Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
2,000 | def yesterday(date=None):
if not date:
return _date - datetime.timedelta(days=1)
else:
current_date = parse(date)
return current_date - datetime.timedelta(days=1) | yesterday once more |
2,001 | def safe_size_check(checked_path, error_detail, max_bytes=500000000):
actual_size = 0
for dirpath, dirnames, filenames in os.walk(checked_path):
for f in filenames:
fp = os.path.join(dirpath, f)
actual_size += os.path.getsize(fp)
assert actual_size <= max_bytes, "Path {} size of {} >= {} bytes. {}".format(
checked_path, actual_size, max_bytes, error_detail) | Determines if a particular path is larger than expected. Useful before any recursive remove. |
2,002 | def valuecounter(table, *field, **kwargs):
missing = kwargs.get(, None)
counter = Counter()
for v in values(table, field, missing=missing):
try:
counter[v] += 1
except IndexError:
pass
return counter | Find distinct values for the given field and count the number of
occurrences. Returns a :class:`dict` mapping values to counts. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'],
... ['a', True],
... ['b'],
... ['b', True],
... ['c', False]]
>>> etl.valuecounter(table, 'foo')
Counter({'b': 2, 'a': 1, 'c': 1})
The `field` argument can be a single field name or index (starting from
zero) or a tuple of field names and/or indexes. |
2,003 | def groups_roles(self, room_id=None, room_name=None, **kwargs):
if room_id:
return self.__call_api_get(, roomId=room_id, kwargs=kwargs)
elif room_name:
return self.__call_api_get(, roomName=room_name, kwargs=kwargs)
else:
raise RocketMissingParamException() | Lists all user’s roles in the private group. |
2,004 | def register(im1, im2, params, exact_params=False, verbose=1):
tempdir = get_tempdir()
_clear_temp_dir()
refIm = im1
if isinstance(im1, (tuple,list)):
refIm = im1[0]
if not exact_params:
params = _compile_params(params, refIm)
if isinstance(params, Parameters):
params = params.as_dict()
if im2 is None:
if not isinstance(im1, (tuple,list)):
raise ValueError()
ims = im1
ndim = ims[0].ndim
N = len(ims)
new_shape = (N,) + ims[0].shape
im1 = np.zeros(new_shape, ims[0].dtype)
for i in range(N):
im1[i] = ims[i]
params[] = im1.ndim
params[] = im1.ndim
params[] =
params[] =
params[] =
params[] =
params[] =
params[] = True
params[] = 5
params[] = True
pyramidsamples = []
for i in range(params[]):
pyramidsamples.extend( [0]+[2**i]*ndim )
pyramidsamples.reverse()
params[] = pyramidsamples
path_im1, path_im2 = _get_image_paths(im1, im2)
path_params = _write_parameter_file(params)
path_trafo_params = os.path.join(tempdir, )
if True:
command = [get_elastix_exes()[0],
, path_im1, , path_im2,
, tempdir, , path_params]
if verbose:
print("Calling Elastix to register images ...")
_system3(command, verbose)
try:
a = _read_image_data()
except IOError as why:
tmp = "An error occured during registration: " + str(why)
raise RuntimeError(tmp)
if True:
command = [get_elastix_exes()[1],
, , , tempdir, , path_trafo_params]
_system3(command, verbose)
try:
b = _read_image_data()
except IOError as why:
tmp = "An error occured during transformation: " + str(why)
raise RuntimeError(tmp)
if im2 is None:
fields = [b[i] for i in range(b.shape[0])]
else:
fields = [b]
for i in range(len(fields)):
field = fields[i]
if field.ndim == 2:
field = [field[:,d] for d in range(1)]
elif field.ndim == 3:
field = [field[:,:,d] for d in range(2)]
elif field.ndim == 4:
field = [field[:,:,:,d] for d in range(3)]
elif field.ndim == 5:
field = [field[:,:,:,:,d] for d in range(4)]
fields[i] = tuple(field)
if im2 is not None:
fields = fields[0]
_clear_temp_dir()
return a, fields | register(im1, im2, params, exact_params=False, verbose=1)
Perform the registration of `im1` to `im2`, using the given
parameters. Returns `(im1_deformed, field)`, where `field` is a
tuple with arrays describing the deformation for each dimension
(x-y-z order, in world units).
Parameters:
* im1 (ndarray or file location):
The moving image (the one to deform).
* im2 (ndarray or file location):
The static (reference) image.
* params (dict or Parameters):
The parameters of the registration. Default parameters can be
obtained using the `get_default_params()` method. Note that any
parameter known to Elastix can be added to the parameter
struct, which enables tuning the registration in great detail.
See `get_default_params()` and the Elastix docs for more info.
* exact_params (bool):
If True, use the exact given parameters. If False (default)
will process the parameters, checking for incompatible
parameters, extending values to lists if a value needs to be
given for each dimension.
* verbose (int):
Verbosity level. If 0, will not print any progress. If 1, will
print the progress only. If 2, will print the full output
produced by the Elastix executable. Note that error messages
produced by Elastix will be printed regardless of the verbose
level.
If `im1` is a list of images, performs a groupwise registration.
In this case the resulting `field` is a list of fields, each
indicating the deformation to the "average" image. |
2,005 | def reftrack_uptodate_data(rt, role):
uptodate = rt.uptodate()
if role == QtCore.Qt.DisplayRole or role == QtCore.Qt.EditRole:
if uptodate:
return "Yes"
else:
return "No"
if role == QtCore.Qt.ForegroundRole:
if uptodate:
return QtGui.QColor(*UPTODATE_RGB)
elif rt.status():
return QtGui.QColor(*OUTDATED_RGB) | Return the data for the uptodate status
:param rt: the :class:`jukeboxcore.reftrack.Reftrack` holds the data
:type rt: :class:`jukeboxcore.reftrack.Reftrack`
:param role: item data role
:type role: QtCore.Qt.ItemDataRole
:returns: data for the uptodate status
:rtype: depending on role
:raises: None |
2,006 | def _process_file(input_file, output_file, apikey):
bytes_ = read_binary(input_file)
compressed = shrink(bytes_, apikey)
if compressed.success and compressed.bytes:
write_binary(output_file, compressed.bytes)
else:
if compressed.errno in FATAL_ERRORS:
raise StopProcessing(compressed)
elif compressed.errno == TinyPNGError.InternalServerError:
raise RetryProcessing(compressed)
return compressed | Shrinks input_file to output_file.
This function should be used only inside process_directory.
It takes input_file, tries to shrink it and if shrink was successful
save compressed image to output_file. Otherwise raise exception.
@return compressed: PNGResponse |
2,007 | def _build_migrated_variables(checkpoint_reader, name_value_fn):
names_to_shapes = checkpoint_reader.get_variable_to_shape_map()
new_name_to_variable = {}
name_to_new_name = {}
for name in names_to_shapes:
value = checkpoint_reader.get_tensor(name)
new_name, new_value = name_value_fn(name, value)
if new_name is None:
continue
name_to_new_name[name] = new_name
new_name_to_variable[new_name] = tf.Variable(new_value)
return new_name_to_variable, name_to_new_name | Builds the TensorFlow variables of the migrated checkpoint.
Args:
checkpoint_reader: A `tf.train.NewCheckPointReader` of the checkpoint to
be read from.
name_value_fn: Function taking two arguments, `name` and `value`, which
returns the pair of new name and value for that a variable of that name.
Returns:
Tuple of a dictionary with new variable names as keys and `tf.Variable`s as
values, and a dictionary that maps the old variable names to the new
variable names. |
2,008 | def fasper(x, y, ofac, hifac, n_threads, MACC=4):
n = long(len(x))
if n != len(y):
print()
return
nout = int(0.5*ofac*hifac*n)
nfreqt = long(ofac*hifac*n*MACC)
nfreq = 64
while nfreq < nfreqt:
nfreq = 2*nfreq
ndim = long(2*nfreq)
ave = y.mean()
var = ((y - y.mean())**2).sum()/(len(y) - 1)
xmin = x.min()
xmax = x.max()
xdif = xmax - xmin
if is_pyfftw:
wk1 = pyfftw.n_byte_align_empty(int(ndim), 16, ) * 0.
wk2 = pyfftw.n_byte_align_empty(int(ndim), 16, ) * 0.
else:
wk1 = zeros(ndim, dtype=)
wk2 = zeros(ndim, dtype=)
fac = ndim/(xdif*ofac)
fndim = ndim
ck = ((x - xmin)*fac) % fndim
ckk = (2.0*ck) % fndim
for j in range(0, n):
__spread__(y[j] - ave, wk1, ndim, ck[j], MACC)
__spread__(1.0, wk2, ndim, ckk[j], MACC)
if is_pyfftw:
fft_wk1 = pyfftw.builders.ifft(wk1, planner_effort=,
threads=n_threads)
wk1 = fft_wk1() * len(wk1)
fft_wk2 = pyfftw.builders.ifft(wk2, planner_effort=,
threads=n_threads)
wk2 = fft_wk2() * len(wk2)
else:
wk1 = ifft(wk1)*len(wk1)
wk2 = ifft(wk2)*len(wk1)
wk1 = wk1[1:nout + 1]
wk2 = wk2[1:nout + 1]
rwk1 = wk1.real
iwk1 = wk1.imag
rwk2 = wk2.real
iwk2 = wk2.imag
df = 1.0/(xdif*ofac)
hypo2 = 2.0*abs(wk2)
hc2wt = rwk2/hypo2
hs2wt = iwk2/hypo2
cwt = sqrt(0.5 + hc2wt)
swt = sign(hs2wt)*(sqrt(0.5 - hc2wt))
den = 0.5*n + hc2wt*rwk2 + hs2wt*iwk2
cterm = (cwt*rwk1 + swt*iwk1)**2./den
sterm = (cwt*iwk1 - swt*rwk1)**2./(n - den)
wk1 = df*(arange(nout, dtype=) + 1.)
wk2 = (cterm + sterm)/(2.0*var)
pmax = wk2.max()
jmax = wk2.argmax()
expy = exp(-pmax)
effm = 2.0*(nout)/ofac
prob = effm*expy
if prob > 0.01:
prob = 1.0 - (1.0 - expy)**effm
return wk1, wk2, nout, jmax, prob | Given abscissas x (which need not be equally spaced) and ordinates
y, and given a desired oversampling factor ofac (a typical value
being 4 or larger). this routine creates an array wk1 with a
sequence of nout increasing frequencies (not angular frequencies)
up to hifac times the "average" Nyquist frequency, and creates
an array wk2 with the values of the Lomb normalized periodogram at
those frequencies. The arrays x and y are not altered. This
routine also returns jmax such that wk2(jmax) is the maximum
element in wk2, and prob, an estimate of the significance of that
maximum against the hypothesis of random noise. A small value of prob
indicates that a significant periodic signal is present.
Reference:
Press, W. H. & Rybicki, G. B. 1989
ApJ vol. 338, p. 277-280.
Fast algorithm for spectral analysis of unevenly sampled data
(1989ApJ...338..277P)
Arguments:
X : Abscissas array, (e.g. an array of times).
