code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def get_url_from_model_core(request, obj): """ Returns object URL from model core. """ from is_core.site import get_model_core model_core = get_model_core(obj.__class__) if model_core and hasattr(model_core, 'ui_patterns'): edit_pattern = model_core.ui_patterns.get('detail') return ( edit_pattern.get_url_string(request, obj=obj) if edit_pattern and edit_pattern.has_permission('get', request, obj=obj) else None ) else: return None
Returns object URL from model core.
def from_code(cls, co): """Disassemble a Python code object into a Code object.""" co_code = co.co_code labels = dict((addr, Label()) for addr in findlabels(co_code)) linestarts = dict(cls._findlinestarts(co)) cellfree = co.co_cellvars + co.co_freevars code = CodeList() n = len(co_code) i = 0 extended_arg = 0 while i < n: op = Opcode(ord(co_code[i])) if i in labels: code.append((labels[i], None)) if i in linestarts: code.append((SetLineno, linestarts[i])) i += 1 if op in hascode: lastop, lastarg = code[-1] if lastop != LOAD_CONST: raise ValueError( "%s should be preceded by LOAD_CONST code" % op) code[-1] = (LOAD_CONST, Code.from_code(lastarg)) if op not in hasarg: code.append((op, None)) else: arg = ord(co_code[i]) + ord(co_code[i+1])*256 + extended_arg extended_arg = 0 i += 2 if op == opcode.EXTENDED_ARG: extended_arg = arg << 16 elif op in hasconst: code.append((op, co.co_consts[arg])) elif op in hasname: code.append((op, co.co_names[arg])) elif op in hasjabs: code.append((op, labels[arg])) elif op in hasjrel: code.append((op, labels[i + arg])) elif op in haslocal: code.append((op, co.co_varnames[arg])) elif op in hascompare: code.append((op, cmp_op[arg])) elif op in hasfree: code.append((op, cellfree[arg])) else: code.append((op, arg)) varargs = bool(co.co_flags & CO_VARARGS) varkwargs = bool(co.co_flags & CO_VARKEYWORDS) newlocals = bool(co.co_flags & CO_NEWLOCALS) args = co.co_varnames[:co.co_argcount + varargs + varkwargs] if co.co_consts and isinstance(co.co_consts[0], basestring): docstring = co.co_consts[0] else: docstring = None return cls(code = code, freevars = co.co_freevars, args = args, varargs = varargs, varkwargs = varkwargs, newlocals = newlocals, name = co.co_name, filename = co.co_filename, firstlineno = co.co_firstlineno, docstring = docstring, )
Disassemble a Python code object into a Code object.
def save_photon_hdf5(self, identity=None, overwrite=True, path=None): """Create a smFRET Photon-HDF5 file with current timestamps.""" filepath = self.filepath if path is not None: filepath = Path(path, filepath.name) self.merge_da() data = self._make_photon_hdf5(identity=identity) phc.hdf5.save_photon_hdf5(data, h5_fname=str(filepath), overwrite=overwrite)
Create a smFRET Photon-HDF5 file with current timestamps.
def quote_datetime(self, value): """ Force the quote_datetime to always be a datetime :param value: :return: """ if value: if isinstance(value, type_check): self._quote_datetime = parse(value) elif isinstance(value, datetime.datetime): self._quote_datetime = value
Force the quote_datetime to always be a datetime :param value: :return:
def parse_ndxlist(output): """Parse output from make_ndx to build list of index groups:: groups = parse_ndxlist(output) output should be the standard output from ``make_ndx``, e.g.:: rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True) (or simply use rc,output,junk = cbook.make_ndx_captured(...) which presets input, stdout and stderr; of course input can be overriden.) :Returns: The function returns a list of dicts (``groups``) with fields name name of the groups nr number of the group (starts at 0) natoms number of atoms in the group """ m = NDXLIST.search(output) # make sure we pick up a proper full list grouplist = m.group('LIST') return parse_groups(grouplist)
Parse output from make_ndx to build list of index groups:: groups = parse_ndxlist(output) output should be the standard output from ``make_ndx``, e.g.:: rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True) (or simply use rc,output,junk = cbook.make_ndx_captured(...) which presets input, stdout and stderr; of course input can be overriden.) :Returns: The function returns a list of dicts (``groups``) with fields name name of the groups nr number of the group (starts at 0) natoms number of atoms in the group
def getBucketIndices(self, input): """ See method description in base.py """ if input == SENTINEL_VALUE_FOR_MISSING_DATA: # Encoder each sub-field return [None] * len(self.encoders) else: assert isinstance(input, datetime.datetime) # Get the scalar values for each sub-field scalars = self.getScalars(input) # Encoder each sub-field result = [] for i in xrange(len(self.encoders)): (name, encoder, offset) = self.encoders[i] result.extend(encoder.getBucketIndices(scalars[i])) return result
See method description in base.py
def contents(self, from_date=DEFAULT_DATETIME, offset=None, max_contents=MAX_CONTENTS): """Get the contents of a repository. This method returns an iterator that manages the pagination over contents. Take into account that the seconds of `from_date` parameter will be ignored because the API only works with hours and minutes. :param from_date: fetch the contents updated since this date :param offset: fetch the contents starting from this offset :param limit: maximum number of contents to fetch per request """ resource = self.RCONTENTS + '/' + self.MSEARCH # Set confluence query parameter (cql) date = from_date.strftime("%Y-%m-%d %H:%M") cql = self.VCQL % {'date': date} # Set parameters params = { self.PCQL: cql, self.PLIMIT: max_contents, self.PEXPAND: self.PANCESTORS } if offset: params[self.PSTART] = offset for response in self._call(resource, params): yield response
Get the contents of a repository. This method returns an iterator that manages the pagination over contents. Take into account that the seconds of `from_date` parameter will be ignored because the API only works with hours and minutes. :param from_date: fetch the contents updated since this date :param offset: fetch the contents starting from this offset :param limit: maximum number of contents to fetch per request
def apply_backspaces_and_linefeeds(text): """ Interpret backspaces and linefeeds in text like a terminal would. Interpret text like a terminal by removing backspace and linefeed characters and applying them line by line. If final line ends with a carriage it keeps it to be concatenable with next output chunk. """ orig_lines = text.split('\n') orig_lines_len = len(orig_lines) new_lines = [] for orig_line_idx, orig_line in enumerate(orig_lines): chars, cursor = [], 0 orig_line_len = len(orig_line) for orig_char_idx, orig_char in enumerate(orig_line): if orig_char == '\r' and (orig_char_idx != orig_line_len - 1 or orig_line_idx != orig_lines_len - 1): cursor = 0 elif orig_char == '\b': cursor = max(0, cursor - 1) else: if (orig_char == '\r' and orig_char_idx == orig_line_len - 1 and orig_line_idx == orig_lines_len - 1): cursor = len(chars) if cursor == len(chars): chars.append(orig_char) else: chars[cursor] = orig_char cursor += 1 new_lines.append(''.join(chars)) return '\n'.join(new_lines)
Interpret backspaces and linefeeds in text like a terminal would. Interpret text like a terminal by removing backspace and linefeed characters and applying them line by line. If final line ends with a carriage it keeps it to be concatenable with next output chunk.
def set_color_zones(self, start_index, end_index, color, duration=0, apply=1, callb=None, rapid=False): """Convenience method to set the colour status zone of the device This method will send a MultiZoneSetColorZones message to the device, and request callb be executed when an ACK is received. The default callback will simply cache the value. :param start_index: Index of the start of the zone of interest :type start_index: int :param end_index: Index of the end of the zone of interest. By default start_index+7 :type end_index: int :param apply: Indicates if the colour change is to be applied or memorized. Default: 1 :type apply: int :param value: The new state, a dictionary onf int with 4 keys Hue, Saturation, Brightness, Kelvin :type value: dict :param duration: The duration, in seconds, of the power state transition. :type duration: int :param callb: Callable to be used when the response is received. If not set, self.resp_set_label will be used. :type callb: callable :param rapid: Whether to ask for ack (False) or not (True). Default False :type rapid: bool :returns: None :rtype: None """ if len(color) == 4: args = { "start_index": start_index, "end_index": end_index, "color": color, "duration": duration, "apply": apply, } mypartial=partial(self.resp_set_multizonemultizone, args=args) if callb: mycallb=lambda x,y:(mypartial(y),callb(x,y)) else: mycallb=lambda x,y:mypartial(y) if rapid: self.fire_and_forget(MultiZoneSetColorZones, args, num_repeats=1) mycallb(self, None) else: self.req_with_ack(MultiZoneSetColorZones, args, callb=mycallb)
Convenience method to set the colour status zone of the device This method will send a MultiZoneSetColorZones message to the device, and request callb be executed when an ACK is received. The default callback will simply cache the value. :param start_index: Index of the start of the zone of interest :type start_index: int :param end_index: Index of the end of the zone of interest. By default start_index+7 :type end_index: int :param apply: Indicates if the colour change is to be applied or memorized. Default: 1 :type apply: int :param value: The new state, a dictionary onf int with 4 keys Hue, Saturation, Brightness, Kelvin :type value: dict :param duration: The duration, in seconds, of the power state transition. :type duration: int :param callb: Callable to be used when the response is received. If not set, self.resp_set_label will be used. :type callb: callable :param rapid: Whether to ask for ack (False) or not (True). Default False :type rapid: bool :returns: None :rtype: None
def latencies(self): """List[Tuple[:class:`int`, :class:`float`]]: A list of latencies between a HEARTBEAT and a HEARTBEAT_ACK in seconds. This returns a list of tuples with elements ``(shard_id, latency)``. """ return [(shard_id, shard.ws.latency) for shard_id, shard in self.shards.items()]
List[Tuple[:class:`int`, :class:`float`]]: A list of latencies between a HEARTBEAT and a HEARTBEAT_ACK in seconds. This returns a list of tuples with elements ``(shard_id, latency)``.
def getargnames(argspecs, with_unbox=False): """Resembles list of arg-names as would be seen in a function signature, including var-args, var-keywords and keyword-only args. """ # todo: We can maybe make use of inspect.formatargspec args = argspecs.args vargs = argspecs.varargs try: kw = argspecs.keywords except AttributeError: kw = argspecs.varkw try: kwonly = argspecs.kwonlyargs except AttributeError: kwonly = None res = [] if not args is None: res.extend(args) if not vargs is None: res.append('*'+vargs if with_unbox else vargs) if not kwonly is None: res.extend(kwonly) if not kw is None: res.append('**'+kw if with_unbox else kw) return res
Resembles list of arg-names as would be seen in a function signature, including var-args, var-keywords and keyword-only args.
def context(fname, node): """ Context manager managing exceptions and adding line number of the current node and name of the current file to the error message. :param fname: the current file being processed :param node: the current node being processed """ try: yield node except Exception: etype, exc, tb = sys.exc_info() msg = 'node %s: %s, line %s of %s' % ( striptag(node.tag), exc, getattr(node, 'lineno', '?'), fname) raise_(etype, msg, tb)
Context manager managing exceptions and adding line number of the current node and name of the current file to the error message. :param fname: the current file being processed :param node: the current node being processed
def check_X_y(X, y): """ tool to ensure input and output data have the same number of samples Parameters ---------- X : array-like y : array-like Returns ------- None """ if len(X) != len(y): raise ValueError('Inconsistent input and output data shapes. '\ 'found X: {} and y: {}'.format(X.shape, y.shape))
tool to ensure input and output data have the same number of samples Parameters ---------- X : array-like y : array-like Returns ------- None
def filterOverlappingAlignments(alignments): """Filter alignments to be non-overlapping. """ l = [] alignments = alignments[:] sortAlignments(alignments) alignments.reverse() for pA1 in alignments: for pA2 in l: if pA1.contig1 == pA2.contig1 and getPositiveCoordinateRangeOverlap(pA1.start1+1, pA1.end1, pA2.start1+1, pA2.end1) is not None: #One offset, inclusive coordinates break if pA1.contig2 == pA2.contig2 and getPositiveCoordinateRangeOverlap(pA1.start2+1, pA1.end2, pA2.start2+1, pA2.end2) is not None: #One offset, inclusive coordinates break if pA1.contig2 == pA2.contig1 and getPositiveCoordinateRangeOverlap(pA1.start2+1, pA1.end2, pA2.start1+1, pA2.end1) is not None: #One offset, inclusive coordinates break if pA1.contig1 == pA2.contig2 and getPositiveCoordinateRangeOverlap(pA1.start1+1, pA1.end1, pA2.start2+1, pA2.end2) is not None: #One offset, inclusive coordinates break else: l.append(pA1) l.reverse() return l
Filter alignments to be non-overlapping.
def _gridmake2(x1, x2): """ Expands two vectors (or matrices) into a matrix where rows span the cartesian product of combinations of the input arrays. Each column of the input arrays will correspond to one column of the output matrix. Parameters ---------- x1 : np.ndarray First vector to be expanded. x2 : np.ndarray Second vector to be expanded. Returns ------- out : np.ndarray The cartesian product of combinations of the input arrays. Notes ----- Based of original function ``gridmake2`` in CompEcon toolbox by Miranda and Fackler. References ---------- Miranda, Mario J, and Paul L Fackler. Applied Computational Economics and Finance, MIT Press, 2002. """ if x1.ndim == 1 and x2.ndim == 1: return np.column_stack([np.tile(x1, x2.shape[0]), np.repeat(x2, x1.shape[0])]) elif x1.ndim > 1 and x2.ndim == 1: first = np.tile(x1, (x2.shape[0], 1)) second = np.repeat(x2, x1.shape[0]) return np.column_stack([first, second]) else: raise NotImplementedError("Come back here")
Expands two vectors (or matrices) into a matrix where rows span the cartesian product of combinations of the input arrays. Each column of the input arrays will correspond to one column of the output matrix. Parameters ---------- x1 : np.ndarray First vector to be expanded. x2 : np.ndarray Second vector to be expanded. Returns ------- out : np.ndarray The cartesian product of combinations of the input arrays. Notes ----- Based of original function ``gridmake2`` in CompEcon toolbox by Miranda and Fackler. References ---------- Miranda, Mario J, and Paul L Fackler. Applied Computational Economics and Finance, MIT Press, 2002.
