code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def is_valid_python(code, reraise=True, ipy_magic_workaround=False): """ References: http://stackoverflow.com/questions/23576681/python-check-syntax """ import ast try: if ipy_magic_workaround: code = '\n'.join(['pass' if re.match(r'\s*%[a-z]*', line) else line for line in code.split('\n')]) ast.parse(code) except SyntaxError: if reraise: import utool as ut print('Syntax Error') ut.print_python_code(code) raise return False return True
References: http://stackoverflow.com/questions/23576681/python-check-syntax
def stream_replicate(): """Monitor changes in approximately real-time and replicate them""" stream = primary.stream(SomeDataBlob, "trim_horizon") next_heartbeat = pendulum.now() while True: now = pendulum.now() if now >= next_heartbeat: stream.heartbeat() next_heartbeat = now.add(minutes=10) record = next(stream) if record is None: continue if record["new"] is not None: replica.save(record["new"]) else: replica.delete(record["old"])
Monitor changes in approximately real-time and replicate them
def set_polling_override(self, override): """Set the sensor polling timer override value in milliseconds. Due to the time it takes to poll all the sensors on up to 5 IMUs, it's not possible for the SK8 firmware to define a single fixed rate for reading new samples without it being artificially low for most configurations. Instead the firmware tries to define a sensible default value for each combination of IMUs and sensors that can be enabled (any combination of 1-5 IMUs and 1-3 sensors on each IMU). In most cases this should work well, but for example if you have multiple SK8s connected through the same dongle and have multiple IMUs enabled on each, you may find packets start to be dropped quite frequently. To mitigate this, you can adjust the period of the timer used by the firmware to poll for new sensor data (and send data packets to the host device). The value should be in integer milliseconds, and have a minimum value of 20. Values below 20 will be treated as a request to disable the override and return to the default polling period. The method can be called before or after streaming is activated, and will take effect immediately. NOTE1: the value is stored in RAM and will not persist across reboots, although it should persist for multiple connections. NOTE2: once set, the override applies to ALL sensor configurations, so for example if you set it while using 5 IMUs on 2 SK8s, then switch to using 1 IMU on each SK8, you will probably want to disable it again as the latter configuration should work fine with the default period. Args: override (int): polling timer override period in milliseconds. Values below 20 are treated as 0, and have the effect of disabling the override in favour of the default periods. Returns: True on success, False on error. """ polling_override = self.get_characteristic_handle_from_uuid(UUID_POLLING_OVERRIDE) if polling_override is None: logger.warn('Failed to find handle for device name') return False if self.dongle._write_attribute(self.conn_handle, polling_override, struct.pack('B', override)): return True return False
Set the sensor polling timer override value in milliseconds. Due to the time it takes to poll all the sensors on up to 5 IMUs, it's not possible for the SK8 firmware to define a single fixed rate for reading new samples without it being artificially low for most configurations. Instead the firmware tries to define a sensible default value for each combination of IMUs and sensors that can be enabled (any combination of 1-5 IMUs and 1-3 sensors on each IMU). In most cases this should work well, but for example if you have multiple SK8s connected through the same dongle and have multiple IMUs enabled on each, you may find packets start to be dropped quite frequently. To mitigate this, you can adjust the period of the timer used by the firmware to poll for new sensor data (and send data packets to the host device). The value should be in integer milliseconds, and have a minimum value of 20. Values below 20 will be treated as a request to disable the override and return to the default polling period. The method can be called before or after streaming is activated, and will take effect immediately. NOTE1: the value is stored in RAM and will not persist across reboots, although it should persist for multiple connections. NOTE2: once set, the override applies to ALL sensor configurations, so for example if you set it while using 5 IMUs on 2 SK8s, then switch to using 1 IMU on each SK8, you will probably want to disable it again as the latter configuration should work fine with the default period. Args: override (int): polling timer override period in milliseconds. Values below 20 are treated as 0, and have the effect of disabling the override in favour of the default periods. Returns: True on success, False on error.
def bls_stats_singleperiod(times, mags, errs, period, magsarefluxes=False, sigclip=10.0, perioddeltapercent=10, nphasebins=200, mintransitduration=0.01, maxtransitduration=0.4, ingressdurationfraction=0.1, verbose=True): '''This calculates the SNR, depth, duration, a refit period, and time of center-transit for a single period. The equation used for SNR is:: SNR = (transit model depth / RMS of LC with transit model subtracted) * sqrt(number of points in transit) NOTE: you should set the kwargs `sigclip`, `nphasebins`, `mintransitduration`, `maxtransitduration` to what you used for an initial BLS run to detect transits in the input light curve to match those input conditions. Parameters ---------- times,mags,errs : np.array These contain the magnitude/flux time-series and any associated errors. period : float The period to search around and refit the transits. This will be used to calculate the start and end periods of a rerun of BLS to calculate the stats. magsarefluxes : bool Set to True if the input measurements in `mags` are actually fluxes and not magnitudes. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. perioddeltapercent : float The fraction of the period provided to use to search around this value. This is a percentage. The period range searched will then be:: [period - (perioddeltapercent/100.0)*period, period + (perioddeltapercent/100.0)*period] nphasebins : int The number of phase bins to use in the BLS run. mintransitduration : float The minimum transit duration in phase to consider. maxtransitduration : float The maximum transit duration to consider. ingressdurationfraction : float The fraction of the transit duration to use to generate an initial value of the transit ingress duration for the BLS model refit. This will be fit by this function. verbose : bool If True, will indicate progress and any problems encountered. Returns ------- dict A dict of the following form is returned:: {'period': the refit best period, 'epoch': the refit epoch (i.e. mid-transit time), 'snr':the SNR of the transit, 'transitdepth':the depth of the transit, 'transitduration':the duration of the transit, 'nphasebins':the input value of nphasebins, 'transingressbin':the phase bin containing transit ingress, 'transegressbin':the phase bin containing transit egress, 'blsmodel':the full BLS model used along with its parameters, 'subtractedmags':BLS model - phased light curve, 'phasedmags':the phase light curve, 'phases': the phase values} ''' # get rid of nans first and sigclip stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) # make sure there are enough points to calculate a spectrum if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9: # get the period interval startp = period - perioddeltapercent*period/100.0 if startp < 0: startp = period endp = period + perioddeltapercent*period/100.0 # rerun BLS in serial mode around the specified period to get the # transit depth, duration, ingress and egress bins blsres = bls_serial_pfind(stimes, smags, serrs, verbose=verbose, startp=startp, endp=endp, nphasebins=nphasebins, mintransitduration=mintransitduration, maxtransitduration=maxtransitduration, magsarefluxes=magsarefluxes, get_stats=False, sigclip=None) if (not blsres or 'blsresult' not in blsres or blsres['blsresult'] is None): LOGERROR("BLS failed during a period-search " "performed around the input best period: %.6f. " "Can't continue. " % period) return None thistransdepth = blsres['blsresult']['transdepth'] thistransduration = blsres['blsresult']['transduration'] thisbestperiod = blsres['bestperiod'] thistransingressbin = blsres['blsresult']['transingressbin'] thistransegressbin = blsres['blsresult']['transegressbin'] thisnphasebins = nphasebins stats = _get_bls_stats(stimes, smags, serrs, thistransdepth, thistransduration, ingressdurationfraction, nphasebins, thistransingressbin, thistransegressbin, thisbestperiod, thisnphasebins, magsarefluxes=magsarefluxes, verbose=verbose) return stats # if there aren't enough points in the mag series, bail out else: LOGERROR('no good detections for these times and mags, skipping...') return None
This calculates the SNR, depth, duration, a refit period, and time of center-transit for a single period. The equation used for SNR is:: SNR = (transit model depth / RMS of LC with transit model subtracted) * sqrt(number of points in transit) NOTE: you should set the kwargs `sigclip`, `nphasebins`, `mintransitduration`, `maxtransitduration` to what you used for an initial BLS run to detect transits in the input light curve to match those input conditions. Parameters ---------- times,mags,errs : np.array These contain the magnitude/flux time-series and any associated errors. period : float The period to search around and refit the transits. This will be used to calculate the start and end periods of a rerun of BLS to calculate the stats. magsarefluxes : bool Set to True if the input measurements in `mags` are actually fluxes and not magnitudes. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. perioddeltapercent : float The fraction of the period provided to use to search around this value. This is a percentage. The period range searched will then be:: [period - (perioddeltapercent/100.0)*period, period + (perioddeltapercent/100.0)*period] nphasebins : int The number of phase bins to use in the BLS run. mintransitduration : float The minimum transit duration in phase to consider. maxtransitduration : float The maximum transit duration to consider. ingressdurationfraction : float The fraction of the transit duration to use to generate an initial value of the transit ingress duration for the BLS model refit. This will be fit by this function. verbose : bool If True, will indicate progress and any problems encountered. Returns ------- dict A dict of the following form is returned:: {'period': the refit best period, 'epoch': the refit epoch (i.e. mid-transit time), 'snr':the SNR of the transit, 'transitdepth':the depth of the transit, 'transitduration':the duration of the transit, 'nphasebins':the input value of nphasebins, 'transingressbin':the phase bin containing transit ingress, 'transegressbin':the phase bin containing transit egress, 'blsmodel':the full BLS model used along with its parameters, 'subtractedmags':BLS model - phased light curve, 'phasedmags':the phase light curve, 'phases': the phase values}
def cluster_coincs_multiifo(stat, time_coincs, timeslide_id, slide, window, argmax=numpy.argmax): """Cluster coincident events for each timeslide separately, across templates, based on the ranking statistic Parameters ---------- stat: numpy.ndarray vector of ranking values to maximize time_coincs: tuple of numpy.ndarrays trigger times for each ifo, or -1 if an ifo does not participate in a coinc timeslide_id: numpy.ndarray vector that determines the timeslide offset slide: float length of the timeslides offset interval window: float duration of clustering window in seconds Returns ------- cindex: numpy.ndarray The set of indices corresponding to the surviving coincidences """ time_coinc_zip = zip(*time_coincs) if len(time_coinc_zip) == 0: logging.info('No coincident triggers.') return numpy.array([]) time_avg_num = [] #find number of ifos and mean time over participating ifos for each coinc for tc in time_coinc_zip: time_avg_num.append(mean_if_greater_than_zero(tc)) time_avg, num_ifos = zip(*time_avg_num) time_avg = numpy.array(time_avg) num_ifos = numpy.array(num_ifos) # shift all but the pivot ifo by (num_ifos-1) * timeslide_id * slide # this leads to a mean coinc time located around pivot time if numpy.isfinite(slide): nifos_minusone = (num_ifos - numpy.ones_like(num_ifos)) time_avg = time_avg + (nifos_minusone * timeslide_id * slide)/num_ifos tslide = timeslide_id.astype(numpy.float128) time_avg = time_avg.astype(numpy.float128) span = (time_avg.max() - time_avg.min()) + window * 10 time_avg = time_avg + span * tslide cidx = cluster_over_time(stat, time_avg, window, argmax) return cidx
Cluster coincident events for each timeslide separately, across templates, based on the ranking statistic Parameters ---------- stat: numpy.ndarray vector of ranking values to maximize time_coincs: tuple of numpy.ndarrays trigger times for each ifo, or -1 if an ifo does not participate in a coinc timeslide_id: numpy.ndarray vector that determines the timeslide offset slide: float length of the timeslides offset interval window: float duration of clustering window in seconds Returns ------- cindex: numpy.ndarray The set of indices corresponding to the surviving coincidences
def pemp(stat, stat0): """ Computes empirical values identically to bioconductor/qvalue empPvals """ assert len(stat0) > 0 assert len(stat) > 0 stat = np.array(stat) stat0 = np.array(stat0) m = len(stat) m0 = len(stat0) statc = np.concatenate((stat, stat0)) v = np.array([True] * m + [False] * m0) perm = np.argsort(-statc, kind="mergesort") # reversed sort, mergesort is stable v = v[perm] u = np.where(v)[0] p = (u - np.arange(m)) / float(m0) # ranks can be fractional, we round down to the next integer, ranking returns values starting # with 1, not 0: ranks = np.floor(scipy.stats.rankdata(-stat)).astype(int) - 1 p = p[ranks] p[p <= 1.0 / m0] = 1.0 / m0 return p
Computes empirical values identically to bioconductor/qvalue empPvals
def c2ln(c,l1,l2,n): "char[n] to two unsigned long???" c = c + n l1, l2 = U32(0), U32(0) f = 0 if n == 8: l2 = l2 | (U32(c[7]) << 24) f = 1 if f or (n == 7): l2 = l2 | (U32(c[6]) << 16) f = 1 if f or (n == 6): l2 = l2 | (U32(c[5]) << 8) f = 1 if f or (n == 5): l2 = l2 | U32(c[4]) f = 1 if f or (n == 4): l1 = l1 | (U32(c[3]) << 24) f = 1 if f or (n == 3): l1 = l1 | (U32(c[2]) << 16) f = 1 if f or (n == 2): l1 = l1 | (U32(c[1]) << 8) f = 1 if f or (n == 1): l1 = l1 | U32(c[0]) return (l1, l2)
char[n] to two unsigned long???
