code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def connect_ssh(*args, **kwargs): """ Create a new connected :class:`SSHClient` instance. All arguments are passed to :meth:`SSHClient.connect`. """ client = SSHClient() client.connect(*args, **kwargs) return client
Create a new connected :class:`SSHClient` instance. All arguments are passed to :meth:`SSHClient.connect`.
def _iflat_tasks_wti(self, status=None, op="==", nids=None, with_wti=True): """ Generators that produces a flat sequence of task. if status is not None, only the tasks with the specified status are selected. nids is an optional list of node identifiers used to filter the tasks. Returns: (task, work_index, task_index) if with_wti is True else task """ nids = as_set(nids) if status is None: for wi, work in enumerate(self): for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if with_wti: yield task, wi, ti else: yield task else: # Get the operator from the string. op = operator_from_str(op) # Accept Task.S_FLAG or string. status = Status.as_status(status) for wi, work in enumerate(self): for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if op(task.status, status): if with_wti: yield task, wi, ti else: yield task
Generators that produces a flat sequence of task. if status is not None, only the tasks with the specified status are selected. nids is an optional list of node identifiers used to filter the tasks. Returns: (task, work_index, task_index) if with_wti is True else task
def check_network_health(self): r""" This method check the network topological health by checking for: (1) Isolated pores (2) Islands or isolated clusters of pores (3) Duplicate throats (4) Bidirectional throats (ie. symmetrical adjacency matrix) (5) Headless throats Returns ------- A dictionary containing the offending pores or throat numbers under each named key. It also returns a list of which pores and throats should be trimmed from the network to restore health. This list is a suggestion only, and is based on keeping the largest cluster and trimming the others. Notes ----- - Does not yet check for duplicate pores - Does not yet suggest which throats to remove - This is just a 'check' and does not 'fix' the problems it finds """ health = HealthDict() health['disconnected_clusters'] = [] health['isolated_pores'] = [] health['trim_pores'] = [] health['duplicate_throats'] = [] health['bidirectional_throats'] = [] health['headless_throats'] = [] health['looped_throats'] = [] # Check for headless throats hits = sp.where(self['throat.conns'] > self.Np - 1)[0] if sp.size(hits) > 0: health['headless_throats'] = sp.unique(hits) return health # Check for throats that loop back onto the same pore P12 = self['throat.conns'] hits = sp.where(P12[:, 0] == P12[:, 1])[0] if sp.size(hits) > 0: health['looped_throats'] = hits # Check for individual isolated pores Ps = self.num_neighbors(self.pores()) if sp.sum(Ps == 0) > 0: health['isolated_pores'] = sp.where(Ps == 0)[0] # Check for separated clusters of pores temp = [] am = self.create_adjacency_matrix(fmt='coo', triu=True) Cs = csg.connected_components(am, directed=False)[1] if sp.unique(Cs).size > 1: for i in sp.unique(Cs): temp.append(sp.where(Cs == i)[0]) b = sp.array([len(item) for item in temp]) c = sp.argsort(b)[::-1] for i in range(0, len(c)): health['disconnected_clusters'].append(temp[c[i]]) if i > 0: health['trim_pores'].extend(temp[c[i]]) # Check for duplicate throats am = self.create_adjacency_matrix(fmt='csr', triu=True).tocoo() hits = sp.where(am.data > 1)[0] if len(hits): mergeTs = [] hits = sp.vstack((am.row[hits], am.col[hits])).T ihits = hits[:, 0] + 1j*hits[:, 1] conns = self['throat.conns'] iconns = conns[:, 0] + 1j*conns[:, 1] # Convert to imaginary for item in ihits: mergeTs.append(sp.where(iconns == item)[0]) health['duplicate_throats'] = mergeTs # Check for bidirectional throats adjmat = self.create_adjacency_matrix(fmt='coo') num_full = adjmat.sum() temp = sprs.triu(adjmat, k=1) num_upper = temp.sum() if num_full > num_upper: biTs = sp.where(self['throat.conns'][:, 0] > self['throat.conns'][:, 1])[0] health['bidirectional_throats'] = biTs.tolist() return health
r""" This method check the network topological health by checking for: (1) Isolated pores (2) Islands or isolated clusters of pores (3) Duplicate throats (4) Bidirectional throats (ie. symmetrical adjacency matrix) (5) Headless throats Returns ------- A dictionary containing the offending pores or throat numbers under each named key. It also returns a list of which pores and throats should be trimmed from the network to restore health. This list is a suggestion only, and is based on keeping the largest cluster and trimming the others. Notes ----- - Does not yet check for duplicate pores - Does not yet suggest which throats to remove - This is just a 'check' and does not 'fix' the problems it finds
def cli(ctx, timeout, proxy, output, quiet, lyric, again): """A command tool to download NetEase-Music's songs.""" ctx.obj = NetEase(timeout, proxy, output, quiet, lyric, again)
A command tool to download NetEase-Music's songs.
def flush_to_index(self): """Flush changes in our configuration file to the index""" assert self._smref is not None # should always have a file here assert not isinstance(self._file_or_files, BytesIO) sm = self._smref() if sm is not None: index = self._index if index is None: index = sm.repo.index # END handle index index.add([sm.k_modules_file], write=self._auto_write) sm._clear_cache()
Flush changes in our configuration file to the index
def _getphoto_location(self,pid): """Asks fb for photo location information returns tuple with lat,lon,accuracy """ logger.debug('%s - Getting location from fb'%(pid)) lat=None lon=None accuracy=None resp=self.fb.photos_geo_getLocation(photo_id=pid) if resp.attrib['stat']!='ok': logger.error("%s - fb: photos_geo_getLocation failed with status: %s",\ resp.attrib['stat']); return (None,None,None) for location in resp.find('photo'): lat=location.attrib['latitude'] lon=location.attrib['longitude'] accuracy=location.attrib['accuracy'] return (lat,lon,accuracy)
Asks fb for photo location information returns tuple with lat,lon,accuracy
def view_page(name=None): """Serve a page name. .. note:: this is a bottle view * if the view is called with the POST method, write the new page content to the file, commit the modification and then display the html rendering of the restructured text file * if the view is called with the GET method, directly display the html rendering of the restructured text file Keyword Arguments: :name: (str) -- name of the rest file (without the .rst extension) OPTIONAL if no filename is given, first try to find a "index.rst" file in the directory and serve it. If not found, serve the meta page __index__ Returns: bottle response object """ if request.method == 'POST': if name is None: # new file if len(request.forms.filename) > 0: name = request.forms.filename if name is not None: filename = "{0}.rst".format(name) file_handle = open(filename, 'w') file_handle.write(request.forms.content.encode('utf-8')) file_handle.close() add_file_to_repo(filename) commit(filename) response.set_header('Cache-control', 'no-cache') response.set_header('Pragma', 'no-cache') if name is None: # we try to find an index file index_files = glob.glob("./[Ii][Nn][Dd][Ee][Xx].rst") if len(index_files) == 0: # not found # redirect to __index__ return view_meta_index() else: name = index_files[0][2:-4] files = glob.glob("{0}.rst".format(name)) if len(files) > 0: file_handle = open(files[0], 'r') html_body = publish_parts(file_handle.read(), writer=AttowikiWriter(), settings=None, settings_overrides=None)['html_body'] history = commit_history("{0}.rst".format(name)) return template('page', type="view", name=name, extended_name=None, is_repo=check_repo(), history=history, gitref=None, content=html_body) else: return static_file(name, '')
Serve a page name. .. note:: this is a bottle view * if the view is called with the POST method, write the new page content to the file, commit the modification and then display the html rendering of the restructured text file * if the view is called with the GET method, directly display the html rendering of the restructured text file Keyword Arguments: :name: (str) -- name of the rest file (without the .rst extension) OPTIONAL if no filename is given, first try to find a "index.rst" file in the directory and serve it. If not found, serve the meta page __index__ Returns: bottle response object
def send(node_name): """ Send our information to a remote nago instance Arguments: node -- node_name or token for the node this data belongs to """ my_data = nago.core.get_my_info() if not node_name: node_name = nago.settings.get('server') node = nago.core.get_node(node_name) json_params = {} json_params['node_name'] = node_name json_params['key'] = "node_info" for k, v in my_data.items(): nago.core.log("sending %s to %s" % (k, node['host_name']), level="notice") json_params[k] = v return node.send_command('info', 'post', node_name=node.token, key="node_info", **my_data)
Send our information to a remote nago instance Arguments: node -- node_name or token for the node this data belongs to
def logger_init(level): """ Initialize the logger for this thread. Sets the log level to ERROR (0), WARNING (1), INFO (2), or DEBUG (3), depending on the argument `level`. """ levellist = [logging.ERROR, logging.WARNING, logging.INFO, logging.DEBUG] handler = logging.StreamHandler() fmt = ('%(levelname) -10s %(asctime)s %(name) -30s %(funcName) ' '-35s %(lineno) -5d: %(message)s') handler.setFormatter(logging.Formatter(fmt)) logger = logging.root logger.addHandler(handler) logger.setLevel(levellist[level])
Initialize the logger for this thread. Sets the log level to ERROR (0), WARNING (1), INFO (2), or DEBUG (3), depending on the argument `level`.
def serialize(self): """Serialize the full configuration to a single dictionary. For any instance that has passed validate() (which happens in __init__), it matches the Configuration contract. Note that args are not serialized. :returns dict: The serialized configuration. """ result = self.to_project_config(with_packages=True) result.update(self.to_profile_info(serialize_credentials=True)) result['cli_vars'] = deepcopy(self.cli_vars) return result
Serialize the full configuration to a single dictionary. For any instance that has passed validate() (which happens in __init__), it matches the Configuration contract. Note that args are not serialized. :returns dict: The serialized configuration.