def ensure_path(path): # type: (Union[vistir.compat.Path, str]) -> vistir.compat.Path """ Given a path (either a string or a Path object), expand variables and return a Path object. :param path: A string or a :class:`~pathlib.Path` object. :type path: str or :class:`~pathlib.Path` :return: A fully expanded Path object. :rtype: :class:`~pathlib.Path` """ if isinstance(path, vistir.compat.Path): return path path = vistir.compat.Path(os.path.expandvars(path)) return path.absolute()
Given a path (either a string or a Path object), expand variables and return a Path object. :param path: A string or a :class:`~pathlib.Path` object. :type path: str or :class:`~pathlib.Path` :return: A fully expanded Path object. :rtype: :class:`~pathlib.Path`
def load(self, dump_fn='', prep_only=0, force_upload=0, from_local=0, name=None, site=None, dest_dir=None, force_host=None): """ Restores a database snapshot onto the target database server. If prep_only=1, commands for preparing the load will be generated, but not the command to finally load the snapshot. """ r = self.database_renderer(name=name, site=site) # Render the snapshot filename. r.env.dump_fn = self.get_default_db_fn(fn_template=dump_fn, dest_dir=dest_dir) from_local = int(from_local) prep_only = int(prep_only) missing_local_dump_error = r.format( "Database dump file {dump_fn} does not exist." ) # Copy snapshot file to target. if self.is_local: r.env.remote_dump_fn = dump_fn else: r.env.remote_dump_fn = '/tmp/' + os.path.split(r.env.dump_fn)[-1] if not prep_only and not self.is_local: if not self.dryrun: assert os.path.isfile(r.env.dump_fn), missing_local_dump_error #r.pc('Uploading PostgreSQL database snapshot...') # r.put( # local_path=r.env.dump_fn, # remote_path=r.env.remote_dump_fn) #r.local('rsync -rvz --progress --no-p --no-g ' #'--rsh "ssh -o StrictHostKeyChecking=no -i {key_filename}" ' #'{dump_fn} {user}@{host_string}:{remote_dump_fn}') self.upload_snapshot(name=name, site=site, local_dump_fn=r.env.dump_fn, remote_dump_fn=r.env.remote_dump_fn) if self.is_local and not prep_only and not self.dryrun: assert os.path.isfile(r.env.dump_fn), missing_local_dump_error if force_host: r.env.db_host = force_host with settings(warn_only=True): r.sudo('dropdb --if-exists --no-password --user={db_root_username} --host={db_host} {db_name}', user=r.env.postgres_user) r.sudo('psql --no-password --user={db_root_username} --host={db_host} -c "CREATE DATABASE {db_name};"', user=r.env.postgres_user) with settings(warn_only=True): if r.env.engine == POSTGIS: r.sudo('psql --user={db_root_username} --no-password --dbname={db_name} --host={db_host} --command="CREATE EXTENSION postgis;"', user=r.env.postgres_user) r.sudo('psql --user={db_root_username} --no-password --dbname={db_name} --host={db_host} --command="CREATE EXTENSION postgis_topology;"', user=r.env.postgres_user) with settings(warn_only=True): r.sudo('psql --user={db_root_username} --host={db_host} -c "REASSIGN OWNED BY {db_user} TO {db_root_username};"', user=r.env.postgres_user) with settings(warn_only=True): r.sudo('psql --user={db_root_username} --host={db_host} -c "DROP OWNED BY {db_user} CASCADE;"', user=r.env.postgres_user) r.sudo('psql --user={db_root_username} --host={db_host} -c "DROP USER IF EXISTS {db_user}; ' 'CREATE USER {db_user} WITH PASSWORD \'{db_password}\'; ' 'GRANT ALL PRIVILEGES ON DATABASE {db_name} to {db_user};"', user=r.env.postgres_user) for createlang in r.env.createlangs: r.env.createlang = createlang r.sudo('createlang -U {db_root_username} --host={db_host} {createlang} {db_name} || true', user=r.env.postgres_user) if not prep_only: # Ignore errors needed to work around bug "ERROR: schema "public" already exists", which is thrown in 9.6 even if we use --clean and --if-exists? with settings(warn_only=True): r.sudo(r.env.load_command, user=r.env.postgres_user)
Restores a database snapshot onto the target database server. If prep_only=1, commands for preparing the load will be generated, but not the command to finally load the snapshot.
def _query(self, *criterion): """ Construct a query for the model. """ return self.session.query( self.model_class ).filter( *criterion )
Construct a query for the model.
def p_arguments(self, p): """arguments : LPAREN RPAREN | LPAREN argument_list RPAREN """ if len(p) == 4: p[0] = self.asttypes.Arguments(p[2]) else: p[0] = self.asttypes.Arguments([]) p[0].setpos(p)
arguments : LPAREN RPAREN | LPAREN argument_list RPAREN
def destroy(self, request, *args, **kwargs): """ Run **DELETE** request against */api/price-list-items/<uuid>/* to delete price list item. Only customer owner and staff can delete price items. """ return super(PriceListItemViewSet, self).destroy(request, *args, **kwargs)
Run **DELETE** request against */api/price-list-items/<uuid>/* to delete price list item. Only customer owner and staff can delete price items.
def update_all(self, criteria: Q, *args, **kwargs): """Update all objects satisfying the criteria """ items = self._filter(criteria, self.conn['data'][self.schema_name]) update_count = 0 for key in items: item = items[key] item.update(*args) item.update(kwargs) self.conn['data'][self.schema_name][key] = item update_count += 1 return update_count
Update all objects satisfying the criteria
def decode(self, descriptor): """ Produce a list of dictionaries for each dimension in this transcoder """ i = iter(descriptor) n = len(self._schema) # Add the name key to our schema schema = self._schema + ('name',) # For each dimensions, generator takes n items off iterator # wrapping the descriptor, making a tuple with the dimension # name appended tuple_gen = (tuple(itertools.islice(i, n)) + (d, ) for d in self._dimensions) # Generate dictionary by mapping schema keys to generated tuples return [{ k: v for k, v in zip(schema, t) } for t in tuple_gen]
Produce a list of dictionaries for each dimension in this transcoder
def write(self, process_tile, data): """ Write data from process tiles into GeoJSON file(s). Parameters ---------- process_tile : ``BufferedTile`` must be member of process ``TilePyramid`` """ if data is None or len(data) == 0: return if not isinstance(data, (list, types.GeneratorType)): raise TypeError( "GeoJSON driver data has to be a list or generator of GeoJSON objects" ) data = list(data) if not len(data): logger.debug("no features to write") else: # in case of S3 output, create an boto3 resource bucket_resource = get_boto3_bucket(self._bucket) if self._bucket else None # Convert from process_tile to output_tiles for tile in self.pyramid.intersecting(process_tile): out_path = self.get_path(tile) self.prepare_path(tile) out_tile = BufferedTile(tile, self.pixelbuffer) write_vector_window( in_data=data, out_schema=self.output_params["schema"], out_tile=out_tile, out_path=out_path, bucket_resource=bucket_resource )
Write data from process tiles into GeoJSON file(s). Parameters ---------- process_tile : ``BufferedTile`` must be member of process ``TilePyramid``
def get_comparable_values_for_ordering(self): """Return a tupple of values representing the unicity of the object """ return (0 if self.position >= 0 else 1, int(self.position), str(self.name), str(self.description))
Return a tupple of values representing the unicity of the object
def get_releasenotes(repo_path, from_commit=None, bugtracker_url=''): """ Given a repo and optionally a base revision to start from, will return a text suitable for the relase notes announcement, grouping the bugs, the features and the api-breaking changes. Args: repo_path(str): Path to the code git repository. from_commit(str): Refspec of the commit to start aggregating the authors from. bugtracker_url(str): URL to be prepended to any bug ids found in the commits. Returns: str: Release notes text. """ repo = dulwich.repo.Repo(repo_path) tags = get_tags(repo) refs = get_refs(repo) maj_version = 0 feat_version = 0 fix_version = 0 start_including = False release_notes_per_major = OrderedDict() cur_line = '' if from_commit is None: start_including = True prev_version = (maj_version, feat_version, fix_version) prev_version_str = '%s.%s.%s' % prev_version bugs = [] features = [] api_break_changes = [] for commit_sha, children in reversed( get_children_per_first_parent(repo_path).items() ): commit = get_repo_object(repo, commit_sha) maj_version, feat_version, fix_version = get_version( commit=commit, tags=tags, maj_version=maj_version, feat_version=feat_version, fix_version=fix_version, children=children, ) version = (maj_version, feat_version, fix_version) version_str = '%s.%s.%s' % version if ( start_including or commit_sha.startswith(from_commit) or fuzzy_matches_refs(from_commit, refs.get(commit_sha, [])) ): start_including = True parent_commit_type = get_commit_type( commit=commit, children=children, tags=tags, prev_version=prev_version, ) cur_line = pretty_commit( commit=commit, version=version_str, bugtracker_url=bugtracker_url, commit_type=parent_commit_type, ) for child in children: commit_type = get_commit_type( commit=commit, tags=tags, prev_version=prev_version, ) cur_line += pretty_commit( commit=child, version=None, commit_type=commit_type, bugtracker_url=bugtracker_url, ) if parent_commit_type == 'api_break': release_notes_per_major[prev_version_str] = ( api_break_changes, features, bugs, ) bugs, features, api_break_changes = [], [], [] api_break_changes.append(cur_line) elif parent_commit_type == 'feature': features.append(cur_line) else: bugs.append(cur_line) prev_version = version prev_version_str = version_str release_notes_per_major[prev_version_str] = ( api_break_changes, features, bugs, ) releasenotes = '' for major_version, lines in reversed(release_notes_per_major.items()): api_break_changes, features, bugs = lines releasenotes += u'''New changes for version %s ================================= API Breaking changes -------------------- %s New features ------------ %s Bugfixes and minor changes -------------------------- %s ''' % ( major_version, ( '\n'.join(reversed(api_break_changes)) or 'No new API breaking changes\n' ), '\n'.join(reversed(features)) or 'No new features\n', '\n'.join(reversed(bugs)) or 'No new bugs\n', ) return releasenotes.strip()
Given a repo and optionally a base revision to start from, will return a text suitable for the relase notes announcement, grouping the bugs, the features and the api-breaking changes. Args: repo_path(str): Path to the code git repository. from_commit(str): Refspec of the commit to start aggregating the authors from. bugtracker_url(str): URL to be prepended to any bug ids found in the commits. Returns: str: Release notes text.
def copyFile(src, dest): """Copies a source file to a destination whose path may not yet exist. Keyword arguments: src -- Source path to a file (string) dest -- Path for destination file (also a string) """ #Src Exists? try: if os.path.isfile(src): dpath, dfile = os.path.split(dest) if not os.path.isdir(dpath): os.makedirs(dpath) if not os.path.exists(dest): touch(dest) try: shutil.copy2(src, dest) # eg. src and dest are the same file except shutil.Error as e: logging.exception('Error: %s' % e) # eg. source or destination doesn't exist except IOError as e: logging.exception('Error: %s' % e.strerror) except: logging.exception('Error: src to copy does not exist.')
Copies a source file to a destination whose path may not yet exist. Keyword arguments: src -- Source path to a file (string) dest -- Path for destination file (also a string)
def cmd_example(self, args): '''control behaviour of the module''' if len(args) == 0: print(self.usage()) elif args[0] == "status": print(self.status()) elif args[0] == "set": self.example_settings.command(args[1:]) else: print(self.usage())
control behaviour of the module
def __process_node(self, node: yaml.Node, expected_type: Type) -> yaml.Node: """Processes a node. This is the main function that implements yatiml's \ functionality. It figures out how to interpret this node \ (recognition), then applies syntactic sugar, and finally \ recurses to the subnodes, if any. Args: node: The node to process. expected_type: The type we expect this node to be. Returns: The transformed node, or a transformed copy. """ logger.info('Processing node {} expecting type {}'.format( node, expected_type)) # figure out how to interpret this node recognized_types, message = self.__recognizer.recognize( node, expected_type) if len(recognized_types) != 1: raise RecognitionError(message) recognized_type = recognized_types[0] # remove syntactic sugar logger.debug('Savorizing node {}'.format(node)) if recognized_type in self._registered_classes.values(): node = self.__savorize(node, recognized_type) logger.debug('Savorized, now {}'.format(node)) # process subnodes logger.debug('Recursing into subnodes') if is_generic_list(recognized_type): if node.tag != 'tag:yaml.org,2002:seq': raise RecognitionError('{}{}Expected a {} here'.format( node.start_mark, os.linesep, type_to_desc(expected_type))) for item in node.value: self.__process_node(item, generic_type_args(recognized_type)[0]) elif is_generic_dict(recognized_type): if node.tag != 'tag:yaml.org,2002:map': raise RecognitionError('{}{}Expected a {} here'.format( node.start_mark, os.linesep, type_to_desc(expected_type))) for _, value_node in node.value: self.__process_node(value_node, generic_type_args(recognized_type)[1]) elif recognized_type in self._registered_classes.values(): if (not issubclass(recognized_type, enum.Enum) and not issubclass(recognized_type, str) and not issubclass(recognized_type, UserString)): for attr_name, type_, _ in class_subobjects(recognized_type): cnode = Node(node) if cnode.has_attribute(attr_name): subnode = cnode.get_attribute(attr_name) new_subnode = self.__process_node( subnode.yaml_node, type_) cnode.set_attribute(attr_name, new_subnode) else: logger.debug('Not a generic class or a user-defined class, not' ' recursing') node.tag = self.__type_to_tag(recognized_type) logger.debug('Finished processing node {}'.format(node)) return node
Processes a node. This is the main function that implements yatiml's \ functionality. It figures out how to interpret this node \ (recognition), then applies syntactic sugar, and finally \ recurses to the subnodes, if any. Args: node: The node to process. expected_type: The type we expect this node to be. Returns: The transformed node, or a transformed copy.
def astype(self, dtype): """ Cast & clone an ANTsImage to a given numpy datatype. Map: uint8 : unsigned char uint32 : unsigned int float32 : float float64 : double """ if dtype not in _supported_dtypes: raise ValueError('Datatype %s not supported. Supported types are %s' % (dtype, _supported_dtypes)) pixeltype = _npy_to_itk_map[dtype] return self.clone(pixeltype)
Cast & clone an ANTsImage to a given numpy datatype. Map: uint8 : unsigned char uint32 : unsigned int float32 : float float64 : double
def _parse(self): """ The function for parsing the JSON response to the vars dictionary. """ try: self.vars['status'] = self.json['status'] except (KeyError, ValueError, TypeError): pass for v in ['remarks', 'notices']: try: self.vars[v] = self.summarize_notices(self.json[v]) except (KeyError, ValueError, TypeError): pass try: self.vars['links'] = self.summarize_links(self.json['links']) except (KeyError, ValueError, TypeError): pass try: self.vars['events'] = self.summarize_events(self.json['events']) except (KeyError, ValueError, TypeError): pass
The function for parsing the JSON response to the vars dictionary.
def to_schema(self): """Return field schema for this field.""" if not self.name or not self.process: raise ValueError("field is not registered with process") schema = { 'name': self.name, 'type': self.get_field_type(), } if self.required is not None: schema['required'] = self.required if self.label is not None: schema['label'] = self.label if self.description is not None: schema['description'] = self.description if self.default is not None: schema['default'] = self.default if self.hidden is not None: schema['hidden'] = self.hidden if self.choices is not None: for choice, label in self.choices: schema.setdefault('choices', []).append({ 'label': label, 'value': choice, }) return schema
Return field schema for this field.