Y : Ordinates array, (e.g. corresponding counts).
Ofac : Oversampling factor.
Hifac : Hifac * "average" Nyquist frequency = highest frequency
for which values of the Lomb normalized periodogram will
be calculated.
n_threads : number of threads to use.
Returns:
Wk1 : An array of Lomb periodogram frequencies.
Wk2 : An array of corresponding values of the Lomb periodogram.
Nout : Wk1 & Wk2 dimensions (number of calculated frequencies)
Jmax : The array index corresponding to the MAX( Wk2 ).
Prob : False Alarm Probability of the largest Periodogram value
MACC : Number of interpolation points per 1/4 cycle
of highest frequency
History:
02/23/2009, v1.0, MF
Translation of IDL code (orig. Numerical recipies) |
2,009 | def clip_polygon(self, points):
self.gsave()
self._path_polygon(points)
self.__clip_stack.append(self.__clip_box)
self.__clip_box = _intersect_box(self.__clip_box, _compute_bounding_box(points))
self.clip_sub() | Create a polygonal clip region. You must call endclip() after
you completed drawing. See also the polygon method. |
2,010 | def get_sections(self, gradebook_id=, simple=False):
params = dict(includeMembers=)
section_data = self.get(
.format(
gradebookId=gradebook_id or self.gradebook_id
),
params=params
)
if simple:
sections = self.unravel_sections(section_data[])
return [{: x[]} for x in sections]
return section_data[] | Get the sections for a gradebook.
Return a dictionary of types of sections containing a list of that
type for a given gradebook. Specified by a gradebookid.
If simple=True, a list of dictionaries is provided for each
section regardless of type. The dictionary only contains one
key ``SectionName``.
Args:
gradebook_id (str): unique identifier for gradebook, i.e. ``2314``
simple (bool): return a list of section names only
Raises:
requests.RequestException: Exception connection error
ValueError: Unable to decode response content
Returns:
dict: Dictionary of section types where each type has a
list of sections
An example return value is:
.. code-block:: python
{
u'recitation':
[
{
u'editable': False,
u'groupId': 1293925,
u'groupingScheme': u'Recitation',
u'members': None,
u'name': u'Unassigned',
u'shortName': u'DefaultGroupNoCollisionPlease1234',
u'staffs': None
},
{
u'editable': True,
u'groupId': 1327565,
u'groupingScheme': u'Recitation',
u'members': None,
u'name': u'r01',
u'shortName': u'r01',
u'staffs': None},
{u'editable': True,
u'groupId': 1327555,
u'groupingScheme': u'Recitation',
u'members': None,
u'name': u'r02',
u'shortName': u'r02',
u'staffs': None
}
]
} |
2,011 | def send_message(self, message):
if self._error:
raise compat.saved_exc(self._error)
elif self._transport is None:
raise JsonRpcError()
self._version.check_message(message)
self._writer.write(serialize(message)) | Send a raw JSON-RPC message.
The *message* argument must be a dictionary containing a valid JSON-RPC
message according to the version passed into the constructor. |
2,012 | def write(self):
self._assure_writable("write")
if not self._dirty:
return
if isinstance(self._file_or_files, (list, tuple)):
raise AssertionError("Cannot write back if there is not exactly a single file to write to, have %i files"
% len(self._file_or_files))
if self._has_includes():
log.debug("Skipping write-back of configuration file as include files were merged in." +
"Set merge_includes=False to prevent this.")
return
fp = self._file_or_files
is_file_lock = isinstance(fp, string_types + (FileType, ))
if is_file_lock:
self._lock._obtain_lock()
if not hasattr(fp, "seek"):
with open(self._file_or_files, "wb") as fp:
self._write(fp)
else:
fp.seek(0)
if hasattr(fp, ):
fp.truncate()
self._write(fp) | Write changes to our file, if there are changes at all
:raise IOError: if this is a read-only writer instance or if we could not obtain
a file lock |
2,013 | def asDigraph(self):
from ._visualize import makeDigraph
return makeDigraph(
self._automaton,
stateAsString=lambda state: state.method.__name__,
inputAsString=lambda input: input.method.__name__,
outputAsString=lambda output: output.method.__name__,
) | Generate a L{graphviz.Digraph} that represents this machine's
states and transitions.
@return: L{graphviz.Digraph} object; for more information, please
see the documentation for
U{graphviz<https://graphviz.readthedocs.io/>} |
2,014 | def issue(self, issue_instance_id):
with self.db.make_session() as session:
selected_issue = (
session.query(IssueInstance)
.filter(IssueInstance.id == issue_instance_id)
.scalar()
)
if selected_issue is None:
self.warning(
f"Issue {issue_instance_id} doesnissues' for available issues."
)
return
self.sources = self._get_leaves_issue_instance(
session, issue_instance_id, SharedTextKind.SOURCE
)
self.sinks = self._get_leaves_issue_instance(
session, issue_instance_id, SharedTextKind.SINK
)
self.current_issue_instance_id = int(selected_issue.id)
self.current_frame_id = -1
self.current_trace_frame_index = 1
print(f"Set issue to {issue_instance_id}.")
if int(selected_issue.run_id) != self.current_run_id:
self.current_run_id = int(selected_issue.run_id)
print(f"Set run to {self.current_run_id}.")
print()
self._generate_trace_from_issue()
self.show() | Select an issue.
Parameters:
issue_instance_id: int id of the issue instance to select
Note: We are selecting issue instances, even though the command is called
issue. |
2,015 | def get_permissions(self, user_id):
response = self.request(
"{0}/{1}/permissions".format(self.version, user_id), {}
)["data"]
return {x["permission"] for x in response if x["status"] == "granted"} | Fetches the permissions object from the graph. |
2,016 | def addSourceId(self, value):
if isinstance(value, Source_Id):
self.source_ids.append(value)
else:
raise (TypeError,
% type(source_id)) | Adds SourceId to External_Info |
2,017 | def remove_user_from_acl(self, name, user):
if name not in self._acl:
return False
if user in self._acl[name][]:
self._acl[name][].remove(user)
if user in self._acl[name][]:
self._acl[name][].remove(user)
return True | Remove a user from the given acl (both allow and deny). |
2,018 | def make_data(n,width):
x = dict([(i,100*random.random()) for i in range(1,n+1)])
y = dict([(i,100*random.random()) for i in range(1,n+1)])
c = {}
for i in range(1,n+1):
for j in range(1,n+1):
if j != i:
c[i,j] = distance(x[i],y[i],x[j],y[j])
e = {1:0}
l = {1:0}
start = 0
delta = int(76.*math.sqrt(n)/n * width)+1
for i in range(1,n):
j = i+1
start += c[i,j]
e[j] = max(start-delta,0)
l[j] = start + delta
return c,x,y,e,l | make_data: compute matrix distance and time windows. |
2,019 | def _events(self):
with self.app.events_lock:
res = self.app.get_events()
return serialize(res, True) | Get the monitoring events from the daemon
This is used by the arbiter to get the monitoring events from all its satellites
:return: Events list serialized
:rtype: list |
2,020 | def get_layers_output(self, dataset):
layers_out = []
with self.tf_graph.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
for l in self.layer_nodes:
layers_out.append(l.eval({self.input_data: dataset,
self.keep_prob: 1}))
if layers_out == []:
raise Exception("This method is not implemented for this model")
else:
return layers_out | Get output from each layer of the network.
:param dataset: input data
:return: list of np array, element i is the output of layer i |
2,021 | def symbol(self, index):
if isinstance(index, str):
return index
elif (index < 0) or (index >= self.symtab.table_len):
self.error("symbol table index out of range")
sym = self.symtab.table[index]
if sym.kind == SharedData.KINDS.LOCAL_VAR:
return "-{0}(1:%14)".format(sym.attribute * 4 + 4)
elif sym.kind == SharedData.KINDS.PARAMETER:
return "{0}(1:%14)".format(8 + sym.attribute * 4)
elif sym.kind == SharedData.KINDS.CONSTANT:
return "${0}".format(sym.name)
else:
return "{0}".format(sym.name) | Generates symbol name from index |
2,022 | def readSB(self, bits):
shift = 32 - bits
return int32(self.readbits(bits) << shift) >> shift | Read a signed int using the specified number of bits |
2,023 | def traverse_imports(names):
pending = [names]
while pending:
node = pending.pop()
if node.type == token.NAME:
yield node.value
elif node.type == syms.dotted_name:
yield "".join([ch.value for ch in node.children])
elif node.type == syms.dotted_as_name:
pending.append(node.children[0])
elif node.type == syms.dotted_as_names:
pending.extend(node.children[::-2])
else:
raise AssertionError("unkown node type") | Walks over all the names imported in a dotted_as_names node. |
2,024 | def constraint_matrices(model, array_type=, include_vars=False,
zero_tol=1e-6):
if array_type not in (, ) and not dok_matrix:
raise ValueError()
array_builder = {
: np.array, : dok_matrix, : lil_matrix,
: pd.DataFrame,
}[array_type]
Problem = namedtuple("Problem",
["equalities", "b", "inequalities", "bounds",
"variable_fixed", "variable_bounds"])
equality_rows = []
inequality_rows = []
inequality_bounds = []
b = []
for const in model.constraints:
lb = -np.inf if const.lb is None else const.lb
ub = np.inf if const.ub is None else const.ub
equality = (ub - lb) < zero_tol
coefs = const.get_linear_coefficients(model.variables)
coefs = [coefs[v] for v in model.variables]
if equality:
b.append(lb if abs(lb) > zero_tol else 0.0)
equality_rows.append(coefs)
else:
inequality_rows.append(coefs)
inequality_bounds.append([lb, ub])
var_bounds = np.array([[v.lb, v.ub] for v in model.variables])
fixed = var_bounds[:, 1] - var_bounds[:, 0] < zero_tol
results = Problem(
equalities=array_builder(equality_rows),
b=np.array(b),
inequalities=array_builder(inequality_rows),
bounds=array_builder(inequality_bounds),
variable_fixed=np.array(fixed),
variable_bounds=array_builder(var_bounds))
return results | Create a matrix representation of the problem.
This is used for alternative solution approaches that do not use optlang.
The function will construct the equality matrix, inequality matrix and
bounds for the complete problem.
Notes
-----
To accomodate non-zero equalities the problem will add the variable
"const_one" which is a variable that equals one.
Arguments
---------
model : cobra.Model
The model from which to obtain the LP problem.
array_type : string
The type of array to construct. if 'dense', return a standard
numpy.array, 'dok', or 'lil' will construct a sparse array using
scipy of the corresponding type and 'DataFrame' will give a
pandas `DataFrame` with metabolite indices and reaction columns.
zero_tol : float
The zero tolerance used to judge whether two bounds are the same.
Returns
-------
collections.namedtuple
A named tuple consisting of 6 matrices and 2 vectors:
- "equalities" is a matrix S such that S*vars = b. It includes a row
for each constraint and one column for each variable.
- "b" the right side of the equality equation such that S*vars = b.
- "inequalities" is a matrix M such that lb <= M*vars <= ub.
It contains a row for each inequality and as many columns as
variables.
