code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def unzip_file(source_file, dest_dir=None, mkdir=False): """Unzip a compressed file. Args: source_file: Full path to a valid compressed file (e.g. c:/ladybug/testPts.zip) dest_dir: Target folder to extract to (e.g. c:/ladybug). Default is set to the same directory as the source file. mkdir: Set to True to create the directory if doesn't exist (Default: False) """ # set default dest_dir and create it if need be. if dest_dir is None: dest_dir, fname = os.path.split(source_file) elif not os.path.isdir(dest_dir): if mkdir: preparedir(dest_dir) else: created = preparedir(dest_dir, False) if not created: raise ValueError("Failed to find %s." % dest_dir) # extract files to destination with zipfile.ZipFile(source_file) as zf: for member in zf.infolist(): words = member.filename.split('\\') for word in words[:-1]: drive, word = os.path.splitdrive(word) head, word = os.path.split(word) if word in (os.curdir, os.pardir, ''): continue dest_dir = os.path.join(dest_dir, word) zf.extract(member, dest_dir)
Unzip a compressed file. Args: source_file: Full path to a valid compressed file (e.g. c:/ladybug/testPts.zip) dest_dir: Target folder to extract to (e.g. c:/ladybug). Default is set to the same directory as the source file. mkdir: Set to True to create the directory if doesn't exist (Default: False)
def collect(self, target): """Recursively collect all potential triggers/targets in this node and its children. Define targets and triggers of this particular callable in :meth:`_give_triggers` and :meth:`_give_targets`. :param str target: valid values: ``'targets'`` and ``'triggers'`` """ statusobjects = set() callables = set() objs_from_this_obj = getattr(self, '_give_%s' % target)() if not is_iterable(objs_from_this_obj): objs_from_this_obj = [objs_from_this_obj] if is_iterable(objs_from_this_obj): for i in (self.name_to_system_object(j) for j in objs_from_this_obj): if isinstance(i, AbstractStatusObject): statusobjects.add(i) elif isinstance(i, AbstractCallable): callables.add(i) for i in (self.name_to_system_object(j) for j in deep_iterate(callables)): if isinstance(i, AbstractCallable): statusobjects.update(getattr(i, target)) return statusobjects
Recursively collect all potential triggers/targets in this node and its children. Define targets and triggers of this particular callable in :meth:`_give_triggers` and :meth:`_give_targets`. :param str target: valid values: ``'targets'`` and ``'triggers'``
def run(self): """Main entrypoint method. Returns ------- new_nodes : `list` Nodes to add to the doctree. """ logger = getLogger(__name__) try: config_class_name = self.arguments[0] except IndexError: raise SphinxError( '{} directive requires a Config class ' 'name as an argument'.format(self.directive_name)) logger.debug('%s using Config class %s', self.directive_name, config_class_name) config_class = get_type(config_class_name) config_fields = get_task_config_fields(config_class) all_nodes = [] for field_name, field in config_fields.items(): field_id = format_configfield_id( '.'.join((config_class.__module__, config_class.__name__)), field_name) try: format_field_nodes = get_field_formatter(field) except ValueError: logger.debug('Skipping unknown config field type, ' '{0!r}'.format(field)) continue all_nodes.append( format_field_nodes(field_name, field, field_id, self.state, self.lineno) ) # Fallback if no configuration items are present if len(all_nodes) == 0: message = 'No configuration fields.' return [nodes.paragraph(text=message)] return all_nodes
Main entrypoint method. Returns ------- new_nodes : `list` Nodes to add to the doctree.
def visit_extslice(self, node, parent): """visit an ExtSlice node by returning a fresh instance of it""" newnode = nodes.ExtSlice(parent=parent) newnode.postinit([self.visit(dim, newnode) for dim in node.dims]) return newnode
visit an ExtSlice node by returning a fresh instance of it
def add_f95_to_env(env): """Add Builders and construction variables for f95 to an Environment.""" try: F95Suffixes = env['F95FILESUFFIXES'] except KeyError: F95Suffixes = ['.f95'] #print("Adding %s to f95 suffixes" % F95Suffixes) try: F95PPSuffixes = env['F95PPFILESUFFIXES'] except KeyError: F95PPSuffixes = [] DialectAddToEnv(env, "F95", F95Suffixes, F95PPSuffixes, support_module = 1)
Add Builders and construction variables for f95 to an Environment.
def check_cluster( cluster_config, data_path, java_home, check_replicas, batch_size, minutes, start_time, end_time, ): """Check the integrity of the Kafka log files in a cluster. start_time and end_time should be in the format specified by TIME_FORMAT_REGEX. :param data_path: the path to the log folder on the broker :type data_path: str :param java_home: the JAVA_HOME of the broker :type java_home: str :param check_replicas: also checks the replica files :type check_replicas: bool :param batch_size: the size of the batch :type batch_size: int :param minutes: check the files modified in the last N minutes :type minutes: int :param start_time: check the files modified after start_time :type start_time: str :param end_time: check the files modified before end_time :type end_time: str """ brokers = get_broker_list(cluster_config) broker_files = find_files(data_path, brokers, minutes, start_time, end_time) if not check_replicas: # remove replicas broker_files = filter_leader_files(cluster_config, broker_files) processes = [] print("Starting {n} parallel processes".format(n=len(broker_files))) try: for broker, host, files in broker_files: print( " Broker: {host}, {n} files to check".format( host=host, n=len(files)), ) p = Process( name="dump_process_" + host, target=check_files_on_host, args=(java_home, host, files, batch_size), ) p.start() processes.append(p) print("Processes running:") for process in processes: process.join() except KeyboardInterrupt: print("Terminating all processes") for process in processes: process.terminate() process.join() print("All processes terminated") sys.exit(1)
Check the integrity of the Kafka log files in a cluster. start_time and end_time should be in the format specified by TIME_FORMAT_REGEX. :param data_path: the path to the log folder on the broker :type data_path: str :param java_home: the JAVA_HOME of the broker :type java_home: str :param check_replicas: also checks the replica files :type check_replicas: bool :param batch_size: the size of the batch :type batch_size: int :param minutes: check the files modified in the last N minutes :type minutes: int :param start_time: check the files modified after start_time :type start_time: str :param end_time: check the files modified before end_time :type end_time: str
def read_config(config_path=default_config_path): """ Read configuration file and produce a dictionary of the following structure: {'<instance1>': {'username': '<user>', 'password': '<pass>', 'verify': <True/False>, 'cert': '<path-to-cert>'} '<instance2>': {...}, ...} Format of the file: [https://artifactory-instance.local/artifactory] username = foo password = @dmin verify = false cert = ~/path-to-cert config-path - specifies where to read the config from """ config_path = os.path.expanduser(config_path) if not os.path.isfile(config_path): raise OSError(errno.ENOENT, "Artifactory configuration file not found: '%s'" % config_path) p = configparser.ConfigParser() p.read(config_path) result = {} for section in p.sections(): username = p.get(section, 'username') if p.has_option(section, 'username') else None password = p.get(section, 'password') if p.has_option(section, 'password') else None verify = p.getboolean(section, 'verify') if p.has_option(section, 'verify') else True cert = p.get(section, 'cert') if p.has_option(section, 'cert') else None result[section] = {'username': username, 'password': password, 'verify': verify, 'cert': cert} # certificate path may contain '~', and we'd better expand it properly if result[section]['cert']: result[section]['cert'] = \ os.path.expanduser(result[section]['cert']) return result
Read configuration file and produce a dictionary of the following structure: {'<instance1>': {'username': '<user>', 'password': '<pass>', 'verify': <True/False>, 'cert': '<path-to-cert>'} '<instance2>': {...}, ...} Format of the file: [https://artifactory-instance.local/artifactory] username = foo password = @dmin verify = false cert = ~/path-to-cert config-path - specifies where to read the config from
def plot(self, ax=None, **kwargs): """ Plot the histogram with matplotlib, returns `matplotlib` figure. """ ax, fig, plt = get_ax_fig_plt(ax) yy = [len(v) for v in self.values] ax.plot(self.binvals, yy, **kwargs) return fig
Plot the histogram with matplotlib, returns `matplotlib` figure.
def _set_blob_properties(self, ud): # type: (Uploader, blobxfer.models.upload.Descriptor) -> None """Set blob properties (md5, cache control) :param Uploader self: this :param blobxfer.models.upload.Descriptor ud: upload descriptor """ if ud.requires_non_encrypted_md5_put: digest = blobxfer.util.base64_encode_as_string(ud.md5.digest()) else: digest = None blobxfer.operations.azure.blob.set_blob_properties(ud.entity, digest) if blobxfer.util.is_not_empty(ud.entity.replica_targets): for ase in ud.entity.replica_targets: blobxfer.operations.azure.blob.set_blob_properties(ase, digest)
Set blob properties (md5, cache control) :param Uploader self: this :param blobxfer.models.upload.Descriptor ud: upload descriptor
def fetch(url, binary, outfile, noprint, rendered): ''' Fetch a specified URL's content, and output it to the console. ''' with chrome_context.ChromeContext(binary=binary) as cr: resp = cr.blocking_navigate_and_get_source(url) if rendered: resp['content'] = cr.get_rendered_page_source() resp['binary'] = False resp['mimie'] = 'text/html' if not noprint: if resp['binary'] is False: print(resp['content']) else: print("Response is a binary file") print("Cannot print!") if outfile: with open(outfile, "wb") as fp: if resp['binary']: fp.write(resp['content']) else: fp.write(resp['content'].encode("UTF-8"))
Fetch a specified URL's content, and output it to the console.
def _prepare_ws(self, w0, mmap, n_steps): """ Decide how to make the return array. If mmap is False, this returns a full array of zeros, but with the correct shape as the output. If mmap is True, return a pointer to a memory-mapped array. The latter is particularly useful for integrating a large number of orbits or integrating a large number of time steps. """ from ..dynamics import PhaseSpacePosition if not isinstance(w0, PhaseSpacePosition): w0 = PhaseSpacePosition.from_w(w0) arr_w0 = w0.w(self._func_units) self.ndim, self.norbits = arr_w0.shape self.ndim = self.ndim//2 return_shape = (2*self.ndim, n_steps+1, self.norbits) if mmap is None: # create the return arrays ws = np.zeros(return_shape, dtype=float) else: if mmap.shape != return_shape: raise ValueError("Shape of memory-mapped array doesn't match " "expected shape of return array ({} vs {})" .format(mmap.shape, return_shape)) if not mmap.flags.writeable: raise TypeError("Memory-mapped array must be a writable mode, " " not '{}'".format(mmap.mode)) ws = mmap return w0, arr_w0, ws
Decide how to make the return array. If mmap is False, this returns a full array of zeros, but with the correct shape as the output. If mmap is True, return a pointer to a memory-mapped array. The latter is particularly useful for integrating a large number of orbits or integrating a large number of time steps.
def find_boundary_types(model, boundary_type, external_compartment=None): """Find specific boundary reactions. Arguments --------- model : cobra.Model A cobra model. boundary_type : str What boundary type to check for. Must be one of "exchange", "demand", or "sink". external_compartment : str or None The id for the external compartment. If None it will be detected automatically. Returns ------- list of cobra.reaction A list of likely boundary reactions of a user defined type. """ if not model.boundary: LOGGER.warning("There are no boundary reactions in this model. " "Therefore specific types of boundary reactions such " "as 'exchanges', 'demands' or 'sinks' cannot be " "identified.") return [] if external_compartment is None: external_compartment = find_external_compartment(model) return model.reactions.query( lambda r: is_boundary_type(r, boundary_type, external_compartment))
Find specific boundary reactions. Arguments --------- model : cobra.Model A cobra model. boundary_type : str What boundary type to check for. Must be one of "exchange", "demand", or "sink". external_compartment : str or None The id for the external compartment. If None it will be detected automatically. Returns ------- list of cobra.reaction A list of likely boundary reactions of a user defined type.
