.format(np.min(time), np.max(time))) time[] = time[].compress(timeflag) time[][time[].keys()[1]] = timeflag.sum() locals()[ncdimlist[existDim[2]]]=time.copy() dimStr.update({ncdimlist[existDim[2]]:len(time[])}) if (existDim[3] > -1): if (depthrange is not None) : depthflag = (depth[] >= np.min(depthrange)) & (depth[] <= np.max(depthrange)) else : depthflag = np.ones(len(depth[]), dtype=bool) if depthflag.sum() == 0 : self.Error(.format(np.min(depth), np.max(depth))) depth[] = depth[].compress(depthflag) depth[][depth[].keys()[1]] = depthflag.sum() locals()[ncdimlist[existDim[3]]]=depth.copy() dimStr.update({ncdimlist[existDim[3]]:len(depth[])}) outStr = OrderedDict() outStr.update({:dimStr}) outStr.update({:attrStr}) if (existDim[0] > -1) : outStr.update({ncdimlist[existDim[0]]:lon}) if (existDim[1] > -1) : outStr.update({ncdimlist[existDim[1]]:lat}) if (existDim[2] > -1) : outStr.update({ncdimlist[existDim[2]]:time}) if (existDim[3] > -1) : outStr.update({ncdimlist[existDim[3]]:depth}) for d in dimlist.compress([not outStr.has_key(f) for f in dimlist]) : cmd = \+d+ self.message(4, +cmd) exec(cmd) ncdimStr=outStr.copy() shape=() for d in dimlist: shape += np.shape(locals()[d][]) ndims = np.size(shape) for d, ncd in zip(*(dimlist,ncdimlist)): if not kwargs.has_key(ncd) : if kwargs.has_key(d) : kwargs.update({ncd:kwargs[d]}) del kwargs[d] else : dvar=ncdimStr[d][] if isinstance(dvar,np.ma.masked_array) : kwargs.update({ncd:(np.nanmin(dvar.data),np.nanmax(dvar.data))}) else : kwargs.update({ncd:(np.nanmin(dvar),np.nanmax(dvar))}) for param in par_list : dumVar = load_ncVar(param, nc=ncf, **kwargs) cmd = \ self.message(4, + cmd) exec(cmd) outStr.update(dumStr) for ddum in dumStr[param][].keys()[1:] : if outStr[].get(ddum) != dumStr[param][][ddum] : outStr[][ddum]=dumStr[param][][ddum] ncf.close() return outStr
NetCDF data loader :parameter filename: file name :parameter params: a list of variables to load (default : load ALL variables). :parameter depthrange: if a depth dimension is found, subset along this dimension. :parameter timerange: if a time dimension is found, subset along this dimension. .. note:: using :attr:`altimetry.tools.nctools.limit` allows subsetting to a given region. :parameter kwargs: additional arguments for subsetting along given dimensions. .. note:: You can index along any dimension by providing the name of the dimensions to subsample along. Values associated to the provided keywords should be a length 2 or 3 tuple (min,max,<step>) (cf. :func:`altimetry.data.nctools.load_ncVar`). :keyword output_is_dict: data structures are dictionnaries (eg. my_hydro_data.variable['data']). If false uses an object with attributes (eg. my_hydro_data.variable.data). :return {type:dict} outStr: Output data structure containing all recorded parameters as specificied by NetCDF file PARAMETER list. :author: Renaud Dussurget
4,961
def minor_releases(self, manager): return [ key for key, value in six.iteritems(manager) if any(x for x in value if not x.startswith()) ]
Return all minor release line labels found in ``manager``.