- "bounds" is a compound matrix [lb ub] containing the lower and
upper bounds for the inequality constraints in M.
- "variable_fixed" is a boolean vector indicating whether the variable
at that index is fixed (lower bound == upper_bound) and
is thus bounded by an equality constraint.
- "variable_bounds" is a compound matrix [lb ub] containing the
lower and upper bounds for all variables. |
2,025 | def create_from_pytz(cls, tz_info):
zone_name = tz_info.zone
utc_transition_times_list_raw = getattr(tz_info,
,
None)
utc_transition_times_list = [tuple(utt.timetuple())
for utt
in utc_transition_times_list_raw] \
if utc_transition_times_list_raw is not None \
else None
transition_info_list_raw = getattr(tz_info,
,
None)
transition_info_list = [(utcoffset_td.total_seconds(),
dst_td.total_seconds(),
tzname)
for (utcoffset_td, dst_td, tzname)
in transition_info_list_raw] \
if transition_info_list_raw is not None \
else None
try:
utcoffset_dt = tz_info._utcoffset
except AttributeError:
utcoffset = None
else:
utcoffset = utcoffset_dt.total_seconds()
tzname = getattr(tz_info, , None)
parent_class_name = getmro(tz_info.__class__)[1].__name__
return cls(zone_name, parent_class_name, utc_transition_times_list,
transition_info_list, utcoffset, tzname) | Create an instance using the result of the timezone() call in
"pytz". |
2,026 | def get_snapshots(self):
ec2 = self.get_ec2_connection()
rs = ec2.get_all_snapshots()
all_vols = [self.volume_id] + self.past_volume_ids
snaps = []
for snapshot in rs:
if snapshot.volume_id in all_vols:
if snapshot.progress == :
snapshot.date = boto.utils.parse_ts(snapshot.start_time)
snapshot.keep = True
snaps.append(snapshot)
snaps.sort(cmp=lambda x,y: cmp(x.date, y.date))
return snaps | Returns a list of all completed snapshots for this volume ID. |
2,027 | def remote(*args, **kwargs):
worker = get_global_worker()
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
return make_decorator(worker=worker)(args[0])
error_string = ("The @ray.remote decorator must be applied either "
"with no arguments and no parentheses, for example "
", or it must be applied using some of "
"the arguments , , , "
", , "
"or , like "
".")
assert len(args) == 0 and len(kwargs) > 0, error_string
for key in kwargs:
assert key in [
"num_return_vals", "num_cpus", "num_gpus", "resources",
"max_calls", "max_reconstructions"
], error_string
num_cpus = kwargs["num_cpus"] if "num_cpus" in kwargs else None
num_gpus = kwargs["num_gpus"] if "num_gpus" in kwargs else None
resources = kwargs.get("resources")
if not isinstance(resources, dict) and resources is not None:
raise Exception("The keyword argument must be a "
"dictionary, but received type {}.".format(
type(resources)))
if resources is not None:
assert "CPU" not in resources, "Use the argument."
assert "GPU" not in resources, "Use the argument."
num_return_vals = kwargs.get("num_return_vals")
max_calls = kwargs.get("max_calls")
max_reconstructions = kwargs.get("max_reconstructions")
return make_decorator(
num_return_vals=num_return_vals,
num_cpus=num_cpus,
num_gpus=num_gpus,
resources=resources,
max_calls=max_calls,
max_reconstructions=max_reconstructions,
worker=worker) | Define a remote function or an actor class.
This can be used with no arguments to define a remote function or actor as
follows:
.. code-block:: python
@ray.remote
def f():
return 1
@ray.remote
class Foo(object):
def method(self):
return 1
It can also be used with specific keyword arguments:
* **num_return_vals:** This is only for *remote functions*. It specifies
the number of object IDs returned by the remote function invocation.
* **num_cpus:** The quantity of CPU cores to reserve for this task or for
the lifetime of the actor.
* **num_gpus:** The quantity of GPUs to reserve for this task or for the
lifetime of the actor.
* **resources:** The quantity of various custom resources to reserve for
this task or for the lifetime of the actor. This is a dictionary mapping
strings (resource names) to numbers.
* **max_calls:** Only for *remote functions*. This specifies the maximum
number of times that a given worker can execute the given remote function
before it must exit (this can be used to address memory leaks in
third-party libraries or to reclaim resources that cannot easily be
released, e.g., GPU memory that was acquired by TensorFlow). By
default this is infinite.
* **max_reconstructions**: Only for *actors*. This specifies the maximum
number of times that the actor should be reconstructed when it dies
unexpectedly. The minimum valid value is 0 (default), which indicates
that the actor doesn't need to be reconstructed. And the maximum valid
value is ray.ray_constants.INFINITE_RECONSTRUCTIONS.
This can be done as follows:
.. code-block:: python
@ray.remote(num_gpus=1, max_calls=1, num_return_vals=2)
def f():
return 1, 2
@ray.remote(num_cpus=2, resources={"CustomResource": 1})
class Foo(object):
def method(self):
return 1 |
2,028 | def initialize():
global is_initialized
yaml.add_multi_constructor(, multi_constructor)
yaml.add_multi_constructor(, multi_constructor_pkl)
yaml.add_multi_constructor(, multi_constructor_import)
yaml.add_multi_constructor(, multi_constructor_include)
def import_constructor(loader, node):
value = loader.construct_scalar(node)
return try_to_import(value)
yaml.add_constructor(, import_constructor)
yaml.add_implicit_resolver(
,
re.compile(r)
)
is_initialized = True | Initialize the configuration system by installing YAML handlers.
Automatically done on first call to load() specified in this file. |
2,029 | def all(self, data={}, **kwargs):
return super(VirtualAccount, self).all(data, **kwargs) | Fetch all Virtual Account entities
Returns:
Dictionary of Virtual Account data |
2,030 | def receive_response(self, transaction):
host, port = transaction.response.source
key_token = hash(str(host) + str(port) + str(transaction.response.token))
if key_token in self._block1_sent and transaction.response.block1 is not None:
item = self._block1_sent[key_token]
transaction.block_transfer = True
if item.m == 0:
transaction.block_transfer = False
del transaction.request.block1
return transaction
n_num, n_m, n_size = transaction.response.block1
if n_num != item.num:
logger.warning("Blockwise num acknowledged error, expected " + str(item.num) + " received " +
str(n_num))
return None
if n_size < item.size:
logger.debug("Scale down size, was " + str(item.size) + " become " + str(n_size))
item.size = n_size
request = transaction.request
del request.mid
del request.block1
request.payload = item.payload[item.byte: item.byte+item.size]
item.num += 1
item.byte += item.size
if len(item.payload) <= item.byte:
item.m = 0
else:
item.m = 1
request.block1 = (item.num, item.m, item.size)
elif transaction.response.block2 is not None:
num, m, size = transaction.response.block2
if m == 1:
transaction.block_transfer = True
if key_token in self._block2_sent:
item = self._block2_sent[key_token]
if num != item.num:
logger.error("Receive unwanted block")
return self.error(transaction, defines.Codes.REQUEST_ENTITY_INCOMPLETE.number)
if item.content_type is None:
item.content_type = transaction.response.content_type
if item.content_type != transaction.response.content_type:
logger.error("Content-type Error")
return self.error(transaction, defines.Codes.UNSUPPORTED_CONTENT_FORMAT.number)
item.byte += size
item.num = num + 1
item.size = size
item.m = m
item.payload += transaction.response.payload
else:
item = BlockItem(size, num + 1, m, size, transaction.response.payload,
transaction.response.content_type)
self._block2_sent[key_token] = item
request = transaction.request
del request.mid
del request.block2
request.block2 = (item.num, 0, item.size)
else:
transaction.block_transfer = False
if key_token in self._block2_sent:
if self._block2_sent[key_token].content_type != transaction.response.content_type:
logger.error("Content-type Error")
return self.error(transaction, defines.Codes.UNSUPPORTED_CONTENT_FORMAT.number)
transaction.response.payload = self._block2_sent[key_token].payload + transaction.response.payload
del self._block2_sent[key_token]
else:
transaction.block_transfer = False
return transaction | Handles the Blocks option in a incoming response.
:type transaction: Transaction
:param transaction: the transaction that owns the response
:rtype : Transaction
:return: the edited transaction |
2,031 | def _request(self, *args, **kwargs):
self._amend_request_kwargs(kwargs)
_response = self._requests_session.request(*args, **kwargs)
try:
_response.raise_for_status()
except HTTPError as e:
if e.response is not None:
raise_from(ConjureHTTPError(e), e)
raise e
return _response | Make requests using configured :class:`requests.Session`.
Any error details will be extracted to an :class:`HTTPError`
which will contain relevant error details when printed. |
2,032 | def _fail_with_undefined_error(self, *args, **kwargs):
if self._undefined_hint is None:
if self._undefined_obj is missing:
hint = % self._undefined_name
elif not isinstance(self._undefined_name, basestring):
hint = % (
object_type_repr(self._undefined_obj),
self._undefined_name
)
else:
hint = % (
object_type_repr(self._undefined_obj),
self._undefined_name
)
else:
hint = self._undefined_hint
raise self._undefined_exception(hint) | Regular callback function for undefined objects that raises an
`UndefinedError` on call. |
2,033 | def remove_group(self, group = None):
if group is None:
raise KPError("Need group to remove a group")
elif type(group) is not v1Group:
raise KPError("group must be v1Group")
children = []
entries = []
if group in self.groups:
children.extend(group.children)
entries.extend(group.entries)
group.parent.children.remove(group)
self.groups.remove(group)
else:
raise KPError("Given group doesn't exist")
self._num_groups -= 1
for i in children:
self.remove_group(i)
for i in entries:
self.remove_entry(i)
return True | This method removes a group.
The group needed to remove the group.
group must be a v1Group. |
2,034 | def _FormatExpression(self, frame, expression):
rc, value = _EvaluateExpression(frame, expression)
if not rc:
message = _FormatMessage(value[][],
value[].get())
return + message +
return self._FormatValue(value) | Evaluates a single watched expression and formats it into a string form.
If expression evaluation fails, returns error message string.
Args:
frame: Python stack frame in which the expression is evaluated.
expression: string expression to evaluate.
Returns:
Formatted expression value that can be used in the log message. |
2,035 | def hash160(msg_bytes):
h = hashlib.new()
if in riemann.get_current_network_name():
h.update(blake256(msg_bytes))
return h.digest()
h.update(sha256(msg_bytes))
return h.digest() | byte-like -> bytes |
2,036 | def GetOptionBool(self, section, option):
return (not self.config.has_option(section, option)
or self.config.getboolean(section, option)) | Get the value of an option in the config file.
Args:
section: string, the section of the config file to check.
option: string, the option to retrieve the value of.
Returns:
bool, True if the option is enabled or not set. |
2,037 | def get_files_by_path(path):
if os.path.isfile(path):
return [path]
if os.path.isdir(path):
return get_morph_files(path)
raise IOError( % path) | Get a file or set of files from a file path
Return list of files with path |
2,038 | def _get_data_from_rawfile(path_to_data, raw_data_id):
loaded = pickle.load(open(path_to_data, "rb"))
raw_datasets = loaded[]
for raw_dataset in raw_datasets:
if raw_dataset[].raw_data_id == raw_data_id:
return raw_dataset[]
return None | Get a HandwrittenData object that has ``raw_data_id`` from a pickle file
``path_to_data``.