def masked_within_block_local_attention_1d(q, k, v, block_length=64, name=None): """Attention to the source and a neighborhood to the left within a block. The sequence is divided into blocks of length block_length. Attention for a given query position can only see memory positions less than or equal to the query position in the corresponding block. Args: q: a Tensor with shape [batch, heads, length, depth_k] k: a Tensor with shape [batch, heads, length, depth_k] v: a Tensor with shape [batch, heads, length, depth_v] block_length: an integer name: an optional string Returns: a Tensor of shape [batch, heads, length, depth_v] """ with tf.variable_scope( name, default_name="within_local_attention_1d", values=[q, k, v]): batch, heads, length, depth_k = common_layers.shape_list(q) depth_v = common_layers.shape_list(v)[-1] if isinstance(block_length, tf.Tensor): const = tf.contrib.util.constant_value(block_length) if const is not None: block_length = int(const) # Pad query, key, value to ensure multiple of block length. original_length = length padding_size = tf.mod(-length, block_length) length += padding_size padding = [[0, 0], [0, 0], [0, padding_size], [0, 0]] q = tf.pad(q, padding) k = tf.pad(k, padding) v = tf.pad(v, padding) # Compute attention for all subsequent query blocks. num_blocks = tf.div(length, block_length) q = tf.reshape(q, [batch, heads, num_blocks, block_length, depth_k]) k = tf.reshape(k, [batch, heads, num_blocks, block_length, depth_k]) v = tf.reshape(v, [batch, heads, num_blocks, block_length, depth_v]) # [batch, heads, num_blocks, block_length, block_length] attention = tf.matmul(q, k, transpose_b=True) attention += tf.reshape(attention_bias_lower_triangle(block_length), [1, 1, 1, block_length, block_length]) attention = tf.nn.softmax(attention) # [batch, heads, num_blocks, block_length, depth_v] output = tf.matmul(attention, v) output = tf.reshape(output, [batch, heads, -1, depth_v]) # Remove the padding if introduced. output = tf.slice(output, [0, 0, 0, 0], [-1, -1, original_length, -1]) output.set_shape([None if isinstance(dim, tf.Tensor) else dim for dim in (batch, heads, length, depth_v)]) return output
Attention to the source and a neighborhood to the left within a block. The sequence is divided into blocks of length block_length. Attention for a given query position can only see memory positions less than or equal to the query position in the corresponding block. Args: q: a Tensor with shape [batch, heads, length, depth_k] k: a Tensor with shape [batch, heads, length, depth_k] v: a Tensor with shape [batch, heads, length, depth_v] block_length: an integer name: an optional string Returns: a Tensor of shape [batch, heads, length, depth_v]
def gpg_profile_put_key( blockchain_id, key_id, key_name=None, immutable=True, txid=None, key_url=None, use_key_server=True, key_server=None, proxy=None, wallet_keys=None, gpghome=None ): """ Put a local GPG key into a blockchain ID's global account. If the URL is not given, the key will be replicated to the default PGP key server and to either immutable (if @immutable) or mutable data. Return {'status': True, 'key_url': key_url, 'key_id': key fingerprint, ...} on success Return {'error': ...} on error """ if key_name is not None: assert is_valid_keyname(key_name) if key_server is None: key_server = DEFAULT_KEY_SERVER if gpghome is None: gpghome = get_default_gpg_home() put_res = {} extra_fields = {} key_data = None if key_name is not None: extra_fields = {'keyName': key_name} if key_url is None: gpg = gnupg.GPG( homedir=gpghome ) if use_key_server: # replicate key data to default server first res = gpg.send_keys( key_server, key_id ) if len(res.data) > 0: # error log.error("GPG failed to upload key '%s'" % key_id) log.error("GPG error:\n%s" % res.stderr) return {'error': 'Failed to repliate GPG key to default keyserver'} key_data = gpg.export_keys( [key_id] ) if immutable: # replicate to immutable storage immutable_result = client.put_immutable( blockchain_id, key_id, {key_id: key_data}, proxy=proxy, txid=txid, wallet_keys=wallet_keys ) if 'error' in immutable_result: return {'error': 'Failed to store hash of key %s to the blockchain. Error message: "%s"' % (key_id, immutable_result['error'])} else: put_res['transaction_hash'] = immutable_result['transaction_hash'] put_res['zonefile_hash'] = immutable_result['zonefile_hash'] key_url = client.make_immutable_data_url( blockchain_id, key_id, client.get_data_hash(key_data) ) else: # replicate to mutable storage mutable_name = key_name if key_name is None: mutable_name = key_id mutable_result = client.put_mutable( blockchain_id, key_id, {mutable_name: key_data}, proxy=proxy, wallet_keys=wallet_keys ) if 'error' in mutable_result: return {'error': 'Failed to store key %s. Error message: "%s"' % (key_id, mutable_result['error'])} key_url = client.make_mutable_data_url( blockchain_id, key_id, mutable_result['version'] ) put_account_res = client.put_account( blockchain_id, "pgp", key_id, key_url, proxy=proxy, wallet_keys=wallet_keys, **extra_fields ) if 'error' in put_account_res: return put_account_res else: put_account_res.update( put_res ) put_account_res['key_url'] = key_url put_account_res['key_id'] = key_id return put_account_res
Put a local GPG key into a blockchain ID's global account. If the URL is not given, the key will be replicated to the default PGP key server and to either immutable (if @immutable) or mutable data. Return {'status': True, 'key_url': key_url, 'key_id': key fingerprint, ...} on success Return {'error': ...} on error
def bucket(cls, bucket_name, connection=None): """Gives the bucket from couchbase server. :param bucket_name: Bucket name to fetch. :type bucket_name: str :returns: couchbase driver's Bucket object. :rtype: :class:`couchbase.client.Bucket` :raises: :exc:`RuntimeError` If the credentials wasn't set. """ connection = cls.connection if connection == None else connection if bucket_name not in cls._buckets: connection = "{connection}/{bucket_name}".format(connection=connection, bucket_name=bucket_name) if cls.password: cls._buckets[connection] = Bucket(connection, password=cls.password) else: cls._buckets[connection] = Bucket(connection) return cls._buckets[connection]
Gives the bucket from couchbase server. :param bucket_name: Bucket name to fetch. :type bucket_name: str :returns: couchbase driver's Bucket object. :rtype: :class:`couchbase.client.Bucket` :raises: :exc:`RuntimeError` If the credentials wasn't set.
def from_group(cls, group): """ Construct tags from the regex group """ if not group: return tag_items = group.split(";") return list(map(cls.parse, tag_items))
Construct tags from the regex group
def from_extension(extension): """ Look up the BioPython file type corresponding with input extension. Look up is case insensitive. """ if not extension.startswith('.'): raise ValueError("Extensions must begin with a period.") try: return EXTENSION_TO_TYPE[extension.lower()] except KeyError: raise UnknownExtensionError( "seqmagick does not know how to handle " + "files with extensions like this: " + extension)
Look up the BioPython file type corresponding with input extension. Look up is case insensitive.
def IsSocket(self): """Determines if the file entry is a socket. Returns: bool: True if the file entry is a socket. """ if self._stat_object is None: self._stat_object = self._GetStat() if self._stat_object is not None: self.entry_type = self._stat_object.type return self.entry_type == definitions.FILE_ENTRY_TYPE_SOCKET
Determines if the file entry is a socket. Returns: bool: True if the file entry is a socket.
def hash_data(data, hashlen=None, alphabet=None): r""" Get a unique hash depending on the state of the data. Args: data (object): any sort of loosely organized data hashlen (None): (default = None) alphabet (None): (default = None) Returns: str: text - hash string CommandLine: python -m utool.util_hash hash_data Example: >>> # ENABLE_DOCTEST >>> from utool.util_hash import * # NOQA >>> import utool as ut >>> counter = [0] >>> failed = [] >>> def check_hash(input_, want=None): >>> count = counter[0] = counter[0] + 1 >>> got = ut.hash_data(input_) >>> print('({}) {}'.format(count, got)) >>> if want is not None and not got.startswith(want): >>> failed.append((got, input_, count, want)) >>> check_hash('1', 'wuvrng') >>> check_hash(['1'], 'dekbfpby') >>> check_hash(tuple(['1']), 'dekbfpby') >>> check_hash(b'12', 'marreflbv') >>> check_hash([b'1', b'2'], 'nwfs') >>> check_hash(['1', '2', '3'], 'arfrp') >>> check_hash(['1', np.array([1,2,3]), '3'], 'uyqwcq') >>> check_hash('123', 'ehkgxk') >>> check_hash(zip([1, 2, 3], [4, 5, 6]), 'mjcpwa') >>> import numpy as np >>> rng = np.random.RandomState(0) >>> check_hash(rng.rand(100000), 'bdwosuey') >>> for got, input_, count, want in failed: >>> print('failed {} on {}'.format(count, input_)) >>> print('got={}, want={}'.format(got, want)) >>> assert not failed """ if alphabet is None: alphabet = ALPHABET_27 if hashlen is None: hashlen = HASH_LEN2 if isinstance(data, stringlike) and len(data) == 0: # Make a special hash for empty data text = (alphabet[0] * hashlen) else: hasher = hashlib.sha512() _update_hasher(hasher, data) # Get a 128 character hex string text = hasher.hexdigest() # Shorten length of string (by increasing base) hashstr2 = convert_hexstr_to_bigbase(text, alphabet, bigbase=len(alphabet)) # Truncate text = hashstr2[:hashlen] return text
r""" Get a unique hash depending on the state of the data. Args: data (object): any sort of loosely organized data hashlen (None): (default = None) alphabet (None): (default = None) Returns: str: text - hash string CommandLine: python -m utool.util_hash hash_data Example: >>> # ENABLE_DOCTEST >>> from utool.util_hash import * # NOQA >>> import utool as ut >>> counter = [0] >>> failed = [] >>> def check_hash(input_, want=None): >>> count = counter[0] = counter[0] + 1 >>> got = ut.hash_data(input_) >>> print('({}) {}'.format(count, got)) >>> if want is not None and not got.startswith(want): >>> failed.append((got, input_, count, want)) >>> check_hash('1', 'wuvrng') >>> check_hash(['1'], 'dekbfpby') >>> check_hash(tuple(['1']), 'dekbfpby') >>> check_hash(b'12', 'marreflbv') >>> check_hash([b'1', b'2'], 'nwfs') >>> check_hash(['1', '2', '3'], 'arfrp') >>> check_hash(['1', np.array([1,2,3]), '3'], 'uyqwcq') >>> check_hash('123', 'ehkgxk') >>> check_hash(zip([1, 2, 3], [4, 5, 6]), 'mjcpwa') >>> import numpy as np >>> rng = np.random.RandomState(0) >>> check_hash(rng.rand(100000), 'bdwosuey') >>> for got, input_, count, want in failed: >>> print('failed {} on {}'.format(count, input_)) >>> print('got={}, want={}'.format(got, want)) >>> assert not failed
def generate_project(self): """ Generate the whole project. Returns True if at least one file has been generated, False otherwise.""" # checks needed properties if not self.name or not self.destdir or \ not os.path.isdir(self.destdir): raise ValueError("Empty or invalid property values: run with 'help' command") _log("Generating project '%s'" % self.name) _log("Destination directory is: '%s'" % self.destdir) top = os.path.join(self.destdir, self.name) src = os.path.join(top, self.src_name) resources = os.path.join(top, self.res_name) utils = os.path.join(src, "utils") if self.complex: models = os.path.join(src, "models") ctrls = os.path.join(src, "ctrls") views = os.path.join(src, "views") else: models = ctrls = views = src res = self.__generate_tree(top, src, resources, models, ctrls, views, utils) res = self.__generate_classes(models, ctrls, views) or res res = self.__mksrc(os.path.join(utils, "globals.py"), templates.glob) or res if self.complex: self.templ.update({'model_import' : "from models.application import ApplModel", 'ctrl_import' : "from ctrls.application import ApplCtrl", 'view_import' : "from views.application import ApplView"}) else: self.templ.update({'model_import' : "from ApplModel import ApplModel", 'ctrl_import' : "from ApplCtrl import ApplCtrl", 'view_import' : "from ApplView import ApplView"}) res = self.__mksrc(os.path.join(top, "%s.py" % self.name), templates.main) or res # builder file if self.builder: res = self.__generate_builder(resources) or res if self.dist_gtkmvc3: res = self.__copy_framework(os.path.join(resources, "external")) or res if not res: _log("No actions were taken") else: _log("Done") return res
Generate the whole project. Returns True if at least one file has been generated, False otherwise.
def ext_pillar(minion_id, pillar, *args, **kwargs): ''' Query NetBox API for minion data ''' if minion_id == '*': log.info('There\'s no data to collect from NetBox for the Master') return {} # Pull settings from kwargs api_url = kwargs['api_url'].rstrip('/') api_token = kwargs.get('api_token') site_details = kwargs.get('site_details', True) site_prefixes = kwargs.get('site_prefixes', True) proxy_username = kwargs.get('proxy_username', None) proxy_return = kwargs.get('proxy_return', True) ret = {} # Fetch device from API headers = {} if api_token: headers = { 'Authorization': 'Token {}'.format(api_token) } device_url = '{api_url}/{app}/{endpoint}'.format(api_url=api_url, app='dcim', endpoint='devices') device_results = salt.utils.http.query(device_url, params={'name': minion_id}, header_dict=headers, decode=True) # Check status code for API call if 'error' in device_results: log.error('API query failed for "%s", status code: %d', minion_id, device_results['status']) log.error(device_results['error']) return ret # Assign results from API call to "netbox" key devices = device_results['dict']['results'] if len(devices) == 1: ret['netbox'] = devices[0] elif len(devices) > 1: log.error('More than one device found for "%s"', minion_id) return ret else: log.error('Unable to pull NetBox data for "%s"', minion_id) return ret site_id = ret['netbox']['site']['id'] site_name = ret['netbox']['site']['name'] if site_details: log.debug('Retrieving site details for "%s" - site %s (ID %d)', minion_id, site_name, site_id) site_url = '{api_url}/{app}/{endpoint}/{site_id}/'.format(api_url=api_url, app='dcim', endpoint='sites', site_id=site_id) site_details_ret = salt.utils.http.query(site_url, header_dict=headers, decode=True) if 'error' in site_details_ret: log.error('Unable to retrieve site details for %s (ID %d)', site_name, site_id) log.error('Status code: %d, error: %s', site_details_ret['status'], site_details_ret['error']) else: ret['netbox']['site'] = site_details_ret['dict'] if site_prefixes: log.debug('Retrieving site prefixes for "%s" - site %s (ID %d)', minion_id, site_name, site_id) prefixes_url = '{api_url}/{app}/{endpoint}'.format(api_url=api_url, app='ipam', endpoint='prefixes') site_prefixes_ret = salt.utils.http.query(prefixes_url, params={'site_id': site_id}, header_dict=headers, decode=True) if 'error' in site_prefixes_ret: log.error('Unable to retrieve site prefixes for %s (ID %d)', site_name, site_id) log.error('Status code: %d, error: %s', site_prefixes_ret['status'], site_prefixes_ret['error']) else: ret['netbox']['site']['prefixes'] = site_prefixes_ret['dict']['results'] if proxy_return: # Attempt to add "proxy" key, based on platform API call try: # Fetch device from API platform_results = salt.utils.http.query(ret['netbox']['platform']['url'], header_dict=headers, decode=True) # Check status code for API call if 'error' in platform_results: log.info('API query failed for "%s": %s', minion_id, platform_results['error']) # Assign results from API call to "proxy" key if the platform has a # napalm_driver defined. napalm_driver = platform_results['dict'].get('napalm_driver') if napalm_driver: ret['proxy'] = { 'host': str(ipaddress.IPv4Interface( ret['netbox']['primary_ip4']['address']).ip), 'driver': napalm_driver, 'proxytype': 'napalm', } if proxy_username: ret['proxy']['username'] = proxy_username except Exception: log.debug( 'Could not create proxy config data for "%s"', minion_id) return ret
Query NetBox API for minion data
def deserialize(self, data): ''' Deserialize the data based on request content type headers ''' ct_in_map = { 'application/x-www-form-urlencoded': self._form_loader, 'application/json': salt.utils.json.loads, 'application/x-yaml': salt.utils.yaml.safe_load, 'text/yaml': salt.utils.yaml.safe_load, # because people are terrible and don't mean what they say 'text/plain': salt.utils.json.loads } try: # Use cgi.parse_header to correctly separate parameters from value value, parameters = cgi.parse_header(self.request.headers['Content-Type']) return ct_in_map[value](tornado.escape.native_str(data)) except KeyError: self.send_error(406) except ValueError: self.send_error(400)
Deserialize the data based on request content type headers
def createHeaderMenu(self, index): """ Creates a new header menu to be displayed. :return <QtGui.QMenu> """ menu = QtGui.QMenu(self) act = menu.addAction("Hide '%s'" % self.columnOf(index)) act.triggered.connect( self.headerHideColumn ) menu.addSeparator() act = menu.addAction('Sort Ascending') act.setIcon(QtGui.QIcon(resources.find('img/sort_ascending.png'))) act.triggered.connect( self.headerSortAscending ) act = menu.addAction('Sort Descending') act.setIcon(QtGui.QIcon(resources.find('img/sort_descending.png'))) act.triggered.connect( self.headerSortDescending ) act = menu.addAction('Resize to Contents') act.setIcon(QtGui.QIcon(resources.find('img/treeview/fit.png'))) act.triggered.connect( self.resizeToContents ) menu.addSeparator() colmenu = menu.addMenu( 'Show/Hide Columns' ) colmenu.setIcon(QtGui.QIcon(resources.find('img/columns.png'))) colmenu.addAction('Show All') colmenu.addAction('Hide All') colmenu.addSeparator() hitem = self.headerItem() columns = self.columns() for column in sorted(columns): col = self.column(column) action = colmenu.addAction(column) action.setCheckable(True) action.setChecked(not self.isColumnHidden(col)) colmenu.triggered.connect( self.toggleColumnByAction ) menu.addSeparator() exporters = self.exporters() if exporters: submenu = menu.addMenu('Export as') submenu.setIcon(QtGui.QIcon(resources.find('img/export.png'))) for exporter in exporters: act = submenu.addAction(exporter.name()) act.setData(wrapVariant(exporter.filetype())) submenu.triggered.connect(self.exportAs) return menu
Creates a new header menu to be displayed. :return <QtGui.QMenu>
def l2traceroute_result_input_session_id(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") l2traceroute_result = ET.Element("l2traceroute_result") config = l2traceroute_result input = ET.SubElement(l2traceroute_result, "input") session_id = ET.SubElement(input, "session-id") session_id.text = kwargs.pop('session_id') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def parse(self, filename=None, file=None, debuglevel=0): """ Parse file. kwargs: filename (str): File to parse debuglevel (int): Parser debuglevel """ self.scope.push() if not file: # We use a path. file = filename else: # We use a stream and try to extract the name from the stream. if hasattr(file, 'name'): if filename is not None: raise AssertionError( 'names of file and filename are in conflict') filename = file.name else: filename = '(stream)' self.target = filename if self.verbose and not self.fail_with_exc: print('Compiling target: %s' % filename, file=sys.stderr) self.result = self.parser.parse(file, lexer=self.lex, debug=debuglevel) self.post_parse() self.register.close()
Parse file. kwargs: filename (str): File to parse debuglevel (int): Parser debuglevel
def undo(self): ''' Undo the last action. ''' if self.canundo(): undoable = self._undos.pop() with self._pausereceiver(): try: undoable.undo() except: self.clear() raise else: self._redos.append(undoable) self.undocallback()
Undo the last action.