4,962
def splitter(structured): actives = [] decoys = [] for mol in structured: status = mol[3] if status == : actives.append(mol) elif status == : decoys.append(mol) return actives, decoys
Separates structured data into a list of actives or a list of decoys. actives are labeled with a '1' in their status fields, while decoys are labeled with a '0' in their status fields. :param structured: either roc_structure or score_structure. roc_structure: list [(id, best_score, best_query, status, fpf, tpf), ..., ] score_structure: list [(id, best_score, best_query, status, net decoy count, net active count), ...,] :return: actives: list [(id, best_score, best_query, status = 1, fpf/net decoy count, tpf/net active count), ..., ] :return decoys: list [(id, best_score, best_query, status = 0, fpf/net decoy count, tpf/net active count), ..., ]
4,963
def scope(self, *args, **kwargs): _scopes = self.scopes(*args, **kwargs) if len(_scopes) == 0: raise NotFoundError("No scope fits criteria") if len(_scopes) != 1: raise MultipleFoundError("Multiple scopes fit criteria") return _scopes[0]
Return a single scope based on the provided name. If additional `keyword=value` arguments are provided, these are added to the request parameters. Please refer to the documentation of the KE-chain API for additional query parameters. :return: a single :class:`models.Scope` :raises NotFoundError: When no `Scope` is found :raises MultipleFoundError: When more than a single `Scope` is found
4,964
def get_sub_extractors_by_property(extractor, property_name, return_property_list=False): if isinstance(extractor, RecordingExtractor): if property_name not in extractor.get_channel_property_names(): raise ValueError(" must be must be a property of the recording channels") else: sub_list = [] recording = extractor properties = np.array([recording.get_channel_property(chan, property_name) for chan in recording.get_channel_ids()]) prop_list = np.unique(properties) for prop in prop_list: prop_idx = np.where(prop == properties) chan_idx = list(np.array(recording.get_channel_ids())[prop_idx]) sub_list.append(SubRecordingExtractor(recording, channel_ids=chan_idx)) if return_property_list: return sub_list, prop_list else: return sub_list elif isinstance(extractor, SortingExtractor): if property_name not in extractor.get_unit_property_names(): raise ValueError(" must be must be a property of the units") else: sub_list = [] sorting = extractor properties = np.array([sorting.get_unit_property(unit, property_name) for unit in sorting.get_unit_ids()]) prop_list = np.unique(properties) for prop in prop_list: prop_idx = np.where(prop == properties) unit_idx = list(np.array(sorting.get_unit_ids())[prop_idx]) sub_list.append(SubSortingExtractor(sorting, unit_ids=unit_idx)) if return_property_list: return sub_list, prop_list else: return sub_list else: raise ValueError(" must be a RecordingExtractor or a SortingExtractor")
Divides Recording or Sorting Extractor based on the property_name (e.g. group) Parameters ---------- extractor: RecordingExtractor or SortingExtractor The extractor to be subdivided in subextractors property_name: str The property used to subdivide the extractor return_property_list: bool If True the property list is returned Returns ------- List of subextractors
4,965
def processRequest(self, arg, **kw): if self.debug: log.msg( %str(arg), debug=1) if arg is None: return for h in self.handlers: arg = h.processRequest(arg, **kw) s = str(arg) if self.debug: log.msg(s, debug=1) return s
Parameters: arg -- XML Soap data string
4,966
def pop(self, count=1): if count < 0: return self.popleft(-count) new_right_list, new_left_list = PDeque._pop_lists(self._right_list, self._left_list, count) return PDeque(new_left_list, new_right_list, max(self._length - count, 0), self._maxlen)
Return new deque with rightmost element removed. Popping the empty queue will return the empty queue. A optional count can be given to indicate the number of elements to pop. Popping with a negative index is the same as popleft. Executes in amortized O(k) where k is the number of elements to pop. >>> pdeque([1, 2]).pop() pdeque([1]) >>> pdeque([1, 2]).pop(2) pdeque([]) >>> pdeque([1, 2]).pop(-1) pdeque([2])
4,967
def GetZipInfo(self): if not self._zip_info: location = getattr(self.path_spec, , None) if location is None: raise errors.PathSpecError() if not location.startswith(self._file_system.LOCATION_ROOT): raise errors.PathSpecError() if len(location) == 1: return None zip_file = self._file_system.GetZipFile() try: self._zip_info = zip_file.getinfo(location[1:]) except KeyError: pass return self._zip_info
Retrieves the ZIP info object. Returns: zipfile.ZipInfo: a ZIP info object or None if not available. Raises: PathSpecError: if the path specification is incorrect.
4,968
def check_url (self): try: url_data = self.urlqueue.get(timeout=QUEUE_POLL_INTERVALL_SECS) if url_data is not None: try: self.check_url_data(url_data) finally: self.urlqueue.task_done(url_data) self.setName(self.origname) except urlqueue.Empty: pass except Exception: self.internal_error()
Try to get URL data from queue and check it.