:returns: The HandwrittenData object if ``raw_data_id`` is in
path_to_data, otherwise ``None``. |
2,039 | def components(self, visible=True):
if self._on:
self._quality.append_on_chord(self.on, self.root)
return self._quality.get_components(root=self._root, visible=visible) | Return the component notes of chord
:param bool visible: returns the name of notes if True else list of int
:rtype: list[(str or int)]
:return: component notes of chord |
2,040 | def make_mask(filename, ext, trail_coords, sublen=75, subwidth=200, order=3,
sigma=4, pad=10, plot=False, verbose=False):
if not HAS_OPDEP:
raise ImportError()
if verbose:
t_beg = time.time()
fname = .format(filename, ext)
image = fits.getdata(filename, ext)
dx = image.max()
if dx <= 0:
raise ValueError()
image = image / dx
image[image < 0] = 0
(x0, y0), (x1, y1) = trail_coords
rad = np.arctan2(y1 - y0, x1 - x0)
newrad = (np.pi * 2) - rad
deg = np.degrees(rad)
if verbose:
print(.format(deg))
rotate = transform.rotate(image, deg, resize=True, order=order)
if plot and plt is not None:
plt.ion()
mean = np.median(image)
stddev = image.std()
lower = mean - stddev
upper = mean + stddev
fig1, ax1 = plt.subplots()
ax1.imshow(image, vmin=lower, vmax=upper, cmap=plt.cm.gray)
ax1.set_title(fname)
fig2, ax2 = plt.subplots()
ax2.imshow(rotate, vmin=lower, vmax=upper, cmap=plt.cm.gray)
ax2.set_title(.format(fname, deg))
plt.draw()
sx, sy = _rotate_point((x0, y0), newrad, image.shape, rotate.shape)
dx = int(subwidth / 2)
ix0, ix1, iy0, iy1 = _get_valid_indices(
rotate.shape, sx - dx, sx + dx, sy - sublen, sy + sublen)
subr = rotate[iy0:iy1, ix0:ix1]
if len(subr) <= sublen:
raise ValueError(
.format(len(subr), sublen))
medarr = np.median(subr, axis=1)
flat = [medarr]
mean = sigma_clipped_stats(medarr)[0]
stddev = biweight_midvariance(medarr)
z = np.where(medarr > (mean + (sigma * stddev)))[0]
if plot and plt is not None:
fig1, ax1 = plt.subplots()
ax1.plot(medarr, )
ax1.plot(z, medarr[z], )
ax1.set_xlabel()
ax1.set_ylabel()
ax1.set_title()
plt.draw()
if len(z) < 1:
raise ValueError(
.format(sigma))
lower = z.min()
upper = z.max()
diff = upper - lower
lower = lower - pad
upper = upper + pad
if plot and plt is not None:
padind = np.arange(lower, upper)
ax1.plot(padind, medarr[padind], )
plt.draw()
mask = np.zeros(rotate.shape)
lowerx, upperx, lowery, uppery = _get_valid_indices(
mask.shape, np.floor(sx - subwidth), np.ceil(sx + subwidth),
np.floor(sy - sublen + lower), np.ceil(sy - sublen + upper))
mask[lowery:uppery, lowerx:upperx] = 1
done = False
first = True
nextx = upperx
centery = np.ceil(lowery + diff)
counter = 0
while not done:
ix0, ix1, iy0, iy1 = _get_valid_indices(
rotate.shape, nextx - dx, nextx + dx,
centery - sublen, centery + sublen)
subr = rotate[iy0:iy1, ix0:ix1]
if 0 in subr.shape:
if verbose:
print(.format(
subr.shape, first))
if first:
first = False
centery = sy
nextx = sx
else:
done = True
continue
medarr = np.median(subr, axis=1)
flat.append(medarr)
mean = sigma_clipped_stats(medarr, sigma=sigma)[0]
stddev = biweight_midvariance(medarr)
z = np.where(medarr > (mean + (sigma * stddev)))[0]
if len(z) < 1:
if first:
if verbose:
print(
.format(counter))
centery = sy
nextx = sx
first = False
else:
if verbose:
print(
.format(z, subr.shape))
done = True
continue
lower = z.min()
upper = z.max()
diff = upper - lower
lower = np.floor(lower - pad)
upper = np.ceil(upper + pad)
lowerx, upperx, lowery, uppery = _get_valid_indices(
mask.shape,
np.floor(nextx - subwidth),
np.ceil(nextx + subwidth),
np.floor(centery - sublen + lower),
np.ceil(centery - sublen + upper))
mask[lowery:uppery, lowerx:upperx] = 1
upper_p = (upperx, uppery)
upper_t = _rotate_point(
upper_p, newrad, image.shape, rotate.shape, reverse=True)
highy = np.ceil(upper_t[1])
highx = np.ceil(upper_t[0])
if first:
nextx = nextx + dx
centery = lowery + diff
if (nextx + subwidth) > rotate.shape[1]:
if verbose:
print(.format(counter))
first = False
elif (highy > image.shape[0]) or (highx > image.shape[1]):
if verbose:
print(.format(counter))
first = False
if not first:
centery = sy
nextx = sx
else:
nextx = nextx - dx
centery = lowery + diff
if (nextx - subwidth) < 0:
if verbose:
print(.format(counter))
done = True
elif (highy > image.shape[0]) or (highx > image.shape[1]):
if verbose:
print(.format(counter))
done = True
counter += 1
if counter > 500:
if verbose:
print()
done = True
rot = transform.rotate(mask, -deg, resize=True, order=1)
ix0 = (rot.shape[1] - image.shape[1]) / 2
iy0 = (rot.shape[0] - image.shape[0]) / 2
lowerx, upperx, lowery, uppery = _get_valid_indices(
rot.shape, ix0, image.shape[1] + ix0, iy0, image.shape[0] + iy0)
mask = rot[lowery:uppery, lowerx:upperx]
if mask.shape != image.shape:
warnings.warn(
.format(mask.shape, image.shape), AstropyUserWarning)
mask = mask.astype(np.bool)
if plot and plt is not None:
test = image.copy()
test[mask] = 0
mean = np.median(test)
stddev = test.std()
lower = mean - stddev
upper = mean + stddev
fig1, ax1 = plt.subplots()
ax1.imshow(test, vmin=lower, vmax=upper, cmap=plt.cm.gray)
ax1.set_title()
fig2, ax2 = plt.subplots()
ax2.imshow(mask, cmap=plt.cm.gray)
ax2.set_title()
plt.draw()
if verbose:
t_end = time.time()
print(.format(t_end - t_beg))
return mask | Create DQ mask for an image for a given satellite trail.
This mask can be added to existing DQ data using :func:`update_dq`.
.. note::
Unlike :func:`detsat`, multiprocessing is not available for
this function.
Parameters
----------
filename : str
FITS image filename.
ext : int, str, or tuple
Extension for science data, as accepted by ``astropy.io.fits``.
trail_coords : ndarray
One of the trails returned by :func:`detsat`.
This must be in the format of ``[[x0, y0], [x1, y1]]``.
sublen : int, optional
Length of strip to use as the fitting window for the trail.
subwidth : int, optional
Width of box to fit trail on.
order : int, optional
The order of the spline interpolation for image rotation.
See :func:`skimage.transform.rotate`.
sigma : float, optional
Sigma of the satellite trail for detection. If points are
a given sigma above the background in the subregion then it is
marked as a satellite. This may need to be lowered for resolved
trails.
pad : int, optional
Amount of extra padding in pixels to give the satellite mask.
plot : bool, optional
Plot the result.
verbose : bool, optional
Print extra information to the terminal, mostly for debugging.
Returns
-------
mask : ndarray
Boolean array marking the satellite trail with `True`.
Raises
------
ImportError
Missing scipy or skimage>=0.11 packages.
IndexError
Invalid subarray indices.
ValueError
Image has no positive values, trail subarray too small, or
trail profile not found. |
2,041 | def network_info(name=None, **kwargs):
*
result = {}
conn = __get_conn(**kwargs)
def _net_get_leases(net):
leases = net.DHCPLeases()
for lease in leases:
if lease[] == libvirt.VIR_IP_ADDR_TYPE_IPV4:
lease[] =
elif lease[] == libvirt.VIR_IP_ADDR_TYPE_IPV6:
lease[] =
else:
lease[] =
return leases
try:
nets = [net for net in conn.listAllNetworks() if name is None or net.name() == name]
result = {net.name(): {
: net.UUIDString(),
: net.bridgeName(),
: net.autostart(),
: net.isActive(),
: net.isPersistent(),
: _net_get_leases(net)} for net in nets}
except libvirt.libvirtError as err:
log.debug(, str(err))
finally:
conn.close()
return result | Return informations on a virtual network provided its name.
:param name: virtual network name
:param connection: libvirt connection URI, overriding defaults
:param username: username to connect with, overriding defaults
:param password: password to connect with, overriding defaults
If no name is provided, return the infos for all defined virtual networks.
.. versionadded:: 2019.2.0
CLI Example:
.. code-block:: bash
salt '*' virt.network_info default |
2,042 | def create_router(self, name, tenant_id, subnet_lst):
try:
body = {: {: name, : tenant_id,
: True}}
router = self.neutronclient.create_router(body=body)
rout_dict = router.get()
rout_id = rout_dict.get()
except Exception as exc:
LOG.error("Failed to create router with name %(name)s"
" Exc %(exc)s", {: name, : str(exc)})
return None
ret = self.add_intf_router(rout_id, tenant_id, subnet_lst)
if not ret:
try:
ret = self.neutronclient.delete_router(rout_id)
except Exception as exc:
LOG.error("Failed to delete router %(name)s, Exc %(exc)s",
{: name, : str(exc)})
return None
return rout_id | Create a openstack router and add the interfaces. |
2,043 | def _validate_response(url, response):
if response[] not in [GooglePlaces.RESPONSE_STATUS_OK,
GooglePlaces.RESPONSE_STATUS_ZERO_RESULTS]:
error_detail = ( %
(url, response[]))
raise GooglePlacesError(error_detail) | Validates that the response from Google was successful. |
2,044 | def complete_pool_name(arg):
search_string =
if arg is not None:
search_string += arg
res = Pool.search({
: ,
: ,
: search_string
})
ret = []
for p in res[]:
ret.append(p.name)
return ret | Returns list of matching pool names |
2,045 | def get(cls, user_id, db_session=None):
db_session = get_db_session(db_session)
return db_session.query(cls.model).get(user_id) | Fetch row using primary key -
will use existing object in session if already present
:param user_id:
:param db_session:
:return: |
2,046 | def main():
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
, , help=, action=
)
args = parser.parse_args()
generator = SignatureGenerator(debug=args.verbose)
crash_data = json.loads(sys.stdin.read())
ret = generator.generate(crash_data)
print(json.dumps(ret, indent=2)) | Takes crash data via stdin and generates a Socorro signature |
2,047 | def font_size_splitter(font_map):
small_font = []
medium_font = []
large_font = []
xlarge_font = []
fonts = set(font_map.keys()) - set(RANDOM_FILTERED_FONTS)
for font in fonts:
length = max(map(len, font_map[font][0].values()))
if length <= FONT_SMALL_THRESHOLD:
small_font.append(font)
elif length > FONT_SMALL_THRESHOLD and length <= FONT_MEDIUM_THRESHOLD:
medium_font.append(font)
elif length > FONT_MEDIUM_THRESHOLD and length <= FONT_LARGE_THRESHOLD:
large_font.append(font)
else:
xlarge_font.append(font)
return {
"small_list": small_font,
"medium_list": medium_font,
"large_list": large_font,
"xlarge_list": xlarge_font} | Split fonts to 4 category (small,medium,large,xlarge) by maximum length of letter in each font.
