code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def indentLine(self, block, autoIndent): """ Indent line. Return filler or null. """ indent = None if indent is None: indent = self.tryMatchedAnchor(block, autoIndent) if indent is None: indent = self.tryCComment(block) if indent is None and not autoIndent: indent = self.tryCppComment(block) if indent is None: indent = self.trySwitchStatement(block) if indent is None: indent = self.tryAccessModifiers(block) if indent is None: indent = self.tryBrace(block) if indent is None: indent = self.tryCKeywords(block, block.text().lstrip().startswith('{')) if indent is None: indent = self.tryCondition(block) if indent is None: indent = self.tryStatement(block) if indent is not None: return indent else: dbg("Nothing matched") return self._prevNonEmptyBlockIndent(block)
Indent line. Return filler or null.
def severity_level(self, value): """The severity_level property. Args: value (int). the property value. """ if value == self._defaults['severityLevel'] and 'severityLevel' in self._values: del self._values['severityLevel'] else: self._values['severityLevel'] = value
The severity_level property. Args: value (int). the property value.
def getBlocks(sentences, n): """ Get blocks of n sentences together. :param sentences: List of strings where each string is a sentence. :type sentences: list :param n: Maximum blocksize for sentences, i.e. a block will be composed of ``n`` sentences. :type n: int. :returns: Blocks of n sentences. :rtype: list-of-lists .. code-block:: python import rnlp example = "Hello there. How are you? I am fine." sentences = rnlp.getSentences(example) # ['Hello there', 'How are you', 'I am fine'] blocks = rnlp.getBlocks(sentences, 2) # with 1: [['Hello there'], ['How are you'], ['I am fine']] # with 2: [['Hello there', 'How are you'], ['I am fine']] # with 3: [['Hello there', 'How are you', 'I am fine']] """ blocks = [] for i in range(0, len(sentences), n): blocks.append(sentences[i:(i+n)]) return blocks
Get blocks of n sentences together. :param sentences: List of strings where each string is a sentence. :type sentences: list :param n: Maximum blocksize for sentences, i.e. a block will be composed of ``n`` sentences. :type n: int. :returns: Blocks of n sentences. :rtype: list-of-lists .. code-block:: python import rnlp example = "Hello there. How are you? I am fine." sentences = rnlp.getSentences(example) # ['Hello there', 'How are you', 'I am fine'] blocks = rnlp.getBlocks(sentences, 2) # with 1: [['Hello there'], ['How are you'], ['I am fine']] # with 2: [['Hello there', 'How are you'], ['I am fine']] # with 3: [['Hello there', 'How are you', 'I am fine']]
def create_groups(self, container): """CreateGroups. :param :class:`<object> <azure.devops.v5_0.identity.models.object>` container: :rtype: [Identity] """ content = self._serialize.body(container, 'object') response = self._send(http_method='POST', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='5.0', content=content) return self._deserialize('[Identity]', self._unwrap_collection(response))
CreateGroups. :param :class:`<object> <azure.devops.v5_0.identity.models.object>` container: :rtype: [Identity]
def get_post_alter_table_index_foreign_key_sql(self, diff): """ :param diff: The table diff :type diff: orator.dbal.table_diff.TableDiff :rtype: list """ if not isinstance(diff.from_table, Table): raise DBALException( "Sqlite platform requires for alter table the table" "diff with reference to original table schema" ) sql = [] if diff.new_name: table_name = diff.get_new_name() else: table_name = diff.get_name(self) for index in self._get_indexes_in_altered_table(diff).values(): if index.is_primary(): continue sql.append( self.get_create_index_sql(index, table_name.get_quoted_name(self)) ) return sql
:param diff: The table diff :type diff: orator.dbal.table_diff.TableDiff :rtype: list
def _scan_block(self, cfg_job): """ Scan a basic block starting at a specific address :param CFGJob cfg_job: The CFGJob instance. :return: a list of successors :rtype: list """ addr = cfg_job.addr current_func_addr = cfg_job.func_addr # Fix the function address # This is for rare cases where we cannot successfully determine the end boundary of a previous function, and # as a consequence, our analysis mistakenly thinks the previous function goes all the way across the boundary, # resulting the missing of the second function in function manager. if addr in self._function_addresses_from_symbols: current_func_addr = addr if self._addr_hooked_or_syscall(addr): entries = self._scan_procedure(cfg_job, current_func_addr) else: entries = self._scan_irsb(cfg_job, current_func_addr) return entries
Scan a basic block starting at a specific address :param CFGJob cfg_job: The CFGJob instance. :return: a list of successors :rtype: list
def mail_logger(app, level = None): """ Get mail logger Returns configured instance of mail logger ready to be attached to app. Important: app.config['DEBUG'] must be False! :param app: application instance :param level: mail errors of this level :return: SMTPHandler """ credentials = None if app.config['MAIL_USERNAME'] and app.config['MAIL_PASSWORD']: credentials = (app.config['MAIL_USERNAME'], app.config['MAIL_PASSWORD']) secure = None if app.config['MAIL_USE_TLS']: secure = tuple() # @todo: move to configuration config = dict( mailhost=(app.config['MAIL_SERVER'], app.config['MAIL_PORT']), fromaddr=app.config['MAIL_DEFAULT_SENDER'], toaddrs=app.config['ADMINS'], credentials = credentials, subject='Application exception', secure = secure, timeout=1.0 ) mail_handler = SMTPHandler(**config) if level is None: level = logging.ERROR mail_handler.setLevel(level) mail_log_format = ''' Message type: %(levelname)s Location: %(pathname)s:%(lineno)d Module: %(module)s Function: %(funcName)s Time: %(asctime)s Message: %(message)s ''' mail_handler.setFormatter(logging.Formatter(mail_log_format)) return mail_handler
Get mail logger Returns configured instance of mail logger ready to be attached to app. Important: app.config['DEBUG'] must be False! :param app: application instance :param level: mail errors of this level :return: SMTPHandler
def _check_node_parameters(self, **kwargs): """See discussion in issue #840.""" if 'fqdn' in kwargs: kwargs['fqdn'].pop('autopopulate', '') kwargs['fqdn'].pop('addressFamily', '') if 'fqdn' in self.__dict__: self.__dict__['fqdn'].pop('autopopulate', '') self.__dict__['fqdn'].pop('addressFamily', '') if 'state' in kwargs: if kwargs['state'] != 'user-up' and kwargs['state'] != \ 'user-down': kwargs.pop('state') if 'state' in self.__dict__: if self.__dict__['state'] != 'user-up' and self.__dict__['state'] \ != 'user-down': self.__dict__.pop('state') if 'session' in kwargs: if kwargs['session'] != 'user-enabled' and kwargs['session'] != \ 'user-disabled': kwargs.pop('session') if 'session' in self.__dict__: if self.__dict__['session'] != 'user-enabled' and \ self.__dict__['session'] != 'user-disabled': self.__dict__.pop('session') # Until we implement sanity checks for __dict__ this needs to stay here self.__dict__.pop('ephemeral', '') self.__dict__.pop('address', '') return kwargs
See discussion in issue #840.
def projection(radius=5e-6, sphere_index=1.339, medium_index=1.333, wavelength=550e-9, pixel_size=1e-7, grid_size=(80, 80), center=(39.5, 39.5)): """Optical path difference projection of a dielectric sphere Parameters ---------- radius: float Radius of the sphere [m] sphere_index: float Refractive index of the sphere medium_index: float Refractive index of the surrounding medium wavelength: float Vacuum wavelength of the imaging light [m] pixel_size: float Pixel size [m] grid_size: tuple of floats Resulting image size in x and y [px] center: tuple of floats Center position in image coordinates [px] Returns ------- qpi: qpimage.QPImage Quantitative phase data set """ # grid x = np.arange(grid_size[0]).reshape(-1, 1) y = np.arange(grid_size[1]).reshape(1, -1) cx, cy = center # sphere location rpx = radius / pixel_size r = rpx**2 - (x - cx)**2 - (y - cy)**2 # distance z = np.zeros_like(r) rvalid = r > 0 z[rvalid] = 2 * np.sqrt(r[rvalid]) * pixel_size # phase = delta_n * 2PI * z / wavelength phase = (sphere_index - medium_index) * 2 * np.pi * z / wavelength meta_data = {"pixel size": pixel_size, "wavelength": wavelength, "medium index": medium_index, "sim center": center, "sim radius": radius, "sim index": sphere_index, "sim model": "projection", } qpi = qpimage.QPImage(data=phase, which_data="phase", meta_data=meta_data) return qpi
Optical path difference projection of a dielectric sphere Parameters ---------- radius: float Radius of the sphere [m] sphere_index: float Refractive index of the sphere medium_index: float Refractive index of the surrounding medium wavelength: float Vacuum wavelength of the imaging light [m] pixel_size: float Pixel size [m] grid_size: tuple of floats Resulting image size in x and y [px] center: tuple of floats Center position in image coordinates [px] Returns ------- qpi: qpimage.QPImage Quantitative phase data set
def _strip_footnote_definitions(self, text): """A footnote definition looks like this: [^note-id]: Text of the note. May include one or more indented paragraphs. Where, - The 'note-id' can be pretty much anything, though typically it is the number of the footnote. - The first paragraph may start on the next line, like so: [^note-id]: Text of the note. """ less_than_tab = self.tab_width - 1 footnote_def_re = re.compile(r''' ^[ ]{0,%d}\[\^(.+)\]: # id = \1 [ \t]* ( # footnote text = \2 # First line need not start with the spaces. (?:\s*.*\n+) (?: (?:[ ]{%d} | \t) # Subsequent lines must be indented. .*\n+ )* ) # Lookahead for non-space at line-start, or end of doc. (?:(?=^[ ]{0,%d}\S)|\Z) ''' % (less_than_tab, self.tab_width, self.tab_width), re.X | re.M) return footnote_def_re.sub(self._extract_footnote_def_sub, text)
A footnote definition looks like this: [^note-id]: Text of the note. May include one or more indented paragraphs. Where, - The 'note-id' can be pretty much anything, though typically it is the number of the footnote. - The first paragraph may start on the next line, like so: [^note-id]: Text of the note.
def _get_self_bounds(self): """ Computes the bounds of the object itself (not including it's children) in the form [[lat_min, lon_min], [lat_max, lon_max]]. """ if not self.embed: raise ValueError('Cannot compute bounds of non-embedded GeoJSON.') data = json.loads(self.data) if 'features' not in data.keys(): # Catch case when GeoJSON is just a single Feature or a geometry. if not (isinstance(data, dict) and 'geometry' in data.keys()): # Catch case when GeoJSON is just a geometry. data = {'type': 'Feature', 'geometry': data} data = {'type': 'FeatureCollection', 'features': [data]} bounds = [[None, None], [None, None]] for feature in data['features']: for point in iter_points(feature.get('geometry', {}).get('coordinates', {})): # noqa bounds = [ [ none_min(bounds[0][0], point[1]), none_min(bounds[0][1], point[0]), ], [ none_max(bounds[1][0], point[1]), none_max(bounds[1][1], point[0]), ], ] return bounds
Computes the bounds of the object itself (not including it's children) in the form [[lat_min, lon_min], [lat_max, lon_max]].
def decrease_posts_count_after_post_unaproval(sender, instance, **kwargs): """ Decreases the member's post count after a post unaproval. This receiver handles the unaproval of a forum post: the posts count associated with the post's author is decreased. """ if not instance.pk: # Do not consider posts being created. return profile, dummy = ForumProfile.objects.get_or_create(user=instance.poster) try: old_instance = instance.__class__._default_manager.get(pk=instance.pk) except ObjectDoesNotExist: # pragma: no cover # This should never happen (except with django loaddata command) return if old_instance and old_instance.approved is True and instance.approved is False: profile.posts_count = F('posts_count') - 1 profile.save()
Decreases the member's post count after a post unaproval. This receiver handles the unaproval of a forum post: the posts count associated with the post's author is decreased.
def _GetDirectory(self): """Retrieves the directory. Returns: LVMDirectory: a directory or None if not available. """ if self.entry_type != definitions.FILE_ENTRY_TYPE_DIRECTORY: return None return LVMDirectory(self._file_system, self.path_spec)
Retrieves the directory. Returns: LVMDirectory: a directory or None if not available.
def get_cities_by_name(self, name): """Get a list of city dictionaries with the given name. City names cannot be used as keys, as they are not unique. """ if name not in self.cities_by_names: if self.cities_items is None: self.cities_items = list(self.get_cities().items()) self.cities_by_names[name] = [dict({gid: city}) for gid, city in self.cities_items if city['name'] == name] return self.cities_by_names[name]
Get a list of city dictionaries with the given name. City names cannot be used as keys, as they are not unique.