def retinotopy_comparison(arg1, arg2, arg3=None, eccentricity_range=None, polar_angle_range=None, visual_area_mask=None, weight=Ellipsis, weight_min=None, visual_area=Ellipsis, method='rmse', distance='scaled', gold=None): ''' retinotopy_comparison(dataset1, dataset2) yields a pimms itable comparing the two retinotopy datasets. retinotopy_error(obj, dataset1, dataset2) is equivalent to retinotopy_comparison(x, y) where x and y are retinotopy(obj, dataset1) and retinotopy_data(obj, dataset2). The datasets may be specified in a number of ways, some of which may be incompatible with certain options. The simplest way to specify a dataset is as a vector of complex numbers, which are taken to represent positions in the visual field with (a + bi) corresponding to the coordinate (a deg, b deg) in the visual field. Alternately, an n x 2 or 2 x n matrix will be interpreted as (polar angle, eccentricity) coordinates, in terms of visual degrees (see the as_retinotopy function: as_retinotopy(arg, 'visual') yields this input format). Alternately, the datasets may be mappings such as those retuend by the retinotopy_data function; in this case as_retinotopy is used to extract the visual coordinates (so they need not be specified in visual coordinates specifically in this case). In this last case, additional properties such as the variance explained and pRF size can be returned, making it valuable for more sophisticated error methods or distance metrics. The returned dataset will always have a row for each row in the two datasets (which must have the same number of rows). However, many rows may have a weight of 0 even if no weights were specified in the options; this is because other limitations may have been specified (such as in the eccentricity_range or visual_areas). The returned dataset will always contain the following columns: * 'weight' gives the weight assigned to this particular vertex; the weights will always sum to 1 unless all vertices have 0 weight. * 'polar_angle_1' and 'polar_angle_2', 'eccentricity_1', 'eccenticity_2', 'x_1', 'x_2', 'y_1', 'y_2', 'z_1', and 'z_2' all give the visual field coordinates in degrees; the z values give complex numbers equivalent to the x/y values. * 'radius_1' and 'radius_2' give the radii (sigma parameters) of the pRF gaussians. * 'polar_angle_error', 'eccentricity_error', and 'center_error' all give the difference between the visual field points in the two datasets; note that polar_angle_error in particular is an error measure of rotations around the visual field and not of visual field position. The 'center_error' is the distance between the centers of the visual field, in degrees. The 'radius_error' value is also given. * 'visual_area_1' and 'visual_area_2' specify the visual areas of the individual datasets; if either of the datasets did not have a visual area, it will be omitted. Additionally, the property 'visual_area' specifies the visual area suggested for use in analyses; this is chosen based on the following: (1) if there is a gold standard dataset specified that has a visual area, use it; (2) if only one of the datasets has a visual area, use it; (3) if both have a visual area, then use the (varea1 == varea2) * varea1 (the areas that agree are kept and all others are set to 0); (4) if neither has a visual area, then this property is omitted. In all cases where a 'visual_area' property is included, those vertices that do not overlap with the given visual_area_option option will be set to 0 along with the corresponding weights. * A variety of other lazily-calculated error metrics are included. The following options are accepted: * eccentricity_range (default: None) specifies the range of eccentricity to include in the calculation (in degrees). This may be specified as emax or (emin, emax). * polar_angle_range (default: None) specifies the range of polar angles to include in the calculation. Like eccentricity range it may be specified as (amin, amax) but amax alone is not allowed. Additionally the strings 'lh' and 'rvf' are equivalent to (0,180) and the strings 'rh' and 'lvf' are equivalent to (-180,0). * weight (default: Ellipsis) specifies the weights to be used in the calculation. This may be None to specify that no weights should be used, or a property name or an array of weight values. Alternately, it may be a tuple (w1, w2) of the weights for datasets 1 and 2. If the argument is Ellipsis, then it will use weights if they are found in the retinotopy dataset; both datasets may contain weights in which the product is used. * weight_min (default: None) specifies the minimum weight a vertex must have to be included in the calculation. * visual_area (default: Ellipsis) specifies the visual area labels to be used in the calculation. This may be None to specify that no labels should be used, or a property name or an array of labels. Alternately, it may be a tuple (l1, l2) of the labels for datasets 1 and 2. If the argument is Ellipsis, then it will use labels if they are found in the retinotopy dataset; both datasets may contain labels in which the gold standard's labels are used if there is a gold standard and the overlapping labels are used otherwise. * visual_area_mask (default: None) specifies a list of visual areas included in the calculation; this is applied to all datasets with a visual_area key; see the 'visual_area' columns above and the visual_area option. If None, then no visual areas are filtered; otherwise, arguments should like (1,2,3), which would usually specify that areas V1, V2, and V3, be included. * gold (default: None) specifies which dataset should be considered the gold standard; this should be either 1 or 2. If a gold-standard dataset is specified, then it is used in certain calculations; for example, when scaling an error by eccentricity, the gold-standard's eccentricity will be used unless there is no gold standard, in which case the mean of the two values are used. ''' if arg3 is not None: (obj, dsets) = (arg1, [retinotopy_data(arg1, aa) for aa in (arg2,arg3)]) else: (obj, dsets) = (None, [arg1, arg2]) (gi,gold) = (None,False) if not gold else (gold-1,True) # we'll build up this result as we go... result = {} # they must have a retinotopy representation: vis = [as_retinotopy(ds, 'visual') for ds in dsets] ps = (vis[0][0], vis[1][0]) es = (vis[0][1], vis[1][1]) rs = [ds['radius'] if 'radius' in ds else None for ds in dsets] for ii in (0,1): s = '_%d' % (ii + 1) (p,e) = (ps[ii],es[ii]) result['polar_angle' + s] = p result['eccentricity' + s] = e if rs[ii] is not None: result['radius' + s] = rs[ii] p = np.pi/180.0 * (90.0 - p) (x,y) = (e*np.cos(p), e*np.sin(p)) result['x' + s] = x result['y' + s] = y result['z' + s] = x + 1j * y n = len(ps[0]) # figure out the weight if pimms.is_vector(weight) and len(weight) == 2: ws = [(None if w is None else ds[w] if pimms.is_str(w) and w in ds else geo.to_property(obj, w)) for (w,ds) in zip(weight, dsets)] weight = Ellipsis else: ws = [next((ds[k] for k in ('weight','variance_explained') if k in ds), None) for ds in dsets] if pimms.is_vector(weight, 'real'): wgt = weight elif pimms.is_str(weight): if obj is None: raise ValueError('weight property name but no vertex-set given') wgt = geo.to_property(obj, weight) elif weight is Ellipsis: if gold: wgt = ws[gi] elif ws[0] is None and ws[1] is None: wgt = None elif ws[0] is None: wgt = ws[1] elif ws[1] is None: wgt = ws[0] else: wgt = ws[0] * ws[1] else: raise ValueError('Could not parse weight argument') if wgt is None: wgt = np.ones(n) if ws[0] is not None: result['weight_1'] = ws[0] if ws[1] is not None: result['weight_2'] = ws[1] # figure out the visual areas if is_tuple(visual_area) and len(visual_area) == 2: ls = [(None if l is None else ds[l] if pimms.is_str(l) and l in ds else geo.to_property(obj, l)) for (l,ds) in zip(visual_area, dsets)] visual_area = Ellipsis else: ls = [next((ds[k] for k in ('visual_area','label') if k in ds), None) for ds in dsets] if pimms.is_vector(visual_area): lbl = visual_area elif pimms.is_str(visual_area): if obj is None: raise ValueError('visual_area property name but no vertex-set given') lbl = geo.to_property(obj, visual_area) elif visual_area is None: lbl = None elif visual_area is Ellipsis: if gold: lbl = ls[gi] elif ls[0] is None and ls[1] is None: lbl = None elif ls[0] is None: lbl = ls[1] elif ls[1] is None: lbl = ls[0] else: lbl = l[0] * (l[0] == l[1]) else: raise ValueError('Could not parse visual_area argument') if ls[0] is not None: result['visual_area_1'] = ls[0] if ls[1] is not None: result['visual_area_2'] = ls[1] # Okay, now let's do some filtering; we clear weights as we go wgt = np.array(wgt) # Weight must be greater than the min if weight_min is not None: wgt[wgt < weight_min] = 0 # Visual areas must be in the mask lbl = None if lbl is None else np.array(lbl) if lbl is not None and visual_area_mask is not None: if pimms.is_int(visual_area_mask): visual_area_mask = [visual_area_mask] oomask = (0 == np.sum([lbl == va for va in visual_area_mask], axis=0)) wgt[oomask] = 0 lbl[oomask] = 0 if lbl is not None: result['visual_area'] = lbl # eccen must be in range if eccentricity_range is not None: er = eccentricity_range if pimms.is_real(er): er = (0,er) if gold: wgt[(es[gi] < er[0]) | (es[gi] > er[1])] = 0 else: wgt[(es[0] < er[0]) | (es[0] > er[1]) | (es[1] < er[0]) | (es[1] > er[1])] = 0 # angle must be in range if polar_angle_range is not None: pr = polar_angle_range if pimms.is_str(pr): pr = pr.lower() if pr in ['lh', 'rvf']: pr = ( 0, 180) elif pr in ['rh', 'lvf']: pr = (-180, 0) else: raise ValueError('unrecognized polar angle range argument: %s' % pr) if gold: wgt[(ps[gi] < pr[0]) | (ps[gi] > pr[1])] = 0 else: wgt[(ps[0] < pr[0]) | (ps[0] > pr[1]) | (ps[1] < pr[0]) | (ps[1] > pr[1])] = 0 # okay! Now we can add the weight into the result result['weight'] = wgt * zinv(np.sum(wgt)) # now we add a bunch of calculations we can perform on the data! # first: metrics of distance gsecc = es[gi] if gold else np.mean(es, axis=0) gsang = ps[gi] if gold else np.mean(ps, axis=0) gsrad = rs[gi] if gold else rs[0] if rs[1] is None else rs[1] if rs[0] is None else \ np.mean(rs, axis=0) gsecc_inv = zinv(gsecc) gsrad_inv = None if gsrad is None else zinv(gsrad) for (tag,resprop) in [('z', 'center'), ('polar_angle', 'polar_angle'), ('eccentricity', 'eccentricity'), ('x', 'x'), ('y', 'y')]: serr = result[tag + '_1'] - result[tag + '_2'] aerr = np.abs(serr) result[resprop + '_error'] = serr result[resprop + '_abs_error'] = aerr result[resprop + '_scaled_error'] = aerr * gsecc_inv if gsrad_inv is not None: result[resprop + '_radii_error'] = aerr * gsrad_inv return pimms.itable(result)
retinotopy_comparison(dataset1, dataset2) yields a pimms itable comparing the two retinotopy datasets. retinotopy_error(obj, dataset1, dataset2) is equivalent to retinotopy_comparison(x, y) where x and y are retinotopy(obj, dataset1) and retinotopy_data(obj, dataset2). The datasets may be specified in a number of ways, some of which may be incompatible with certain options. The simplest way to specify a dataset is as a vector of complex numbers, which are taken to represent positions in the visual field with (a + bi) corresponding to the coordinate (a deg, b deg) in the visual field. Alternately, an n x 2 or 2 x n matrix will be interpreted as (polar angle, eccentricity) coordinates, in terms of visual degrees (see the as_retinotopy function: as_retinotopy(arg, 'visual') yields this input format). Alternately, the datasets may be mappings such as those retuend by the retinotopy_data function; in this case as_retinotopy is used to extract the visual coordinates (so they need not be specified in visual coordinates specifically in this case). In this last case, additional properties such as the variance explained and pRF size can be returned, making it valuable for more sophisticated error methods or distance metrics. The returned dataset will always have a row for each row in the two datasets (which must have the same number of rows). However, many rows may have a weight of 0 even if no weights were specified in the options; this is because other limitations may have been specified (such as in the eccentricity_range or visual_areas). The returned dataset will always contain the following columns: * 'weight' gives the weight assigned to this particular vertex; the weights will always sum to 1 unless all vertices have 0 weight. * 'polar_angle_1' and 'polar_angle_2', 'eccentricity_1', 'eccenticity_2', 'x_1', 'x_2', 'y_1', 'y_2', 'z_1', and 'z_2' all give the visual field coordinates in degrees; the z values give complex numbers equivalent to the x/y values. * 'radius_1' and 'radius_2' give the radii (sigma parameters) of the pRF gaussians. * 'polar_angle_error', 'eccentricity_error', and 'center_error' all give the difference between the visual field points in the two datasets; note that polar_angle_error in particular is an error measure of rotations around the visual field and not of visual field position. The 'center_error' is the distance between the centers of the visual field, in degrees. The 'radius_error' value is also given. * 'visual_area_1' and 'visual_area_2' specify the visual areas of the individual datasets; if either of the datasets did not have a visual area, it will be omitted. Additionally, the property 'visual_area' specifies the visual area suggested for use in analyses; this is chosen based on the following: (1) if there is a gold standard dataset specified that has a visual area, use it; (2) if only one of the datasets has a visual area, use it; (3) if both have a visual area, then use the (varea1 == varea2) * varea1 (the areas that agree are kept and all others are set to 0); (4) if neither has a visual area, then this property is omitted. In all cases where a 'visual_area' property is included, those vertices that do not overlap with the given visual_area_option option will be set to 0 along with the corresponding weights. * A variety of other lazily-calculated error metrics are included. The following options are accepted: * eccentricity_range (default: None) specifies the range of eccentricity to include in the calculation (in degrees). This may be specified as emax or (emin, emax). * polar_angle_range (default: None) specifies the range of polar angles to include in the calculation. Like eccentricity range it may be specified as (amin, amax) but amax alone is not allowed. Additionally the strings 'lh' and 'rvf' are equivalent to (0,180) and the strings 'rh' and 'lvf' are equivalent to (-180,0). * weight (default: Ellipsis) specifies the weights to be used in the calculation. This may be None to specify that no weights should be used, or a property name or an array of weight values. Alternately, it may be a tuple (w1, w2) of the weights for datasets 1 and 2. If the argument is Ellipsis, then it will use weights if they are found in the retinotopy dataset; both datasets may contain weights in which the product is used. * weight_min (default: None) specifies the minimum weight a vertex must have to be included in the calculation. * visual_area (default: Ellipsis) specifies the visual area labels to be used in the calculation. This may be None to specify that no labels should be used, or a property name or an array of labels. Alternately, it may be a tuple (l1, l2) of the labels for datasets 1 and 2. If the argument is Ellipsis, then it will use labels if they are found in the retinotopy dataset; both datasets may contain labels in which the gold standard's labels are used if there is a gold standard and the overlapping labels are used otherwise. * visual_area_mask (default: None) specifies a list of visual areas included in the calculation; this is applied to all datasets with a visual_area key; see the 'visual_area' columns above and the visual_area option. If None, then no visual areas are filtered; otherwise, arguments should like (1,2,3), which would usually specify that areas V1, V2, and V3, be included. * gold (default: None) specifies which dataset should be considered the gold standard; this should be either 1 or 2. If a gold-standard dataset is specified, then it is used in certain calculations; for example, when scaling an error by eccentricity, the gold-standard's eccentricity will be used unless there is no gold standard, in which case the mean of the two values are used.