:param font_map: input fontmap
:type font_map : dict
:return: splitted fonts as dict |
2,048 | def is_promisc(ip, fake_bcast="ff:ff:00:00:00:00", **kargs):
responses = srp1(Ether(dst=fake_bcast) / ARP(op="who-has", pdst=ip), type=ETH_P_ARP, iface_hint=ip, timeout=1, verbose=0, **kargs)
return responses is not None | Try to guess if target is in Promisc mode. The target is provided by its ip. |
2,049 | def json_decode(data_type, serialized_obj, caller_permissions=None,
alias_validators=None, strict=True, old_style=False):
try:
deserialized_obj = json.loads(serialized_obj)
except ValueError:
raise bv.ValidationError()
else:
return json_compat_obj_decode(
data_type, deserialized_obj, caller_permissions=caller_permissions,
alias_validators=alias_validators, strict=strict, old_style=old_style) | Performs the reverse operation of json_encode.
Args:
data_type (Validator): Validator for serialized_obj.
serialized_obj (str): The JSON string to deserialize.
caller_permissions (list): The list of raw-string caller permissions
with which to serialize.
alias_validators (Optional[Mapping[bv.Validator, Callable[[], None]]]):
Custom validation functions. These must raise bv.ValidationError on
failure.
strict (bool): If strict, then unknown struct fields will raise an
error, and unknown union variants will raise an error even if a
catch all field is specified. strict should only be used by a
recipient of serialized JSON if it's guaranteed that its Stone
specs are at least as recent as the senders it receives messages
from.
Returns:
The returned object depends on the input data_type.
- Boolean -> bool
- Bytes -> bytes
- Float -> float
- Integer -> long
- List -> list
- Map -> dict
- Nullable -> None or its wrapped type.
- String -> unicode (PY2) or str (PY3)
- Struct -> An instance of its definition attribute.
- Timestamp -> datetime.datetime
- Union -> An instance of its definition attribute. |
2,050 | def add_highlight(self, artist, *args, **kwargs):
hl = _pick_info.make_highlight(
artist, *args,
**ChainMap({"highlight_kwargs": self.highlight_kwargs}, kwargs))
if hl:
artist.axes.add_artist(hl)
return hl | Create, add, and return a highlighting artist.
This method is should be called with an "unpacked" `Selection`,
possibly with some fields set to None.
It is up to the caller to register the artist with the proper
`Selection` (by calling ``sel.extras.append`` on the result of this
method) in order to ensure cleanup upon deselection. |
2,051 | def dump(self):
print("pagesize=%08x, reccount=%08x, pagecount=%08x" % (self.pagesize, self.reccount, self.pagecount))
self.dumpfree()
self.dumptree(self.firstindex) | raw dump of all records in the b-tree |
2,052 | def replace_volume_attachment(self, name, body, **kwargs):
kwargs[] = True
if kwargs.get():
return self.replace_volume_attachment_with_http_info(name, body, **kwargs)
else:
(data) = self.replace_volume_attachment_with_http_info(name, body, **kwargs)
return data | replace the specified VolumeAttachment
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.replace_volume_attachment(name, body, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str name: name of the VolumeAttachment (required)
:param V1VolumeAttachment body: (required)
:param str pretty: If 'true', then the output is pretty printed.
:param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed
:param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint.
:return: V1VolumeAttachment
If the method is called asynchronously,
returns the request thread. |
2,053 | def get_subgraph(graph,
seed_method: Optional[str] = None,
seed_data: Optional[Any] = None,
expand_nodes: Optional[List[BaseEntity]] = None,
remove_nodes: Optional[List[BaseEntity]] = None,
):
if seed_method == SEED_TYPE_INDUCTION:
result = get_subgraph_by_induction(graph, seed_data)
elif seed_method == SEED_TYPE_PATHS:
result = get_subgraph_by_all_shortest_paths(graph, seed_data)
elif seed_method == SEED_TYPE_NEIGHBORS:
result = get_subgraph_by_neighborhood(graph, seed_data)
elif seed_method == SEED_TYPE_DOUBLE_NEIGHBORS:
result = get_subgraph_by_second_neighbors(graph, seed_data)
elif seed_method == SEED_TYPE_UPSTREAM:
result = get_multi_causal_upstream(graph, seed_data)
elif seed_method == SEED_TYPE_DOWNSTREAM:
result = get_multi_causal_downstream(graph, seed_data)
elif seed_method == SEED_TYPE_PUBMED:
result = get_subgraph_by_pubmed(graph, seed_data)
elif seed_method == SEED_TYPE_AUTHOR:
result = get_subgraph_by_authors(graph, seed_data)
elif seed_method == SEED_TYPE_ANNOTATION:
result = get_subgraph_by_annotations(graph, seed_data[], or_=seed_data.get())
elif seed_method == SEED_TYPE_SAMPLE:
result = get_random_subgraph(
graph,
number_edges=seed_data.get(),
seed=seed_data.get()
)
elif not seed_method:
seed_method,
seed_data,
result.number_of_nodes(),
result.number_of_edges()
)
return result | Run a pipeline query on graph with multiple sub-graph filters and expanders.
Order of Operations:
1. Seeding by given function name and data
2. Add nodes
3. Remove nodes
:param pybel.BELGraph graph: A BEL graph
:param seed_method: The name of the get_subgraph_by_* function to use
:param seed_data: The argument to pass to the get_subgraph function
:param expand_nodes: Add the neighborhoods around all of these nodes
:param remove_nodes: Remove these nodes and all of their in/out edges
:rtype: Optional[pybel.BELGraph] |
2,054 | def _edge_list_to_dataframe(ls, src_column_name, dst_column_name):
assert HAS_PANDAS,
cols = reduce(set.union, (set(e.attr.keys()) for e in ls))
df = pd.DataFrame({
src_column_name: [e.src_vid for e in ls],
dst_column_name: [e.dst_vid for e in ls]})
for c in cols:
df[c] = [e.attr.get(c) for e in ls]
return df | Convert a list of edges into dataframe. |
2,055 | def get_storage_hash(storage):
if isinstance(storage, LazyObject):
if storage._wrapped is None:
storage._setup()
storage = storage._wrapped
if not isinstance(storage, six.string_types):
storage_cls = storage.__class__
storage = % (storage_cls.__module__, storage_cls.__name__)
return hashlib.md5(storage.encode()).hexdigest() | Return a hex string hash for a storage object (or string containing
'full.path.ClassName' referring to a storage object). |
2,056 | def list(self, id, seq):
schema = CaptureSchema(exclude=(, ))
resp = self.service.list(self._base(id, seq))
return self.service.decode(schema, resp, many=True) | Get a list of captures.
:param id: Result ID as an int.
:param seq: TestResult sequence ID as an int.
:return: :class:`captures.Capture <captures.Capture>` list |
2,057 | def getColorHSV(name):
try:
x = getColorInfoList()[getColorList().index(name.upper())]
except:
return (-1, -1, -1)
r = x[1] / 255.
g = x[2] / 255.
b = x[3] / 255.
cmax = max(r, g, b)
V = round(cmax * 100, 1)
cmin = min(r, g, b)
delta = cmax - cmin
if delta == 0:
hue = 0
elif cmax == r:
hue = 60. * (((g - b)/delta) % 6)
elif cmax == g:
hue = 60. * (((b - r)/delta) + 2)
else:
hue = 60. * (((r - g)/delta) + 4)
H = int(round(hue))
if cmax == 0:
sat = 0
else:
sat = delta / cmax
S = int(round(sat * 100))
return (H, S, V) | Retrieve the hue, saturation, value triple of a color name.
Returns:
a triple (degree, percent, percent). If not found (-1, -1, -1) is returned. |
2,058 | def package_locations(self, package_keyname):
mask = "mask[description, keyname, locations]"
package = self.get_package_by_key(package_keyname, mask=)
regions = self.package_svc.getRegions(id=package[], mask=mask)
return regions | List datacenter locations for a package keyname
:param str package_keyname: The package for which to get the items.
:returns: List of locations a package is orderable in |
2,059 | def get_permission_requests(parser, token):
return PermissionsForObjectNode.handle_token(parser, token,
approved=False,
name=) | Retrieves all permissions requests associated with the given obj and user
and assigns the result to a context variable.