def _qteRunQueuedMacro(self, macroName: str, widgetObj: QtGui.QWidget=None, keysequence: QtmacsKeysequence=None): """ Execute the next macro in the macro queue. This method is triggered by the ``timerEvent`` in conjunction with the focus manager to ensure the event loop updates the GUI in between any two macros. .. warning:: Never call this method directly. |Args| * ``macroName`` (**str**): name of macro * ``widgetObj`` (**QWidget**): widget (if any) for which the macro applies * ``keysequence* (**QtmacsKeysequence**): key sequence that triggered the macro. |Returns| * **None** |Raises| * **QtmacsArgumentError** if at least one argument has an invalid type. """ # Fetch the applet holding the widget (this may be None). app = qteGetAppletFromWidget(widgetObj) # Double check that the applet still exists, unless there is # no applet (can happen when the windows are empty). if app is not None: if sip.isdeleted(app): msg = 'Ignored macro <b>{}</b> because it targeted a' msg += ' nonexistent applet.'.format(macroName) self.qteLogger.warning(msg) return # Fetch a signature compatible macro object. macroObj = self.qteGetMacroObject(macroName, widgetObj) # Log an error if no compatible macro was found. if macroObj is None: msg = 'No <b>{}</b>-macro compatible with {}:{}-type applet' msg = msg.format(macroName, app.qteAppletSignature(), widgetObj._qteAdmin.widgetSignature) self.qteLogger.warning(msg) return # Update the 'last_key_sequence' variable in case the macros, # or slots triggered by that macro, have access to it. self.qteDefVar('last_key_sequence', keysequence, doc="Last valid key sequence that triggered a macro.") # Set some variables in the macro object for convenient access # from inside the macro. if app is None: macroObj.qteApplet = macroObj.qteWidget = None else: macroObj.qteApplet = app macroObj.qteWidget = widgetObj # Run the macro and trigger the focus manager. macroObj.qtePrepareToRun()
Execute the next macro in the macro queue. This method is triggered by the ``timerEvent`` in conjunction with the focus manager to ensure the event loop updates the GUI in between any two macros. .. warning:: Never call this method directly. |Args| * ``macroName`` (**str**): name of macro * ``widgetObj`` (**QWidget**): widget (if any) for which the macro applies * ``keysequence* (**QtmacsKeysequence**): key sequence that triggered the macro. |Returns| * **None** |Raises| * **QtmacsArgumentError** if at least one argument has an invalid type.
def _parse(fileobj): """Parse fileobj for a shebang.""" fileobj.seek(0) try: part = fileobj.read(2) except UnicodeDecodeError: part = "" if part == "#!": shebang = shlex.split(fileobj.readline().strip()) if (platform.system() == "Windows" and len(shebang) and os.path.basename(shebang[0]) == "env"): return shebang[1:] return shebang return []
Parse fileobj for a shebang.
def get_face_mask(self, subdomain): """Get faces which are fully in subdomain. """ if subdomain is None: # https://stackoverflow.com/a/42392791/353337 return numpy.s_[:] if subdomain not in self.subdomains: self._mark_vertices(subdomain) # A face is inside if all its edges are in. # An edge is inside if all its nodes are in. is_in = self.subdomains[subdomain]["vertices"][self.idx_hierarchy] # Take `all()` over all axes except the last two (face_ids, cell_ids). n = len(is_in.shape) is_inside = numpy.all(is_in, axis=tuple(range(n - 2))) if subdomain.is_boundary_only: # Filter for boundary is_inside = is_inside & self.is_boundary_facet return is_inside
Get faces which are fully in subdomain.
def circlescan(x0, y0, r1, r2): """Scan pixels in a circle pattern around a center point :param x0: Center x-coordinate :type x0: float :param y0: Center y-coordinate :type y0: float :param r1: Initial radius :type r1: float :param r2: Final radius :type r2: float :returns: Coordinate generator :rtype: function """ # Validate inputs if r1 < 0: raise ValueError("Initial radius must be non-negative") if r2 < 0: raise ValueError("Final radius must be non-negative") # List of pixels visited in previous diameter previous = [] # Scan distances outward (1) or inward (-1) rstep = 1 if r2 >= r1 else -1 for distance in range(r1, r2 + rstep, rstep): if distance == 0: yield x0, y0 else: # Computes points for first octant and the rotate by multiples of # 45 degrees to compute the other octants a = 0.707107 rotations = {0: [[ 1, 0], [ 0, 1]], 1: [[ a, a], [-a, a]], 2: [[ 0, 1], [-1, 0]], 3: [[-a, a], [-a,-a]], 4: [[-1, 0], [ 0,-1]], 5: [[-a,-a], [ a,-a]], 6: [[ 0,-1], [ 1, 0]], 7: [[ a,-a], [ a, a]]} nangles = len(rotations) # List of pixels visited in current diameter current = [] for angle in range(nangles): x = 0 y = distance d = 1 - distance while x < y: xr = rotations[angle][0][0]*x + rotations[angle][0][1]*y yr = rotations[angle][1][0]*x + rotations[angle][1][1]*y xr = x0 + xr yr = y0 + yr # First check if point was in previous diameter # since our scan pattern can lead to duplicates in # neighboring diameters point = (int(round(xr)), int(round(yr))) if point not in previous: yield xr, yr current.append(point) # Move pixel according to circle constraint if (d < 0): d += 3 + 2 * x else: d += 5 - 2 * (y-x) y -= 1 x += 1 previous = current
Scan pixels in a circle pattern around a center point :param x0: Center x-coordinate :type x0: float :param y0: Center y-coordinate :type y0: float :param r1: Initial radius :type r1: float :param r2: Final radius :type r2: float :returns: Coordinate generator :rtype: function
def parseDockerAppliance(appliance): """ Takes string describing a docker image and returns the parsed registry, image reference, and tag for that image. Example: "quay.io/ucsc_cgl/toil:latest" Should return: "quay.io", "ucsc_cgl/toil", "latest" If a registry is not defined, the default is: "docker.io" If a tag is not defined, the default is: "latest" :param appliance: The full url of the docker image originally specified by the user (or the default). e.g. "quay.io/ucsc_cgl/toil:latest" :return: registryName, imageName, tag """ appliance = appliance.lower() # get the tag if ':' in appliance: tag = appliance.split(':')[-1] appliance = appliance[:-(len(':' + tag))] # remove only the tag else: # default to 'latest' if no tag is specified tag = 'latest' # get the registry and image registryName = 'docker.io' # default if not specified imageName = appliance # will be true if not specified if '/' in appliance and '.' in appliance.split('/')[0]: registryName = appliance.split('/')[0] imageName = appliance[len(registryName):] registryName = registryName.strip('/') imageName = imageName.strip('/') return registryName, imageName, tag
Takes string describing a docker image and returns the parsed registry, image reference, and tag for that image. Example: "quay.io/ucsc_cgl/toil:latest" Should return: "quay.io", "ucsc_cgl/toil", "latest" If a registry is not defined, the default is: "docker.io" If a tag is not defined, the default is: "latest" :param appliance: The full url of the docker image originally specified by the user (or the default). e.g. "quay.io/ucsc_cgl/toil:latest" :return: registryName, imageName, tag
def prefetch_docker_image_on_private_agents( image, timeout=timedelta(minutes=5).total_seconds()): """ Given a docker image. An app with the image is scale across the private agents to ensure that the image is prefetched to all nodes. :param image: docker image name :type image: str :param timeout: timeout for deployment wait in secs (default: 5m) :type password: int """ agents = len(shakedown.get_private_agents()) app = { "id": "/prefetch", "instances": agents, "container": { "type": "DOCKER", "docker": {"image": image} }, "cpus": 0.1, "mem": 128 } client = marathon.create_client() client.add_app(app) shakedown.deployment_wait(timeout) shakedown.delete_all_apps() shakedown.deployment_wait(timeout)
Given a docker image. An app with the image is scale across the private agents to ensure that the image is prefetched to all nodes. :param image: docker image name :type image: str :param timeout: timeout for deployment wait in secs (default: 5m) :type password: int
def get_mode(device): ''' Report whether the quota system for this device is on or off CLI Example: .. code-block:: bash salt '*' quota.get_mode ''' ret = {} cmd = 'quotaon -p {0}'.format(device) out = __salt__['cmd.run'](cmd, python_shell=False) for line in out.splitlines(): comps = line.strip().split() if comps[3] not in ret: if comps[0].startswith('quotaon'): if comps[1].startswith('Mountpoint'): ret[comps[4]] = 'disabled' continue elif comps[1].startswith('Cannot'): ret[device] = 'Not found' return ret continue ret[comps[3]] = { 'device': comps[4].replace('(', '').replace(')', ''), } ret[comps[3]][comps[0]] = comps[6] return ret
Report whether the quota system for this device is on or off CLI Example: .. code-block:: bash salt '*' quota.get_mode
def clearkml(self): '''Clear the kmls from the map''' #go through all the current layers and remove them for layer in self.curlayers: self.mpstate.map.remove_object(layer) for layer in self.curtextlayers: self.mpstate.map.remove_object(layer) self.allayers = [] self.curlayers = [] self.alltextlayers = [] self.curtextlayers = [] self.menu_needs_refreshing = True
Clear the kmls from the map
def get(self, key, default=None): """ Get key value, return default if key doesn't exist """ if self.in_memory: return self._memory_db.get(key, default) else: db = self._read_file() return db.get(key, default)
Get key value, return default if key doesn't exist
def ds_discrete(self, d_min=None, d_max=None, pts=20, limit=1e-9, method='logarithmic'): r'''Create a particle spacing mesh to perform calculations with, according to one of several ways. The allowable meshes are 'linear', 'logarithmic', a geometric series specified by a Renard number such as 'R10', or the meshes available in one of several sieve standards. Parameters ---------- d_min : float, optional The minimum diameter at which the mesh starts, [m] d_max : float, optional The maximum diameter at which the mesh ends, [m] pts : int, optional The number of points to return for the mesh (note this is not respected by sieve meshes), [-] limit : float If `d_min` or `d_max` is not specified, it will be calculated as the `dn` at which this limit or 1-limit exists (this is ignored for Renard numbers), [-] method : str, optional Either 'linear', 'logarithmic', a Renard number like 'R10' or 'R5' or'R2.5', or one of the sieve standards 'ISO 3310-1 R40/3', 'ISO 3310-1 R20', 'ISO 3310-1 R20/3', 'ISO 3310-1', 'ISO 3310-1 R10', 'ASTM E11', [-] Returns ------- ds : list[float] The generated mesh diameters, [m] Notes ----- Note that when specifying a Renard series, only one of `d_min` or `d_max` can be respected! Provide only one of those numbers. Note that when specifying a sieve standard the number of points is not respected! References ---------- .. [1] ASTM E11 - 17 - Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. .. [2] ISO 3310-1:2016 - Test Sieves -- Technical Requirements and Testing -- Part 1: Test Sieves of Metal Wire Cloth. ''' if method[0] not in ('R', 'r'): if d_min is None: d_min = self.dn(limit) if d_max is None: d_max = self.dn(1.0 - limit) return psd_spacing(d_min=d_min, d_max=d_max, pts=pts, method=method)
r'''Create a particle spacing mesh to perform calculations with, according to one of several ways. The allowable meshes are 'linear', 'logarithmic', a geometric series specified by a Renard number such as 'R10', or the meshes available in one of several sieve standards. Parameters ---------- d_min : float, optional The minimum diameter at which the mesh starts, [m] d_max : float, optional The maximum diameter at which the mesh ends, [m] pts : int, optional The number of points to return for the mesh (note this is not respected by sieve meshes), [-] limit : float If `d_min` or `d_max` is not specified, it will be calculated as the `dn` at which this limit or 1-limit exists (this is ignored for Renard numbers), [-] method : str, optional Either 'linear', 'logarithmic', a Renard number like 'R10' or 'R5' or'R2.5', or one of the sieve standards 'ISO 3310-1 R40/3', 'ISO 3310-1 R20', 'ISO 3310-1 R20/3', 'ISO 3310-1', 'ISO 3310-1 R10', 'ASTM E11', [-] Returns ------- ds : list[float] The generated mesh diameters, [m] Notes ----- Note that when specifying a Renard series, only one of `d_min` or `d_max` can be respected! Provide only one of those numbers. Note that when specifying a sieve standard the number of points is not respected! References ---------- .. [1] ASTM E11 - 17 - Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. .. [2] ISO 3310-1:2016 - Test Sieves -- Technical Requirements and Testing -- Part 1: Test Sieves of Metal Wire Cloth.
