code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def build_command_tree(pattern, cmd_params): """ Recursively fill in a command tree in cmd_params according to a docopt-parsed "pattern" object. """ from docopt import Either, Optional, OneOrMore, Required, Option, Command, Argument if type(pattern) in [Either, Optional, OneOrMore]: for child in pattern.children: build_command_tree(child, cmd_params) elif type(pattern) in [Required]: for child in pattern.children: cmd_params = build_command_tree(child, cmd_params) elif type(pattern) in [Option]: suffix = "=" if pattern.argcount else "" if pattern.short: cmd_params.options.append(pattern.short + suffix) if pattern.long: cmd_params.options.append(pattern.long + suffix) elif type(pattern) in [Command]: cmd_params = cmd_params.get_subcommand(pattern.name) elif type(pattern) in [Argument]: cmd_params.arguments.append(pattern.name) return cmd_params
Recursively fill in a command tree in cmd_params according to a docopt-parsed "pattern" object.
def append_columns(self, colnames, values, **kwargs): """Append new columns to the table. When appending a single column, ``values`` can be a scalar or an array of either length 1 or the same length as this array (the one it's appended to). In case of multiple columns, values must have the shape ``list(arrays)``, and the dimension of each array has to match the length of this array. See the docs for ``numpy.lib.recfunctions.append_fields`` for an explanation of the remaining options. """ n = len(self) if np.isscalar(values): values = np.full(n, values) values = np.atleast_1d(values) if not isinstance(colnames, str) and len(colnames) > 1: values = np.atleast_2d(values) self._check_column_length(values, n) if values.ndim == 1: if len(values) > n: raise ValueError("New Column is longer than existing table!") elif len(values) > 1 and len(values) < n: raise ValueError( "New Column is shorter than existing table, " "but not just one element!" ) elif len(values) == 1: values = np.full(n, values[0]) new_arr = rfn.append_fields( self, colnames, values, usemask=False, asrecarray=True, **kwargs ) return self.__class__( new_arr, h5loc=self.h5loc, split_h5=self.split_h5, name=self.name, h5singleton=self.h5singleton )
Append new columns to the table. When appending a single column, ``values`` can be a scalar or an array of either length 1 or the same length as this array (the one it's appended to). In case of multiple columns, values must have the shape ``list(arrays)``, and the dimension of each array has to match the length of this array. See the docs for ``numpy.lib.recfunctions.append_fields`` for an explanation of the remaining options.
def getPeer(self, url): """ Finds a peer by URL and return the first peer record with that URL. """ peers = list(models.Peer.select().where(models.Peer.url == url)) if len(peers) == 0: raise exceptions.PeerNotFoundException(url) return peers[0]
Finds a peer by URL and return the first peer record with that URL.
def _parse_table( self, parent_name=None ): # type: (Optional[str]) -> Tuple[Key, Union[Table, AoT]] """ Parses a table element. """ if self._current != "[": raise self.parse_error( InternalParserError, "_parse_table() called on non-bracket character." ) indent = self.extract() self.inc() # Skip opening bracket if self.end(): raise self.parse_error(UnexpectedEofError) is_aot = False if self._current == "[": if not self.inc(): raise self.parse_error(UnexpectedEofError) is_aot = True # Key self.mark() while self._current != "]" and self.inc(): if self.end(): raise self.parse_error(UnexpectedEofError) pass name = self.extract() if not name.strip(): raise self.parse_error(EmptyTableNameError) key = Key(name, sep="") name_parts = tuple(self._split_table_name(name)) missing_table = False if parent_name: parent_name_parts = tuple(self._split_table_name(parent_name)) else: parent_name_parts = tuple() if len(name_parts) > len(parent_name_parts) + 1: missing_table = True name_parts = name_parts[len(parent_name_parts) :] values = Container(True) self.inc() # Skip closing bracket if is_aot: # TODO: Verify close bracket self.inc() cws, comment, trail = self._parse_comment_trail() result = Null() if len(name_parts) > 1: if missing_table: # Missing super table # i.e. a table initialized like this: [foo.bar] # without initializing [foo] # # So we have to create the parent tables table = Table( Container(True), Trivia(indent, cws, comment, trail), is_aot and name_parts[0].key in self._aot_stack, is_super_table=True, name=name_parts[0].key, ) result = table key = name_parts[0] for i, _name in enumerate(name_parts[1:]): if _name in table: child = table[_name] else: child = Table( Container(True), Trivia(indent, cws, comment, trail), is_aot and i == len(name_parts[1:]) - 1, is_super_table=i < len(name_parts[1:]) - 1, name=_name.key, display_name=name if i == len(name_parts[1:]) - 1 else None, ) if is_aot and i == len(name_parts[1:]) - 1: table.append(_name, AoT([child], name=table.name, parsed=True)) else: table.append(_name, child) table = child values = table.value else: if name_parts: key = name_parts[0] while not self.end(): item = self._parse_item() if item: _key, item = item if not self._merge_ws(item, values): if _key is not None and _key.is_dotted(): self._handle_dotted_key(values, _key, item) else: values.append(_key, item) else: if self._current == "[": is_aot_next, name_next = self._peek_table() if self._is_child(name, name_next): key_next, table_next = self._parse_table(name) values.append(key_next, table_next) # Picking up any sibling while not self.end(): _, name_next = self._peek_table() if not self._is_child(name, name_next): break key_next, table_next = self._parse_table(name) values.append(key_next, table_next) break else: raise self.parse_error( InternalParserError, "_parse_item() returned None on a non-bracket character.", ) if isinstance(result, Null): result = Table( values, Trivia(indent, cws, comment, trail), is_aot, name=name, display_name=name, ) if is_aot and (not self._aot_stack or name != self._aot_stack[-1]): result = self._parse_aot(result, name) return key, result
Parses a table element.
def addresses_for_key(gpg, key): """ Takes a key and extracts the email addresses for it. """ fingerprint = key["fingerprint"] addresses = [] for key in gpg.list_keys(): if key["fingerprint"] == fingerprint: addresses.extend([address.split("<")[-1].strip(">") for address in key["uids"] if address]) return addresses
Takes a key and extracts the email addresses for it.
def put(self, key, value, minutes): """ Store an item in the cache for a given number of minutes. :param key: The cache key :type key: str :param value: The cache value :type value: mixed :param minutes: The lifetime in minutes of the cached value :type minutes: int or datetime """ minutes = self._get_minutes(minutes) if minutes is not None: return self._store.put(self.tagged_item_key(key), value, minutes)
Store an item in the cache for a given number of minutes. :param key: The cache key :type key: str :param value: The cache value :type value: mixed :param minutes: The lifetime in minutes of the cached value :type minutes: int or datetime
def execute(self, command): """ Executes command on remote hosts :type command: str :param command: command to be run on remote host """ try: if self.ssh.get_transport() is not None: logger.debug('{0}: executing "{1}"'.format(self.target_address, command)) stdin, stdout, stderr = self.ssh.exec_command(command) return dict(zip(['stdin', 'stdout', 'stderr'], [stdin, stdout, stderr])) else: raise SSHConnectionError(self.target_address, "ssh transport is closed") except (AuthenticationException, SSHException, ChannelException, SocketError) as ex: logger.critical(("{0} execution failed on {1} with exception:" "{2}".format(command, self.target_address, ex))) raise SSHCommandError(self.target_address, command, ex)
Executes command on remote hosts :type command: str :param command: command to be run on remote host
def load_tf_weights_in_transfo_xl(model, config, tf_path): """ Load tf checkpoints in a pytorch model """ try: import numpy as np import tensorflow as tf except ImportError: print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_to_pytorch_map(model, config) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: print("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) tf_weights[name] = array for name, pointer in tf_to_pt_map.items(): assert name in tf_weights array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if 'kernel' in name or 'proj' in name: array = np.transpose(array) if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1: # Here we will split the TF weigths assert len(pointer) == array.shape[0] for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise print("Initialize PyTorch weight {} for layer {}".format(name, i)) p_i.data = torch.from_numpy(arr_i) else: try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + '/Adam', None) tf_weights.pop(name + '/Adam_1', None) print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys()))) return model
Load tf checkpoints in a pytorch model
def strains(self): """ Create a dictionary of SEQID: OLNID from the supplied """ with open(os.path.join(self.path, 'strains.csv')) as strains: next(strains) for line in strains: oln, seqid = line.split(',') self.straindict[oln] = seqid.rstrip() self.strainset.add(oln) logging.debug(oln) if self.debug: break
Create a dictionary of SEQID: OLNID from the supplied
async def get_messages(self, name): """Get stored messages for a service. Args: name (string): The name of the service to get messages from. Returns: list(ServiceMessage): A list of the messages stored for this service """ resp = await self.send_command(OPERATIONS.CMD_QUERY_MESSAGES, {'name': name}, MESSAGES.QueryMessagesResponse, timeout=5.0) return [states.ServiceMessage.FromDictionary(x) for x in resp]
Get stored messages for a service. Args: name (string): The name of the service to get messages from. Returns: list(ServiceMessage): A list of the messages stored for this service
def encode_request(name, expected, updated): """ Encode request into client_message""" client_message = ClientMessage(payload_size=calculate_size(name, expected, updated)) client_message.set_message_type(REQUEST_TYPE) client_message.set_retryable(RETRYABLE) client_message.append_str(name) client_message.append_long(expected) client_message.append_long(updated) client_message.update_frame_length() return client_message
Encode request into client_message
def defaulted_config(modules, params=None, yaml=None, filename=None, config=None, validate=True): """Context manager version of :func:`set_default_config()`. Use this with a Python 'with' statement, like >>> config_yaml = ''' ... toplevel: ... param: value ... ''' >>> with yakonfig.defaulted_config([toplevel], yaml=config_yaml) as config: ... assert 'param' in config['toplevel'] ... assert yakonfig.get_global_config('toplevel', 'param') == 'value' On exit the global configuration is restored to its previous state (if any). :param modules: modules or Configurable instances to use :type modules: iterable of :class:`~yakonfig.Configurable` :param dict params: dictionary of command-line argument key to values :param str yaml: global configuration file :param str filename: location of global configuration file :param dict config: global configuration object :param bool validate: check configuration after creating :return: the new global configuration """ with _temporary_config(): set_default_config(modules, params=params, yaml=yaml, filename=filename, config=config, validate=validate) yield get_global_config()
Context manager version of :func:`set_default_config()`. Use this with a Python 'with' statement, like >>> config_yaml = ''' ... toplevel: ... param: value ... ''' >>> with yakonfig.defaulted_config([toplevel], yaml=config_yaml) as config: ... assert 'param' in config['toplevel'] ... assert yakonfig.get_global_config('toplevel', 'param') == 'value' On exit the global configuration is restored to its previous state (if any). :param modules: modules or Configurable instances to use :type modules: iterable of :class:`~yakonfig.Configurable` :param dict params: dictionary of command-line argument key to values :param str yaml: global configuration file :param str filename: location of global configuration file :param dict config: global configuration object :param bool validate: check configuration after creating :return: the new global configuration
def from_coeff(self, chebcoeff, domain=None, prune=True, vscale=1.): """ Initialise from provided coefficients prune: Whether to prune the negligible coefficients vscale: the scale to use when pruning """ coeffs = np.asarray(chebcoeff) if prune: N = self._cutoff(coeffs, vscale) pruned_coeffs = coeffs[:N] else: pruned_coeffs = coeffs values = self.polyval(pruned_coeffs) return self(values, domain, vscale)
Initialise from provided coefficients prune: Whether to prune the negligible coefficients vscale: the scale to use when pruning
def get_random(min_pt, max_pt): """Returns a random vector in the given range.""" result = Point(random.random(), random.random()) return result.get_component_product(max_pt - min_pt) + min_pt
Returns a random vector in the given range.