def remove(self, *args): """Remove the instance tied to the field from all the indexes For the parameters, seen BaseIndex.remove """ args = self.prepare_args(args) for index in self._indexes: index.remove(*args)
Remove the instance tied to the field from all the indexes For the parameters, seen BaseIndex.remove
def estimateBIsochrone(pot,R,z,phi=None): """ NAME: estimateBIsochrone PURPOSE: Estimate a good value for the scale of the isochrone potential by matching the slope of the rotation curve INPUT: pot- Potential instance or list thereof R,z - coordinates (if these are arrays, the median estimated delta is returned, i.e., if this is an orbit) phi= (None) azimuth to use for non-axisymmetric potentials (array if R and z are arrays) OUTPUT: b if 1 R,Z given bmin,bmedian,bmax if multiple R given HISTORY: 2013-09-12 - Written - Bovy (IAS) 2016-02-20 - Changed input order to allow physical conversions - Bovy (UofT) 2016-06-28 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT) """ if pot is None: #pragma: no cover raise IOError("pot= needs to be set to a Potential instance or list thereof") if isinstance(R,nu.ndarray): if phi is None: phi= [None for r in R] bs= nu.array([estimateBIsochrone(pot,R[ii],z[ii],phi=phi[ii], use_physical=False) for ii in range(len(R))]) return nu.array([nu.amin(bs[True^nu.isnan(bs)]), nu.median(bs[True^nu.isnan(bs)]), nu.amax(bs[True^nu.isnan(bs)])]) else: r2= R**2.+z**2 r= math.sqrt(r2) dlvcdlr= dvcircdR(pot,r,phi=phi,use_physical=False)/vcirc(pot,r,phi=phi,use_physical=False)*r try: b= optimize.brentq(lambda x: dlvcdlr-(x/math.sqrt(r2+x**2.)-0.5*r2/(r2+x**2.)), 0.01,100.) except: #pragma: no cover b= nu.nan return b
NAME: estimateBIsochrone PURPOSE: Estimate a good value for the scale of the isochrone potential by matching the slope of the rotation curve INPUT: pot- Potential instance or list thereof R,z - coordinates (if these are arrays, the median estimated delta is returned, i.e., if this is an orbit) phi= (None) azimuth to use for non-axisymmetric potentials (array if R and z are arrays) OUTPUT: b if 1 R,Z given bmin,bmedian,bmax if multiple R given HISTORY: 2013-09-12 - Written - Bovy (IAS) 2016-02-20 - Changed input order to allow physical conversions - Bovy (UofT) 2016-06-28 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT)
def _safe_sparse_mask(tensor: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: """ In PyTorch 1.0, Tensor._sparse_mask was changed to Tensor.sparse_mask. This wrapper allows AllenNLP to (temporarily) work with both 1.0 and 0.4.1. """ # pylint: disable=protected-access try: return tensor.sparse_mask(mask) except AttributeError: # TODO(joelgrus): remove this and/or warn at some point return tensor._sparse_mask(mask)
In PyTorch 1.0, Tensor._sparse_mask was changed to Tensor.sparse_mask. This wrapper allows AllenNLP to (temporarily) work with both 1.0 and 0.4.1.
def get_small_molecule_name(self, hms_lincs_id): """Get the name of a small molecule from the LINCS sm metadata. Parameters ---------- hms_lincs_id : str The HMS LINCS ID of the small molecule. Returns ------- str The name of the small molecule. """ entry = self._get_entry_by_id(self._sm_data, hms_lincs_id) if not entry: return None name = entry['Name'] return name
Get the name of a small molecule from the LINCS sm metadata. Parameters ---------- hms_lincs_id : str The HMS LINCS ID of the small molecule. Returns ------- str The name of the small molecule.
def _normalize(x, cmin=None, cmax=None, clip=True): """Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.""" if not isinstance(x, np.ndarray): x = np.array(x) if cmin is None: cmin = x.min() if cmax is None: cmax = x.max() if cmin == cmax: return .5 * np.ones(x.shape) else: cmin, cmax = float(cmin), float(cmax) y = (x - cmin) * 1. / (cmax - cmin) if clip: y = np.clip(y, 0., 1.) return y
Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.
def get_connectable_volume_templates(self, start=0, count=-1, filter='', query='', sort=''): """ Gets the storage volume templates that are available on the specified networks based on the storage system port's expected network connectivity. If there are no storage volume templates that meet the specified connectivity criteria, an empty collection will be returned. Returns: list: Storage volume templates. """ uri = self.URI + "/connectable-volume-templates" get_uri = self._client.build_query_uri(start=start, count=count, filter=filter, query=query, sort=sort, uri=uri) return self._client.get(get_uri)
Gets the storage volume templates that are available on the specified networks based on the storage system port's expected network connectivity. If there are no storage volume templates that meet the specified connectivity criteria, an empty collection will be returned. Returns: list: Storage volume templates.
def add_uuid(dom, uuid): """ Add ``<mods:identifier>`` with `uuid`. """ mods_tag = get_mods_tag(dom) uuid_tag = dhtmlparser.HTMLElement( "mods:identifier", {"type": "uuid"}, [dhtmlparser.HTMLElement(uuid)] ) insert_tag(uuid_tag, dom.find("mods:identifier"), mods_tag)
Add ``<mods:identifier>`` with `uuid`.
def simplified_pos(pos, tagset=None): """ Return a simplified POS tag for a full POS tag `pos` belonging to a tagset `tagset`. By default the WordNet tagset is assumed. Does the following conversion by default: - all N... (noun) tags to 'N' - all V... (verb) tags to 'V' - all ADJ... (adjective) tags to 'ADJ' - all ADV... (adverb) tags to 'ADV' - all other to None Does the following conversion by with `tagset=='penn'`: - all N... (noun) tags to 'N' - all V... (verb) tags to 'V' - all JJ... (adjective) tags to 'ADJ' - all RB... (adverb) tags to 'ADV' - all other to None """ if tagset == 'penn': if pos.startswith('N') or pos.startswith('V'): return pos[0] elif pos.startswith('JJ'): return 'ADJ' elif pos.startswith('RB'): return 'ADV' else: return None else: # default: WordNet, STTS or unknown if pos.startswith('N') or pos.startswith('V'): return pos[0] elif pos.startswith('ADJ') or pos.startswith('ADV'): return pos[:3] else: return None
Return a simplified POS tag for a full POS tag `pos` belonging to a tagset `tagset`. By default the WordNet tagset is assumed. Does the following conversion by default: - all N... (noun) tags to 'N' - all V... (verb) tags to 'V' - all ADJ... (adjective) tags to 'ADJ' - all ADV... (adverb) tags to 'ADV' - all other to None Does the following conversion by with `tagset=='penn'`: - all N... (noun) tags to 'N' - all V... (verb) tags to 'V' - all JJ... (adjective) tags to 'ADJ' - all RB... (adverb) tags to 'ADV' - all other to None
def get_response_data(self, response, parse_json=True): """ Get response data or throw an appropiate exception :param response: requests response object :param parse_json: if True, response will be parsed as JSON :return: response data, either as json or as a regular response.content object """ if response.status_code in (requests.codes.ok, requests.codes.created): if parse_json: return response.json() return response.content elif response.status_code == requests.codes.bad_request: response_json = response.json() raise BadRequestException(response_json.get("error", False) or response_json.get("errors", _("Bad Request: {text}").format(text=response.text))) elif response.status_code == requests.codes.not_found: raise NotFoundException(_("Resource not found: {url}").format(url=response.url)) elif response.status_code == requests.codes.internal_server_error: raise ServerErrorException(_("Internal server error")) elif response.status_code in (requests.codes.unauthorized, requests.codes.forbidden): raise AuthErrorException(_("Access denied")) elif response.status_code == requests.codes.too_many_requests: raise RateLimitException(_(response.text)) else: raise ServerErrorException(_("Unknown error occurred"))
Get response data or throw an appropiate exception :param response: requests response object :param parse_json: if True, response will be parsed as JSON :return: response data, either as json or as a regular response.content object
def samples_to_records(samples, default_keys=None): """Convert samples into output CWL records. """ from bcbio.pipeline import run_info RECORD_CONVERT_TO_LIST = set(["config__algorithm__tools_on", "config__algorithm__tools_off", "reference__genome_context"]) all_keys = _get_all_cwlkeys(samples, default_keys) out = [] for data in samples: for raw_key in sorted(list(all_keys)): key = raw_key.split("__") if tz.get_in(key, data) is None: data = tz.update_in(data, key, lambda x: None) if raw_key not in data["cwl_keys"]: data["cwl_keys"].append(raw_key) if raw_key in RECORD_CONVERT_TO_LIST: val = tz.get_in(key, data) if not val: val = [] elif not isinstance(val, (list, tuple)): val = [val] data = tz.update_in(data, key, lambda x: val) # Booleans are problematic for CWL serialization, convert into string representation if isinstance(tz.get_in(key, data), bool): data = tz.update_in(data, key, lambda x: str(tz.get_in(key, data))) data["metadata"] = run_info.add_metadata_defaults(data.get("metadata", {})) out.append(data) return out
Convert samples into output CWL records.
def p_single_line_if(p): """ if_inline : if_then_part statements %prec ID | if_then_part co_statements_co %prec NEWLINE | if_then_part statements_co %prec NEWLINE | if_then_part co_statements %prec ID """ cond_ = p[1] stat_ = p[2] p[0] = make_sentence('IF', cond_, stat_, lineno=p.lineno(1))
if_inline : if_then_part statements %prec ID | if_then_part co_statements_co %prec NEWLINE | if_then_part statements_co %prec NEWLINE | if_then_part co_statements %prec ID
def DeactivateCard(self, card): """Deactivate a card.""" if hasattr(card, 'connection'): card.connection.disconnect() if None != self.parent.apdutracerpanel: card.connection.deleteObserver(self.parent.apdutracerpanel) delattr(card, 'connection') self.dialogpanel.OnDeactivateCard(card)
Deactivate a card.
def init_states(self, source_encoded: mx.sym.Symbol, source_encoded_lengths: mx.sym.Symbol, source_encoded_max_length: int) -> List[mx.sym.Symbol]: """ Returns a list of symbolic states that represent the initial states of this decoder. Used for inference. :param source_encoded: Encoded source. Shape: (batch_size, source_encoded_max_length, encoder_depth). :param source_encoded_lengths: Lengths of encoded source sequences. Shape: (batch_size,). :param source_encoded_max_length: Size of encoder time dimension. :return: List of symbolic initial states. """ pass
Returns a list of symbolic states that represent the initial states of this decoder. Used for inference. :param source_encoded: Encoded source. Shape: (batch_size, source_encoded_max_length, encoder_depth). :param source_encoded_lengths: Lengths of encoded source sequences. Shape: (batch_size,). :param source_encoded_max_length: Size of encoder time dimension. :return: List of symbolic initial states.
def _warning_for_deprecated_user_based_rules(rules): """Warning user based policy enforcement used in the rule but the rule doesn't support it. """ for rule in rules: # We will skip the warning for the resources which support user based # policy enforcement. if [resource for resource in USER_BASED_RESOURCES if resource in rule[0]]: continue if 'user_id' in KEY_EXPR.findall(rule[1]): LOG.warning(_LW("The user_id attribute isn't supported in the " "rule '%s'. All the user_id based policy " "enforcement will be removed in the " "future."), rule[0])
Warning user based policy enforcement used in the rule but the rule doesn't support it.
def restore_breakpoints_state(cls, breakpoints_state_list): """Restore the state of breakpoints given a list provided by backup_breakpoints_state(). If list of breakpoint has changed since backup missing or added breakpoints are ignored. breakpoints_state_list is a list of tuple. Each tuple is of form: (breakpoint_number, enabled, condition) """ for breakpoint_state in breakpoints_state_list: bp = cls.breakpoints_by_number[breakpoint_state[0]] if bp: bp.enabled = breakpoint_state[1] bp.condition = breakpoint_state[2] cls.update_active_breakpoint_flag() return
Restore the state of breakpoints given a list provided by backup_breakpoints_state(). If list of breakpoint has changed since backup missing or added breakpoints are ignored. breakpoints_state_list is a list of tuple. Each tuple is of form: (breakpoint_number, enabled, condition)
def out_of_date(self): """Check if our local latest sha matches the remote latest sha""" try: latest_remote_sha = self.pr_commits(self.pull_request.refresh(True))[-1].sha print("Latest remote sha: {}".format(latest_remote_sha)) try: print("Ratelimit remaining: {}".format(self.github.ratelimit_remaining)) except Exception: print("Failed to look up ratelimit remaining") return self.last_sha != latest_remote_sha except IndexError: return False
Check if our local latest sha matches the remote latest sha
def add_child_resource_client(self, res_name, res_spec): """Add a resource client to the container and start the resource connection""" res_spec = dict(res_spec) res_spec['name'] = res_name res = self.client_resource_factory( res_spec, parent=self, logger=self._logger) self.children[resource.escape_name(res_name)] = res; self._children_dirty = True res.set_ioloop(self.ioloop) res.start() return res
Add a resource client to the container and start the resource connection
def map_files(self, base_dir, all_components_list): """Apply `assert_single_path_by_glob()` to all elements of `all_components_list`. Each element of `all_components_list` should be a tuple of path components, including wildcards. The elements of each tuple are joined, and interpreted as a glob expression relative to `base_dir`. The resulting glob should match exactly one path. :return: List of matched paths, one per element of `all_components_list`. :raises: :class:`ArchiveFileMapper.ArchiveFileMappingError` if more or less than one path was matched by one of the glob expressions interpreted from `all_components_list`. """ mapped_paths = [] for components_tupled in all_components_list: with_base = [base_dir] + list(components_tupled) # Results are known to exist, since they match a glob. mapped_paths.append(self.assert_single_path_by_glob(with_base)) return mapped_paths
Apply `assert_single_path_by_glob()` to all elements of `all_components_list`. Each element of `all_components_list` should be a tuple of path components, including wildcards. The elements of each tuple are joined, and interpreted as a glob expression relative to `base_dir`. The resulting glob should match exactly one path. :return: List of matched paths, one per element of `all_components_list`. :raises: :class:`ArchiveFileMapper.ArchiveFileMappingError` if more or less than one path was matched by one of the glob expressions interpreted from `all_components_list`.