def get_datasets_list(self, project_id=None): """ Method returns full list of BigQuery datasets in the current project .. seealso:: For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list :param project_id: Google Cloud Project for which you try to get all datasets :type project_id: str :return: datasets_list Example of returned datasets_list: :: { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_2_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_2_test" } }, { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_1_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_1_test" } } ] """ dataset_project_id = project_id if project_id else self.project_id try: datasets_list = self.service.datasets().list( projectId=dataset_project_id).execute(num_retries=self.num_retries)['datasets'] self.log.info("Datasets List: %s", datasets_list) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content)) return datasets_list
Method returns full list of BigQuery datasets in the current project .. seealso:: For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list :param project_id: Google Cloud Project for which you try to get all datasets :type project_id: str :return: datasets_list Example of returned datasets_list: :: { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_2_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_2_test" } }, { "kind":"bigquery#dataset", "location":"US", "id":"your-project:dataset_1_test", "datasetReference":{ "projectId":"your-project", "datasetId":"dataset_1_test" } } ]
def files_to_pif(files, verbose=0, quality_report=True, inline=True): '''Given a directory that contains output from a DFT calculation, parse the data and return a pif object Input: files - [str] list of files from which the parser is allowed to read. verbose - int, How much status messages to print Output: pif - ChemicalSystem, Results and settings of the DFT calculation in pif format ''' # Look for the first parser compatible with the directory found_parser = False for possible_parser in [PwscfParser, VaspParser]: try: parser = possible_parser(files) found_parser = True break except InvalidIngesterException: # Constructors fail when they cannot find appropriate files pass if not found_parser: raise Exception('Directory is not in correct format for an existing parser') if verbose > 0: print("Found a {} directory".format(parser.get_name())) # Get information about the chemical system chem = ChemicalSystem() chem.chemical_formula = parser.get_composition() # Get software information, to list as method software = Software(name=parser.get_name(), version=parser.get_version_number()) # Define the DFT method object method = Method(name='Density Functional Theory', software=[software]) # Get the settings (aka. "conditions") of the DFT calculations conditions = [] for name, func in parser.get_setting_functions().items(): # Get the condition cond = getattr(parser, func)() # If the condition is None or False, skip it if cond is None: continue if inline and cond.files is not None: continue # Set the name cond.name = name # Set the types conditions.append(cond) # Get the properties of the system chem.properties = [] for name, func in parser.get_result_functions().items(): # Get the property prop = getattr(parser, func)() # If the property is None, skip it if prop is None: continue if inline and prop.files is not None: continue # Add name and other data prop.name = name prop.methods = [method,] prop.data_type='COMPUTATIONAL' if verbose > 0 and isinstance(prop, Value): print(name) if prop.conditions is None: prop.conditions = conditions else: if not isinstance(prop.conditions, list): prop.conditions = [prop.conditions] prop.conditions.extend(conditions) # Add it to the output chem.properties.append(prop) # Check to see if we should add the quality report if quality_report and isinstance(parser, VaspParser): _add_quality_report(parser, chem) return chem
Given a directory that contains output from a DFT calculation, parse the data and return a pif object Input: files - [str] list of files from which the parser is allowed to read. verbose - int, How much status messages to print Output: pif - ChemicalSystem, Results and settings of the DFT calculation in pif format
def transform(function): """Return a processor for a style's "transform" function. """ def transform_fn(_, result): if isinstance(result, Nothing): return result lgr.debug("Transforming %r with %r", result, function) try: return function(result) except: exctype, value, tb = sys.exc_info() try: new_exc = StyleFunctionError(function, exctype, value) # Remove the "During handling ..." since we're # reraising with the traceback. new_exc.__cause__ = None six.reraise(StyleFunctionError, new_exc, tb) finally: # Remove circular reference. # https://docs.python.org/2/library/sys.html#sys.exc_info del tb return transform_fn
Return a processor for a style's "transform" function.
def vb_get_network_addresses(machine_name=None, machine=None, wait_for_pattern=None): ''' TODO distinguish between private and public addresses A valid machine_name or a machine is needed to make this work! !!! Guest prerequisite: GuestAddition !!! Thanks to Shrikant Havale for the StackOverflow answer http://stackoverflow.com/a/29335390 More information on guest properties: https://www.virtualbox.org/manual/ch04.html#guestadd-guestprops @param machine_name: @type machine_name: str @param machine: @type machine: IMachine @return: All the IPv4 addresses we could get @rtype: str[] ''' if machine_name: machine = vb_get_box().findMachine(machine_name) ip_addresses = [] log.debug("checking for power on:") if machine.state == _virtualboxManager.constants.MachineState_Running: log.debug("got power on:") #wait on an arbitrary named property #for instance use a dhcp client script to set a property via VBoxControl guestproperty set dhcp_done 1 if wait_for_pattern and not machine.getGuestPropertyValue(wait_for_pattern): log.debug("waiting for pattern:%s:", wait_for_pattern) return None _total_slots = machine.getGuestPropertyValue('/VirtualBox/GuestInfo/Net/Count') #upon dhcp the net count drops to 0 and it takes some seconds for it to be set again if not _total_slots: log.debug("waiting for net count:%s:", wait_for_pattern) return None try: total_slots = int(_total_slots) for i in range(total_slots): try: address = machine.getGuestPropertyValue('/VirtualBox/GuestInfo/Net/{0}/V4/IP'.format(i)) if address: ip_addresses.append(address) except Exception as e: log.debug(e.message) except ValueError as e: log.debug(e.message) return None log.debug("returning ip_addresses:%s:", ip_addresses) return ip_addresses
TODO distinguish between private and public addresses A valid machine_name or a machine is needed to make this work! !!! Guest prerequisite: GuestAddition !!! Thanks to Shrikant Havale for the StackOverflow answer http://stackoverflow.com/a/29335390 More information on guest properties: https://www.virtualbox.org/manual/ch04.html#guestadd-guestprops @param machine_name: @type machine_name: str @param machine: @type machine: IMachine @return: All the IPv4 addresses we could get @rtype: str[]
def seq_2_StdStringVector(seq, vec=None): """Converts a python sequence<str> object to a :class:`tango.StdStringVector` :param seq: the sequence of strings :type seq: sequence<:py:obj:`str`> :param vec: (optional, default is None) an :class:`tango.StdStringVector` to be filled. If None is given, a new :class:`tango.StdStringVector` is created :return: a :class:`tango.StdStringVector` filled with the same contents as seq :rtype: :class:`tango.StdStringVector` """ if vec is None: if isinstance(seq, StdStringVector): return seq vec = StdStringVector() if not isinstance(vec, StdStringVector): raise TypeError('vec must be a tango.StdStringVector') for e in seq: vec.append(str(e)) return vec
Converts a python sequence<str> object to a :class:`tango.StdStringVector` :param seq: the sequence of strings :type seq: sequence<:py:obj:`str`> :param vec: (optional, default is None) an :class:`tango.StdStringVector` to be filled. If None is given, a new :class:`tango.StdStringVector` is created :return: a :class:`tango.StdStringVector` filled with the same contents as seq :rtype: :class:`tango.StdStringVector`
def get_molo_comments(parser, token): """ Get a limited set of comments for a given object. Defaults to a limit of 5. Setting the limit to -1 disables limiting. Set the amount of comments to usage: {% get_molo_comments for object as variable_name %} {% get_molo_comments for object as variable_name limit amount %} {% get_molo_comments for object as variable_name limit amount child_limit amount %} # noqa """ keywords = token.contents.split() if len(keywords) != 5 and len(keywords) != 7 and len(keywords) != 9: raise template.TemplateSyntaxError( "'%s' tag takes exactly 2,4 or 6 arguments" % (keywords[0],)) if keywords[1] != 'for': raise template.TemplateSyntaxError( "first argument to '%s' tag must be 'for'" % (keywords[0],)) if keywords[3] != 'as': raise template.TemplateSyntaxError( "first argument to '%s' tag must be 'as'" % (keywords[0],)) if len(keywords) > 5 and keywords[5] != 'limit': raise template.TemplateSyntaxError( "third argument to '%s' tag must be 'limit'" % (keywords[0],)) if len(keywords) == 7: return GetMoloCommentsNode(keywords[2], keywords[4], keywords[6]) if len(keywords) > 7 and keywords[7] != 'child_limit': raise template.TemplateSyntaxError( "third argument to '%s' tag must be 'child_limit'" % (keywords[0],)) if len(keywords) > 7: return GetMoloCommentsNode(keywords[2], keywords[4], keywords[6], keywords[8]) return GetMoloCommentsNode(keywords[2], keywords[4])
Get a limited set of comments for a given object. Defaults to a limit of 5. Setting the limit to -1 disables limiting. Set the amount of comments to usage: {% get_molo_comments for object as variable_name %} {% get_molo_comments for object as variable_name limit amount %} {% get_molo_comments for object as variable_name limit amount child_limit amount %} # noqa
def user(self, login=None): """Returns a User object for the specified login name if provided. If no login name is provided, this will return a User object for the authenticated user. :param str login: (optional) :returns: :class:`User <github3.users.User>` """ if login: url = self._build_url('users', login) else: url = self._build_url('user') json = self._json(self._get(url), 200) return User(json, self._session) if json else None
Returns a User object for the specified login name if provided. If no login name is provided, this will return a User object for the authenticated user. :param str login: (optional) :returns: :class:`User <github3.users.User>`
def dump(self): """ Dump (return) a dict representation of the GameObject. This is a Python dict and is NOT serialized. NB: the answer (a DigitWord object) and the mode (a GameMode object) are converted to python objects of a list and dict respectively. :return: python <dict> of the GameObject as detailed above. """ return { "key": self._key, "status": self._status, "ttl": self._ttl, "answer": self._answer.word, "mode": self._mode.dump(), "guesses_made": self._guesses_made }
Dump (return) a dict representation of the GameObject. This is a Python dict and is NOT serialized. NB: the answer (a DigitWord object) and the mode (a GameMode object) are converted to python objects of a list and dict respectively. :return: python <dict> of the GameObject as detailed above.
def get_surface_as_bytes(self, order=None): """Returns the surface area as a bytes encoded RGB image buffer. Subclass should override if there is a more efficient conversion than from generating a numpy array first. """ arr8 = self.get_surface_as_array(order=order) return arr8.tobytes(order='C')
Returns the surface area as a bytes encoded RGB image buffer. Subclass should override if there is a more efficient conversion than from generating a numpy array first.
def keyword(self) -> Tuple[Optional[str], str]: """Parse a YANG statement keyword. Raises: EndOfInput: If past the end of input. UnexpectedInput: If no syntactically correct keyword is found. """ i1 = self.yang_identifier() if self.peek() == ":": self.offset += 1 i2 = self.yang_identifier() return (i1, i2) return (None, i1)
Parse a YANG statement keyword. Raises: EndOfInput: If past the end of input. UnexpectedInput: If no syntactically correct keyword is found.
def get_episodes(self, series_id, **kwargs): """All episodes for a given series. Paginated with 100 results per page. .. warning:: authorization token required The following search arguments currently supported: * airedSeason * airedEpisode * imdbId * dvdSeason * dvdEpisode * absoluteNumber * page :param str series_id: id of series as found on thetvdb :parm kwargs: keyword args to search/filter episodes by (optional) :returns: series episode records :rtype: list """ params = {'page': 1} for arg, val in six.iteritems(kwargs): if arg in EPISODES_BY: params[arg] = val return self._exec_request( 'series', path_args=[series_id, 'episodes', 'query'], params=params)['data']
All episodes for a given series. Paginated with 100 results per page. .. warning:: authorization token required The following search arguments currently supported: * airedSeason * airedEpisode * imdbId * dvdSeason * dvdEpisode * absoluteNumber * page :param str series_id: id of series as found on thetvdb :parm kwargs: keyword args to search/filter episodes by (optional) :returns: series episode records :rtype: list
def _fourier(self): """ 1 side Fourier transform and scale by dt all waveforms in catalog """ freq_bin_upper = 2000 freq_bin_lower = 40 fs = self._metadata['fs'] Y_transformed = {} for key in self.Y_dict.keys(): # normalize by fs, bins have units strain/Hz fs = self._metadata["fs"] Y_transformed[key] = (1./fs)*np.fft.fft(self.Y_dict[key])[freq_bin_lower:freq_bin_upper] self.Y_transformed = Y_transformed # add in transform metadata self._metadata["dF"] = 1./self._metadata["T"] # because we are in the fourier domain, we will need the psd self.psd = load_psd()[freq_bin_lower:freq_bin_upper] dF = self._metadata['dF'] self.sigma = convert_psd_to_sigma(self.psd, dF)
1 side Fourier transform and scale by dt all waveforms in catalog
def callback(self, request, **kwargs): """ Called from the Service when the user accept to activate it """ try: client = self.get_evernote_client() # finally we save the user auth token # As we already stored the object ServicesActivated # from the UserServiceCreateView now we update the same # object to the database so : # 1) we get the previous object us = UserService.objects.get(user=request.user, name=ServicesActivated.objects.get(name='ServiceEvernote')) # 2) then get the token us.token = client.get_access_token(request.session['oauth_token'], request.session['oauth_token_secret'], request.GET.get('oauth_verifier', '')) # 3) and save everything us.save() except KeyError: return '/' return 'evernote/callback.html'
Called from the Service when the user accept to activate it
def bresenham(x1, y1, x2, y2): """ Return a list of points in a bresenham line. Implementation hastily copied from RogueBasin. Returns: List[Tuple[int, int]]: A list of (x, y) points, including both the start and end-points. """ points = [] issteep = abs(y2-y1) > abs(x2-x1) if issteep: x1, y1 = y1, x1 x2, y2 = y2, x2 rev = False if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 rev = True deltax = x2 - x1 deltay = abs(y2-y1) error = int(deltax / 2) y = y1 ystep = None if y1 < y2: ystep = 1 else: ystep = -1 for x in range(x1, x2 + 1): if issteep: points.append((y, x)) else: points.append((x, y)) error -= deltay if error < 0: y += ystep error += deltax # Reverse the list if the coordinates were reversed if rev: points.reverse() return points
Return a list of points in a bresenham line. Implementation hastily copied from RogueBasin. Returns: List[Tuple[int, int]]: A list of (x, y) points, including both the start and end-points.