def traverse(self, id_=None): """Traverse groups and yield info dicts for jobs""" if id_ is None: id_ = self.group nodes = r_client.smembers(_children_key(id_)) while nodes: current_id = nodes.pop() details = r_client.get(current_id) if details is None: # child has expired or been deleted, remove from :children r_client.srem(_children_key(id_), current_id) continue details = self._decode(details) if details['type'] == 'group': children = r_client.smembers(_children_key(details['id'])) if children is not None: nodes.update(children) yield details
Traverse groups and yield info dicts for jobs
async def connect( self, hostname: str = None, port: int = None, source_address: DefaultStrType = _default, timeout: DefaultNumType = _default, loop: asyncio.AbstractEventLoop = None, use_tls: bool = None, validate_certs: bool = None, client_cert: DefaultStrType = _default, client_key: DefaultStrType = _default, tls_context: DefaultSSLContextType = _default, cert_bundle: DefaultStrType = _default, ) -> SMTPResponse: """ Initialize a connection to the server. Options provided to :meth:`.connect` take precedence over those used to initialize the class. :keyword hostname: Server name (or IP) to connect to :keyword port: Server port. Defaults to 25 if ``use_tls`` is False, 465 if ``use_tls`` is True. :keyword source_address: The hostname of the client. Defaults to the result of :func:`socket.getfqdn`. Note that this call blocks. :keyword timeout: Default timeout value for the connection, in seconds. Defaults to 60. :keyword loop: event loop to run on. If not set, uses :func:`asyncio.get_event_loop()`. :keyword use_tls: If True, make the initial connection to the server over TLS/SSL. Note that if the server supports STARTTLS only, this should be False. :keyword validate_certs: Determines if server certificates are validated. Defaults to True. :keyword client_cert: Path to client side certificate, for TLS. :keyword client_key: Path to client side key, for TLS. :keyword tls_context: An existing :class:`ssl.SSLContext`, for TLS. Mutually exclusive with ``client_cert``/``client_key``. :keyword cert_bundle: Path to certificate bundle, for TLS verification. :raises ValueError: mutually exclusive options provided """ await self._connect_lock.acquire() if hostname is not None: self.hostname = hostname if loop is not None: self.loop = loop if use_tls is not None: self.use_tls = use_tls if validate_certs is not None: self.validate_certs = validate_certs if port is not None: self.port = port if self.port is None: self.port = SMTP_TLS_PORT if self.use_tls else SMTP_PORT if timeout is not _default: self.timeout = timeout # type: ignore if source_address is not _default: self._source_address = source_address # type: ignore if client_cert is not _default: self.client_cert = client_cert # type: ignore if client_key is not _default: self.client_key = client_key # type: ignore if tls_context is not _default: self.tls_context = tls_context # type: ignore if cert_bundle is not _default: self.cert_bundle = cert_bundle # type: ignore if self.tls_context is not None and self.client_cert is not None: raise ValueError( "Either a TLS context or a certificate/key must be provided" ) response = await self._create_connection() return response
Initialize a connection to the server. Options provided to :meth:`.connect` take precedence over those used to initialize the class. :keyword hostname: Server name (or IP) to connect to :keyword port: Server port. Defaults to 25 if ``use_tls`` is False, 465 if ``use_tls`` is True. :keyword source_address: The hostname of the client. Defaults to the result of :func:`socket.getfqdn`. Note that this call blocks. :keyword timeout: Default timeout value for the connection, in seconds. Defaults to 60. :keyword loop: event loop to run on. If not set, uses :func:`asyncio.get_event_loop()`. :keyword use_tls: If True, make the initial connection to the server over TLS/SSL. Note that if the server supports STARTTLS only, this should be False. :keyword validate_certs: Determines if server certificates are validated. Defaults to True. :keyword client_cert: Path to client side certificate, for TLS. :keyword client_key: Path to client side key, for TLS. :keyword tls_context: An existing :class:`ssl.SSLContext`, for TLS. Mutually exclusive with ``client_cert``/``client_key``. :keyword cert_bundle: Path to certificate bundle, for TLS verification. :raises ValueError: mutually exclusive options provided
def update(self, other=None, **kwargs): """x.update(E, **F) -> None. update x from trie/dict/iterable E or F. If E has a .keys() method, does: for k in E: x[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: x[k] = v In either case, this is followed by: for k in F: x[k] = F[k]""" if other is None: other = () if hasattr(other, 'keys'): for key in other: self._update(key, other[key]) else: for key,value in other: self._update(key, value) for key,value in six.iteritems(kwargs): self._update(key, value)
x.update(E, **F) -> None. update x from trie/dict/iterable E or F. If E has a .keys() method, does: for k in E: x[k] = E[k] If E lacks .keys() method, does: for (k, v) in E: x[k] = v In either case, this is followed by: for k in F: x[k] = F[k]
def formatted(text, *args, **kwargs): """ Args: text (str | unicode): Text to format *args: Objects to extract values from (as attributes) **kwargs: Optional values provided as named args Returns: (str): Attributes from this class are expanded if mentioned """ if not text or "{" not in text: return text strict = kwargs.pop("strict", True) max_depth = kwargs.pop("max_depth", 3) objects = list(args) + [kwargs] if kwargs else args[0] if len(args) == 1 else args if not objects: return text definitions = {} markers = RE_FORMAT_MARKERS.findall(text) while markers: key = markers.pop() if key in definitions: continue val = _find_value(key, objects) if strict and val is None: return None val = str(val) if val is not None else "{%s}" % key markers.extend(m for m in RE_FORMAT_MARKERS.findall(val) if m not in definitions) definitions[key] = val if not max_depth or not isinstance(max_depth, int) or max_depth <= 0: return text expanded = dict((k, _rformat(k, v, definitions, max_depth)) for k, v in definitions.items()) return text.format(**expanded)
Args: text (str | unicode): Text to format *args: Objects to extract values from (as attributes) **kwargs: Optional values provided as named args Returns: (str): Attributes from this class are expanded if mentioned
def _isstring(dtype): """Given a numpy dtype, determines whether it is a string. Returns True if the dtype is string or unicode. """ return dtype.type == numpy.unicode_ or dtype.type == numpy.string_
Given a numpy dtype, determines whether it is a string. Returns True if the dtype is string or unicode.
def parse(self) -> Statement: """Parse a complete YANG module or submodule. Args: mtext: YANG module text. Raises: EndOfInput: If past the end of input. ModuleNameMismatch: If parsed module name doesn't match `self.name`. ModuleRevisionMismatch: If parsed revision date doesn't match `self.rev`. UnexpectedInput: If top-level statement isn't ``(sub)module``. """ self.opt_separator() start = self.offset res = self.statement() if res.keyword not in ["module", "submodule"]: self.offset = start raise UnexpectedInput(self, "'module' or 'submodule'") if self.name is not None and res.argument != self.name: raise ModuleNameMismatch(res.argument, self.name) if self.rev: revst = res.find1("revision") if revst is None or revst.argument != self.rev: raise ModuleRevisionMismatch(revst.argument, self.rev) try: self.opt_separator() except EndOfInput: return res raise UnexpectedInput(self, "end of input")
Parse a complete YANG module or submodule. Args: mtext: YANG module text. Raises: EndOfInput: If past the end of input. ModuleNameMismatch: If parsed module name doesn't match `self.name`. ModuleRevisionMismatch: If parsed revision date doesn't match `self.rev`. UnexpectedInput: If top-level statement isn't ``(sub)module``.
def username(anon, obj, field, val): """ Generates a random username """ return anon.faker.user_name(field=field)
Generates a random username
def max_brightness(self): """ Returns the maximum allowable brightness value. """ self._max_brightness, value = self.get_cached_attr_int(self._max_brightness, 'max_brightness') return value
Returns the maximum allowable brightness value.
def snyder_opt(self, structure): """ Calculates Snyder's optical sound velocity (in SI units) Args: structure: pymatgen structure object Returns: Snyder's optical sound velocity (in SI units) """ nsites = structure.num_sites volume = structure.volume num_density = 1e30 * nsites / volume return 1.66914e-23 * \ (self.long_v(structure) + 2.*self.trans_v(structure))/3. \ / num_density ** (-2./3.) * (1 - nsites ** (-1./3.))
Calculates Snyder's optical sound velocity (in SI units) Args: structure: pymatgen structure object Returns: Snyder's optical sound velocity (in SI units)
def set_gss_host(self, gss_host, trust_dns=True, gssapi_requested=True): """ Normalize/canonicalize ``self.gss_host`` depending on various factors. :param str gss_host: The explicitly requested GSS-oriented hostname to connect to (i.e. what the host's name is in the Kerberos database.) Defaults to ``self.hostname`` (which will be the 'real' target hostname and/or host portion of given socket object.) :param bool trust_dns: Indicates whether or not DNS is trusted; if true, DNS will be used to canonicalize the GSS hostname (which again will either be ``gss_host`` or the transport's default hostname.) (Defaults to True due to backwards compatibility.) :param bool gssapi_requested: Whether GSSAPI key exchange or authentication was even requested. If not, this is a no-op and nothing happens (and ``self.gss_host`` is not set.) (Defaults to True due to backwards compatibility.) :returns: ``None``. """ # No GSSAPI in play == nothing to do if not gssapi_requested: return # Obtain the correct host first - did user request a GSS-specific name # to use that is distinct from the actual SSH target hostname? if gss_host is None: gss_host = self.hostname # Finally, canonicalize via DNS if DNS is trusted. if trust_dns and gss_host is not None: gss_host = socket.getfqdn(gss_host) # And set attribute for reference later. self.gss_host = gss_host
Normalize/canonicalize ``self.gss_host`` depending on various factors. :param str gss_host: The explicitly requested GSS-oriented hostname to connect to (i.e. what the host's name is in the Kerberos database.) Defaults to ``self.hostname`` (which will be the 'real' target hostname and/or host portion of given socket object.) :param bool trust_dns: Indicates whether or not DNS is trusted; if true, DNS will be used to canonicalize the GSS hostname (which again will either be ``gss_host`` or the transport's default hostname.) (Defaults to True due to backwards compatibility.) :param bool gssapi_requested: Whether GSSAPI key exchange or authentication was even requested. If not, this is a no-op and nothing happens (and ``self.gss_host`` is not set.) (Defaults to True due to backwards compatibility.) :returns: ``None``.
def rnaseq2ga(quantificationFilename, sqlFilename, localName, rnaType, dataset=None, featureType="gene", description="", programs="", featureSetNames="", readGroupSetNames="", biosampleId=""): """ Reads RNA Quantification data in one of several formats and stores the data in a sqlite database for use by the GA4GH reference server. Supports the following quantification output types: Cufflinks, kallisto, RSEM. """ readGroupSetName = "" if readGroupSetNames: readGroupSetName = readGroupSetNames.strip().split(",")[0] featureSetIds = "" readGroupIds = "" if dataset: featureSetIdList = [] if featureSetNames: for annotationName in featureSetNames.split(","): featureSet = dataset.getFeatureSetByName(annotationName) featureSetIdList.append(featureSet.getId()) featureSetIds = ",".join(featureSetIdList) # TODO: multiple readGroupSets if readGroupSetName: readGroupSet = dataset.getReadGroupSetByName(readGroupSetName) readGroupIds = ",".join( [x.getId() for x in readGroupSet.getReadGroups()]) if rnaType not in SUPPORTED_RNA_INPUT_FORMATS: raise exceptions.UnsupportedFormatException(rnaType) rnaDB = RnaSqliteStore(sqlFilename) if rnaType == "cufflinks": writer = CufflinksWriter(rnaDB, featureType, dataset=dataset) elif rnaType == "kallisto": writer = KallistoWriter(rnaDB, featureType, dataset=dataset) elif rnaType == "rsem": writer = RsemWriter(rnaDB, featureType, dataset=dataset) writeRnaseqTable(rnaDB, [localName], description, featureSetIds, readGroupId=readGroupIds, programs=programs, biosampleId=biosampleId) writeExpressionTable(writer, [(localName, quantificationFilename)])
Reads RNA Quantification data in one of several formats and stores the data in a sqlite database for use by the GA4GH reference server. Supports the following quantification output types: Cufflinks, kallisto, RSEM.
def get_links(self, recall, timeout): """Gets links in page :param recall: max times to attempt to fetch url :param timeout: max times :return: array of out_links """ for _ in range(recall): try: # setting timeout soup = BeautifulSoup(self.source) # parse source out_links = [] for tag in soup.findAll(["a", "link"], href=True): tag["href"] = urljoin(self.url, tag["href"]) out_links.append(tag["href"]) return sorted(out_links) # sort array except: time.sleep(timeout)
Gets links in page :param recall: max times to attempt to fetch url :param timeout: max times :return: array of out_links
def disable_signing(self): '''disable MAVLink2 signing''' self.mav.signing.secret_key = None self.mav.signing.sign_outgoing = False self.mav.signing.allow_unsigned_callback = None self.mav.signing.link_id = 0 self.mav.signing.timestamp = 0
disable MAVLink2 signing
def view_hmap(token, dstore): """ Display the highest 20 points of the mean hazard map. Called as $ oq show hmap:0.1 # 10% PoE """ try: poe = valid.probability(token.split(':')[1]) except IndexError: poe = 0.1 mean = dict(extract(dstore, 'hcurves?kind=mean'))['mean'] oq = dstore['oqparam'] hmap = calc.make_hmap_array(mean, oq.imtls, [poe], len(mean)) dt = numpy.dtype([('sid', U32)] + [(imt, F32) for imt in oq.imtls]) array = numpy.zeros(len(hmap), dt) for i, vals in enumerate(hmap): array[i] = (i, ) + tuple(vals) array.sort(order=list(oq.imtls)[0]) return rst_table(array[:20])
Display the highest 20 points of the mean hazard map. Called as $ oq show hmap:0.1 # 10% PoE
def _popup(self): """recursively find commutative binary operator among child formulas and pop up them at the same level""" res = () for child in self.formulas: if type(child) == type(self): superchilds = child.formulas res += superchilds else: res += (child, ) return tuple(res)
recursively find commutative binary operator among child formulas and pop up them at the same level
def load_config(path): """ Loads configuration from a path. Path can be a json file, or a directory containing config.json and zero or more *.txt files with word lists or phrase lists. Returns config dict. Raises InitializationError when something is wrong. """ path = os.path.abspath(path) if os.path.isdir(path): config, wordlists = _load_data(path) elif os.path.isfile(path): config = _load_config(path) wordlists = {} else: raise InitializationError('File or directory not found: {0}'.format(path)) for name, wordlist in wordlists.items(): if name in config: raise InitializationError("Conflict: list {!r} is defined both in config " "and in *.txt file. If it's a {!r} list, " "you should remove it from config." .format(name, _CONF.TYPE.WORDS)) config[name] = wordlist return config
Loads configuration from a path. Path can be a json file, or a directory containing config.json and zero or more *.txt files with word lists or phrase lists. Returns config dict. Raises InitializationError when something is wrong.