def list_subcommand(vcard_list, parsable): """Print a user friendly contacts table. :param vcard_list: the vcards to print :type vcard_list: list of carddav_object.CarddavObject :param parsable: machine readable output: columns devided by tabulator (\t) :type parsable: bool :returns: None :rtype: None """ if not vcard_list: if not parsable: print("Found no contacts") sys.exit(1) elif parsable: contact_line_list = [] for vcard in vcard_list: if config.display_by_name() == "first_name": name = vcard.get_first_name_last_name() else: name = vcard.get_last_name_first_name() contact_line_list.append('\t'.join([vcard.get_uid(), name, vcard.address_book.name])) print('\n'.join(contact_line_list)) else: list_contacts(vcard_list)
Print a user friendly contacts table. :param vcard_list: the vcards to print :type vcard_list: list of carddav_object.CarddavObject :param parsable: machine readable output: columns devided by tabulator (\t) :type parsable: bool :returns: None :rtype: None
def _init(self, run_conf, run_number=None): '''Initialization before a new run. ''' self.stop_run.clear() self.abort_run.clear() self._run_status = run_status.running self._write_run_number(run_number) self._init_run_conf(run_conf)
Initialization before a new run.
def interpolate(self, factor, minKerning, maxKerning, round=True, suppressError=True): """ Interpolates all pairs between two :class:`BaseKerning` objects: **minKerning** and **maxKerning**. The interpolation occurs on a 0 to 1.0 range where **minKerning** is located at 0 and **maxKerning** is located at 1.0. The kerning data is replaced by the interpolated kerning. * **factor** is the interpolation value. It may be less than 0 and greater than 1.0. It may be an :ref:`type-int-float`, ``tuple`` or ``list``. If it is a ``tuple`` or ``list``, the first number indicates the x factor and the second number indicates the y factor. * **round** is a ``bool`` indicating if the result should be rounded to ``int``\s. The default behavior is to round interpolated kerning. * **suppressError** is a ``bool`` indicating if incompatible data should be ignored or if an error should be raised when such incompatibilities are found. The default behavior is to ignore incompatible data. >>> myKerning.interpolate(kerningOne, kerningTwo) """ factor = normalizers.normalizeInterpolationFactor(factor) if not isinstance(minKerning, BaseKerning): raise TypeError(("Interpolation to an instance of %r can not be " "performed from an instance of %r.") % ( self.__class__.__name__, minKerning.__class__.__name__)) if not isinstance(maxKerning, BaseKerning): raise TypeError(("Interpolation to an instance of %r can not be " "performed from an instance of %r.") % ( self.__class__.__name__, maxKerning.__class__.__name__)) round = normalizers.normalizeBoolean(round) suppressError = normalizers.normalizeBoolean(suppressError) self._interpolate(factor, minKerning, maxKerning, round=round, suppressError=suppressError)
Interpolates all pairs between two :class:`BaseKerning` objects: **minKerning** and **maxKerning**. The interpolation occurs on a 0 to 1.0 range where **minKerning** is located at 0 and **maxKerning** is located at 1.0. The kerning data is replaced by the interpolated kerning. * **factor** is the interpolation value. It may be less than 0 and greater than 1.0. It may be an :ref:`type-int-float`, ``tuple`` or ``list``. If it is a ``tuple`` or ``list``, the first number indicates the x factor and the second number indicates the y factor. * **round** is a ``bool`` indicating if the result should be rounded to ``int``\s. The default behavior is to round interpolated kerning. * **suppressError** is a ``bool`` indicating if incompatible data should be ignored or if an error should be raised when such incompatibilities are found. The default behavior is to ignore incompatible data. >>> myKerning.interpolate(kerningOne, kerningTwo)
def construct(self, request, service=None, http_args=None, **kwargs): """ Constructs a client assertion and signs it with a key. The request is modified as a side effect. :param request: The request :param service: A :py:class:`oidcservice.service.Service` instance :param http_args: HTTP arguments :param kwargs: Extra arguments :return: Constructed HTTP arguments, in this case none """ if 'client_assertion' in kwargs: request["client_assertion"] = kwargs['client_assertion'] if 'client_assertion_type' in kwargs: request[ 'client_assertion_type'] = kwargs['client_assertion_type'] else: request["client_assertion_type"] = JWT_BEARER elif 'client_assertion' in request: if 'client_assertion_type' not in request: request["client_assertion_type"] = JWT_BEARER else: algorithm = None _context = service.service_context # audience for the signed JWT depends on which endpoint # we're talking to. if kwargs['authn_endpoint'] in ['token_endpoint']: try: algorithm = _context.behaviour[ 'token_endpoint_auth_signing_alg'] except (KeyError, AttributeError): pass audience = _context.provider_info['token_endpoint'] else: audience = _context.provider_info['issuer'] if not algorithm: algorithm = self.choose_algorithm(**kwargs) ktype = alg2keytype(algorithm) try: if 'kid' in kwargs: signing_key = [self.get_key_by_kid(kwargs["kid"], algorithm, _context)] elif ktype in _context.kid["sig"]: try: signing_key = [self.get_key_by_kid( _context.kid["sig"][ktype], algorithm, _context)] except KeyError: signing_key = self.get_signing_key(algorithm, _context) else: signing_key = self.get_signing_key(algorithm, _context) except NoMatchingKey as err: logger.error("%s" % sanitize(err)) raise try: _args = {'lifetime': kwargs['lifetime']} except KeyError: _args = {} # construct the signed JWT with the assertions and add # it as value to the 'client_assertion' claim of the request request["client_assertion"] = assertion_jwt( _context.client_id, signing_key, audience, algorithm, **_args) request["client_assertion_type"] = JWT_BEARER try: del request["client_secret"] except KeyError: pass # If client_id is not required to be present, remove it. if not request.c_param["client_id"][VREQUIRED]: try: del request["client_id"] except KeyError: pass return {}
Constructs a client assertion and signs it with a key. The request is modified as a side effect. :param request: The request :param service: A :py:class:`oidcservice.service.Service` instance :param http_args: HTTP arguments :param kwargs: Extra arguments :return: Constructed HTTP arguments, in this case none
def getAccountInfo(self, fields=None): """Use this method to get information about a Telegraph account. :param fields: List of account fields to return. Available fields: short_name, author_name, author_url, auth_url, page_count. :type fields: list :returns: Account object on success. """ return self.make_method("getAccountInfo", { "access_token": self.access_token, "fields": json.dumps(fields) if fields else None })
Use this method to get information about a Telegraph account. :param fields: List of account fields to return. Available fields: short_name, author_name, author_url, auth_url, page_count. :type fields: list :returns: Account object on success.
def path(self, path): """ Path of the IOU executable. :param path: path to the IOU image executable """ self._path = self.manager.get_abs_image_path(path) log.info('IOU "{name}" [{id}]: IOU image updated to "{path}"'.format(name=self._name, id=self._id, path=self._path))
Path of the IOU executable. :param path: path to the IOU image executable
def run(self): """ Statistics logger job callback. """ try: proxy = config_ini.engine.open() self.LOG.info("Stats for %s - up %s, %s" % ( config_ini.engine.engine_id, fmt.human_duration(proxy.system.time() - config_ini.engine.startup, 0, 2, True).strip(), proxy )) except (error.LoggableError, xmlrpc.ERRORS), exc: self.LOG.warn(str(exc))
Statistics logger job callback.