def _pypsa_load_timeseries_aggregated_at_lv_station(network, timesteps): """ Aggregates load time series per sector and LV grid. Parameters ---------- network : Network The eDisGo grid topology model overall container timesteps : array_like Timesteps is an array-like object with entries of type :pandas:`pandas.Timestamp<timestamp>` specifying which time steps to export to pypsa representation and use in power flow analysis. Returns ------- tuple of :pandas:`pandas.DataFrame<dataframe>` Tuple of size two containing DataFrames that represent 1. 'p_set' of aggregated Load per sector at each LV station 2. 'q_set' of aggregated Load per sector at each LV station """ # ToDo: Load.pypsa_timeseries is not differentiated by sector so this # function will not work (either change here and in # add_aggregated_lv_components or in Load class) load_p = [] load_q = [] for lv_grid in network.mv_grid.lv_grids: # Determine aggregated load at LV stations load = {} for lo in lv_grid.graph.nodes_by_attribute('load'): for sector, val in lo.consumption.items(): load.setdefault(sector, {}) load[sector].setdefault('timeseries_p', []) load[sector].setdefault('timeseries_q', []) load[sector]['timeseries_p'].append( lo.pypsa_timeseries('p').rename(repr(lo)).to_frame().loc[ timesteps]) load[sector]['timeseries_q'].append( lo.pypsa_timeseries('q').rename(repr(lo)).to_frame().loc[ timesteps]) for sector, val in load.items(): load_p.append( pd.concat(val['timeseries_p'], axis=1).sum(axis=1).rename( '_'.join(['Load', sector, repr(lv_grid)])).to_frame()) load_q.append( pd.concat(val['timeseries_q'], axis=1).sum(axis=1).rename( '_'.join(['Load', sector, repr(lv_grid)])).to_frame()) return load_p, load_q
Aggregates load time series per sector and LV grid. Parameters ---------- network : Network The eDisGo grid topology model overall container timesteps : array_like Timesteps is an array-like object with entries of type :pandas:`pandas.Timestamp<timestamp>` specifying which time steps to export to pypsa representation and use in power flow analysis. Returns ------- tuple of :pandas:`pandas.DataFrame<dataframe>` Tuple of size two containing DataFrames that represent 1. 'p_set' of aggregated Load per sector at each LV station 2. 'q_set' of aggregated Load per sector at each LV station
def submission(self): """Return the Submission object this comment belongs to.""" if not self._submission: # Comment not from submission self._submission = self.reddit_session.get_submission( url=self._fast_permalink) return self._submission
Return the Submission object this comment belongs to.
def _reorder_types(self, types_script): """ Takes type scripts and reorders them to avoid Type doesn't exist exception """ self._logger.debug('Running types definitions scripts') self._logger.debug('Reordering types definitions scripts to avoid "type does not exist" exceptions') _type_statements = sqlparse.split(types_script) # TODO: move up to classes _type_statements_dict = {} # dictionary that store statements with type and order. type_unordered_scripts = [] # scripts to execute without order type_drop_scripts = [] # drop scripts to execute first for _type_statement in _type_statements: _type_statement_parsed = sqlparse.parse(_type_statement) if len(_type_statement_parsed) > 0: # can be empty parsed object so need to check # we need only type declarations to be ordered if _type_statement_parsed[0].get_type() == 'CREATE': _type_body_r = r'\bcreate\s+\b(?:type|domain)\s+\b(\w+\.\w+|\w+)\b' _type_name = re.compile(_type_body_r, flags=re.IGNORECASE).findall(_type_statement)[0] _type_statements_dict[str(_type_name)] = \ {'script': _type_statement, 'deps': []} elif _type_statement_parsed[0].get_type() == 'DROP': type_drop_scripts.append(_type_statement) else: type_unordered_scripts.append(_type_statement) # now let's add dependant types to dictionary with types # _type_statements_list = [] # list of statements to be ordered for _type_key in _type_statements_dict.keys(): for _type_key_sub, _type_value in _type_statements_dict.items(): if _type_key != _type_key_sub: if pgpm.lib.utils.misc.find_whole_word(_type_key)(_type_value['script']): _type_value['deps'].append(_type_key) # now let's add order to type scripts and put them ordered to list _deps_unresolved = True _type_script_order = 0 _type_names = [] type_ordered_scripts = [] # ordered list with scripts to execute while _deps_unresolved: for k, v in _type_statements_dict.items(): if not v['deps']: _type_names.append(k) v['order'] = _type_script_order _type_script_order += 1 if not v['script'] in type_ordered_scripts: type_ordered_scripts.append(v['script']) else: _dep_exists = True for _dep in v['deps']: if _dep not in _type_names: _dep_exists = False if _dep_exists: _type_names.append(k) v['order'] = _type_script_order _type_script_order += 1 if not v['script'] in type_ordered_scripts: type_ordered_scripts.append(v['script']) else: v['order'] = -1 _deps_unresolved = False for k, v in _type_statements_dict.items(): if v['order'] == -1: _deps_unresolved = True return type_drop_scripts, type_ordered_scripts, type_unordered_scripts
Takes type scripts and reorders them to avoid Type doesn't exist exception
def circumradius(self): ''' Distance from the circumcenter to all the verticies in the Triangle, float. ''' return (self.a * self.b * self.c) / (self.area * 4)
Distance from the circumcenter to all the verticies in the Triangle, float.
def plot_file_distances(dist_matrix): """ Plots dist_matrix Parameters ---------- dist_matrix: np.ndarray """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.matshow(dist_matrix, interpolation='nearest', cmap=plt.cm.get_cmap('PuBu'))
Plots dist_matrix Parameters ---------- dist_matrix: np.ndarray
def run(): """ Start the BaseHTTPServer and serve requests forever. """ server_address = (args.listen_addr, args.listen_port) httpd = YHSM_VALServer(server_address, YHSM_VALRequestHandler) my_log_message(args, syslog.LOG_INFO, "Serving requests to 'http://%s:%s%s' (YubiHSM: '%s')" \ % (args.listen_addr, args.listen_port, args.serve_url, args.device)) httpd.serve_forever()
Start the BaseHTTPServer and serve requests forever.
def browse(i): """ Input: { data_uoa - data UOA of the repo } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ o=i.get('out','') duoa=i.get('data_uoa','') if duoa=='': return {'return':1, 'error':'repository UOA is not specified'} # Get configuration (not from Cache - can be outdated info!) # r=ck.load_repo_info_from_cache({'repo_uoa':duoa}) r=ck.access({'action':'load', 'module_uoa':work['self_module_uoa'], 'data_uoa':duoa}) if r['return']>0: return r p=r.get('dict',{}).get('path','') d=r['dict'] dn=r.get('data_name','') shared=d.get('shared','') url=d.get('url','') if shared!='git' and url=='': return {'return':1, 'error':'this repository is not shared!'} import webbrowser webbrowser.open(url) return {'return':0}
Input: { data_uoa - data UOA of the repo } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 }
def write(self, filename): """Write the XML job description to a file.""" txt = self.tostring() with open(filename, 'w') as f: f.write(txt)
Write the XML job description to a file.
def _get_pq_array_construct(self): """ Returns a construct for an array of PQ load data. """ bus_no = integer.setResultsName("bus_no") s_rating = real.setResultsName("s_rating") # MVA v_rating = real.setResultsName("v_rating") # kV p = real.setResultsName("p") # p.u. q = real.setResultsName("q") # p.u. v_max = Optional(real).setResultsName("v_max") # p.u. v_min = Optional(real).setResultsName("v_min") # p.u. # Allow conversion to impedance z_conv = Optional(boolean).setResultsName("z_conv") status = Optional(boolean).setResultsName("status") pq_data = bus_no + s_rating + v_rating + p + q + v_max + \ v_min + z_conv + status + scolon pq_data.setParseAction(self.push_pq) pq_array = Literal("PQ.con") + "=" + "[" + "..." + \ ZeroOrMore(pq_data + Optional("]" + scolon)) return pq_array
Returns a construct for an array of PQ load data.
def make_headers(worksheet): """ Make headers from worksheet """ headers = {} cell_idx = 0 while cell_idx < worksheet.ncols: cell_type = worksheet.cell_type(0, cell_idx) if cell_type == 1: header = slughifi(worksheet.cell_value(0, cell_idx)) if not header.startswith("_"): headers[cell_idx] = header cell_idx += 1 return headers
Make headers from worksheet
def symbol_leading_char(self): """Return the symbol leading char attribute of the BFD file being processed. """ if not self._ptr: raise BfdException("BFD not initialized") return _bfd.get_bfd_attribute( self._ptr, BfdAttributes.SYMBOL_LEADING_CHAR)
Return the symbol leading char attribute of the BFD file being processed.
def flow_coef_bd(CIJ): ''' Computes the flow coefficient for each node and averaged over the network, as described in Honey et al. (2007) PNAS. The flow coefficient is similar to betweenness centrality, but works on a local neighborhood. It is mathematically related to the clustering coefficient (cc) at each node as, fc+cc <= 1. Parameters ---------- CIJ : NxN np.ndarray binary directed connection matrix Returns ------- fc : Nx1 np.ndarray flow coefficient for each node FC : float average flow coefficient over the network total_flo : int number of paths that "flow" across the central node ''' N = len(CIJ) fc = np.zeros((N,)) total_flo = np.zeros((N,)) max_flo = np.zeros((N,)) # loop over nodes for v in range(N): # find neighbors - note: both incoming and outgoing connections nb, = np.where(CIJ[v, :] + CIJ[:, v].T) fc[v] = 0 if np.where(nb)[0].size: CIJflo = -CIJ[np.ix_(nb, nb)] for i in range(len(nb)): for j in range(len(nb)): if CIJ[nb[i], v] and CIJ[v, nb[j]]: CIJflo[i, j] += 1 total_flo[v] = np.sum( (CIJflo == 1) * np.logical_not(np.eye(len(nb)))) max_flo[v] = len(nb) * len(nb) - len(nb) fc[v] = total_flo[v] / max_flo[v] fc[np.isnan(fc)] = 0 FC = np.mean(fc) return fc, FC, total_flo
Computes the flow coefficient for each node and averaged over the network, as described in Honey et al. (2007) PNAS. The flow coefficient is similar to betweenness centrality, but works on a local neighborhood. It is mathematically related to the clustering coefficient (cc) at each node as, fc+cc <= 1. Parameters ---------- CIJ : NxN np.ndarray binary directed connection matrix Returns ------- fc : Nx1 np.ndarray flow coefficient for each node FC : float average flow coefficient over the network total_flo : int number of paths that "flow" across the central node
def _set_mct_state(self, v, load=False): """ Setter method for mct_state, mapped from YANG variable /mct_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_mct_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_mct_state() directly. YANG Description: MCT Operational Information """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=mct_state.mct_state, is_container='container', presence=False, yang_name="mct-state", rest_name="mct-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'nsm-mct', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-nsm-operational', defining_module='brocade-nsm-operational', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """mct_state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=mct_state.mct_state, is_container='container', presence=False, yang_name="mct-state", rest_name="mct-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'nsm-mct', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-nsm-operational', defining_module='brocade-nsm-operational', yang_type='container', is_config=True)""", }) self.__mct_state = t if hasattr(self, '_set'): self._set()
Setter method for mct_state, mapped from YANG variable /mct_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_mct_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_mct_state() directly. YANG Description: MCT Operational Information
def attr_name(self): "Returns attribute name for this facet" return self.schema.name if self.schema else self.field.name
Returns attribute name for this facet
def join(C, *args, **kwargs): """join a list of url elements, and include any keyword arguments, as a new URL""" u = C('/'.join([str(arg).strip('/') for arg in args]), **kwargs) return u
join a list of url elements, and include any keyword arguments, as a new URL
def put(self, f, digest=None): """ Upload a blob :param f: File object to be uploaded (required to support seek if digest is not provided). :param digest: Optional SHA-1 hex digest of the file contents. Gets computed before actual upload if not provided, which requires an extra file read. :return: The hex digest of the uploaded blob if not provided in the call. Otherwise a boolean indicating if the blob has been newly created. """ if digest: actual_digest = digest else: actual_digest = self._compute_digest(f) created = self.conn.client.blob_put(self.container_name, actual_digest, f) if digest: return created return actual_digest
Upload a blob :param f: File object to be uploaded (required to support seek if digest is not provided). :param digest: Optional SHA-1 hex digest of the file contents. Gets computed before actual upload if not provided, which requires an extra file read. :return: The hex digest of the uploaded blob if not provided in the call. Otherwise a boolean indicating if the blob has been newly created.