def upload_file(self, path=None, stream=None, name=None, **kwargs): """ Uploads file to WeedFS I takes either path or stream and name and upload it to WeedFS server. Returns fid of the uploaded file. :param string path: :param string stream: :param string name: :rtype: string or None """ params = "&".join(["%s=%s" % (k, v) for k, v in kwargs.items()]) url = "http://{master_addr}:{master_port}/dir/assign{params}".format( master_addr=self.master_addr, master_port=self.master_port, params="?" + params if params else '' ) data = json.loads(self.conn.get_data(url)) if data.get("error") is not None: return None post_url = "http://{url}/{fid}".format( url=data['publicUrl' if self.use_public_url else 'url'], fid=data['fid'] ) if path is not None: filename = os.path.basename(path) with open(path, "rb") as file_stream: res = self.conn.post_file(post_url, filename, file_stream) # we have file like object and filename elif stream is not None and name is not None: res = self.conn.post_file(post_url, name, stream) else: raise ValueError( "If `path` is None then *both* `stream` and `name` must not" " be None ") response_data = json.loads(res) if "size" in response_data: return data.get('fid') return None
Uploads file to WeedFS I takes either path or stream and name and upload it to WeedFS server. Returns fid of the uploaded file. :param string path: :param string stream: :param string name: :rtype: string or None
def _lemmatise_roman_numerals(self, form, pos=False, get_lemma_object=False): """ Lemmatise un mot f si c'est un nombre romain :param form: Mot à lemmatiser :param pos: Récupère la POS :param get_lemma_object: Retrieve Lemma object instead of string representation of lemma """ if estRomain(form): _lemma = Lemme( cle=form, graphie_accentuee=form, graphie=form, parent=self, origin=0, pos="a", modele=self.modele("inv") ) yield Lemmatiseur.format_result( form=form, lemma=_lemma, with_pos=pos, raw_obj=get_lemma_object ) if form.upper() != form: yield from self._lemmatise_roman_numerals(form.upper(), pos=pos, get_lemma_object=get_lemma_object)
Lemmatise un mot f si c'est un nombre romain :param form: Mot à lemmatiser :param pos: Récupère la POS :param get_lemma_object: Retrieve Lemma object instead of string representation of lemma
def configs_in(src_dir): """Enumerate all configs in src_dir""" for filename in files_in_dir(src_dir, 'json'): with open(os.path.join(src_dir, filename), 'rb') as in_f: yield json.load(in_f)
Enumerate all configs in src_dir
def compute_bbox_with_margins(margin, x, y): 'Helper function to compute bounding box for the plot' # set margins pos = np.asarray((x, y)) minxy, maxxy = pos.min(axis=1), pos.max(axis=1) xy1 = minxy - margin*(maxxy - minxy) xy2 = maxxy + margin*(maxxy - minxy) return tuple(xy1), tuple(xy2)
Helper function to compute bounding box for the plot
def solve(self, assumptions=[]): """ Solve internal formula. """ if self.minicard: if self.use_timer: start_time = time.clock() # saving default SIGINT handler def_sigint_handler = signal.signal(signal.SIGINT, signal.SIG_DFL) self.status = pysolvers.minicard_solve(self.minicard, assumptions) # recovering default SIGINT handler def_sigint_handler = signal.signal(signal.SIGINT, def_sigint_handler) if self.use_timer: self.call_time = time.clock() - start_time self.accu_time += self.call_time return self.status
Solve internal formula.
def supported_tags(self, interpreter=None, force_manylinux=True): """Returns a list of supported PEP425 tags for the current platform.""" if interpreter and not self.is_extended: # N.B. If we don't get an extended platform specifier, we generate # all possible ABI permutations to mimic earlier pex version # behavior and make cross-platform resolution more intuitive. return _get_supported_for_any_abi( platform=self.platform, impl=interpreter.identity.abbr_impl, version=interpreter.identity.impl_ver, force_manylinux=force_manylinux ) else: return _get_supported( platform=self.platform, impl=self.impl, version=self.version, abi=self.abi, force_manylinux=force_manylinux )
Returns a list of supported PEP425 tags for the current platform.
def unqueue(self, timeout=10, should_wait=False): """Unqueue all the received ensime responses for a given file.""" start, now = time.time(), time.time() wait = self.queue.empty() and should_wait while (not self.queue.empty() or wait) and (now - start) < timeout: if wait and self.queue.empty(): time.sleep(0.25) now = time.time() else: result = self.queue.get(False) self.log.debug('unqueue: result received\n%s', result) if result and result != "nil": wait = None # Restart timeout start, now = time.time(), time.time() _json = json.loads(result) # Watch out, it may not have callId call_id = _json.get("callId") if _json["payload"]: self.handle_incoming_response(call_id, _json["payload"]) else: self.log.debug('unqueue: nil or None received') if (now - start) >= timeout: self.log.warning('unqueue: no reply from server for %ss', timeout)
Unqueue all the received ensime responses for a given file.
def _check_all_devices_in_sync(self): '''Wait until all devices have failover status of 'In Sync'. :raises: UnexpectedClusterState ''' if len(self._get_devices_by_failover_status('In Sync')) != \ len(self.devices): msg = "Expected all devices in group to have 'In Sync' status." raise UnexpectedDeviceGroupState(msg)
Wait until all devices have failover status of 'In Sync'. :raises: UnexpectedClusterState
def get_top_sentences(self): ''' getter ''' if isinstance(self.__top_sentences, int) is False: raise TypeError("The type of __top_sentences must be int.") return self.__top_sentences
getter
def create_fork(self, repo): """ :calls: `POST /repos/:owner/:repo/forks <http://developer.github.com/v3/repos/forks>`_ :param repo: :class:`github.Repository.Repository` :rtype: :class:`github.Repository.Repository` """ assert isinstance(repo, github.Repository.Repository), repo url_parameters = { "org": self.login, } headers, data = self._requester.requestJsonAndCheck( "POST", "/repos/" + repo.owner.login + "/" + repo.name + "/forks", parameters=url_parameters ) return github.Repository.Repository(self._requester, headers, data, completed=True)
:calls: `POST /repos/:owner/:repo/forks <http://developer.github.com/v3/repos/forks>`_ :param repo: :class:`github.Repository.Repository` :rtype: :class:`github.Repository.Repository`
def thresholdBlocks(self, blocks, recall_weight=1.5): # pragma: nocover """ Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data. Arguments: blocks -- Sequence of tuples of records, where each tuple is a set of records covered by a blocking predicate recall_weight -- Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2. """ candidate_records = itertools.chain.from_iterable(self._blockedPairs(blocks)) probability = core.scoreDuplicates(candidate_records, self.data_model, self.classifier, self.num_cores)['score'] probability = probability.copy() probability.sort() probability = probability[::-1] expected_dupes = numpy.cumsum(probability) recall = expected_dupes / expected_dupes[-1] precision = expected_dupes / numpy.arange(1, len(expected_dupes) + 1) score = recall * precision / (recall + recall_weight ** 2 * precision) i = numpy.argmax(score) logger.info('Maximum expected recall and precision') logger.info('recall: %2.3f', recall[i]) logger.info('precision: %2.3f', precision[i]) logger.info('With threshold: %2.3f', probability[i]) return probability[i]
Returns the threshold that maximizes the expected F score, a weighted average of precision and recall for a sample of blocked data. Arguments: blocks -- Sequence of tuples of records, where each tuple is a set of records covered by a blocking predicate recall_weight -- Sets the tradeoff between precision and recall. I.e. if you care twice as much about recall as you do precision, set recall_weight to 2.
def aggregate(self, query: Optional[dict] = None, group: Optional[dict] = None, order_by: Optional[tuple] = None) -> List[IModel]: """Get aggregated results : param query: Rulez based query : param group: Grouping structure : param order_by: Tuple of ``(field, order)`` where ``order`` is ``'asc'`` or ``'desc'`` : todo: Grouping structure need to be documented """ raise NotImplementedError
Get aggregated results : param query: Rulez based query : param group: Grouping structure : param order_by: Tuple of ``(field, order)`` where ``order`` is ``'asc'`` or ``'desc'`` : todo: Grouping structure need to be documented
def get_season_stats(self, season_key): """ Calling Season Stats API. Arg: season_key: key of the season Return: json data """ season_stats_url = self.api_path + "season/" + season_key + "/stats/" response = self.get_response(season_stats_url) return response
Calling Season Stats API. Arg: season_key: key of the season Return: json data
def import_generators(self, session, debug=False): """ Imports renewable (res) and conventional (conv) generators Args: session : sqlalchemy.orm.session.Session Database session debug: If True, information is printed during process Notes: Connection of generators is done later on in NetworkDing0's method connect_generators() """ def import_res_generators(): """Imports renewable (res) generators""" # build query generators_sqla = session.query( self.orm['orm_re_generators'].columns.id, self.orm['orm_re_generators'].columns.subst_id, self.orm['orm_re_generators'].columns.la_id, self.orm['orm_re_generators'].columns.mvlv_subst_id, self.orm['orm_re_generators'].columns.electrical_capacity, self.orm['orm_re_generators'].columns.generation_type, self.orm['orm_re_generators'].columns.generation_subtype, self.orm['orm_re_generators'].columns.voltage_level, self.orm['orm_re_generators'].columns.w_id, func.ST_AsText(func.ST_Transform( self.orm['orm_re_generators'].columns.rea_geom_new, srid)).label('geom_new'), func.ST_AsText(func.ST_Transform( self.orm['orm_re_generators'].columns.geom, srid)).label('geom') ). \ filter( self.orm['orm_re_generators'].columns.subst_id.in_(list(mv_grid_districts_dict))). \ filter(self.orm['orm_re_generators'].columns.voltage_level.in_([4, 5, 6, 7])). \ filter(self.orm['version_condition_re']) # read data from db generators = pd.read_sql_query(generators_sqla.statement, session.bind, index_col='id') # define generators with unknown subtype as 'unknown' generators.loc[generators[ 'generation_subtype'].isnull(), 'generation_subtype'] = 'unknown' for id_db, row in generators.iterrows(): # treat generators' geom: # use geom_new (relocated genos from data processing) # otherwise use original geom from EnergyMap if row['geom_new']: geo_data = wkt_loads(row['geom_new']) elif not row['geom_new']: geo_data = wkt_loads(row['geom']) logger.warning( 'Generator {} has no geom_new entry,' 'EnergyMap\'s geom entry will be used.'.format( id_db)) # if no geom is available at all, skip generator elif not row['geom']: #geo_data = logger.error('Generator {} has no geom entry either' 'and will be skipped.'.format(id_db)) continue # look up MV grid mv_grid_district_id = row['subst_id'] mv_grid = mv_grid_districts_dict[mv_grid_district_id].mv_grid # create generator object if row['generation_type'] in ['solar', 'wind']: generator = GeneratorFluctuatingDing0( id_db=id_db, mv_grid=mv_grid, capacity=row['electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level']), weather_cell_id=row['w_id']) else: generator = GeneratorDing0( id_db=id_db, mv_grid=mv_grid, capacity=row['electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level'])) # MV generators if generator.v_level in [4, 5]: generator.geo_data = geo_data mv_grid.add_generator(generator) # LV generators elif generator.v_level in [6, 7]: # look up MV-LV substation id mvlv_subst_id = row['mvlv_subst_id'] # if there's a LVGD id if mvlv_subst_id and not isnan(mvlv_subst_id): # assume that given LA exists try: # get LVGD lv_station = lv_stations_dict[mvlv_subst_id] lv_grid_district = lv_station.grid.grid_district generator.lv_grid = lv_station.grid # set geom (use original from db) generator.geo_data = geo_data # if LA/LVGD does not exist, choose random LVGD and move generator to station of LVGD # this occurs due to exclusion of LA with peak load < 1kW except: lv_grid_district = random.choice(list(lv_grid_districts_dict.values())) generator.lv_grid = lv_grid_district.lv_grid generator.geo_data = lv_grid_district.lv_grid.station().geo_data logger.warning('Generator {} cannot be assigned to ' 'non-existent LV Grid District and was ' 'allocated to a random LV Grid District ({}).'.format( repr(generator), repr(lv_grid_district))) pass else: lv_grid_district = random.choice(list(lv_grid_districts_dict.values())) generator.lv_grid = lv_grid_district.lv_grid generator.geo_data = lv_grid_district.lv_grid.station().geo_data logger.warning('Generator {} has no la_id and was ' 'assigned to a random LV Grid District ({}).'.format( repr(generator), repr(lv_grid_district))) generator.lv_load_area = lv_grid_district.lv_load_area lv_grid_district.lv_grid.add_generator(generator) def import_conv_generators(): """Imports conventional (conv) generators""" # build query generators_sqla = session.query( self.orm['orm_conv_generators'].columns.id, self.orm['orm_conv_generators'].columns.subst_id, self.orm['orm_conv_generators'].columns.name, self.orm['orm_conv_generators'].columns.capacity, self.orm['orm_conv_generators'].columns.fuel, self.orm['orm_conv_generators'].columns.voltage_level, func.ST_AsText(func.ST_Transform( self.orm['orm_conv_generators'].columns.geom, srid)).label('geom')). \ filter( self.orm['orm_conv_generators'].columns.subst_id.in_(list(mv_grid_districts_dict))). \ filter(self.orm['orm_conv_generators'].columns.voltage_level.in_([4, 5, 6])). \ filter(self.orm['version_condition_conv']) # read data from db generators = pd.read_sql_query(generators_sqla.statement, session.bind, index_col='id') for id_db, row in generators.iterrows(): # look up MV grid mv_grid_district_id = row['subst_id'] mv_grid = mv_grid_districts_dict[mv_grid_district_id].mv_grid # create generator object generator = GeneratorDing0(id_db=id_db, name=row['name'], geo_data=wkt_loads(row['geom']), mv_grid=mv_grid, capacity=row['capacity'], type=row['fuel'], subtype='unknown', v_level=int(row['voltage_level'])) # add generators to graph if generator.v_level in [4, 5]: mv_grid.add_generator(generator) # there's only one conv. geno with v_level=6 -> connect to MV grid elif generator.v_level in [6]: generator.v_level = 5 mv_grid.add_generator(generator) # get ding0s' standard CRS (SRID) srid = str(int(cfg_ding0.get('geo', 'srid'))) # get predefined random seed and initialize random generator seed = int(cfg_ding0.get('random', 'seed')) random.seed(a=seed) # build dicts to map MV grid district and Load Area ids to related objects mv_grid_districts_dict,\ lv_load_areas_dict,\ lv_grid_districts_dict,\ lv_stations_dict = self.get_mvgd_lvla_lvgd_obj_from_id() # import renewable generators import_res_generators() # import conventional generators import_conv_generators() logger.info('=====> Generators imported')
Imports renewable (res) and conventional (conv) generators Args: session : sqlalchemy.orm.session.Session Database session debug: If True, information is printed during process Notes: Connection of generators is done later on in NetworkDing0's method connect_generators()
def plot_mixture(mixture, i=0, j=1, center_style=dict(s=0.15), cmap='nipy_spectral', cutoff=0.0, ellipse_style=dict(alpha=0.3), solid_edge=True, visualize_weights=False): '''Plot the (Gaussian) components of the ``mixture`` density as one-sigma ellipses in the ``(i,j)`` plane. :param center_style: If a non-empty ``dict``, plot mean value with the style passed to ``scatter``. :param cmap: The color map to which components are mapped in order to choose their face color. It is unaffected by the ``cutoff``. The meaning depends on ``visualize_weights``. :param cutoff: Ignore components whose weight is below the ``cut off``. :param ellipse_style: Passed on to define the properties of the ``Ellipse``. :param solid_edge: Draw the edge of the ellipse as solid opaque line. :param visualize_weights: Colorize the components according to their weights if ``True``. One can do `plt.colorbar()` after this function and the bar allows to read off the weights. If ``False``, coloring is based on the component index and the total number of components. This option makes it easier to track components by assigning them the same color in subsequent calls to this function. ''' # imports inside the function because then "ImportError" is raised on # systems without 'matplotlib' only when 'plot_mixture' is called import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse from matplotlib.cm import get_cmap assert i >= 0 and j >= 0, 'Invalid submatrix specification (%d, %d)' % (i, j) assert i != j, 'Identical dimension given: i=j=%d' % i assert mixture.dim >= 2, '1D plot not supported' cmap = get_cmap(name=cmap) if visualize_weights: # colors according to weight renormalized_component_weights = np.array(mixture.weights) colors = [cmap(k) for k in renormalized_component_weights] else: # colors according to index colors = [cmap(k) for k in np.linspace(0, _max_color, len(mixture.components))] mask = mixture.weights >= cutoff # plot component means means = np.array([c.mu for c in mixture.components]) x_values = means.T[i] y_values = means.T[j] for k, w in enumerate(mixture.weights): # skip components by hand to retain consistent coloring if w < cutoff: continue cov = mixture.components[k].sigma submatrix = np.array([[cov[i,i], cov[i,j]], \ [cov[j,i], cov[j,j]]]) # for idea, check # 'Combining error ellipses' by John E. Davis correlation = np.array([[1.0, cov[i,j] / np.sqrt(cov[i,i] * cov[j,j])], [0.0, 1.0]]) correlation[1,0] = correlation[0,1] assert abs(correlation[0,1]) <= 1, 'Invalid component %d with correlation %g' % (k, correlation[0, 1]) ew, ev = np.linalg.eigh(submatrix) assert ew.min() > 0, 'Nonpositive eigenvalue in component %d: %s' % (k, ew) # rotation angle of major axis with x-axis if submatrix[0,0] == submatrix[1,1]: theta = np.sign(submatrix[0,1]) * np.pi / 4. else: theta = 0.5 * np.arctan( 2 * submatrix[0,1] / (submatrix[1,1] - submatrix[0,0])) # put larger eigen value on y'-axis height = np.sqrt(ew.max()) width = np.sqrt(ew.min()) # but change orientation of coordinates if the other is larger if submatrix[0,0] > submatrix[1,1]: height = np.sqrt(ew.min()) width = np.sqrt(ew.max()) # change sign to rotate in right direction angle = -theta * 180 / np.pi # copy keywords but override some ellipse_style_clone = dict(ellipse_style) # overwrite facecolor ellipse_style_clone['facecolor'] = colors[k] ax = plt.gca() # need full width/height e = Ellipse(xy=(x_values[k], y_values[k]), width=2*width, height=2*height, angle=angle, **ellipse_style_clone) ax.add_patch(e) if solid_edge: ellipse_style_clone['facecolor'] = 'none' ellipse_style_clone['edgecolor'] = colors[k] ellipse_style_clone['alpha'] = 1 ax.add_patch(Ellipse(xy=(x_values[k], y_values[k]), width=2*width, height=2*height, angle=angle, **ellipse_style_clone)) if center_style: plt.scatter(x_values[mask], y_values[mask], **center_style) if visualize_weights: # to enable plt.colorbar() mappable = plt.gci() mappable.set_array(mixture.weights) mappable.set_cmap(cmap)
Plot the (Gaussian) components of the ``mixture`` density as one-sigma ellipses in the ``(i,j)`` plane. :param center_style: If a non-empty ``dict``, plot mean value with the style passed to ``scatter``. :param cmap: The color map to which components are mapped in order to choose their face color. It is unaffected by the ``cutoff``. The meaning depends on ``visualize_weights``. :param cutoff: Ignore components whose weight is below the ``cut off``. :param ellipse_style: Passed on to define the properties of the ``Ellipse``. :param solid_edge: Draw the edge of the ellipse as solid opaque line. :param visualize_weights: Colorize the components according to their weights if ``True``. One can do `plt.colorbar()` after this function and the bar allows to read off the weights. If ``False``, coloring is based on the component index and the total number of components. This option makes it easier to track components by assigning them the same color in subsequent calls to this function.