async def chat_send(self, message: str, team_only: bool): """ Writes a message to the chat """ ch = ChatChannel.Team if team_only else ChatChannel.Broadcast await self._execute( action=sc_pb.RequestAction( actions=[sc_pb.Action(action_chat=sc_pb.ActionChat(channel=ch.value, message=message))] ) )
Writes a message to the chat
def _msg(self, label, *msg): """ Prints a message with a label """ if self.quiet is False: txt = self._unpack_msg(*msg) print("[" + label + "] " + txt)
Prints a message with a label
def random_filtered_sources(sources, srcfilter, seed): """ :param sources: a list of sources :param srcfilte: a SourceFilter instance :param seed: a random seed :returns: an empty list or a list with a single filtered source """ random.seed(seed) while sources: src = random.choice(sources) if srcfilter.get_close_sites(src) is not None: return [src] sources.remove(src) return []
:param sources: a list of sources :param srcfilte: a SourceFilter instance :param seed: a random seed :returns: an empty list or a list with a single filtered source
def _schema(self, path, obj, app): """ fulfill 'name' field for objects under '#/definitions' and with 'properties' """ if path.startswith('#/definitions'): last_token = jp_split(path)[-1] if app.version == '1.2': obj.update_field('name', scope_split(last_token)[-1]) else: obj.update_field('name', last_token)
fulfill 'name' field for objects under '#/definitions' and with 'properties'
def _get_api_content(self): """Updates class api content by calling Github api and storing result""" if GITHUB_TOKEN is not None: self.add_params_to_url({ "access_token": GITHUB_TOKEN }) api_content_response = requests.get(self.api_url) self.api_content = json.loads( api_content_response.text )
Updates class api content by calling Github api and storing result
def category(self, value): """ Setter for **self.__category** attribute. :param value: Attribute value. :type value: unicode """ if value is not None: assert type(value) is unicode, "'{0}' attribute: '{1}' type is not 'unicode'!".format( "category", value) self.__category = value
Setter for **self.__category** attribute. :param value: Attribute value. :type value: unicode
def character_to_vk(self, character): """ Returns a tuple of (scan_code, modifiers) where ``scan_code`` is a numeric scan code and ``modifiers`` is an array of string modifier names (like 'shift') """ for vk in self.non_layout_keys: if self.non_layout_keys[vk] == character.lower(): return (vk, []) for vk in self.layout_specific_keys: if self.layout_specific_keys[vk][0] == character: return (vk, []) elif self.layout_specific_keys[vk][1] == character: return (vk, ['shift']) raise ValueError("Unrecognized character: {}".format(character))
Returns a tuple of (scan_code, modifiers) where ``scan_code`` is a numeric scan code and ``modifiers`` is an array of string modifier names (like 'shift')
def sky_bbox_ll(self): """ The sky coordinates of the lower-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmin.value - 0.5, self.ymin.value - 0.5, self._wcs, origin=0) else: return None
The sky coordinates of the lower-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*.
def _refresh_channel(self): ''' Reset the channel, in the event of an interruption ''' self.channel = salt.transport.client.ReqChannel.factory(self.opts) return self.channel
Reset the channel, in the event of an interruption
def column_types(self): """Return a dict mapping column name to type for all columns in table """ column_types = {} for c in self.sqla_columns: column_types[c.name] = c.type return column_types
Return a dict mapping column name to type for all columns in table
def delete(method, hmc, uri, uri_parms, logon_required): """Operation: Delete Hipersocket (requires DPM mode).""" try: adapter = hmc.lookup_by_uri(uri) except KeyError: raise InvalidResourceError(method, uri) cpc = adapter.manager.parent assert cpc.dpm_enabled adapter.manager.remove(adapter.oid)
Operation: Delete Hipersocket (requires DPM mode).
def convert_descriptor_and_rows(self, descriptor, rows): """Convert descriptor and rows to Pandas """ # Prepare primary_key = None schema = tableschema.Schema(descriptor) if len(schema.primary_key) == 1: primary_key = schema.primary_key[0] elif len(schema.primary_key) > 1: message = 'Multi-column primary keys are not supported' raise tableschema.exceptions.StorageError(message) # Get data/index data_rows = [] index_rows = [] jtstypes_map = {} for row in rows: values = [] index = None for field, value in zip(schema.fields, row): try: if isinstance(value, float) and np.isnan(value): value = None if value and field.type == 'integer': value = int(value) value = field.cast_value(value) except tableschema.exceptions.CastError: value = json.loads(value) # http://pandas.pydata.org/pandas-docs/stable/gotchas.html#support-for-integer-na if value is None and field.type in ('number', 'integer'): jtstypes_map[field.name] = 'number' value = np.NaN if field.name == primary_key: index = value else: values.append(value) data_rows.append(tuple(values)) index_rows.append(index) # Get dtypes dtypes = [] for field in schema.fields: if field.name != primary_key: field_name = field.name if six.PY2: field_name = field.name.encode('utf-8') dtype = self.convert_type(jtstypes_map.get(field.name, field.type)) dtypes.append((field_name, dtype)) # Create dataframe index = None columns = schema.headers array = np.array(data_rows, dtype=dtypes) if primary_key: index_field = schema.get_field(primary_key) index_dtype = self.convert_type(index_field.type) index_class = pd.Index if index_field.type in ['datetime', 'date']: index_class = pd.DatetimeIndex index = index_class(index_rows, name=primary_key, dtype=index_dtype) columns = filter(lambda column: column != primary_key, schema.headers) dataframe = pd.DataFrame(array, index=index, columns=columns) return dataframe
Convert descriptor and rows to Pandas
def _set_neighbor_route_map_name_direction_out(self, v, load=False): """ Setter method for neighbor_route_map_name_direction_out, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv6/ipv6_unicast/af_ipv6_vrf/neighbor/af_ipv6_vrf_neighbor_address_holder/af_ipv6_neighbor_addr/neighbor_route_map/neighbor_route_map_direction_out/neighbor_route_map_name_direction_out (common-def:name-string64) If this variable is read-only (config: false) in the source YANG file, then _set_neighbor_route_map_name_direction_out is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_neighbor_route_map_name_direction_out() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9\\.\\\\\\\\@#\\+\\*\\(\\)=\\{~\\}%<>=$_\\[\\]\\|]{0,63})'}), is_leaf=True, yang_name="neighbor-route-map-name-direction-out", rest_name="neighbor-route-map-name-direction-out", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply route map to neighbor', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='common-def:name-string64', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """neighbor_route_map_name_direction_out must be of a type compatible with common-def:name-string64""", 'defined-type': "common-def:name-string64", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9\\.\\\\\\\\@#\\+\\*\\(\\)=\\{~\\}%<>=$_\\[\\]\\|]{0,63})'}), is_leaf=True, yang_name="neighbor-route-map-name-direction-out", rest_name="neighbor-route-map-name-direction-out", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply route map to neighbor', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='common-def:name-string64', is_config=True)""", }) self.__neighbor_route_map_name_direction_out = t if hasattr(self, '_set'): self._set()
Setter method for neighbor_route_map_name_direction_out, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv6/ipv6_unicast/af_ipv6_vrf/neighbor/af_ipv6_vrf_neighbor_address_holder/af_ipv6_neighbor_addr/neighbor_route_map/neighbor_route_map_direction_out/neighbor_route_map_name_direction_out (common-def:name-string64) If this variable is read-only (config: false) in the source YANG file, then _set_neighbor_route_map_name_direction_out is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_neighbor_route_map_name_direction_out() directly.
def event(self, event_data, priority="normal", event_method="EVENT"): """This function will send event packets to the server. This is the main method you would use to send data from your application to the server. Whenever an event is sent to the server, a universally unique event id (euuid) is created for each event and stored in the "event_uuids" dictionary. This dictionary contains a list of all events that are currently waiting for a response from the server. The event will only be removed from this dictionary if the server responds with LEGAL or ILLEGAL or if the request times out. Args: event_data (dict): The event data to send to the server. This data will be passed through the server's middleware to determine if the event is legal or not, and then processed by the server it is legal priority (string): The event's priority informs the server of whether or not the client is going to wait for a confirmation message from the server indicating whether its event was LEGAL or ILLEGAL. Setting this to "normal" informs the server that the client will wait for a response from the server before processing the event. Setting this to "high" informs the server that the client will NOT wait for a response. Defaults to "normal". event_method (string): The type of event to send to the server. Valid methods are "EVENT", "AUTH". Defaults to "EVENT". Returns: A universally unique identifier (uuid) of the event. Examples: >>> event_data >>> priority """ logger.debug("event: " + str(event_data)) # Generate an event UUID for this event euuid = uuid.uuid1() logger.debug("<%s> <euuid:%s> Sending event data to server: " "%s" % (str(self.cuuid), str(euuid), str(self.server))) if not self.listener.listening: logger.warning("Neteria client is not listening.") # If we're not even registered, don't even bother. if not self.registered: logger.warning("<%s> <euuid:%s> Client is currently not registered. " "Event not sent." % (str(self.cuuid), str(euuid))) return False # Send the event data to the server packet = {"method": event_method, "cuuid": str(self.cuuid), "euuid": str(euuid), "event_data": event_data, "timestamp": str(datetime.now()), "retry": 0, "priority": priority} self.listener.send_datagram( serialize_data(packet, self.compression, self.encryption, self.server_key), self.server) logger.debug("<%s> Sending EVENT Packet: %s" % (str(self.cuuid), pformat(packet))) # Set the sent event to our event buffer to see if we need to roll back # or anything self.event_uuids[str(euuid)] = packet # Now we need to reschedule a timeout/retransmit check logger.debug("<%s> Scheduling retry in %s seconds" % (str(self.cuuid), str(self.timeout))) self.listener.call_later(self.timeout, self.retransmit, packet) return euuid
This function will send event packets to the server. This is the main method you would use to send data from your application to the server. Whenever an event is sent to the server, a universally unique event id (euuid) is created for each event and stored in the "event_uuids" dictionary. This dictionary contains a list of all events that are currently waiting for a response from the server. The event will only be removed from this dictionary if the server responds with LEGAL or ILLEGAL or if the request times out. Args: event_data (dict): The event data to send to the server. This data will be passed through the server's middleware to determine if the event is legal or not, and then processed by the server it is legal priority (string): The event's priority informs the server of whether or not the client is going to wait for a confirmation message from the server indicating whether its event was LEGAL or ILLEGAL. Setting this to "normal" informs the server that the client will wait for a response from the server before processing the event. Setting this to "high" informs the server that the client will NOT wait for a response. Defaults to "normal". event_method (string): The type of event to send to the server. Valid methods are "EVENT", "AUTH". Defaults to "EVENT". Returns: A universally unique identifier (uuid) of the event. Examples: >>> event_data >>> priority
def filter_kepler_lcdict(lcdict, filterflags=True, nanfilter='sap,pdc', timestoignore=None): '''This filters the Kepler `lcdict`, removing nans and bad observations. By default, this function removes points in the Kepler LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_kepler_fitslc` or `read_kepler_fitslc`. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. nanfilter : {'sap','pdc','sap,pdc'} Indicates the flux measurement type(s) to apply the filtering to. timestoignore : list of tuples or None This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). The `lcdict` is filtered IN PLACE! ''' cols = lcdict['columns'] # filter all bad LC points as noted by quality flags if filterflags: nbefore = lcdict['time'].size filterind = lcdict['sap_quality'] == 0 for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][filterind] else: lcdict[col] = lcdict[col][filterind] nafter = lcdict['time'].size LOGINFO('applied quality flag filter, ndet before = %s, ndet after = %s' % (nbefore, nafter)) if nanfilter and nanfilter == 'sap,pdc': notnanind = ( npisfinite(lcdict['sap']['sap_flux']) & npisfinite(lcdict['pdc']['pdcsap_flux']) & npisfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'sap': notnanind = ( npisfinite(lcdict['sap']['sap_flux']) & npisfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'pdc': notnanind = ( npisfinite(lcdict['pdc']['pdcsap_flux']) & npisfinite(lcdict['time']) ) # remove nans from all columns if nanfilter: nbefore = lcdict['time'].size for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][notnanind] else: lcdict[col] = lcdict[col][notnanind] nafter = lcdict['time'].size LOGINFO('removed nans, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # exclude all times in timestoignore if (timestoignore and isinstance(timestoignore, list) and len(timestoignore) > 0): exclind = npfull_like(lcdict['time'], True, dtype=np.bool_) nbefore = exclind.size # get all the masks for ignoretime in timestoignore: time0, time1 = ignoretime[0], ignoretime[1] thismask = ~((lcdict['time'] >= time0) & (lcdict['time'] <= time1)) exclind = exclind & thismask # apply the masks for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][exclind] else: lcdict[col] = lcdict[col][exclind] nafter = lcdict['time'].size LOGINFO('removed timestoignore, ndet before = %s, ndet after = %s' % (nbefore, nafter)) return lcdict
This filters the Kepler `lcdict`, removing nans and bad observations. By default, this function removes points in the Kepler LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_kepler_fitslc` or `read_kepler_fitslc`. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. nanfilter : {'sap','pdc','sap,pdc'} Indicates the flux measurement type(s) to apply the filtering to. timestoignore : list of tuples or None This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). The `lcdict` is filtered IN PLACE!