def parse(self, request, bundle_errors=False): """Parses argument value(s) from the request, converting according to the argument's type. :param request: The flask request object to parse arguments from :param bundle_errors: Do not abort when first error occurs, return a dict with the name of the argument and the error message to be bundled """ source = self.source(request) results = [] # Sentinels _not_found = False _found = True for operator in self.operators: name = self.name + operator.replace("=", "", 1) if name in source: # Account for MultiDict and regular dict if hasattr(source, "getlist"): values = source.getlist(name) else: values = source.get(name) if not (isinstance(values, collections.MutableSequence) and self.action == 'append'): values = [values] for value in values: if hasattr(value, "strip") and self.trim: value = value.strip() if hasattr(value, "lower") and not self.case_sensitive: value = value.lower() if hasattr(self.choices, "__iter__"): self.choices = [choice.lower() for choice in self.choices] try: value = self.convert(value, operator) except Exception as error: if self.ignore: continue return self.handle_validation_error(error, bundle_errors) if self.choices and value not in self.choices: if current_app.config.get("BUNDLE_ERRORS", False) or bundle_errors: return self.handle_validation_error( ValueError(u"{0} is not a valid choice".format( value)), bundle_errors) self.handle_validation_error( ValueError(u"{0} is not a valid choice".format( value)), bundle_errors) if name in request.unparsed_arguments: request.unparsed_arguments.pop(name) results.append(value) if not results and self.required: if isinstance(self.location, six.string_types): error_msg = u"Missing required parameter in {0}".format( _friendly_location.get(self.location, self.location) ) else: friendly_locations = [_friendly_location.get(loc, loc) for loc in self.location] error_msg = u"Missing required parameter in {0}".format( ' or '.join(friendly_locations) ) if current_app.config.get("BUNDLE_ERRORS", False) or bundle_errors: return self.handle_validation_error(ValueError(error_msg), bundle_errors) self.handle_validation_error(ValueError(error_msg), bundle_errors) if not results: if callable(self.default): return self.default(), _not_found else: return self.default, _not_found if self.action == 'append': return results, _found if self.action == 'store' or len(results) == 1: return results[0], _found return results, _found
Parses argument value(s) from the request, converting according to the argument's type. :param request: The flask request object to parse arguments from :param bundle_errors: Do not abort when first error occurs, return a dict with the name of the argument and the error message to be bundled
def _sanitise(*args): """Take an arg or the key portion of a kwarg and check that it is in the set of allowed GPG options and flags, and that it has the correct type. Then, attempt to escape any unsafe characters. If an option is not allowed, drop it with a logged warning. Returns a dictionary of all sanitised, allowed options. Each new option that we support that is not a boolean, but instead has some additional inputs following it, i.e. "--encrypt-file foo.txt", will need some basic safety checks added here. GnuPG has three-hundred and eighteen commandline flags. Also, not all implementations of OpenPGP parse PGP packets and headers in the same way, so there is added potential there for messing with calls to GPG. For information on the PGP message format specification, see :rfc:`1991`. If you're asking, "Is this *really* necessary?": No, not really -- we could just follow the security precautions recommended by `this xkcd`__. __ https://xkcd.com/1181/ :param str args: (optional) The boolean arguments which will be passed to the GnuPG process. :rtype: str :returns: ``sanitised`` """ ## see TODO file, tag :cleanup:sanitise: def _check_option(arg, value): """Check that a single ``arg`` is an allowed option. If it is allowed, quote out any escape characters in ``value``, and add the pair to :ivar:`sanitised`. Otherwise, drop them. :param str arg: The arguments which will be passed to the GnuPG process, and, optionally their corresponding values. The values are any additional arguments following the GnuPG option or flag. For example, if we wanted to pass ``"--encrypt --recipient [email protected]"`` to GnuPG, then ``"--encrypt"`` would be an arg without a value, and ``"--recipient"`` would also be an arg, with a value of ``"[email protected]"``. :ivar list checked: The sanitised, allowed options and values. :rtype: str :returns: A string of the items in ``checked``, delimited by spaces. """ checked = str() none_options = _get_options_group("none_options") hex_options = _get_options_group("hex_options") hex_or_none_options = _get_options_group("hex_or_none_options") if not _util._py3k: if not isinstance(arg, list) and isinstance(arg, unicode): arg = str(arg) try: flag = _is_allowed(arg) assert flag is not None, "_check_option(): got None for flag" except (AssertionError, ProtectedOption) as error: log.warn("_check_option(): %s" % str(error)) else: checked += (flag + ' ') if _is_string(value): values = value.split(' ') for v in values: ## these can be handled separately, without _fix_unsafe(), ## because they are only allowed if they pass the regex if (flag in none_options) and (v is None): continue if flag in hex_options: if _is_hex(v): checked += (v + " ") else: log.debug("'%s %s' not hex." % (flag, v)) if (flag in hex_or_none_options) and (v is None): log.debug("Allowing '%s' for all keys" % flag) continue elif flag in ['--keyserver']: host = _check_keyserver(v) if host: log.debug("Setting keyserver: %s" % host) checked += (v + " ") else: log.debug("Dropping keyserver: %s" % v) continue ## the rest are strings, filenames, etc, and should be ## shell escaped: val = _fix_unsafe(v) try: assert not val is None assert not val.isspace() assert not v is None assert not v.isspace() except: log.debug("Dropping %s %s" % (flag, v)) continue if flag in ['--encrypt', '--encrypt-files', '--decrypt', '--decrypt-files', '--import', '--verify']: if ( (_util._is_file(val)) or ((flag == '--verify') and (val == '-')) ): checked += (val + " ") else: log.debug("%s not file: %s" % (flag, val)) elif flag in ['--cipher-algo', '--personal-cipher-prefs', '--personal-cipher-preferences']: legit_algos = _check_preferences(val, 'cipher') if legit_algos: checked += (legit_algos + " ") else: log.debug("'%s' is not cipher" % val) elif flag in ['--compress-algo', '--compression-algo', '--personal-compress-prefs', '--personal-compress-preferences']: legit_algos = _check_preferences(val, 'compress') if legit_algos: checked += (legit_algos + " ") else: log.debug("'%s' not compress algo" % val) elif flag == '--trust-model': legit_models = _check_preferences(val, 'trust') if legit_models: checked += (legit_models + " ") else: log.debug("%r is not a trust model", val) elif flag == '--pinentry-mode': legit_modes = _check_preferences(val, 'pinentry') if legit_modes: checked += (legit_modes + " ") else: log.debug("%r is not a pinentry mode", val) else: checked += (val + " ") log.debug("_check_option(): No checks for %s" % val) return checked.rstrip(' ') is_flag = lambda x: x.startswith('--') def _make_filo(args_string): filo = arg.split(' ') filo.reverse() log.debug("_make_filo(): Converted to reverse list: %s" % filo) return filo def _make_groups(filo): groups = {} while len(filo) >= 1: last = filo.pop() if is_flag(last): log.debug("Got arg: %s" % last) if last == '--verify': groups[last] = str(filo.pop()) ## accept the read-from-stdin arg: if len(filo) >= 1 and filo[len(filo)-1] == '-': groups[last] += str(' - ') ## gross hack filo.pop() else: groups[last] = str() while len(filo) > 1 and not is_flag(filo[len(filo)-1]): log.debug("Got value: %s" % filo[len(filo)-1]) groups[last] += (filo.pop() + " ") else: if len(filo) == 1 and not is_flag(filo[0]): log.debug("Got value: %s" % filo[0]) groups[last] += filo.pop() else: log.warn("_make_groups(): Got solitary value: %s" % last) groups["xxx"] = last return groups def _check_groups(groups): log.debug("Got groups: %s" % groups) checked_groups = [] for a,v in groups.items(): v = None if len(v) == 0 else v safe = _check_option(a, v) if safe is not None and not safe.strip() == "": log.debug("Appending option: %s" % safe) checked_groups.append(safe) else: log.warn("Dropped option: '%s %s'" % (a,v)) return checked_groups if args is not None: option_groups = {} for arg in args: ## if we're given a string with a bunch of options in it split ## them up and deal with them separately if (not _util._py3k and isinstance(arg, basestring)) \ or (_util._py3k and isinstance(arg, str)): log.debug("Got arg string: %s" % arg) if arg.find(' ') > 0: filo = _make_filo(arg) option_groups.update(_make_groups(filo)) else: option_groups.update({ arg: "" }) elif isinstance(arg, list): log.debug("Got arg list: %s" % arg) arg.reverse() option_groups.update(_make_groups(arg)) else: log.warn("Got non-str/list arg: '%s', type '%s'" % (arg, type(arg))) checked = _check_groups(option_groups) sanitised = ' '.join(x for x in checked) return sanitised else: log.debug("Got None for args")
Take an arg or the key portion of a kwarg and check that it is in the set of allowed GPG options and flags, and that it has the correct type. Then, attempt to escape any unsafe characters. If an option is not allowed, drop it with a logged warning. Returns a dictionary of all sanitised, allowed options. Each new option that we support that is not a boolean, but instead has some additional inputs following it, i.e. "--encrypt-file foo.txt", will need some basic safety checks added here. GnuPG has three-hundred and eighteen commandline flags. Also, not all implementations of OpenPGP parse PGP packets and headers in the same way, so there is added potential there for messing with calls to GPG. For information on the PGP message format specification, see :rfc:`1991`. If you're asking, "Is this *really* necessary?": No, not really -- we could just follow the security precautions recommended by `this xkcd`__. __ https://xkcd.com/1181/ :param str args: (optional) The boolean arguments which will be passed to the GnuPG process. :rtype: str :returns: ``sanitised``
def collect_genv(self, include_local=True, include_global=True): """ Returns a copy of the global environment with all the local variables copied back into it. """ e = type(self.genv)() if include_global: e.update(self.genv) if include_local: for k, v in self.lenv.items(): e['%s_%s' % (self.obj.name.lower(), k)] = v return e
Returns a copy of the global environment with all the local variables copied back into it.
def postcode(self): """ :example '101-1212' """ return "%03d-%04d" % (self.generator.random.randint(0, 999), self.generator.random.randint(0, 9999))
:example '101-1212'
def kallisto_general_stats_table(self): """ Take the parsed stats from the Kallisto report and add it to the basic stats table at the top of the report """ headers = OrderedDict() headers['fragment_length'] = { 'title': 'Frag Length', 'description': 'Estimated average fragment length', 'min': 0, 'suffix': 'bp', 'scale': 'RdYlGn' } headers['percent_aligned'] = { 'title': '% Aligned', 'description': '% processed reads that were pseudoaligned', 'max': 100, 'min': 0, 'suffix': '%', 'scale': 'YlGn' } headers['pseudoaligned_reads'] = { 'title': '{} Aligned'.format(config.read_count_prefix), 'description': 'Pseudoaligned reads ({})'.format(config.read_count_desc), 'min': 0, 'scale': 'PuRd', 'modify': lambda x: x * config.read_count_multiplier, 'shared_key': 'read_count' } self.general_stats_addcols(self.kallisto_data, headers)
Take the parsed stats from the Kallisto report and add it to the basic stats table at the top of the report
def playback(cls, filename): """ .. testcode:: import io import json import requests import httpretty with httpretty.record('/tmp/ip.json'): data = requests.get('https://httpbin.org/ip').json() with io.open('/tmp/ip.json') as fd: assert data == json.load(fd) :param filename: a string :returns: a `context-manager <https://docs.python.org/3/reference/datamodel.html#context-managers>`_ """ cls.enable() data = json.loads(open(filename).read()) for item in data: uri = item['request']['uri'] method = item['request']['method'] body = item['response']['body'] headers = item['response']['headers'] cls.register_uri(method, uri, body=body, forcing_headers=headers) yield cls.disable()
.. testcode:: import io import json import requests import httpretty with httpretty.record('/tmp/ip.json'): data = requests.get('https://httpbin.org/ip').json() with io.open('/tmp/ip.json') as fd: assert data == json.load(fd) :param filename: a string :returns: a `context-manager <https://docs.python.org/3/reference/datamodel.html#context-managers>`_
def merge_nodes(self, keep_node, kill_node): """ Merge two nodes in the graph. Takes two nodes and merges them together, merging their links by combining the two link lists and summing the weights of links which point to the same node. All links in the graph pointing to ``kill_node`` will be merged into ``keep_node``. Links belonging to ``kill_node`` which point to targets not in ``self.node_list`` will not be merged into ``keep_node`` Args: keep_node (Node): node to be kept kill_node (Node): node to be deleted Returns: None Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> node_2 = Node('Two') >>> node_3 = Node('Three') >>> node_1.add_link(node_3, 7) >>> node_2.add_link(node_1, 1) >>> node_2.add_link(node_2, 3) >>> node_3.add_link(node_2, 5) >>> graph = Graph([node_1, node_2, node_3]) >>> print([node.value for node in graph.node_list]) ['One', 'Two', 'Three'] >>> graph.merge_nodes(node_2, node_3) >>> print([node.value for node in graph.node_list]) ['One', 'Two'] >>> for link in graph.node_list[1].link_list: ... print('{} {}'.format(link.target.value, link.weight)) One 1 Two 8 """ # Merge links from kill_node to keep_node for kill_link in kill_node.link_list: if kill_link.target in self.node_list: keep_node.add_link(kill_link.target, kill_link.weight) # Merge any links in the graph pointing to kill_node into links # pointing to keep_node for node in self.node_list: for link in node.link_list: if link.target == kill_node: node.add_link(keep_node, link.weight) break # Remove kill_node from the graph self.remove_node(kill_node)
Merge two nodes in the graph. Takes two nodes and merges them together, merging their links by combining the two link lists and summing the weights of links which point to the same node. All links in the graph pointing to ``kill_node`` will be merged into ``keep_node``. Links belonging to ``kill_node`` which point to targets not in ``self.node_list`` will not be merged into ``keep_node`` Args: keep_node (Node): node to be kept kill_node (Node): node to be deleted Returns: None Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> node_2 = Node('Two') >>> node_3 = Node('Three') >>> node_1.add_link(node_3, 7) >>> node_2.add_link(node_1, 1) >>> node_2.add_link(node_2, 3) >>> node_3.add_link(node_2, 5) >>> graph = Graph([node_1, node_2, node_3]) >>> print([node.value for node in graph.node_list]) ['One', 'Two', 'Three'] >>> graph.merge_nodes(node_2, node_3) >>> print([node.value for node in graph.node_list]) ['One', 'Two'] >>> for link in graph.node_list[1].link_list: ... print('{} {}'.format(link.target.value, link.weight)) One 1 Two 8
def get_close_matches(word, possibilities, n=None, cutoff=0.6): """Overrides `difflib.get_close_match` to controle argument `n`.""" if n is None: n = settings.num_close_matches return difflib_get_close_matches(word, possibilities, n, cutoff)
Overrides `difflib.get_close_match` to controle argument `n`.