def to_json(self): """ Serialises the content of the KnowledgeBase as JSON. :return: TODO """ return json.dumps({ "statistics": self.get_statistics() , "authors": [json.loads(author.to_json()) for author in self.get_authors()] }, indent=2)
Serialises the content of the KnowledgeBase as JSON. :return: TODO
def start(self, *args, **kwargs): """Starts the instance. :raises RuntimeError: has been already started. :raises TypeError: :meth:`run` is not canonical. """ if self.is_running(): raise RuntimeError('Already started') self._running = self.run(*args, **kwargs) try: yielded = next(self._running) except StopIteration: raise TypeError('run() must yield just one time') if yielded is not None: raise TypeError('run() must yield without value')
Starts the instance. :raises RuntimeError: has been already started. :raises TypeError: :meth:`run` is not canonical.
def multchoicebox(message='Pick as many items as you like.', title='', choices=['program logic error - no choices specified']): """Original doc: Present the user with a list of choices. allow him to select multiple items and return them in a list. if the user doesn't choose anything from the list, return the empty list. return None if he cancelled selection. """ return psidialogs.multi_choice(message=message, title=title, choices=choices)
Original doc: Present the user with a list of choices. allow him to select multiple items and return them in a list. if the user doesn't choose anything from the list, return the empty list. return None if he cancelled selection.
def count(self): """ Total number of array cells """ return functools.reduce(lambda x, y: x * y, (x.count for x in self.bounds))
Total number of array cells
def get_resource_siblings(raml_resource): """ Get siblings of :raml_resource:. :param raml_resource: Instance of ramlfications.raml.ResourceNode. """ path = raml_resource.path return [res for res in raml_resource.root.resources if res.path == path]
Get siblings of :raml_resource:. :param raml_resource: Instance of ramlfications.raml.ResourceNode.
def nsx_controller_connection_addr_port(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") nsx_controller = ET.SubElement(config, "nsx-controller", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(nsx_controller, "name") name_key.text = kwargs.pop('name') connection_addr = ET.SubElement(nsx_controller, "connection-addr") port = ET.SubElement(connection_addr, "port") port.text = kwargs.pop('port') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def mag_to_fnu(self, mag): """SDSS *primed* magnitudes to F_ν. The primed magnitudes are the "USNO" standard-star system defined in Smith+ (2002AJ....123.2121S) and Fukugita+ (1996AJ....111.1748F). This system is anchored to the AB magnitude system, and as far as I can tell it is not known to have measurable offsets from that system. (As of DR10, the *unprimed* SDSS system is known to have small offsets from AB, but I do not believe that that necessarily has implications for u'g'r'i'z'.) However, as far as I can tell the filter responses of the USNO telescope are not published -- only those of the main SDSS 2.5m telescope. The whole reason for the existence of both the primed and unprimed ugriz systems is that their responses do not quite match. For my current application, which involves a completely different telescope anyway, the difference shouldn't matter. """ # `band` should be 'up', 'gp', 'rp', 'ip', or 'zp'. if len(band) != 2 or band[1] != 'p': raise ValueError('band: ' + band) return abmag_to_fnu_cgs(mag)
SDSS *primed* magnitudes to F_ν. The primed magnitudes are the "USNO" standard-star system defined in Smith+ (2002AJ....123.2121S) and Fukugita+ (1996AJ....111.1748F). This system is anchored to the AB magnitude system, and as far as I can tell it is not known to have measurable offsets from that system. (As of DR10, the *unprimed* SDSS system is known to have small offsets from AB, but I do not believe that that necessarily has implications for u'g'r'i'z'.) However, as far as I can tell the filter responses of the USNO telescope are not published -- only those of the main SDSS 2.5m telescope. The whole reason for the existence of both the primed and unprimed ugriz systems is that their responses do not quite match. For my current application, which involves a completely different telescope anyway, the difference shouldn't matter.
def loads(string, triples=False, cls=PENMANCodec, **kwargs): """ Deserialize a list of PENMAN-encoded graphs from *string*. Args: string: a string containing graph data triples: if True, read graphs as triples instead of as PENMAN cls: serialization codec class kwargs: keyword arguments passed to the constructor of *cls* Returns: a list of Graph objects """ codec = cls(**kwargs) return list(codec.iterdecode(string, triples=triples))
Deserialize a list of PENMAN-encoded graphs from *string*. Args: string: a string containing graph data triples: if True, read graphs as triples instead of as PENMAN cls: serialization codec class kwargs: keyword arguments passed to the constructor of *cls* Returns: a list of Graph objects
def search_dashboard_deleted_for_facet(self, facet, **kwargs): # noqa: E501 """Lists the values of a specific facet over the customer's deleted dashboards # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search_dashboard_deleted_for_facet(facet, async_req=True) >>> result = thread.get() :param async_req bool :param str facet: (required) :param FacetSearchRequestContainer body: :return: ResponseContainerFacetResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.search_dashboard_deleted_for_facet_with_http_info(facet, **kwargs) # noqa: E501 else: (data) = self.search_dashboard_deleted_for_facet_with_http_info(facet, **kwargs) # noqa: E501 return data
Lists the values of a specific facet over the customer's deleted dashboards # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search_dashboard_deleted_for_facet(facet, async_req=True) >>> result = thread.get() :param async_req bool :param str facet: (required) :param FacetSearchRequestContainer body: :return: ResponseContainerFacetResponse If the method is called asynchronously, returns the request thread.
def analyze_text( self, text, **kwargs ): ''' Analyzes given Text for noun phrase chunks. As result of analysis, a layer NOUN_CHUNKS will be attached to the input Text object, containing a noun phrases detected from the Text; Note: for preprocessing the Text, MaltParser is used by default. In order to obtain a decent performance with MaltParser, it is advisable to analyse texts at their full extent with this method. Splitting a text into smaller chunks, such as clauses or sentences, and analysing one-small-chunk-at-time may be rather demanding in terms of performance, because a file-based preprocessing is used for obtaining the dependency relations. Parameters ---------- text: estnltk.text.Text The input text that should be analysed for noun phrases; force_parsing : bool If True, uses the *self.parser* to parse the given *text*, and overrides the syntactic annotations in *text* with the new layer obtained from the parser; (default: False) syntax_layer : str Specifies which layer of syntactic annotations should be used as a basis for NP chunking; If the *syntax_layer* exists within the *text* (and force_parsing==False), uses the syntactic annotations from *text[syntax_layer]*; (default: LAYER_CONLL) cutPhrases: bool If True, all phrases exceeding the cutMaxThreshold will be cut into single word phrases, consisting only of part-of-speech categories 'S', 'Y', 'H'; (default: True) cutMaxThreshold: int Threshold indicating the maximum number of words allowed in a phrase. If cutPhrases is set, all phrases exceeding the threshold will be cut into single word phrases, consisting only of part-of-speech categories 'S', 'Y', 'H'; Automatic analysis of the Balanced Corpus of Estonian suggests that 97% of all NP chunks are likely chunks of length 1-3, thus the default threshold is set to 3; (default value: 3) return_type: string If return_type=="text" (Default), returns the input Text object; If return_type=="labels", returns a list of NP labels (strings), containing a label for each word token in Text, indicating whether the word is at the beginning of a phrase ('B'), inside a phrase ('I') or does not belong to any phrase ('O'). If return_type=="tokens", returns a list of phrases, where each phrase is a list of tokens, and each token is a dictionary representing word; If return_type=="strings", returns a list of text strings, where each string is phrase's text; Regardless the return type, a layer named NOUN_CHUNKS will be added to the input Text containing noun phrase annotations; ''' # 0) Parse given arguments # # Output specifics all_return_types = ["text", "labels", "tokens", "strings"] return_type = all_return_types[0] cutPhrases = True cutMaxThreshold = 3 annotate_text = True # Syntax layer & Parsing specifics syntax_layer_name = LAYER_CONLL force_parsing = False for argName, argVal in kwargs.items(): if argName == 'cutPhrases': cutPhrases = bool(argVal) elif argName == 'force_parsing': force_parsing = bool(argVal) elif argName == 'syntax_layer': syntax_layer_name = argVal elif argName == 'cutMaxThreshold': cutMaxThreshold = int(argVal) elif argName == 'return_type': if argVal.lower() in all_return_types: return_type = argVal.lower() else: raise Exception(' Unexpected return type: ', argVal) else: raise Exception(' Unsupported argument given: '+argName) # # 1) Acquire the layers of morphological & syntactic annotations: # if not syntax_layer_name in text or force_parsing: # No existing layer found: produce a new layer with the parser self.parser.parse_text( text ) if isinstance(self.parser, MaltParser): syntax_layer_name = LAYER_CONLL elif isinstance(self.parser, VISLCG3Parser): syntax_layer_name = LAYER_VISLCG3 else: raise Exception(' (!) Unknown type of syntactic parser: ',self.parser) if not text.is_tagged(ANALYSIS): # If missing, add the layer of morphological analyses text = text.tag_analysis() # 2) Process text sentence by sentence all_np_labels = [] for sentence_text in text.split_by( SENTENCES ): tokens = sentence_text[WORDS] syntax_layer = sentence_text[syntax_layer_name] # Find phrases np_labels = self._find_phrases( tokens, syntax_layer, cutPhrases, cutMaxThreshold ) # Normalize labels np_labels = [ 'O' if not l in ['B', 'I'] else l for l in np_labels ] # Collect results all_np_labels.extend( np_labels ) # 3) Return input text, labels, phrases or phrase texts if annotate_text: self.annotateText( text, NOUN_CHUNKS, all_np_labels ) if return_type == "text": return text elif return_type == "labels": return all_np_labels elif return_type == "tokens": return self.get_phrases(text, all_np_labels) else: return self.get_phrase_texts(text, all_np_labels)
Analyzes given Text for noun phrase chunks. As result of analysis, a layer NOUN_CHUNKS will be attached to the input Text object, containing a noun phrases detected from the Text; Note: for preprocessing the Text, MaltParser is used by default. In order to obtain a decent performance with MaltParser, it is advisable to analyse texts at their full extent with this method. Splitting a text into smaller chunks, such as clauses or sentences, and analysing one-small-chunk-at-time may be rather demanding in terms of performance, because a file-based preprocessing is used for obtaining the dependency relations. Parameters ---------- text: estnltk.text.Text The input text that should be analysed for noun phrases; force_parsing : bool If True, uses the *self.parser* to parse the given *text*, and overrides the syntactic annotations in *text* with the new layer obtained from the parser; (default: False) syntax_layer : str Specifies which layer of syntactic annotations should be used as a basis for NP chunking; If the *syntax_layer* exists within the *text* (and force_parsing==False), uses the syntactic annotations from *text[syntax_layer]*; (default: LAYER_CONLL) cutPhrases: bool If True, all phrases exceeding the cutMaxThreshold will be cut into single word phrases, consisting only of part-of-speech categories 'S', 'Y', 'H'; (default: True) cutMaxThreshold: int Threshold indicating the maximum number of words allowed in a phrase. If cutPhrases is set, all phrases exceeding the threshold will be cut into single word phrases, consisting only of part-of-speech categories 'S', 'Y', 'H'; Automatic analysis of the Balanced Corpus of Estonian suggests that 97% of all NP chunks are likely chunks of length 1-3, thus the default threshold is set to 3; (default value: 3) return_type: string If return_type=="text" (Default), returns the input Text object; If return_type=="labels", returns a list of NP labels (strings), containing a label for each word token in Text, indicating whether the word is at the beginning of a phrase ('B'), inside a phrase ('I') or does not belong to any phrase ('O'). If return_type=="tokens", returns a list of phrases, where each phrase is a list of tokens, and each token is a dictionary representing word; If return_type=="strings", returns a list of text strings, where each string is phrase's text; Regardless the return type, a layer named NOUN_CHUNKS will be added to the input Text containing noun phrase annotations;
def output_to_table(obj, olist='inputs', oformat='latex', table_ends=False, prefix=""): """ Compile the properties to a table. :param olist: list, Names of the parameters to be in the output table :param oformat: str, The type of table to be output :param table_ends: bool, Add ends to the table :param prefix: str, A string to be added to the start of each parameter name :return: para, str, table as a string """ para = "" property_list = [] if olist == 'inputs': property_list = obj.inputs elif olist == 'all': for item in obj.__dict__: if "_" != item[0]: property_list.append(item) for item in property_list: if hasattr(obj, item): value = getattr(obj, item) value_str = format_value(value) if oformat == "latex": delimeter = " & " else: delimeter = "," para += "{0}{1}{2}\\\\\n".format(prefix + format_name(item), delimeter, value_str) if table_ends: para = add_table_ends(para, oformat) return para
Compile the properties to a table. :param olist: list, Names of the parameters to be in the output table :param oformat: str, The type of table to be output :param table_ends: bool, Add ends to the table :param prefix: str, A string to be added to the start of each parameter name :return: para, str, table as a string
def main(): """Main entry point""" parser = OptionParser() parser.add_option('-a', '--hostname', help='ClamAV source server hostname', dest='hostname', type='str', default='db.de.clamav.net') parser.add_option('-r', '--text-record', help='ClamAV Updates TXT record', dest='txtrecord', type='str', default='current.cvd.clamav.net') parser.add_option('-w', '--work-directory', help='Working directory', dest='workdir', type='str', default='/var/spool/clamav-mirror') parser.add_option('-d', '--mirror-directory', help='The mirror directory', dest='mirrordir', type='str', default='/srv/www/clamav') parser.add_option('-u', '--user', help='Change file owner to this user', dest='user', type='str', default='nginx') parser.add_option('-g', '--group', help='Change file group to this group', dest='group', type='str', default='nginx') parser.add_option('-l', '--locks-directory', help='Lock files directory', dest='lockdir', type='str', default='/var/lock/subsys') parser.add_option('-v', '--verbose', help='Display verbose output', dest='verbose', action='store_true', default=False) options, _ = parser.parse_args() try: lockfile = os.path.join(options.lockdir, 'clamavmirror') with open(lockfile, 'w+') as lock: fcntl.lockf(lock, fcntl.LOCK_EX | fcntl.LOCK_NB) work(options) except IOError: info("=> Another instance is already running") sys.exit(254)
Main entry point
def get_filepath(self, filename): """ Creates file path for the file. :param filename: name of the file :type filename: str :return: filename with path on disk :rtype: str """ return os.path.join(self.parent_folder, self.product_id, self.add_file_extension(filename)).replace(':', '.')