def addToLayout(self, analysis, position=None): """ Adds the analysis passed in to the worksheet's layout """ # TODO Redux layout = self.getLayout() container_uid = self.get_container_for(analysis) if IRequestAnalysis.providedBy(analysis) and \ not IDuplicateAnalysis.providedBy(analysis): container_uids = map(lambda slot: slot['container_uid'], layout) if container_uid in container_uids: position = [int(slot['position']) for slot in layout if slot['container_uid'] == container_uid][0] elif not position: used_positions = [0, ] + [int(slot['position']) for slot in layout] position = [pos for pos in range(1, max(used_positions) + 2) if pos not in used_positions][0] an_type = self.get_analysis_type(analysis) self.setLayout(layout + [{'position': position, 'type': an_type, 'container_uid': container_uid, 'analysis_uid': api.get_uid(analysis)}, ])
Adds the analysis passed in to the worksheet's layout
def reset(name, soft=False, call=None): ''' To reset a VM using its name .. note:: If ``soft=True`` then issues a command to the guest operating system asking it to perform a reboot. Otherwise hypervisor will terminate VM and start it again. Default is soft=False For ``soft=True`` vmtools should be installed on guest system. CLI Example: .. code-block:: bash salt-cloud -a reset vmname salt-cloud -a reset vmname soft=True ''' if call != 'action': raise SaltCloudSystemExit( 'The reset action must be called with ' '-a or --action.' ) vm_properties = [ "name", "summary.runtime.powerState" ] vm_list = salt.utils.vmware.get_mors_with_properties(_get_si(), vim.VirtualMachine, vm_properties) for vm in vm_list: if vm["name"] == name: if vm["summary.runtime.powerState"] == "suspended" or vm["summary.runtime.powerState"] == "poweredOff": ret = 'cannot reset in suspended/powered off state' log.info('VM %s %s', name, ret) return ret try: log.info('Resetting VM %s', name) if soft: vm["object"].RebootGuest() else: task = vm["object"].ResetVM_Task() salt.utils.vmware.wait_for_task(task, name, 'reset') except Exception as exc: log.error( 'Error while resetting VM %s: %s', name, exc, # Show the traceback if the debug logging level is enabled exc_info_on_loglevel=logging.DEBUG ) return 'failed to reset' return 'reset'
To reset a VM using its name .. note:: If ``soft=True`` then issues a command to the guest operating system asking it to perform a reboot. Otherwise hypervisor will terminate VM and start it again. Default is soft=False For ``soft=True`` vmtools should be installed on guest system. CLI Example: .. code-block:: bash salt-cloud -a reset vmname salt-cloud -a reset vmname soft=True
def stopped(name, connection=None, username=None, password=None): ''' Stops a VM by shutting it down nicely. .. versionadded:: 2016.3.0 :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: yaml domain_name: virt.stopped ''' return _virt_call(name, 'shutdown', 'stopped', "Machine has been shut down", connection=connection, username=username, password=password)
Stops a VM by shutting it down nicely. .. versionadded:: 2016.3.0 :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: yaml domain_name: virt.stopped
def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) _create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, fig)
Create a new figure manager instance
def on_service_arrival(self, svc_ref): """ Called when a service has been registered in the framework :param svc_ref: A service reference """ with self._lock: new_ranking = svc_ref.get_property(SERVICE_RANKING) if self._current_ranking is not None: if new_ranking > self._current_ranking: # New service with better ranking: use it self._pending_ref = svc_ref old_ref = self.reference old_value = self._value # Clean up like for a departure self._current_ranking = None self._value = None self.reference = None # Unbind (new binding will be done afterwards) self._ipopo_instance.unbind(self, old_value, old_ref) else: # No ranking yet: inject the service self.reference = svc_ref self._value = self._context.get_service(svc_ref) self._current_ranking = new_ranking self._pending_ref = None self._ipopo_instance.bind(self, self._value, self.reference)
Called when a service has been registered in the framework :param svc_ref: A service reference
def sg_expand_dims(tensor, opt): r"""Inserts a new axis. See tf.expand_dims() in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : Dimension to expand. Default is -1. name: If provided, it replaces current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=-1) return tf.expand_dims(tensor, opt.axis, name=opt.name)
r"""Inserts a new axis. See tf.expand_dims() in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : Dimension to expand. Default is -1. name: If provided, it replaces current tensor's name. Returns: A `Tensor`.
async def purgeQueues(self, *args, **kwargs): """ Purge the SQS queues This method is only for debugging the ec2-manager This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["purgeQueues"], *args, **kwargs)
Purge the SQS queues This method is only for debugging the ec2-manager This method is ``experimental``
def updateVersions(region="us-east-1", table="credential-store"): ''' do a full-table scan of the credential-store, and update the version format of every credential if it is an integer ''' dynamodb = boto3.resource('dynamodb', region_name=region) secrets = dynamodb.Table(table) response = secrets.scan(ProjectionExpression="#N, version, #K, contents, hmac", ExpressionAttributeNames={"#N": "name", "#K": "key"}) items = response["Items"] for old_item in items: if isInt(old_item['version']): new_item = copy.copy(old_item) new_item['version'] = credstash.paddedInt(new_item['version']) if new_item['version'] != old_item['version']: secrets.put_item(Item=new_item) secrets.delete_item(Key={'name': old_item['name'], 'version': old_item['version']}) else: print "Skipping item: %s, %s" % (old_item['name'], old_item['version'])
do a full-table scan of the credential-store, and update the version format of every credential if it is an integer
def extract_params(raw): """Extract parameters and return them as a list of 2-tuples. Will successfully extract parameters from urlencoded query strings, dicts, or lists of 2-tuples. Empty strings/dicts/lists will return an empty list of parameters. Any other input will result in a return value of None. """ if isinstance(raw, (bytes, unicode_type)): try: params = urldecode(raw) except ValueError: params = None elif hasattr(raw, '__iter__'): try: dict(raw) except ValueError: params = None except TypeError: params = None else: params = list(raw.items() if isinstance(raw, dict) else raw) params = decode_params_utf8(params) else: params = None return params
Extract parameters and return them as a list of 2-tuples. Will successfully extract parameters from urlencoded query strings, dicts, or lists of 2-tuples. Empty strings/dicts/lists will return an empty list of parameters. Any other input will result in a return value of None.
def get_ticket_results(mgr, ticket_id, update_count=1): """Get output about a ticket. :param integer id: the ticket ID :param integer update_count: number of entries to retrieve from ticket :returns: a KeyValue table containing the details of the ticket """ ticket = mgr.get_ticket(ticket_id) table = formatting.KeyValueTable(['name', 'value']) table.align['name'] = 'r' table.align['value'] = 'l' table.add_row(['id', ticket['id']]) table.add_row(['title', ticket['title']]) table.add_row(['priority', PRIORITY_MAP[ticket.get('priority', 0)]]) if ticket.get('assignedUser'): user = ticket['assignedUser'] table.add_row([ 'user', "%s %s" % (user.get('firstName'), user.get('lastName')), ]) table.add_row(['status', ticket['status']['name']]) table.add_row(['created', ticket.get('createDate')]) table.add_row(['edited', ticket.get('lastEditDate')]) # Only show up to the specified update count updates = ticket.get('updates', []) count = min(len(updates), update_count) count_offset = len(updates) - count + 1 # Display as one-indexed for i, update in enumerate(updates[-count:]): wrapped_entry = "" # Add user details (fields are different between employee and users) editor = update.get('editor') if editor: if editor.get('displayName'): wrapped_entry += "By %s (Employee)\n" % (editor['displayName']) if editor.get('firstName'): wrapped_entry += "By %s %s\n" % (editor.get('firstName'), editor.get('lastName')) # NOTE(kmcdonald): Windows new-line characters need to be stripped out wrapped_entry += click.wrap_text(update['entry'].replace('\r', '')) table.add_row(['update %s' % (count_offset + i,), wrapped_entry]) return table
Get output about a ticket. :param integer id: the ticket ID :param integer update_count: number of entries to retrieve from ticket :returns: a KeyValue table containing the details of the ticket
def parse_methodcall(self, tup_tree): """ :: <!ELEMENT METHODCALL ((LOCALCLASSPATH | LOCALINSTANCEPATH), PARAMVALUE*)> <!ATTLIST METHODCALL %CIMName;> """ self.check_node(tup_tree, 'METHODCALL', ('NAME',), (), ('LOCALCLASSPATH', 'LOCALINSTANCEPATH', 'PARAMVALUE')) path = self.list_of_matching(tup_tree, ('LOCALCLASSPATH', 'LOCALINSTANCEPATH')) if not path: raise CIMXMLParseError( _format("Element {0!A} missing a required child element " "'LOCALCLASSPATH' or 'LOCALINSTANCEPATH'", name(tup_tree)), conn_id=self.conn_id) if len(path) > 1: raise CIMXMLParseError( _format("Element {0!A} has too many child elements {1!A} " "(allowed is one of 'LOCALCLASSPATH' or " "'LOCALINSTANCEPATH')", name(tup_tree), path), conn_id=self.conn_id) path = path[0] params = self.list_of_matching(tup_tree, ('PARAMVALUE',)) return (name(tup_tree), attrs(tup_tree), path, params)
:: <!ELEMENT METHODCALL ((LOCALCLASSPATH | LOCALINSTANCEPATH), PARAMVALUE*)> <!ATTLIST METHODCALL %CIMName;>
def change_password(self, id_user, user_current_password, password): """Change password of User from by the identifier. :param id_user: Identifier of the User. Integer value and greater than zero. :param user_current_password: Senha atual do usuário. :param password: Nova Senha do usuário. :return: None :raise UsuarioNaoExisteError: User not registered. :raise InvalidParameterError: The identifier of User is null and invalid. :raise DataBaseError: Networkapi failed to access the database. :raise XMLError: Networkapi failed to generate the XML response. """ if not is_valid_int_param(id_user): raise InvalidParameterError( u'The identifier of User is invalid or was not informed.') if password is None or password == "": raise InvalidParameterError( u'A nova senha do usuário é inválida ou não foi informada') user_map = dict() user_map['user_id'] = id_user user_map['password'] = password code, xml = self.submit( {'user': user_map}, 'POST', 'user-change-pass/') return self.response(code, xml)
Change password of User from by the identifier. :param id_user: Identifier of the User. Integer value and greater than zero. :param user_current_password: Senha atual do usuário. :param password: Nova Senha do usuário. :return: None :raise UsuarioNaoExisteError: User not registered. :raise InvalidParameterError: The identifier of User is null and invalid. :raise DataBaseError: Networkapi failed to access the database. :raise XMLError: Networkapi failed to generate the XML response.