def create_png(cls_name, meth_name, graph, dir_name='graphs2'): """ Creates a PNG from a given :class:`~androguard.decompiler.dad.graph.Graph`. :param str cls_name: name of the class :param str meth_name: name of the method :param androguard.decompiler.dad.graph.Graph graph: :param str dir_name: output directory """ m_name = ''.join(x for x in meth_name if x.isalnum()) name = ''.join((cls_name.split('/')[-1][:-1], '#', m_name)) graph.draw(name, dir_name)
Creates a PNG from a given :class:`~androguard.decompiler.dad.graph.Graph`. :param str cls_name: name of the class :param str meth_name: name of the method :param androguard.decompiler.dad.graph.Graph graph: :param str dir_name: output directory
def heartbeat_encode(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=2): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version (uint8_t) ''' return MAVLink_heartbeat_message(type, autopilot, base_mode, custom_mode, system_status, mavlink_version)
The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version (uint8_t)
def place_items_in_square(items, t): """ Returns a list of rows that are stored as a priority queue to be used with heapq functions. >>> place_items_in_square([1,5,7], 4) [(2, 1, [(1, 5), (3, 7)]), (3, 0, [(1, 1)])] >>> place_items_in_square([1,5,7], 3) [(2, 0, [(1, 1)]), (2, 1, [(2, 5)]), (2, 2, [(1, 7)])] """ # A minheap (because that's all that heapq supports :/) # of the length of each row. Why this is important is because # we'll be popping the largest rows when figuring out row displacements. # Each item is a tuple of (t - |row|, y, [(xpos_1, item_1), ...]). # Until the call to heapq.heapify(), the rows are ordered in # increasing row number (y). rows = [(t, y, []) for y in range(t)] for item in items: # Calculate the cell the item should fall in. x = item % t y = item // t # Push the item to its corresponding row... inverse_length, _, row_contents = rows[y] heapq.heappush(row_contents, (x, item)) # Ensure the heap key is kept intact. rows[y] = inverse_length - 1, y, row_contents assert all(inv_len == t - len(rows) for inv_len, _, rows in rows) heapq.heapify(rows) # Return only rows that are populated. return [row for row in rows if row[2]]
Returns a list of rows that are stored as a priority queue to be used with heapq functions. >>> place_items_in_square([1,5,7], 4) [(2, 1, [(1, 5), (3, 7)]), (3, 0, [(1, 1)])] >>> place_items_in_square([1,5,7], 3) [(2, 0, [(1, 1)]), (2, 1, [(2, 5)]), (2, 2, [(1, 7)])]
def get_and_set(self, value): ''' Atomically sets the value to `value` and returns the old value. :param value: The value to set. ''' with self._reference.get_lock(): oldval = self._reference.value self._reference.value = value return oldval
Atomically sets the value to `value` and returns the old value. :param value: The value to set.
def build_arch(self, arch): """simple shared compile""" env = self.get_recipe_env(arch, with_flags_in_cc=False) for path in ( self.get_build_dir(arch.arch), join(self.ctx.python_recipe.get_build_dir(arch.arch), 'Lib'), join(self.ctx.python_recipe.get_build_dir(arch.arch), 'Include')): if not exists(path): info("creating {}".format(path)) shprint(sh.mkdir, '-p', path) cli = env['CC'].split()[0] # makes sure first CC command is the compiler rather than ccache, refs: # https://github.com/kivy/python-for-android/issues/1398 if 'ccache' in cli: cli = env['CC'].split()[1] cc = sh.Command(cli) with current_directory(self.get_build_dir(arch.arch)): cflags = env['CFLAGS'].split() cflags.extend(['-I.', '-c', '-l.', 'ifaddrs.c', '-I.']) shprint(cc, *cflags, _env=env) cflags = env['CFLAGS'].split() cflags.extend(['-shared', '-I.', 'ifaddrs.o', '-o', 'libifaddrs.so']) cflags.extend(env['LDFLAGS'].split()) shprint(cc, *cflags, _env=env) shprint(sh.cp, 'libifaddrs.so', self.ctx.get_libs_dir(arch.arch))
simple shared compile
def attributes_diagram(rel_objs, obj_labels, colors, markers, filename, figsize=(8, 8), xlabel="Forecast Probability", ylabel="Observed Relative Frequency", ticks=np.arange(0, 1.05, 0.05), dpi=300, title="Attributes Diagram", legend_params=None, inset_params=None, inset_position=(0.12, 0.72, 0.25, 0.25), bootstrap_sets=None, ci=(2.5, 97.5)): """ Plot reliability curves against a 1:1 diagonal to determine if probability forecasts are consistent with their observed relative frequency. Also adds gray areas to show where the climatological probabilities lie and what areas result in a positive Brier Skill Score. Args: rel_objs (list): List of DistributedReliability objects. obj_labels (list): List of labels describing the forecast model associated with each curve. colors (list): List of colors for each line markers (list): List of line markers filename (str): Where to save the figure. figsize (tuple): (Width, height) of the figure in inches. xlabel (str): X-axis label ylabel (str): Y-axis label ticks (array): Tick value labels for the x and y axes. dpi (int): resolution of the saved figure in dots per inch. title (str): Title of figure legend_params (dict): Keyword arguments for the plot legend. inset_params (dict): Keyword arguments for the inset axis. inset_position (tuple): Position of the inset axis in normalized axes coordinates (left, bottom, width, height) bootstrap_sets (list): A list of arrays of bootstrapped DistributedROC objects. If not None, confidence regions will be plotted. ci (tuple): tuple of bootstrap confidence interval percentiles """ if legend_params is None: legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True) if inset_params is None: inset_params = dict(width="25%", height="25%", loc=2, axes_kwargs=dict(axisbg='white')) fig, ax = plt.subplots(figsize=figsize) plt.plot(ticks, ticks, "k--") inset_hist = inset_axes(ax, **inset_params) ip = InsetPosition(ax, inset_position) inset_hist.set_axes_locator(ip) climo = rel_objs[0].climatology() no_skill = 0.5 * ticks + 0.5 * climo skill_x = [climo, climo, 1, 1, climo, climo, 0, 0, climo] skill_y = [climo, 1, 1, no_skill[-1], climo, 0, 0, no_skill[0], climo] f = ax.fill(skill_x, skill_y, "0.8") f[0].set_zorder(1) ax.plot(ticks, np.ones(ticks.shape) * climo, "k--") if bootstrap_sets is not None: for b, b_set in enumerate(bootstrap_sets): brel_curves = np.vstack([b_rel.reliability_curve()["Positive_Relative_Freq"].values for b_rel in b_set]) rel_range = np.nanpercentile(brel_curves, ci, axis=0) fb = ax.fill_between(b_rel.thresholds[:-1], rel_range[1], rel_range[0], alpha=0.5, color=colors[b]) fb.set_zorder(2) for r, rel_obj in enumerate(rel_objs): rel_curve = rel_obj.reliability_curve() ax.plot(rel_curve["Bin_Start"], rel_curve["Positive_Relative_Freq"], color=colors[r], marker=markers[r], label=obj_labels[r]) inset_hist.semilogy(rel_curve["Bin_Start"] * 100, rel_obj.frequencies["Total_Freq"][:-1], color=colors[r], marker=markers[r]) inset_hist.set_xlabel("Forecast Probability") inset_hist.set_ylabel("Frequency") ax.annotate("No Skill", (0.6, no_skill[12]), rotation=22.5) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xticks(ticks) ax.set_xticklabels((ticks * 100).astype(int)) ax.set_yticks(ticks) ax.set_yticklabels((ticks * 100).astype(int)) ax.legend(**legend_params) ax.set_title(title) plt.savefig(filename, dpi=dpi, bbox_inches="tight") plt.close()
Plot reliability curves against a 1:1 diagonal to determine if probability forecasts are consistent with their observed relative frequency. Also adds gray areas to show where the climatological probabilities lie and what areas result in a positive Brier Skill Score. Args: rel_objs (list): List of DistributedReliability objects. obj_labels (list): List of labels describing the forecast model associated with each curve. colors (list): List of colors for each line markers (list): List of line markers filename (str): Where to save the figure. figsize (tuple): (Width, height) of the figure in inches. xlabel (str): X-axis label ylabel (str): Y-axis label ticks (array): Tick value labels for the x and y axes. dpi (int): resolution of the saved figure in dots per inch. title (str): Title of figure legend_params (dict): Keyword arguments for the plot legend. inset_params (dict): Keyword arguments for the inset axis. inset_position (tuple): Position of the inset axis in normalized axes coordinates (left, bottom, width, height) bootstrap_sets (list): A list of arrays of bootstrapped DistributedROC objects. If not None, confidence regions will be plotted. ci (tuple): tuple of bootstrap confidence interval percentiles
def rolling_count(self, window_start, window_end): """ Count the number of non-NULL values of different subsets over this SArray. The subset that the count is executed on is defined as an inclusive range relative to the position to each value in the SArray, using `window_start` and `window_end`. For a better understanding of this, see the examples below. Parameters ---------- window_start : int The start of the subset to count relative to the current value. window_end : int The end of the subset to count relative to the current value. Must be greater than `window_start`. Returns ------- out : SArray Examples -------- >>> import pandas >>> sa = SArray([1,2,3,None,5]) >>> series = pandas.Series([1,2,3,None,5]) A rolling count with a window including the previous 2 entries including the current: >>> sa.rolling_count(-2,0) dtype: int Rows: 5 [1, 2, 3, 2, 2] Pandas equivalent: >>> pandas.rolling_count(series, 3) 0 1 1 2 2 3 3 2 4 2 dtype: float64 A rolling count with a size of 3, centered around the current: >>> sa.rolling_count(-1,1) dtype: int Rows: 5 [2, 3, 2, 2, 1] Pandas equivalent: >>> pandas.rolling_count(series, 3, center=True) 0 2 1 3 2 2 3 2 4 1 dtype: float64 A rolling count with a window including the current and the 2 entries following: >>> sa.rolling_count(0,2) dtype: int Rows: 5 [3, 2, 2, 1, 1] A rolling count with a window including the previous 2 entries NOT including the current: >>> sa.rolling_count(-2,-1) dtype: int Rows: 5 [0, 1, 2, 2, 1] """ agg_op = '__builtin__nonnull__count__' return SArray(_proxy=self.__proxy__.builtin_rolling_apply(agg_op, window_start, window_end, 0))
Count the number of non-NULL values of different subsets over this SArray. The subset that the count is executed on is defined as an inclusive range relative to the position to each value in the SArray, using `window_start` and `window_end`. For a better understanding of this, see the examples below. Parameters ---------- window_start : int The start of the subset to count relative to the current value. window_end : int The end of the subset to count relative to the current value. Must be greater than `window_start`. Returns ------- out : SArray Examples -------- >>> import pandas >>> sa = SArray([1,2,3,None,5]) >>> series = pandas.Series([1,2,3,None,5]) A rolling count with a window including the previous 2 entries including the current: >>> sa.rolling_count(-2,0) dtype: int Rows: 5 [1, 2, 3, 2, 2] Pandas equivalent: >>> pandas.rolling_count(series, 3) 0 1 1 2 2 3 3 2 4 2 dtype: float64 A rolling count with a size of 3, centered around the current: >>> sa.rolling_count(-1,1) dtype: int Rows: 5 [2, 3, 2, 2, 1] Pandas equivalent: >>> pandas.rolling_count(series, 3, center=True) 0 2 1 3 2 2 3 2 4 1 dtype: float64 A rolling count with a window including the current and the 2 entries following: >>> sa.rolling_count(0,2) dtype: int Rows: 5 [3, 2, 2, 1, 1] A rolling count with a window including the previous 2 entries NOT including the current: >>> sa.rolling_count(-2,-1) dtype: int Rows: 5 [0, 1, 2, 2, 1]
def derive_and_set_name_fields_and_slug( self, set_name_sort=True, set_slug=True ): """ Override this method from `CreatorBase` to handle additional name fields for Person creators. This method is called during `save()` """ super(PersonCreator, self).derive_and_set_name_fields_and_slug( set_name_sort=False, set_slug=False) # Collect person name fields, but only if they are not empty person_names = [ name for name in [self.name_family, self.name_given] if not is_empty(name) ] # if empty, set `name_sort` = '{name_family}, {name_given}' if these # person name values are available otherwise `name_full` if set_name_sort and is_empty(self.name_sort): if person_names: self.name_sort = ', '.join(person_names) else: self.name_sort = self.name_full # if empty, set `slug` to slugified '{name_family} {name_given}' if # these person name values are available otherwise slugified # `name_full` if set_slug and is_empty(self.slug): if person_names: self.slug = slugify(' '.join(person_names)) else: self.slug = slugify(self.name_full)
Override this method from `CreatorBase` to handle additional name fields for Person creators. This method is called during `save()`
def _inverse_i(self, y, i): """return inverse of y in component i""" lb = self._lb[self._index(i)] ub = self._ub[self._index(i)] al = self._al[self._index(i)] au = self._au[self._index(i)] if 1 < 3: if not lb <= y <= ub: raise ValueError('argument of inverse must be within the given bounds') if y < lb + al: return (lb - al) + 2 * (al * (y - lb))**0.5 elif y < ub - au: return y else: return (ub + au) - 2 * (au * (ub - y))**0.5
return inverse of y in component i
def build(self, paths, tags=None, wheel_version=None): """ Build a wheel from files in specified paths, and use any specified tags when determining the name of the wheel. """ if tags is None: tags = {} libkey = list(filter(lambda o: o in paths, ('purelib', 'platlib')))[0] if libkey == 'platlib': is_pure = 'false' default_pyver = [IMPVER] default_abi = [ABI] default_arch = [ARCH] else: is_pure = 'true' default_pyver = [PYVER] default_abi = ['none'] default_arch = ['any'] self.pyver = tags.get('pyver', default_pyver) self.abi = tags.get('abi', default_abi) self.arch = tags.get('arch', default_arch) libdir = paths[libkey] name_ver = '%s-%s' % (self.name, self.version) data_dir = '%s.data' % name_ver info_dir = '%s.dist-info' % name_ver archive_paths = [] # First, stuff which is not in site-packages for key in ('data', 'headers', 'scripts'): if key not in paths: continue path = paths[key] if os.path.isdir(path): for root, dirs, files in os.walk(path): for fn in files: p = fsdecode(os.path.join(root, fn)) rp = os.path.relpath(p, path) ap = to_posix(os.path.join(data_dir, key, rp)) archive_paths.append((ap, p)) if key == 'scripts' and not p.endswith('.exe'): with open(p, 'rb') as f: data = f.read() data = self.process_shebang(data) with open(p, 'wb') as f: f.write(data) # Now, stuff which is in site-packages, other than the # distinfo stuff. path = libdir distinfo = None for root, dirs, files in os.walk(path): if root == path: # At the top level only, save distinfo for later # and skip it for now for i, dn in enumerate(dirs): dn = fsdecode(dn) if dn.endswith('.dist-info'): distinfo = os.path.join(root, dn) del dirs[i] break assert distinfo, '.dist-info directory expected, not found' for fn in files: # comment out next suite to leave .pyc files in if fsdecode(fn).endswith(('.pyc', '.pyo')): continue p = os.path.join(root, fn) rp = to_posix(os.path.relpath(p, path)) archive_paths.append((rp, p)) # Now distinfo. Assumed to be flat, i.e. os.listdir is enough. files = os.listdir(distinfo) for fn in files: if fn not in ('RECORD', 'INSTALLER', 'SHARED', 'WHEEL'): p = fsdecode(os.path.join(distinfo, fn)) ap = to_posix(os.path.join(info_dir, fn)) archive_paths.append((ap, p)) wheel_metadata = [ 'Wheel-Version: %d.%d' % (wheel_version or self.wheel_version), 'Generator: distlib %s' % __version__, 'Root-Is-Purelib: %s' % is_pure, ] for pyver, abi, arch in self.tags: wheel_metadata.append('Tag: %s-%s-%s' % (pyver, abi, arch)) p = os.path.join(distinfo, 'WHEEL') with open(p, 'w') as f: f.write('\n'.join(wheel_metadata)) ap = to_posix(os.path.join(info_dir, 'WHEEL')) archive_paths.append((ap, p)) # Now, at last, RECORD. # Paths in here are archive paths - nothing else makes sense. self.write_records((distinfo, info_dir), libdir, archive_paths) # Now, ready to build the zip file pathname = os.path.join(self.dirname, self.filename) self.build_zip(pathname, archive_paths) return pathname
Build a wheel from files in specified paths, and use any specified tags when determining the name of the wheel.