Creates file path for the file. :param filename: name of the file :type filename: str :return: filename with path on disk :rtype: str
async def _connect(self, connection_lost_callbk=None): """Asyncio connection to Elk.""" self.connection_lost_callbk = connection_lost_callbk url = self._config['url'] LOG.info("Connecting to ElkM1 at %s", url) scheme, dest, param, ssl_context = parse_url(url) conn = partial(Connection, self.loop, self._connected, self._disconnected, self._got_data, self._timeout) try: if scheme == 'serial': await serial_asyncio.create_serial_connection( self.loop, conn, dest, baudrate=param) else: await asyncio.wait_for(self.loop.create_connection( conn, host=dest, port=param, ssl=ssl_context), timeout=30) except (ValueError, OSError, asyncio.TimeoutError) as err: LOG.warning("Could not connect to ElkM1 (%s). Retrying in %d seconds", err, self._connection_retry_timer) self.loop.call_later(self._connection_retry_timer, self.connect) self._connection_retry_timer = 2 * self._connection_retry_timer \ if self._connection_retry_timer < 32 else 60
Asyncio connection to Elk.
def add_install_defaults(args): """Add any saved installation defaults to the upgrade. """ # Ensure we install data if we've specified any secondary installation targets if len(args.genomes) > 0 or len(args.aligners) > 0 or len(args.datatarget) > 0: args.install_data = True install_config = _get_install_config() if install_config is None or not utils.file_exists(install_config): default_args = {} else: with open(install_config) as in_handle: default_args = yaml.safe_load(in_handle) # if we are upgrading to development, also upgrade the tools if args.upgrade in ["development"] and (args.tooldir or "tooldir" in default_args): args.tools = True if args.tools and args.tooldir is None: if "tooldir" in default_args: args.tooldir = str(default_args["tooldir"]) else: raise ValueError("Default tool directory not yet saved in config defaults. " "Specify the '--tooldir=/path/to/tools' to upgrade tools. " "After a successful upgrade, the '--tools' parameter will " "work for future upgrades.") for attr in ["genomes", "aligners"]: # don't upgrade default genomes if a genome was specified if attr == "genomes" and len(args.genomes) > 0: continue for x in default_args.get(attr, []): x = str(x) new_val = getattr(args, attr) if x not in getattr(args, attr): new_val.append(x) setattr(args, attr, new_val) args = _datatarget_defaults(args, default_args) if "isolate" in default_args and args.isolate is not True: args.isolate = default_args["isolate"] return args
Add any saved installation defaults to the upgrade.
def set_line_join(self, line_join): """Set the current :ref:`LINE_JOIN` within the cairo context. As with the other stroke parameters, the current line cap style is examined by :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`, but does not have any effect during path construction. The default line cap is :obj:`MITER <LINE_JOIN_MITER>`. :param line_join: A :ref:`LINE_JOIN` string. """ cairo.cairo_set_line_join(self._pointer, line_join) self._check_status()
Set the current :ref:`LINE_JOIN` within the cairo context. As with the other stroke parameters, the current line cap style is examined by :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`, but does not have any effect during path construction. The default line cap is :obj:`MITER <LINE_JOIN_MITER>`. :param line_join: A :ref:`LINE_JOIN` string.
def get_blank_row(self, filler="-", splitter="+"): """Gets blank row :param filler: Fill empty columns with this char :param splitter: Separate columns with this char :return: Pretty formatted blank row (with no meaningful data in it) """ return self.get_pretty_row( ["" for _ in self.widths], # blanks filler, # fill with this splitter, # split columns with this )
Gets blank row :param filler: Fill empty columns with this char :param splitter: Separate columns with this char :return: Pretty formatted blank row (with no meaningful data in it)
def filter_by_analysis_period(self, analysis_period): """ Filter a Data Collection based on an analysis period. Args: analysis period: A Ladybug analysis period Return: A new Data Collection with filtered data """ self._check_analysis_period(analysis_period) _filtered_data = self.filter_by_moys(analysis_period.moys) _filtered_data.header._analysis_period = analysis_period return _filtered_data
Filter a Data Collection based on an analysis period. Args: analysis period: A Ladybug analysis period Return: A new Data Collection with filtered data
def hardware_custom_profile_kap_custom_profile_xstp_xstp_hello_interval(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") hardware = ET.SubElement(config, "hardware", xmlns="urn:brocade.com:mgmt:brocade-hardware") custom_profile = ET.SubElement(hardware, "custom-profile") kap_custom_profile = ET.SubElement(custom_profile, "kap-custom-profile") name_key = ET.SubElement(kap_custom_profile, "name") name_key.text = kwargs.pop('name') xstp = ET.SubElement(kap_custom_profile, "xstp") xstp_hello_interval = ET.SubElement(xstp, "xstp_hello_interval") xstp_hello_interval.text = kwargs.pop('xstp_hello_interval') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def setSignals(self, vehID, signals): """setSignals(string, integer) -> None Sets an integer encoding the state of the vehicle's signals. """ self._connection._sendIntCmd( tc.CMD_SET_VEHICLE_VARIABLE, tc.VAR_SIGNALS, vehID, signals)
setSignals(string, integer) -> None Sets an integer encoding the state of the vehicle's signals.
def pix2vec(nside, ipix, nest=False): """Drop-in replacement for healpy `~healpy.pixelfunc.pix2vec`.""" lon, lat = healpix_to_lonlat(ipix, nside, order='nested' if nest else 'ring') return ang2vec(*_lonlat_to_healpy(lon, lat))
Drop-in replacement for healpy `~healpy.pixelfunc.pix2vec`.
def getSegmentOnCell(self, c, i, segIdx): """ Overrides :meth:`nupic.algorithms.backtracking_tm.BacktrackingTM.getSegmentOnCell`. """ segList = self.cells4.getNonEmptySegList(c,i) seg = self.cells4.getSegment(c, i, segList[segIdx]) numSyn = seg.size() assert numSyn != 0 # Accumulate segment information result = [] result.append([int(segIdx), bool(seg.isSequenceSegment()), seg.getPositiveActivations(), seg.getTotalActivations(), seg.getLastActiveIteration(), seg.getLastPosDutyCycle(), seg.getLastPosDutyCycleIteration()]) for s in xrange(numSyn): sc, si = self.getColCellIdx(seg.getSrcCellIdx(s)) result.append([int(sc), int(si), seg.getPermanence(s)]) return result
Overrides :meth:`nupic.algorithms.backtracking_tm.BacktrackingTM.getSegmentOnCell`.
def append(self, data: Union[bytes, bytearray, memoryview]) -> None: """ Append the given piece of data (should be a buffer-compatible object). """ size = len(data) if size > self._large_buf_threshold: if not isinstance(data, memoryview): data = memoryview(data) self._buffers.append((True, data)) elif size > 0: if self._buffers: is_memview, b = self._buffers[-1] new_buf = is_memview or len(b) >= self._large_buf_threshold else: new_buf = True if new_buf: self._buffers.append((False, bytearray(data))) else: b += data # type: ignore self._size += size
Append the given piece of data (should be a buffer-compatible object).
def preprocess(self): ''' Performs initial cell conversions to standard types. This will strip units, scale numbers, and identify numeric data where it's convertible. ''' self.processed_tables = [] self.flags_by_table = [] self.units_by_table = [] for worksheet, rtable in enumerate(self.raw_tables): ptable, flags, units = self.preprocess_worksheet(rtable, worksheet) self.processed_tables.append(ptable) self.flags_by_table.append(flags) self.units_by_table.append(units) return self.processed_tables
Performs initial cell conversions to standard types. This will strip units, scale numbers, and identify numeric data where it's convertible.
def p_sigtypes(self, p): 'sigtypes : sigtypes sigtype' p[0] = p[1] + (p[2],) p.set_lineno(0, p.lineno(1))
sigtypes : sigtypes sigtype
def document_from_string(self, schema, request_string): # type: (GraphQLSchema, str) -> GraphQLDocument """This method returns a GraphQLQuery (from cache if present)""" key = self.get_key_for_schema_and_document_string(schema, request_string) if key not in self.cache_map: # We return from the fallback self.cache_map[key] = self.fallback_backend.document_from_string( schema, request_string ) # We ensure the main backend response is in the queue self.get_worker().queue(self.queue_backend, key, schema, request_string) return self.cache_map[key]
This method returns a GraphQLQuery (from cache if present)
def get_bins_by_resource(self, resource_id): """Gets the list of ``Bin`` objects mapped to a ``Resource``. arg: resource_id (osid.id.Id): ``Id`` of a ``Resource`` return: (osid.resource.BinList) - list of bins raise: NotFound - ``resource_id`` is not found raise: NullArgument - ``resource_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceBinSession.get_bins_by_resource mgr = self._get_provider_manager('RESOURCE', local=True) lookup_session = mgr.get_bin_lookup_session(proxy=self._proxy) return lookup_session.get_bins_by_ids( self.get_bin_ids_by_resource(resource_id))
Gets the list of ``Bin`` objects mapped to a ``Resource``. arg: resource_id (osid.id.Id): ``Id`` of a ``Resource`` return: (osid.resource.BinList) - list of bins raise: NotFound - ``resource_id`` is not found raise: NullArgument - ``resource_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.*
def calc_acceleration(xdata, dt): """ Calculates the acceleration from the position Parameters ---------- xdata : ndarray Position data dt : float time between measurements Returns ------- acceleration : ndarray values of acceleration from position 2 to N. """ acceleration = _np.diff(_np.diff(xdata))/dt**2 return acceleration
Calculates the acceleration from the position Parameters ---------- xdata : ndarray Position data dt : float time between measurements Returns ------- acceleration : ndarray values of acceleration from position 2 to N.
def _get_layer_converter_fn(layer, add_custom_layers = False): """Get the right converter function for Keras """ layer_type = type(layer) if layer_type in _KERAS_LAYER_REGISTRY: convert_func = _KERAS_LAYER_REGISTRY[layer_type] if convert_func is _layers2.convert_activation: act_name = _layers2._get_activation_name_from_keras_layer(layer) if act_name == 'CUSTOM': return None return convert_func elif add_custom_layers: return None else: raise TypeError("Keras layer of type %s is not supported." % type(layer))
Get the right converter function for Keras
def text(what="sentence", *args, **kwargs): """An aggregator for all above defined public methods.""" if what == "character": return character(*args, **kwargs) elif what == "characters": return characters(*args, **kwargs) elif what == "word": return word(*args, **kwargs) elif what == "words": return words(*args, **kwargs) elif what == "sentence": return sentence(*args, **kwargs) elif what == "sentences": return sentences(*args, **kwargs) elif what == "paragraph": return paragraph(*args, **kwargs) elif what == "paragraphs": return paragraphs(*args, **kwargs) elif what == "title": return title(*args, **kwargs) else: raise NameError('No such method')
An aggregator for all above defined public methods.