4,969
def get_sequences_from_cluster(c1, c2, data): seqs1 = data[c1][] seqs2 = data[c2][] seqs = list(set(seqs1 + seqs2)) names = [] for s in seqs: if s in seqs1 and s in seqs2: names.append("both") elif s in seqs1: names.append(c1) else: names.append(c2) return seqs, names
get all sequences from on cluster
4,970
def render(self, fname=): import qnet.visualization.circuit_pyx as circuit_visualization from tempfile import gettempdir from time import time, sleep if not fname: tmp_dir = gettempdir() fname = os.path.join(tmp_dir, "tmp_{}.png".format(hash(time))) if circuit_visualization.draw_circuit(self, fname): done = False for k in range(20): if os.path.exists(fname): done = True break else: sleep(.5) if done: return fname raise CannotVisualize()
Render the circuit expression and store the result in a file Args: fname (str): Path to an image file to store the result in. Returns: str: The path to the image file
4,971
def _local_to_shape(self, local_x, local_y): return ( local_x - self.shape_offset_x, local_y - self.shape_offset_y )
Translate local coordinates point to shape coordinates. Shape coordinates have the same unit as local coordinates, but are offset such that the origin of the shape coordinate system (0, 0) is located at the top-left corner of the shape bounding box.
4,972
def modis_filename2modisdate(modis_fname): if not isinstance(modis_fname,list) : modis_fname=[modis_fname] return [os.path.splitext(os.path.basename(m))[0][1:12] for m in modis_fname]
#+ # MODIS_FILENAME2DATE : Convert MODIS file name to MODIS date # # @author: Renaud DUSSURGET (LER PAC/IFREMER) # @history: Created by RD on 29/10/2012 # #-
4,973
def windyields(self, ini, end, delta, **keyw): if ("tmass" in keyw) == False: keyw["tmass"] = "mass" if ("abund" in keyw) == False: keyw["abund"] = "iso_massf" if ("cycle" in keyw) == False: keyw["cycle"] = "cycle" print("Windyields() initialised. Reading files...") ypsinit = [] niso = 0 X_i = [] E_i = [] totalmass = [] ypssurf = [] cycles = [] first = True wc = self._windcalc cycleret = self.se.cycles retrieve = self.se.get capp = cycles.extend tapp = totalmass.extend yapp = ypssurf.extend for i in range(ini,end+1,delta): step = int(i) capp([int(cycleret[i-ini])]) tapp([retrieve(step,keyw["tmass"])]) yapp([retrieve(step,keyw["abund"])]) print("Reading complete. Calculating yields and ejected masses...") nsteps = len(cycles)-1 niso = len(ypssurf[0]) X_i = np.zeros([niso], float) E_i = np.zeros([niso], float) X_i, E_i = wc(first, totalmass, nsteps, niso, ypssurf, \ ypsinit, X_i, E_i, cycles) return X_i, E_i
This function returns the wind yields and ejected masses. X_i, E_i = data.windyields(ini, end, delta) Parameters ---------- ini : integer The starting cycle. end : integer The finishing cycle. delta : integer The cycle interval. keyw : dict A dict of key word arguments. Returns ------- list The function returns a list of the wind yields(X_i) and a list of the ejected masses(E_i) in the mass units that were used (usually solar masses). Notes ----- The following keywords cand also be used: +------------------+---------------+ | Keyword Argument | Default Value | +==================+===============+ | abund | "iso_massf" | +------------------+---------------+ | tmass | "mass" | +------------------+---------------+ | cycle | "cycle" | +------------------+---------------+ The keyword arguments are used when the variables within the input file differ in name from their default values typically found in an MPPNP output file. If the data table differs in name, use these keywords. For example, if the table for the abundances is called "abundances" instead of "iso_massf", then use abund = "abundances" as a keyword argument.
4,974
def create_organisation(self, organisation_json): return trolly.organisation.Organisation( trello_client=self, organisation_id=organisation_json[], name=organisation_json[], data=organisation_json, )
Create an Organisation object from a JSON object Returns: Organisation: The organisation from the given `organisation_json`.