def search(self, query, page=None, per_page=1000, mentions=3, data=False): """ Retrieve all objects that make a search query. Will loop through all pages that match unless you provide the number of pages you'd like to restrict the search to. Example usage: >> documentcloud.documents.search('salazar') """ # If the user provides a page, search it and stop there if page: document_list = self._get_search_page( query, page=page, per_page=per_page, mentions=mentions, data=data, ) # If the user doesn't provide a page keep looping until you have # everything else: page = 1 document_list = [] # Loop through all the search pages and fetch everything while True: results = self._get_search_page( query, page=page, per_page=per_page, mentions=mentions, data=data, ) if results: document_list += results page += 1 else: break # Convert the JSON objects from the API into Python objects obj_list = [] for doc in document_list: doc['_connection'] = self._connection obj = Document(doc) obj_list.append(obj) # Pass it back out return obj_list
Retrieve all objects that make a search query. Will loop through all pages that match unless you provide the number of pages you'd like to restrict the search to. Example usage: >> documentcloud.documents.search('salazar')
def main(args=None): """ Create a private key and a certificate and write them to a file. """ if args is None: args = sys.argv[1:] o = Options() try: o.parseOptions(args) except usage.UsageError, e: raise SystemExit(str(e)) else: return createSSLCertificate(o)
Create a private key and a certificate and write them to a file.
def is_img_id_valid(img_id): """ Checks if img_id is valid. """ t = re.sub(r'[^a-z0-9_:\-\.]', '', img_id, re.IGNORECASE) t = re.sub(r'\.+', '.', t) if img_id != t or img_id.count(':') != 1: return False profile, base_name = img_id.split(':', 1) if not profile or not base_name: return False try: get_profile_configs(profile) except ValueError: return False return True
Checks if img_id is valid.
def update_pypsa_storage_timeseries(network, storages_to_update=None, timesteps=None): """ Updates storage time series in pypsa representation. This function overwrites p_set and q_set of storage_unit_t attribute of pypsa network. Be aware that if you call this function with `timesteps` and thus overwrite current time steps it may lead to inconsistencies in the pypsa network since only storage time series are updated but none of the other time series or the snapshots attribute of the pypsa network. Use the function :func:`update_pypsa_timeseries` to change the time steps you want to analyse in the power flow analysis. This function will also raise an error when a storage that is currently not in the pypsa representation is added. Parameters ---------- network : Network The eDisGo grid topology model overall container storages_to_update : :obj:`list`, optional List with all storages (of type :class:`~.grid.components.Storage`) that need to be updated. If None all storages are updated depending on mode. See :meth:`~.tools.pypsa_io.to_pypsa` for more information. timesteps : :pandas:`pandas.DatetimeIndex<datetimeindex>` or :pandas:`pandas.Timestamp<timestamp>` Timesteps specifies which time steps of the storage time series to export to pypsa representation. If None all time steps currently existing in pypsa representation are updated. If not None current time steps are overwritten by given time steps. Default: None. """ _update_pypsa_timeseries_by_type( network, type='storage', components_to_update=storages_to_update, timesteps=timesteps)
Updates storage time series in pypsa representation. This function overwrites p_set and q_set of storage_unit_t attribute of pypsa network. Be aware that if you call this function with `timesteps` and thus overwrite current time steps it may lead to inconsistencies in the pypsa network since only storage time series are updated but none of the other time series or the snapshots attribute of the pypsa network. Use the function :func:`update_pypsa_timeseries` to change the time steps you want to analyse in the power flow analysis. This function will also raise an error when a storage that is currently not in the pypsa representation is added. Parameters ---------- network : Network The eDisGo grid topology model overall container storages_to_update : :obj:`list`, optional List with all storages (of type :class:`~.grid.components.Storage`) that need to be updated. If None all storages are updated depending on mode. See :meth:`~.tools.pypsa_io.to_pypsa` for more information. timesteps : :pandas:`pandas.DatetimeIndex<datetimeindex>` or :pandas:`pandas.Timestamp<timestamp>` Timesteps specifies which time steps of the storage time series to export to pypsa representation. If None all time steps currently existing in pypsa representation are updated. If not None current time steps are overwritten by given time steps. Default: None.
def freeze_matrix(script, all_layers=False): """ Freeze the current transformation matrix into the coordinates of the vertices of the mesh (and set this matrix to the identity). In other words it applies in a definitive way the current matrix to the vertex coordinates. Args: script: the FilterScript object or script filename to write the filter to. all_layers (bool): If selected the filter will be applied to all visible mesh layers. """ filter_xml = ''.join([ ' <filter name="Freeze Current Matrix">\n', ' <Param name="allLayers" ', 'value="%s" ' % str(all_layers).lower(), 'description="Apply to all visible Layers" ', 'type="RichBool" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) return None
Freeze the current transformation matrix into the coordinates of the vertices of the mesh (and set this matrix to the identity). In other words it applies in a definitive way the current matrix to the vertex coordinates. Args: script: the FilterScript object or script filename to write the filter to. all_layers (bool): If selected the filter will be applied to all visible mesh layers.
def _expand_options(cls, options, backend=None): """ Validates and expands a dictionaries of options indexed by type[.group][.label] keys into separate style, plot, norm and output options. opts._expand_options({'Image': dict(cmap='viridis', show_title=False)}) returns {'Image': {'plot': dict(show_title=False), 'style': dict(cmap='viridis')}} """ current_backend = Store.current_backend try: backend_options = Store.options(backend=backend or current_backend) except KeyError as e: raise Exception('The %s backend is not loaded. Please load the backend using hv.extension.' % str(e)) expanded = {} if isinstance(options, list): options = merge_options_to_dict(options) for objspec, options in options.items(): objtype = objspec.split('.')[0] if objtype not in backend_options: raise ValueError('%s type not found, could not apply options.' % objtype) obj_options = backend_options[objtype] expanded[objspec] = {g: {} for g in obj_options.groups} for opt, value in options.items(): found = False valid_options = [] for g, group_opts in sorted(obj_options.groups.items()): if opt in group_opts.allowed_keywords: expanded[objspec][g][opt] = value found = True break valid_options += group_opts.allowed_keywords if found: continue cls._options_error(opt, objtype, backend, valid_options) return expanded
Validates and expands a dictionaries of options indexed by type[.group][.label] keys into separate style, plot, norm and output options. opts._expand_options({'Image': dict(cmap='viridis', show_title=False)}) returns {'Image': {'plot': dict(show_title=False), 'style': dict(cmap='viridis')}}
def describe_splits(self, cfName, start_token, end_token, keys_per_split): """ experimental API for hadoop/parallel query support. may change violently and without warning. returns list of token strings such that first subrange is (list[0], list[1]], next is (list[1], list[2]], etc. Parameters: - cfName - start_token - end_token - keys_per_split """ self._seqid += 1 d = self._reqs[self._seqid] = defer.Deferred() self.send_describe_splits(cfName, start_token, end_token, keys_per_split) return d
experimental API for hadoop/parallel query support. may change violently and without warning. returns list of token strings such that first subrange is (list[0], list[1]], next is (list[1], list[2]], etc. Parameters: - cfName - start_token - end_token - keys_per_split
def export_avg_losses(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ dskey = ekey[0] oq = dstore['oqparam'] dt = oq.loss_dt() name, value, tags = _get_data(dstore, dskey, oq.hazard_stats().items()) writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) assets = get_assets(dstore) for tag, values in zip(tags, value.transpose(1, 0, 2)): dest = dstore.build_fname(name, tag, 'csv') array = numpy.zeros(len(values), dt) for l, lt in enumerate(dt.names): array[lt] = values[:, l] writer.save(compose_arrays(assets, array), dest) return writer.getsaved()
:param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object
def addFreetextAnnot(self, rect, text, fontsize=12, fontname=None, color=None, rotate=0): """Add a 'FreeText' annotation in rectangle 'rect'.""" CheckParent(self) val = _fitz.Page_addFreetextAnnot(self, rect, text, fontsize, fontname, color, rotate) if not val: return val.thisown = True val.parent = weakref.proxy(self) self._annot_refs[id(val)] = val return val
Add a 'FreeText' annotation in rectangle 'rect'.
def effects(self, cursor=None, order='asc', limit=10, sse=False): """Retrieve the effects JSON from this instance's Horizon server. Retrieve the effects JSON response for the account associated with this :class:`Address`. :param cursor: A paging token, specifying where to start returning records from. When streaming this can be set to "now" to stream object created since your request time. :type cursor: int, str :param str order: The order in which to return rows, "asc" or "desc". :param int limit: Maximum number of records to return. :param bool sse: Use the SSE client for connecting to Horizon. """ return self.horizon.account_effects( self.address, cursor=cursor, order=order, limit=limit, sse=sse)
Retrieve the effects JSON from this instance's Horizon server. Retrieve the effects JSON response for the account associated with this :class:`Address`. :param cursor: A paging token, specifying where to start returning records from. When streaming this can be set to "now" to stream object created since your request time. :type cursor: int, str :param str order: The order in which to return rows, "asc" or "desc". :param int limit: Maximum number of records to return. :param bool sse: Use the SSE client for connecting to Horizon.