def get_selections(pattern=None, state=None): ''' View package state from the dpkg database. Returns a dict of dicts containing the state, and package names: .. code-block:: python {'<host>': {'<state>': ['pkg1', ... ] }, ... } CLI Example: .. code-block:: bash salt '*' pkg.get_selections salt '*' pkg.get_selections 'python-*' salt '*' pkg.get_selections state=hold salt '*' pkg.get_selections 'openssh*' state=hold ''' ret = {} cmd = ['dpkg', '--get-selections'] cmd.append(pattern if pattern else '*') stdout = __salt__['cmd.run_stdout'](cmd, output_loglevel='trace', python_shell=False) ret = _parse_selections(stdout) if state: return {state: ret.get(state, [])} return ret
View package state from the dpkg database. Returns a dict of dicts containing the state, and package names: .. code-block:: python {'<host>': {'<state>': ['pkg1', ... ] }, ... } CLI Example: .. code-block:: bash salt '*' pkg.get_selections salt '*' pkg.get_selections 'python-*' salt '*' pkg.get_selections state=hold salt '*' pkg.get_selections 'openssh*' state=hold
def hard_equals(a, b): """Implements the '===' operator.""" if type(a) != type(b): return False return a == b
Implements the '===' operator.
def set_parameter(self, name, value): """Sets a parameter for the BaseForecastingMethod. :param string name: Name of the parameter. :param numeric value: Value of the parameter. """ # set the furecast until variable to None if necessary if name == "valuesToForecast": self._forecastUntil = None # continue with the parents implementation return super(BaseForecastingMethod, self).set_parameter(name, value)
Sets a parameter for the BaseForecastingMethod. :param string name: Name of the parameter. :param numeric value: Value of the parameter.
def from_bma_history(cls: Type[TransactionType], currency: str, tx_data: Dict) -> TransactionType: """ Get the transaction instance from json :param currency: the currency of the tx :param tx_data: json data of the transaction :return: """ tx_data = tx_data.copy() tx_data["currency"] = currency for data_list in ('issuers', 'outputs', 'inputs', 'unlocks', 'signatures'): tx_data['multiline_{0}'.format(data_list)] = '\n'.join(tx_data[data_list]) if tx_data["version"] >= 3: signed_raw = """Version: {version} Type: Transaction Currency: {currency} Blockstamp: {blockstamp} Locktime: {locktime} Issuers: {multiline_issuers} Inputs: {multiline_inputs} Unlocks: {multiline_unlocks} Outputs: {multiline_outputs} Comment: {comment} {multiline_signatures} """.format(**tx_data) else: signed_raw = """Version: {version} Type: Transaction Currency: {currency} Locktime: {locktime} Issuers: {multiline_issuers} Inputs: {multiline_inputs} Unlocks: {multiline_unlocks} Outputs: {multiline_outputs} Comment: {comment} {multiline_signatures} """.format(**tx_data) return cls.from_signed_raw(signed_raw)
Get the transaction instance from json :param currency: the currency of the tx :param tx_data: json data of the transaction :return:
def authorized_tenants(self): """Returns a memoized list of tenants this user may access.""" if self.is_authenticated and self._authorized_tenants is None: endpoint = self.endpoint try: self._authorized_tenants = utils.get_project_list( user_id=self.id, auth_url=endpoint, token=self.unscoped_token, is_federated=self.is_federated) except (keystone_exceptions.ClientException, keystone_exceptions.AuthorizationFailure): LOG.exception('Unable to retrieve project list.') return self._authorized_tenants or []
Returns a memoized list of tenants this user may access.
def img(self): '''return a cv image for the icon''' SlipThumbnail.img(self) if self.rotation: # rotate the image mat = cv.CreateMat(2, 3, cv.CV_32FC1) cv.GetRotationMatrix2D((self.width/2,self.height/2), -self.rotation, 1.0, mat) self._rotated = cv.CloneImage(self._img) cv.WarpAffine(self._img, self._rotated, mat) else: self._rotated = self._img return self._rotated
return a cv image for the icon
def point_in_circle(pt, center, radius): ''' Returns true if a given point is located inside (or on the border) of a circle. >>> point_in_circle((0, 0), (0, 0), 1) True >>> point_in_circle((1, 0), (0, 0), 1) True >>> point_in_circle((1, 1), (0, 0), 1) False ''' d = np.linalg.norm(np.asarray(pt) - np.asarray(center)) return d <= radius
Returns true if a given point is located inside (or on the border) of a circle. >>> point_in_circle((0, 0), (0, 0), 1) True >>> point_in_circle((1, 0), (0, 0), 1) True >>> point_in_circle((1, 1), (0, 0), 1) False
def GetBaseFiles(self, diff): """Helper that calls GetBase file for each file in the patch. Returns: A dictionary that maps from filename to GetBaseFile's tuple. Filenames are retrieved based on lines that start with "Index:" or "Property changes on:". """ files = {} for line in diff.splitlines(True): if line.startswith('Index:') or line.startswith('Property changes on:'): unused, filename = line.split(':', 1) # On Windows if a file has property changes its filename uses '\' # instead of '/'. filename = to_slash(filename.strip()) files[filename] = self.GetBaseFile(filename) return files
Helper that calls GetBase file for each file in the patch. Returns: A dictionary that maps from filename to GetBaseFile's tuple. Filenames are retrieved based on lines that start with "Index:" or "Property changes on:".
def argdistincts(self, nested=False): """ Return all unique combinations (up to permutation) of two elements, taken without replacement from the indices of the jagged dimension. Combinations are ordered lexicographically. nested: Return a doubly-jagged array where the first jagged dimension matches the shape of this array """ out = self._argdistincts(absolute=False) if nested: out = self.JaggedArray.fromcounts(self.numpy.maximum(0, self.counts - 1), self.JaggedArray.fromcounts(self.index[:, :0:-1].flatten(), out._content)) return out
Return all unique combinations (up to permutation) of two elements, taken without replacement from the indices of the jagged dimension. Combinations are ordered lexicographically. nested: Return a doubly-jagged array where the first jagged dimension matches the shape of this array
def write_defaults(self): """Create default config file and reload. """ self.defaults.write() self.reset_defaults(self.defaults.filename)
Create default config file and reload.