def fetch_html(self, msg_nums): """ Given a message number that we found with imap_search, get the text/html content. @Params msg_nums - message number to get html message for @Returns HTML content of message matched by message number """ if not msg_nums: raise Exception("Invalid Message Number!") return self.__imap_fetch_content_type(msg_nums, self.HTML)
Given a message number that we found with imap_search, get the text/html content. @Params msg_nums - message number to get html message for @Returns HTML content of message matched by message number
def main(): """d""" config = Common.open_file(F_CONFIG) # Delete the complete .build folder Common.clean_build(config['p_build']) # Create main folders Common.make_dir(config['p_build']) for language in config['languages']: Common.make_dir(config['p_build'] + language)
d
def splitread(args): """ %prog splitread fastqfile Split fastqfile into two read fastqfiles, cut in the middle. """ p = OptionParser(splitread.__doc__) p.add_option("-n", dest="n", default=76, type="int", help="Split at N-th base position [default: %default]") p.add_option("--rc", default=False, action="store_true", help="Reverse complement second read [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) pairsfastq, = args base = op.basename(pairsfastq).split(".")[0] fq1 = base + ".1.fastq" fq2 = base + ".2.fastq" fw1 = must_open(fq1, "w") fw2 = must_open(fq2, "w") fp = must_open(pairsfastq) n = opts.n minsize = n * 8 / 5 for name, seq, qual in FastqGeneralIterator(fp): if len(seq) < minsize: logging.error("Skipping read {0}, length={1}".format(name, len(seq))) continue name = "@" + name rec1 = FastqLite(name, seq[:n], qual[:n]) rec2 = FastqLite(name, seq[n:], qual[n:]) if opts.rc: rec2.rc() print(rec1, file=fw1) print(rec2, file=fw2) logging.debug("Reads split into `{0},{1}`".format(fq1, fq2)) fw1.close() fw2.close()
%prog splitread fastqfile Split fastqfile into two read fastqfiles, cut in the middle.
def mmap(func, iterable): """Wrapper to make map() behave the same on Py2 and Py3.""" if sys.version_info[0] > 2: return [i for i in map(func, iterable)] else: return map(func, iterable)
Wrapper to make map() behave the same on Py2 and Py3.
def nn_getsockopt(socket, level, option, value): """retrieve a socket option socket - socket number level - option level option - option value - a writable byte buffer (e.g. a bytearray) which the option value will be copied to returns - number of bytes copied or on error nunber < 0 """ if memoryview(value).readonly: raise TypeError('Writable buffer is required') size_t_size = ctypes.c_size_t(len(value)) rtn = _nn_getsockopt(socket, level, option, ctypes.addressof(value), ctypes.byref(size_t_size)) return (rtn, size_t_size.value)
retrieve a socket option socket - socket number level - option level option - option value - a writable byte buffer (e.g. a bytearray) which the option value will be copied to returns - number of bytes copied or on error nunber < 0
def _start_update_server(auth_token): """Start a TCP server to receive accumulator updates in a daemon thread, and returns it""" server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler, auth_token) thread = threading.Thread(target=server.serve_forever) thread.daemon = True thread.start() return server
Start a TCP server to receive accumulator updates in a daemon thread, and returns it
def _prefix_from_ip_string(cls, ip_str): """Turn a netmask/hostmask string into a prefix length Args: ip_str: The netmask/hostmask to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask/hostmask """ # Parse the netmask/hostmask like an IP address. try: ip_int = cls._ip_int_from_string(ip_str) except AddressValueError: cls._report_invalid_netmask(ip_str) # Try matching a netmask (this would be /1*0*/ as a bitwise regexp). # Note that the two ambiguous cases (all-ones and all-zeroes) are # treated as netmasks. try: return cls._prefix_from_ip_int(ip_int) except ValueError: pass # Invert the bits, and try matching a /0+1+/ hostmask instead. ip_int ^= cls._ALL_ONES try: return cls._prefix_from_ip_int(ip_int) except ValueError: cls._report_invalid_netmask(ip_str)
Turn a netmask/hostmask string into a prefix length Args: ip_str: The netmask/hostmask to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask/hostmask
def _normalize_stmt_idx(self, block_addr, stmt_idx): """ For each statement ID, convert 'default' to (last_stmt_idx+1) :param block_addr: The block address. :param stmt_idx: Statement ID. :returns: New statement ID. """ if type(stmt_idx) is int: return stmt_idx if stmt_idx == DEFAULT_STATEMENT: vex_block = self.project.factory.block(block_addr).vex return len(vex_block.statements) raise AngrBackwardSlicingError('Unsupported statement ID "%s"' % stmt_idx)
For each statement ID, convert 'default' to (last_stmt_idx+1) :param block_addr: The block address. :param stmt_idx: Statement ID. :returns: New statement ID.
def build_data(self): """ get build data. :return: build data or None if not found """ # pylint: disable=len-as-condition if len(self.dutinformation) > 0 and (self.dutinformation.get(0).build is not None): return self.dutinformation.get(0).build.get_data() return None
get build data. :return: build data or None if not found
def _set_batch(self, batch, fg, bg, bgblend=1, nullChar=False): """ Try to perform a batch operation otherwise fall back to _set_char. If fg and bg are defined then this is faster but not by very much. if any character is None then nullChar is True batch is a iterable of [(x, y), ch] items """ for (x, y), char in batch: self._set_char(x, y, char, fg, bg, bgblend)
Try to perform a batch operation otherwise fall back to _set_char. If fg and bg are defined then this is faster but not by very much. if any character is None then nullChar is True batch is a iterable of [(x, y), ch] items
def approve( self, allowed_address: Address, allowance: TokenAmount, ): """ Aprove `allowed_address` to transfer up to `deposit` amount of token. Note: For channel deposit please use the channel proxy, since it does additional validations. """ # Note that given_block_identifier is not used here as there # are no preconditions to check before sending the transaction log_details = { 'node': pex(self.node_address), 'contract': pex(self.address), 'allowed_address': pex(allowed_address), 'allowance': allowance, } checking_block = self.client.get_checking_block() error_prefix = 'Call to approve will fail' gas_limit = self.proxy.estimate_gas( checking_block, 'approve', to_checksum_address(allowed_address), allowance, ) if gas_limit: error_prefix = 'Call to approve failed' log.debug('approve called', **log_details) transaction_hash = self.proxy.transact( 'approve', safe_gas_limit(gas_limit), to_checksum_address(allowed_address), allowance, ) self.client.poll(transaction_hash) receipt_or_none = check_transaction_threw(self.client, transaction_hash) transaction_executed = gas_limit is not None if not transaction_executed or receipt_or_none: if transaction_executed: block = receipt_or_none['blockNumber'] else: block = checking_block self.proxy.jsonrpc_client.check_for_insufficient_eth( transaction_name='approve', transaction_executed=transaction_executed, required_gas=GAS_REQUIRED_FOR_APPROVE, block_identifier=block, ) msg = self._check_why_approved_failed(allowance, block) error_msg = f'{error_prefix}. {msg}' log.critical(error_msg, **log_details) raise RaidenUnrecoverableError(error_msg) log.info('approve successful', **log_details)
Aprove `allowed_address` to transfer up to `deposit` amount of token. Note: For channel deposit please use the channel proxy, since it does additional validations.