def create_button(self, style=Gtk.ReliefStyle.NORMAL): """ This is generalized method for creating Gtk.Button """ btn = Gtk.Button() btn.set_relief(style) return btn
This is generalized method for creating Gtk.Button
def prepare_env(self): """ Manages reading environment metadata files under ``private_data_dir`` and merging/updating with existing values so the :py:class:`ansible_runner.runner.Runner` object can read and use them easily """ try: passwords = self.loader.load_file('env/passwords', Mapping) self.expect_passwords = { re.compile(pattern, re.M): password for pattern, password in iteritems(passwords) } except ConfigurationError: output.debug('Not loading passwords') self.expect_passwords = dict() self.expect_passwords[pexpect.TIMEOUT] = None self.expect_passwords[pexpect.EOF] = None try: # seed env with existing shell env self.env = os.environ.copy() envvars = self.loader.load_file('env/envvars', Mapping) if envvars: self.env.update({k:six.text_type(v) for k, v in envvars.items()}) if self.envvars and isinstance(self.envvars, dict): self.env.update({k:six.text_type(v) for k, v in self.envvars.items()}) except ConfigurationError: output.debug("Not loading environment vars") # Still need to pass default environment to pexpect self.env = os.environ.copy() try: self.settings = self.loader.load_file('env/settings', Mapping) except ConfigurationError: output.debug("Not loading settings") self.settings = dict() try: self.ssh_key_data = self.loader.load_file('env/ssh_key', string_types) except ConfigurationError: output.debug("Not loading ssh key") self.ssh_key_data = None self.idle_timeout = self.settings.get('idle_timeout', None) self.job_timeout = self.settings.get('job_timeout', None) self.pexpect_timeout = self.settings.get('pexpect_timeout', 5) self.process_isolation = self.settings.get('process_isolation', self.process_isolation) self.process_isolation_executable = self.settings.get('process_isolation_executable', self.process_isolation_executable) self.process_isolation_path = self.settings.get('process_isolation_path', self.process_isolation_path) self.process_isolation_hide_paths = self.settings.get('process_isolation_hide_paths', self.process_isolation_hide_paths) self.process_isolation_show_paths = self.settings.get('process_isolation_show_paths', self.process_isolation_show_paths) self.process_isolation_ro_paths = self.settings.get('process_isolation_ro_paths', self.process_isolation_ro_paths) self.pexpect_use_poll = self.settings.get('pexpect_use_poll', True) self.suppress_ansible_output = self.settings.get('suppress_ansible_output', self.quiet) self.directory_isolation_cleanup = bool(self.settings.get('directory_isolation_cleanup', True)) if 'AD_HOC_COMMAND_ID' in self.env or not os.path.exists(self.project_dir): self.cwd = self.private_data_dir else: if self.directory_isolation_path is not None: self.cwd = self.directory_isolation_path else: self.cwd = self.project_dir if 'fact_cache' in self.settings: if 'fact_cache_type' in self.settings: if self.settings['fact_cache_type'] == 'jsonfile': self.fact_cache = os.path.join(self.artifact_dir, self.settings['fact_cache']) else: self.fact_cache = os.path.join(self.artifact_dir, self.settings['fact_cache'])
Manages reading environment metadata files under ``private_data_dir`` and merging/updating with existing values so the :py:class:`ansible_runner.runner.Runner` object can read and use them easily
def generate_reciprocal_vectors_squared(a1, a2, a3, encut): """ Generate reciprocal vector magnitudes within the cutoff along the specied lattice vectors. Args: a1: Lattice vector a (in Bohrs) a2: Lattice vector b (in Bohrs) a3: Lattice vector c (in Bohrs) encut: Reciprocal vector energy cutoff Returns: [[g1^2], [g2^2], ...] Square of reciprocal vectors (1/Bohr)^2 determined by a1, a2, a3 and whose magntidue is less than gcut^2. """ for vec in genrecip(a1, a2, a3, encut): yield np.dot(vec, vec)
Generate reciprocal vector magnitudes within the cutoff along the specied lattice vectors. Args: a1: Lattice vector a (in Bohrs) a2: Lattice vector b (in Bohrs) a3: Lattice vector c (in Bohrs) encut: Reciprocal vector energy cutoff Returns: [[g1^2], [g2^2], ...] Square of reciprocal vectors (1/Bohr)^2 determined by a1, a2, a3 and whose magntidue is less than gcut^2.
def check_uid_validity(key, email): """Check that a the email belongs to the given key. Also check the trust level of this connection. Only if the trust level is high enough (>=4) the email is assumed to belong to the key. :param key: the GPG key to which the email should belong :type key: gpg.gpgme._gpgme_key :param email: the email address that should belong to the key :type email: str :returns: whether the key can be assumed to belong to the given email :rtype: bool """ def check(key_uid): return (email == key_uid.email and not key_uid.revoked and not key_uid.invalid and key_uid.validity >= gpg.constants.validity.FULL) return any(check(u) for u in key.uids)
Check that a the email belongs to the given key. Also check the trust level of this connection. Only if the trust level is high enough (>=4) the email is assumed to belong to the key. :param key: the GPG key to which the email should belong :type key: gpg.gpgme._gpgme_key :param email: the email address that should belong to the key :type email: str :returns: whether the key can be assumed to belong to the given email :rtype: bool
def block_lengths(self): """Gets the lengths of the blocks. Note: This works with the property structure `_lengths_cache` to avoid having to recompute these values each time they are needed. """ if self._lengths_cache is None: # The first column will have the correct lengths. We have an # invariant that requires that all blocks be the same length in a # row of blocks. self._lengths_cache = np.array( [obj.length().get() for obj in self._partitions_cache.T[0]] if len(self._partitions_cache.T) > 0 else [] ) return self._lengths_cache
Gets the lengths of the blocks. Note: This works with the property structure `_lengths_cache` to avoid having to recompute these values each time they are needed.
def get_main_chain_layers(self): """Return a list of layer IDs in the main chain.""" main_chain = self.get_main_chain() ret = [] for u in main_chain: for v, layer_id in self.adj_list[u]: if v in main_chain and u in main_chain: ret.append(layer_id) return ret
Return a list of layer IDs in the main chain.
def format_query_result(self, query_result, query_path, return_type=list, preceding_depth=None): """ Formats the query result based on the return type requested. :param query_result: (dict or str or list), yaml query result :param query_path: (str, list(str)), representing query path :param return_type: type, return type of object user desires :param preceding_depth: int, the depth to which we want to encapsulate back up config tree -1 : defaults to entire tree :return: (dict, OrderedDict, str, list), specified return type """ if type(query_result) != return_type: converted_result = self.format_with_handler(query_result, return_type) else: converted_result = query_result converted_result = self.add_preceding_dict(converted_result, query_path, preceding_depth) return converted_result
Formats the query result based on the return type requested. :param query_result: (dict or str or list), yaml query result :param query_path: (str, list(str)), representing query path :param return_type: type, return type of object user desires :param preceding_depth: int, the depth to which we want to encapsulate back up config tree -1 : defaults to entire tree :return: (dict, OrderedDict, str, list), specified return type
def sort(self, func=None): """ Sorts 'self.data' in-place. Argument: - func : optional, default 'None' -- - If 'func' not given, sorting will be in ascending order. - If 'func' given, it will determine the sort order. 'func' must be a two-argument comparison function which returns -1, 0, or 1, to mean before, same, or after ordering.""" if func: self.data.sort(func) else: self.data.sort()
Sorts 'self.data' in-place. Argument: - func : optional, default 'None' -- - If 'func' not given, sorting will be in ascending order. - If 'func' given, it will determine the sort order. 'func' must be a two-argument comparison function which returns -1, 0, or 1, to mean before, same, or after ordering.
def dist_abs( self, src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5), layout='QWERTY', ): """Return the typo distance between two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison metric : str Supported values include: ``euclidean``, ``manhattan``, ``log-euclidean``, and ``log-manhattan`` cost : tuple A 4-tuple representing the cost of the four possible edits: inserts, deletes, substitutions, and shift, respectively (by default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be significantly less than the cost of an insertion & deletion unless a log metric is used. layout : str Name of the keyboard layout to use (Currently supported: ``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``) Returns ------- float Typo distance Raises ------ ValueError char not found in any keyboard layouts Examples -------- >>> cmp = Typo() >>> cmp.dist_abs('cat', 'hat') 1.5811388 >>> cmp.dist_abs('Niall', 'Neil') 2.8251407 >>> cmp.dist_abs('Colin', 'Cuilen') 3.4142137 >>> cmp.dist_abs('ATCG', 'TAGC') 2.5 >>> cmp.dist_abs('cat', 'hat', metric='manhattan') 2.0 >>> cmp.dist_abs('Niall', 'Neil', metric='manhattan') 3.0 >>> cmp.dist_abs('Colin', 'Cuilen', metric='manhattan') 3.5 >>> cmp.dist_abs('ATCG', 'TAGC', metric='manhattan') 2.5 >>> cmp.dist_abs('cat', 'hat', metric='log-manhattan') 0.804719 >>> cmp.dist_abs('Niall', 'Neil', metric='log-manhattan') 2.2424533 >>> cmp.dist_abs('Colin', 'Cuilen', metric='log-manhattan') 2.2424533 >>> cmp.dist_abs('ATCG', 'TAGC', metric='log-manhattan') 2.3465736 """ ins_cost, del_cost, sub_cost, shift_cost = cost if src == tar: return 0.0 if not src: return len(tar) * ins_cost if not tar: return len(src) * del_cost keyboard = self._keyboard[layout] lowercase = {item for sublist in keyboard[0] for item in sublist} uppercase = {item for sublist in keyboard[1] for item in sublist} def _kb_array_for_char(char): """Return the keyboard layout that contains ch. Parameters ---------- char : str The character to lookup Returns ------- tuple A keyboard Raises ------ ValueError char not found in any keyboard layouts """ if char in lowercase: return keyboard[0] elif char in uppercase: return keyboard[1] raise ValueError(char + ' not found in any keyboard layouts') def _substitution_cost(char1, char2): cost = sub_cost cost *= metric_dict[metric](char1, char2) + shift_cost * ( _kb_array_for_char(char1) != _kb_array_for_char(char2) ) return cost def _get_char_coord(char, kb_array): """Return the row & column of char in the keyboard. Parameters ---------- char : str The character to search for kb_array : tuple of tuples The array of key positions Returns ------- tuple The row & column of the key """ for row in kb_array: # pragma: no branch if char in row: return kb_array.index(row), row.index(char) def _euclidean_keyboard_distance(char1, char2): row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) return ((row1 - row2) ** 2 + (col1 - col2) ** 2) ** 0.5 def _manhattan_keyboard_distance(char1, char2): row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) return abs(row1 - row2) + abs(col1 - col2) def _log_euclidean_keyboard_distance(char1, char2): return log(1 + _euclidean_keyboard_distance(char1, char2)) def _log_manhattan_keyboard_distance(char1, char2): return log(1 + _manhattan_keyboard_distance(char1, char2)) metric_dict = { 'euclidean': _euclidean_keyboard_distance, 'manhattan': _manhattan_keyboard_distance, 'log-euclidean': _log_euclidean_keyboard_distance, 'log-manhattan': _log_manhattan_keyboard_distance, } d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) for i in range(len(src) + 1): d_mat[i, 0] = i * del_cost for j in range(len(tar) + 1): d_mat[0, j] = j * ins_cost for i in range(len(src)): for j in range(len(tar)): d_mat[i + 1, j + 1] = min( d_mat[i + 1, j] + ins_cost, # ins d_mat[i, j + 1] + del_cost, # del d_mat[i, j] + ( _substitution_cost(src[i], tar[j]) if src[i] != tar[j] else 0 ), # sub/== ) return d_mat[len(src), len(tar)]
Return the typo distance between two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison metric : str Supported values include: ``euclidean``, ``manhattan``, ``log-euclidean``, and ``log-manhattan`` cost : tuple A 4-tuple representing the cost of the four possible edits: inserts, deletes, substitutions, and shift, respectively (by default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be significantly less than the cost of an insertion & deletion unless a log metric is used. layout : str Name of the keyboard layout to use (Currently supported: ``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``) Returns ------- float Typo distance Raises ------ ValueError char not found in any keyboard layouts Examples -------- >>> cmp = Typo() >>> cmp.dist_abs('cat', 'hat') 1.5811388 >>> cmp.dist_abs('Niall', 'Neil') 2.8251407 >>> cmp.dist_abs('Colin', 'Cuilen') 3.4142137 >>> cmp.dist_abs('ATCG', 'TAGC') 2.5 >>> cmp.dist_abs('cat', 'hat', metric='manhattan') 2.0 >>> cmp.dist_abs('Niall', 'Neil', metric='manhattan') 3.0 >>> cmp.dist_abs('Colin', 'Cuilen', metric='manhattan') 3.5 >>> cmp.dist_abs('ATCG', 'TAGC', metric='manhattan') 2.5 >>> cmp.dist_abs('cat', 'hat', metric='log-manhattan') 0.804719 >>> cmp.dist_abs('Niall', 'Neil', metric='log-manhattan') 2.2424533 >>> cmp.dist_abs('Colin', 'Cuilen', metric='log-manhattan') 2.2424533 >>> cmp.dist_abs('ATCG', 'TAGC', metric='log-manhattan') 2.3465736
def makeBasicSolution(self,EndOfPrdvP,aNrm,interpolator): ''' Given end of period assets and end of period marginal value, construct the basic solution for this period. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal values. aNrm : np.array Array of end-of-period asset values that yield the marginal values in EndOfPrdvP. interpolator : function A function that constructs and returns a consumption function. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function, and minimum m. ''' cNrm,mNrm = self.getPointsForInterpolation(EndOfPrdvP,aNrm) solution_now = self.usePointsForInterpolation(cNrm,mNrm,interpolator) return solution_now
Given end of period assets and end of period marginal value, construct the basic solution for this period. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal values. aNrm : np.array Array of end-of-period asset values that yield the marginal values in EndOfPrdvP. interpolator : function A function that constructs and returns a consumption function. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function, and minimum m.