def reference_to_greatcircle(reference_frame, greatcircle_frame): """Convert a reference coordinate to a great circle frame.""" # Define rotation matrices along the position angle vector, and # relative to the origin. pole = greatcircle_frame.pole.transform_to(coord.ICRS) ra0 = greatcircle_frame.ra0 center = greatcircle_frame.center R_rot = rotation_matrix(greatcircle_frame.rotation, 'z') if not np.isnan(ra0): xaxis = np.array([np.cos(ra0), np.sin(ra0), 0.]) zaxis = pole.cartesian.xyz.value if np.abs(zaxis[2]) >= 1e-15: xaxis[2] = -(zaxis[0]*xaxis[0] + zaxis[1]*xaxis[1]) / zaxis[2] # what? else: xaxis[2] = 0. xaxis = xaxis / np.sqrt(np.sum(xaxis**2)) yaxis = np.cross(zaxis, xaxis) R = np.stack((xaxis, yaxis, zaxis)) elif center is not None: R1 = rotation_matrix(pole.ra, 'z') R2 = rotation_matrix(90*u.deg - pole.dec, 'y') Rtmp = matrix_product(R2, R1) rot = center.cartesian.transform(Rtmp) rot_lon = rot.represent_as(coord.UnitSphericalRepresentation).lon R3 = rotation_matrix(rot_lon, 'z') R = matrix_product(R3, R2, R1) else: R1 = rotation_matrix(pole.ra, 'z') R2 = rotation_matrix(pole.dec, 'y') R = matrix_product(R2, R1) return matrix_product(R_rot, R)
Convert a reference coordinate to a great circle frame.
def QA_util_code_tolist(code, auto_fill=True): """转换code==> list Arguments: code {[type]} -- [description] Keyword Arguments: auto_fill {bool} -- 是否自动补全(一般是用于股票/指数/etf等6位数,期货不适用) (default: {True}) Returns: [list] -- [description] """ if isinstance(code, str): if auto_fill: return [QA_util_code_tostr(code)] else: return [code] elif isinstance(code, list): if auto_fill: return [QA_util_code_tostr(item) for item in code] else: return [item for item in code]
转换code==> list Arguments: code {[type]} -- [description] Keyword Arguments: auto_fill {bool} -- 是否自动补全(一般是用于股票/指数/etf等6位数,期货不适用) (default: {True}) Returns: [list] -- [description]
def _compute_dependencies(self): """Recompute this distribution's dependencies.""" from _markerlib import compile as compile_marker dm = self.__dep_map = {None: []} reqs = [] # Including any condition expressions for req in self._parsed_pkg_info.get_all('Requires-Dist') or []: distvers, mark = self._preparse_requirement(req) parsed = parse_requirements(distvers).next() parsed.marker_fn = compile_marker(mark) reqs.append(parsed) def reqs_for_extra(extra): for req in reqs: if req.marker_fn(override={'extra':extra}): yield req common = frozenset(reqs_for_extra(None)) dm[None].extend(common) for extra in self._parsed_pkg_info.get_all('Provides-Extra') or []: extra = safe_extra(extra.strip()) dm[extra] = list(frozenset(reqs_for_extra(extra)) - common) return dm
Recompute this distribution's dependencies.
def previous(self, cli): """ Return the previously focussed :class:`.Buffer` or `None`. """ if len(self.focus_stack) > 1: try: return self[self.focus_stack[-2]] except KeyError: pass
Return the previously focussed :class:`.Buffer` or `None`.
def foreach(self, f): """ Sets the output of the streaming query to be processed using the provided writer ``f``. This is often used to write the output of a streaming query to arbitrary storage systems. The processing logic can be specified in two ways. #. A **function** that takes a row as input. This is a simple way to express your processing logic. Note that this does not allow you to deduplicate generated data when failures cause reprocessing of some input data. That would require you to specify the processing logic in the next way. #. An **object** with a ``process`` method and optional ``open`` and ``close`` methods. The object can have the following methods. * ``open(partition_id, epoch_id)``: *Optional* method that initializes the processing (for example, open a connection, start a transaction, etc). Additionally, you can use the `partition_id` and `epoch_id` to deduplicate regenerated data (discussed later). * ``process(row)``: *Non-optional* method that processes each :class:`Row`. * ``close(error)``: *Optional* method that finalizes and cleans up (for example, close connection, commit transaction, etc.) after all rows have been processed. The object will be used by Spark in the following way. * A single copy of this object is responsible of all the data generated by a single task in a query. In other words, one instance is responsible for processing one partition of the data generated in a distributed manner. * This object must be serializable because each task will get a fresh serialized-deserialized copy of the provided object. Hence, it is strongly recommended that any initialization for writing data (e.g. opening a connection or starting a transaction) is done after the `open(...)` method has been called, which signifies that the task is ready to generate data. * The lifecycle of the methods are as follows. For each partition with ``partition_id``: ... For each batch/epoch of streaming data with ``epoch_id``: ....... Method ``open(partitionId, epochId)`` is called. ....... If ``open(...)`` returns true, for each row in the partition and batch/epoch, method ``process(row)`` is called. ....... Method ``close(errorOrNull)`` is called with error (if any) seen while processing rows. Important points to note: * The `partitionId` and `epochId` can be used to deduplicate generated data when failures cause reprocessing of some input data. This depends on the execution mode of the query. If the streaming query is being executed in the micro-batch mode, then every partition represented by a unique tuple (partition_id, epoch_id) is guaranteed to have the same data. Hence, (partition_id, epoch_id) can be used to deduplicate and/or transactionally commit data and achieve exactly-once guarantees. However, if the streaming query is being executed in the continuous mode, then this guarantee does not hold and therefore should not be used for deduplication. * The ``close()`` method (if exists) will be called if `open()` method exists and returns successfully (irrespective of the return value), except if the Python crashes in the middle. .. note:: Evolving. >>> # Print every row using a function >>> def print_row(row): ... print(row) ... >>> writer = sdf.writeStream.foreach(print_row) >>> # Print every row using a object with process() method >>> class RowPrinter: ... def open(self, partition_id, epoch_id): ... print("Opened %d, %d" % (partition_id, epoch_id)) ... return True ... def process(self, row): ... print(row) ... def close(self, error): ... print("Closed with error: %s" % str(error)) ... >>> writer = sdf.writeStream.foreach(RowPrinter()) """ from pyspark.rdd import _wrap_function from pyspark.serializers import PickleSerializer, AutoBatchedSerializer from pyspark.taskcontext import TaskContext if callable(f): # The provided object is a callable function that is supposed to be called on each row. # Construct a function that takes an iterator and calls the provided function on each # row. def func_without_process(_, iterator): for x in iterator: f(x) return iter([]) func = func_without_process else: # The provided object is not a callable function. Then it is expected to have a # 'process(row)' method, and optional 'open(partition_id, epoch_id)' and # 'close(error)' methods. if not hasattr(f, 'process'): raise Exception("Provided object does not have a 'process' method") if not callable(getattr(f, 'process')): raise Exception("Attribute 'process' in provided object is not callable") def doesMethodExist(method_name): exists = hasattr(f, method_name) if exists and not callable(getattr(f, method_name)): raise Exception( "Attribute '%s' in provided object is not callable" % method_name) return exists open_exists = doesMethodExist('open') close_exists = doesMethodExist('close') def func_with_open_process_close(partition_id, iterator): epoch_id = TaskContext.get().getLocalProperty('streaming.sql.batchId') if epoch_id: epoch_id = int(epoch_id) else: raise Exception("Could not get batch id from TaskContext") # Check if the data should be processed should_process = True if open_exists: should_process = f.open(partition_id, epoch_id) error = None try: if should_process: for x in iterator: f.process(x) except Exception as ex: error = ex finally: if close_exists: f.close(error) if error: raise error return iter([]) func = func_with_open_process_close serializer = AutoBatchedSerializer(PickleSerializer()) wrapped_func = _wrap_function(self._spark._sc, func, serializer, serializer) jForeachWriter = \ self._spark._sc._jvm.org.apache.spark.sql.execution.python.PythonForeachWriter( wrapped_func, self._df._jdf.schema()) self._jwrite.foreach(jForeachWriter) return self
Sets the output of the streaming query to be processed using the provided writer ``f``. This is often used to write the output of a streaming query to arbitrary storage systems. The processing logic can be specified in two ways. #. A **function** that takes a row as input. This is a simple way to express your processing logic. Note that this does not allow you to deduplicate generated data when failures cause reprocessing of some input data. That would require you to specify the processing logic in the next way. #. An **object** with a ``process`` method and optional ``open`` and ``close`` methods. The object can have the following methods. * ``open(partition_id, epoch_id)``: *Optional* method that initializes the processing (for example, open a connection, start a transaction, etc). Additionally, you can use the `partition_id` and `epoch_id` to deduplicate regenerated data (discussed later). * ``process(row)``: *Non-optional* method that processes each :class:`Row`. * ``close(error)``: *Optional* method that finalizes and cleans up (for example, close connection, commit transaction, etc.) after all rows have been processed. The object will be used by Spark in the following way. * A single copy of this object is responsible of all the data generated by a single task in a query. In other words, one instance is responsible for processing one partition of the data generated in a distributed manner. * This object must be serializable because each task will get a fresh serialized-deserialized copy of the provided object. Hence, it is strongly recommended that any initialization for writing data (e.g. opening a connection or starting a transaction) is done after the `open(...)` method has been called, which signifies that the task is ready to generate data. * The lifecycle of the methods are as follows. For each partition with ``partition_id``: ... For each batch/epoch of streaming data with ``epoch_id``: ....... Method ``open(partitionId, epochId)`` is called. ....... If ``open(...)`` returns true, for each row in the partition and batch/epoch, method ``process(row)`` is called. ....... Method ``close(errorOrNull)`` is called with error (if any) seen while processing rows. Important points to note: * The `partitionId` and `epochId` can be used to deduplicate generated data when failures cause reprocessing of some input data. This depends on the execution mode of the query. If the streaming query is being executed in the micro-batch mode, then every partition represented by a unique tuple (partition_id, epoch_id) is guaranteed to have the same data. Hence, (partition_id, epoch_id) can be used to deduplicate and/or transactionally commit data and achieve exactly-once guarantees. However, if the streaming query is being executed in the continuous mode, then this guarantee does not hold and therefore should not be used for deduplication. * The ``close()`` method (if exists) will be called if `open()` method exists and returns successfully (irrespective of the return value), except if the Python crashes in the middle. .. note:: Evolving. >>> # Print every row using a function >>> def print_row(row): ... print(row) ... >>> writer = sdf.writeStream.foreach(print_row) >>> # Print every row using a object with process() method >>> class RowPrinter: ... def open(self, partition_id, epoch_id): ... print("Opened %d, %d" % (partition_id, epoch_id)) ... return True ... def process(self, row): ... print(row) ... def close(self, error): ... print("Closed with error: %s" % str(error)) ... >>> writer = sdf.writeStream.foreach(RowPrinter())
def mu(self): """See docs for `Model` abstract base class.""" mu = self._models[0].mu assert all([mu == model.mu for model in self._models]) return mu
See docs for `Model` abstract base class.
def set_url_part(url, **kwargs): """Change one or more parts of a URL""" d = parse_url_to_dict(url) d.update(kwargs) return unparse_url_dict(d)
Change one or more parts of a URL
def add_oxidation_state_by_site_fraction(structure, oxidation_states): """ Add oxidation states to a structure by fractional site. Args: oxidation_states (list): List of list of oxidation states for each site fraction for each site. E.g., [[2, 4], [3], [-2], [-2], [-2]] """ try: for i, site in enumerate(structure): new_sp = collections.defaultdict(float) for j, (el, occu) in enumerate(get_z_ordered_elmap(site .species)): specie = Specie(el.symbol, oxidation_states[i][j]) new_sp[specie] += occu structure[i] = new_sp return structure except IndexError: raise ValueError("Oxidation state of all sites must be " "specified in the list.")