Syntax::
{% get_permission_requests obj %}
{% for perm in permissions %}
{{ perm }}
{% endfor %}
{% get_permission_requests obj as "my_permissions" %}
{% get_permission_requests obj for request.user as "my_permissions" %} |
2,060 | def error(self, error):
if self.direction not in [, , ] and error is not None:
raise ValueError("error only accepted for x, y, z dimensions")
if isinstance(error, u.Quantity):
error = error.to(self.unit).value
self._error = error | set the error |
2,061 | def _get_stats_columns(cls, table, relation_type):
column_names = cls._get_stats_column_names()
clustering_value = None
if table.clustering_fields is not None:
clustering_value = .join(table.clustering_fields)
column_values = (
,
str(table.num_bytes),
,
relation_type == ,
,
str(table.num_rows),
,
relation_type == ,
,
table.location,
,
True,
,
table.partitioning_type,
,
relation_type == ,
,
clustering_value,
,
relation_type == ,
)
return zip(column_names, column_values) | Given a table, return an iterator of key/value pairs for stats
column names/values. |
2,062 | def _match_type(self, i):
self.col_match = self.RE_TYPE.match(self._source[i])
if self.col_match is not None:
self.section = "types"
self.el_type = CustomType
self.el_name = self.col_match.group("name")
return True
else:
return False | Looks at line 'i' to see if the line matches a module user type def. |
2,063 | def distinct_words(string_matrix: List[List[str]]) -> Set[str]:
return set([word
for sentence in string_matrix
for word in sentence]) | Diagnostic function
:param string_matrix:
:return:
>>> dl = distinct_words([['the', 'quick', 'brown'], ['here', 'lies', 'the', 'fox']])
>>> sorted(dl)
['brown', 'fox', 'here', 'lies', 'quick', 'the'] |
2,064 | def get_slopes(data, s_freq, level=, smooth=0.05):
data = negative(data)
nan_array = empty((5,))
nan_array[:] = nan
idx_trough = data.argmin()
idx_peak = data.argmax()
if idx_trough >= idx_peak:
return nan_array, nan_array
zero_crossings_0 = where(diff(sign(data[:idx_trough])))[0]
zero_crossings_1 = where(diff(sign(data[idx_trough:idx_peak])))[0]
zero_crossings_2 = where(diff(sign(data[idx_peak:])))[0]
if zero_crossings_1.any():
idx_zero_1 = idx_trough + zero_crossings_1[0]
else:
return nan_array, nan_array
if zero_crossings_0.any():
idx_zero_0 = zero_crossings_0[-1]
else:
idx_zero_0 = 0
if zero_crossings_2.any():
idx_zero_2 = idx_peak + zero_crossings_2[0]
else:
idx_zero_2 = len(data) - 1
avgsl = nan_array
if level in [, ]:
q1 = data[idx_trough] / ((idx_trough - idx_zero_0) / s_freq)
q2 = data[idx_trough] / ((idx_zero_1 - idx_trough) / s_freq)
q3 = data[idx_peak] / ((idx_peak - idx_zero_1) / s_freq)
q4 = data[idx_peak] / ((idx_zero_2 - idx_peak) / s_freq)
q23 = (data[idx_peak] - data[idx_trough]) \
/ ((idx_peak - idx_trough) / s_freq)
avgsl = asarray([q1, q2, q3, q4, q23])
avgsl[isinf(avgsl)] = nan
maxsl = nan_array
if level in [, ]:
if smooth is not None:
win = int(smooth * s_freq)
flat = ones(win)
data = fftconvolve(data, flat / sum(flat), mode=)
if idx_trough - idx_zero_0 >= win:
maxsl[0] = min(diff(data[idx_zero_0:idx_trough]))
if idx_zero_1 - idx_trough >= win:
maxsl[1] = max(diff(data[idx_trough:idx_zero_1]))
if idx_peak - idx_zero_1 >= win:
maxsl[2] = max(diff(data[idx_zero_1:idx_peak]))
if idx_zero_2 - idx_peak >= win:
maxsl[3] = min(diff(data[idx_peak:idx_zero_2]))
if idx_peak - idx_trough >= win:
maxsl[4] = max(diff(data[idx_trough:idx_peak]))
maxsl[isinf(maxsl)] = nan
return avgsl, maxsl | Get the slopes (average and/or maximum) for each quadrant of a slow
wave, as well as the combination of quadrants 2 and 3.
Parameters
----------
data : ndarray
raw data as vector
s_freq : int
sampling frequency
level : str
if 'average', returns average slopes (uV / s). if 'maximum', returns
the maximum of the slope derivative (uV / s**2). if 'all', returns all.
smooth : float or None
if not None, signal will be smoothed by moving average, with a window
of this duration
Returns
-------
tuple of ndarray
each array is len 5, with q1, q2, q3, q4 and q23. First array is
average slopes and second is maximum slopes.
Notes
-----
This function is made to take automatically detected start and end
times AS WELL AS manually delimited ones. In the latter case, the first
and last zero has to be detected within this function. |
2,065 | def health(self, index=None, params=None):
return self.transport.perform_request(, _make_path(,
, index), params=params) | Get a very simple status on the health of the cluster.
`<http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html>`_
:arg index: Limit the information returned to a specific index
:arg level: Specify the level of detail for returned information,
default 'cluster', valid choices are: 'cluster', 'indices', 'shards'
:arg local: Return local information, do not retrieve the state from
master node (default: false)
:arg master_timeout: Explicit operation timeout for connection to master
node
:arg timeout: Explicit operation timeout
:arg wait_for_active_shards: Wait until the specified number of shards
is active
:arg wait_for_events: Wait until all currently queued events with the
given priority are processed, valid choices are: 'immediate',
'urgent', 'high', 'normal', 'low', 'languid'
:arg wait_for_no_relocating_shards: Whether to wait until there are no
relocating shards in the cluster
:arg wait_for_nodes: Wait until the specified number of nodes is
available
:arg wait_for_status: Wait until cluster is in a specific state, default
None, valid choices are: 'green', 'yellow', 'red' |
2,066 | def should_include_file_in_search(file_name, extensions, exclude_dirs):
return (exclude_dirs is None or not any(file_name.startswith(d) for d in exclude_dirs)) and \
any(file_name.endswith(e) for e in extensions) | Whether or not a filename matches a search criteria according to arguments.
Args:
file_name (str): A file path to check.
extensions (list): A list of file extensions file should match.
exclude_dirs (list): A list of directories to exclude from search.
Returns:
A boolean of whether or not file matches search criteria. |
2,067 | def setdim(P, dim=None):
P = P.copy()
ldim = P.dim
if not dim:
dim = ldim+1
if dim==ldim:
return P
P.dim = dim
if dim>ldim:
key = numpy.zeros(dim, dtype=int)
for lkey in P.keys:
key[:ldim] = lkey
P.A[tuple(key)] = P.A.pop(lkey)
else:
key = numpy.zeros(dim, dtype=int)
for lkey in P.keys:
if not sum(lkey[ldim-1:]) or not sum(lkey):
P.A[lkey[:dim]] = P.A.pop(lkey)
else:
del P.A[lkey]
P.keys = sorted(P.A.keys(), key=sort_key)
return P | Adjust the dimensions of a polynomial.
Output the results into Poly object
Args:
P (Poly) : Input polynomial
dim (int) : The dimensions of the output polynomial. If omitted,
increase polynomial with one dimension. If the new dim is
smaller then P's dimensions, variables with cut components are
all cut.
Examples:
>>> x,y = chaospy.variable(2)
>>> P = x*x-x*y
>>> print(chaospy.setdim(P, 1))
q0^2 |
2,068 | def slice_around_gaps (values, maxgap):
if not (maxgap > 0):
raise ValueError ( % maxgap)
values = np.asarray (values)
delta = values[1:] - values[:-1]
if np.any (delta < 0):
raise ValueError ()
whgap = np.where (delta > maxgap)[0] + 1
prev_idx = None
for gap_idx in whgap:
yield slice (prev_idx, gap_idx)
prev_idx = gap_idx
yield slice (prev_idx, None) | Given an ordered array of values, generate a set of slices that traverse
all of the values. Within each slice, no gap between adjacent values is
larger than `maxgap`. In other words, these slices break the array into
chunks separated by gaps of size larger than maxgap. |
2,069 | def _check_channel_state_for_update(
self,
channel_identifier: ChannelID,
closer: Address,
update_nonce: Nonce,
block_identifier: BlockSpecification,
) -> Optional[str]:
msg = None
closer_details = self._detail_participant(
channel_identifier=channel_identifier,
participant=closer,
partner=self.node_address,
block_identifier=block_identifier,
)
if closer_details.nonce == update_nonce:
msg = (
)
return msg | Check the channel state on chain to see if it has been updated.
Compare the nonce, we are about to update the contract with, with the
updated nonce in the onchain state and, if it's the same, return a
message with which the caller should raise a RaidenRecoverableError.
If all is okay return None. |
2,070 | def perform_remote_action(i):
import urllib
try: import urllib.request as urllib2
except: import urllib2
try: from urllib.parse import urlencode
except: from urllib import urlencode
rr={:0}
act=i.get(,)
o=i.get(,)
if o==:
i[]=
i[]=
if act==:
i[]=
else:
i[]=
d=r[]
if in d: d[]=int(d[])
if d.get(,0)>0:
return d
if act==:
if o!= and o!=:
x=d.get(,)
fn=d.get(,)
if fn==: fn=cfg[]
r=convert_upload_string_to_file({:x, :fn})
if r[]>0: return r
if in d: del(d[])
rr.update(d)
i[]=o
return rr | Input: { See 'perform_action' function }
Output: { See 'perform_action' function } |
2,071 | def get_term_pillar(filter_name,
term_name,
pillar_key=,
pillarenv=None,
saltenv=None):
return __salt__[](filter_name,
term_name,
pillar_key=pillar_key,
pillarenv=pillarenv,
saltenv=saltenv) | Helper that can be used inside a state SLS,
in order to get the term configuration given its name,
under a certain filter uniquely identified by its name.
filter_name
The name of the filter.
term_name
The name of the term.
pillar_key: ``acl``
The root key of the whole policy config. Default: ``acl``.
pillarenv
Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.
saltenv
Included only for compatibility with
:conf_minion:`pillarenv_from_saltenv`, and is otherwise ignored. |
2,072 | def check(self):
status = True
synced = True
xbin = self.xbin.value()
ybin = self.ybin.value()
nwin = self.nwin.value()
g = get_root(self).globals
for xsw, ysw, nxw, nyw in \
zip(self.xs[:nwin], self.ys[:nwin],
self.nx[:nwin], self.ny[:nwin]):
xsw.config(bg=g.COL[])
ysw.config(bg=g.COL[])
nxw.config(bg=g.COL[])
nyw.config(bg=g.COL[])
status = status if xsw.ok() else False
status = status if ysw.ok() else False
status = status if nxw.ok() else False
status = status if nyw.ok() else False
xs = xsw.value()
ys = ysw.value()
nx = nxw.value()
ny = nyw.value()
if nx is None or nx % xbin != 0:
nxw.config(bg=g.COL[])
status = False
elif (nx // xbin) % 4 != 0:
nxw.config(bg=g.COL[])
status = False
if ny is None or ny % ybin != 0:
nyw.config(bg=g.COL[])
status = False
return status | Checks the values of the windows. If any problems are found,
it flags them by changing the background colour. Only active
windows are checked.
Returns status, flag for whether parameters are viable. |
2,073 | def read_csv(filename, delimiter=",", skip=0, guess_type=True, has_header=True, use_types={}):
with open(filename, ) as f:
if has_header:
header = f.readline().strip().split(delimiter)
else:
header = None
for i in range(skip):
f.readline()
for line in csv.DictReader(f, delimiter=delimiter, fieldnames=header):
if use_types:
yield apply_types(use_types, guess_type, line)
elif guess_type:
yield dmap(determine_type, line)
else:
yield line | Read a CSV file
Usage
-----
>>> data = read_csv(filename, delimiter=delimiter, skip=skip,
guess_type=guess_type, has_header=True, use_types={})
# Use specific types
>>> types = {"sepal.length": int, "petal.width": float}
>>> data = read_csv(filename, guess_type=guess_type, use_types=types)
keywords
:has_header:
Determine whether the file has a header or not |
2,074 | def osd_page_handler(config=None, identifier=None, prefix=None, **args):
template_dir = os.path.join(os.path.dirname(__file__), )
with open(os.path.join(template_dir, ), ) as f:
template = f.read()
d = dict(prefix=prefix,
identifier=identifier,
api_version=config.api_version,
osd_version=,
osd_uri=,
osd_images_prefix=,
osd_height=500,
osd_width=500,
info_json_uri=)
return make_response(Template(template).safe_substitute(d)) | Flask handler to produce HTML response for OpenSeadragon view of identifier.