def compute_between_collection_interval_duration(self, prefix): """Calculates BETWEEN-collection intervals for the current collection and measure type and takes their mean. :param str prefix: Prefix for the key entry in self.measures. Negative intervals (for overlapping clusters) are counted as 0 seconds. Intervals are calculated as being the difference between the ending time of the last word in a collection and the start time of the first word in the subsequent collection. Note that these intervals are not necessarily silences, and may include asides, filled pauses, words from the examiner, etc. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_between_collection_interval_duration_mean: average interval duration separating clusters """ durations = [] # duration of each collection for collection in self.collection_list: # Entry, with timing, in timed_response for first word in collection start = collection[0].start_time # Entry, with timing, in timed_response for last word in collection end = collection[-1].end_time durations.append((start, end)) # calculation between-duration intervals interstices = [durations[i + 1][0] - durations[i][1] for i, d in enumerate(durations[:-1])] # Replace negative interstices (for overlapping clusters) with # interstices of duration 0 for i, entry in enumerate(interstices): if interstices[i] < 0: interstices[i] = 0 self.measures[prefix + 'between_collection_interval_duration_mean'] = get_mean(interstices) \ if len(interstices) > 0 else 'NA' if not self.quiet: print print self.current_similarity_measure + " between-" + self.current_collection_type + " durations" table = [(self.current_collection_type + " 1 (start,end)", "Interval", self.current_collection_type + " 2 (start,end)")] + \ [(str(d1), str(i1), str(d2)) for d1, i1, d2 in zip(durations[:-1], interstices, durations[1:])] print_table(table) print print "Mean " + self.current_similarity_measure + " between-" + self.current_collection_type + " duration", \ self.measures[prefix + 'between_collection_interval_duration_mean']
Calculates BETWEEN-collection intervals for the current collection and measure type and takes their mean. :param str prefix: Prefix for the key entry in self.measures. Negative intervals (for overlapping clusters) are counted as 0 seconds. Intervals are calculated as being the difference between the ending time of the last word in a collection and the start time of the first word in the subsequent collection. Note that these intervals are not necessarily silences, and may include asides, filled pauses, words from the examiner, etc. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_between_collection_interval_duration_mean: average interval duration separating clusters
def query(cls, url=urljoin(config.API_URL, 'stac/search'), **kwargs): """ Get request """ logger.debug('Query URL: %s, Body: %s' % (url, json.dumps(kwargs))) response = requests.post(url, data=json.dumps(kwargs)) # API error if response.status_code != 200: raise SatSearchError(response.text) return response.json()
Get request
def user_roles_exists(name, roles, database, user=None, password=None, host=None, port=None, authdb=None): ''' Checks if a user of a MongoDB database has specified roles CLI Examples: .. code-block:: bash salt '*' mongodb.user_roles_exists johndoe '["readWrite"]' dbname admin adminpwd localhost 27017 .. code-block:: bash salt '*' mongodb.user_roles_exists johndoe '[{"role": "readWrite", "db": "dbname" }, {"role": "read", "db": "otherdb"}]' dbname admin adminpwd localhost 27017 ''' try: roles = _to_dict(roles) except Exception: return 'Roles provided in wrong format' users = user_list(user, password, host, port, database, authdb) if isinstance(users, six.string_types): return 'Failed to connect to mongo database' for user in users: if name == dict(user).get('user'): for role in roles: # if the role was provided in the shortened form, we convert it to a long form if not isinstance(role, dict): role = {'role': role, 'db': database} if role not in dict(user).get('roles', []): return False return True return False
Checks if a user of a MongoDB database has specified roles CLI Examples: .. code-block:: bash salt '*' mongodb.user_roles_exists johndoe '["readWrite"]' dbname admin adminpwd localhost 27017 .. code-block:: bash salt '*' mongodb.user_roles_exists johndoe '[{"role": "readWrite", "db": "dbname" }, {"role": "read", "db": "otherdb"}]' dbname admin adminpwd localhost 27017
def set_public_domain(self, public_domain=None): """Sets the public domain flag. :param public_domain: the public domain status :type public_domain: ``boolean`` :raise: ``NoAccess`` -- ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.* """ if public_domain is None: raise NullArgument() metadata = Metadata(**settings.METADATA['public_domain']) if metadata.is_read_only(): raise NoAccess() if self._is_valid_input(public_domain, metadata, array=False): self._my_map['publicDomain'] = public_domain else: raise InvalidArgument()
Sets the public domain flag. :param public_domain: the public domain status :type public_domain: ``boolean`` :raise: ``NoAccess`` -- ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.*
def flatten_all(nested_iterable): """Flatten arbitrary depth of nesting. Good for unknown nesting structure iterable object. Example:: >>> list(flatten_all([[1, 2], "abc", [3, ["x", "y", "z"]], 4])) [1, 2, "abc", 3, "x", "y", "z", 4] **中文文档** 将任意维度的列表压平成一维列表。 注: 使用hasattr(i, "__iter__")方法做是否是可循环对象的判断, 性能要高于其他 任何方法, 例如: isinstance(i, collections.Iterable) """ for item in nested_iterable: if hasattr(item, "__iter__") and not isinstance(item, string_types): for i in flatten_all(item): yield i else: yield item
Flatten arbitrary depth of nesting. Good for unknown nesting structure iterable object. Example:: >>> list(flatten_all([[1, 2], "abc", [3, ["x", "y", "z"]], 4])) [1, 2, "abc", 3, "x", "y", "z", 4] **中文文档** 将任意维度的列表压平成一维列表。 注: 使用hasattr(i, "__iter__")方法做是否是可循环对象的判断, 性能要高于其他 任何方法, 例如: isinstance(i, collections.Iterable)
def nailgunned_stdio(cls, sock, env, handle_stdin=True): """Redirects stdio to the connected socket speaking the nailgun protocol.""" # Determine output tty capabilities from the environment. stdin_isatty, stdout_isatty, stderr_isatty = NailgunProtocol.isatty_from_env(env) is_tty_capable = all((stdin_isatty, stdout_isatty, stderr_isatty)) if is_tty_capable: with cls._tty_stdio(env) as finalizer: yield finalizer else: with cls._pipe_stdio( sock, stdin_isatty, stdout_isatty, stderr_isatty, handle_stdin ) as finalizer: yield finalizer
Redirects stdio to the connected socket speaking the nailgun protocol.
def submit(recaptcha_response, private_key, remoteip): """ Submits a reCAPTCHA request for verification. Returns RecaptchaResponse for the request recaptcha_response -- The value of reCAPTCHA response from the form private_key -- your reCAPTCHA private key remoteip -- the user's ip address """ params = urlencode({ "secret": private_key, "response": recaptcha_response, "remoteip": remoteip, }) if not PY2: params = params.encode("utf-8") response = recaptcha_request(params) data = json.loads(response.read().decode("utf-8")) response.close() return RecaptchaResponse( is_valid=data["success"], error_codes=data.get("error-codes") )
Submits a reCAPTCHA request for verification. Returns RecaptchaResponse for the request recaptcha_response -- The value of reCAPTCHA response from the form private_key -- your reCAPTCHA private key remoteip -- the user's ip address
def encode(self): """Encode this matrix in binary suitable for including in a PDF""" return '{:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}'.format( self.a, self.b, self.c, self.d, self.e, self.f ).encode()
Encode this matrix in binary suitable for including in a PDF
def el_is_empty(el): """Return ``True`` if tuple ``el`` represents an empty XML element.""" if len(el) == 1 and not isinstance(el[0], (list, tuple)): return True subels_are_empty = [] for subel in el: if isinstance(subel, (list, tuple)): subels_are_empty.append(el_is_empty(subel)) else: subels_are_empty.append(not bool(subel)) return all(subels_are_empty)
Return ``True`` if tuple ``el`` represents an empty XML element.
def _connect(self): """Establish connection to MySQL Database.""" if self._connParams: self._conn = MySQLdb.connect(**self._connParams) else: self._conn = MySQLdb.connect('')
Establish connection to MySQL Database.
def construct_pipeline_block_lambda(env='', generated=None, previous_env=None, region='us-east-1', region_subnets=None, settings=None, pipeline_data=None): """Create the Pipeline JSON from template. This handles the common repeatable patterns in a pipeline, such as judgement, infrastructure, tagger and qe. Args: env (str): Deploy environment name, e.g. dev, stage, prod. generated (gogoutils.Generator): Gogo Application name generator. previous_env (str): The previous deploy environment to use as Trigger. region (str): AWS Region to deploy to. settings (dict): Environment settings from configurations. region_subnets (dict): Subnets for a Region, e.g. {'us-west-2': ['us-west-2a', 'us-west-2b', 'us-west-2c']}. Returns: dict: Pipeline JSON template rendered with configurations. """ LOG.info('%s block for [%s].', env, region) if env.startswith('prod'): template_name = 'pipeline/pipeline_{}_lambda.json.j2'.format(env) else: template_name = 'pipeline/pipeline_stages_lambda.json.j2' LOG.debug('%s info:\n%s', env, pformat(settings)) gen_app_name = generated.app_name() user_data = generate_encoded_user_data( env=env, region=region, generated=generated, group_name=generated.project, ) # Use different variable to keep template simple instance_security_groups = sorted(DEFAULT_EC2_SECURITYGROUPS[env]) instance_security_groups.append(gen_app_name) instance_security_groups.extend(settings['security_group']['instance_extras']) instance_security_groups = remove_duplicate_sg(instance_security_groups) LOG.info('Instance security groups to attach: %s', instance_security_groups) data = copy.deepcopy(settings) data['app'].update({ 'appname': gen_app_name, 'repo_name': generated.repo, 'group_name': generated.project, 'environment': env, 'region': region, 'az_dict': json.dumps(region_subnets), 'previous_env': previous_env, 'encoded_user_data': user_data, 'instance_security_groups': json.dumps(instance_security_groups), 'promote_restrict': pipeline_data['promote_restrict'], 'owner_email': pipeline_data['owner_email'], 'function_name': pipeline_data['lambda']['handler'] }) LOG.debug('Block data:\n%s', pformat(data)) pipeline_json = get_template(template_file=template_name, data=data, formats=generated) return pipeline_json
Create the Pipeline JSON from template. This handles the common repeatable patterns in a pipeline, such as judgement, infrastructure, tagger and qe. Args: env (str): Deploy environment name, e.g. dev, stage, prod. generated (gogoutils.Generator): Gogo Application name generator. previous_env (str): The previous deploy environment to use as Trigger. region (str): AWS Region to deploy to. settings (dict): Environment settings from configurations. region_subnets (dict): Subnets for a Region, e.g. {'us-west-2': ['us-west-2a', 'us-west-2b', 'us-west-2c']}. Returns: dict: Pipeline JSON template rendered with configurations.
def compute_svd(X, n_components, n_iter, random_state, engine): """Computes an SVD with k components.""" # Determine what SVD engine to use if engine == 'auto': engine = 'sklearn' # Compute the SVD if engine == 'fbpca': if FBPCA_INSTALLED: U, s, V = fbpca.pca(X, k=n_components, n_iter=n_iter) else: raise ValueError('fbpca is not installed; please install it if you want to use it') elif engine == 'sklearn': U, s, V = extmath.randomized_svd( X, n_components=n_components, n_iter=n_iter, random_state=random_state ) else: raise ValueError("engine has to be one of ('auto', 'fbpca', 'sklearn')") U, V = extmath.svd_flip(U, V) return U, s, V
Computes an SVD with k components.
def get_include_path(): """ Default include path using a tricky sys calls. """ f1 = os.path.basename(sys.argv[0]).lower() # script filename f2 = os.path.basename(sys.executable).lower() # Executable filename # If executable filename and script name are the same, we are if f1 == f2 or f2 == f1 + '.exe': # under a "compiled" python binary result = os.path.dirname(os.path.realpath(sys.executable)) else: result = os.path.dirname(os.path.realpath(__file__)) return result
Default include path using a tricky sys calls.