4,975
def on_peer_down(self, peer): LOG.debug(, peer.ip_address, peer.version_num) self._table_manager.clean_stale_routes(peer)
Peer down handler. Cleans up the paths in global tables that was received from this peer.
4,976
def main(): src_dir = sys.argv[1] os.chdir(src_dir) config = get_config(src_dir) cmd = version = \ subprocess.check_output([cmd], shell=True).strip() tmp_dist = "/var/deb_dist" project = config[] tmp_dist = "/var/deb_dist" os_version = "1404" deb_dir = "%s/deb_dist" % config[] print("Building %s debian packages..." % project) shutil.copyfile("%s/stdeb.cfg" % (deb_dir), "./stdeb.cfg") shutil.copytree(deb_dir, tmp_dist) cmd = + \ % tmp_dist print(subprocess.check_output([cmd], shell=True)) os.chdir("%s/%s-%s" % (tmp_dist, project, version)) cmd = .split() subprocess.check_output(cmd) os.chdir(src_dir) pkg = "python-%s_%s-1" % (project, version) os_pkg = pkg + "_%s_all.deb" % os_version pkg = pkg + "_all.deb" shutil.copyfile("%s/%s" % (tmp_dist, pkg), "%s/%s" % (deb_dir, os_pkg)) cmd = "python %s/add_pkg_name.py deb_pkg %s/%s" % \ (config[], deb_dir, os_pkg)
main Entrypoint to this script. This will execute the functionality as a standalone element
4,977
def key_expand(self, key): key = self._process_value(key, ) payload = {"key": key} resp = self.call(, payload) return resp
Derive public key and account number from **private key** :param key: Private key to generate account and public key of :type key: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.key_expand( key="781186FB9EF17DB6E3D1056550D9FAE5D5BBADA6A6BC370E4CBB938B1DC71DA3" ) { "private": "781186FB9EF17DB6E3D1056550D9FAE5D5BBADA6A6BC370E4CBB938B1DC71DA3", "public": "3068BB1CA04525BB0E416C485FE6A67FD52540227D267CC8B6E8DA958A7FA039", "account": "xrb_1e5aqegc1jb7qe964u4adzmcezyo6o146zb8hm6dft8tkp79za3sxwjym5rx" }
4,978
def binary_report(self, sha256sum, apikey): url = self.base_url + "file/report" params = {"apikey": apikey, "resource": sha256sum} rate_limit_clear = self.rate_limit() if rate_limit_clear: response = requests.post(url, data=params) if response.status_code == self.HTTP_OK: json_response = response.json() response_code = json_response[] return json_response elif response.status_code == self.HTTP_RATE_EXCEEDED: time.sleep(20) else: self.logger.warning("retrieve report: %s, HTTP code: %d", os.path.basename(filename), response.status_code)
retrieve report from file scan
4,979
def save(self): if not self.dirty: return data = .join(map(self.make_relative, self.paths)) if data: log.debug("Saving %s", self.filename) data = ( "import sys; sys.__plen = len(sys.path)\n" "%s\n" "import sys; new=sys.path[sys.__plen:];" " del sys.path[sys.__plen:];" " p=getattr(sys,,0); sys.path[p:p]=new;" " sys.__egginsert = p+len(new)\n" ) % data if os.path.islink(self.filename): os.unlink(self.filename) f = open(self.filename, ) f.write(data) f.close() elif os.path.exists(self.filename): log.debug("Deleting empty %s", self.filename) os.unlink(self.filename) self.dirty = False
Write changed .pth file back to disk
4,980
def encrypt(self, txt, key): assert isinstance(txt, six.text_type), "txt: %s is not text type!" % repr(txt) assert isinstance(key, six.text_type), "key: %s is not text type!" % repr(key) if len(txt) != len(key): raise SecureJSLoginError("encrypt error: %s and must have the same length!" % (txt, key)) pbkdf2_hash = PBKDF2SHA1Hasher1().get_salt_hash(txt) txt=force_bytes(txt) key=force_bytes(key) crypted = self.xor(txt, key) crypted = binascii.hexlify(crypted) crypted = six.text_type(crypted, "ascii") return "%s$%s" % (pbkdf2_hash, crypted)
XOR ciphering with a PBKDF2 checksum
4,981