Arguments:
config - Config object for this IIIF handler
identifier - identifier of image/generator
prefix - path prefix
**args - other aguments ignored |
2,075 | def ref2names2commdct(ref2names, commdct):
for comm in commdct:
for cdct in comm:
try:
refs = cdct[][0]
validobjects = ref2names[refs]
cdct.update({:validobjects})
except KeyError as e:
continue
return commdct | embed ref2names into commdct |
2,076 | def create(cls, name, division, api=None):
division = Transform.to_division(division)
api = api if api else cls._API
data = {
: name,
: division
}
extra = {
: cls.__name__,
: data
}
logger.info(, extra=extra)
created_team = api.post(cls._URL[], data=data).json()
return Team(api=api, **created_team) | Create team within a division
:param name: Team name.
:param division: Parent division.
:param api: Api instance.
:return: Team object. |
2,077 | def deref(self, ctx):
if self in ctx.call_nodes:
raise CyclicReferenceError(ctx, self)
if self in ctx.cached_results:
return ctx.cached_results[self]
try:
ctx.call_nodes.add(self)
ctx.call_stack.append(self)
result = self.evaluate(ctx)
ctx.cached_results[self] = result
return result
except:
if ctx.exception_call_stack is None:
ctx.exception_call_stack = list(ctx.call_stack)
raise
finally:
ctx.call_stack.pop()
ctx.call_nodes.remove(self) | Returns the value this reference is pointing to. This method uses 'ctx' to resolve the reference and return
the value this reference references.
If the call was already made, it returns a cached result.
It also makes sure there's no cyclic reference, and if so raises CyclicReferenceError. |
2,078 | def visit_ellipsis(self, node, parent):
return nodes.Ellipsis(
getattr(node, "lineno", None), getattr(node, "col_offset", None), parent
) | visit an Ellipsis node by returning a fresh instance of it |
2,079 | def program_files(self, executable):
if self._get_version() == 6:
paths = self.REQUIRED_PATHS_6
elif self._get_version() > 6:
paths = self.REQUIRED_PATHS_7_1
return paths | Determine the file paths to be adopted |
2,080 | def _match_processes(self, pid, name, cur_process):
cur_pid, cur_name = self._get_tuple(cur_process.split())
pid_match = False
if not pid:
pid_match = True
elif pid == cur_pid:
pid_match = True
name_match = False
if not name:
name_match = True
elif name == cur_name:
name_match = True
return pid_match and name_match | Determine whether user-specified "pid/processes" contain this process
:param pid: The user input of pid
:param name: The user input of process name
:param process: current process info
:return: True or Not; (if both pid/process are given, then both of them need to match) |
2,081 | def get(self, name, param=None):
if name not in self.attribs:
raise exceptions.SoftLayerError()
call_details = self.attribs[name]
if call_details.get():
if not param:
raise exceptions.SoftLayerError(
)
params = tuple()
if param is not None:
params = (param,)
try:
return self.client.call(,
self.attribs[name][],
*params)
except exceptions.SoftLayerAPIError as ex:
if ex.faultCode == 404:
return None
raise ex | Retreive a metadata attribute.
:param string name: name of the attribute to retrieve. See `attribs`
:param param: Required parameter for some attributes |
2,082 | def getlocals(back=2):
import inspect
fr = inspect.currentframe()
try:
while fr and back != 0:
fr1 = fr
fr = fr.f_back
back -= 1
except:
pass
return fr1.f_locals | Get the local variables some levels back (-1 is top). |
2,083 | def network(n):
tpm(n.tpm)
connectivity_matrix(n.cm)
if n.cm.shape[0] != n.size:
raise ValueError("Connectivity matrix must be NxN, where N is the "
"number of nodes in the network.")
return True | Validate a |Network|.
Checks the TPM and connectivity matrix. |
2,084 | def validate(self):
if not isinstance(self.location, Location):
raise TypeError(u.format(
type(self.location).__name__, self.location))
if not self.location.field:
raise ValueError(u
u.format(self.location))
if not is_graphql_type(self.field_type):
raise ValueError(u.format(self.field_type))
stripped_field_type = strip_non_null_from_type(self.field_type)
if isinstance(stripped_field_type, GraphQLList):
inner_type = strip_non_null_from_type(stripped_field_type.of_type)
if GraphQLDate.is_same_type(inner_type) or GraphQLDateTime.is_same_type(inner_type):
| Validate that the OutputContextField is correctly representable. |
2,085 | def sign_execute_deposit(deposit_params, key_pair):
signature = sign_transaction(transaction=deposit_params[],
private_key_hex=private_key_to_hex(key_pair=key_pair))
return {: signature} | Function to execute the deposit request by signing the transaction generated by the create deposit function.
Execution of this function is as follows::
sign_execute_deposit(deposit_details=create_deposit, key_pair=key_pair)
The expected return result for this function is as follows::
{
'signature': '3cc4a5cb7b7d50383e799add2ba35382b6f2f1b2e3b97802....'
}
:param deposit_params: The parameters generated by the create deposit function that now requires signature.
:type deposit_params: dict
:param key_pair: The KeyPair for the wallet being used to sign deposit message.
:type key_pair: KeyPair
:return: Dictionary with the result status of the deposit attempt. |
2,086 | def compile_file_into_spirv(filepath, stage, optimization=,
warnings_as_errors=False):
with open(filepath, ) as f:
content = f.read()
return compile_into_spirv(content, stage, filepath,
optimization=optimization,
warnings_as_errors=warnings_as_errors) | Compile shader file into Spir-V binary.
This function uses shaderc to compile your glsl file code into Spir-V
code.
Args:
filepath (strs): Absolute path to your shader file
stage (str): Pipeline stage in ['vert', 'tesc', 'tese', 'geom',
'frag', 'comp']
optimization (str): 'zero' (no optimization) or 'size' (reduce size)
warnings_as_errors (bool): Turn warnings into errors
Returns:
bytes: Compiled Spir-V binary.
Raises:
CompilationError: If compilation fails. |
2,087 | def _dstr(degrees, places=1, signed=False):
r
if isnan(degrees):
return
sgn, d, m, s, etc = _sexagesimalize_to_int(degrees, places)
sign = if sgn < 0.0 else if signed else
return %02d.%0*d"' % (sign, d, m, s, places, etc) | r"""Convert floating point `degrees` into a sexagesimal string.
>>> _dstr(181.875)
'181deg 52\' 30.0"'
>>> _dstr(181.875, places=3)
'181deg 52\' 30.000"'
>>> _dstr(181.875, signed=True)
'+181deg 52\' 30.0"'
>>> _dstr(float('nan'))
'nan' |
2,088 | def isSet(self, param):
param = self._resolveParam(param)
return param in self._paramMap | Checks whether a param is explicitly set by user. |
2,089 | def send_event_to_salt(self, result):
s a dictionary which has the final data and topic.
senddatatopic__rolemastersock_direvent.fire_master'](data=data, tag=topic) | This function identifies whether the engine is running on the master
or the minion and sends the data to the master event bus accordingly.
:param result: It's a dictionary which has the final data and topic. |
2,090 | def unhex(s):
bits = 0
for c in s:
if <= c <= :
i = ord()
elif <= c <= :
i = ord()-10
elif <= c <= :
i = ord()-10
else:
break
bits = bits*16 + (ord(c) - i)
return bits | Get the integer value of a hexadecimal number. |
2,091 | def save_config(self):
if not self.opts[][1]:
if logger.isEnabledFor(logging.INFO):
logger.info()
return 1
txt =utf-8dark window
copyfile(self.config_file, self.config_file + )
if self.opts[][1] is None:
self.opts[][1] =
try:
with open(self.config_file, ) as cfgfile:
cfgfile.write(txt.format(self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1],
self.opts[][1]))
except:
if logger.isEnabledFor(logging.ERROR):
logger.error()
return -1
try:
remove(self.config_file + )
except:
pass
if logger.isEnabledFor(logging.INFO):
logger.info()
self.opts[][1] = False
return 0 | Save config file
Creates config.restore (back up file)
Returns:
-1: Error saving config
0: Config saved successfully
1: Config not saved (not modified |
2,092 | def check_cgroup_availability_in_thread(options):
thread = _CheckCgroupsThread(options)
thread.start()
thread.join()
if thread.error:
raise thread.error | Run check_cgroup_availability() in a separate thread to detect the following problem:
If "cgexec --sticky" is used to tell cgrulesengd to not interfere
with our child processes, the sticky flag unfortunately works only
for processes spawned by the main thread, not those spawned by other threads
(and this will happen if "benchexec -N" is used). |
2,093 | def run():
global WORKBENCH
args = client_helper.grab_server_args()
WORKBENCH = zerorpc.Client(timeout=300, heartbeat=60)
WORKBENCH.connect(+args[]++args[])
data_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), )
file_list = [os.path.join(data_path, child) for child in \
os.listdir(data_path)]
results = []
for filename in file_list:
if in filename: continue
with open(filename,) as f:
md5 = WORKBENCH.store_sample(f.read(), filename, )
result = WORKBENCH.work_request(, md5)
result.update(WORKBENCH.work_request(, result[][]))
result[] = result[][].split()[-1]
results.append(result)
return results | This client pulls PCAP files for building report.