def text(self): """ String formed by concatenating the text of each run in the paragraph. Tabs and line breaks in the XML are mapped to ``\\t`` and ``\\n`` characters respectively. Assigning text to this property causes all existing paragraph content to be replaced with a single run containing the assigned text. A ``\\t`` character in the text is mapped to a ``<w:tab/>`` element and each ``\\n`` or ``\\r`` character is mapped to a line break. Paragraph-level formatting, such as style, is preserved. All run-level formatting, such as bold or italic, is removed. """ text = '' for run in self.runs: text += run.text return text
String formed by concatenating the text of each run in the paragraph. Tabs and line breaks in the XML are mapped to ``\\t`` and ``\\n`` characters respectively. Assigning text to this property causes all existing paragraph content to be replaced with a single run containing the assigned text. A ``\\t`` character in the text is mapped to a ``<w:tab/>`` element and each ``\\n`` or ``\\r`` character is mapped to a line break. Paragraph-level formatting, such as style, is preserved. All run-level formatting, such as bold or italic, is removed.
def draw_tiling(coord_generator, filename): """Given a coordinate generator and a filename, render those coordinates in a new image and save them to the file.""" im = Image.new('L', size=(CANVAS_WIDTH, CANVAS_HEIGHT)) for shape in coord_generator(CANVAS_WIDTH, CANVAS_HEIGHT): ImageDraw.Draw(im).polygon(shape, outline='white') im.save(filename)
Given a coordinate generator and a filename, render those coordinates in a new image and save them to the file.
def pumper(html_generator): """ Pulls HTML from source generator, feeds it to the parser and yields DOM elements. """ source = html_generator() parser = etree.HTMLPullParser( events=('start', 'end'), remove_comments=True ) while True: for element in parser.read_events(): yield element try: parser.feed(next(source)) except StopIteration: # forces close of any unclosed tags parser.feed('</html>') for element in parser.read_events(): yield element break
Pulls HTML from source generator, feeds it to the parser and yields DOM elements.
def get_aggregations(metrics_dict, saved_metrics, adhoc_metrics=[]): """ Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations """ aggregations = OrderedDict() invalid_metric_names = [] for metric_name in saved_metrics: if metric_name in metrics_dict: metric = metrics_dict[metric_name] if metric.metric_type == POST_AGG_TYPE: invalid_metric_names.append(metric_name) else: aggregations[metric_name] = metric.json_obj else: invalid_metric_names.append(metric_name) if len(invalid_metric_names) > 0: raise SupersetException( _('Metric(s) {} must be aggregations.').format(invalid_metric_names)) for adhoc_metric in adhoc_metrics: aggregations[adhoc_metric['label']] = { 'fieldName': adhoc_metric['column']['column_name'], 'fieldNames': [adhoc_metric['column']['column_name']], 'type': DruidDatasource.druid_type_from_adhoc_metric(adhoc_metric), 'name': adhoc_metric['label'], } return aggregations
Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations
def replace(self, **kw): """Return datetime with new specified fields given as arguments. For example, dt.replace(days=4) would return a new datetime_tz object with exactly the same as dt but with the days attribute equal to 4. Any attribute can be replaced, but tzinfo can not be set to None. Args: Any datetime_tz attribute. Returns: A datetime_tz object with the attributes replaced. Raises: TypeError: If the given replacement is invalid. """ if "tzinfo" in kw: if kw["tzinfo"] is None: raise TypeError("Can not remove the timezone use asdatetime()") else: tzinfo = kw["tzinfo"] del kw["tzinfo"] else: tzinfo = None is_dst = None if "is_dst" in kw: is_dst = kw["is_dst"] del kw["is_dst"] else: # Use our own DST setting.. is_dst = self.is_dst replaced = self.asdatetime().replace(**kw) return type(self)( replaced, tzinfo=tzinfo or self.tzinfo.zone, is_dst=is_dst)
Return datetime with new specified fields given as arguments. For example, dt.replace(days=4) would return a new datetime_tz object with exactly the same as dt but with the days attribute equal to 4. Any attribute can be replaced, but tzinfo can not be set to None. Args: Any datetime_tz attribute. Returns: A datetime_tz object with the attributes replaced. Raises: TypeError: If the given replacement is invalid.
def get_agent(self, agent_id): """Fetches the agent for the given agent ID""" url = 'agents/%s' % agent_id return Agent(**self._api._get(url))
Fetches the agent for the given agent ID
def handle(data_type, data, data_id=None, caller=None): """ execute all data handlers on the specified data according to data type Args: data_type (str): data type handle data (dict or list): data Kwargs: data_id (str): can be used to differentiate between different data sets of the same data type. If not specified will default to the data type caller (object): if specified, holds the object or function that is trying to handle data Returns: dict or list - data after handlers have been executed on it """ if not data_id: data_id = data_type # instantiate handlers for data type if they havent been yet if data_id not in _handlers: _handlers[data_id] = dict( [(h.handle, h) for h in handlers.instantiate_for_data_type(data_type, data_id=data_id)]) for handler in list(_handlers[data_id].values()): try: data = handler(data, caller=caller) except Exception as inst: vodka.log.error("Data handler '%s' failed with error" % handler) vodka.log.error(traceback.format_exc()) return data
execute all data handlers on the specified data according to data type Args: data_type (str): data type handle data (dict or list): data Kwargs: data_id (str): can be used to differentiate between different data sets of the same data type. If not specified will default to the data type caller (object): if specified, holds the object or function that is trying to handle data Returns: dict or list - data after handlers have been executed on it
def listen(self, timeout=10): """ Listen for incoming messages. Timeout is used to check if the server must be switched off. :param timeout: Socket Timeout in seconds """ self._socket.settimeout(float(timeout)) while not self.stopped.isSet(): try: data, client_address = self._socket.recvfrom(4096) except socket.timeout: continue try: #Start a new thread not to block other requests args = ((data, client_address), ) t = threading.Thread(target=self.receive_datagram, args=args) t.daemon = True t.start() except RuntimeError: logging.exception("Exception with Executor") logging.debug("closing socket") self._socket.close()
Listen for incoming messages. Timeout is used to check if the server must be switched off. :param timeout: Socket Timeout in seconds
def feedforward(self): """ Soon to be depriciated. Needed to make the SP implementation compatible with some older code. """ m = self._numInputs n = self._numColumns W = np.zeros((n, m)) for i in range(self._numColumns): self.getPermanence(i, W[i, :]) return W
Soon to be depriciated. Needed to make the SP implementation compatible with some older code.
def _search_for_user_dn(self): """ Searches the directory for a user matching AUTH_LDAP_USER_SEARCH. Populates self._user_dn and self._user_attrs. """ search = self.settings.USER_SEARCH if search is None: raise ImproperlyConfigured( "AUTH_LDAP_USER_SEARCH must be an LDAPSearch instance." ) results = search.execute(self.connection, {"user": self._username}) if results is not None and len(results) == 1: (user_dn, self._user_attrs) = next(iter(results)) else: user_dn = None return user_dn
Searches the directory for a user matching AUTH_LDAP_USER_SEARCH. Populates self._user_dn and self._user_attrs.
def allow(self, comment, content_object, request): """ Determine whether a given comment is allowed to be posted on a given object. Return ``True`` if the comment should be allowed, ``False otherwise. """ if self.enable_field: if not getattr(content_object, self.enable_field): return False if self.auto_close_field and self.close_after is not None: close_after_date = getattr(content_object, self.auto_close_field) if close_after_date is not None and self._get_delta(timezone.now(), close_after_date).days >= self.close_after: return False return True
Determine whether a given comment is allowed to be posted on a given object. Return ``True`` if the comment should be allowed, ``False otherwise.
def _locate_index(self, index): """ given index, find out sub-db and sub-index Parameters ---------- index : int index of a specific image Returns ---------- a tuple (sub-db, sub-index) """ assert index >= 0 and index < self.num_images, "index out of range" pos = self.image_set_index[index] for k, v in enumerate(self.imdbs): if pos >= v.num_images: pos -= v.num_images else: return (k, pos)
given index, find out sub-db and sub-index Parameters ---------- index : int index of a specific image Returns ---------- a tuple (sub-db, sub-index)
def nlerp_quat(from_quat, to_quat, percent): """Return normalized linear interpolation of two quaternions. Less computationally expensive than slerp (which not implemented in this lib yet), but does not maintain a constant velocity like slerp. """ result = lerp_quat(from_quat, to_quat, percent) result.normalize() return result
Return normalized linear interpolation of two quaternions. Less computationally expensive than slerp (which not implemented in this lib yet), but does not maintain a constant velocity like slerp.
def factor_kkt(S_LU, R, d): """ Factor the U22 block that we can only do after we know D. """ nBatch, nineq = d.size() neq = S_LU[1].size(1) - nineq # TODO: There's probably a better way to add a batched diagonal. global factor_kkt_eye if factor_kkt_eye is None or factor_kkt_eye.size() != d.size(): # print('Updating batchedEye size.') factor_kkt_eye = torch.eye(nineq).repeat( nBatch, 1, 1).type_as(R).byte() T = R.clone() T[factor_kkt_eye] += (1. / d).squeeze().view(-1) T_LU = btrifact_hack(T) global shown_btrifact_warning if shown_btrifact_warning or not T.is_cuda: # TODO: Don't use pivoting in most cases because # torch.btriunpack is inefficient here: oldPivotsPacked = S_LU[1][:, -nineq:] - neq oldPivots, _, _ = torch.btriunpack( T_LU[0], oldPivotsPacked, unpack_data=False) newPivotsPacked = T_LU[1] newPivots, _, _ = torch.btriunpack( T_LU[0], newPivotsPacked, unpack_data=False) # Re-pivot the S_LU_21 block. if neq > 0: S_LU_21 = S_LU[0][:, -nineq:, :neq] S_LU[0][:, -nineq:, :neq] = newPivots.transpose(1, 2).bmm(oldPivots.bmm(S_LU_21)) # Add the new S_LU_22 block pivots. S_LU[1][:, -nineq:] = newPivotsPacked + neq # Add the new S_LU_22 block. S_LU[0][:, -nineq:, -nineq:] = T_LU[0]
Factor the U22 block that we can only do after we know D.
def send_request(self, request, callback=None, timeout=None, no_response=False): # pragma: no cover """ Send a request to the remote server. :param request: the request to send :param callback: the callback function to invoke upon response :param timeout: the timeout of the request :return: the response """ if callback is not None: thread = threading.Thread(target=self._thread_body, args=(request, callback)) thread.start() else: self.protocol.send_message(request) if no_response: return try: response = self.queue.get(block=True, timeout=timeout) except Empty: #if timeout is set response = None return response
Send a request to the remote server. :param request: the request to send :param callback: the callback function to invoke upon response :param timeout: the timeout of the request :return: the response
def to_serializable(self, use_bytes=False, bias_dtype=np.float32, bytes_type=bytes): """Convert the binary quadratic model to a serializable object. Args: use_bytes (bool, optional, default=False): If True, a compact representation representing the biases as bytes is used. bias_dtype (numpy.dtype, optional, default=numpy.float32): If `use_bytes` is True, this numpy dtype will be used to represent the bias values in the serialized format. bytes_type (class, optional, default=bytes): This class will be used to wrap the bytes objects in the serialization if `use_bytes` is true. Useful for when using Python 2 and using BSON encoding, which will not accept the raw `bytes` type, so `bson.Binary` can be used instead. Returns: dict: An object that can be serialized. Examples: Encode using JSON >>> import dimod >>> import json ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> s = json.dumps(bqm.to_serializable()) Encode using BSON_ in python 3.5+ >>> import dimod >>> import bson ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> doc = bqm.to_serializable(use_bytes=True) >>> b = bson.BSON.encode(doc) # doctest: +SKIP Encode using BSON in python 2.7. Because :class:`bytes` is an alias for :class:`str`, we need to signal to the encoder that it should encode the biases and labels as binary data. >>> import dimod >>> import bson ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> doc = bqm.to_serializable(use_bytes=True, bytes_type=bson.Binary) >>> b = bson.BSON.encode(doc) # doctest: +SKIP See also: :meth:`~.BinaryQuadraticModel.from_serializable` :func:`json.dumps`, :func:`json.dump` JSON encoding functions :meth:`bson.BSON.encode` BSON encoding method .. _BSON: http://bsonspec.org/ """ from dimod.package_info import __version__ schema_version = "2.0.0" try: variables = sorted(self.variables) except TypeError: # sorting unlike types in py3 variables = list(self.variables) num_variables = len(variables) # when doing byte encoding we can use less space depending on the # total number of variables index_dtype = np.uint16 if num_variables <= 2**16 else np.uint32 ldata, (irow, icol, qdata), offset = self.to_numpy_vectors( dtype=bias_dtype, index_dtype=index_dtype, sort_indices=True, variable_order=variables) doc = {"basetype": "BinaryQuadraticModel", "type": type(self).__name__, "version": {"dimod": __version__, "bqm_schema": schema_version}, "variable_labels": variables, "variable_type": self.vartype.name, "info": self.info, "offset": float(offset), "use_bytes": bool(use_bytes) } if use_bytes: doc.update({'linear_biases': array2bytes(ldata, bytes_type=bytes_type), 'quadratic_biases': array2bytes(qdata, bytes_type=bytes_type), 'quadratic_head': array2bytes(irow, bytes_type=bytes_type), 'quadratic_tail': array2bytes(icol, bytes_type=bytes_type)}) else: doc.update({'linear_biases': ldata.tolist(), 'quadratic_biases': qdata.tolist(), 'quadratic_head': irow.tolist(), 'quadratic_tail': icol.tolist()}) return doc
Convert the binary quadratic model to a serializable object. Args: use_bytes (bool, optional, default=False): If True, a compact representation representing the biases as bytes is used. bias_dtype (numpy.dtype, optional, default=numpy.float32): If `use_bytes` is True, this numpy dtype will be used to represent the bias values in the serialized format. bytes_type (class, optional, default=bytes): This class will be used to wrap the bytes objects in the serialization if `use_bytes` is true. Useful for when using Python 2 and using BSON encoding, which will not accept the raw `bytes` type, so `bson.Binary` can be used instead. Returns: dict: An object that can be serialized. Examples: Encode using JSON >>> import dimod >>> import json ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> s = json.dumps(bqm.to_serializable()) Encode using BSON_ in python 3.5+ >>> import dimod >>> import bson ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> doc = bqm.to_serializable(use_bytes=True) >>> b = bson.BSON.encode(doc) # doctest: +SKIP Encode using BSON in python 2.7. Because :class:`bytes` is an alias for :class:`str`, we need to signal to the encoder that it should encode the biases and labels as binary data. >>> import dimod >>> import bson ... >>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN) >>> doc = bqm.to_serializable(use_bytes=True, bytes_type=bson.Binary) >>> b = bson.BSON.encode(doc) # doctest: +SKIP See also: :meth:`~.BinaryQuadraticModel.from_serializable` :func:`json.dumps`, :func:`json.dump` JSON encoding functions :meth:`bson.BSON.encode` BSON encoding method .. _BSON: http://bsonspec.org/
def _formatters_default(self): """Activate the default formatters.""" formatter_classes = [ PlainTextFormatter, HTMLFormatter, SVGFormatter, PNGFormatter, JPEGFormatter, LatexFormatter, JSONFormatter, JavascriptFormatter ] d = {} for cls in formatter_classes: f = cls(config=self.config) d[f.format_type] = f return d
Activate the default formatters.