def verify_signature(message_path: str, sigfile_path: str, cert_path: str) -> None: """ Verify the signature (assumed, of the hash file) It is assumed that the public key for the signature is in the keyring :param message_path: The path to the message file to check :param sigfile_path: The path to the signature to check :param cert_path: The path to the certificate to check the signature with :returns True: If the signature verifies :raises SignatureMismatch: If the signature does not verify """ with tempfile.TemporaryDirectory() as pubkey_dir: pubkey_contents = subprocess.check_output( ['openssl', 'x509', '-in', cert_path, '-pubkey', '-noout']) pubkey_file = os.path.join(pubkey_dir, 'pubkey') open(pubkey_file, 'wb').write(pubkey_contents) try: verification = subprocess.check_output( ['openssl', 'dgst', '-sha256', '-verify', pubkey_file, '-signature', sigfile_path, message_path], stderr=subprocess.STDOUT) except subprocess.CalledProcessError as cpe: verification = cpe.output if verification.strip() == b'Verified OK': LOG.info(f"Verification passed from cert {cert_path}") else: LOG.error( f"Verification failed with cert {cert_path}: {verification}") raise SignatureMismatch(f'Signature check failed')
Verify the signature (assumed, of the hash file) It is assumed that the public key for the signature is in the keyring :param message_path: The path to the message file to check :param sigfile_path: The path to the signature to check :param cert_path: The path to the certificate to check the signature with :returns True: If the signature verifies :raises SignatureMismatch: If the signature does not verify
def get_context(pid_file, daemon=False): """Get context of running notebook. A context file is created when notebook starts. :param daemon: Are we trying to fetch the context inside the daemon. Otherwise do the death check. :return: dict or None if the process is dead/not launcherd """ port_file = get_context_file_name(pid_file) if not os.path.exists(port_file): return None with open(port_file, "rt") as f: json_data = f.read() try: data = json.loads(json_data) except ValueError as e: logger.error("Damaged context json data %s", json_data) return None if not daemon: pid = data.get("pid") if pid and not check_pid(int(pid)): # The Notebook daemon has exited uncleanly, as the PID does not point to any valid process return None return data
Get context of running notebook. A context file is created when notebook starts. :param daemon: Are we trying to fetch the context inside the daemon. Otherwise do the death check. :return: dict or None if the process is dead/not launcherd
def plot_spectra(self, nmax, convention='power', unit='per_l', base=10., maxcolumns=3, xscale='lin', yscale='log', grid=True, xlim=(None, None), ylim=(None, None), show=True, title=True, axes_labelsize=None, tick_labelsize=None, title_labelsize=None, ax=None, fname=None): """ Plot the spectra of the best-concentrated Slepian functions. Usage ----- x.plot_spectra(nmax, [convention, unit, base, maxcolumns, xscale, yscale, grid, xlim, ylim, show, title, axes_labelsize, tick_labelsize, title_labelsize, ax, fname]) Parameters ---------- nmax : int The number of Slepian functions to plot. convention : str, optional, default = 'power' The type of spectra to plot: 'power' for power spectrum, and 'energy' for energy spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. maxcolumns : int, optional, default = 3 The maximum number of columns to use when plotting the spectra of multiple localization windows. xscale : str, optional, default = 'lin' Scale of the x axis: 'lin' for linear or 'log' for logarithmic. yscale : str, optional, default = 'log' Scale of the y axis: 'lin' for linear or 'log' for logarithmic. grid : bool, optional, default = True If True, plot grid lines. xlim : tuple, optional, default = (None, None) The upper and lower limits used for the x axis. ylim : tuple, optional, default = (None, None) The lower and upper limits used for the y axis. show : bool, optional, default = True If True, plot the image to the screen. title : bool, optional, default = True If True, plot a legend on top of each subplot providing the taper number and 1 minus the concentration factor. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. title_labelsize : int, optional, default = None The font size for the subplot titles. ax : matplotlib axes object, optional, default = None An array of matplotlib axes objects where the plots will appear. fname : str, optional, default = None If present, save the image to the file. """ if axes_labelsize is None: axes_labelsize = _mpl.rcParams['axes.labelsize'] if tick_labelsize is None: tick_labelsize = _mpl.rcParams['xtick.labelsize'] if title_labelsize is None: title_labelsize = _mpl.rcParams['axes.titlesize'] degrees = self.degrees() spectrum = self.spectra(nmax=nmax, convention=convention, unit=unit, base=base) ncolumns = min(maxcolumns, nmax) nrows = _np.ceil(nmax / ncolumns).astype(int) figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * 0.7 * nrows / ncolumns + 0.41) if ax is None: fig, axes = _plt.subplots(nrows, ncolumns, figsize=figsize, sharex='all', sharey='all') else: if hasattr(ax, 'flatten') and ax.size < nmax: raise ValueError('ax.size must be greater or equal to nmax. ' + 'nmax = {:s}'.format(repr(nmax)) + ' and ax.size = {:s}.'.format(repr(ax.size))) axes = ax if ax is None: if nrows > 1: for axtemp in axes[:-1, :].flatten(): for xlabel_i in axtemp.get_xticklabels(): xlabel_i.set_visible(False) axtemp.set_xlabel('', visible=False) for axtemp in axes[:, 1:].flatten(): for ylabel_i in axtemp.get_yticklabels(): ylabel_i.set_visible(False) axtemp.set_ylabel('', visible=False) elif nmax > 1: for axtemp in axes[1:].flatten(): for ylabel_i in axtemp.get_yticklabels(): ylabel_i.set_visible(False) axtemp.set_ylabel('', visible=False) if ylim == (None, None): upper = spectrum[:, :min(self.nmax, nmax)].max() lower = upper * 1.e-6 ylim = (lower, 5 * upper) if xlim == (None, None): if xscale == 'lin': xlim = (degrees[0], degrees[-1]) for alpha in range(min(self.nmax, nmax)): evalue = self.eigenvalues[alpha] if min(self.nmax, nmax) == 1 and ax is None: axtemp = axes elif hasattr(axes, 'flatten'): axtemp = axes.flatten()[alpha] else: axtemp = axes[alpha] if (convention == 'power'): axtemp.set_ylabel('Power', fontsize=axes_labelsize) else: axtemp.set_ylabel('Energy', fontsize=axes_labelsize) if yscale == 'log': axtemp.set_yscale('log', basey=base) if xscale == 'log': axtemp.set_xscale('log', basex=base) axtemp.plot(degrees[1:], spectrum[1:, alpha], label='#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue)) else: axtemp.plot(degrees[0:], spectrum[0:, alpha], label='#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue)) axtemp.set_xlabel('Spherical harmonic degree', fontsize=axes_labelsize) axtemp.set(xlim=xlim, ylim=ylim) axtemp.minorticks_on() axtemp.grid(grid, which='major') axtemp.tick_params(labelsize=tick_labelsize) if title is True: axtemp.set_title('#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue), fontsize=title_labelsize) if ax is None: fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes
Plot the spectra of the best-concentrated Slepian functions. Usage ----- x.plot_spectra(nmax, [convention, unit, base, maxcolumns, xscale, yscale, grid, xlim, ylim, show, title, axes_labelsize, tick_labelsize, title_labelsize, ax, fname]) Parameters ---------- nmax : int The number of Slepian functions to plot. convention : str, optional, default = 'power' The type of spectra to plot: 'power' for power spectrum, and 'energy' for energy spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. maxcolumns : int, optional, default = 3 The maximum number of columns to use when plotting the spectra of multiple localization windows. xscale : str, optional, default = 'lin' Scale of the x axis: 'lin' for linear or 'log' for logarithmic. yscale : str, optional, default = 'log' Scale of the y axis: 'lin' for linear or 'log' for logarithmic. grid : bool, optional, default = True If True, plot grid lines. xlim : tuple, optional, default = (None, None) The upper and lower limits used for the x axis. ylim : tuple, optional, default = (None, None) The lower and upper limits used for the y axis. show : bool, optional, default = True If True, plot the image to the screen. title : bool, optional, default = True If True, plot a legend on top of each subplot providing the taper number and 1 minus the concentration factor. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. title_labelsize : int, optional, default = None The font size for the subplot titles. ax : matplotlib axes object, optional, default = None An array of matplotlib axes objects where the plots will appear. fname : str, optional, default = None If present, save the image to the file.
def _get_ssh_public_key(self): """Generate SSH public key from private key.""" key = ipa_utils.generate_public_ssh_key(self.ssh_private_key_file) return '{user}:{key} {user}'.format( user=self.ssh_user, key=key.decode() )
Generate SSH public key from private key.
def allocate(self, dut_configuration_list, args=None): """ Allocates resources from available local devices. :param dut_configuration_list: List of ResourceRequirements objects :param args: Not used :return: AllocationContextList with allocated resources """ dut_config_list = dut_configuration_list.get_dut_configuration() # if we need one or more local hardware duts let's search attached # devices using DutDetection if not isinstance(dut_config_list, list): raise AllocationError("Invalid dut configuration format!") if next((item for item in dut_config_list if item.get("type") == "hardware"), False): self._available_devices = DutDetection().get_available_devices() if len(self._available_devices) < len(dut_config_list): raise AllocationError("Required amount of devices not available.") # Enumerate all required DUT's try: for dut_config in dut_config_list: if not self.can_allocate(dut_config.get_requirements()): raise AllocationError("Resource type is not supported") self._allocate(dut_config) except AllocationError: # Locally allocated don't need to be released any way for # now, so just re-raise the error raise alloc_list = AllocationContextList() res_id = None for conf in dut_config_list: if conf.get("type") == "mbed": res_id = conf.get("allocated").get("target_id") context = AllocationContext(resource_id=res_id, alloc_data=conf) alloc_list.append(context) alloc_list.set_dut_init_function("serial", init_generic_serial_dut) alloc_list.set_dut_init_function("process", init_process_dut) alloc_list.set_dut_init_function("mbed", init_mbed_dut) return alloc_list
Allocates resources from available local devices. :param dut_configuration_list: List of ResourceRequirements objects :param args: Not used :return: AllocationContextList with allocated resources
def serve(path=None, host=None, port=None, user_content=False, context=None, username=None, password=None, render_offline=False, render_wide=False, render_inline=False, api_url=None, title=None, autorefresh=True, browser=False, quiet=None, grip_class=None): """ Starts a server to render the specified file or directory containing a README. """ app = create_app(path, user_content, context, username, password, render_offline, render_wide, render_inline, api_url, title, None, autorefresh, quiet, grip_class) app.run(host, port, open_browser=browser)
Starts a server to render the specified file or directory containing a README.
def quick_plot(cmap, fname=None, fig=None, ax=None, N=10): '''Show quick test of a colormap. ''' x = np.linspace(0, 10, N) X, _ = np.meshgrid(x, x) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) mappable = ax.pcolor(X, cmap=cmap) ax.set_title(cmap.name, fontsize=14) ax.set_xticks([]) ax.set_yticks([]) plt.colorbar(mappable) plt.show() if fname is not None: plt.savefig(fname + '.png', bbox_inches='tight')
Show quick test of a colormap.
def get_realms_by_explosion(self, realms): """Get all members of this realm including members of sub-realms on multi-levels :param realms: realms list, used to look for a specific one :type realms: alignak.objects.realm.Realms :return: list of members and add realm to realm_members attribute :rtype: list """ # If rec_tag is already set, then we detected a loop in the realms hierarchy! if getattr(self, 'rec_tag', False): self.add_error("Error: there is a loop in the realm definition %s" % self.get_name()) return None # Ok, not in a loop, we tag the realm and parse its members self.rec_tag = True # Order realm members list by name self.realm_members = sorted(self.realm_members) for member in self.realm_members: realm = realms.find_by_name(member) if not realm: self.add_unknown_members(member) continue children = realm.get_realms_by_explosion(realms) if children is None: # We got a loop in our children definition self.all_sub_members = [] self.realm_members = [] return None # Return the list of all unique members return self.all_sub_members
Get all members of this realm including members of sub-realms on multi-levels :param realms: realms list, used to look for a specific one :type realms: alignak.objects.realm.Realms :return: list of members and add realm to realm_members attribute :rtype: list
def reset(self): "Close the current failed connection and prepare for a new one" log.info("resetting client") rpc_client = self._rpc_client self._addrs.append(self._peer.addr) self.__init__(self._addrs) self._rpc_client = rpc_client self._dispatcher.rpc_client = rpc_client rpc_client._client = weakref.ref(self)
Close the current failed connection and prepare for a new one
def atlas_zonefile_push_dequeue( zonefile_queue=None ): """ Dequeue a zonefile's information to replicate Return None if there are none queued """ ret = None with AtlasZonefileQueueLocked(zonefile_queue) as zfq: if len(zfq) > 0: ret = zfq.pop(0) return ret
Dequeue a zonefile's information to replicate Return None if there are none queued
def generate_datafile_old(number_items=1000): """ Create the samples.py file """ from utils import get_names, generate_dataset from pprint import pprint filename = "samples.py" dataset = generate_dataset(number_items) fo = open(filename, "wb") fo.write("#!/usr/bin/env python\n") fo.write("# -*- coding: utf-8 -*-\n") fo.write("#Brainaetic: http://www.thenetplanet.com\n\n") fo.write("SAMPLES = ") pprint(dataset, fo) fo.close() print "%s generated with %d samples" % (filename, number_items)
Create the samples.py file
def are_dicts_equivalent(*args, **kwargs): """Indicate if :ref:`dicts <python:dict>` passed to this function have identical keys and values. :param args: One or more values, passed as positional arguments. :returns: ``True`` if ``args`` have identical keys/values, and ``False`` if not. :rtype: :class:`bool <python:bool>` :raises SyntaxError: if ``kwargs`` contains duplicate keyword parameters or duplicates keyword parameters passed to the underlying validator """ # pylint: disable=too-many-return-statements if not args: return False if len(args) == 1: return True if not all(is_dict(x) for x in args): return False first_item = args[0] for item in args[1:]: if len(item) != len(first_item): return False for key in item: if key not in first_item: return False if not are_equivalent(item[key], first_item[key]): return False for key in first_item: if key not in item: return False if not are_equivalent(first_item[key], item[key]): return False return True
Indicate if :ref:`dicts <python:dict>` passed to this function have identical keys and values. :param args: One or more values, passed as positional arguments. :returns: ``True`` if ``args`` have identical keys/values, and ``False`` if not. :rtype: :class:`bool <python:bool>` :raises SyntaxError: if ``kwargs`` contains duplicate keyword parameters or duplicates keyword parameters passed to the underlying validator
def get_full_recirc_content(self, published=True): """performs es search and gets all content objects """ q = self.get_query() search = custom_search_model(Content, q, published=published, field_map={ "feature_type": "feature_type.slug", "tag": "tags.slug", "content-type": "_type" }) return search
performs es search and gets all content objects
def main(self): """Parse package trees and report on any discrepancies.""" args = self.args parsed_pytree, pypackages = self.parse_py_tree(pytree=args.pytree) parsed_doctree = self.parse_doc_tree(doctree=args.doctree, pypackages=pypackages) return self.compare_trees(parsed_pytree=parsed_pytree, parsed_doctree=parsed_doctree)
Parse package trees and report on any discrepancies.
def gradient_black( self, text=None, fore=None, back=None, style=None, start=None, step=1, reverse=False, linemode=True, movefactor=2, rgb_mode=False): """ Return a black and white gradient. Arguments: text : String to colorize. This will always be greater than 0. fore : Foreground color, background will be gradient. back : Background color, foreground will be gradient. style : Name of style to use for the gradient. start : Starting 256-color number. The `start` will be adjusted if it is not within bounds. This will always be > 15. This will be adjusted to fit within a 6-length gradient, or the 24-length black/white gradient. step : Number of characters to colorize per color. This allows a "wider" gradient. linemode : Colorize each line in the input. Default: True movefactor : Factor for offset increase on each line when using linemode. Minimum value: 0 Default: 2 rgb_mode : Use true color (rgb) method and codes. """ gradargs = { 'step': step, 'fore': fore, 'back': back, 'style': style, 'reverse': reverse, 'rgb_mode': rgb_mode, } if linemode: gradargs['movefactor'] = 2 if movefactor is None else movefactor method = self._gradient_black_lines else: method = self._gradient_black_line if text: return self.__class__( ''.join(( self.data or '', method( text, start or (255 if reverse else 232), **gradargs) )) ) # Operating on self.data. return self.__class__( method( self.stripped(), start or (255 if reverse else 232), **gradargs) )
Return a black and white gradient. Arguments: text : String to colorize. This will always be greater than 0. fore : Foreground color, background will be gradient. back : Background color, foreground will be gradient. style : Name of style to use for the gradient. start : Starting 256-color number. The `start` will be adjusted if it is not within bounds. This will always be > 15. This will be adjusted to fit within a 6-length gradient, or the 24-length black/white gradient. step : Number of characters to colorize per color. This allows a "wider" gradient. linemode : Colorize each line in the input. Default: True movefactor : Factor for offset increase on each line when using linemode. Minimum value: 0 Default: 2 rgb_mode : Use true color (rgb) method and codes.