Returns:
A list with `view_pcap` , `meta` and `filename` objects. |
2,094 | def __ensure_provisioning_writes(
table_name, table_key, gsi_name, gsi_key, num_consec_write_checks):
if not get_gsi_option(table_key, gsi_key, ):
logger.info(
.format(
table_name, gsi_name))
return False, dynamodb.get_provisioned_gsi_write_units(
table_name, gsi_name), 0
update_needed = False
try:
lookback_window_start = get_gsi_option(
table_key, gsi_key, )
lookback_period = get_gsi_option(
table_key, gsi_key, )
current_write_units = dynamodb.get_provisioned_gsi_write_units(
table_name, gsi_name)
consumed_write_units_percent = \
gsi_stats.get_consumed_write_units_percent(
table_name, gsi_name, lookback_window_start, lookback_period)
throttled_write_count = \
gsi_stats.get_throttled_write_event_count(
table_name, gsi_name, lookback_window_start, lookback_period)
throttled_by_provisioned_write_percent = \
gsi_stats.get_throttled_by_provisioned_write_event_percent(
table_name, gsi_name, lookback_window_start, lookback_period)
throttled_by_consumed_write_percent = \
gsi_stats.get_throttled_by_consumed_write_percent(
table_name, gsi_name, lookback_window_start, lookback_period)
writes_upper_threshold = \
get_gsi_option(table_key, gsi_key, )
writes_lower_threshold = \
get_gsi_option(table_key, gsi_key, )
throttled_writes_upper_threshold = \
get_gsi_option(
table_key, gsi_key, )
increase_writes_unit = \
get_gsi_option(table_key, gsi_key, )
increase_writes_with = \
get_gsi_option(table_key, gsi_key, )
decrease_writes_unit = \
get_gsi_option(table_key, gsi_key, )
decrease_writes_with = \
get_gsi_option(table_key, gsi_key, )
min_provisioned_writes = \
get_gsi_option(table_key, gsi_key, )
max_provisioned_writes = \
get_gsi_option(table_key, gsi_key, )
num_write_checks_before_scale_down = \
get_gsi_option(
table_key, gsi_key, )
num_write_checks_reset_percent = \
get_gsi_option(
table_key, gsi_key, )
increase_throttled_by_provisioned_writes_unit = \
get_gsi_option(
table_key,
gsi_key,
)
increase_throttled_by_provisioned_writes_scale = \
get_gsi_option(
table_key,
gsi_key,
)
increase_throttled_by_consumed_writes_unit = \
get_gsi_option(
table_key,
gsi_key,
)
increase_throttled_by_consumed_writes_scale = \
get_gsi_option(
table_key,
gsi_key,
)
increase_consumed_writes_unit = \
get_gsi_option(table_key, gsi_key, )
increase_consumed_writes_with = \
get_gsi_option(table_key, gsi_key, )
increase_consumed_writes_scale = \
get_gsi_option(
table_key, gsi_key, )
decrease_consumed_writes_unit = \
get_gsi_option(table_key, gsi_key, )
decrease_consumed_writes_with = \
get_gsi_option(table_key, gsi_key, )
decrease_consumed_writes_scale = \
get_gsi_option(
table_key, gsi_key, )
except JSONResponseError:
raise
except BotoServerError:
raise
updated_write_units = current_write_units
if num_write_checks_reset_percent:
if consumed_write_units_percent >= num_write_checks_reset_percent:
logger.info(
.format(
table_name,
gsi_name,
consumed_write_units_percent,
num_write_checks_reset_percent))
num_consec_write_checks = 0
if not get_gsi_option(table_key, gsi_key, ):
logger.debug(
.format(
table_name, gsi_name))
else:
increase_consumed_writes_unit = \
increase_consumed_writes_unit or increase_writes_unit
increase_throttled_by_provisioned_writes_unit = (
increase_throttled_by_provisioned_writes_unit
or increase_writes_unit)
increase_throttled_by_consumed_writes_unit = \
increase_throttled_by_consumed_writes_unit or increase_writes_unit
increase_consumed_writes_with = \
increase_consumed_writes_with or increase_writes_with
throttled_by_provisioned_calculated_provisioning = scale_reader(
increase_throttled_by_provisioned_writes_scale,
throttled_by_provisioned_write_percent)
throttled_by_consumed_calculated_provisioning = scale_reader(
increase_throttled_by_consumed_writes_scale,
throttled_by_consumed_write_percent)
consumed_calculated_provisioning = scale_reader(
increase_consumed_writes_scale,
consumed_write_units_percent)
throttled_count_calculated_provisioning = 0
calculated_provisioning = 0
if throttled_by_provisioned_calculated_provisioning:
if increase_throttled_by_provisioned_writes_unit == :
throttled_by_provisioned_calculated_provisioning = \
calculators.increase_writes_in_percent(
current_write_units,
throttled_by_provisioned_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
else:
throttled_by_provisioned_calculated_provisioning = \
calculators.increase_writes_in_units(
current_write_units,
throttled_by_provisioned_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
if throttled_by_consumed_calculated_provisioning:
if increase_throttled_by_consumed_writes_unit == :
throttled_by_consumed_calculated_provisioning = \
calculators.increase_writes_in_percent(
current_write_units,
throttled_by_consumed_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
else:
throttled_by_consumed_calculated_provisioning = \
calculators.increase_writes_in_units(
current_write_units,
throttled_by_consumed_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
if consumed_calculated_provisioning:
if increase_consumed_writes_unit == :
consumed_calculated_provisioning = \
calculators.increase_writes_in_percent(
current_write_units,
consumed_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
else:
consumed_calculated_provisioning = \
calculators.increase_writes_in_units(
current_write_units,
consumed_calculated_provisioning,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
elif (writes_upper_threshold
and consumed_write_units_percent > writes_upper_threshold
and not increase_consumed_writes_scale):
if increase_consumed_writes_unit == :
consumed_calculated_provisioning = \
calculators.increase_writes_in_percent(
current_write_units,
increase_consumed_writes_with,
get_gsi_option(
table_key,
gsi_key,
),
consumed_write_units_percent,
.format(table_name, gsi_name))
else:
consumed_calculated_provisioning = \
calculators.increase_writes_in_units(
current_write_units,
increase_consumed_writes_with,
get_gsi_option(
table_key, gsi_key, ),
consumed_write_units_percent,
.format(table_name, gsi_name))
if (throttled_writes_upper_threshold
and throttled_write_count > throttled_writes_upper_threshold):
if increase_writes_unit == :
throttled_count_calculated_provisioning = \
calculators.increase_writes_in_percent(
updated_write_units,
increase_writes_with,
get_gsi_option(
table_key, gsi_key, ),
consumed_write_units_percent,
.format(table_name, gsi_name))
else:
throttled_count_calculated_provisioning = \
calculators.increase_writes_in_units(
updated_write_units,
increase_writes_with,
get_gsi_option(
table_key, gsi_key, ),
consumed_write_units_percent,
.format(table_name, gsi_name))
if (throttled_by_provisioned_calculated_provisioning
> calculated_provisioning):
calculated_provisioning = \
throttled_by_provisioned_calculated_provisioning
scale_reason = (
"due to throttled events by provisioned "
"units threshold being exceeded")
if (throttled_by_consumed_calculated_provisioning
> calculated_provisioning):
calculated_provisioning = \
throttled_by_consumed_calculated_provisioning
scale_reason = (
"due to throttled events by consumed "
"units threshold being exceeded")
if consumed_calculated_provisioning > calculated_provisioning:
calculated_provisioning = consumed_calculated_provisioning
scale_reason = "due to consumed threshold being exceeded"
if throttled_count_calculated_provisioning > calculated_provisioning:
calculated_provisioning = throttled_count_calculated_provisioning
scale_reason = "due to throttled events threshold being exceeded"
if calculated_provisioning > current_write_units:
logger.info(
.format(
table_name, gsi_name, scale_reason))
num_consec_write_checks = 0
update_needed = True
updated_write_units = calculated_provisioning
if not update_needed:
decrease_consumed_writes_unit = \
decrease_consumed_writes_unit or decrease_writes_unit
decrease_consumed_writes_with = \
decrease_consumed_writes_with or decrease_writes_with
consumed_calculated_provisioning = scale_reader_decrease(
decrease_consumed_writes_scale,
consumed_write_units_percent)
calculated_provisioning = None
if not get_gsi_option(
table_key, gsi_key, ):
logger.debug(
.format(
table_name, gsi_name))
elif (consumed_write_units_percent == 0 and not get_gsi_option(
table_key, gsi_key, )):
logger.info(
.format(table_name, gsi_name))
else:
if consumed_calculated_provisioning:
if decrease_consumed_writes_unit == :
calculated_provisioning = \
calculators.decrease_writes_in_percent(
updated_write_units,
consumed_calculated_provisioning,
get_gsi_option(
table_key, gsi_key, ),
.format(table_name, gsi_name))
else:
calculated_provisioning = \
calculators.decrease_writes_in_units(
updated_write_units,
consumed_calculated_provisioning,
get_gsi_option(
table_key, gsi_key, ),
.format(table_name, gsi_name))
elif (writes_lower_threshold
and consumed_write_units_percent < writes_lower_threshold
and not decrease_consumed_writes_scale):
if decrease_consumed_writes_unit == :
calculated_provisioning = \
calculators.decrease_writes_in_percent(
updated_write_units,
decrease_consumed_writes_with,
get_gsi_option(
table_key, gsi_key, ),
.format(table_name, gsi_name))
else:
calculated_provisioning = \
calculators.decrease_writes_in_units(
updated_write_units,
decrease_consumed_writes_with,
get_gsi_option(
table_key, gsi_key, ),
.format(table_name, gsi_name))
if (calculated_provisioning
and current_write_units != calculated_provisioning):
num_consec_write_checks += 1
if num_consec_write_checks >= \
num_write_checks_before_scale_down:
update_needed = True
updated_write_units = calculated_provisioning
if max_provisioned_writes:
if int(updated_write_units) > int(max_provisioned_writes):
update_needed = True
updated_write_units = int(max_provisioned_writes)
logger.info(
.format(
table_name,
gsi_name,
updated_write_units))
if min_provisioned_writes:
if int(min_provisioned_writes) > int(updated_write_units):
update_needed = True
updated_write_units = int(min_provisioned_writes)
logger.info(
.format(
table_name,
gsi_name,
updated_write_units))
if calculators.is_consumed_over_proposed(
current_write_units,
updated_write_units,
consumed_write_units_percent):
update_needed = False
updated_write_units = current_write_units
logger.info(
.format(table_name, gsi_name))
logger.info(.format(
table_name,
gsi_name,
num_consec_write_checks,
num_write_checks_before_scale_down))
return update_needed, updated_write_units, num_consec_write_checks | Ensure that provisioning of writes is correct
:type table_name: str
:param table_name: Name of the DynamoDB table
:type table_key: str
:param table_key: Table configuration option key name
:type gsi_name: str
:param gsi_name: Name of the GSI
:type gsi_key: str
:param gsi_key: Configuration option key name
:type num_consec_write_checks: int
:param num_consec_write_checks: How many consecutive checks have we had
:returns: (bool, int, int)
update_needed, updated_write_units, num_consec_write_checks |
2,095 | def im2mat(I):
return I.reshape((I.shape[0] * I.shape[1], I.shape[2])) | Converts and image to matrix (one pixel per line) |
2,096 | def _rds_cluster_tags(model, dbs, session_factory, generator, retry):
client = local_session(session_factory).client()
def process_tags(db):
try:
db[] = retry(
client.list_tags_for_resource,
ResourceName=generator(db[model.id]))[]
return db
except client.exceptions.DBClusterNotFoundFault:
return None
return list(filter(None, map(process_tags, dbs))) | Augment rds clusters with their respective tags. |
2,097 | def revoke(self, auth, codetype, code, defer=False):
return self._call(, auth, [codetype, code], defer) | Given an activation code, the associated entity is revoked after which the activation
code can no longer be used.
Args:
auth: Takes the owner's cik
codetype: The type of code to revoke (client | share)
code: Code specified by <codetype> (cik | share-activation-code) |
2,098 | def _get_model_parameters_estimations(self, error_model):
if error_model.dependance == NIDM_INDEPEDENT_ERROR:
if error_model.variance_homo:
estimation_method = STATO_OLS
else:
estimation_method = STATO_WLS
else:
estimation_method = STATO_GLS
mpe = ModelParametersEstimation(estimation_method, self.software.id)
return mpe | Infer model estimation method from the 'error_model'. Return an object
of type ModelParametersEstimation. |
2,099 | def order_assets(self, asset_ids, composition_id):
if (not isinstance(composition_id, ABCId) and
composition_id.get_identifier_namespace() != ):
raise errors.InvalidArgument()
composition_map, collection = self._get_composition_collection(composition_id)
composition_map[] = order_ids(asset_ids, composition_map[])
collection.save(composition_map) | Reorders a set of assets in a composition.
arg: asset_ids (osid.id.Id[]): ``Ids`` for a set of
``Assets``
arg: composition_id (osid.id.Id): ``Id`` of the
``Composition``
raise: NotFound - ``composition_id`` not found or, an
``asset_id`` not related to ``composition_id``
raise: NullArgument - ``instruction_ids`` or ``agenda_id`` is
``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.* |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.