def get_neuroml_from_sonata(sonata_filename, id, generate_lems = True, format='xml'): """ Return a NeuroMLDocument with (most of) the contents of the Sonata model """ from neuroml.hdf5.NetworkBuilder import NetworkBuilder neuroml_handler = NetworkBuilder() sr = SonataReader(filename=sonata_filename, id=id) sr.parse(neuroml_handler) nml_doc = neuroml_handler.get_nml_doc() sr.add_neuroml_components(nml_doc) if format == 'xml': nml_file_name = '%s.net.nml'%id from neuroml.writers import NeuroMLWriter NeuroMLWriter.write(nml_doc, nml_file_name) elif format == 'hdf5': nml_file_name = '%s.net.nml.h5'%id from neuroml.writers import NeuroMLHdf5Writer NeuroMLHdf5Writer.write(nml_doc, nml_file_name) print_v('Written to: %s'%nml_file_name) if generate_lems: lems_file_name = sr.generate_lems_file(nml_file_name, nml_doc) return sr, lems_file_name, nml_file_name, nml_doc return nml_doc
Return a NeuroMLDocument with (most of) the contents of the Sonata model
def attr_subresource(raml_resource, route_name): """ Determine if :raml_resource: is an attribute subresource. :param raml_resource: Instance of ramlfications.raml.ResourceNode. :param route_name: Name of the :raml_resource:. """ static_parent = get_static_parent(raml_resource, method='POST') if static_parent is None: return False schema = resource_schema(static_parent) or {} properties = schema.get('properties', {}) if route_name in properties: db_settings = properties[route_name].get('_db_settings', {}) return db_settings.get('type') in ('dict', 'list') return False
Determine if :raml_resource: is an attribute subresource. :param raml_resource: Instance of ramlfications.raml.ResourceNode. :param route_name: Name of the :raml_resource:.
def root_sync(args, l, config): """Sync with the remote. For more options, use library sync """ from requests.exceptions import ConnectionError all_remote_names = [ r.short_name for r in l.remotes ] if args.all: remotes = all_remote_names else: remotes = args.refs prt("Sync with {} remotes or bundles ".format(len(remotes))) if not remotes: return for ref in remotes: l.commit() try: if ref in all_remote_names: # It's a remote name l.sync_remote(l.remote(ref)) else: # It's a bundle reference l.checkin_remote_bundle(ref) except NotFoundError as e: warn(e) continue except ConnectionError as e: warn(e) continue
Sync with the remote. For more options, use library sync
def has_minimum_version(raises=True): """ Return if tmux meets version requirement. Version >1.8 or above. Parameters ---------- raises : bool raise exception if below minimum version requirement Returns ------- bool True if tmux meets minimum required version. Raises ------ libtmux.exc.VersionTooLow tmux version below minimum required for libtmux Notes ----- .. versionchanged:: 0.7.0 No longer returns version, returns True or False .. versionchanged:: 0.1.7 Versions will now remove trailing letters per `Issue 55`_. .. _Issue 55: https://github.com/tmux-python/tmuxp/issues/55. """ if get_version() < LooseVersion(TMUX_MIN_VERSION): if raises: raise exc.VersionTooLow( 'libtmux only supports tmux %s and greater. This system' ' has %s installed. Upgrade your tmux to use libtmux.' % (TMUX_MIN_VERSION, get_version()) ) else: return False return True
Return if tmux meets version requirement. Version >1.8 or above. Parameters ---------- raises : bool raise exception if below minimum version requirement Returns ------- bool True if tmux meets minimum required version. Raises ------ libtmux.exc.VersionTooLow tmux version below minimum required for libtmux Notes ----- .. versionchanged:: 0.7.0 No longer returns version, returns True or False .. versionchanged:: 0.1.7 Versions will now remove trailing letters per `Issue 55`_. .. _Issue 55: https://github.com/tmux-python/tmuxp/issues/55.
def fingerprint(self): """ Creates a fingerprint that can be compared with a public key to see if the two form a pair. This fingerprint is not compatible with fingerprints generated by any other software. :return: A byte string that is a sha256 hash of selected components (based on the key type) """ if self._fingerprint is None: params = self['private_key_algorithm']['parameters'] key = self['private_key'].parsed if self.algorithm == 'rsa': to_hash = '%d:%d' % ( key['modulus'].native, key['public_exponent'].native, ) elif self.algorithm == 'dsa': public_key = self.public_key to_hash = '%d:%d:%d:%d' % ( params['p'].native, params['q'].native, params['g'].native, public_key.native, ) elif self.algorithm == 'ec': public_key = key['public_key'].native if public_key is None: public_key = self.public_key.native if params.name == 'named': to_hash = '%s:' % params.chosen.native to_hash = to_hash.encode('utf-8') to_hash += public_key elif params.name == 'implicit_ca': to_hash = public_key elif params.name == 'specified': to_hash = '%s:' % params.chosen['field_id']['parameters'].native to_hash = to_hash.encode('utf-8') to_hash += b':' + params.chosen['curve']['a'].native to_hash += b':' + params.chosen['curve']['b'].native to_hash += public_key if isinstance(to_hash, str_cls): to_hash = to_hash.encode('utf-8') self._fingerprint = hashlib.sha256(to_hash).digest() return self._fingerprint
Creates a fingerprint that can be compared with a public key to see if the two form a pair. This fingerprint is not compatible with fingerprints generated by any other software. :return: A byte string that is a sha256 hash of selected components (based on the key type)
def genlmsg_parse(nlh, hdrlen, tb, maxtype, policy): """Parse Generic Netlink message including attributes. https://github.com/thom311/libnl/blob/libnl3_2_25/lib/genl/genl.c#L191 Verifies the validity of the Netlink and Generic Netlink headers using genlmsg_valid_hdr() and calls nla_parse() on the message payload to parse eventual attributes. Positional arguments: nlh -- Netlink message header (nlmsghdr class instance). hdrlen -- length of user header (integer). tb -- empty dict, to be updated with nlattr class instances to store parsed attributes. maxtype -- maximum attribute id expected (integer). policy -- dictionary of nla_policy class instances as values, with nla types as keys. Returns: 0 on success or a negative error code. """ if not genlmsg_valid_hdr(nlh, hdrlen): return -NLE_MSG_TOOSHORT ghdr = genlmsghdr(nlmsg_data(nlh)) return int(nla_parse(tb, maxtype, genlmsg_attrdata(ghdr, hdrlen), genlmsg_attrlen(ghdr, hdrlen), policy))
Parse Generic Netlink message including attributes. https://github.com/thom311/libnl/blob/libnl3_2_25/lib/genl/genl.c#L191 Verifies the validity of the Netlink and Generic Netlink headers using genlmsg_valid_hdr() and calls nla_parse() on the message payload to parse eventual attributes. Positional arguments: nlh -- Netlink message header (nlmsghdr class instance). hdrlen -- length of user header (integer). tb -- empty dict, to be updated with nlattr class instances to store parsed attributes. maxtype -- maximum attribute id expected (integer). policy -- dictionary of nla_policy class instances as values, with nla types as keys. Returns: 0 on success or a negative error code.
def draw_heading(self, writer): """ Conditionally redraw screen when ``dirty`` attribute is valued REFRESH. When Pager attribute ``dirty`` is ``STATE_REFRESH``, cursor is moved to (0,0), screen is cleared, and heading is displayed. :param writer: callable writes to output stream, receiving unicode. :returns: True if class attribute ``dirty`` is ``STATE_REFRESH``. """ if self.dirty == self.STATE_REFRESH: writer(u''.join( (self.term.home, self.term.clear, self.screen.msg_intro, '\n', self.screen.header, '\n',))) return True
Conditionally redraw screen when ``dirty`` attribute is valued REFRESH. When Pager attribute ``dirty`` is ``STATE_REFRESH``, cursor is moved to (0,0), screen is cleared, and heading is displayed. :param writer: callable writes to output stream, receiving unicode. :returns: True if class attribute ``dirty`` is ``STATE_REFRESH``.
def get_background_rms(self): """ Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to reduce bias from source pixels. Returns ------- rms : float The image rms. Notes ----- The rms value is cached after first calculation. """ # TODO: return a proper background RMS ignoring the sources # This is an approximate method suggested by PaulH. # I have no idea where this magic 1.34896 number comes from... if self._rms is None: # Get the pixels values without the NaNs data = numpy.extract(self.hdu.data > -9999999, self.hdu.data) p25 = scipy.stats.scoreatpercentile(data, 25) p75 = scipy.stats.scoreatpercentile(data, 75) iqr = p75 - p25 self._rms = iqr / 1.34896 return self._rms
Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to reduce bias from source pixels. Returns ------- rms : float The image rms. Notes ----- The rms value is cached after first calculation.
def top_referrers(self, domain_only=True): """ What domains send us the most traffic? """ referrer = self._referrer_clause(domain_only) return (self.get_query() .select(referrer, fn.Count(PageView.id)) .group_by(referrer) .order_by(fn.Count(PageView.id).desc()) .tuples())
What domains send us the most traffic?
def export_recordeddata_to_file(time_min=None, time_max=None, filename=None, active_vars=None, file_extension=None, append_to_file=False, no_mean_value=False, mean_value_period=5.0, backgroundprocess_id=None, export_task_id=None, **kwargs): """ read all data """ if backgroundprocess_id is not None: tp = BackgroundProcess.objects.get(id=backgroundprocess_id) tp.message = 'init' tp.last_update = now() tp.save() else: tp = None if isinstance(time_max, string_types): # convert date strings time_max = mktime(datetime.strptime(time_max, "%d-%b-%Y %H:%M:%S").timetuple()) if isinstance(time_min, string_types): # convert date strings time_min = mktime(datetime.strptime(time_min, "%d-%b-%Y %H:%M:%S").timetuple()) # add default time_min if time_max is None: time_max = time() # now if time_min is None: time_min = time() - 24 * 60 * 60 # last 24 hours # add default extension if no extension is given if file_extension is None and filename is None: file_extension = '.h5' elif filename is not None: file_extension = '.' + filename.split('.')[-1] # validate file type if file_extension not in ['.h5', '.mat', '.csv']: if tp is not None: tp.last_update = now() tp.message = 'failed wrong file type' tp.failed = 1 tp.save() return # if filename is None: if hasattr(settings, 'PYSCADA_EXPORT'): if 'output_folder' in settings.PYSCADA_EXPORT: backup_file_path = os.path.expanduser(settings.PYSCADA_EXPORT['output_folder']) else: backup_file_path = os.path.expanduser('~/measurement_data_dumps') else: backup_file_path = os.path.expanduser('~/measurement_data_dumps') # add filename prefix backup_file_name = 'measurement_data' if hasattr(settings, 'PYSCADA_EXPORT'): if 'file_prefix' in settings.PYSCADA_EXPORT: backup_file_name = settings.PYSCADA_EXPORT['file_prefix'] + backup_file_name # create output dir if not existing if not os.path.exists(backup_file_path): os.mkdir(backup_file_path) # validate time values db_time_min = RecordedData.objects.first() # todo add RecordedDataOld if not db_time_min: if tp is not None: tp.last_update = now() tp.message = 'no data to export' tp.failed = 1 tp.save() return time_min = max(db_time_min.time_value(), time_min) db_time_max = RecordedData.objects.last() # todo add RecordedDataOld if not db_time_max: if tp is not None: tp.last_update = now() tp.message = 'no data to export' tp.failed = 1 tp.save() return time_max = min(db_time_max.time_value(), time_max) # filename and suffix cdstr_from = datetime.fromtimestamp(time_min).strftime("%Y_%m_%d_%H%M") cdstr_to = datetime.fromtimestamp(time_max).strftime("%Y_%m_%d_%H%M") if 'filename_suffix' in kwargs: filename = os.path.join(backup_file_path, backup_file_name + '_' + cdstr_from + '_' + cdstr_to + '_' + kwargs[ 'filename_suffix']) else: filename = os.path.join(backup_file_path, backup_file_name + '_' + cdstr_from + '_' + cdstr_to) # check if file exists if os.path.exists(filename + file_extension) and not append_to_file: count = 0 filename_old = filename while os.path.exists(filename + file_extension): filename = filename_old + '_%03.0f' % count count += 1 # append the extension filename = filename + file_extension # add Filename to ExportTask if export_task_id is not None: job = ExportTask.objects.filter(pk=export_task_id).first() if job: job.filename = filename job.save() # if active_vars is None: active_vars = Variable.objects.filter(active=1, device__active=1) else: if type(active_vars) is str: if active_vars == 'all': active_vars = Variable.objects.all() else: active_vars = Variable.objects.filter(active=1, device__active=1) else: active_vars = Variable.objects.filter(pk__in=active_vars, active=1, device__active=1) if mean_value_period == 0: no_mean_value = True mean_value_period = 5.0 # todo get from DB, default is 5 seconds # calculate time vector timevalues = arange(math.ceil(time_min / mean_value_period) * mean_value_period, math.floor(time_max / mean_value_period) * mean_value_period, mean_value_period) # get Meta from Settings if hasattr(settings, 'PYSCADA_META'): if 'description' in settings.PYSCADA_META: description = settings.PYSCADA_META['description'] else: description = 'None' if 'name' in settings.PYSCADA_META: name = settings.PYSCADA_META['name'] else: name = 'None' else: description = 'None' name = 'None' if file_extension in ['.h5', '.mat']: bf = MatCompatibleH5(filename, version='1.1', description=description, name=name, creation_date=strftime('%d-%b-%Y %H:%M:%S')) out_timevalues = [unix_time_stamp_to_matlab_datenum(element) for element in timevalues] elif file_extension in ['.csv']: bf = ExcelCompatibleCSV(filename, version='1.1', description=description, name=name, creation_date=strftime('%d-%b-%Y %H:%M:%S')) out_timevalues = [unix_time_stamp_to_excel_datenum(element) for element in timevalues] else: return # less than 24 # read everything bf.write_data('time', float64(out_timevalues), id=0, description="global time vector", value_class=validate_value_class('FLOAT64'), unit="Days since 0000-1-1 00:00:00", color='#000000', short_name='time', chart_line_thickness=3 ) for var_idx in range(0, active_vars.count(), 10): if tp is not None: tp.last_update = now() tp.message = 'reading values from database (%d)' % var_idx tp.save() # query data var_slice = active_vars[var_idx:var_idx + 10] data = RecordedData.objects.get_values_in_time_range( variable_id__in=list(var_slice.values_list('pk', flat=True)), time_min=time_min, time_max=time_max, query_first_value=True) for var in var_slice: # write background task info if tp is not None: tp.last_update = now() tp.message = 'writing values for %s (%d) to file' % (var.name, var.pk) tp.save() # check if variable is scalled if var.scaling is None or var.value_class.upper() in ['BOOL', 'BOOLEAN']: value_class = var.value_class else: value_class = 'FLOAT64' # read unit if hasattr(var.unit, 'udunit'): udunit = var.unit.udunit else: udunit = 'None' if var.pk not in data: # write dummy data bf.write_data(var.name, _cast_value([0] * len(timevalues), validate_value_class(value_class)), id=var.pk, description=var.description, value_class=validate_value_class(value_class), unit=udunit, color=var.chart_line_color_code(), short_name=var.short_name, chart_line_thickness=var.chart_line_thickness) continue out_data = np.zeros(len(timevalues)) # i # time data index ii = 0 # source data index # calculate mean values last_value = None max_ii = len(data[var.pk]) - 1 for i in range(len(timevalues)): # iter over time values if ii >= max_ii + 1: # if not more data in data source break if last_value is not None: out_data[i] = last_value continue # init mean value vars tmp = 0.0 # sum tmp_i = 0.0 # count if data[var.pk][ii][0] < timevalues[i]: # skip elements that are befor current time step while data[var.pk][ii][0] < timevalues[i] and ii < max_ii: last_value = data[var.pk][ii][1] ii += 1 if ii >= max_ii: if last_value is not None: out_data[i] = last_value continue # calc mean value if timevalues[i] <= data[var.pk][ii][0] < timevalues[i] + mean_value_period: # there is data in time range while timevalues[i] <= data[var.pk][ii][0] < timevalues[i] + mean_value_period and ii < max_ii: # calculate mean value if no_mean_value: tmp = data[var.pk][ii][1] tmp_i = 1 else: tmp += data[var.pk][ii][1] tmp_i += 1 last_value = data[var.pk][ii][1] ii += 1 # calc and store mean value if tmp_i > 0: out_data[i] = tmp / tmp_i else: out_data[i] = data[var.pk][ii][1] last_value = data[var.pk][ii][1] else: # there is no data in time range, keep last value, not mean value if last_value is not None: out_data[i] = last_value # write data bf.write_data(var.name, _cast_value(out_data, validate_value_class(value_class)), id=var.pk, description=var.description, value_class=validate_value_class(value_class), unit=udunit, color=var.chart_line_color_code(), short_name=var.short_name, chart_line_thickness=var.chart_line_thickness) bf.close_file() if tp is not None: tp.last_update = now() tp.message = 'done' tp.done = True tp.save()
read all data
def get_closest(self, lon, lat, depth=0): """ Get the closest object to the given longitude and latitude and its distance. :param lon: longitude in degrees :param lat: latitude in degrees :param depth: depth in km (default 0) :returns: (object, distance) """ xyz = spherical_to_cartesian(lon, lat, depth) min_dist, idx = self.kdtree.query(xyz) return self.objects[idx], min_dist
Get the closest object to the given longitude and latitude and its distance. :param lon: longitude in degrees :param lat: latitude in degrees :param depth: depth in km (default 0) :returns: (object, distance)
def add_forwarding_rules(self, forwarding_rules): """ Adds new forwarding rules to a LoadBalancer. Args: forwarding_rules (obj:`list`): A list of `ForwrdingRules` objects """ rules_dict = [rule.__dict__ for rule in forwarding_rules] return self.get_data( "load_balancers/%s/forwarding_rules/" % self.id, type=POST, params={"forwarding_rules": rules_dict} )
Adds new forwarding rules to a LoadBalancer. Args: forwarding_rules (obj:`list`): A list of `ForwrdingRules` objects
def move_item(self, item, origin, destination): """ Moves an item from one cluster to anoter cluster. :param item: the item to be moved. :param origin: the originating cluster. :param destination: the target cluster. """ if self.equality: item_index = 0 for i, element in enumerate(origin): if self.equality(element, item): item_index = i break else: item_index = origin.index(item) destination.append(origin.pop(item_index))
Moves an item from one cluster to anoter cluster. :param item: the item to be moved. :param origin: the originating cluster. :param destination: the target cluster.