def gct2gctx_main(args): in_gctoo = parse_gct.parse(args.filename, convert_neg_666=False) if args.output_filepath is None: basename = os.path.basename(args.filename) out_name = os.path.splitext(basename)[0] + ".gctx" else: out_name = args.output_filepath if args.row_annot_path is None: pass else: row_metadata = pd.read_csv(args.row_annot_path, sep=, index_col=0, header=0, low_memory=False) assert all(in_gctoo.data_df.index.isin(row_metadata.index)), \ "Row ids in matrix missing from annotations file" in_gctoo.row_metadata_df = row_metadata.loc[row_metadata.index.isin(in_gctoo.data_df.index)] if args.col_annot_path is None: pass else: col_metadata = pd.read_csv(args.col_annot_path, sep=, index_col=0, header=0, low_memory=False) assert all(in_gctoo.data_df.columns.isin(col_metadata.index)), \ "Column ids in matrix missing from annotations file" in_gctoo.col_metadata_df = col_metadata.loc[col_metadata.index.isin(in_gctoo.data_df.columns)] write_gctx.write(in_gctoo, out_name)
Separate from main() in order to make command-line tool.
4,982
def patch_namespaced_role(self, name, namespace, body, **kwargs): kwargs[] = True if kwargs.get(): return self.patch_namespaced_role_with_http_info(name, namespace, body, **kwargs) else: (data) = self.patch_namespaced_role_with_http_info(name, namespace, body, **kwargs) return data
partially update the specified Role This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_namespaced_role(name, namespace, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the Role (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V1Role If the method is called asynchronously, returns the request thread.
4,983
def query(self): query = ( self.book.session.query(Account) .join(Commodity) .filter(Commodity.namespace != "template") .filter(Account.type != AccountType.root.value) ) return query
Main accounts query
4,984
def _premis_version_from_data(data): for child in data: if isinstance(child, dict): version = child.get("version") if version: return version return utils.PREMIS_VERSION
Given tuple ``data`` encoding a PREMIS element, attempt to return the PREMIS version it is using. If none can be found, return the default PREMIS version.
4,985
def msg_curse(self, args=None, max_width=None): ret = [] if not self.stats or self.is_disable(): return ret name_max_width = max_width - 12 msg = .format(, width=name_max_width) ret.append(self.curse_add_line(msg, "TITLE")) for i in self.stats: if i[] == and i[] == []: continue ret.append(self.curse_new_line()) msg = .format(i["label"][:name_max_width], width=name_max_width) ret.append(self.curse_add_line(msg)) if i[] in (b, b, b, b): msg = .format(i[]) ret.append(self.curse_add_line( msg, self.get_views(item=i[self.get_key()], key=, option=))) else: if (args.fahrenheit and i[] != and i[] != ): value = to_fahrenheit(i[]) unit = else: value = i[] unit = i[] try: msg = .format(value, unit) ret.append(self.curse_add_line( msg, self.get_views(item=i[self.get_key()], key=, option=))) except (TypeError, ValueError): pass return ret
Return the dict to display in the curse interface.
4,986
def write(self): if not self.output_files.valid(): raise ValueError( f ) else: if in env.config[] or in env.config[]: env.log_to_file( , f ) ret = super(RuntimeInfo, self).write() if ret is False: env.logger.debug(f) return ret send_message_to_controller([, self.sig_id, ret]) send_message_to_controller([ , , self.sig_id, repr({ : [ str(f.resolve()) for f in self.input_files if isinstance(f, file_target) ], : [ str(f.resolve()) for f in self.dependent_files if isinstance(f, file_target) ], : [ str(f.resolve()) for f in self.output_files if isinstance(f, file_target) ] }) ]) return True
Write signature file with signature of script, input, output and dependent files. Because local input and output files can only be determined after the execution of workflow. They are not part of the construction.