def term_symbols(self): """ All possible Russell-Saunders term symbol of the Element eg. L = 1, n_e = 2 (s2) returns [['1D2'], ['3P0', '3P1', '3P2'], ['1S0']] """ L_symbols = 'SPDFGHIKLMNOQRTUVWXYZ' L, v_e = self.valence # for one electron in subshell L ml = list(range(-L, L + 1)) ms = [1 / 2, -1 / 2] # all possible configurations of ml,ms for one e in subshell L ml_ms = list(product(ml, ms)) # Number of possible configurations for r electrons in subshell L. n = (2 * L + 1) * 2 # the combination of n_e electrons configurations # C^{n}_{n_e} e_config_combs = list(combinations(range(n), v_e)) # Total ML = sum(ml1, ml2), Total MS = sum(ms1, ms2) TL = [sum([ml_ms[comb[e]][0] for e in range(v_e)]) for comb in e_config_combs] TS = [sum([ml_ms[comb[e]][1] for e in range(v_e)]) for comb in e_config_combs] comb_counter = Counter([r for r in zip(TL, TS)]) term_symbols = [] while sum(comb_counter.values()) > 0: # Start from the lowest freq combination, # which corresponds to largest abs(L) and smallest abs(S) L, S = min(comb_counter) J = list(np.arange(abs(L - S), abs(L) + abs(S) + 1)) term_symbols.append([str(int(2 * (abs(S)) + 1)) + L_symbols[abs(L)] + str(j) for j in J]) # Without J # term_symbols.append(str(int(2 * (abs(S)) + 1)) \ # + L_symbols[abs(L)]) # Delete all configurations included in this term for ML in range(-L, L - 1, -1): for MS in np.arange(S, -S + 1, 1): if (ML, MS) in comb_counter: comb_counter[(ML, MS)] -= 1 if comb_counter[(ML, MS)] == 0: del comb_counter[(ML, MS)] return term_symbols
All possible Russell-Saunders term symbol of the Element eg. L = 1, n_e = 2 (s2) returns [['1D2'], ['3P0', '3P1', '3P2'], ['1S0']]
def parse_results(fields, data): """ Traverses ordered dictionary, calls _traverse_results() to recursively read into the dictionary depth of data """ master = [] for record in data['records']: # for each 'record' in response row = [None] * len(fields) # create null list the length of number of columns for obj, value in record.iteritems(): # for each obj in record if not isinstance(value, (dict, list, tuple)): # if not data structure if obj in fields: row[fields.index(obj)] = ensure_utf(value) elif isinstance(value, dict) and obj != 'attributes': # traverse down into object path = obj _traverse_results(value, fields, row, path) master.append(row) return master
Traverses ordered dictionary, calls _traverse_results() to recursively read into the dictionary depth of data
def deprecated(message=None): """Decorator to mark functions as deprecated. A warning will be emitted when the function is used.""" def deco(func): @functools.wraps(func) def wrapped(*args, **kwargs): warnings.warn( message or 'Call to deprecated function {}'.format(func.__name__), category=PubChemPyDeprecationWarning, stacklevel=2 ) return func(*args, **kwargs) return wrapped return deco
Decorator to mark functions as deprecated. A warning will be emitted when the function is used.
def np2model_tensor(a): "Tranform numpy array `a` to a tensor of the same type." dtype = model_type(a.dtype) res = as_tensor(a) if not dtype: return res return res.type(dtype)
Tranform numpy array `a` to a tensor of the same type.
def main(): """main.""" parser = create_parser() args = parser.parse_args() if hasattr(args, 'handler'): args.handler(args) else: parser.print_help()
main.
def _system_config_file(): """ Returns the path to the settings.cfg file. On Windows the file is located in the AppData/Local/envipyengine directory. On Unix, the file will be located in the ~/.envipyengine directory. :return: String specifying the full path to the settings.cfg file """ if sys.platform == 'win32': config_path = os.path.sep.join([_windows_system_appdata(), _APP_DIRNAME, _CONFIG_FILENAME]) elif sys.platform.startswith('darwin'): config_path = os.path.sep.join([os.path.sep + 'Library', 'Preferences', _APP_DIRNAME, _CONFIG_FILENAME]) else: config_path = os.path.sep.join(['', 'var', 'lib', _APP_DIRNAME, _CONFIG_FILENAME]) return config_path
Returns the path to the settings.cfg file. On Windows the file is located in the AppData/Local/envipyengine directory. On Unix, the file will be located in the ~/.envipyengine directory. :return: String specifying the full path to the settings.cfg file
def circuit_to_tensorflow_runnable( circuit: circuits.Circuit, initial_state: Union[int, np.ndarray] = 0, ) -> ComputeFuncAndFeedDict: """Returns a compute function and feed_dict for a `cirq.Circuit`'s output. `result.compute()` will return a `tensorflow.Tensor` with `tensorflow.placeholder` objects to be filled in by `result.feed_dict`, at which point it will evaluate to the output state vector of the circuit. You can apply further operations to the tensor returned by `result.compute`. This allows, for example, for the final result to be a small amount of computed data (e.g. an expectation value) instead of the gigantic raw state vector. The tensor returned by `result.compute` is intended to run efficiently on cloud TPUs. It will have dtype complex64 and a shape of (2**n,) where n is the number of qubits. Examples: To simulate the circuit with tensorflow in a normal session, forward this method's output into `tensorflow.Session.run` as follows: import tensorflow as tf r = circuit_to_tensorflow_runnable(...) with tf.Session() as session: output = session.run(r.compute(), feed_dict=r.feed_dict) print(output) Note that you can use the returned tensor in further computations. For example, to compute the chance of the system ending up in the first 128 computational basis states you can use `tf.norm(tensor[:128], 2)`: import tensorflow as tf r = circuit_to_tensorflow_runnable(...) expectation = lambda: tf.norm(r.compute()[:128], 2) with tf.Session() as session: output = session.run(expectation, feed_dict=r.feed_dict) print(output) For documentation on running against cloud TPUs, see https://cloud.google.com/tpu/docs/quickstart#run_example Generally speaking, from within a cloud instance, you use `tf.contrib.tpu.rewrite` to convert the tensor into a TPU compatible form, initialize the TPU system, then run the rewritten tensor: import tensorflow as tf TPU_TARGET = ??????? r = circuit_to_tensorflow_runnable(...YOUR_CIRCUIT...) rewritten_for_tpu = tf.contrib.tpu.rewrite(r.compute) with tf.Session(target=TPU_TARGET) as session: session.run(tf.contrib.tpu.initialize_system()) output = session.run(rewritten_for_tpu, feed_dict=r.feed_dict) print(output) Args: circuit: The circuit to apply to `initial_state` to produce an output state vector. initial_state: The input into the circuit. If this is an integer, it indicates that the input state is a computational basis state where the k'th qubit is set by the k'th bit of the integer. If this is a numpy array, it should directly encode a normalized wavefunction. Returns: A ComputeFuncAndFeedDict, which is a named tuple whose first element is a function that returns a Tensor representing the output state vector that results from applying the given circuit to the given, and whose second element is a feed_dict containing important parameters describing that tensor. """ if not circuit.are_all_measurements_terminal(): raise ValueError('not circuit.are_all_measurements_terminal()') t = _TensorCircuit(circuit, initial_state) return ComputeFuncAndFeedDict(t.compute, t.feed_dict)
Returns a compute function and feed_dict for a `cirq.Circuit`'s output. `result.compute()` will return a `tensorflow.Tensor` with `tensorflow.placeholder` objects to be filled in by `result.feed_dict`, at which point it will evaluate to the output state vector of the circuit. You can apply further operations to the tensor returned by `result.compute`. This allows, for example, for the final result to be a small amount of computed data (e.g. an expectation value) instead of the gigantic raw state vector. The tensor returned by `result.compute` is intended to run efficiently on cloud TPUs. It will have dtype complex64 and a shape of (2**n,) where n is the number of qubits. Examples: To simulate the circuit with tensorflow in a normal session, forward this method's output into `tensorflow.Session.run` as follows: import tensorflow as tf r = circuit_to_tensorflow_runnable(...) with tf.Session() as session: output = session.run(r.compute(), feed_dict=r.feed_dict) print(output) Note that you can use the returned tensor in further computations. For example, to compute the chance of the system ending up in the first 128 computational basis states you can use `tf.norm(tensor[:128], 2)`: import tensorflow as tf r = circuit_to_tensorflow_runnable(...) expectation = lambda: tf.norm(r.compute()[:128], 2) with tf.Session() as session: output = session.run(expectation, feed_dict=r.feed_dict) print(output) For documentation on running against cloud TPUs, see https://cloud.google.com/tpu/docs/quickstart#run_example Generally speaking, from within a cloud instance, you use `tf.contrib.tpu.rewrite` to convert the tensor into a TPU compatible form, initialize the TPU system, then run the rewritten tensor: import tensorflow as tf TPU_TARGET = ??????? r = circuit_to_tensorflow_runnable(...YOUR_CIRCUIT...) rewritten_for_tpu = tf.contrib.tpu.rewrite(r.compute) with tf.Session(target=TPU_TARGET) as session: session.run(tf.contrib.tpu.initialize_system()) output = session.run(rewritten_for_tpu, feed_dict=r.feed_dict) print(output) Args: circuit: The circuit to apply to `initial_state` to produce an output state vector. initial_state: The input into the circuit. If this is an integer, it indicates that the input state is a computational basis state where the k'th qubit is set by the k'th bit of the integer. If this is a numpy array, it should directly encode a normalized wavefunction. Returns: A ComputeFuncAndFeedDict, which is a named tuple whose first element is a function that returns a Tensor representing the output state vector that results from applying the given circuit to the given, and whose second element is a feed_dict containing important parameters describing that tensor.