def saveSession(self): """Save cookies/session.""" if self.cookies_file: self.r.cookies.save(ignore_discard=True) with open(self.token_file, 'w') as f: f.write('%s %s' % (self.token_type, self.access_token))
Save cookies/session.
def edit_message_media( self, chat_id: Union[int, str], message_id: int, media: InputMedia, reply_markup: "pyrogram.InlineKeyboardMarkup" = None ) -> "pyrogram.Message": """Use this method to edit audio, document, photo, or video messages. If a message is a part of a message album, then it can be edited only to a photo or a video. Otherwise, message type can be changed arbitrarily. When inline message is edited, new file can't be uploaded. Use previously uploaded file via its file_id or specify a URL. On success, if the edited message was sent by the bot, the edited Message is returned, otherwise True is returned. Args: chat_id (``int`` | ``str``): Unique identifier (int) or username (str) of the target chat. For your personal cloud (Saved Messages) you can simply use "me" or "self". For a contact that exists in your Telegram address book you can use his phone number (str). message_id (``int``): Message identifier in the chat specified in chat_id. media (:obj:`InputMedia`) One of the InputMedia objects describing an animation, audio, document, photo or video. reply_markup (:obj:`InlineKeyboardMarkup`, *optional*): An InlineKeyboardMarkup object. Returns: On success, the edited :obj:`Message <pyrogram.Message>` is returned. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. """ style = self.html if media.parse_mode.lower() == "html" else self.markdown caption = media.caption if isinstance(media, InputMediaPhoto): if os.path.exists(media.media): media = self.send( functions.messages.UploadMedia( peer=self.resolve_peer(chat_id), media=types.InputMediaUploadedPhoto( file=self.save_file(media.media) ) ) ) media = types.InputMediaPhoto( id=types.InputPhoto( id=media.photo.id, access_hash=media.photo.access_hash, file_reference=b"" ) ) elif media.media.startswith("http"): media = types.InputMediaPhotoExternal( url=media.media ) else: try: decoded = utils.decode(media.media) fmt = "<iiqqqqi" if len(decoded) > 24 else "<iiqq" unpacked = struct.unpack(fmt, decoded) except (AssertionError, binascii.Error, struct.error): raise FileIdInvalid from None else: if unpacked[0] != 2: media_type = BaseClient.MEDIA_TYPE_ID.get(unpacked[0], None) if media_type: raise FileIdInvalid("The file_id belongs to a {}".format(media_type)) else: raise FileIdInvalid("Unknown media type: {}".format(unpacked[0])) media = types.InputMediaPhoto( id=types.InputPhoto( id=unpacked[2], access_hash=unpacked[3], file_reference=b"" ) ) if isinstance(media, InputMediaVideo): if os.path.exists(media.media): media = self.send( functions.messages.UploadMedia( peer=self.resolve_peer(chat_id), media=types.InputMediaUploadedDocument( mime_type=self.guess_mime_type(media.media) or "video/mp4", thumb=None if media.thumb is None else self.save_file(media.thumb), file=self.save_file(media.media), attributes=[ types.DocumentAttributeVideo( supports_streaming=media.supports_streaming or None, duration=media.duration, w=media.width, h=media.height ), types.DocumentAttributeFilename( file_name=os.path.basename(media.media) ) ] ) ) ) media = types.InputMediaDocument( id=types.InputDocument( id=media.document.id, access_hash=media.document.access_hash, file_reference=b"" ) ) elif media.media.startswith("http"): media = types.InputMediaDocumentExternal( url=media.media ) else: try: decoded = utils.decode(media.media) fmt = "<iiqqqqi" if len(decoded) > 24 else "<iiqq" unpacked = struct.unpack(fmt, decoded) except (AssertionError, binascii.Error, struct.error): raise FileIdInvalid from None else: if unpacked[0] != 4: media_type = BaseClient.MEDIA_TYPE_ID.get(unpacked[0], None) if media_type: raise FileIdInvalid("The file_id belongs to a {}".format(media_type)) else: raise FileIdInvalid("Unknown media type: {}".format(unpacked[0])) media = types.InputMediaDocument( id=types.InputDocument( id=unpacked[2], access_hash=unpacked[3], file_reference=b"" ) ) if isinstance(media, InputMediaAudio): if os.path.exists(media.media): media = self.send( functions.messages.UploadMedia( peer=self.resolve_peer(chat_id), media=types.InputMediaUploadedDocument( mime_type=self.guess_mime_type(media.media) or "audio/mpeg", thumb=None if media.thumb is None else self.save_file(media.thumb), file=self.save_file(media.media), attributes=[ types.DocumentAttributeAudio( duration=media.duration, performer=media.performer, title=media.title ), types.DocumentAttributeFilename( file_name=os.path.basename(media.media) ) ] ) ) ) media = types.InputMediaDocument( id=types.InputDocument( id=media.document.id, access_hash=media.document.access_hash, file_reference=b"" ) ) elif media.media.startswith("http"): media = types.InputMediaDocumentExternal( url=media.media ) else: try: decoded = utils.decode(media.media) fmt = "<iiqqqqi" if len(decoded) > 24 else "<iiqq" unpacked = struct.unpack(fmt, decoded) except (AssertionError, binascii.Error, struct.error): raise FileIdInvalid from None else: if unpacked[0] != 9: media_type = BaseClient.MEDIA_TYPE_ID.get(unpacked[0], None) if media_type: raise FileIdInvalid("The file_id belongs to a {}".format(media_type)) else: raise FileIdInvalid("Unknown media type: {}".format(unpacked[0])) media = types.InputMediaDocument( id=types.InputDocument( id=unpacked[2], access_hash=unpacked[3], file_reference=b"" ) ) if isinstance(media, InputMediaAnimation): if os.path.exists(media.media): media = self.send( functions.messages.UploadMedia( peer=self.resolve_peer(chat_id), media=types.InputMediaUploadedDocument( mime_type=self.guess_mime_type(media.media) or "video/mp4", thumb=None if media.thumb is None else self.save_file(media.thumb), file=self.save_file(media.media), attributes=[ types.DocumentAttributeVideo( supports_streaming=True, duration=media.duration, w=media.width, h=media.height ), types.DocumentAttributeFilename( file_name=os.path.basename(media.media) ), types.DocumentAttributeAnimated() ] ) ) ) media = types.InputMediaDocument( id=types.InputDocument( id=media.document.id, access_hash=media.document.access_hash, file_reference=b"" ) ) elif media.media.startswith("http"): media = types.InputMediaDocumentExternal( url=media.media ) else: try: decoded = utils.decode(media.media) fmt = "<iiqqqqi" if len(decoded) > 24 else "<iiqq" unpacked = struct.unpack(fmt, decoded) except (AssertionError, binascii.Error, struct.error): raise FileIdInvalid from None else: if unpacked[0] != 10: media_type = BaseClient.MEDIA_TYPE_ID.get(unpacked[0], None) if media_type: raise FileIdInvalid("The file_id belongs to a {}".format(media_type)) else: raise FileIdInvalid("Unknown media type: {}".format(unpacked[0])) media = types.InputMediaDocument( id=types.InputDocument( id=unpacked[2], access_hash=unpacked[3], file_reference=b"" ) ) if isinstance(media, InputMediaDocument): if os.path.exists(media.media): media = self.send( functions.messages.UploadMedia( peer=self.resolve_peer(chat_id), media=types.InputMediaUploadedDocument( mime_type=self.guess_mime_type(media.media) or "application/zip", thumb=None if media.thumb is None else self.save_file(media.thumb), file=self.save_file(media.media), attributes=[ types.DocumentAttributeFilename( file_name=os.path.basename(media.media) ) ] ) ) ) media = types.InputMediaDocument( id=types.InputDocument( id=media.document.id, access_hash=media.document.access_hash, file_reference=b"" ) ) elif media.media.startswith("http"): media = types.InputMediaDocumentExternal( url=media.media ) else: try: decoded = utils.decode(media.media) fmt = "<iiqqqqi" if len(decoded) > 24 else "<iiqq" unpacked = struct.unpack(fmt, decoded) except (AssertionError, binascii.Error, struct.error): raise FileIdInvalid from None else: if unpacked[0] not in (5, 10): media_type = BaseClient.MEDIA_TYPE_ID.get(unpacked[0], None) if media_type: raise FileIdInvalid("The file_id belongs to a {}".format(media_type)) else: raise FileIdInvalid("Unknown media type: {}".format(unpacked[0])) media = types.InputMediaDocument( id=types.InputDocument( id=unpacked[2], access_hash=unpacked[3], file_reference=b"" ) ) r = self.send( functions.messages.EditMessage( peer=self.resolve_peer(chat_id), id=message_id, reply_markup=reply_markup.write() if reply_markup else None, media=media, **style.parse(caption) ) ) for i in r.updates: if isinstance(i, (types.UpdateEditMessage, types.UpdateEditChannelMessage)): return pyrogram.Message._parse( self, i.message, {i.id: i for i in r.users}, {i.id: i for i in r.chats} )
Use this method to edit audio, document, photo, or video messages. If a message is a part of a message album, then it can be edited only to a photo or a video. Otherwise, message type can be changed arbitrarily. When inline message is edited, new file can't be uploaded. Use previously uploaded file via its file_id or specify a URL. On success, if the edited message was sent by the bot, the edited Message is returned, otherwise True is returned. Args: chat_id (``int`` | ``str``): Unique identifier (int) or username (str) of the target chat. For your personal cloud (Saved Messages) you can simply use "me" or "self". For a contact that exists in your Telegram address book you can use his phone number (str). message_id (``int``): Message identifier in the chat specified in chat_id. media (:obj:`InputMedia`) One of the InputMedia objects describing an animation, audio, document, photo or video. reply_markup (:obj:`InlineKeyboardMarkup`, *optional*): An InlineKeyboardMarkup object. Returns: On success, the edited :obj:`Message <pyrogram.Message>` is returned. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error.
def addsystemhook(self, url): """ Add a system hook :param url: url of the hook :return: True if success """ data = {"url": url} request = requests.post( self.hook_url, headers=self.headers, data=data, verify=self.verify_ssl, auth=self.auth, timeout=self.timeout) if request.status_code == 201: return True else: return False
Add a system hook :param url: url of the hook :return: True if success
def set(self, data, start=None, count=None, stride=None): """Write data to the dataset. Args:: data : array of data to write; can be given as a numpy array, or as Python sequence (whose elements can be imbricated sequences) start : indices where to start writing in the dataset; default to 0 on all dimensions count : number of values to write along each dimension; default to the current length of dataset dimensions stride : sampling interval along each dimension; default to 1 on all dimensions For n-dimensional datasets, those 3 parameters are entered using lists. For one-dimensional datasets, integers can also be used. Note that, to write the whole dataset at once, one has simply to call the method with the dataset values in parameter 'data', omitting all other parameters. Returns:: None. C library equivalent : SDwritedata The dataset can also be written using the familiar indexing and slicing notation, like ordinary python sequences. See "High level variable access". """ # Obtain SDS info. try: sds_name, rank, dim_sizes, data_type, n_attrs = self.info() if isinstance(dim_sizes, type(1)): dim_sizes = [dim_sizes] except HDF4Error: raise HDF4Error('set : cannot execute') # Validate args. if start is None: start = [0] * rank elif isinstance(start, type(1)): start = [start] if count is None: count = dim_sizes if count[0] == 0: count[0] = 1 elif isinstance(count, type(1)): count = [count] if stride is None: stride = [1] * rank elif isinstance(stride, type(1)): stride = [stride] if len(start) != rank or len(count) != rank or len(stride) != rank: raise HDF4Error('set : start, stride or count '\ 'do not match SDS rank') unlimited = self.isrecord() for n in range(rank): ok = 1 if start[n] < 0: ok = 0 elif n > 0 or not unlimited: if start[n] + (abs(count[n]) - 1) * stride[n] >= dim_sizes[n]: ok = 0 if not ok: raise HDF4Error('set arguments violate '\ 'the size (%d) of dimension %d' \ % (dim_sizes[n], n)) # ??? Check support for UINT16 if not data_type in SDC.equivNumericTypes: raise HDF4Error('set cannot currrently deal '\ 'with the SDS data type') _C._SDwritedata_0(self._id, data_type, start, count, data, stride)
Write data to the dataset. Args:: data : array of data to write; can be given as a numpy array, or as Python sequence (whose elements can be imbricated sequences) start : indices where to start writing in the dataset; default to 0 on all dimensions count : number of values to write along each dimension; default to the current length of dataset dimensions stride : sampling interval along each dimension; default to 1 on all dimensions For n-dimensional datasets, those 3 parameters are entered using lists. For one-dimensional datasets, integers can also be used. Note that, to write the whole dataset at once, one has simply to call the method with the dataset values in parameter 'data', omitting all other parameters. Returns:: None. C library equivalent : SDwritedata The dataset can also be written using the familiar indexing and slicing notation, like ordinary python sequences. See "High level variable access".