def MakeDynamicPotentialFunc(kBT_Gamma, density, SpringPotnlFunc): """ Creates the function that calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- kBT_Gamma : float Value of kB*T/Gamma density : float density of the nanoparticle SpringPotnlFunc : function Function which takes the value of position (in volts) and returns the spring potential Returns ------- PotentialFunc : function function that calculates the potential given the position (in volts) and the radius of the particle. """ def PotentialFunc(xdata, Radius): """ calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- xdata : ndarray Positon data (in volts) Radius : float Radius in units of nm Returns ------- Potential : ndarray Dynamical Spring Potential at positions given by xdata """ mass = ((4/3)*np.pi*((Radius*10**-9)**3))*density yfit=(kBT_Gamma/mass) Y = yfit*SpringPotnlFunc(xdata) return Y return PotentialFunc
Creates the function that calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- kBT_Gamma : float Value of kB*T/Gamma density : float density of the nanoparticle SpringPotnlFunc : function Function which takes the value of position (in volts) and returns the spring potential Returns ------- PotentialFunc : function function that calculates the potential given the position (in volts) and the radius of the particle.
def build_damage_dt(dstore, mean_std=True): """ :param dstore: a datastore instance :param mean_std: a flag (default True) :returns: a composite dtype loss_type -> (mean_ds1, stdv_ds1, ...) or loss_type -> (ds1, ds2, ...) depending on the flag mean_std """ oq = dstore['oqparam'] damage_states = ['no_damage'] + list( dstore.get_attr('risk_model', 'limit_states')) dt_list = [] for ds in damage_states: ds = str(ds) if mean_std: dt_list.append(('%s_mean' % ds, F32)) dt_list.append(('%s_stdv' % ds, F32)) else: dt_list.append((ds, F32)) damage_dt = numpy.dtype(dt_list) loss_types = oq.loss_dt().names return numpy.dtype([(lt, damage_dt) for lt in loss_types])
:param dstore: a datastore instance :param mean_std: a flag (default True) :returns: a composite dtype loss_type -> (mean_ds1, stdv_ds1, ...) or loss_type -> (ds1, ds2, ...) depending on the flag mean_std
def _get_previous_mz(self, mzs): '''given an mz array, return the mz_data (disk location) if the mz array was not previously written, write to disk first''' mzs = tuple(mzs) # must be hashable if mzs in self.lru_cache: return self.lru_cache[mzs] # mz not recognized ... check hash mz_hash = "%s-%s-%s" % (hash(mzs), sum(mzs), len(mzs)) if mz_hash in self.hashes: for mz_data in self.hashes[mz_hash]: test_mz = self._read_mz(*mz_data) if mzs == test_mz: self.lru_cache[test_mz] = mz_data return mz_data # hash not recognized # must be a new mz array ... write it, add it to lru_cache and hashes mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression) self.hashes[mz_hash].append(mz_data) self.lru_cache[mzs] = mz_data return mz_data
given an mz array, return the mz_data (disk location) if the mz array was not previously written, write to disk first
def nonzero_monies(self): """Get a list of the underlying ``Money`` instances that are not zero Returns: ([Money]): A list of zero or more money instances. Currencies will be unique. """ return [copy.copy(m) for m in self._money_obs if m.amount != 0]
Get a list of the underlying ``Money`` instances that are not zero Returns: ([Money]): A list of zero or more money instances. Currencies will be unique.
def get_db_uri(config, output_dir): """Process results_database parameters in config to format them for set database function :param dict config: project configuration dict :param str output_dir: output directory for results :return: string for db uri """ db_config = config.get("results_database", {"db_uri": "default"}) if db_config['db_uri'] == 'default': return os.path.join(output_dir, "results.sqlite") return db_config['db_uri']
Process results_database parameters in config to format them for set database function :param dict config: project configuration dict :param str output_dir: output directory for results :return: string for db uri
def year_origin_filter(year_predicate=None, origin_predicate=None): """\ Returns a predicate for cable identifiers where `year_predicate` and `origin_predicate` must hold true. If `year_predicate` and `origin_predicate` is ``None`` the returned predicate holds always true. `year_predicate` A predicate which returns ``True`` or ``False`` for a cable year. ``origin_predicate` A predicate which returns ``True`` or ``False`` for a given cable origin """ def accept(cable_id, predicate): year, origin = _YEAR_ORIGIN_PATTERN.match( canonicalize_id(cable_id)).groups() return predicate(year, origin) if year_predicate and origin_predicate: return partial(accept, predicate=lambda y, o: year_predicate(y) \ and origin_predicate(o)) elif year_predicate: return partial(accept, predicate=lambda y, o: year_predicate(y)) elif origin_predicate: return partial(accept, predicate=lambda y, o: origin_predicate(o)) return lambda cable_id: True
\ Returns a predicate for cable identifiers where `year_predicate` and `origin_predicate` must hold true. If `year_predicate` and `origin_predicate` is ``None`` the returned predicate holds always true. `year_predicate` A predicate which returns ``True`` or ``False`` for a cable year. ``origin_predicate` A predicate which returns ``True`` or ``False`` for a given cable origin
def collect_fragment(event, agora_host): """ Execute a search plan for the declared graph pattern and sends all obtained triples to the corresponding collector functions (config """ agora = Agora(agora_host) graph_pattern = "" for tp in __triple_patterns: graph_pattern += '{} . '.format(tp) fragment, _, graph = agora.get_fragment_generator('{%s}' % graph_pattern, stop_event=event, workers=4) __extract_pattern_nodes(graph) log.info('querying { %s}' % graph_pattern) for (t, s, p, o) in fragment: collectors = __triple_patterns[str(__plan_patterns[t])] for c, args in collectors: log.debug('Sending triple {} {} {} to {}'.format(s.n3(graph.namespace_manager), graph.qname(p), o.n3(graph.namespace_manager), c)) c((s, p, o)) if event.isSet(): raise Exception('Abort collecting fragment') yield (c.func_name, (t, s, p, o))
Execute a search plan for the declared graph pattern and sends all obtained triples to the corresponding collector functions (config
def parse_data_shape(data_shape_str): """Parse string to tuple or int""" ds = data_shape_str.strip().split(',') if len(ds) == 1: data_shape = (int(ds[0]), int(ds[0])) elif len(ds) == 2: data_shape = (int(ds[0]), int(ds[1])) else: raise ValueError("Unexpected data_shape: %s", data_shape_str) return data_shape
Parse string to tuple or int
def combine_first(self, other): """Combine two Datasets, default to data_vars of self. The new coordinates follow the normal broadcasting and alignment rules of ``join='outer'``. Vacant cells in the expanded coordinates are filled with np.nan. Parameters ---------- other : DataArray Used to fill all matching missing values in this array. Returns ------- DataArray """ out = ops.fillna(self, other, join="outer", dataset_join="outer") return out
Combine two Datasets, default to data_vars of self. The new coordinates follow the normal broadcasting and alignment rules of ``join='outer'``. Vacant cells in the expanded coordinates are filled with np.nan. Parameters ---------- other : DataArray Used to fill all matching missing values in this array. Returns ------- DataArray
def delete_all(self, filter, timeout=-1, force=False): """ Deletes all Server Profile objects from the appliance that match the provided filter. Filters are supported only for the following profile attributes: name, description, serialnumber, uuid, mactype, wwntype, serialnumbertype, status, and state. Examples: >>> server_profile_client.delete_all(filter="name='Exchange Server'") # Remove all profiles that match the name "Exchange Server" >>> server_profile_client.delete_all(filter="name matches'%25Database%25'") # Remove all profiles that have the word "Database" in its name The filter function here operates similarly to the function defined for GET Server Profiles. It allows for both actual and partial matches of data in the profile. Any requests that use a wildcard match must include a %25 as illustrated in the previous example. This is how you encode that character for transmission to the appliance. Args: filter (dict): Object to delete. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: bool: Indicates whether the server profile was successfully deleted. """ return self._helper.delete_all(filter=filter, force=force, timeout=timeout)
Deletes all Server Profile objects from the appliance that match the provided filter. Filters are supported only for the following profile attributes: name, description, serialnumber, uuid, mactype, wwntype, serialnumbertype, status, and state. Examples: >>> server_profile_client.delete_all(filter="name='Exchange Server'") # Remove all profiles that match the name "Exchange Server" >>> server_profile_client.delete_all(filter="name matches'%25Database%25'") # Remove all profiles that have the word "Database" in its name The filter function here operates similarly to the function defined for GET Server Profiles. It allows for both actual and partial matches of data in the profile. Any requests that use a wildcard match must include a %25 as illustrated in the previous example. This is how you encode that character for transmission to the appliance. Args: filter (dict): Object to delete. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: bool: Indicates whether the server profile was successfully deleted.
def guggenheim_katayama(target, K2, n, temperature='pore.temperature', critical_temperature='pore.critical_temperature', critical_pressure='pore.critical_pressure'): r""" Missing description Parameters ---------- target : OpenPNM Object The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. K2 : scalar Fluid specific constant n : scalar Fluid specific constant temperature : string The dictionary key containing the temperature values (K) critical_temperature : string The dictionary key containing the critical temperature values (K) critical_pressure : string The dictionary key containing the critical pressure values (K) """ T = target[temperature] Pc = target[critical_pressure] Tc = target[critical_temperature] sigma_o = K2*Tc**(1/3)*Pc**(2/3) value = sigma_o*(1-T/Tc)**n return value
r""" Missing description Parameters ---------- target : OpenPNM Object The object for which these values are being calculated. This controls the length of the calculated array, and also provides access to other necessary thermofluid properties. K2 : scalar Fluid specific constant n : scalar Fluid specific constant temperature : string The dictionary key containing the temperature values (K) critical_temperature : string The dictionary key containing the critical temperature values (K) critical_pressure : string The dictionary key containing the critical pressure values (K)
def _auth(profile=None, api_version=1, **connection_args): ''' Set up heat credentials, returns `heatclient.client.Client`. Optional parameter "api_version" defaults to 1. Only intended to be used within heat-enabled modules ''' if profile: prefix = profile + ':keystone.' else: prefix = 'keystone.' def get(key, default=None): ''' Checks connection_args, then salt-minion config, falls back to specified default value. ''' return connection_args.get('connection_' + key, __salt__['config.get'](prefix + key, default)) user = get('user', 'admin') password = get('password', None) tenant = get('tenant', 'admin') tenant_id = get('tenant_id') auth_url = get('auth_url', 'http://127.0.0.1:35357/v2.0') insecure = get('insecure', False) admin_token = get('token') region_name = get('region_name', None) if admin_token and api_version != 1 and not password: # If we had a password we could just # ignore the admin-token and move on... raise SaltInvocationError('Only can use keystone admin token ' + 'with Heat API v1') elif password: # Can't use the admin-token anyway kwargs = {'username': user, 'password': password, 'tenant_id': tenant_id, 'auth_url': auth_url, 'region_name': region_name, 'tenant_name': tenant} # 'insecure' keyword not supported by all v2.0 keystone clients # this ensures it's only passed in when defined if insecure: kwargs['insecure'] = True elif api_version == 1 and admin_token: kwargs = {'token': admin_token, 'auth_url': auth_url} else: raise SaltInvocationError('No credentials to authenticate with.') token = __salt__['keystone.token_get'](profile) kwargs['token'] = token['id'] # This doesn't realy prevent the password to show up # in the minion log as keystoneclient.session is # logging it anyway when in debug-mode kwargs.pop('password') try: heat_endpoint = __salt__['keystone.endpoint_get']('heat', profile)['url'] except KeyError: heat_endpoint = __salt__['keystone.endpoint_get']('heat', profile)['publicurl'] heat_endpoint = heat_endpoint % token log.debug('Calling heatclient.client.Client(%s, %s, **%s)', api_version, heat_endpoint, kwargs) # may raise exc.HTTPUnauthorized, exc.HTTPNotFound # but we deal with those elsewhere return heatclient.client.Client(api_version, endpoint=heat_endpoint, **kwargs)
Set up heat credentials, returns `heatclient.client.Client`. Optional parameter "api_version" defaults to 1. Only intended to be used within heat-enabled modules
def generate_routes(config): """Generate a list of urls that map to generated proxy views. generate_routes({ 'test_proxy': { 'base_url': 'https://google.com/', 'prefix': '/test_prefix/', 'verify_ssl': False, 'csrf_exempt: False', 'middleware': ['djproxy.proxy_middleware.AddXFF'], 'append_middleware': ['djproxy.proxy_middleware.AddXFF'], 'timeout': 3.0, 'cert': None } }) Required configuration keys: * `base_url` * `prefix` Optional configuration keys: * `verify_ssl`: defaults to `True`. * `csrf_exempt`: defaults to `True`. * `cert`: defaults to `None`. * `timeout`: defaults to `None`. * `middleware`: Defaults to `None`. Specifying `None` causes djproxy to use the default middleware set. If a list is passed, the default middleware list specified by the HttpProxy definition will be replaced with the provided list. * `append_middleware`: Defaults to `None`. `None` results in no changes to the default middleware set. If a list is specified, the list will be appended to the default middleware list specified in the HttpProxy definition or, if provided, the middleware key specificed in the config dict. Returns: [ url(r'^test_prefix/', GeneratedProxy.as_view(), name='test_proxy')), ] """ routes = [] for name, config in iteritems(config): pattern = r'^%s(?P<url>.*)$' % re.escape(config['prefix'].lstrip('/')) proxy = generate_proxy( prefix=config['prefix'], base_url=config['base_url'], verify_ssl=config.get('verify_ssl', True), middleware=config.get('middleware'), append_middleware=config.get('append_middleware'), cert=config.get('cert'), timeout=config.get('timeout')) proxy_view_function = proxy.as_view() proxy_view_function.csrf_exempt = config.get('csrf_exempt', True) routes.append(url(pattern, proxy_view_function, name=name)) return routes
Generate a list of urls that map to generated proxy views. generate_routes({ 'test_proxy': { 'base_url': 'https://google.com/', 'prefix': '/test_prefix/', 'verify_ssl': False, 'csrf_exempt: False', 'middleware': ['djproxy.proxy_middleware.AddXFF'], 'append_middleware': ['djproxy.proxy_middleware.AddXFF'], 'timeout': 3.0, 'cert': None } }) Required configuration keys: * `base_url` * `prefix` Optional configuration keys: * `verify_ssl`: defaults to `True`. * `csrf_exempt`: defaults to `True`. * `cert`: defaults to `None`. * `timeout`: defaults to `None`. * `middleware`: Defaults to `None`. Specifying `None` causes djproxy to use the default middleware set. If a list is passed, the default middleware list specified by the HttpProxy definition will be replaced with the provided list. * `append_middleware`: Defaults to `None`. `None` results in no changes to the default middleware set. If a list is specified, the list will be appended to the default middleware list specified in the HttpProxy definition or, if provided, the middleware key specificed in the config dict. Returns: [ url(r'^test_prefix/', GeneratedProxy.as_view(), name='test_proxy')), ]
def users_getPresence(self, *, user: str, **kwargs) -> SlackResponse: """Gets user presence information. Args: user (str): User to get presence info on. Defaults to the authed user. e.g. 'W1234567890' """ kwargs.update({"user": user}) return self.api_call("users.getPresence", http_verb="GET", params=kwargs)
Gets user presence information. Args: user (str): User to get presence info on. Defaults to the authed user. e.g. 'W1234567890'
def lnprior(self, X): """ Use a uniform, bounded prior. """ if np.any(X < self._lower_left) or np.any(X > self._upper_right): return -np.inf else: return 0.0
Use a uniform, bounded prior.