Add oxidation states to a structure by fractional site. Args: oxidation_states (list): List of list of oxidation states for each site fraction for each site. E.g., [[2, 4], [3], [-2], [-2], [-2]]
def clear_cached_values(self): """Removes all of the cached values and interpolators """ self._prof_interp = None self._prof_y = None self._prof_z = None self._marg_interp = None self._marg_z = None self._post = None self._post_interp = None self._interp = None self._ret_type = None
Removes all of the cached values and interpolators
def filter_data(data, kernel, mode='constant', fill_value=0.0, check_normalization=False): """ Convolve a 2D image with a 2D kernel. The kernel may either be a 2D `~numpy.ndarray` or a `~astropy.convolution.Kernel2D` object. Parameters ---------- data : array_like The 2D array of the image. kernel : array-like (2D) or `~astropy.convolution.Kernel2D` The 2D kernel used to filter the input ``data``. Filtering the ``data`` will smooth the noise and maximize detectability of objects with a shape similar to the kernel. mode : {'constant', 'reflect', 'nearest', 'mirror', 'wrap'}, optional The ``mode`` determines how the array borders are handled. For the ``'constant'`` mode, values outside the array borders are set to ``fill_value``. The default is ``'constant'``. fill_value : scalar, optional Value to fill data values beyond the array borders if ``mode`` is ``'constant'``. The default is ``0.0``. check_normalization : bool, optional If `True` then a warning will be issued if the kernel is not normalized to 1. """ from scipy import ndimage if kernel is not None: if isinstance(kernel, Kernel2D): kernel_array = kernel.array else: kernel_array = kernel if check_normalization: if not np.allclose(np.sum(kernel_array), 1.0): warnings.warn('The kernel is not normalized.', AstropyUserWarning) # NOTE: astropy.convolution.convolve fails with zero-sum # kernels (used in findstars) (cf. astropy #1647) # NOTE: if data is int and kernel is float, ndimage.convolve # will return an int image - here we make the data float so # that a float image is always returned return ndimage.convolve(data.astype(float), kernel_array, mode=mode, cval=fill_value) else: return data
Convolve a 2D image with a 2D kernel. The kernel may either be a 2D `~numpy.ndarray` or a `~astropy.convolution.Kernel2D` object. Parameters ---------- data : array_like The 2D array of the image. kernel : array-like (2D) or `~astropy.convolution.Kernel2D` The 2D kernel used to filter the input ``data``. Filtering the ``data`` will smooth the noise and maximize detectability of objects with a shape similar to the kernel. mode : {'constant', 'reflect', 'nearest', 'mirror', 'wrap'}, optional The ``mode`` determines how the array borders are handled. For the ``'constant'`` mode, values outside the array borders are set to ``fill_value``. The default is ``'constant'``. fill_value : scalar, optional Value to fill data values beyond the array borders if ``mode`` is ``'constant'``. The default is ``0.0``. check_normalization : bool, optional If `True` then a warning will be issued if the kernel is not normalized to 1.
def register_surrogateescape(): """ Registers the surrogateescape error handler on Python 2 (only) """ if six.PY3: return try: codecs.lookup_error(FS_ERRORS) except LookupError: codecs.register_error(FS_ERRORS, surrogateescape_handler)
Registers the surrogateescape error handler on Python 2 (only)
def get_clients(self, limit=None, offset=None): """ Returns a list of clients. """ data = {} if limit: data['limit'] = limit if offset: data['offset'] = offset result = self._request('GET', '/clients', data=json.dumps(data)) return result.json()
Returns a list of clients.
def hmget(self, name, keys, *args): "Returns a list of values ordered identically to ``keys``" args = list_or_args(keys, args) return self.execute_command('HMGET', name, *args)
Returns a list of values ordered identically to ``keys``
def p_subidentifiers(self, p): """subidentifiers : subidentifiers subidentifier | subidentifier""" n = len(p) if n == 3: p[0] = p[1] + [p[2]] elif n == 2: p[0] = [p[1]]
subidentifiers : subidentifiers subidentifier | subidentifier
def run(path, code=None, params=None, ignore=None, select=None, **meta): """Check code with Radon. :return list: List of errors. """ complexity = params.get('complexity', 10) no_assert = params.get('no_assert', False) show_closures = params.get('show_closures', False) visitor = ComplexityVisitor.from_code(code, no_assert=no_assert) blocks = visitor.blocks if show_closures: blocks = add_inner_blocks(blocks) return [ {'lnum': block.lineno, 'col': block.col_offset, 'type': 'R', 'number': 'R709', 'text': 'R701: %s is too complex %d' % (block.name, block.complexity)} for block in visitor.blocks if block.complexity > complexity ]
Check code with Radon. :return list: List of errors.
def obj_to_json(self, file_path=None, indent=2, sort_keys=False, quote_numbers=True): """ This will return a str of a json list. :param file_path: path to data file, defaults to self's contents if left alone :param indent: int if set to 2 will indent to spaces and include line breaks. :param sort_keys: sorts columns as oppose to column order. :param quote_numbers: bool if True will quote numbers that are strings :return: string representing the grid formation of the relevant data """ data = [row.obj_to_ordered_dict(self.columns) for row in self] if not quote_numbers: for row in data: for k, v in row.items(): if isinstance(v, (bool, int, float)): row[k] = str(row[k]) ret = json.dumps(data, indent=indent, sort_keys=sort_keys) if sys.version_info[0] == 2: ret = ret.replace(', \n', ',\n') self._save_file(file_path, ret) return ret
This will return a str of a json list. :param file_path: path to data file, defaults to self's contents if left alone :param indent: int if set to 2 will indent to spaces and include line breaks. :param sort_keys: sorts columns as oppose to column order. :param quote_numbers: bool if True will quote numbers that are strings :return: string representing the grid formation of the relevant data
def hr_size(num, suffix='B') -> str: """ Human-readable data size From https://stackoverflow.com/a/1094933 :param num: number of bytes :param suffix: Optional size specifier :return: Formatted string """ for unit in ' KMGTPEZ': if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit if unit != ' ' else '', suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Y', suffix)
Human-readable data size From https://stackoverflow.com/a/1094933 :param num: number of bytes :param suffix: Optional size specifier :return: Formatted string
def output(self, stream, disabletransferencoding = None): """ Set output stream and send response immediately """ if self._sendHeaders: raise HttpProtocolException('Cannot modify response, headers already sent') self.outputstream = stream try: content_length = len(stream) except Exception: pass else: self.header(b'Content-Length', str(content_length).encode('ascii')) if disabletransferencoding is not None: self.disabledeflate = disabletransferencoding self._startResponse()
Set output stream and send response immediately
def encrypt(self, plaintext): """Encrypt the given plaintext value""" if not isinstance(plaintext, int): raise ValueError('Plaintext must be an integer value') if not self.in_range.contains(plaintext): raise OutOfRangeError('Plaintext is not within the input range') return self.encrypt_recursive(plaintext, self.in_range, self.out_range)
Encrypt the given plaintext value
def add_access_policy_filter(request, query, column_name): """Filter records that do not have ``read`` or better access for one or more of the active subjects. Since ``read`` is the lowest access level that a subject can have, this method only has to filter on the presence of the subject. """ q = d1_gmn.app.models.Subject.objects.filter( subject__in=request.all_subjects_set ).values('permission__sciobj') filter_arg = '{}__in'.format(column_name) return query.filter(**{filter_arg: q})
Filter records that do not have ``read`` or better access for one or more of the active subjects. Since ``read`` is the lowest access level that a subject can have, this method only has to filter on the presence of the subject.
def xml_endtag (self, name): """ Write XML end tag. """ self.level -= 1 assert self.level >= 0 self.write(self.indent*self.level) self.writeln(u"</%s>" % xmlquote(name))
Write XML end tag.
def get_angle(self, verify = False): """ Retuns measured angle in degrees in range 0-360. """ LSB = self.bus.read_byte_data(self.address, self.angle_LSB) MSB = self.bus.read_byte_data(self.address, self.angle_MSB) DATA = (MSB << 6) + LSB if not verify: return (360.0 / 2**14) * DATA else: status = self.get_diagnostics() if not (status['Comp_Low']) and not(status['Comp_High']) and not(status['COF']): return (360.0 / 2**14) * DATA else: return None
Retuns measured angle in degrees in range 0-360.
def interconnect_link_topologies(self): """ Gets the InterconnectLinkTopologies API client. Returns: InterconnectLinkTopologies: """ if not self.__interconnect_link_topologies: self.__interconnect_link_topologies = InterconnectLinkTopologies(self.__connection) return self.__interconnect_link_topologies
Gets the InterconnectLinkTopologies API client. Returns: InterconnectLinkTopologies:
def DiscreteUniform(n=10,LB=1,UB=99,B=100): """DiscreteUniform: create random, uniform instance for the bin packing problem.""" B = 100 s = [0]*n for i in range(n): s[i] = random.randint(LB,UB) return s,B
DiscreteUniform: create random, uniform instance for the bin packing problem.
def iflatten(seq, isSeq=isSeq): r"""Like `flatten` but lazy.""" for elt in seq: if isSeq(elt): for x in iflatten(elt, isSeq): yield x else: yield elt
r"""Like `flatten` but lazy.
def _mark_started(self): """ Set the state information for a task once it has completely started. In particular, the time limit is applied as of this time (ie after and start delay has been taking. """ log = self._params.get('log', self._discard) now = time.time() self._started = now limit = self._config_running.get('time_limit') try: limit = float(_fmt_context(self._get(limit, default='0'), self._context)) if limit > 0: log.debug("Applying task '%s' time limit of %s", self._name, deltafmt(limit)) self._limit = now + limit except Exception as e: log.warn("Task '%s' time_limit value '%s' invalid -- %s", self._name, limit, e, exc_info=log.isEnabledFor(logging.DEBUG))
Set the state information for a task once it has completely started. In particular, the time limit is applied as of this time (ie after and start delay has been taking.
def get(key, value=None, conf_file=_DEFAULT_CONF): ''' Get the value for a specific configuration line. :param str key: The command or stanza block to configure. :param str value: The command value or command of the block specified by the key parameter. :param str conf_file: The logrotate configuration file. :return: The value for a specific configuration line. :rtype: bool|int|str CLI Example: .. code-block:: bash salt '*' logrotate.get rotate salt '*' logrotate.get /var/log/wtmp rotate /etc/logrotate.conf ''' current_conf = _parse_conf(conf_file) stanza = current_conf.get(key, False) if value: if stanza: return stanza.get(value, False) _LOG.warning("Block '%s' not present or empty.", key) return stanza
Get the value for a specific configuration line. :param str key: The command or stanza block to configure. :param str value: The command value or command of the block specified by the key parameter. :param str conf_file: The logrotate configuration file. :return: The value for a specific configuration line. :rtype: bool|int|str CLI Example: .. code-block:: bash salt '*' logrotate.get rotate salt '*' logrotate.get /var/log/wtmp rotate /etc/logrotate.conf
def parse_string(self, timestr, subfmts): """Read time from a single string, using a set of possible formats.""" # Datetime components required for conversion to JD by ERFA, along # with the default values. components = ('year', 'mon', 'mday') defaults = (None, 1, 1, 0) # Assume that anything following "." on the right side is a # floating fraction of a second. try: idot = timestr.rindex('.') except: fracday = 0.0 else: timestr, fracday = timestr[:idot], timestr[idot:] fracday = float(fracday) for _, strptime_fmt_or_regex, _ in subfmts: vals = [] #print strptime_fmt_or_regex if isinstance(strptime_fmt_or_regex, six.string_types): try: #print timstr #print strptime_fmt_or_regex tm = time.strptime(timestr, strptime_fmt_or_regex) tm.tm_hour += int(24 * fracday) tm.tm_min += int(60 * (24 * fracday - tm.tm_hour)) tm.tm_sec += 60 * (60 * (24 * fracday - tm.tm_hour) - tm.tm_min) except ValueError as ex: print ex continue else: vals = [getattr(tm, 'tm_' + component) for component in components] else: tm = re.match(strptime_fmt_or_regex, timestr) if tm is None: continue tm = tm.groupdict() vals = [int(tm.get(component, default)) for component, default in six.moves.zip(components, defaults)] hrprt = int(24 * fracday) vals.append(hrprt) mnprt = int(60 * (24 * fracday - hrprt)) vals.append(mnprt) scprt = 60 * (60 * (24 * fracday - hrprt) - mnprt) vals.append(scprt) return vals else: raise ValueError('Time {0} does not match {1} format' .format(timestr, self.name))
Read time from a single string, using a set of possible formats.