def format_help(self, description): """ Format the setting's description into HTML. """ for bold in ("``", "*"): parts = [] if description is None: description = "" for i, s in enumerate(description.split(bold)): parts.append(s if i % 2 == 0 else "<b>%s</b>" % s) description = "".join(parts) description = urlize(description, autoescape=False) return mark_safe(description.replace("\n", "<br>"))
Format the setting's description into HTML.
def mkdir(self, name=None, folder_id='0'): '''Create a folder with a specified "name" attribute. folder_id allows to specify a parent folder.''' return self( 'folders', method='post', encode='json', data=dict(name=name, parent=dict(id=folder_id)) )
Create a folder with a specified "name" attribute. folder_id allows to specify a parent folder.
def explode_line(argument_line: str) -> typing.Tuple[str, str]: """ Returns a tuple containing the parameter name and the description parsed from the given argument line """ parts = tuple(argument_line.split(' ', 1)[-1].split(':', 1)) return parts if len(parts) > 1 else (parts[0], '')
Returns a tuple containing the parameter name and the description parsed from the given argument line
def obtain_licenses(): """Obtain the licenses in a dictionary form, keyed by url.""" with db_connect() as db_conn: with db_conn.cursor() as cursor: cursor.execute("""\ SELECT combined_row.url, row_to_json(combined_row) FROM ( SELECT "code", "version", "name", "url", "is_valid_for_publication" FROM licenses) AS combined_row""") licenses = {r[0]: r[1] for r in cursor.fetchall()} return licenses
Obtain the licenses in a dictionary form, keyed by url.
def get_key_codes(keys): """ Calculates the list of key codes from a string with key combinations. Ex: 'CTRL+A' will produce the output (17, 65) """ keys = keys.strip().upper().split('+') codes = list() for key in keys: code = ks_settings.KEY_CODES.get(key.strip()) if code: codes.append(code) return codes
Calculates the list of key codes from a string with key combinations. Ex: 'CTRL+A' will produce the output (17, 65)
def predict(self, Xnew=None, filteronly=False, include_likelihood=True, balance=None, **kw): """ Inputs: ------------------ balance: bool Whether to balance or not the model as a whole """ if balance is None: p_balance = self.balance else: p_balance = balance # Run the Kalman filter to get the state (m, V) = self._raw_predict(Xnew,filteronly=filteronly, p_balance=p_balance) # Add the noise variance to the state variance if include_likelihood: V += float(self.likelihood.variance) # Lower and upper bounds #lower = m - 2*np.sqrt(V) #upper = m + 2*np.sqrt(V) # Return mean and variance return m, V
Inputs: ------------------ balance: bool Whether to balance or not the model as a whole
def with_(self, replacement): """Provide replacement for string "needles". :param replacement: Target replacement for needles given in constructor :return: The :class:`Replacement` object :raise TypeError: If ``replacement`` is not a string :raise ReplacementError: If replacement has been already given """ ensure_string(replacement) if is_mapping(self._replacements): raise ReplacementError("string replacements already provided") self._replacements = dict.fromkeys(self._replacements, replacement) return self
Provide replacement for string "needles". :param replacement: Target replacement for needles given in constructor :return: The :class:`Replacement` object :raise TypeError: If ``replacement`` is not a string :raise ReplacementError: If replacement has been already given
def process_summary(article): """Ensures summaries are not cut off. Also inserts mathjax script so that math will be rendered""" summary = article.summary summary_parsed = BeautifulSoup(summary, 'html.parser') math = summary_parsed.find_all(class_='math') if len(math) > 0: last_math_text = math[-1].get_text() if len(last_math_text) > 3 and last_math_text[-3:] == '...': content_parsed = BeautifulSoup(article._content, 'html.parser') full_text = content_parsed.find_all(class_='math')[len(math)-1].get_text() math[-1].string = "%s ..." % full_text summary = summary_parsed.decode() # clear memoization cache import functools if isinstance(article.get_summary, functools.partial): memoize_instance = article.get_summary.func.__self__ memoize_instance.cache.clear() article._summary = "%s<script type='text/javascript'>%s</script>" % (summary, process_summary.mathjax_script)
Ensures summaries are not cut off. Also inserts mathjax script so that math will be rendered
def add_untagged_ok(self, text: MaybeBytes, code: Optional[ResponseCode] = None) -> None: """Add an untagged ``OK`` response. See Also: :meth:`.add_untagged`, :class:`ResponseOk` Args: text: The response text. code: Optional response code. """ response = ResponseOk(b'*', text, code) self.add_untagged(response)
Add an untagged ``OK`` response. See Also: :meth:`.add_untagged`, :class:`ResponseOk` Args: text: The response text. code: Optional response code.
def disco_loop_asm_format(opc, version, co, real_out, fn_name_map, all_fns): """Produces disassembly in a format more conducive to automatic assembly by producing inner modules before they are used by outer ones. Since this is recusive, we'll use more stack space at runtime. """ if version < 3.0: co = code2compat(co) else: co = code3compat(co) co_name = co.co_name mapped_name = fn_name_map.get(co_name, co_name) new_consts = [] for c in co.co_consts: if iscode(c): if version < 3.0: c_compat = code2compat(c) else: c_compat = code3compat(c) disco_loop_asm_format(opc, version, c_compat, real_out, fn_name_map, all_fns) m = re.match(".* object <(.+)> at", str(c)) if m: basename = m.group(1) if basename != 'module': mapped_name = code_uniquify(basename, c.co_code) c_compat.co_name = mapped_name c_compat.freeze() new_consts.append(c_compat) else: new_consts.append(c) pass co.co_consts = new_consts m = re.match("^<(.+)>$", co.co_name) if m or co_name in all_fns: if co_name in all_fns: basename = co_name else: basename = m.group(1) if basename != 'module': mapped_name = code_uniquify(basename, co.co_code) co_name = mapped_name assert mapped_name not in fn_name_map fn_name_map[mapped_name] = basename co.co_name = mapped_name pass elif co_name in fn_name_map: # FIXME: better would be a hash of the co_code mapped_name = code_uniquify(co_name, co.co_code) fn_name_map[mapped_name] = co_name co.co_name = mapped_name pass co = co.freeze() all_fns.add(co_name) if co.co_name != '<module>' or co.co_filename: real_out.write("\n" + format_code_info(co, version, mapped_name) + "\n") bytecode = Bytecode(co, opc, dup_lines=True) real_out.write(bytecode.dis(asm_format=True) + "\n")
Produces disassembly in a format more conducive to automatic assembly by producing inner modules before they are used by outer ones. Since this is recusive, we'll use more stack space at runtime.
def segments(self, **kwargs): """ Segments are yielded when they are available Segments appear on a time line, for dynamic content they are only available at a certain time and sometimes for a limited time. For static content they are all available at the same time. :param kwargs: extra args to pass to the segment template :return: yields Segments """ segmentBase = self.segmentBase or self.walk_back_get_attr("segmentBase") segmentLists = self.segmentList or self.walk_back_get_attr("segmentList") segmentTemplate = self.segmentTemplate or self.walk_back_get_attr("segmentTemplate") if segmentTemplate: for segment in segmentTemplate.segments(RepresentationID=self.id, Bandwidth=int(self.bandwidth * 1000), **kwargs): if segment.init: yield segment else: yield segment elif segmentLists: for segmentList in segmentLists: for segment in segmentList.segments: yield segment else: yield Segment(self.base_url, 0, True, True)
Segments are yielded when they are available Segments appear on a time line, for dynamic content they are only available at a certain time and sometimes for a limited time. For static content they are all available at the same time. :param kwargs: extra args to pass to the segment template :return: yields Segments
def dump(obj, fp, **kw): r"""Dump python object to file. >>> import lazyxml >>> data = {'demo': {'foo': 1, 'bar': 2}} >>> lazyxml.dump(data, 'dump.xml') >>> with open('dump-fp.xml', 'w') as fp: >>> lazyxml.dump(data, fp) >>> from cStringIO import StringIO >>> data = {'demo': {'foo': 1, 'bar': 2}} >>> buffer = StringIO() >>> lazyxml.dump(data, buffer) >>> buffer.getvalue() <?xml version="1.0" encoding="utf-8"?><demo><foo><![CDATA[1]]></foo><bar><![CDATA[2]]></bar></demo> >>> buffer.close() .. note:: ``kw`` argument have the same meaning as in :func:`dumps` :param obj: data for dump to xml. :param fp: a filename or a file or file-like object that support ``.write()`` to write the xml content .. versionchanged:: 1.2 The `fp` is a filename of string before this. It can now be a file or file-like object that support ``.write()`` to write the xml content. """ xml = dumps(obj, **kw) if isinstance(fp, basestring): with open(fp, 'w') as fobj: fobj.write(xml) else: fp.write(xml)
r"""Dump python object to file. >>> import lazyxml >>> data = {'demo': {'foo': 1, 'bar': 2}} >>> lazyxml.dump(data, 'dump.xml') >>> with open('dump-fp.xml', 'w') as fp: >>> lazyxml.dump(data, fp) >>> from cStringIO import StringIO >>> data = {'demo': {'foo': 1, 'bar': 2}} >>> buffer = StringIO() >>> lazyxml.dump(data, buffer) >>> buffer.getvalue() <?xml version="1.0" encoding="utf-8"?><demo><foo><![CDATA[1]]></foo><bar><![CDATA[2]]></bar></demo> >>> buffer.close() .. note:: ``kw`` argument have the same meaning as in :func:`dumps` :param obj: data for dump to xml. :param fp: a filename or a file or file-like object that support ``.write()`` to write the xml content .. versionchanged:: 1.2 The `fp` is a filename of string before this. It can now be a file or file-like object that support ``.write()`` to write the xml content.
def estimate_gas( self, block_identifier, function: str, *args, **kwargs, ) -> typing.Optional[int]: """Returns a gas estimate for the function with the given arguments or None if the function call will fail due to Insufficient funds or the logic in the called function.""" fn = getattr(self.contract.functions, function) address = to_checksum_address(self.jsonrpc_client.address) if self.jsonrpc_client.eth_node is constants.EthClient.GETH: # Unfortunately geth does not follow the ethereum JSON-RPC spec and # does not accept a block identifier argument for eth_estimateGas # parity and py-evm (trinity) do. # # Geth only runs estimateGas on the pending block and that's why we # should also enforce parity, py-evm and others to do the same since # we can't customize geth. # # Spec: https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_estimategas # Geth Issue: https://github.com/ethereum/go-ethereum/issues/2586 # Relevant web3 PR: https://github.com/ethereum/web3.py/pull/1046 block_identifier = None try: return fn(*args, **kwargs).estimateGas( transaction={'from': address}, block_identifier=block_identifier, ) except ValueError as err: action = inspect_client_error(err, self.jsonrpc_client.eth_node) will_fail = action in ( ClientErrorInspectResult.INSUFFICIENT_FUNDS, ClientErrorInspectResult.ALWAYS_FAIL, ) if will_fail: return None raise err
Returns a gas estimate for the function with the given arguments or None if the function call will fail due to Insufficient funds or the logic in the called function.
def handle_resourceset(ltext, **kwargs): ''' A helper that converts sets of resources from a textual format such as Markdown, including absolutizing relative IRIs ''' fullprop=kwargs.get('fullprop') rid=kwargs.get('rid') base=kwargs.get('base', VERSA_BASEIRI) model=kwargs.get('model') iris = ltext.strip().split() for i in iris: model.add(rid, fullprop, I(iri.absolutize(i, base))) return None
A helper that converts sets of resources from a textual format such as Markdown, including absolutizing relative IRIs
def is_lazy_user(user): """ Return True if the passed user is a lazy user. """ # Anonymous users are not lazy. if user.is_anonymous: return False # Check the user backend. If the lazy signup backend # authenticated them, then the user is lazy. backend = getattr(user, 'backend', None) if backend == 'lazysignup.backends.LazySignupBackend': return True # Otherwise, we have to fall back to checking the database. from lazysignup.models import LazyUser return bool(LazyUser.objects.filter(user=user).count() > 0)
Return True if the passed user is a lazy user.
def str_to_datetime(self,format="%Y-%m-%dT%H:%M:%S%ZP"): """ Create a new SArray with all the values cast to datetime. The string format is specified by the 'format' parameter. Parameters ---------- format : str The string format of the input SArray. Default format is "%Y-%m-%dT%H:%M:%S%ZP". If format is "ISO", the the format is "%Y%m%dT%H%M%S%F%q" Returns ------- out : SArray[datetime.datetime] The SArray converted to the type 'datetime'. Examples -------- >>> sa = turicreate.SArray(["20-Oct-2011 09:30:10 GMT-05:30"]) >>> sa.str_to_datetime("%d-%b-%Y %H:%M:%S %ZP") dtype: datetime Rows: 1 datetime.datetime(2011, 10, 20, 9, 30, 10, tzinfo=GMT(-5.5)) See Also ---------- datetime_to_str References ---------- [1] boost date time to string conversion guide (http://www.boost.org/doc/libs/1_48_0/doc/html/date_time/date_time_io.html) """ if(self.dtype != str): raise TypeError("str_to_datetime expects SArray of str as input SArray") with cython_context(): return SArray(_proxy=self.__proxy__.str_to_datetime(format))
Create a new SArray with all the values cast to datetime. The string format is specified by the 'format' parameter. Parameters ---------- format : str The string format of the input SArray. Default format is "%Y-%m-%dT%H:%M:%S%ZP". If format is "ISO", the the format is "%Y%m%dT%H%M%S%F%q" Returns ------- out : SArray[datetime.datetime] The SArray converted to the type 'datetime'. Examples -------- >>> sa = turicreate.SArray(["20-Oct-2011 09:30:10 GMT-05:30"]) >>> sa.str_to_datetime("%d-%b-%Y %H:%M:%S %ZP") dtype: datetime Rows: 1 datetime.datetime(2011, 10, 20, 9, 30, 10, tzinfo=GMT(-5.5)) See Also ---------- datetime_to_str References ---------- [1] boost date time to string conversion guide (http://www.boost.org/doc/libs/1_48_0/doc/html/date_time/date_time_io.html)
def roi_pooling(input, rois, pool_height, pool_width): """ returns a tensorflow operation for computing the Region of Interest Pooling @arg input: feature maps on which to perform the pooling operation @arg rois: list of regions of interest in the format (feature map index, upper left, bottom right) @arg pool_width: size of the pooling sections """ # TODO(maciek): ops scope out = roi_pooling_module.roi_pooling(input, rois, pool_height=pool_height, pool_width=pool_width) output, argmax_output = out[0], out[1] return output
returns a tensorflow operation for computing the Region of Interest Pooling @arg input: feature maps on which to perform the pooling operation @arg rois: list of regions of interest in the format (feature map index, upper left, bottom right) @arg pool_width: size of the pooling sections
def calculate_size(name, sequence): """ Calculates the request payload size""" data_size = 0 data_size += calculate_size_str(name) data_size += LONG_SIZE_IN_BYTES return data_size
Calculates the request payload size
def system_find_databases(input_params={}, always_retry=True, **kwargs): """ Invokes the /system/findDatabases API method. For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Search#API-method%3A-%2Fsystem%2FfindDatabases """ return DXHTTPRequest('/system/findDatabases', input_params, always_retry=always_retry, **kwargs)
Invokes the /system/findDatabases API method. For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Search#API-method%3A-%2Fsystem%2FfindDatabases
def remove(parent, idx): """Remove a value from a dict.""" if isinstance(parent, dict): del parent[idx] elif isinstance(parent, list): del parent[int(idx)] else: raise JSONPathError("Invalid path for operation")
Remove a value from a dict.