def persist(arg, depth=Ellipsis, on_mutable=None): ''' persist(x) yields a persistent version of x if possible, or yields x itself. The transformations performed by persist(x) are as follows: * If x is an immutable object, yields x.persist() * If x is a set, yield a frozenset of of persist(u) for all u in x. * If x is a numpy array, yield imm_array(x). * If x is a map, yields a persistent version of x with all keys and values replaced with their persist()'ed form; note that this respects laziness and itables. * If x is a list/tuple type, yields a tuple of persist()'ed contents. * Otherwise, if the type of x is not recognized, yields x. The depth to which persist() searches the argument's elements is controlled by the depth option; the default behavior is to persist objects down to the point that a persistent object is found, at which its elements are not checked for persistence. Note that persist() is not guaranteed to recognize a particular object; it is intended as a utility function for basic functional-style and immutable data code in Python. In particular, it is usefl for pimms's immutable objects; dicts and mappings; pimms's lazy-maps and itables; pyrsistent's sets, vectors, and maps; sets and frozensets (which are both communted to frozensets); and anything implementing __iter__ (which are commuted to tuples). Objects that are not numbers or strings are considered potentially-mutable and will trigger the on_mutable case. The optional arguments may be passed to persist: * depth (default: Ellipsis) specifies the depth to which toe persist() function should search when persisting objects. The given argument is considered depth 0, so persist(arg, 0) will persist only arg and not its contents, if it is a collection. If None is given, then goes to any depth; if Ellipsis is given, then searches until a persistent object is found, but does not attempt to persist the elements of already-persistent containers (this is the default). * on_mutable (default: None) specifies what to do when a non-persistable object is encountered in the search. If None, then the object is left; if 'error', then an error is raised; otherwise, this must be a function that is passed the object--the return value of this function is the replacement used in the object returned from persist(). ''' from .immutable import (is_imm, imm_copy) # Parse the on_mutable argument if on_mutable is None: on_mutable = lambda x:x elif on_mutable == 'error': def _raise(x): raise ValueError('non-persistable: %s' % x) on_mutable = _raise if depth in (None, Ellipsis): depth_next = depth elif depth < 0: return arg else: depth_next = depth - 1 precur = lambda x:persist(x, depth=depth_next, on_mutable=on_mutable) # See if we have an easy type to handle if is_imm(arg): return imm_copy(arg) if is_quantity(arg): (m,u) = (mag(arg), unit(arg)) mm = precur(m) if mm is m: return arg else: return quant(mm, u) elif isinstance(arg, np.ndarray): return imm_array(arg) elif isinstance(arg, np.generic): x = type(arg)(arg) x.setflags(write=False) return x elif is_str(arg) or is_number(arg): return arg elif isinstance(arg, ps.PVector): if depth is Ellipsis or depth == 0: return arg for (k,v0) in zip(range(len(arg)), arg): v = precur(v0) if v0 is not v: arg = arg.set(k,v) return arg elif isinstance(arg, ps.PSet): if depth is Ellipsis or depth == 0: return arg for v0 in arg: v = precur(v0) if v0 is not v: arg = arg.discard(v0).add(v) return arg elif is_pmap(arg): if depth is Ellipsis or depth == 0: return arg return key_map(precur, value_map(precur, arg)) elif is_map(arg): if not is_pmap(arg): arg = ps.pmap(arg) if depth == 0: return arg return key_map(precur, value_map(precur, arg)) elif isinstance(arg, frozenset): if depth is Ellipsis or depth == 0: return frozenset(arg) a = [x for x in arg] q = [precur(x) for x in a] if all(ai is qi for (ai,qi) in zip(a,q)): return arg return frozenset(q) elif isinstance(arg, set): if depth == 0: return frozenset(arg) a = [x for x in arg] q = [precur(x) for x in a] if isinstance(arg, frozenset) and all(ai is qi for (ai,qi) in zip(a,q)): return arg return frozenset(q) elif hasattr(arg, '__iter__'): if depth == 0 or (depth is Ellipsis and isinstance(arg, tuple)): return tuple(arg) q = tuple(precur(x) for x in arg) if isinstance(arg, tuple) and all(ai is qi for (ai,qi) in zip(arg,q)): return arg else: return q elif isinstance(arg, (types.FunctionType, partial)): return arg else: return on_mutable(arg)
persist(x) yields a persistent version of x if possible, or yields x itself. The transformations performed by persist(x) are as follows: * If x is an immutable object, yields x.persist() * If x is a set, yield a frozenset of of persist(u) for all u in x. * If x is a numpy array, yield imm_array(x). * If x is a map, yields a persistent version of x with all keys and values replaced with their persist()'ed form; note that this respects laziness and itables. * If x is a list/tuple type, yields a tuple of persist()'ed contents. * Otherwise, if the type of x is not recognized, yields x. The depth to which persist() searches the argument's elements is controlled by the depth option; the default behavior is to persist objects down to the point that a persistent object is found, at which its elements are not checked for persistence. Note that persist() is not guaranteed to recognize a particular object; it is intended as a utility function for basic functional-style and immutable data code in Python. In particular, it is usefl for pimms's immutable objects; dicts and mappings; pimms's lazy-maps and itables; pyrsistent's sets, vectors, and maps; sets and frozensets (which are both communted to frozensets); and anything implementing __iter__ (which are commuted to tuples). Objects that are not numbers or strings are considered potentially-mutable and will trigger the on_mutable case. The optional arguments may be passed to persist: * depth (default: Ellipsis) specifies the depth to which toe persist() function should search when persisting objects. The given argument is considered depth 0, so persist(arg, 0) will persist only arg and not its contents, if it is a collection. If None is given, then goes to any depth; if Ellipsis is given, then searches until a persistent object is found, but does not attempt to persist the elements of already-persistent containers (this is the default). * on_mutable (default: None) specifies what to do when a non-persistable object is encountered in the search. If None, then the object is left; if 'error', then an error is raised; otherwise, this must be a function that is passed the object--the return value of this function is the replacement used in the object returned from persist().
def render_to_message(self, extra_context=None, **kwargs): """ Renders and returns an unsent message with the provided context. Any extra keyword arguments passed will be passed through as keyword arguments to the message constructor. :param extra_context: Any additional context to use when rendering the templated content. :type extra_context: :class:`dict` :returns: A message instance. :rtype: :attr:`.message_class` """ if extra_context is None: extra_context = {} # Ensure our custom headers are added to the underlying message class. kwargs.setdefault('headers', {}).update(self.headers) context = self.get_context_data(**extra_context) return self.message_class( subject=self.render_subject(context), body=self.render_body(context), **kwargs)
Renders and returns an unsent message with the provided context. Any extra keyword arguments passed will be passed through as keyword arguments to the message constructor. :param extra_context: Any additional context to use when rendering the templated content. :type extra_context: :class:`dict` :returns: A message instance. :rtype: :attr:`.message_class`
def parse(text, encoding='utf8'): """Parse the querystring into a normalized form.""" # Decode the text if we got bytes. if isinstance(text, six.binary_type): text = text.decode(encoding) return Query(text, split_segments(text))
Parse the querystring into a normalized form.
def get_url(self): """IFTTT Webhook url :return: url :rtype: str """ if not self.data[self.execute_name]: raise InvalidConfig(extra_body='Value for IFTTT is required on {} device. Get your key here: ' 'https://ifttt.com/services/maker_webhooks/settings'.format(self.name)) if not self.data.get('event'): raise InvalidConfig(extra_body='Event option is required for IFTTT on {} device. ' 'You define the event name when creating a Webhook ' 'applet'.format(self.name)) url = self.url_pattern.format(event=self.data['event'], key=self.data[self.execute_name]) return url
IFTTT Webhook url :return: url :rtype: str
def ball_pick(n, d, rng=None): """Return cartesian vectors uniformly picked on the unit ball in an arbitrary number of dimensions. The unit ball is the space enclosed by the unit sphere. The picking is done by rejection sampling in the unit cube. In 3-dimensional space, the fraction `\pi / 6 \sim 0.52` points are valid. Parameters ---------- n: integer Number of points to return. d: integer Number of dimensions of the space in which the ball lives Returns ------- r: array, shape (n, d) Sample cartesian vectors. """ def valid(r): return vector_mag_sq(r) < 1.0 return rejection_pick(L=2.0, n=n, d=d, valid=valid, rng=rng)
Return cartesian vectors uniformly picked on the unit ball in an arbitrary number of dimensions. The unit ball is the space enclosed by the unit sphere. The picking is done by rejection sampling in the unit cube. In 3-dimensional space, the fraction `\pi / 6 \sim 0.52` points are valid. Parameters ---------- n: integer Number of points to return. d: integer Number of dimensions of the space in which the ball lives Returns ------- r: array, shape (n, d) Sample cartesian vectors.
def get_records(self, name): """Return all the records for the given name in the cache. Args: name (string): The name which the required models are stored under. Returns: list: A list of :class:`cinder_data.model.CinderModel` models. """ if name in self._cache: return self._cache[name].values() else: return []
Return all the records for the given name in the cache. Args: name (string): The name which the required models are stored under. Returns: list: A list of :class:`cinder_data.model.CinderModel` models.
def publish(self, message_type, message_payload): """ Publish the specified object that the function automatically converts into a JSON string representation. This function use the lowered class name of the service as the AMQP routing key. For instance, if the class ``ExampleService`` inherits from the base class ``BaseService``, the methods of an instance of this class will publish messages using the routing key named ``exampleservice``. @param message_type: string representing the type of the event, more likely ``on_something_happened`. @param message_payload: an object to convert into a JSON string representation and to publish. """ payload = json.dumps(jsonpickle.Pickler(unpicklable=False).flatten(message_payload)) message = amqp.Message(payload) message.properties["delivery_mode"] = 2 name = 'majormode.%s.%s.%s' % (settings.ENVIRONMENT_STAGE, self.service_name.lower(), message_type.lower()) self.channel.queue_declare(queue=name, durable=True, exclusive=False, auto_delete=False) self.channel.exchange_declare(exchange=name, type="direct", durable=True, auto_delete=False,) self.channel.queue_bind(queue=name, exchange=name, routing_key=name) self.channel.basic_publish(message, exchange=name, routing_key=name)
Publish the specified object that the function automatically converts into a JSON string representation. This function use the lowered class name of the service as the AMQP routing key. For instance, if the class ``ExampleService`` inherits from the base class ``BaseService``, the methods of an instance of this class will publish messages using the routing key named ``exampleservice``. @param message_type: string representing the type of the event, more likely ``on_something_happened`. @param message_payload: an object to convert into a JSON string representation and to publish.
def is_defined(self, objtxt, force_import=False): """Return True if object is defined""" return isdefined(objtxt, force_import=force_import, namespace=self.locals)
Return True if object is defined
def findRequirements(): """ Read the requirements.txt file and parse into requirements for setup's install_requirements option. """ requirementsPath = os.path.join(REPO_DIR, "requirements.txt") requirements = parse_file(requirementsPath) # User has a pre-release version of numenta packages installed, which is only # possible if the user installed and built the packages from source and # it is up to the user to decide when to update these packages. We'll # quietly remove the entries in requirements.txt so as to not conflate the # two. if nupicPrereleaseInstalled(): requirements = [req for req in requirements if "nupic" not in req] if htmresearchCorePrereleaseInstalled(): requirements = [req for req in requirements if "htmresearch-core" not in req] return requirements
Read the requirements.txt file and parse into requirements for setup's install_requirements option.
def force_move(source, destination): """ Force the move of the source inside the destination even if the destination has already a folder with the name inside. In the case, the folder will be replaced. :param string source: path of the source to move. :param string destination: path of the folder to move the source to. """ if not os.path.exists(destination): raise RuntimeError( 'The code could not be moved to {destination} ' 'because the folder does not exist'.format(destination=destination)) destination_folder = os.path.join(destination, os.path.split(source)[-1]) if os.path.exists(destination_folder): shutil.rmtree(destination_folder) shutil.move(source, destination)
Force the move of the source inside the destination even if the destination has already a folder with the name inside. In the case, the folder will be replaced. :param string source: path of the source to move. :param string destination: path of the folder to move the source to.
def get_by_username(cls, username): """ Return a User by email address """ return cls.query().filter(cls.username == username).first()
Return a User by email address
def __collectGarbage(self, ignored=None): """Collects garbage""" del ignored # unused argument collected = [] level0, level1, level2 = gc.get_count() if level0 > 0: collected.append(gc.collect(0)) if level1 > 0: collected.append(gc.collect(1)) if level2 > 0: collected.append(gc.collect(2)) if self.__where == GCPluginConfigDialog.SILENT: return message = "" if collected: for index in range(len(collected)): if collected[index] == 0: continue if message: message += ", " message += "generation " + str(index) + ": " + \ str(collected[index]) if message: message = "GC objects: " + message else: message = "No GC objects" if not message: return if self.__where == GCPluginConfigDialog.STATUS_BAR: self.ide.showStatusBarMessage(message) else: logging.info(message)
Collects garbage
def _listChunks(self): """ Lists stored chunks :return: sorted list of available chunk indices """ chunks = [] for fileName in os.listdir(self.dataDir): index = ChunkedFileStore._fileNameToChunkIndex(fileName) if index is not None: chunks.append(index) return sorted(chunks)
Lists stored chunks :return: sorted list of available chunk indices