def localize_field(self, value): """ Method that must transform the value from object to localized string """ if self.default is not None: if value is None or value == '': value = self.default return value or ''
Method that must transform the value from object to localized string
def list_events(self, source=None, severity=None, text_filter=None, start=None, stop=None, page_size=500, descending=False): """ Reads events between the specified start and stop time. Events are sorted by generation time, source, then sequence number. :param str source: The source of the returned events. :param str severity: The minimum severity level of the returned events. One of ``INFO``, ``WATCH``, ``WARNING``, ``DISTRESS``, ``CRITICAL`` or ``SEVERE``. :param str text_filter: Filter the text message of the returned events :param ~datetime.datetime start: Minimum start date of the returned events (inclusive) :param ~datetime.datetime stop: Maximum start date of the returned events (exclusive) :param int page_size: Page size of underlying requests. Higher values imply less overhead, but risk hitting the maximum message size limit. :param bool descending: If set to ``True`` events are fetched in reverse order (most recent first). :rtype: ~collections.Iterable[.Event] """ params = { 'order': 'desc' if descending else 'asc', } if source is not None: params['source'] = source if page_size is not None: params['limit'] = page_size if severity is not None: params['severity'] = severity if start is not None: params['start'] = to_isostring(start) if stop is not None: params['stop'] = to_isostring(stop) if text_filter is not None: params['q'] = text_filter return pagination.Iterator( client=self._client, path='/archive/{}/events'.format(self._instance), params=params, response_class=rest_pb2.ListEventsResponse, items_key='event', item_mapper=Event, )
Reads events between the specified start and stop time. Events are sorted by generation time, source, then sequence number. :param str source: The source of the returned events. :param str severity: The minimum severity level of the returned events. One of ``INFO``, ``WATCH``, ``WARNING``, ``DISTRESS``, ``CRITICAL`` or ``SEVERE``. :param str text_filter: Filter the text message of the returned events :param ~datetime.datetime start: Minimum start date of the returned events (inclusive) :param ~datetime.datetime stop: Maximum start date of the returned events (exclusive) :param int page_size: Page size of underlying requests. Higher values imply less overhead, but risk hitting the maximum message size limit. :param bool descending: If set to ``True`` events are fetched in reverse order (most recent first). :rtype: ~collections.Iterable[.Event]
def add_textop_iter(func): """Decorator to declare custom *ITER* function as a new textops op An *ITER* function is a function that will receive the input text as a *LIST* of lines. One have to iterate over this list and generate a result (it can be a list, a generator, a dict, a string, an int ...) Examples: >>> @add_textop_iter ... def odd(lines, *args,**kwargs): ... for i,line in enumerate(lines): ... if not i % 2: ... yield line >>> s = '''line 1 ... line 2 ... line 3''' >>> s >> odd() ['line 1', 'line 3'] >>> s | odd().tolist() ['line 1', 'line 3'] >>> @add_textop_iter ... def sumsize(lines, *args,**kwargs): ... sum = 0 ... for line in lines: ... sum += int(re.search(r'\d+',line).group(0)) ... return sum >>> '''1492 file1 ... 1789 file2 ... 2015 file3''' | sumsize() 5296 """ op = type(func.__name__,(WrapOpIter,), {'fn':staticmethod(func)}) setattr(textops.ops,func.__name__,op) return op
Decorator to declare custom *ITER* function as a new textops op An *ITER* function is a function that will receive the input text as a *LIST* of lines. One have to iterate over this list and generate a result (it can be a list, a generator, a dict, a string, an int ...) Examples: >>> @add_textop_iter ... def odd(lines, *args,**kwargs): ... for i,line in enumerate(lines): ... if not i % 2: ... yield line >>> s = '''line 1 ... line 2 ... line 3''' >>> s >> odd() ['line 1', 'line 3'] >>> s | odd().tolist() ['line 1', 'line 3'] >>> @add_textop_iter ... def sumsize(lines, *args,**kwargs): ... sum = 0 ... for line in lines: ... sum += int(re.search(r'\d+',line).group(0)) ... return sum >>> '''1492 file1 ... 1789 file2 ... 2015 file3''' | sumsize() 5296
def get_member_brief(self, member_id=0): ''' a method to retrieve member profile info :param member_id: [optional] integer with member id from member profile :return: dictionary with member profile inside [json] key member_profile = self.objects.profile_brief.schema ''' # https://www.meetup.com/meetup_api/docs/members/:member_id/#get title = '%s.get_member_brief' % self.__class__.__name__ # validate inputs input_fields = { 'member_id': member_id } for key, value in input_fields.items(): if value: object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # construct request fields url = '%s/members/' % self.endpoint params = { 'member_id': 'self' } if member_id: params['member_id'] = member_id # send request response_details = self._get_request(url, params=params) # construct method output dictionary profile_details = { 'json': {} } for key, value in response_details.items(): if not key == 'json': profile_details[key] = value # parse response if response_details['json']: if 'results' in response_details['json'].keys(): if response_details['json']['results']: details = response_details['json']['results'][0] for key, value in details.items(): if key != 'topics': profile_details['json'][key] = value profile_details['json'] = self.objects.profile_brief.ingest(**profile_details['json']) return profile_details
a method to retrieve member profile info :param member_id: [optional] integer with member id from member profile :return: dictionary with member profile inside [json] key member_profile = self.objects.profile_brief.schema
def write(self, message, delay_seconds=None): """ Add a single message to the queue. :type message: Message :param message: The message to be written to the queue :rtype: :class:`boto.sqs.message.Message` :return: The :class:`boto.sqs.message.Message` object that was written. """ new_msg = self.connection.send_message(self, message.get_body_encoded(), delay_seconds) message.id = new_msg.id message.md5 = new_msg.md5 return message
Add a single message to the queue. :type message: Message :param message: The message to be written to the queue :rtype: :class:`boto.sqs.message.Message` :return: The :class:`boto.sqs.message.Message` object that was written.
def confd_state_internal_cdb_client_lock(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") confd_state = ET.SubElement(config, "confd-state", xmlns="http://tail-f.com/yang/confd-monitoring") internal = ET.SubElement(confd_state, "internal") cdb = ET.SubElement(internal, "cdb") client = ET.SubElement(cdb, "client") lock = ET.SubElement(client, "lock") lock.text = kwargs.pop('lock') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def _set_gaussian_expected_stats(self, smoothed_mus, smoothed_sigmas, E_xtp1_xtT): """ Both meanfield and VBEM require expected statistics of the continuous latent states, x. This is a helper function to take E[x_t], E[x_t x_t^T] and E[x_{t+1}, x_t^T] and compute the expected sufficient statistics for the initial distribution, dynamics distribution, and Gaussian observation distribution. """ assert not np.isnan(E_xtp1_xtT).any() assert not np.isnan(smoothed_mus).any() assert not np.isnan(smoothed_sigmas).any() assert smoothed_mus.shape == (self.T, self.D_latent) assert smoothed_sigmas.shape == (self.T, self.D_latent, self.D_latent) assert E_xtp1_xtT.shape == (self.T-1, self.D_latent, self.D_latent) # This is like LDSStates._set_expected_states but doesn't sum over time T, D_obs = self.T, self.D_emission E_x_xT = smoothed_sigmas + smoothed_mus[:, :, None] * smoothed_mus[:, None, :] E_x_uT = smoothed_mus[:, :, None] * self.inputs[:, None, :] E_u_uT = self.inputs[:, :, None] * self.inputs[:, None, :] E_xu_xuT = np.concatenate(( np.concatenate((E_x_xT, E_x_uT), axis=2), np.concatenate((np.transpose(E_x_uT, (0, 2, 1)), E_u_uT), axis=2)), axis=1) E_xut_xutT = E_xu_xuT[:-1] E_xtp1_xtp1T = E_x_xT[1:] E_xtp1_utT = (smoothed_mus[1:, :, None] * self.inputs[:-1, None, :]) E_xtp1_xutT = np.concatenate((E_xtp1_xtT, E_xtp1_utT), axis=-1) # Initial state stats self.E_init_stats = (self.smoothed_mus[0], E_x_xT[0], 1.) # Dynamics stats self.E_dynamics_stats = (E_xtp1_xtp1T, E_xtp1_xutT, E_xut_xutT, np.ones(self.T-1)) # Emission stats -- special case diagonal noise E_yyT = self.data**2 if self.diagonal_noise else self.data[:, :, None] * self.data[:, None, :] E_yxT = self.data[:, :, None] * self.smoothed_mus[:, None, :] E_yuT = self.data[:, :, None] * self.inputs[:, None, :] E_yxuT = np.concatenate((E_yxT, E_yuT), axis=-1) E_n = np.ones((T, D_obs)) if self.diagonal_noise else np.ones(T) self.E_emission_stats = (E_yyT, E_yxuT, E_xu_xuT, E_n)
Both meanfield and VBEM require expected statistics of the continuous latent states, x. This is a helper function to take E[x_t], E[x_t x_t^T] and E[x_{t+1}, x_t^T] and compute the expected sufficient statistics for the initial distribution, dynamics distribution, and Gaussian observation distribution.
def vclose(L, V): """ gets the closest vector """ lam, X = 0, [] for k in range(3): lam = lam + V[k] * L[k] beta = np.sqrt(1. - lam**2) for k in range(3): X.append((old_div((V[k] - lam * L[k]), beta))) return X
gets the closest vector
def removeItem( self ): """ Removes the item from the menu. """ item = self.uiMenuTREE.currentItem() if ( not item ): return opts = QMessageBox.Yes | QMessageBox.No answer = QMessageBox.question( self, 'Remove Item', 'Are you sure you want to remove this '\ ' item?', opts ) if ( answer == QMessageBox.Yes ): parent = item.parent() if ( parent ): parent.takeChild(parent.indexOfChild(item)) else: tree = self.uiMenuTREE tree.takeTopLevelItem(tree.indexOfTopLevelItem(item))
Removes the item from the menu.
def setup_logging(): """Logging config.""" logging.basicConfig(format=("[%(levelname)s\033[0m] " "\033[1;31m%(module)s\033[0m: " "%(message)s"), level=logging.INFO, stream=sys.stdout) logging.addLevelName(logging.ERROR, '\033[1;31mE') logging.addLevelName(logging.INFO, '\033[1;32mI') logging.addLevelName(logging.WARNING, '\033[1;33mW')
Logging config.
def _validate_format(req): ''' Validate jsonrpc compliance of a jsonrpc-dict. req - the request as a jsonrpc-dict raises SLOJSONRPCError on validation error ''' #check for all required keys for key in SLOJSONRPC._min_keys: if not key in req: logging.debug('JSONRPC: Fmt Error: Need key "%s"' % key) raise SLOJSONRPCError(-32600) #check all keys if allowed for key in req.keys(): if not key in SLOJSONRPC._allowed_keys: logging.debug('JSONRPC: Fmt Error: Not allowed key "%s"' % key) raise SLOJSONRPCError(-32600) #needs to be jsonrpc 2.0 if req['jsonrpc'] != '2.0': logging.debug('JSONRPC: Fmt Error: "jsonrpc" needs to be "2.0"') raise SLOJSONRPCError(-32600)
Validate jsonrpc compliance of a jsonrpc-dict. req - the request as a jsonrpc-dict raises SLOJSONRPCError on validation error
def serial_assimilate(self, rootpath): """ Assimilate the entire subdirectory structure in rootpath serially. """ valid_paths = [] for (parent, subdirs, files) in os.walk(rootpath): valid_paths.extend(self._drone.get_valid_paths((parent, subdirs, files))) data = [] count = 0 total = len(valid_paths) for path in valid_paths: newdata = self._drone.assimilate(path) self._data.append(newdata) count += 1 logger.info('{}/{} ({:.2f}%) done'.format(count, total, count / total * 100)) for d in data: self._data.append(json.loads(d, cls=MontyDecoder))
Assimilate the entire subdirectory structure in rootpath serially.
def encipher_shift(plaintext, plain_vocab, shift): """Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] cipher = ShiftEncryptionLayer(plain_vocab, shift) for _, sentence in enumerate(plaintext): cipher_sentence = [] for _, character in enumerate(sentence): encrypted_char = cipher.encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text.