def midnight(arg=None): """ convert date to datetime as midnight or get current day's midnight :param arg: string or date/datetime :return: datetime at 00:00:00 """ if arg: _arg = parse(arg) if isinstance(_arg, datetime.date): return datetime.datetime.combine(_arg, datetime.datetime.min.time()) elif isinstance(_arg, datetime.datetime): return datetime.datetime.combine(_arg.date(), datetime.datetime.min.time()) else: return datetime.datetime.combine(_date, datetime.datetime.min.time())
convert date to datetime as midnight or get current day's midnight :param arg: string or date/datetime :return: datetime at 00:00:00
def compose(layers, bbox=None, layer_filter=None, color=None, **kwargs): """ Compose layers to a single :py:class:`PIL.Image`. If the layers do not have visible pixels, the function returns `None`. Example:: image = compose([layer1, layer2]) In order to skip some layers, pass `layer_filter` function which should take `layer` as an argument and return `True` to keep the layer or return `False` to skip:: image = compose( layers, layer_filter=lambda x: x.is_visible() and x.kind == 'type' ) By default, visible layers are composed. .. note:: This function is experimental and does not guarantee Photoshop-quality rendering. Currently the following are ignored: - Adjustments layers - Layer effects - Blending mode (all blending modes become normal) Shape drawing is inaccurate if the PSD file is not saved with maximum compatibility. :param layers: a layer, or an iterable of layers. :param bbox: (left, top, bottom, right) tuple that specifies a region to compose. By default, all the visible area is composed. The origin is at the top-left corner of the PSD document. :param layer_filter: a callable that takes a layer and returns `bool`. :param color: background color in `int` or `tuple`. :return: :py:class:`PIL.Image` or `None`. """ from PIL import Image if not hasattr(layers, '__iter__'): layers = [layers] def _default_filter(layer): return layer.is_visible() layer_filter = layer_filter or _default_filter valid_layers = [x for x in layers if layer_filter(x)] if len(valid_layers) == 0: return None if bbox is None: bbox = extract_bbox(valid_layers) if bbox == (0, 0, 0, 0): return None # Alpha must be forced to correctly blend. mode = get_pil_mode(valid_layers[0]._psd.color_mode, True) result = Image.new( mode, (bbox[2] - bbox[0], bbox[3] - bbox[1]), color=color if color is not None else 'white', ) result.putalpha(0) for layer in valid_layers: if intersect(layer.bbox, bbox) == (0, 0, 0, 0): continue image = layer.compose(**kwargs) if image is None: continue logger.debug('Composing %s' % layer) offset = (layer.left - bbox[0], layer.top - bbox[1]) result = _blend(result, image, offset) return result
Compose layers to a single :py:class:`PIL.Image`. If the layers do not have visible pixels, the function returns `None`. Example:: image = compose([layer1, layer2]) In order to skip some layers, pass `layer_filter` function which should take `layer` as an argument and return `True` to keep the layer or return `False` to skip:: image = compose( layers, layer_filter=lambda x: x.is_visible() and x.kind == 'type' ) By default, visible layers are composed. .. note:: This function is experimental and does not guarantee Photoshop-quality rendering. Currently the following are ignored: - Adjustments layers - Layer effects - Blending mode (all blending modes become normal) Shape drawing is inaccurate if the PSD file is not saved with maximum compatibility. :param layers: a layer, or an iterable of layers. :param bbox: (left, top, bottom, right) tuple that specifies a region to compose. By default, all the visible area is composed. The origin is at the top-left corner of the PSD document. :param layer_filter: a callable that takes a layer and returns `bool`. :param color: background color in `int` or `tuple`. :return: :py:class:`PIL.Image` or `None`.
def trimult(U, x, uplo='U', transa='N', alpha=1., inplace=False): """ b = trimult(U,x, uplo='U') Multiplies U x, where U is upper triangular if uplo='U' or lower triangular if uplo = 'L'. """ if inplace: b = x else: b = x.copy('F') dtrmm_wrap(a=U, b=b, uplo=uplo, transa=transa, alpha=alpha) return b
b = trimult(U,x, uplo='U') Multiplies U x, where U is upper triangular if uplo='U' or lower triangular if uplo = 'L'.
def create_item(self, name): """ create a new todo list item """ elem = self.controlled_list.create_item(name) if elem: return TodoElementUX(parent=self, controlled_element=elem)
create a new todo list item
def batches(dataset): '''Returns a callable that chooses sequences from netcdf data.''' seq_lengths = dataset.variables['seqLengths'].data seq_begins = np.concatenate(([0], np.cumsum(seq_lengths)[:-1])) def sample(): chosen = np.random.choice( list(range(len(seq_lengths))), BATCH_SIZE, replace=False) return batch_at(dataset.variables['inputs'].data, dataset.variables['targetClasses'].data, seq_begins[chosen], seq_lengths[chosen]) return sample
Returns a callable that chooses sequences from netcdf data.
def _find_types(pkgs): '''Form a package names list, find prefixes of packages types.''' return sorted({pkg.split(':', 1)[0] for pkg in pkgs if len(pkg.split(':', 1)) == 2})
Form a package names list, find prefixes of packages types.
def get_annotation(self, key, result_format='list'): """ Is a convenience method for accessing annotations on models that have them """ value = self.get('_annotations_by_key', {}).get(key) if not value: return value if result_format == 'one': return value[0] return value
Is a convenience method for accessing annotations on models that have them
def _reconstruct(self, path_to_root): ''' a helper method for finding the schema endpoint from a path to root :param path_to_root: string with dot path to root from :return: list, dict, string, number, or boolean at path to root ''' # split path to root into segments item_pattern = re.compile('\d+\\]') dot_pattern = re.compile('\\.|\\[') path_segments = dot_pattern.split(path_to_root) # construct base schema endpoint schema_endpoint = self.schema # reconstruct schema endpoint from segments if path_segments[1]: for i in range(1,len(path_segments)): if item_pattern.match(path_segments[i]): schema_endpoint = schema_endpoint[0] else: schema_endpoint = schema_endpoint[path_segments[i]] return schema_endpoint
a helper method for finding the schema endpoint from a path to root :param path_to_root: string with dot path to root from :return: list, dict, string, number, or boolean at path to root
def GroupBy(self: dict, f=None): """ [ { 'self': [1, 2, 3], 'f': lambda x: x%2, 'assert': lambda ret: ret[0] == [2] and ret[1] == [1, 3] } ] """ if f and is_to_destruct(f): f = destruct_func(f) return _group_by(self.items(), f)
[ { 'self': [1, 2, 3], 'f': lambda x: x%2, 'assert': lambda ret: ret[0] == [2] and ret[1] == [1, 3] } ]
def _parse_raw_members( self, leaderboard_name, members, members_only=False, **options): ''' Parse the raw leaders data as returned from a given leader board query. Do associative lookups with the member to rank, score and potentially sort the results. @param leaderboard_name [String] Name of the leaderboard. @param members [List] A list of members as returned from a sorted set range query @param members_only [bool] Set True to return the members as is, Default is False. @param options [Hash] Options to be used when retrieving the page from the named leaderboard. @return a list of members. ''' if members_only: return [{self.MEMBER_KEY: m} for m in members] if members: return self.ranked_in_list_in(leaderboard_name, members, **options) else: return []
Parse the raw leaders data as returned from a given leader board query. Do associative lookups with the member to rank, score and potentially sort the results. @param leaderboard_name [String] Name of the leaderboard. @param members [List] A list of members as returned from a sorted set range query @param members_only [bool] Set True to return the members as is, Default is False. @param options [Hash] Options to be used when retrieving the page from the named leaderboard. @return a list of members.
def offset(self): """ Property to be used for setting and getting the offset of the layer. Note that setting this property causes an immediate redraw. """ if callable(self._offset): return util.WatchingList(self._offset(*(self.widget.pos+self.widget.size)),self._wlredraw_offset) else: return util.WatchingList(self._offset,self._wlredraw_offset)
Property to be used for setting and getting the offset of the layer. Note that setting this property causes an immediate redraw.
def __disambiguate_proper_names_1(self, docs, lexicon): """ Teeme esmase yleliigsete analyyside kustutamise: kui sõnal on mitu erineva sagedusega pärisnimeanalüüsi, siis jätame alles vaid suurima sagedusega analyysi(d) ... """ for doc in docs: for word in doc[WORDS]: # Vaatame vaid s6nu, millele on pakutud rohkem kui yks analyys: if len(word[ANALYSIS]) > 1: # 1) Leiame kõigi pärisnimede sagedused sagedusleksikonist highestFreq = 0 properNameAnalyses = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': if analysis[ROOT] in lexicon: properNameAnalyses.append( analysis ) if lexicon[analysis[ROOT]] > highestFreq: highestFreq = lexicon[analysis[ROOT]] else: raise Exception(' Unable to find lemma ',analysis[ROOT], \ ' from the lexicon. ') # 2) J2tame alles vaid suurima lemmasagedusega pärisnimeanalyysid, # ylejaanud kustutame maha if highestFreq > 0: toDelete = [] for analysis in properNameAnalyses: if lexicon[analysis[ROOT]] < highestFreq: toDelete.append(analysis) for analysis in toDelete: word[ANALYSIS].remove(analysis)
Teeme esmase yleliigsete analyyside kustutamise: kui sõnal on mitu erineva sagedusega pärisnimeanalüüsi, siis jätame alles vaid suurima sagedusega analyysi(d) ...