def export_obj_str(surface, **kwargs): """ Exports surface(s) as a .obj file (string). Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of surface points sampled. *Default: 2* * ``vertex_normals``: if True, then computes vertex normals. *Default: False* * ``parametric_vertices``: if True, then adds parameter space vertices. *Default: False* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :return: contents of the .obj file generated :rtype: str """ # Get keyword arguments vertex_spacing = int(kwargs.get('vertex_spacing', 1)) include_vertex_normal = kwargs.get('vertex_normals', False) include_param_vertex = kwargs.get('parametric_vertices', False) update_delta = kwargs.get('update_delta', True) # Input validity checking if surface.pdimension != 2: raise exch.GeomdlException("Can only export surfaces") if vertex_spacing < 1: raise exch.GeomdlException("Vertex spacing should be bigger than zero") # Create the string and start adding triangulated surface points line = "# Generated by geomdl\n" vertex_offset = 0 # count the vertices to update the face numbers correctly # Initialize lists for geometry data str_v = [] # vertices str_vn = [] # vertex normals str_vp = [] # parameter space vertices str_f = [] # faces # Loop through SurfaceContainer object for srf in surface: # Set surface evaluation delta if update_delta: srf.sample_size_u = surface.sample_size_u srf.sample_size_v = surface.sample_size_v # Tessellate surface srf.tessellate(vertex_spacing=vertex_spacing) vertices = srf.tessellator.vertices triangles = srf.tessellator.faces # Collect vertices for vert in vertices: temp = "v " + str(vert.x) + " " + str(vert.y) + " " + str(vert.z) + "\n" str_v.append(temp) # Collect parameter space vertices if include_param_vertex: for vert in vertices: temp = "vp " + str(vert.uv[0]) + " " + str(vert.uv[1]) + "\n" str_vp.append(temp) # Compute vertex normals if include_vertex_normal: for vert in vertices: sn = operations.normal(srf, vert.uv) temp = "vn " + str(sn[1][0]) + " " + str(sn[1][1]) + " " + str(sn[1][2]) + "\n" str_vn.append(temp) # Collect faces (1-indexed) for t in triangles: vl = t.data temp = "f " + \ str(vl[0] + 1 + vertex_offset) + " " + \ str(vl[1] + 1 + vertex_offset) + " " + \ str(vl[2] + 1 + vertex_offset) + "\n" str_f.append(temp) # Update vertex offset vertex_offset = len(str_v) # Write all collected data to the return string for lv in str_v: line += lv for lvn in str_vn: line += lvn for lvp in str_vp: line += lvp for lf in str_f: line += lf return line
Exports surface(s) as a .obj file (string). Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of surface points sampled. *Default: 2* * ``vertex_normals``: if True, then computes vertex normals. *Default: False* * ``parametric_vertices``: if True, then adds parameter space vertices. *Default: False* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :return: contents of the .obj file generated :rtype: str
def token(self): """ Token function. Contains 2 hacks: 1. Injects ';' into blocks where the last property leaves out the ; 2. Strips out whitespace from nonsignificant locations to ease parsing. """ if self.next_: t = self.next_ self.next_ = None return t while True: t = self.lexer.token() if not t: return t if t.type == 't_ws' and ( self.pretok or (self.last and self.last.type not in self.significant_ws)): continue self.pretok = False if t.type == 't_bclose' and self.last and self.last.type not in ['t_bopen', 't_bclose'] and self.last.type != 't_semicolon' \ and not (hasattr(t, 'lexer') and (t.lexer.lexstate == 'escapequotes' or t.lexer.lexstate == 'escapeapostrophe')): self.next_ = t tok = lex.LexToken() tok.type = 't_semicolon' tok.value = ';' tok.lineno = t.lineno tok.lexpos = t.lexpos self.last = tok self.lexer.in_property_decl = False return tok self.last = t break return t
Token function. Contains 2 hacks: 1. Injects ';' into blocks where the last property leaves out the ; 2. Strips out whitespace from nonsignificant locations to ease parsing.
def listener(self, acceptor, wrapper): """ Listens for new connections to the manager's endpoint. Once a new connection is received, a TCPTendril object is generated for it and it is passed to the acceptor, which must initialize the state of the connection. If no acceptor is given, no new connections can be initialized. :param acceptor: If given, specifies a callable that will be called with each newly received TCPTendril; that callable is responsible for initial acceptance of the connection and for setting up the initial state of the connection. If not given, no new connections will be accepted by the TCPTendrilManager. :param wrapper: A callable taking, as its first argument, a socket.socket object. The callable must return a valid proxy for the socket.socket object, which will subsequently be used to communicate on the connection. """ # If we have no acceptor, there's nothing for us to do here if not acceptor: # Not listening on anything self.local_addr = None # Just sleep in a loop while True: gevent.sleep(600) return # Pragma: nocover # OK, set up the socket sock = socket.socket(self.addr_family, socket.SOCK_STREAM) with utils.SocketCloser(sock): # Set up SO_REUSEADDR sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Bind to our endpoint sock.bind(self.endpoint) # Get the assigned port number self.local_addr = sock.getsockname() # Call any wrappers if wrapper: sock = wrapper(sock) # Initiate listening sock.listen(self.backlog) # OK, now go into an accept loop with an error threshold of 10 closer = utils.SocketCloser(sock, 10, ignore=[application.RejectConnection]) while True: with closer: cli, addr = sock.accept() # OK, the connection has been accepted; construct a # Tendril for it tend = TCPTendril(self, cli, addr) # Set up the application with utils.SocketCloser(cli): tend.application = acceptor(tend) # Make sure we track the new tendril, but only if # the acceptor doesn't throw any exceptions self._track_tendril(tend) # Start the tendril tend._start()
Listens for new connections to the manager's endpoint. Once a new connection is received, a TCPTendril object is generated for it and it is passed to the acceptor, which must initialize the state of the connection. If no acceptor is given, no new connections can be initialized. :param acceptor: If given, specifies a callable that will be called with each newly received TCPTendril; that callable is responsible for initial acceptance of the connection and for setting up the initial state of the connection. If not given, no new connections will be accepted by the TCPTendrilManager. :param wrapper: A callable taking, as its first argument, a socket.socket object. The callable must return a valid proxy for the socket.socket object, which will subsequently be used to communicate on the connection.
def bug_activity(self, bug_id): """Get the activity of a bug in HTML format. :param bug_id: bug identifier """ params = { self.PBUG_ID: bug_id } response = self.call(self.CGI_BUG_ACTIVITY, params) return response
Get the activity of a bug in HTML format. :param bug_id: bug identifier
def completions(self): """ Return :class:`classes.Completion` objects. Those objects contain information about the completions, more than just names. :return: Completion objects, sorted by name. :rtype: list of :class:`classes.Completion` """ debug.speed('completions start') comps = self._evaluator.complete() debug.speed('completions end') return sorted(comps, key=lambda x: (x.name.lower()))
Return :class:`classes.Completion` objects. Those objects contain information about the completions, more than just names. :return: Completion objects, sorted by name. :rtype: list of :class:`classes.Completion`
def to_dict(self): """Convert back to the pstats dictionary representation (used for saving back as pstats binary file)""" if self.subcall is not None: if isinstance(self.subcall, dict): subcalls = self.subcall else: subcalls = {} for s in self.subcall: subcalls.update(s.to_dict()) return {(self.filename, self.line_number, self.name): \ (self.ncalls, self.nonrecursive_calls, self.own_time_s, self.cummulative_time_s, subcalls)} else: return {(self.filename, self.line_number, self.name): \ (self.ncalls, self.nonrecursive_calls, self.own_time_s, self.cummulative_time_s)}
Convert back to the pstats dictionary representation (used for saving back as pstats binary file)
def currentVersion(self): """ returns the current version of the site """ if self._currentVersion is None: self.__init(self._url) return self._currentVersion
returns the current version of the site
def _qteMouseClicked(self, widgetObj): """ Update the Qtmacs internal focus state as the result of a mouse click. |Args| * ``new`` (**QWidget**): the widget that received the focus. |Returns| * **None** |Raises| * **None** """ # ------------------------------------------------------------ # The following cases for widgetObj have to be distinguished: # 1: not part of the Qtmacs widget hierarchy # 2: part of the Qtmacs widget hierarchy but not registered # 3: registered with Qtmacs and an applet # 4: registered with Qtmacs and anything but an applet # ------------------------------------------------------------ # Case 1: return immediately if widgetObj is not part of the # Qtmacs widget hierarchy; otherwise, declare the applet # containing the widgetObj active. app = qteGetAppletFromWidget(widgetObj) if app is None: return else: self._qteActiveApplet = app # Case 2: unregistered widgets are activated immediately. if not hasattr(widgetObj, '_qteAdmin'): self._qteActiveApplet.qteMakeWidgetActive(widgetObj) else: if app._qteAdmin.isQtmacsApplet: # Case 3: widgetObj is a QtmacsApplet instance; do not # focus any of its widgets as the focus manager will # take care of it. self._qteActiveApplet.qteMakeWidgetActive(None) else: # Case 4: widgetObj was registered with qteAddWidget # and can thus be focused directly. self._qteActiveApplet.qteMakeWidgetActive(widgetObj) # Trigger the focus manager. self._qteFocusManager()
Update the Qtmacs internal focus state as the result of a mouse click. |Args| * ``new`` (**QWidget**): the widget that received the focus. |Returns| * **None** |Raises| * **None**
def colors(self, color_code): """Change the foreground and background colors for subsequently printed characters. None resets colors to their original values (when class was instantiated). Since setting a color requires including both foreground and background codes (merged), setting just the foreground color resets the background color to black, and vice versa. This function first gets the current background and foreground colors, merges in the requested color code, and sets the result. However if we need to remove just the foreground color but leave the background color the same (or vice versa) such as when {/red} is used, we must merge the default foreground color with the current background color. This is the reason for those negative values. :param int color_code: Color code from WINDOWS_CODES. """ if color_code is None: color_code = WINDOWS_CODES['/all'] # Get current color code. current_fg, current_bg = self.colors # Handle special negative codes. Also determine the final color code. if color_code == WINDOWS_CODES['/fg']: final_color_code = self.default_fg | current_bg # Reset the foreground only. elif color_code == WINDOWS_CODES['/bg']: final_color_code = current_fg | self.default_bg # Reset the background only. elif color_code == WINDOWS_CODES['/all']: final_color_code = self.default_fg | self.default_bg # Reset both. elif color_code == WINDOWS_CODES['bgblack']: final_color_code = current_fg # Black background. else: new_is_bg = color_code in self.ALL_BG_CODES final_color_code = color_code | (current_fg if new_is_bg else current_bg) # Set new code. self._kernel32.SetConsoleTextAttribute(self._stream_handle, final_color_code)
Change the foreground and background colors for subsequently printed characters. None resets colors to their original values (when class was instantiated). Since setting a color requires including both foreground and background codes (merged), setting just the foreground color resets the background color to black, and vice versa. This function first gets the current background and foreground colors, merges in the requested color code, and sets the result. However if we need to remove just the foreground color but leave the background color the same (or vice versa) such as when {/red} is used, we must merge the default foreground color with the current background color. This is the reason for those negative values. :param int color_code: Color code from WINDOWS_CODES.
def softmax(x: np.ndarray, b: float = 1.0) -> np.ndarray: r""" Standard softmax function: .. math:: P_i = \frac {e ^ {\beta \cdot x_i}} { \sum_{i}{\beta \cdot x_i} } Args: x: vector (``numpy.array``) of values b: exploration parameter :math:`\beta`, or inverse temperature [Daw2009], or :math:`1/t`; see below Returns: vector of probabilities corresponding to the input values where: - :math:`t` is temperature (towards infinity: all actions equally likely; towards zero: probability of action with highest value tends to 1) - Temperature is not used directly as optimizers may take it to zero, giving an infinity; use inverse temperature instead. - [Daw2009] Daw ND, "Trial-by-trial data analysis using computational methods", 2009/2011; in "Decision Making, Affect, and Learning: Attention and Performance XXIII"; Delgado MR, Phelps EA, Robbins TW (eds), Oxford University Press. """ constant = np.mean(x) products = x * b - constant # ... softmax is invariant to addition of a constant: Daw article and # http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html#b # noinspection PyUnresolvedReferences if products.max() > sys.float_info.max_exp: # ... max_exp for base e; max_10_exp for base 10 log.warning("OVERFLOW in softmax(): x = {}, b = {}, constant = {}, " "x*b - constant = {}".format(x, b, constant, products)) # map the maximum to 1, other things to zero n = len(x) index_of_max = np.argmax(products) answer = np.zeros(n) answer[index_of_max] = 1.0 else: # noinspection PyUnresolvedReferences exponented = np.exp(products) answer = exponented / np.sum(exponented) return answer
r""" Standard softmax function: .. math:: P_i = \frac {e ^ {\beta \cdot x_i}} { \sum_{i}{\beta \cdot x_i} } Args: x: vector (``numpy.array``) of values b: exploration parameter :math:`\beta`, or inverse temperature [Daw2009], or :math:`1/t`; see below Returns: vector of probabilities corresponding to the input values where: - :math:`t` is temperature (towards infinity: all actions equally likely; towards zero: probability of action with highest value tends to 1) - Temperature is not used directly as optimizers may take it to zero, giving an infinity; use inverse temperature instead. - [Daw2009] Daw ND, "Trial-by-trial data analysis using computational methods", 2009/2011; in "Decision Making, Affect, and Learning: Attention and Performance XXIII"; Delgado MR, Phelps EA, Robbins TW (eds), Oxford University Press.
def get(self, key, value): """Get single app by one of id or name Supports resource cache Keyword Args: id (str): Full app id name (str): App name Returns: App: Corresponding App resource instance Raises: TypeError: No or multiple keyword arguments provided ValueError: No matching app found on server """ if key == 'id': # Server returns 204 instead of 404 for a non-existent app id response = self._swimlane.request('get', 'app/{}'.format(value)) if response.status_code == 204: raise ValueError('No app with id "{}"'.format(value)) return App( self._swimlane, response.json() ) else: # Workaround for lack of support for get by name # Holdover from previous driver support, to be fixed as part of 3.x for app in self.list(): if value and value == app.name: return app # No matching app found raise ValueError('No app with name "{}"'.format(value))
Get single app by one of id or name Supports resource cache Keyword Args: id (str): Full app id name (str): App name Returns: App: Corresponding App resource instance Raises: TypeError: No or multiple keyword arguments provided ValueError: No matching app found on server