def set_shuffle(self, shuffle): """stub""" if not self.my_osid_object_form._is_valid_boolean( shuffle): raise InvalidArgument('shuffle') self.my_osid_object_form._my_map['shuffle'] = shuffle
stub
def _evaluate_model_single_file(target_folder, test_file): """ Evaluate a model for a single recording. Parameters ---------- target_folder : string Folder where the model is test_file : string The test file (.hdf5) """ logging.info("Create running model...") model_src = get_latest_model(target_folder, "model") model_file_pointer = tempfile.NamedTemporaryFile(delete=False) model_use = model_file_pointer.name model_file_pointer.close() logging.info("Adjusted model is in %s.", model_use) create_adjusted_model_for_percentages(model_src, model_use) # Run evaluation project_root = get_project_root() time_prefix = time.strftime("%Y-%m-%d-%H-%M") logging.info("Evaluate '%s' with '%s'...", model_src, test_file) logfilefolder = os.path.join(project_root, "logs/") if not os.path.exists(logfilefolder): os.makedirs(logfilefolder) logfile = os.path.join(project_root, "logs/%s-error-evaluation.log" % time_prefix) with open(logfile, "w") as log, open(model_use, "r") as modl_src_p: p = subprocess.Popen([get_nntoolkit(), 'run', '--batch-size', '1', '-f%0.4f', test_file], stdin=modl_src_p, stdout=log) ret = p.wait() if ret != 0: logging.error("nntoolkit finished with ret code %s", str(ret)) sys.exit() return (logfile, model_use)
Evaluate a model for a single recording. Parameters ---------- target_folder : string Folder where the model is test_file : string The test file (.hdf5)
def _parse(self, msg_dict): ''' Parse a syslog message and check what OpenConfig object should be generated. ''' error_present = False # log.debug('Matching the message:') # log.debug(msg_dict) for message in self.compiled_messages: # log.debug('Matching using:') # log.debug(message) match_on = message['match_on'] if match_on not in msg_dict: # log.debug('%s is not a valid key in the partially parsed dict', match_on) continue if message['tag'] != msg_dict[match_on]: continue if '__python_fun__' in message: return { 'model': message['model'], 'error': message['error'], '__python_fun__': message['__python_fun__'] } error_present = True match = message['line'].search(msg_dict['message']) if not match: continue positions = message.get('positions', {}) values = message.get('values') ret = { 'model': message['model'], 'mapping': message['mapping'], 'replace': message['replace'], 'error': message['error'] } for key in values.keys(): # Check if the value needs to be replaced if key in message['replace']: result = napalm_logs.utils.cast(match.group(positions.get(key)), message['replace'][key]) else: result = match.group(positions.get(key)) ret[key] = result return ret if error_present is True: log.info('Configured regex did not match for os: %s tag %s', self._name, msg_dict.get('tag', '')) else: log.info('Syslog message not configured for os: %s tag %s', self._name, msg_dict.get('tag', ''))
Parse a syslog message and check what OpenConfig object should be generated.
def parse_color(self, color): ''' color : string, eg: '#rrggbb' or 'none' (where rr, gg, bb are hex digits from 00 to ff) returns a triple of unsigned bytes, eg: (0, 128, 255) ''' if color == 'none': return None return ( int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16))
color : string, eg: '#rrggbb' or 'none' (where rr, gg, bb are hex digits from 00 to ff) returns a triple of unsigned bytes, eg: (0, 128, 255)
def calculateLocalElasticity(self, bp, frames=None, helical=False, unit='kT'): r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix. """ acceptedUnit = ['kT', 'kJ/mol', 'kcal/mol'] if unit not in acceptedUnit: raise ValueError(" {0} not accepted. Use any of the following: {1} ".format(unit, acceptedUnit)) frames = self._validateFrames(frames) name = '{0}-{1}-{2}-{3}-local-{4}'.format(bp[0], bp[1], frames[0], frames[1], int(helical)) if bp[1]-bp[0]+1 > 4: raise ValueError("Selected span {0} is larger than 4, and therefore, not recommended for local elasticity".format(bp[1]-bp[0]+1)) if name not in self.esMatrix: time, array = self.extractLocalParameters(self.dna, bp, helical=helical, frames=frames) mean = np.mean(array, axis = 1) esMatrix = self.getElasticMatrix(array) self.esMatrix[name] = esMatrix self.minimumPoint[name] = mean else: esMatrix = self.esMatrix[name] mean = self.minimumPoint[name] if unit == 'kJ/mol': result = 2.4946938107879997 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 ) kT.NA/1000 elif unit == 'kcal/mol': result = 0.5962461306854684 * esMatrix # (1.38064852e-23 * 300 * 6.023e23 / 1000 / 4.184) kT.NA/1000 else: result = esMatrix return mean, result
r"""Calculate local elastic matrix or stiffness matrix for local DNA segment .. note:: Here local DNA segment referred to less than 5 base-pair long. In case of :ref:`base-step-image`: Shift (:math:`Dx`), Slide (:math:`Dy`), Rise (:math:`Dz`), Tilt (:math:`\tau`), Roll (:math:`\rho`) and Twist (:math:`\omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{base-step} = \begin{bmatrix} K_{Dx} & K_{Dx,Dy} & K_{Dx,Dz} & K_{Dx,\tau} & K_{Dx,\rho} & K_{Dx,\omega} \\ K_{Dx,Dy} & K_{Dy} & K_{Dy,Dz} & K_{Dy,\tau} & K_{Dy,\rho} & K_{Dy,\omega} \\ K_{Dx,Dz} & K_{Dy,Dz} & K_{Dz} & K_{Dz,\tau} & K_{Dz,\rho} & K_{Dz,\omega} \\ K_{Dx,\tau} & K_{Dy,\tau} & K_{Dz,\tau} & K_{\tau} & K_{\tau, \rho} & K_{\tau,\omega} \\ K_{Dx,\rho} & K_{Dy,\rho} & K_{Dz,\rho} & K_{\tau, \rho} & K_{\rho} & K_{\rho,\omega} \\ K_{Dx,\omega} & K_{Dy,\omega} & K_{Dz,\omega} & K_{\tau, \omega} & K_{\rho, \omega} & K_{\omega} \\ \end{bmatrix} In case of :ref:`helical-base-step-image`: x-displacement (:math:`dx`), y-displacement (:math:`dy`), h-rise (:math:`h`), inclination (:math:`\eta`), tip (:math:`\theta`) and twist (:math:`\Omega`), following elastic matrix is calculated. .. math:: \mathbf{K}_{helical-base-step} = \begin{bmatrix} K_{dx} & K_{dx,dy} & K_{dx,h} & K_{dx,\eta} & K_{dx,\theta} & K_{dx,\Omega} \\ K_{dx,dy} & K_{dy} & K_{dy,h} & K_{dy,\eta} & K_{dy,\theta} & K_{dy,\Omega} \\ K_{dx,h} & K_{dy,h} & K_{h} & K_{h,\eta} & K_{h,\theta} & K_{h,\Omega} \\ K_{dx,\eta} & K_{dy,\eta} & K_{h,\eta} & K_{\eta} & K_{\eta, \theta} & K_{\eta,\Omega} \\ K_{dx,\theta} & K_{dy,\theta} & K_{h,\theta} & K_{\eta, \theta} & K_{\theta} & K_{\theta,\Omega} \\ K_{dx,\Omega} & K_{dy,\Omega} & K_{h,\Omega} & K_{\eta, \Omega} & K_{\theta, \Omega} & K_{\Omega} \\ \end{bmatrix} Parameters ---------- bp : list List of two base-steps forming the DNA segment. For example: with ``bp=[5, 50]``, 5-50 base-step segment will be considered. frames : list List of two trajectory frames between which parameters will be extracted. It can be used to select portions of the trajectory. For example, with ``frames=[100, 1000]``, 100th to 1000th frame of the trajectory will be considered. helical : bool If ``helical=True``, elastic matrix for **helical base-step** parameters are calculated. Otherwise, by default, elastic matrix for **base-step** parameters are calculated. unit : str Unit of energy. Allowed units are: ``'kT', 'kJ/mol' and 'kcal/mol'``. Return ------ mean : numpy.ndarray Value of parameters at which energy is zero. Minimum point on energy landscape. if ``helical=False`` .. math:: \begin{bmatrix} Dx_0 & Dy_0 & Dz_0 & \tau_0 & \rho_0 & \omega_0 \end{bmatrix} if ``helical=True`` .. math:: \begin{bmatrix} dx_0 & dy_0 & h_0 & \eta_0 & \theta_0 & \Omega_0 \end{bmatrix} result : numpy.ndarray Elastic matrix.
def _retrieveRemoteCertificate(self, From, port=port): """ The entire conversation, starting with TCP handshake and ending at disconnect, to retrieve a foreign domain's certificate for the first time. """ CS = self.service.certificateStorage host = str(From.domainAddress()) p = AMP() p.wrapper = self.wrapper f = protocol.ClientCreator(reactor, lambda: p) connD = f.connectTCP(host, port) def connected(proto): dhost = From.domainAddress() iddom = proto.callRemote(Identify, subject=dhost) def gotCert(identifyBox): theirCert = identifyBox['certificate'] theirIssuer = theirCert.getIssuer().commonName theirName = theirCert.getSubject().commonName if (theirName != str(dhost)): raise VerifyError( "%r claimed it was %r in IDENTIFY response" % (theirName, dhost)) if (theirIssuer != str(dhost)): raise VerifyError( "self-signed %r claimed it was issued by " "%r in IDENTIFY response" % (dhost, theirIssuer)) def storedCert(ignored): return theirCert return CS.storeSelfSignedCertificate( str(dhost), theirCert).addCallback(storedCert) def nothingify(x): proto.transport.loseConnection() return x return iddom.addCallback(gotCert).addBoth(nothingify) connD.addCallback(connected) return connD
The entire conversation, starting with TCP handshake and ending at disconnect, to retrieve a foreign domain's certificate for the first time.
def remove_labels(self, labels, relabel=False): """ Remove one or more labels. Removed labels are assigned a value of zero (i.e., background). Parameters ---------- labels : int, array-like (1D, int) The label number(s) to remove. relabel : bool, optional If `True`, then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_labels(labels=[5, 3]) >>> segm.data array([[1, 1, 0, 0, 4, 4], [0, 0, 0, 0, 0, 4], [0, 0, 0, 0, 0, 0], [7, 0, 0, 0, 0, 0], [7, 7, 0, 0, 0, 0], [7, 7, 0, 0, 0, 0]]) >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_labels(labels=[5, 3], relabel=True) >>> segm.data array([[1, 1, 0, 0, 2, 2], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0], [3, 3, 0, 0, 0, 0], [3, 3, 0, 0, 0, 0]]) """ self.check_labels(labels) self.reassign_label(labels, new_label=0) if relabel: self.relabel_consecutive()
Remove one or more labels. Removed labels are assigned a value of zero (i.e., background). Parameters ---------- labels : int, array-like (1D, int) The label number(s) to remove. relabel : bool, optional If `True`, then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_labels(labels=[5, 3]) >>> segm.data array([[1, 1, 0, 0, 4, 4], [0, 0, 0, 0, 0, 4], [0, 0, 0, 0, 0, 0], [7, 0, 0, 0, 0, 0], [7, 7, 0, 0, 0, 0], [7, 7, 0, 0, 0, 0]]) >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_labels(labels=[5, 3], relabel=True) >>> segm.data array([[1, 1, 0, 0, 2, 2], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0], [3, 3, 0, 0, 0, 0], [3, 3, 0, 0, 0, 0]])
def will_set(self, topic, payload=None, qos=0, retain=False): """Set a Will to be sent by the broker in case the client disconnects unexpectedly. This must be called before connect() to have any effect. topic: The topic that the will message should be published on. payload: The message to send as a will. If not given, or set to None a zero length message will be used as the will. Passing an int or float will result in the payload being converted to a string representing that number. If you wish to send a true int/float, use struct.pack() to create the payload you require. qos: The quality of service level to use for the will. retain: If set to true, the will message will be set as the "last known good"/retained message for the topic. Raises a ValueError if qos is not 0, 1 or 2, or if topic is None or has zero string length. """ if topic is None or len(topic) == 0: raise ValueError('Invalid topic.') if qos<0 or qos>2: raise ValueError('Invalid QoS level.') if isinstance(payload, str): self._will_payload = payload.encode('utf-8') elif isinstance(payload, bytearray): self._will_payload = payload elif isinstance(payload, int) or isinstance(payload, float): self._will_payload = str(payload) elif payload is None: self._will_payload = None else: raise TypeError('payload must be a string, bytearray, int, float or None.') self._will = True self._will_topic = topic.encode('utf-8') self._will_qos = qos self._will_retain = retain
Set a Will to be sent by the broker in case the client disconnects unexpectedly. This must be called before connect() to have any effect. topic: The topic that the will message should be published on. payload: The message to send as a will. If not given, or set to None a zero length message will be used as the will. Passing an int or float will result in the payload being converted to a string representing that number. If you wish to send a true int/float, use struct.pack() to create the payload you require. qos: The quality of service level to use for the will. retain: If set to true, the will message will be set as the "last known good"/retained message for the topic. Raises a ValueError if qos is not 0, 1 or 2, or if topic is None or has zero string length.
def netconf_state_statistics_in_bad_rpcs(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") netconf_state = ET.SubElement(config, "netconf-state", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring") statistics = ET.SubElement(netconf_state, "statistics") in_bad_rpcs = ET.SubElement(statistics, "in-bad-rpcs") in_bad_rpcs.text = kwargs.pop('in_bad_rpcs') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def scale(self, x, y=None, z=None): "Uniform scale, if only sx argument is specified" if y is None: y = x if z is None: z = x m = self for col in range(4): # Only the top three rows m[0,col] *= x m[1,col] *= y m[2,col] *= z return self
Uniform scale, if only sx argument is specified
def venv_bin(name=None): # pylint: disable=inconsistent-return-statements """ Get the directory for virtualenv stubs, or a full executable path if C{name} is provided. """ if not hasattr(sys, "real_prefix"): easy.error("ERROR: '%s' is not a virtualenv" % (sys.executable,)) sys.exit(1) for bindir in ("bin", "Scripts"): bindir = os.path.join(sys.prefix, bindir) if os.path.exists(bindir): if name: bin_ext = os.path.splitext(sys.executable)[1] if sys.platform == 'win32' else '' return os.path.join(bindir, name + bin_ext) else: return bindir easy.error("ERROR: Scripts directory not found in '%s'" % (sys.prefix,)) sys.exit(1)
Get the directory for virtualenv stubs, or a full executable path if C{name} is provided.