def scramble(name, **kwargs): """ scramble text blocks and keep original file structure Parameters ---------- name : str | pathlib.Path file name Returns ------- name : str scrambled file name """ name = Path(name) mdf = MDF(name) texts = {} callback = kwargs.get("callback", None) if callback: callback(0, 100) count = len(mdf.groups) if mdf.version >= "4.00": ChannelConversion = ChannelConversionV4 stream = mdf._file if mdf.header.comment_addr: stream.seek(mdf.header.comment_addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[mdf.header.comment_addr] = randomized_string(size) for fh in mdf.file_history: addr = fh.comment_addr if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) for ev in mdf.events: for addr in (ev.comment_addr, ev.name_addr): if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) for idx, gp in enumerate(mdf.groups, 1): addr = gp.data_group.comment_addr if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) cg = gp.channel_group for addr in (cg.acq_name_addr, cg.comment_addr): if cg.flags & v4c.FLAG_CG_BUS_EVENT: continue if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) source = cg.acq_source_addr if source: source = SourceInformation(address=source, stream=stream) for addr in ( source.name_addr, source.path_addr, source.comment_addr, ): if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) for ch in gp.channels: for addr in (ch.name_addr, ch.unit_addr, ch.comment_addr): if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) source = ch.source_addr if source: source = SourceInformation(address=source, stream=stream) for addr in ( source.name_addr, source.path_addr, source.comment_addr, ): if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) conv = ch.conversion_addr if conv: conv = ChannelConversion(address=conv, stream=stream) for addr in (conv.name_addr, conv.unit_addr, conv.comment_addr): if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) if conv.conversion_type == v4c.CONVERSION_TYPE_ALG: addr = conv.formula_addr if addr and addr not in texts: stream.seek(addr + 8) size = UINT64_u(stream.read(8))[0] - 24 texts[addr] = randomized_string(size) if conv.referenced_blocks: for key, block in conv.referenced_blocks.items(): if block: if block.id == b"##TX": addr = block.address if addr not in texts: stream.seek(addr + 8) size = block.block_len - 24 texts[addr] = randomized_string(size) if callback: callback(int(idx/count*66), 100) mdf.close() dst = name.with_suffix(".scrambled.mf4") copy(name, dst) with open(dst, "rb+") as mdf: count = len(texts) chunk = max(count // 34, 1) idx = 0 for index, (addr, bts) in enumerate(texts.items()): mdf.seek(addr + 24) mdf.write(bts) if index % chunk == 0: if callback: callback(66 + idx, 100) if callback: callback(100, 100) else: ChannelConversion = ChannelConversionV3 stream = mdf._file if mdf.header.comment_addr: stream.seek(mdf.header.comment_addr + 2) size = UINT16_u(stream.read(2))[0] - 4 texts[mdf.header.comment_addr + 4] = randomized_string(size) texts[36 + 0x40] = randomized_string(32) texts[68 + 0x40] = randomized_string(32) texts[100 + 0x40] = randomized_string(32) texts[132 + 0x40] = randomized_string(32) for idx, gp in enumerate(mdf.groups, 1): cg = gp.channel_group addr = cg.comment_addr if addr and addr not in texts: stream.seek(addr + 2) size = UINT16_u(stream.read(2))[0] - 4 texts[addr + 4] = randomized_string(size) if gp.trigger: addr = gp.trigger.text_addr if addr: stream.seek(addr + 2) size = UINT16_u(stream.read(2))[0] - 4 texts[addr + 4] = randomized_string(size) for ch in gp.channels: for key in ("long_name_addr", "display_name_addr", "comment_addr"): if hasattr(ch, key): addr = getattr(ch, key) else: addr = 0 if addr and addr not in texts: stream.seek(addr + 2) size = UINT16_u(stream.read(2))[0] - 4 texts[addr + 4] = randomized_string(size) texts[ch.address + 26] = randomized_string(32) texts[ch.address + 58] = randomized_string(128) source = ch.source_addr if source: source = ChannelExtension(address=source, stream=stream) if source.type == v23c.SOURCE_ECU: texts[source.address + 12] = randomized_string(80) texts[source.address + 92] = randomized_string(32) else: texts[source.address + 14] = randomized_string(36) texts[source.address + 50] = randomized_string(36) conv = ch.conversion_addr if conv: texts[conv + 22] = randomized_string(20) conv = ChannelConversion(address=conv, stream=stream) if conv.conversion_type == v23c.CONVERSION_TYPE_FORMULA: texts[conv + 36] = randomized_string(conv.block_len - 36) if conv.referenced_blocks: for key, block in conv.referenced_blocks.items(): if block: if block.id == b"TX": addr = block.address if addr and addr not in texts: stream.seek(addr + 2) size = UINT16_u(stream.read(2))[0] - 4 texts[addr + 4] = randomized_string(size) if callback: callback(int(idx/count*66), 100) mdf.close() dst = name.with_suffix(".scrambled.mf4") copy(name, dst) with open(dst, "rb+") as mdf: chunk = count // 34 idx = 0 for index, (addr, bts) in enumerate(texts.items()): mdf.seek(addr) mdf.write(bts) if chunk and index % chunk == 0: if callback: callback(66 + idx, 100) if callback: callback(100, 100) return dst
scramble text blocks and keep original file structure Parameters ---------- name : str | pathlib.Path file name Returns ------- name : str scrambled file name
def remove_vectored_io_slice_suffix_from_name(name, slice): # type: (str, int) -> str """Remove vectored io (stripe) slice suffix from a given name :param str name: entity name :param int slice: slice num :rtype: str :return: name without suffix """ suffix = '.bxslice-{}'.format(slice) if name.endswith(suffix): return name[:-len(suffix)] else: return name
Remove vectored io (stripe) slice suffix from a given name :param str name: entity name :param int slice: slice num :rtype: str :return: name without suffix
def get(self, param=None, must=[APIKEY]): '''查账户信息 参数名 类型 是否必须 描述 示例 apikey String 是 用户唯一标识 9b11127a9701975c734b8aee81ee3526 Args: param: (Optional) Results: Result ''' param = {} if param is None else param r = self.verify_param(param, must) if not r.is_succ(): return r handle = CommonResultHandler(lambda rsp: {VERSION_V1:rsp.get(USER), VERSION_V2:rsp}[self.version()]) return self.path('get.json').post(param, handle, r)
查账户信息 参数名 类型 是否必须 描述 示例 apikey String 是 用户唯一标识 9b11127a9701975c734b8aee81ee3526 Args: param: (Optional) Results: Result
def plot(self, feature): """ Spawns a new figure showing data for `feature`. :param feature: A `pybedtools.Interval` object Using the pybedtools.Interval `feature`, creates figure specified in :meth:`BaseMiniBrowser.make_fig` and plots data on panels according to `self.panels()`. """ if isinstance(feature, gffutils.Feature): feature = asinterval(feature) self.make_fig() axes = [] for ax, method in self.panels(): feature = method(ax, feature) axes.append(ax) return axes
Spawns a new figure showing data for `feature`. :param feature: A `pybedtools.Interval` object Using the pybedtools.Interval `feature`, creates figure specified in :meth:`BaseMiniBrowser.make_fig` and plots data on panels according to `self.panels()`.
def parse(self, buffer, inlineparent = None): ''' Compatible to Parser.parse() ''' size = 0 v = [] for i in range(0, self.size): # @UnusedVariable r = self.innerparser.parse(buffer[size:], None) if r is None: return None v.append(r[0]) size += r[1] return (v, size)
Compatible to Parser.parse()
def get_distances(rupture, mesh, param): """ :param rupture: a rupture :param mesh: a mesh of points or a site collection :param param: the kind of distance to compute (default rjb) :returns: an array of distances from the given mesh """ if param == 'rrup': dist = rupture.surface.get_min_distance(mesh) elif param == 'rx': dist = rupture.surface.get_rx_distance(mesh) elif param == 'ry0': dist = rupture.surface.get_ry0_distance(mesh) elif param == 'rjb': dist = rupture.surface.get_joyner_boore_distance(mesh) elif param == 'rhypo': dist = rupture.hypocenter.distance_to_mesh(mesh) elif param == 'repi': dist = rupture.hypocenter.distance_to_mesh(mesh, with_depths=False) elif param == 'rcdpp': dist = rupture.get_cdppvalue(mesh) elif param == 'azimuth': dist = rupture.surface.get_azimuth(mesh) elif param == "rvolc": # Volcanic distance not yet supported, defaulting to zero dist = numpy.zeros_like(mesh.lons) else: raise ValueError('Unknown distance measure %r' % param) return dist
:param rupture: a rupture :param mesh: a mesh of points or a site collection :param param: the kind of distance to compute (default rjb) :returns: an array of distances from the given mesh
def get_learning_objectives_metadata(self): """Gets the metadata for learning objectives. return: (osid.Metadata) - metadata for the learning objectives *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for osid.learning.ActivityForm.get_assets_metadata_template metadata = dict(self._mdata['learning_objectives']) metadata.update({'existing_learning_objectives_values': self._my_map['learningObjectiveIds']}) return Metadata(**metadata)
Gets the metadata for learning objectives. return: (osid.Metadata) - metadata for the learning objectives *compliance: mandatory -- This method must be implemented.*
def _virtualenv_sys(venv_path): "obtain version and path info from a virtualenv." executable = os.path.join(venv_path, env_bin_dir, 'python') # Must use "executable" as the first argument rather than as the # keyword argument "executable" to get correct value from sys.path p = subprocess.Popen([executable, '-c', 'import sys;' 'print (sys.version[:3]);' 'print ("\\n".join(sys.path));'], env={}, stdout=subprocess.PIPE) stdout, err = p.communicate() assert not p.returncode and stdout lines = stdout.decode('utf-8').splitlines() return lines[0], list(filter(bool, lines[1:]))
obtain version and path info from a virtualenv.
def cleanup(self): """ Release resources used during shell execution """ for future in self.futures: future.cancel() self.executor.shutdown(wait=10) if self.ssh.get_transport() != None: self.ssh.close()
Release resources used during shell execution
def get_results(self, title_prefix="", title_override="", rnd_dig=2): """ Constructs a summary of the results as an array, which might be useful for writing the results of multiple algorithms to a table. NOTE- This method must be called AFTER "roll_mc". :param title_prefix: If desired, prefix the title (such as "Alg 1 ") :param title_override: Override the title string entirely :param rnd_dig: the number of digits to round to :return: A tuple of the raw array results and PBE results, as: [Description, Typical Array, Mean, Std, 5%, 95%] """ # Check that roll_mc has been called if not self.arr_res: raise ValueError("Call roll_mc before getting results.") # Find a title using either the override or _construct_title method if title_override: title = title_override else: ctitle = PBE._construct_title(self.num_dice, self.dice_type, self.add_val, self.num_attribute, self.keep_attribute, self.keep_dice, self.reroll, self.num_arrays) title = title_prefix + ctitle # Find the typical array typ_arr = "; ".join([str(round(x, rnd_dig)) for x in self.arr_res["means"]]) res_row = [title, typ_arr, round(self.pbe_res["means"], rnd_dig), round(self.pbe_res["stds"], rnd_dig), round(self.pbe_res["5percentile"], rnd_dig), round(self.pbe_res["95percentile"], rnd_dig)] return res_row
Constructs a summary of the results as an array, which might be useful for writing the results of multiple algorithms to a table. NOTE- This method must be called AFTER "roll_mc". :param title_prefix: If desired, prefix the title (such as "Alg 1 ") :param title_override: Override the title string entirely :param rnd_dig: the number of digits to round to :return: A tuple of the raw array results and PBE results, as: [Description, Typical Array, Mean, Std, 5%, 95%]
def status(self): """ The status of the container. For example, ``running``, or ``exited``. """ if isinstance(self.attrs['State'], dict): return self.attrs['State']['Status'] return self.attrs['State']
The status of the container. For example, ``running``, or ``exited``.