def classify_tangent_intersection( intersection, nodes1, tangent1, nodes2, tangent2 ): """Helper for func:`classify_intersection` at tangencies. .. note:: This is a helper used only by :func:`classify_intersection`. Args: intersection (.Intersection): An intersection object. nodes1 (numpy.ndarray): Control points for the first curve at the intersection. tangent1 (numpy.ndarray): The tangent vector to the first curve at the intersection (``2 x 1`` array). nodes2 (numpy.ndarray): Control points for the second curve at the intersection. tangent2 (numpy.ndarray): The tangent vector to the second curve at the intersection (``2 x 1`` array). Returns: IntersectionClassification: The "inside" curve type, based on the classification enum. Will either be ``opposed`` or one of the ``tangent`` values. Raises: NotImplementedError: If the curves are tangent at the intersection and have the same curvature. """ # Each array is 2 x 1 (i.e. a column vector), we want the vector # dot product. dot_prod = np.vdot(tangent1[:, 0], tangent2[:, 0]) # NOTE: When computing curvatures we assume that we don't have lines # here, because lines that are tangent at an intersection are # parallel and we don't handle that case. curvature1 = _curve_helpers.get_curvature(nodes1, tangent1, intersection.s) curvature2 = _curve_helpers.get_curvature(nodes2, tangent2, intersection.t) if dot_prod < 0: # If the tangent vectors are pointing in the opposite direction, # then the curves are facing opposite directions. sign1, sign2 = _SIGN([curvature1, curvature2]) if sign1 == sign2: # If both curvatures are positive, since the curves are # moving in opposite directions, the tangency isn't part of # the surface intersection. if sign1 == 1.0: return CLASSIFICATION_T.OPPOSED else: return CLASSIFICATION_T.TANGENT_BOTH else: delta_c = abs(curvature1) - abs(curvature2) if delta_c == 0.0: raise NotImplementedError(_SAME_CURVATURE) elif sign1 == _SIGN(delta_c): return CLASSIFICATION_T.OPPOSED else: return CLASSIFICATION_T.TANGENT_BOTH else: if curvature1 > curvature2: return CLASSIFICATION_T.TANGENT_FIRST elif curvature1 < curvature2: return CLASSIFICATION_T.TANGENT_SECOND else: raise NotImplementedError(_SAME_CURVATURE)
Helper for func:`classify_intersection` at tangencies. .. note:: This is a helper used only by :func:`classify_intersection`. Args: intersection (.Intersection): An intersection object. nodes1 (numpy.ndarray): Control points for the first curve at the intersection. tangent1 (numpy.ndarray): The tangent vector to the first curve at the intersection (``2 x 1`` array). nodes2 (numpy.ndarray): Control points for the second curve at the intersection. tangent2 (numpy.ndarray): The tangent vector to the second curve at the intersection (``2 x 1`` array). Returns: IntersectionClassification: The "inside" curve type, based on the classification enum. Will either be ``opposed`` or one of the ``tangent`` values. Raises: NotImplementedError: If the curves are tangent at the intersection and have the same curvature.
def get_flight_rules(vis: Number, ceiling: Cloud) -> int: """ Returns int based on current flight rules from parsed METAR data 0=VFR, 1=MVFR, 2=IFR, 3=LIFR Note: Common practice is to report IFR if visibility unavailable """ # Parse visibility if not vis: return 2 if vis.repr == 'CAVOK' or vis.repr.startswith('P6'): vis = 10 # type: ignore elif vis.repr.startswith('M'): vis = 0 # type: ignore # Convert meters to miles elif len(vis.repr) == 4: vis = vis.value * 0.000621371 # type: ignore else: vis = vis.value # type: ignore # Parse ceiling cld = ceiling.altitude if ceiling else 99 # Determine flight rules if (vis <= 5) or (cld <= 30): # type: ignore if (vis < 3) or (cld < 10): # type: ignore if (vis < 1) or (cld < 5): # type: ignore return 3 # LIFR return 2 # IFR return 1 # MVFR return 0
Returns int based on current flight rules from parsed METAR data 0=VFR, 1=MVFR, 2=IFR, 3=LIFR Note: Common practice is to report IFR if visibility unavailable
def calc_avr_uvr_v1(self): """Calculate the flown through area and the wetted perimeter of both outer embankments. Note that each outer embankment lies beyond its foreland and that all water flowing exactly above the a embankment is added to |AVR|. The theoretical surface seperating water above the foreland from water above its embankment is not contributing to |UVR|. Required control parameters: |HM| |BNVR| Required derived parameter: |HV| Required flux sequence: |H| Calculated flux sequence: |AVR| |UVR| Examples: Generally, right trapezoids are assumed. Here, for simplicity, both forelands are assumed to be symmetrical. Their smaller bases (bottoms) hava a length of 2 meters, their non-vertical legs show an inclination of 1 meter per 4 meters, and their height (depths) is 1 meter. Both forelands lie 1 meter above the main channels bottom. Generally, a triangles are assumed, with the vertical side seperating the foreland from its outer embankment. Here, for simplicity, both forelands are assumed to be symmetrical. Their inclinations are 1 meter per 4 meters and their lowest point is 1 meter above the forelands bottom and 2 meters above the main channels bottom: >>> from hydpy.models.lstream import * >>> parameterstep() >>> hm(1.0) >>> bnvr(4.0) >>> derived.hv(1.0) The first example deals with moderate high flow conditions, where water flows over the forelands, but not over their outer embankments (|HM| < |H| < (|HM| + |HV|)): >>> fluxes.h = 1.5 >>> model.calc_avr_uvr_v1() >>> fluxes.avr avr(0.0, 0.0) >>> fluxes.uvr uvr(0.0, 0.0) The second example deals with extreme high flow conditions, where water flows over the both foreland and their outer embankments ((|HM| + |HV|) < |H|): >>> fluxes.h = 2.5 >>> model.calc_avr_uvr_v1() >>> fluxes.avr avr(0.5, 0.5) >>> fluxes.uvr uvr(2.061553, 2.061553) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess for i in range(2): if flu.h <= (con.hm+der.hv[i]): flu.avr[i] = 0. flu.uvr[i] = 0. else: flu.avr[i] = (flu.h-(con.hm+der.hv[i]))**2*con.bnvr[i]/2. flu.uvr[i] = (flu.h-(con.hm+der.hv[i]))*(1.+con.bnvr[i]**2)**.5
Calculate the flown through area and the wetted perimeter of both outer embankments. Note that each outer embankment lies beyond its foreland and that all water flowing exactly above the a embankment is added to |AVR|. The theoretical surface seperating water above the foreland from water above its embankment is not contributing to |UVR|. Required control parameters: |HM| |BNVR| Required derived parameter: |HV| Required flux sequence: |H| Calculated flux sequence: |AVR| |UVR| Examples: Generally, right trapezoids are assumed. Here, for simplicity, both forelands are assumed to be symmetrical. Their smaller bases (bottoms) hava a length of 2 meters, their non-vertical legs show an inclination of 1 meter per 4 meters, and their height (depths) is 1 meter. Both forelands lie 1 meter above the main channels bottom. Generally, a triangles are assumed, with the vertical side seperating the foreland from its outer embankment. Here, for simplicity, both forelands are assumed to be symmetrical. Their inclinations are 1 meter per 4 meters and their lowest point is 1 meter above the forelands bottom and 2 meters above the main channels bottom: >>> from hydpy.models.lstream import * >>> parameterstep() >>> hm(1.0) >>> bnvr(4.0) >>> derived.hv(1.0) The first example deals with moderate high flow conditions, where water flows over the forelands, but not over their outer embankments (|HM| < |H| < (|HM| + |HV|)): >>> fluxes.h = 1.5 >>> model.calc_avr_uvr_v1() >>> fluxes.avr avr(0.0, 0.0) >>> fluxes.uvr uvr(0.0, 0.0) The second example deals with extreme high flow conditions, where water flows over the both foreland and their outer embankments ((|HM| + |HV|) < |H|): >>> fluxes.h = 2.5 >>> model.calc_avr_uvr_v1() >>> fluxes.avr avr(0.5, 0.5) >>> fluxes.uvr uvr(2.061553, 2.061553)
def energy_ratio_by_chunks(x, param): """ Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the whole series. Takes as input parameters the number num_segments of segments to divide the series into and segment_focus which is the segment number (starting at zero) to return a feature on. If the length of the time series is not a multiple of the number of segments, the remaining data points are distributed on the bins starting from the first. For example, if your time series consists of 8 entries, the first two bins will contain 3 and the last two values, e.g. `[ 0., 1., 2.], [ 3., 4., 5.]` and `[ 6., 7.]`. Note that the answer for `num_segments = 1` is a trivial "1" but we handle this scenario in case somebody calls it. Sum of the ratios should be 1.0. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"num_segments": N, "segment_focus": i} with N, i both ints :return: the feature values :return type: list of tuples (index, data) """ res_data = [] res_index = [] full_series_energy = np.sum(x ** 2) for parameter_combination in param: num_segments = parameter_combination["num_segments"] segment_focus = parameter_combination["segment_focus"] assert segment_focus < num_segments assert num_segments > 0 res_data.append(np.sum(np.array_split(x, num_segments)[segment_focus] ** 2.0)/full_series_energy) res_index.append("num_segments_{}__segment_focus_{}".format(num_segments, segment_focus)) return list(zip(res_index, res_data))
Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the whole series. Takes as input parameters the number num_segments of segments to divide the series into and segment_focus which is the segment number (starting at zero) to return a feature on. If the length of the time series is not a multiple of the number of segments, the remaining data points are distributed on the bins starting from the first. For example, if your time series consists of 8 entries, the first two bins will contain 3 and the last two values, e.g. `[ 0., 1., 2.], [ 3., 4., 5.]` and `[ 6., 7.]`. Note that the answer for `num_segments = 1` is a trivial "1" but we handle this scenario in case somebody calls it. Sum of the ratios should be 1.0. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"num_segments": N, "segment_focus": i} with N, i both ints :return: the feature values :return type: list of tuples (index, data)
def connect(self, port=None, baud_rate=115200): ''' Parameters ---------- port : str or list-like, optional Port (or list of ports) to try to connect to as a DMF Control Board. baud_rate : int, optional Returns ------- str Port DMF control board was connected on. Raises ------ RuntimeError If connection could not be established. IOError If no ports were specified and Arduino Mega2560 not found on any port. ''' if isinstance(port, types.StringTypes): ports = [port] else: ports = port if not ports: # No port was specified. # # Try ports matching Mega2560 USB vendor/product ID. ports = serial_ports().index.tolist() if not ports: raise IOError("Arduino Mega2560 not found on any port.") for comport_i in ports: if self.connected(): self.disconnect() self.port = None self._i2c_devices = {} # Try to connect to control board on available ports. try: logger.debug('Try to connect to: %s', comport_i) # Explicitly cast `comport_i` to string since `Base.connect` # Boost Python binding does not support unicode strings. # # Fixes [issue 8][issue-8]. # # [issue-8]: https://github.com/wheeler-microfluidics/dmf-control-board-firmware/issues/8 Base.connect(self, str(comport_i), baud_rate) self.port = comport_i break except BadVGND, exception: logger.warning(exception) break except RuntimeError, exception: continue else: raise RuntimeError('Could not connect to control board on any of ' 'the following ports: %s' % ports) name = self.name() version = self.hardware_version() firmware = self.software_version() serial_number_string = "" try: serial_number_string = ", S/N %03d" % self.serial_number except: # Firmware does not support `serial_number` attribute. pass logger.info("Connected to %s v%s (Firmware: %s%s)" % (name, version, firmware, serial_number_string)) logger.info("Poll control board for series resistors and " "capacitance values.") self._read_calibration_data() try: self.__aref__ = self._aref() logger.info("Analog reference = %.2f V" % self.__aref__) except: # Firmware does not support `__aref__` attribute. pass # Check VGND for both analog channels expected = 2 ** 10/2 v = {} channels = [0, 1] damaged = [] for channel in channels: try: v[channel] = np.mean(self.analog_reads(channel, 10)) logger.info("A%d VGND = %.2f V (%.2f%% of Aref)", channel, self.__aref__ * v[channel] / (2 ** 10), 100.0 * v[channel] / (2 ** 10)) # Make sure that the VGND is close to the expected value; # otherwise, the op-amp may be damaged (expected error # is <= 10%). if np.abs(v[channel] - expected) / expected > .1: damaged.append(channel) except: # Firmware does not support `__aref__` attribute. break # Scan I2C bus to generate list of connected devices. self._i2c_scan() if damaged: # At least one of the analog input channels appears to be damaged. if len(damaged) == 1: msg = "Analog channel %d appears" % damaged[0] else: msg = "Analog channels %s appear" % damaged raise BadVGND(msg + " to be damaged. You may need to replace the " "op-amp on the control board.") return self.RETURN_OK
Parameters ---------- port : str or list-like, optional Port (or list of ports) to try to connect to as a DMF Control Board. baud_rate : int, optional Returns ------- str Port DMF control board was connected on. Raises ------ RuntimeError If connection could not be established. IOError If no ports were specified and Arduino Mega2560 not found on any port.