4,987
def save(self, *args, **kwargs): after_save = kwargs.pop(, True) super(LayerExternal, self).save(*args, **kwargs) if after_save: try: synchronizer = self.synchronizer except ImproperlyConfigured: pass else: if synchronizer: synchronizer.after_external_layer_saved(self.config) self._reload_schema()
call synchronizer "after_external_layer_saved" method for any additional operation that must be executed after save
4,988
def saelgv(vec1, vec2): vec1 = stypes.toDoubleVector(vec1) vec2 = stypes.toDoubleVector(vec2) smajor = stypes.emptyDoubleVector(3) sminor = stypes.emptyDoubleVector(3) libspice.saelgv_c(vec1, vec2, smajor, sminor) return stypes.cVectorToPython(smajor), stypes.cVectorToPython(sminor)
Find semi-axis vectors of an ellipse generated by two arbitrary three-dimensional vectors. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/saelgv_c.html :param vec1: First vector used to generate an ellipse. :type vec1: 3-Element Array of floats :param vec2: Second vector used to generate an ellipse. :type vec2: 3-Element Array of floats :return: Semi-major axis of ellipse, Semi-minor axis of ellipse. :rtype: tuple
4,989
def stateDict(self): state = { : self._duration, : self._intensity, : self._risefall, : self.name } return state
Saves internal values to be loaded later :returns: dict -- {'parametername': value, ...}
4,990
def hash_array(vals, encoding=, hash_key=None, categorize=True): if not hasattr(vals, ): raise TypeError("must pass a ndarray-like") dtype = vals.dtype if hash_key is None: hash_key = _default_hash_key if np.issubdtype(dtype, np.complex128): return hash_array(vals.real) + 23 * hash_array(vals.imag) elif isinstance(dtype, np.bool): vals = vals.astype() elif issubclass(dtype.type, (np.datetime64, np.timedelta64)): vals = vals.view().astype(, copy=False) elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8: vals = vals.view(.format(vals.dtype.itemsize)).astype() else: if categorize: from pandas import factorize, Categorical, Index codes, categories = factorize(vals, sort=False) cat = Categorical(codes, Index(categories), ordered=False, fastpath=True) return _hash_categorical(cat, encoding, hash_key) try: vals = hashing.hash_object_array(vals, hash_key, encoding) except TypeError: vals = hashing.hash_object_array(vals.astype(str).astype(object), hash_key, encoding) vals ^= vals >> 30 vals *= np.uint64(0xbf58476d1ce4e5b9) vals ^= vals >> 27 vals *= np.uint64(0x94d049bb133111eb) vals ^= vals >> 31 return vals
Given a 1d array, return an array of deterministic integers. .. versionadded:: 0.19.2 Parameters ---------- vals : ndarray, Categorical encoding : string, default 'utf8' encoding for data & key when strings hash_key : string key to encode, default to _default_hash_key categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. .. versionadded:: 0.20.0 Returns ------- 1d uint64 numpy array of hash values, same length as the vals
4,991
def _start_again(self, message=None): logging.debug("Start again message delivered: {}".format(message)) the_answer = self._get_text_answer() return "{0} The correct answer was {1}. Please start a new game.".format( message, the_answer )
Simple method to form a start again message and give the answer in readable form.