def modified(self): ''' Get human-readable last modification date-time. :returns: iso9008-like date-time string (without timezone) :rtype: str ''' try: dt = datetime.datetime.fromtimestamp(self.stats.st_mtime) return dt.strftime('%Y.%m.%d %H:%M:%S') except OSError: return None
Get human-readable last modification date-time. :returns: iso9008-like date-time string (without timezone) :rtype: str
def _init_create_child(self): """ Initialize the base class :attr:`create_child` and :attr:`create_child_args` according to whether we need a PTY or not. """ if self._requires_pty(): self.create_child = mitogen.parent.hybrid_tty_create_child else: self.create_child = mitogen.parent.create_child self.create_child_args = { 'stderr_pipe': True, }
Initialize the base class :attr:`create_child` and :attr:`create_child_args` according to whether we need a PTY or not.
def _save_state_and_schedule_next(self, shard_state, tstate, task_directive): """Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable. """ spec = tstate.mapreduce_spec if task_directive == self._TASK_DIRECTIVE.DROP_TASK: return if task_directive in (self._TASK_DIRECTIVE.RETRY_SLICE, self._TASK_DIRECTIVE.RETRY_TASK): # Set HTTP code to 500. return self.retry_task() elif task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: logging.info("Aborting shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) task = None elif task_directive == self._TASK_DIRECTIVE.FAIL_TASK: logging.critical("Shard %s failed permanently.", shard_state.shard_id) task = None elif task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: logging.warning("Shard %s is going to be attempted for the %s time.", shard_state.shard_id, shard_state.retries + 1) task = self._state_to_task(tstate, shard_state) elif task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: logging.warning("Shard %s slice %s is being recovered.", shard_state.shard_id, shard_state.slice_id) task = self._state_to_task(tstate, shard_state) else: assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK countdown = self._get_countdown_for_next_slice(spec) task = self._state_to_task(tstate, shard_state, countdown=countdown) # Prepare parameters for db transaction and taskqueue. queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", # For test only. # TODO(user): Remove this. "default") config = util.create_datastore_write_config(spec) @db.transactional(retries=5) def _tx(): """The Transaction helper.""" fresh_shard_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_shard_state: raise db.Rollback() if (not fresh_shard_state.active or "worker_active_state_collision" in _TEST_INJECTED_FAULTS): logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning("Datastore's %s", str(fresh_shard_state)) logging.warning("Slice's %s", str(shard_state)) return fresh_shard_state.copy_from(shard_state) fresh_shard_state.put(config=config) # Add task in the same datastore transaction. # This way we guarantee taskqueue is never behind datastore states. # Old tasks will be dropped. # Future task won't run until datastore states catches up. if fresh_shard_state.active: # Not adding task transactionally. # transactional enqueue requires tasks with no name. self._add_task(task, spec, queue_name) try: _tx() except (datastore_errors.Error, taskqueue.Error, runtime.DeadlineExceededError, apiproxy_errors.Error), e: logging.warning( "Can't transactionally continue shard. " "Will retry slice %s %s for the %s time.", tstate.shard_id, tstate.slice_id, self.task_retry_count() + 1) self._try_free_lease(shard_state) raise e
Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable.
def _configure_context(ctx, opts, skip=()): """ Configures context of public key operations @param ctx - context to configure @param opts - dictionary of options (from kwargs of calling function) @param skip - list of options which shouldn't be passed to context """ for oper in opts: if oper in skip: continue if isinstance(oper,chartype): op = oper.encode("ascii") else: op = oper if isinstance(opts[oper],chartype): value = opts[oper].encode("ascii") elif isinstance(opts[oper],bintype): value = opts[oper] else: if pyver == 2: value = str(opts[oper]) else: value = str(opts[oper]).encode('ascii') ret = libcrypto.EVP_PKEY_CTX_ctrl_str(ctx, op, value) if ret == -2: raise PKeyError("Parameter %s is not supported by key" % oper) if ret < 1: raise PKeyError("Error setting parameter %s" % oper)
Configures context of public key operations @param ctx - context to configure @param opts - dictionary of options (from kwargs of calling function) @param skip - list of options which shouldn't be passed to context
def _lookup_vpc_count_min_max(session=None, **bfilter): """Look up count/min/max Nexus VPC Allocs for given switch. :param session: db session :param bfilter: filter for mappings query :returns: number of VPCs and min value if query gave a result, else raise NexusVPCAllocNotFound. """ if session is None: session = bc.get_reader_session() try: res = session.query( func.count(nexus_models_v2.NexusVPCAlloc.vpc_id), func.min(nexus_models_v2.NexusVPCAlloc.vpc_id), func.max(nexus_models_v2.NexusVPCAlloc.vpc_id), ).filter(nexus_models_v2.NexusVPCAlloc.switch_ip == bfilter['switch_ip']).one() count = res[0] sw_min = res[1] sw_max = res[2] return count, sw_min, sw_max except sa_exc.NoResultFound: pass raise c_exc.NexusVPCAllocNotFound(**bfilter)
Look up count/min/max Nexus VPC Allocs for given switch. :param session: db session :param bfilter: filter for mappings query :returns: number of VPCs and min value if query gave a result, else raise NexusVPCAllocNotFound.
def numDomtblout(domtblout, numHits, evalueT, bitT, sort): """ parse hmm domain table output this version is faster but does not work unless the table is sorted """ if sort is True: for hit in numDomtblout_sort(domtblout, numHits, evalueT, bitT): yield hit return header = ['#target name', 'target accession', 'tlen', 'query name', 'query accession', 'qlen', 'full E-value', 'full score', 'full bias', 'domain #', '# domains', 'domain c-Evalue', 'domain i-Evalue', 'domain score', 'domain bias', 'hmm from', 'hmm to', 'seq from', 'seq to', 'env from', 'env to', 'acc', 'target description'] yield header prev, hits = None, [] for line in domtblout: if line.startswith('#'): continue # parse line and get description line = line.strip().split() desc = ' '.join(line[18:]) line = line[0:18] line.append(desc) # create ID based on query name and domain number ID = line[0] + line[9] # domain c-Evalue and domain score thresholds line[11], line[13] = float(line[11]), float(line[13]) evalue, bitscore = line[11], line[13] line[11], line[13] = evalue, bitscore if ID != prev: if len(hits) > 0: for hit in top_hits(hits, numHits, 13, True): yield hit hits = [] if evalueT == False and bitT == False: hits.append(line) elif evalue <= evalueT and bitT == False: hits.append(line) elif evalue <= evalueT and bit >= bitT: hits.append(line) elif evalueT == False and bit >= bitT: hits.append(line) prev = ID for hit in top_hits(hits, numHits, 13, True): yield hit
parse hmm domain table output this version is faster but does not work unless the table is sorted
def _get_config_instance(group_or_term, session, **kwargs): """ Finds appropriate config instance and returns it. Args: group_or_term (Group or Term): session (Sqlalchemy session): kwargs (dict): kwargs to pass to get_or_create. Returns: tuple of (Config, bool): """ path = group_or_term._get_path() cached = group_or_term._top._cached_configs.get(path) if cached: config = cached created = False else: # does not exist or not yet cached config, created = get_or_create(session, Config, **kwargs) return config, created
Finds appropriate config instance and returns it. Args: group_or_term (Group or Term): session (Sqlalchemy session): kwargs (dict): kwargs to pass to get_or_create. Returns: tuple of (Config, bool):
def register_master(): """Register the SDP Master device.""" tango_db = Database() device = "sip_sdp/elt/master" device_info = DbDevInfo() device_info._class = "SDPMasterDevice" device_info.server = "sdp_master_ds/1" device_info.name = device devices = tango_db.get_device_name(device_info.server, device_info._class) if device not in devices: LOG.info('Registering device "%s" with device server "%s"', device_info.name, device_info.server) tango_db.add_device(device_info)
Register the SDP Master device.
def prepare_batch(self): """ Propagates exception on failure :return: byte array to put on the blockchain """ # validate batch for _, metadata in self.certificates_to_issue.items(): self.certificate_handler.validate_certificate(metadata) # sign batch with FinalizableSigner(self.secret_manager) as signer: for _, metadata in self.certificates_to_issue.items(): self.certificate_handler.sign_certificate(signer, metadata) self.merkle_tree.populate(self.get_certificate_generator()) logging.info('here is the op_return_code data: %s', b2h(self.merkle_tree.get_blockchain_data())) return self.merkle_tree.get_blockchain_data()
Propagates exception on failure :return: byte array to put on the blockchain
def P_conditional(self, i, li, j, lj, y): """Compute the conditional probability P_\theta(li | lj, y) = Z^{-1} exp( theta_{i|y} \indpm{ \lambda_i = Y } + \theta_{i,j} \indpm{ \lambda_i = \lambda_j } ) In other words, compute the conditional probability that LF i outputs li given that LF j output lj, and Y = y, parameterized by - a class-conditional LF accuracy parameter \theta_{i|y} - a symmetric LF correlation paramter \theta_{i,j} """ Z = np.sum([self._P(i, _li, j, lj, y) for _li in range(self.k + 1)]) return self._P(i, li, j, lj, y) / Z
Compute the conditional probability P_\theta(li | lj, y) = Z^{-1} exp( theta_{i|y} \indpm{ \lambda_i = Y } + \theta_{i,j} \indpm{ \lambda_i = \lambda_j } ) In other words, compute the conditional probability that LF i outputs li given that LF j output lj, and Y = y, parameterized by - a class-conditional LF accuracy parameter \theta_{i|y} - a symmetric LF correlation paramter \theta_{i,j}
def encoder_data(self, data): """ This method handles the incoming encoder data message and stores the data in the digital response table. :param data: Message data from Firmata :return: No return value. """ prev_val = self.digital_response_table[data[self.RESPONSE_TABLE_MODE]][self.RESPONSE_TABLE_PIN_DATA_VALUE] val = int((data[self.MSB] << 7) + data[self.LSB]) # set value so that it shows positive and negative values if val > 8192: val -= 16384 pin = data[0] with self.pymata.data_lock: self.digital_response_table[data[self.RESPONSE_TABLE_MODE]][self.RESPONSE_TABLE_PIN_DATA_VALUE] = val if prev_val != val: callback = self.digital_response_table[pin][self.RESPONSE_TABLE_CALLBACK] if callback is not None: callback([self.pymata.ENCODER, pin, self.digital_response_table[pin][self.RESPONSE_TABLE_PIN_DATA_VALUE]])
This method handles the incoming encoder data message and stores the data in the digital response table. :param data: Message data from Firmata :return: No return value.
def process_user_record(cls, info): """Type convert the csv record, modifies in place.""" keys = list(info.keys()) # Value conversion for k in keys: v = info[k] if v in ('N/A', 'no_information'): info[k] = None elif v == 'false': info[k] = False elif v == 'true': info[k] = True # Object conversion for p, t in cls.list_sub_objects: obj = dict([(k[len(p):], info.pop(k)) for k in keys if k.startswith(p)]) if obj.get('active', False): info.setdefault(t, []).append(obj) return info
Type convert the csv record, modifies in place.
def monkeypatch_method(cls, patch_name): # This function's code was inspired from the following thread: # "[Python-Dev] Monkeypatching idioms -- elegant or ugly?" # by Robert Brewer <fumanchu at aminus.org> # (Tue Jan 15 19:13:25 CET 2008) """ Add the decorated method to the given class; replace as needed. If the named method already exists on the given class, it will be replaced, and a reference to the old method is created as cls._old<patch_name><name>. If the "_old_<patch_name>_<name>" attribute already exists, KeyError is raised. """ def decorator(func): fname = func.__name__ old_func = getattr(cls, fname, None) if old_func is not None: # Add the old func to a list of old funcs. old_ref = "_old_%s_%s" % (patch_name, fname) old_attr = getattr(cls, old_ref, None) if old_attr is None: setattr(cls, old_ref, old_func) else: raise KeyError("%s.%s already exists." % (cls.__name__, old_ref)) setattr(cls, fname, func) return func return decorator
Add the decorated method to the given class; replace as needed. If the named method already exists on the given class, it will be replaced, and a reference to the old method is created as cls._old<patch_name><name>. If the "_old_<patch_name>_<name>" attribute already exists, KeyError is raised.
def to_python(self, omobj): """ Convert OpenMath object to Python """ # general overrides if omobj.__class__ in self._omclass_to_py: return self._omclass_to_py[omobj.__class__](omobj) # oms elif isinstance(omobj, om.OMSymbol): return self._lookup_to_python(omobj.cdbase, omobj.cd, omobj.name) # oma elif isinstance(omobj, om.OMApplication): elem = self.to_python(omobj.elem) arguments = [self.to_python(x) for x in omobj.arguments] return elem(*arguments) raise ValueError('Cannot convert object of class %s to Python.' % omobj.__class__.__name__)
Convert OpenMath object to Python
def conv2d(self, filter_size, output_channels, stride=1, padding='SAME', bn=True, activation_fn=tf.nn.relu, b_value=0.0, s_value=1.0, trainable=True): """ 2D Convolutional Layer. :param filter_size: int. assumes square filter :param output_channels: int :param stride: int :param padding: 'VALID' or 'SAME' :param activation_fn: tf.nn function :param b_value: float :param s_value: float """ self.count['conv'] += 1 scope = 'conv_' + str(self.count['conv']) with tf.variable_scope(scope): # Conv function input_channels = self.input.get_shape()[3] if filter_size == 0: # outputs a 1x1 feature map; used for FCN filter_size = self.input.get_shape()[2] padding = 'VALID' output_shape = [filter_size, filter_size, input_channels, output_channels] w = self.weight_variable(name='weights', shape=output_shape, trainable=trainable) self.input = tf.nn.conv2d(self.input, w, strides=[1, stride, stride, 1], padding=padding) if bn is True: # batch normalization self.input = self.batch_norm(self.input) if b_value is not None: # bias value b = self.const_variable(name='bias', shape=[output_channels], value=b_value, trainable=trainable) self.input = tf.add(self.input, b) if s_value is not None: # scale value s = self.const_variable(name='scale', shape=[output_channels], value=s_value, trainable=trainable) self.input = tf.multiply(self.input, s) if activation_fn is not None: # activation function self.input = activation_fn(self.input) print(scope + ' output: ' + str(self.input.get_shape()))
2D Convolutional Layer. :param filter_size: int. assumes square filter :param output_channels: int :param stride: int :param padding: 'VALID' or 'SAME' :param activation_fn: tf.nn function :param b_value: float :param s_value: float
def parse_message(self, msg, msg_signature, timestamp, nonce): """ 处理 wechat server 推送消息 :params msg: 加密内容 :params msg_signature: 消息签名 :params timestamp: 时间戳 :params nonce: 随机数 """ content = self.crypto.decrypt_message(msg, msg_signature, timestamp, nonce) message = xmltodict.parse(to_text(content))['xml'] message_type = message['InfoType'].lower() message_class = COMPONENT_MESSAGE_TYPES.get(message_type, ComponentUnknownMessage) msg = message_class(message) if msg.type == 'component_verify_ticket': self.session.set(msg.type, msg.verify_ticket) elif msg.type in ('authorized', 'updateauthorized'): msg.query_auth_result = self.query_auth(msg.authorization_code) return msg
处理 wechat server 推送消息 :params msg: 加密内容 :params msg_signature: 消息签名 :params timestamp: 时间戳 :params nonce: 随机数
def html_visit_inheritance_diagram( self: NodeVisitor, node: inheritance_diagram ) -> None: """ Builds HTML output from an :py:class:`~uqbar.sphinx.inheritance.inheritance_diagram` node. """ inheritance_graph = node["graph"] urls = build_urls(self, node) graphviz_graph = inheritance_graph.build_graph(urls) dot_code = format(graphviz_graph, "graphviz") # TODO: We can perform unflattening here aspect_ratio = inheritance_graph.aspect_ratio if aspect_ratio: aspect_ratio = math.ceil(math.sqrt(aspect_ratio[1] / aspect_ratio[0])) if aspect_ratio > 1: process = subprocess.Popen( ["unflatten", "-l", str(aspect_ratio), "-c", str(aspect_ratio), "-f"], stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = process.communicate(dot_code.encode()) dot_code = stdout.decode() render_dot_html(self, node, dot_code, {}, "inheritance", "inheritance") raise SkipNode
Builds HTML output from an :py:class:`~uqbar.sphinx.inheritance.inheritance_diagram` node.