def standard_parsing_functions(Block, Tx): """ Return the standard parsing functions for a given Block and Tx class. The return value is expected to be used with the standard_streamer function. """ def stream_block(f, block): assert isinstance(block, Block) block.stream(f) def stream_blockheader(f, blockheader): assert isinstance(blockheader, Block) blockheader.stream_header(f) def stream_tx(f, tx): assert isinstance(tx, Tx) tx.stream(f) def parse_int_6(f): b = f.read(6) + b'\0\0' return struct.unpack(b, "<L")[0] def stream_int_6(f, v): f.write(struct.pack(v, "<L")[:6]) more_parsing = [ ("A", (PeerAddress.parse, lambda f, peer_addr: peer_addr.stream(f))), ("v", (InvItem.parse, lambda f, inv_item: inv_item.stream(f))), ("T", (Tx.parse, stream_tx)), ("B", (Block.parse, stream_block)), ("z", (Block.parse_as_header, stream_blockheader)), ("1", (lambda f: struct.unpack("B", f.read(1))[0], lambda f, v: f.write(struct.pack("B", v)))), ("6", (parse_int_6, stream_int_6)), ("O", (lambda f: True if f.read(1) else False, lambda f, v: f.write(b'' if v is None else struct.pack("B", v)))), ] all_items = list(STREAMER_FUNCTIONS.items()) all_items.extend(more_parsing) return all_items
Return the standard parsing functions for a given Block and Tx class. The return value is expected to be used with the standard_streamer function.
def save(self, index=None, force=False): """Save file""" editorstack = self.get_current_editorstack() return editorstack.save(index=index, force=force)
Save file
def pverb(self, *args, **kwargs): """ Console verbose message to STDOUT """ if not self.verbose: return self.pstd(*args, **kwargs)
Console verbose message to STDOUT
def createPREMISEventXML(eventType, agentIdentifier, eventDetail, eventOutcome, outcomeDetail=None, eventIdentifier=None, linkObjectList=[], eventDate=None): """ Actually create our PREMIS Event XML """ eventXML = etree.Element(PREMIS + "event", nsmap=PREMIS_NSMAP) eventIDXML = etree.SubElement(eventXML, PREMIS + "eventIdentifier") eventTypeXML = etree.SubElement(eventXML, PREMIS + "eventType") eventTypeXML.text = eventType eventIDTypeXML = etree.SubElement( eventIDXML, PREMIS + "eventIdentifierType" ) eventIDTypeXML.text = \ "http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID" eventIDValueXML = etree.SubElement( eventIDXML, PREMIS + "eventIdentifierValue" ) if eventIdentifier: eventIDValueXML.text = eventIdentifier else: eventIDValueXML.text = uuid.uuid4().hex eventDateTimeXML = etree.SubElement(eventXML, PREMIS + "eventDateTime") if eventDate is None: eventDateTimeXML.text = xsDateTime_format(datetime.utcnow()) else: eventDateTimeXML.text = xsDateTime_format(eventDate) eventDetailXML = etree.SubElement(eventXML, PREMIS + "eventDetail") eventDetailXML.text = eventDetail eventOutcomeInfoXML = etree.SubElement( eventXML, PREMIS + "eventOutcomeInformation" ) eventOutcomeXML = etree.SubElement( eventOutcomeInfoXML, PREMIS + "eventOutcome" ) eventOutcomeXML.text = eventOutcome if outcomeDetail: eventOutcomeDetailXML = etree.SubElement( eventOutcomeInfoXML, PREMIS + "eventOutcomeDetail" ) eventOutcomeDetailNoteXML = etree.SubElement( eventOutcomeDetailXML, PREMIS + "eventOutcomeDetailNote" ) eventOutcomeDetailNoteXML.text = outcomeDetail # Assuming it's a list of 3-item tuples here [ ( identifier, type, role) ] linkAgentIDXML = etree.SubElement( eventXML, PREMIS + "linkingAgentIdentifier") linkAgentIDTypeXML = etree.SubElement( linkAgentIDXML, PREMIS + "linkingAgentIdentifierType" ) linkAgentIDTypeXML.text = \ "http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL" linkAgentIDValueXML = etree.SubElement( linkAgentIDXML, PREMIS + "linkingAgentIdentifierValue" ) linkAgentIDValueXML.text = agentIdentifier linkAgentIDRoleXML = etree.SubElement( linkAgentIDXML, PREMIS + "linkingAgentRole" ) linkAgentIDRoleXML.text = \ "http://purl.org/net/untl/vocabularies/linkingAgentRoles/#executingProgram" for linkObject in linkObjectList: linkObjectIDXML = etree.SubElement( eventXML, PREMIS + "linkingObjectIdentifier" ) linkObjectIDTypeXML = etree.SubElement( linkObjectIDXML, PREMIS + "linkingObjectIdentifierType" ) linkObjectIDTypeXML.text = linkObject[1] linkObjectIDValueXML = etree.SubElement( linkObjectIDXML, PREMIS + "linkingObjectIdentifierValue" ) linkObjectIDValueXML.text = linkObject[0] if linkObject[2]: linkObjectRoleXML = etree.SubElement( linkObjectIDXML, PREMIS + "linkingObjectRole" ) linkObjectRoleXML.text = linkObject[2] return eventXML
Actually create our PREMIS Event XML
def get_instance(self, payload): """ Build an instance of NotificationInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.notification.NotificationInstance :rtype: twilio.rest.api.v2010.account.notification.NotificationInstance """ return NotificationInstance(self._version, payload, account_sid=self._solution['account_sid'], )
Build an instance of NotificationInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.notification.NotificationInstance :rtype: twilio.rest.api.v2010.account.notification.NotificationInstance
def _update_port_locations(self, initial_coordinates): """Adjust port locations after particles have moved Compares the locations of Particles between 'self' and an array of reference coordinates. Shifts Ports in accordance with how far anchors have been moved. This conserves the location of Ports with respect to their anchor Particles, but does not conserve the orientation of Ports with respect to the molecule as a whole. Parameters ---------- initial_coordinates : np.ndarray, shape=(n, 3), dtype=float Reference coordinates to use for comparing how far anchor Particles have shifted. """ particles = list(self.particles()) for port in self.all_ports(): if port.anchor: idx = particles.index(port.anchor) shift = particles[idx].pos - initial_coordinates[idx] port.translate(shift)
Adjust port locations after particles have moved Compares the locations of Particles between 'self' and an array of reference coordinates. Shifts Ports in accordance with how far anchors have been moved. This conserves the location of Ports with respect to their anchor Particles, but does not conserve the orientation of Ports with respect to the molecule as a whole. Parameters ---------- initial_coordinates : np.ndarray, shape=(n, 3), dtype=float Reference coordinates to use for comparing how far anchor Particles have shifted.
def remove_outcome_hook(self, outcome_id): """Removes internal transition going to the outcome """ for transition_id in list(self.transitions.keys()): transition = self.transitions[transition_id] if transition.to_outcome == outcome_id and transition.to_state == self.state_id: self.remove_transition(transition_id)
Removes internal transition going to the outcome
def _metric_when_multiplied_with_sig_vec(self, sig): """return D^-1 B^T diag(sig) B D as a measure for C^-1/2 diag(sig) C^1/2 :param sig: a vector "used" as diagonal matrix :return: """ return dot((self.B * self.D**-1.).T * sig, self.B * self.D)
return D^-1 B^T diag(sig) B D as a measure for C^-1/2 diag(sig) C^1/2 :param sig: a vector "used" as diagonal matrix :return:
def collect_modules(self): """ Collect up the list of modules in use """ try: res = {} m = sys.modules for k in m: # Don't report submodules (e.g. django.x, django.y, django.z) # Skip modules that begin with underscore if ('.' in k) or k[0] == '_': continue if m[k]: try: d = m[k].__dict__ if "version" in d and d["version"]: res[k] = self.jsonable(d["version"]) elif "__version__" in d and d["__version__"]: res[k] = self.jsonable(d["__version__"]) else: res[k] = get_distribution(k).version except DistributionNotFound: pass except Exception: logger.debug("collect_modules: could not process module: %s" % k) except Exception: logger.debug("collect_modules", exc_info=True) else: return res
Collect up the list of modules in use
def cross_validate(self, ax): ''' Performs the cross-validation step. ''' # The CDPP to beat cdpp_opt = self.get_cdpp_arr() # Loop over all chunks for b, brkpt in enumerate(self.breakpoints): log.info("Cross-validating chunk %d/%d..." % (b + 1, len(self.breakpoints))) # Mask for current chunk m = self.get_masked_chunk(b) # Mask transits and outliers time = self.time[m] flux = self.fraw[m] ferr = self.fraw_err[m] med = np.nanmedian(self.fraw) # Setup the GP gp = GP(self.kernel, self.kernel_params, white=False) gp.compute(time, ferr) # The masks masks = list(Chunks(np.arange(0, len(time)), len(time) // self.cdivs)) # The pre-computed matrices pre_v = [self.cv_precompute(mask, b) for mask in masks] # Initialize with the nPLD solution log_lam_opt = np.log10(self.lam[b]) scatter_opt = self.validation_scatter( log_lam_opt, b, masks, pre_v, gp, flux, time, med) log.info("Iter 0/%d: " % (self.piter) + "logL = (%s), s = %.3f" % (", ".join(["%.3f" % l for l in log_lam_opt]), scatter_opt)) # Do `piter` iterations for p in range(self.piter): # Perturb the initial condition a bit log_lam = np.array( np.log10(self.lam[b])) * \ (1 + self.ppert * np.random.randn(len(self.lam[b]))) scatter = self.validation_scatter( log_lam, b, masks, pre_v, gp, flux, time, med) log.info("Initializing at: " + "logL = (%s), s = %.3f" % (", ".join(["%.3f" % l for l in log_lam]), scatter)) # Call the minimizer log_lam, scatter, _, _, _, _ = \ fmin_powell(self.validation_scatter, log_lam, args=(b, masks, pre_v, gp, flux, time, med), maxfun=self.pmaxf, disp=False, full_output=True) # Did it improve the CDPP? tmp = np.array(self.lam[b]) self.lam[b] = 10 ** log_lam self.compute() cdpp = self.get_cdpp_arr()[b] self.lam[b] = tmp if cdpp < cdpp_opt[b]: cdpp_opt[b] = cdpp log_lam_opt = log_lam # Log it log.info("Iter %d/%d: " % (p + 1, self.piter) + "logL = (%s), s = %.3f" % (", ".join(["%.3f" % l for l in log_lam]), scatter)) # The best solution log.info("Found minimum: logL = (%s), s = %.3f" % (", ".join(["%.3f" % l for l in log_lam_opt]), scatter_opt)) self.lam[b] = 10 ** log_lam_opt # We're just going to plot lambda as a function of chunk number bs = np.arange(len(self.breakpoints)) color = ['k', 'b', 'r', 'g', 'y'] for n in range(self.pld_order): ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '.', color=color[n]) ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '-', color=color[n], alpha=0.25) ax[0].set_ylabel(r'$\log\Lambda$', fontsize=5) ax[0].margins(0.1, 0.1) ax[0].set_xticks(np.arange(1, len(self.breakpoints) + 1)) ax[0].set_xticklabels([]) # Now plot the CDPP cdpp_arr = self.get_cdpp_arr() ax[1].plot(bs + 1, cdpp_arr, 'b.') ax[1].plot(bs + 1, cdpp_arr, 'b-', alpha=0.25) ax[1].margins(0.1, 0.1) ax[1].set_ylabel(r'Scatter (ppm)', fontsize=5) ax[1].set_xlabel(r'Chunk', fontsize=5) ax[1].set_xticks(np.arange(1, len(self.breakpoints) + 1))
Performs the cross-validation step.
def get_products(self): """ List of formulas of potential products. E.g., ['Li','O2','Mn']. """ products = set() for _, _, _, react, _ in self.get_kinks(): products = products.union(set([k.reduced_formula for k in react.products])) return list(products)
List of formulas of potential products. E.g., ['Li','O2','Mn'].