4,992
def seqToKV(seq, strict=False): def err(msg): formatted = % (msg, seq) if strict: raise KVFormError(formatted) else: logging.warning(formatted) lines = [] for k, v in seq: if isinstance(k, bytes): k = k.decode() elif not isinstance(k, str): err( % k) k = str(k) if in k: raise KVFormError( % (k, )) if in k: raise KVFormError( % (k, )) if k.strip() != k: err( % (k, )) if isinstance(v, bytes): v = v.decode() elif not isinstance(v, str): err( % (v, )) v = str(v) if in v: raise KVFormError( % (v, )) if v.strip() != v: err( % (v, )) lines.append(k + + v + ) return .join(lines).encode()
Represent a sequence of pairs of strings as newline-terminated key:value pairs. The pairs are generated in the order given. @param seq: The pairs @type seq: [(str, (unicode|str))] @return: A string representation of the sequence @rtype: bytes
4,993
def load(patterns, full_reindex): header() for pattern in patterns: for filename in iglob(pattern): echo(.format(white(filename))) with open(filename) as f: reader = csv.reader(f) reader.next() for idx, row in enumerate(reader, 1): try: advice = csv.from_row(row) skipped = False if not full_reindex: index(advice) echo( if idx % 50 else white(idx), nl=False) except Exception: echo(cyan() if idx % 50 else white(.format(idx)), nl=False) skipped = True if skipped: echo(white(.format(idx)) if idx % 50 else ) else: echo(white(idx) if idx % 50 else ) success(.format(idx)) if full_reindex: reindex()
Load one or more CADA CSV files matching patterns
4,994
def rotation(f, line = ): if f.unstructured: raise ValueError("Rotation requires a structured file") lines = { : f.fast, : f.slow, : f.iline, : f.xline, } if line not in lines: error = "Unknown line {}".format(line) solution = "Must be any of: {}".format(.join(lines.keys())) raise ValueError(.format(error, solution)) l = lines[line] origin = f.header[0][segyio.su.cdpx, segyio.su.cdpy] cdpx, cdpy = origin[segyio.su.cdpx], origin[segyio.su.cdpy] rot = f.xfd.rotation( len(l), l.stride, len(f.offsets), np.fromiter(l.keys(), dtype = np.intc) ) return rot, cdpx, cdpy
Find rotation of the survey Find the clock-wise rotation and origin of `line` as ``(rot, cdpx, cdpy)`` The clock-wise rotation is defined as the angle in radians between line given by the first and last trace of the first line and the axis that gives increasing CDP-Y, in the direction that gives increasing CDP-X. By default, the first line is the 'fast' direction, which is inlines if the file is inline sorted, and crossline if it's crossline sorted. Parameters ---------- f : SegyFile line : { 'fast', 'slow', 'iline', 'xline' } Returns ------- rotation : float cdpx : int cdpy : int Notes ----- .. versionadded:: 1.2
4,995
def _add_https(self, q): t include http or https, add it. Parameters ========== q: the parsed image query (names), including the original registryhttporiginalhttp:registryhttp://%sregistryoriginalhttps:registryhttps://%sregistrys environment else: prefix = nohttps = os.environ.get() if nohttps != None: prefix = q[] = %(prefix, q[]) return q
for push, pull, and other api interactions, the user can optionally define a custom registry. If the registry name doesn't include http or https, add it. Parameters ========== q: the parsed image query (names), including the original
4,996
def list_virtual_machine_scale_set_vm_network_interfaces(scale_set, vm_index, resource_group, **kwargs): result = {} netconn = __utils__[](, **kwargs) try: nics = __utils__[]( netconn.network_interfaces.list_virtual_machine_scale_set_vm_network_interfaces( virtual_machine_scale_set_name=scale_set, virtualmachine_index=vm_index, resource_group_name=resource_group ) ) for nic in nics: result[nic[]] = nic except CloudError as exc: __utils__[](, str(exc), **kwargs) result = {: str(exc)} return result
.. versionadded:: 2019.2.0 Get information about all network interfaces in a specific virtual machine within a scale set. :param scale_set: The name of the scale set to query. :param vm_index: The virtual machine index. :param resource_group: The resource group name assigned to the scale set. CLI Example: .. code-block:: bash salt-call azurearm_network.list_virtual_machine_scale_set_vm_network_interfaces testset testvm testgroup
4,997
def remove(self, component): with self.__lock: factory = self.__names.pop(component) components = self.__queue[factory] del components[component] if not components: del self.__queue[factory] try: with use_ipopo(self.__context) as ipopo: ipopo.kill(component) except (BundleException, ValueError): pass
Kills/Removes the component with the given name :param component: A component name :raise KeyError: Unknown component
4,998
def _get_nets_lacnic(self, *args, **kwargs): from warnings import warn warn( ) return self.get_nets_lacnic(*args, **kwargs)
Deprecated. This will be removed in a future release.
4,999
def increase_route_count(self, crawled_request): for route in self.__routing_options.routes: if re.compile(route).match(crawled_request.url): count_key = str(route) + crawled_request.method if count_key in self.__routing_count.keys(): self.__routing_count[count_key] += 1 else: self.__routing_count[count_key] = 1 break
Increase the count that determines how many times a URL of a certain route has been crawled. Args: crawled_request (:class:`nyawc.http.Request`): The request that possibly matches a route.