def split_fixed_pattern(path): """ Split path into fixed and masked parts :param path: e.g https://repo.example.com/artifactory/libs-cpp-release.snapshot/boost/1.60-pm/*.*.*/vc110/x86/win/boost.*.*.*.tar.gz :return: _path_fixed: https://repo.example.com/artifactory/libs-cpp-release.snapshot/boost/1.60-pm/ _path_pattern: *.*.*/vc110/x86/win/boost.*.*.*.tar.gz """ _first_pattern_pos = path.find('*') _path_separator_pos = path.rfind('/', 0, _first_pattern_pos) + 1 _path_fixed = path[:_path_separator_pos] _path_pattern = path[_path_separator_pos:] return _path_fixed, _path_pattern
Split path into fixed and masked parts :param path: e.g https://repo.example.com/artifactory/libs-cpp-release.snapshot/boost/1.60-pm/*.*.*/vc110/x86/win/boost.*.*.*.tar.gz :return: _path_fixed: https://repo.example.com/artifactory/libs-cpp-release.snapshot/boost/1.60-pm/ _path_pattern: *.*.*/vc110/x86/win/boost.*.*.*.tar.gz
def merge_errors(self, errors_local, errors_remote): """ Merge errors Recursively traverses error graph to merge remote errors into local errors to return a new joined graph. :param errors_local: dict, local errors, will be updated :param errors_remote: dict, remote errors, provides updates :return: dict """ for prop in errors_remote: # create if doesn't exist if prop not in errors_local: errors_local[prop] = errors_remote[prop] continue local = errors_local[prop] local = local.errors if isinstance(local, Result) else local remote = errors_remote[prop] remote = remote.errors if isinstance(remote, Result) else remote # check compatibility if not isinstance(local, type(remote)): msg = 'Type mismatch on property [{}] when merging errors. ' msg += 'Unable to merge [{}] into [{}]' raise x.UnableToMergeResultsType(msg.format( prop, type(errors_remote[prop]), type(self.errors[prop]) )) mismatch = 'Unable to merge nested entity errors with nested ' mismatch += 'collection errors on property [{}]' if 'schema' in local and 'collection' in remote: raise x.UnableToMergeResultsType(mismatch.format(prop)) if 'collection' in local and 'schema' in remote: raise x.UnableToMergeResultsType(mismatch.format(prop)) # merge simple & state if type(remote) is list: errors_local[prop].extend(remote) continue # merge direct errors on nested entities and collection if 'direct' in remote and 'direct' in local: errors_local[prop]['direct'].extend(remote['direct']) # merge nested schema errors if 'schema' in remote and 'schema' in local: errors_local[prop]['schema'] = self.merge_errors( errors_local[prop]['schema'], remote['schema'] ) # merge nested collections errors if 'collection' in remote and 'collection' in local: for index, result in remote['collection'].items(): if index not in local['collection']: errors_local[prop]['collection'][index] = result else: merged = self.merge_errors( errors_local[prop]['collection'][index].errors, errors_remote[prop]['collection'][index].errors, ) errors_local[prop]['collection'][index] = merged # and return return errors_local
Merge errors Recursively traverses error graph to merge remote errors into local errors to return a new joined graph. :param errors_local: dict, local errors, will be updated :param errors_remote: dict, remote errors, provides updates :return: dict
def read_fastq(filename): """ return a stream of FASTQ entries, handling gzipped and empty files """ if not filename: return itertools.cycle((None,)) if filename == "-": filename_fh = sys.stdin elif filename.endswith('gz'): if is_python3: filename_fh = gzip.open(filename, mode='rt') else: filename_fh = BufferedReader(gzip.open(filename, mode='rt')) else: filename_fh = open(filename) return stream_fastq(filename_fh)
return a stream of FASTQ entries, handling gzipped and empty files
def imprints2marc(self, key, value): """Populate the ``260`` MARC field.""" return { 'a': value.get('place'), 'b': value.get('publisher'), 'c': value.get('date'), }
Populate the ``260`` MARC field.
def preprocess(self, dataset, mode, hparams, interleave=True): """Runtime preprocessing on the whole dataset. Return a tf.data.Datset -- the preprocessed version of the given one. By default this function calls preprocess_example. Args: dataset: the Dataset of already decoded but not yet preprocessed features. mode: tf.estimator.ModeKeys hparams: HParams, model hyperparameters interleave: bool, whether to use parallel_interleave, which is faster but will alter the order of samples non-deterministically, or flat_map, which is slower but will preserve the sample order. Returns: a Dataset """ def _preprocess(example): examples = self.preprocess_example(example, mode, hparams) if not isinstance(examples, tf.data.Dataset): examples = tf.data.Dataset.from_tensors(examples) return examples if interleave: dataset = dataset.apply( tf.data.experimental.parallel_interleave( _preprocess, sloppy=True, cycle_length=8)) else: dataset = dataset.flat_map(_preprocess) return dataset
Runtime preprocessing on the whole dataset. Return a tf.data.Datset -- the preprocessed version of the given one. By default this function calls preprocess_example. Args: dataset: the Dataset of already decoded but not yet preprocessed features. mode: tf.estimator.ModeKeys hparams: HParams, model hyperparameters interleave: bool, whether to use parallel_interleave, which is faster but will alter the order of samples non-deterministically, or flat_map, which is slower but will preserve the sample order. Returns: a Dataset
def record_participation(self, client, dt=None): """Record a user's participation in a test along with a given variation""" if dt is None: date = datetime.now() else: date = dt experiment_key = self.experiment.name pipe = self.redis.pipeline() pipe.sadd(_key("p:{0}:years".format(experiment_key)), date.strftime('%Y')) pipe.sadd(_key("p:{0}:months".format(experiment_key)), date.strftime('%Y-%m')) pipe.sadd(_key("p:{0}:days".format(experiment_key)), date.strftime('%Y-%m-%d')) pipe.execute() keys = [ _key("p:{0}:_all:all".format(experiment_key)), _key("p:{0}:_all:{1}".format(experiment_key, date.strftime('%Y'))), _key("p:{0}:_all:{1}".format(experiment_key, date.strftime('%Y-%m'))), _key("p:{0}:_all:{1}".format(experiment_key, date.strftime('%Y-%m-%d'))), _key("p:{0}:{1}:all".format(experiment_key, self.name)), _key("p:{0}:{1}:{2}".format(experiment_key, self.name, date.strftime('%Y'))), _key("p:{0}:{1}:{2}".format(experiment_key, self.name, date.strftime('%Y-%m'))), _key("p:{0}:{1}:{2}".format(experiment_key, self.name, date.strftime('%Y-%m-%d'))), ] msetbit(keys=keys, args=([self.experiment.sequential_id(client), 1] * len(keys)))
Record a user's participation in a test along with a given variation
def _parse_members(self, contents, anexec, params, mode="insert"): """Parses the local variables for the contents of the specified executable.""" #First get the variables declared in the body of the executable, these can #be either locals or parameter declarations. members = self.vparser.parse(contents, anexec) #If the name matches one in the parameter list, we can connect them for param in list(params): lparam = param.lower() if lparam in members: if mode == "insert" and not lparam in anexec.parameters: anexec.add_parameter(members[lparam]) elif mode == "delete": anexec.remove_parameter(members[lparam]) #The remaining members that aren't in parameters are the local variables for key in members: if mode == "insert": if not key.lower() in anexec.parameters: anexec.members[key] = members[key] elif mode == "delete" and key in anexec.members: del anexec.members[key] #Next we need to get hold of the docstrings for these members if mode == "insert": memdocs = self.docparser.parse_docs(contents, anexec) if anexec.name in memdocs: docs = self.docparser.to_doc(memdocs[anexec.name][0], anexec.name) self.docparser.process_memberdocs(docs, anexec) #Also process the embedded types and executables who may have #docstrings just like regular executables/types do. self.docparser.process_embedded(memdocs, anexec)
Parses the local variables for the contents of the specified executable.
def neg_int(i): """ Simple negative integer validation. """ try: if isinstance(i, string_types): i = int(i) if not isinstance(i, int) or i > 0: raise Exception() except: raise ValueError("Not a negative integer") return i
Simple negative integer validation.
def opener_from_zipfile(zipfile): """ Returns a function that will open a file in a zipfile by name. For Python3 compatibility, the raw file will be converted to text. """ def opener(filename): inner_file = zipfile.open(filename) if PY3: from io import TextIOWrapper return TextIOWrapper(inner_file) else: return inner_file return opener
Returns a function that will open a file in a zipfile by name. For Python3 compatibility, the raw file will be converted to text.
def get_letters( word ): """ splits the word into a character-list of tamil/english characters present in the stream """ ta_letters = list() not_empty = False WLEN,idx = len(word),0 while (idx < WLEN): c = word[idx] #print(idx,hex(ord(c)),len(ta_letters)) if c in uyir_letter_set or c == ayudha_letter: ta_letters.append(c) not_empty = True elif c in grantha_agaram_set: ta_letters.append(c) not_empty = True elif c in accent_symbol_set: if not not_empty: # odd situation ta_letters.append(c) not_empty = True else: #print("Merge/accent") ta_letters[-1] += c else: if ord(c) < 256 or not (is_tamil_unicode(c)): ta_letters.append( c ) else: if not_empty: #print("Merge/??") ta_letters[-1]+= c else: ta_letters.append(c) not_empty = True idx = idx + 1 return ta_letters
splits the word into a character-list of tamil/english characters present in the stream
def dzip(items1, items2, cls=dict): """ Zips elementwise pairs between items1 and items2 into a dictionary. Values from items2 can be broadcast onto items1. Args: items1 (Iterable): full sequence items2 (Iterable): can either be a sequence of one item or a sequence of equal length to `items1` cls (Type[dict]): dictionary type to use. Defaults to dict, but could be ordered dict instead. Returns: dict: similar to dict(zip(items1, items2)) Example: >>> assert dzip([1, 2, 3], [4]) == {1: 4, 2: 4, 3: 4} >>> assert dzip([1, 2, 3], [4, 4, 4]) == {1: 4, 2: 4, 3: 4} >>> assert dzip([], [4]) == {} """ try: len(items1) except TypeError: items1 = list(items1) try: len(items2) except TypeError: items2 = list(items2) if len(items1) == 0 and len(items2) == 1: # Corner case: # allow the first list to be empty and the second list to broadcast a # value. This means that the equality check wont work for the case # where items1 and items2 are supposed to correspond, but the length of # items2 is 1. items2 = [] if len(items2) == 1 and len(items1) > 1: items2 = items2 * len(items1) if len(items1) != len(items2): raise ValueError('out of alignment len(items1)=%r, len(items2)=%r' % ( len(items1), len(items2))) return cls(zip(items1, items2))
Zips elementwise pairs between items1 and items2 into a dictionary. Values from items2 can be broadcast onto items1. Args: items1 (Iterable): full sequence items2 (Iterable): can either be a sequence of one item or a sequence of equal length to `items1` cls (Type[dict]): dictionary type to use. Defaults to dict, but could be ordered dict instead. Returns: dict: similar to dict(zip(items1, items2)) Example: >>> assert dzip([1, 2, 3], [4]) == {1: 4, 2: 4, 3: 4} >>> assert dzip([1, 2, 3], [4, 4, 4]) == {1: 4, 2: 4, 3: 4} >>> assert dzip([], [4]) == {}
def render(self, name, value, attrs=None, renderer=None): """Include a hidden input to store the serialized upload value.""" location = getattr(value, '_seralized_location', '') if location and not hasattr(value, 'url'): value.url = '#' if hasattr(self, 'get_template_substitution_values'): # Django 1.8-1.10 self.template_with_initial = ( '%(initial_text)s: %(initial)s %(clear_template)s' '<br />%(input_text)s: %(input)s') attrs = attrs or {} attrs.update({'data-upload-url': self.url}) hidden_name = self.get_hidden_name(name) kwargs = {} if django_version >= (1, 11): kwargs['renderer'] = renderer parent = super(StickyUploadWidget, self).render(name, value, attrs=attrs, **kwargs) hidden = forms.HiddenInput().render(hidden_name, location, **kwargs) return mark_safe(parent + '\n' + hidden)
Include a hidden input to store the serialized upload value.
def parse_markdown(markdown_content, site_settings): """Parse markdown text to html. :param markdown_content: Markdown text lists #TODO# """ markdown_extensions = set_markdown_extensions(site_settings) html_content = markdown.markdown( markdown_content, extensions=markdown_extensions, ) return html_content
Parse markdown text to html. :param markdown_content: Markdown text lists #TODO#
def _to_autoassign(self): """Save :class:`~nmrstarlib.plsimulator.PeakList` into AutoAssign-formatted string. :return: Peak list representation in AutoAssign format. :rtype: :py:class:`str` """ autoassign_str = "#Index\t\t{}\t\tIntensity\t\tWorkbook\n".format( "\t\t".join([str(i + 1) + "Dim" for i in range(len(self.labels))])) for peak_idx, peak in enumerate(self): dimensions_str = "\t\t".join([str(chemshift) for chemshift in peak.chemshifts_list]) autoassign_str += "{}\t\t{}\t\t{}\t\t{}\n".format(peak_idx+1, dimensions_str, 0, self.spectrum_name) return autoassign_str
Save :class:`~nmrstarlib.plsimulator.PeakList` into AutoAssign-formatted string. :return: Peak list representation in AutoAssign format. :rtype: :py:class:`str`