def currentPage(self): """ Return a sequence of mappings of attribute IDs to column values, to display to the user. nextPage/prevPage will strive never to skip items whose column values have not been returned by this method. This is best explained by a demonstration. Let's say you have a table viewing an item with attributes 'a' and 'b', like this: oid | a | b ----+---+-- 0 | 1 | 2 1 | 3 | 4 2 | 5 | 6 3 | 7 | 8 4 | 9 | 0 The table has 2 items per page. You call currentPage and receive a page which contains items oid 0 and oid 1. item oid 1 is deleted. If the next thing you do is to call nextPage, the result of currentPage following that will be items beginning with item oid 2. This is because although there are no longer enough items to populate a full page from 0-1, the user has never seen item #2 on a page, so the 'next' page from the user's point of view contains #2. If instead, at that same point, the next thing you did was to call currentPage, *then* nextPage and currentPage again, the first currentPage results would contain items #0 and #2; the following currentPage results would contain items #3 and #4. In this case, the user *has* seen #2 already, so the user expects to see the following item, not the same item again. """ self._updateResults(self._sortAttributeValue(0), equalToStart=True, refresh=True) return self._currentResults
Return a sequence of mappings of attribute IDs to column values, to display to the user. nextPage/prevPage will strive never to skip items whose column values have not been returned by this method. This is best explained by a demonstration. Let's say you have a table viewing an item with attributes 'a' and 'b', like this: oid | a | b ----+---+-- 0 | 1 | 2 1 | 3 | 4 2 | 5 | 6 3 | 7 | 8 4 | 9 | 0 The table has 2 items per page. You call currentPage and receive a page which contains items oid 0 and oid 1. item oid 1 is deleted. If the next thing you do is to call nextPage, the result of currentPage following that will be items beginning with item oid 2. This is because although there are no longer enough items to populate a full page from 0-1, the user has never seen item #2 on a page, so the 'next' page from the user's point of view contains #2. If instead, at that same point, the next thing you did was to call currentPage, *then* nextPage and currentPage again, the first currentPage results would contain items #0 and #2; the following currentPage results would contain items #3 and #4. In this case, the user *has* seen #2 already, so the user expects to see the following item, not the same item again.
def repartition(self, npartitions): """ Repartition data (Spark only). Parameters ---------- npartitions : int Number of partitions after repartitions. """ if self.mode == 'spark': return self._constructor(self.values.repartition(npartitions)).__finalize__(self) else: notsupported(self.mode)
Repartition data (Spark only). Parameters ---------- npartitions : int Number of partitions after repartitions.
def minimize_metric(field, metric_func, nm, res, ival, roi=None, coarse_acc=1, fine_acc=.005, return_gradient=True, padding=True): """Find the focus by minimizing the `metric` of an image Parameters ---------- field : 2d array electric field metric_func : callable some metric to be minimized ival : tuple of floats (minimum, maximum) of interval to search in pixels nm : float RI of medium res : float wavelength in pixels roi : rectangular region of interest (x1, y1, x2, y2) Region of interest of `field` for which the metric will be minimized. If not given, the entire `field` will be used. coarse_acc : float accuracy for determination of global minimum in pixels fine_acc : float accuracy for fine localization percentage of gradient change return_gradient: return x and y values of computed gradient padding : bool perform padding with linear ramp from edge to average to reduce ringing artifacts. .. versionchanged:: 0.1.4 improved padding value and padding location """ if roi is not None: assert len(roi) == len(field.shape) * \ 2, "ROI must match field dimension" initshape = field.shape Fshape = len(initshape) propfunc = fft_propagate if roi is None: if Fshape == 2: roi = (0, 0, field.shape[0], field.shape[1]) else: roi = (0, field.shape[0]) roi = 1*np.array(roi) if padding: # Pad with correct complex number field = pad.pad_add(field) if ival[0] > ival[1]: ival = (ival[1], ival[0]) # set coarse interval # coarse_acc = int(np.ceil(ival[1]-ival[0]))/100 N = 100 / coarse_acc zc = np.linspace(ival[0], ival[1], N, endpoint=True) # compute fft of field fftfield = np.fft.fftn(field) # fftplan = fftw3.Plan(fftfield.copy(), None, nthreads = _ncores, # direction="backward", flags=_fftwflags) # initiate gradient vector gradc = np.zeros(zc.shape) for i in range(len(zc)): d = zc[i] # fsp = propfunc(fftfield, d, nm, res, fftplan=fftplan) fsp = propfunc(fftfield, d, nm, res) if Fshape == 2: gradc[i] = metric_func(fsp[roi[0]:roi[2], roi[1]:roi[3]]) else: gradc[i] = metric_func(fsp[roi[0]:roi[1]]) minid = np.argmin(gradc) if minid == 0: zc -= zc[1] - zc[0] minid += 1 if minid == len(zc) - 1: zc += zc[1] - zc[0] minid -= 1 zf = 1*zc gradf = 1 * gradc numfine = 10 mingrad = gradc[minid] while True: gradf = np.zeros(numfine) ival = (zf[minid - 1], zf[minid + 1]) zf = np.linspace(ival[0], ival[1], numfine) for i in range(len(zf)): d = zf[i] fsp = propfunc(fftfield, d, nm, res) if Fshape == 2: gradf[i] = metric_func(fsp[roi[0]:roi[2], roi[1]:roi[3]]) else: gradf[i] = metric_func(fsp[roi[0]:roi[1]]) minid = np.argmin(gradf) if minid == 0: zf -= zf[1] - zf[0] minid += 1 if minid == len(zf) - 1: zf += zf[1] - zf[0] minid -= 1 if abs(mingrad - gradf[minid]) / 100 < fine_acc: break minid = np.argmin(gradf) fsp = propfunc(fftfield, zf[minid], nm, res) if padding: fsp = pad.pad_rem(fsp) if return_gradient: return fsp, zf[minid], [(zc, gradc), (zf, gradf)] return fsp, zf[minid]
Find the focus by minimizing the `metric` of an image Parameters ---------- field : 2d array electric field metric_func : callable some metric to be minimized ival : tuple of floats (minimum, maximum) of interval to search in pixels nm : float RI of medium res : float wavelength in pixels roi : rectangular region of interest (x1, y1, x2, y2) Region of interest of `field` for which the metric will be minimized. If not given, the entire `field` will be used. coarse_acc : float accuracy for determination of global minimum in pixels fine_acc : float accuracy for fine localization percentage of gradient change return_gradient: return x and y values of computed gradient padding : bool perform padding with linear ramp from edge to average to reduce ringing artifacts. .. versionchanged:: 0.1.4 improved padding value and padding location
def register(scheme): """ Registers a new scheme to the urlparser. :param schema | <str> """ scheme = nstr(scheme) urlparse.uses_fragment.append(scheme) urlparse.uses_netloc.append(scheme) urlparse.uses_params.append(scheme) urlparse.uses_query.append(scheme) urlparse.uses_relative.append(scheme)
Registers a new scheme to the urlparser. :param schema | <str>
def user_fields(self, user): """ Retrieve the user fields for this user. :param user: User object or id """ return self._query_zendesk(self.endpoint.user_fields, 'user_field', id=user)
Retrieve the user fields for this user. :param user: User object or id
def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()
Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64
def down(self, path, link, repo): """Download files """ filename = link.split("/")[-1] if not os.path.isfile(path + filename): Download(path, link.split(), repo).start()
Download files
def start_polling(self, interval): """ Start polling for term updates and streaming. """ interval = float(interval) self.polling = True # clear the stored list of terms - we aren't tracking any self.term_checker.reset() logger.info("Starting polling for changes to the track list") while self.polling: loop_start = time() self.update_stream() self.handle_exceptions() # wait for the interval unless interrupted, compensating for time elapsed in the loop elapsed = time() - loop_start sleep(max(0.1, interval - elapsed)) logger.warning("Term poll ceased!")
Start polling for term updates and streaming.
def listen(self, timeout=10): """ Listen for incoming messages. Timeout is used to check if the server must be switched off. :param timeout: Socket Timeout in seconds """ self._socket.settimeout(float(timeout)) while not self.stopped.isSet(): try: data, client_address = self._socket.recvfrom(4096) if len(client_address) > 2: client_address = (client_address[0], client_address[1]) except socket.timeout: continue except Exception as e: if self._cb_ignore_listen_exception is not None and isinstance(self._cb_ignore_listen_exception, collections.Callable): if self._cb_ignore_listen_exception(e, self): continue raise try: serializer = Serializer() message = serializer.deserialize(data, client_address) if isinstance(message, int): logger.error("receive_datagram - BAD REQUEST") rst = Message() rst.destination = client_address rst.type = defines.Types["RST"] rst.code = message rst.mid = self._messageLayer.fetch_mid() self.send_datagram(rst) continue logger.debug("receive_datagram - " + str(message)) if isinstance(message, Request): transaction = self._messageLayer.receive_request(message) if transaction.request.duplicated and transaction.completed: logger.debug("message duplicated, transaction completed") if transaction.response is not None: self.send_datagram(transaction.response) continue elif transaction.request.duplicated and not transaction.completed: logger.debug("message duplicated, transaction NOT completed") self._send_ack(transaction) continue args = (transaction, ) t = threading.Thread(target=self.receive_request, args=args) t.start() # self.receive_datagram(data, client_address) elif isinstance(message, Response): logger.error("Received response from %s", message.source) else: # is Message transaction = self._messageLayer.receive_empty(message) if transaction is not None: with transaction: self._blockLayer.receive_empty(message, transaction) self._observeLayer.receive_empty(message, transaction) except RuntimeError: logger.exception("Exception with Executor") self._socket.close()
Listen for incoming messages. Timeout is used to check if the server must be switched off. :param timeout: Socket Timeout in seconds
def isel_points(self, dim='points', **indexers): # type: (...) -> Dataset """Returns a new dataset with each array indexed pointwise along the specified dimension(s). This method selects pointwise values from each array and is akin to the NumPy indexing behavior of `arr[[0, 1], [0, 1]]`, except this method does not require knowing the order of each array's dimensions. Parameters ---------- dim : str or DataArray or pandas.Index or other list-like object, optional Name of the dimension to concatenate along. If dim is provided as a string, it must be a new dimension name, in which case it is added along axis=0. If dim is provided as a DataArray or Index or list-like object, its name, which must not be present in the dataset, is used as the dimension to concatenate along and the values are added as a coordinate. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by array-like objects. All indexers must be the same length and 1 dimensional. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each array and dimension is indexed by the appropriate indexers. With pointwise indexing, the new Dataset will always be a copy of the original. See Also -------- Dataset.sel Dataset.isel Dataset.sel_points DataArray.isel_points """ # noqa warnings.warn('Dataset.isel_points is deprecated: use Dataset.isel()' 'instead.', DeprecationWarning, stacklevel=2) indexer_dims = set(indexers) def take(variable, slices): # Note: remove helper function when once when numpy # supports vindex https://github.com/numpy/numpy/pull/6075 if hasattr(variable.data, 'vindex'): # Special case for dask backed arrays to use vectorised list # indexing sel = variable.data.vindex[slices] else: # Otherwise assume backend is numpy array with 'fancy' indexing sel = variable.data[slices] return sel def relevant_keys(mapping): return [k for k, v in mapping.items() if any(d in indexer_dims for d in v.dims)] coords = relevant_keys(self.coords) indexers = [(k, np.asarray(v)) # type: ignore for k, v in indexers.items()] indexers_dict = dict(indexers) non_indexed_dims = set(self.dims) - indexer_dims non_indexed_coords = set(self.coords) - set(coords) # All the indexers should be iterables # Check that indexers are valid dims, integers, and 1D for k, v in indexers: if k not in self.dims: raise ValueError("dimension %s does not exist" % k) if v.dtype.kind != 'i': # type: ignore raise TypeError('Indexers must be integers') if v.ndim != 1: # type: ignore raise ValueError('Indexers must be 1 dimensional') # all the indexers should have the same length lengths = set(len(v) for k, v in indexers) if len(lengths) > 1: raise ValueError('All indexers must be the same length') # Existing dimensions are not valid choices for the dim argument if isinstance(dim, str): if dim in self.dims: # dim is an invalid string raise ValueError('Existing dimension names are not valid ' 'choices for the dim argument in sel_points') elif hasattr(dim, 'dims'): # dim is a DataArray or Coordinate if dim.name in self.dims: # dim already exists raise ValueError('Existing dimensions are not valid choices ' 'for the dim argument in sel_points') # Set the new dim_name, and optionally the new dim coordinate # dim is either an array-like or a string if not utils.is_scalar(dim): # dim is array like get name or assign 'points', get as variable dim_name = 'points' if not hasattr(dim, 'name') else dim.name dim_coord = as_variable(dim, name=dim_name) else: # dim is a string dim_name = dim dim_coord = None # type: ignore reordered = self.transpose( *(list(indexer_dims) + list(non_indexed_dims))) variables = OrderedDict() # type: ignore for name, var in reordered.variables.items(): if name in indexers_dict or any( d in indexer_dims for d in var.dims): # slice if var is an indexer or depends on an indexed dim slc = [indexers_dict[k] if k in indexers_dict else slice(None) for k in var.dims] var_dims = [dim_name] + [d for d in var.dims if d in non_indexed_dims] selection = take(var, tuple(slc)) var_subset = type(var)(var_dims, selection, var.attrs) variables[name] = var_subset else: # If not indexed just add it back to variables or coordinates variables[name] = var coord_names = (set(coords) & set(variables)) | non_indexed_coords dset = self._replace_vars_and_dims(variables, coord_names=coord_names) # Add the dim coord to the new dset. Must be done after creation # because_replace_vars_and_dims can only access existing coords, # not add new ones if dim_coord is not None: dset.coords[dim_name] = dim_coord return dset
Returns a new dataset with each array indexed pointwise along the specified dimension(s). This method selects pointwise values from each array and is akin to the NumPy indexing behavior of `arr[[0, 1], [0, 1]]`, except this method does not require knowing the order of each array's dimensions. Parameters ---------- dim : str or DataArray or pandas.Index or other list-like object, optional Name of the dimension to concatenate along. If dim is provided as a string, it must be a new dimension name, in which case it is added along axis=0. If dim is provided as a DataArray or Index or list-like object, its name, which must not be present in the dataset, is used as the dimension to concatenate along and the values are added as a coordinate. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by array-like objects. All indexers must be the same length and 1 dimensional. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each array and dimension is indexed by the appropriate indexers. With pointwise indexing, the new Dataset will always be a copy of the original. See Also -------- Dataset.sel Dataset.isel Dataset.sel_points DataArray.isel_points
def __coord_mel_hz(n, fmin=0, fmax=11025.0, **_kwargs): '''Get the frequencies for Mel bins''' if fmin is None: fmin = 0 if fmax is None: fmax = 11025.0 basis = core.mel_frequencies(n, fmin=fmin, fmax=fmax) basis[1:] -= 0.5 * np.diff(basis) basis = np.append(np.maximum(0, basis), [fmax]) return basis
Get the frequencies for Mel bins