def main(): """ The main loop for the commandline parser. """ DATABASE.load_contents() continue_flag = False while not continue_flag: DATABASE.print_contents() try: command = raw_input(">>> ") for stmnt_unformated in sqlparse.parse(command): statement = sqlparse.parse( sqlparse.format( str( stmnt_unformated ), reindent=True ) )[0] type = statement.tokens[0] if str(type).lower() == "drop": if str(statement.tokens[2]).lower() == "table": tablename = str(statement.tokens[4]) table = DATABASE.get_table(tablename) table.rows = [] table.store_contents() DATABASE.delete_table(tablename) DATABASE.store_contents() else: raise Exception( "Invalid Syntax of DROP TABLE t" ) elif str(type).lower() == "truncate": if str(statement.tokens[2]).lower() == "table": tablename = str(statement.tokens[4]) table = DATABASE.get_table(tablename) table.rows = [] table.store_contents() else: raise Exception( "Invalid Syntax of TRUNCATE TABLE t" ) elif str(type).lower() == "delete": if str(statement.tokens[2]).lower() == "from": tablename = str(statement.tokens[4]) table = DATABASE.get_table(tablename) whereclause = statement.tokens[6] if str(whereclause.tokens[0]).lower() == "where": comparison = whereclause.tokens[2] key = str(comparison.tokens[0]) value = int(str(comparison.tokens[4])) table.delete_row(key, value) table.store_contents() else: raise Exception( "Invalid Syntax of DELETE FROM t where k = v" ) else: raise Exception( "Invalid Syntax of DELETE FROM t WHERE k = v" ) elif str(type).lower() == "insert": if str(statement.tokens[2]).lower() == "into": tablename = str(statement.tokens[4]) table = DATABASE.get_table(tablename) if str(statement.tokens[6]).lower() == "values": parenthesis = statement.tokens[8] idlist = parenthesis.tokens[1] values_list = map( lambda x: int(str(x)), idlist.get_identifiers() ) table.put_row_raw(values_list) table.store_contents() else: raise Exception( "Invalid Syntax of INSERT INTO t VALUES (v...)" ) else: raise Exception( "Invalid Syntax of INSERT INTO t VALUES (v...)" ) elif str(type).lower() == "create": if str(statement.tokens[2]).lower() == "table": sublist = list(statement.tokens[4].get_sublists()) tablename = str(sublist[0]) garbage = str(sublist[1]) column_list = map( lambda x: x.strip(" ()",).split()[0], garbage.split(",") ) DATABASE.create_table_raw( tablename=tablename, columns=column_list[:], ) DATABASE.store_contents() elif str(type).lower() == "select": col_list_or_single = statement.tokens[2] if "," not in str(col_list_or_single): if str(col_list_or_single) == "*": column_list = ['*'] else: column_list = [str(col_list_or_single)] else: column_list = map( lambda x: str(x), col_list_or_single.get_identifiers() ) if str(statement.tokens[4]).lower() == "from": tab_list_or_single = statement.tokens[6] if "," not in str(tab_list_or_single): table_list = [str(tab_list_or_single)] else: table_list = map( lambda x: str(x), tab_list_or_single.get_identifiers() ) cross_columns = reduce( lambda x, y: x + y, map( lambda x: DATABASE.get_table( x ).get_column_list_prefixed(), table_list ) ) cross_table = parthsql.Table( name="temp", columns=cross_columns, rows=[] ) for i in itertools.product( *map( lambda x: DATABASE.get_table(x).get_all_rows(), table_list ) ): cross_table.put_row_raw( reduce( lambda x, y: x + y, i ) ) if len(statement.tokens) >= 9: whereclause = statement.tokens[8] if str(whereclause.tokens[0]).lower() == "where": comparison = whereclause.tokens[2] key = str(comparison.tokens[0]) try: value = int(str(comparison.tokens[4])) cross_table.invert_delete_row(key, value) except: value = str(comparison.tokens[4]) cross_table.invert_delete_row2(key, value) else: raise Exception( "Invalid Syntax of DELETE FROM t where k = v" ) if "*" in column_list: cross_table.print_contents() else: temp_list = [] for i in column_list: temp_list.append(cross_table.get_column(i)) print "\t\t\t".join(column_list) for i in zip(*(temp_list)): print "\t\t\t".join(map(str, i)) else: raise Exception( "Invalid Syntax of SELECT c... FROM t... WHERE k = v" ) else: raise Exception( "Unsupported Operation" ) except ValueError: print("¯\_(ツ)_/¯") except IOError: print("¯\_(ツ)_/¯") except IndexError: print("¯\_(ツ)_/¯") except AttributeError: print("¯\_(ツ)_/¯") except Exception, e: print e.message
The main loop for the commandline parser.
def _read_openjp2_common(self): """ Read a JPEG 2000 image using libopenjp2. Returns ------- ndarray or lst Either the image as an ndarray or a list of ndarrays, each item corresponding to one band. """ with ExitStack() as stack: filename = self.filename stream = opj2.stream_create_default_file_stream(filename, True) stack.callback(opj2.stream_destroy, stream) codec = opj2.create_decompress(self._codec_format) stack.callback(opj2.destroy_codec, codec) opj2.set_error_handler(codec, _ERROR_CALLBACK) opj2.set_warning_handler(codec, _WARNING_CALLBACK) if self._verbose: opj2.set_info_handler(codec, _INFO_CALLBACK) else: opj2.set_info_handler(codec, None) opj2.setup_decoder(codec, self._dparams) raw_image = opj2.read_header(stream, codec) stack.callback(opj2.image_destroy, raw_image) if self._dparams.nb_tile_to_decode: opj2.get_decoded_tile(codec, stream, raw_image, self._dparams.tile_index) else: opj2.set_decode_area(codec, raw_image, self._dparams.DA_x0, self._dparams.DA_y0, self._dparams.DA_x1, self._dparams.DA_y1) opj2.decode(codec, stream, raw_image) opj2.end_decompress(codec, stream) image = self._extract_image(raw_image) return image
Read a JPEG 2000 image using libopenjp2. Returns ------- ndarray or lst Either the image as an ndarray or a list of ndarrays, each item corresponding to one band.
def get_fd(file_or_fd, default=None): """Helper function for getting a file descriptor.""" fd = file_or_fd if fd is None: fd = default if hasattr(fd, "fileno"): fd = fd.fileno() return fd
Helper function for getting a file descriptor.
def deleteNetworkVisualProp(self, networkId, viewId, visualProperty, verbose=None): """ Deletes the bypass Visual Property specificed by the `visualProperty`, `viewId`, and `networkId` parameters. When this is done, the Visual Property will be defined by the Visual Style Additional details on common Visual Properties can be found in the [Basic Visual Lexicon JavaDoc API](http://chianti.ucsd.edu/cytoscape-3.6.1/API/org/cytoscape/view/presentation/property/BasicVisualLexicon.html) :param networkId: SUID of the Network :param viewId: SUID of the Network View :param visualProperty: Name of the Visual Property :param verbose: print more :returns: 200: successful operation """ response=api(url=self.___url+'networks/'+str(networkId)+'/views/'+str(viewId)+'/network/'+str(visualProperty)+'/bypass', method="DELETE", verbose=verbose) return response
Deletes the bypass Visual Property specificed by the `visualProperty`, `viewId`, and `networkId` parameters. When this is done, the Visual Property will be defined by the Visual Style Additional details on common Visual Properties can be found in the [Basic Visual Lexicon JavaDoc API](http://chianti.ucsd.edu/cytoscape-3.6.1/API/org/cytoscape/view/presentation/property/BasicVisualLexicon.html) :param networkId: SUID of the Network :param viewId: SUID of the Network View :param visualProperty: Name of the Visual Property :param verbose: print more :returns: 200: successful operation
def to_struct(self, value): """Cast `date` object to string.""" if self.str_format: return value.strftime(self.str_format) return value.strftime(self.default_format)
Cast `date` object to string.
def make_naive(value, timezone): """ Makes an aware datetime.datetime naive in a given time zone. """ value = value.astimezone(timezone) if hasattr(timezone, 'normalize'): # available for pytz time zones value = timezone.normalize(value) return value.replace(tzinfo=None)
Makes an aware datetime.datetime naive in a given time zone.
def get_metric_values(self, group_name): """ Get the faked metric values for a metric group, by its metric group name. The result includes all metric object values added earlier for that metric group name, using :meth:`~zhmcclient.FakedMetricsContextManager.add_metric_object_values` i.e. the metric values for all resources and all points in time that were added. Parameters: group_name (:term:`string`): Name of the metric group. Returns: iterable of :class:`~zhmclient.FakedMetricObjectValues`: The metric values for that metric group, in the order they had been added. Raises: ValueError: Metric values for this group name do not exist. """ if group_name not in self._metric_values: raise ValueError("Metric values for this group name do not " "exist: {}".format(group_name)) return self._metric_values[group_name]
Get the faked metric values for a metric group, by its metric group name. The result includes all metric object values added earlier for that metric group name, using :meth:`~zhmcclient.FakedMetricsContextManager.add_metric_object_values` i.e. the metric values for all resources and all points in time that were added. Parameters: group_name (:term:`string`): Name of the metric group. Returns: iterable of :class:`~zhmclient.FakedMetricObjectValues`: The metric values for that metric group, in the order they had been added. Raises: ValueError: Metric values for this group name do not exist.
def _SendTerminationMessage(self, status=None): """This notifies the parent flow of our termination.""" if not self.runner_args.request_state.session_id: # No parent flow, nothing to do here. return if status is None: status = rdf_flows.GrrStatus() client_resources = self.context.client_resources user_cpu = client_resources.cpu_usage.user_cpu_time sys_cpu = client_resources.cpu_usage.system_cpu_time status.cpu_time_used.user_cpu_time = user_cpu status.cpu_time_used.system_cpu_time = sys_cpu status.network_bytes_sent = self.context.network_bytes_sent status.child_session_id = self.session_id request_state = self.runner_args.request_state request_state.response_count += 1 # Make a response message msg = rdf_flows.GrrMessage( session_id=request_state.session_id, request_id=request_state.id, response_id=request_state.response_count, auth_state=rdf_flows.GrrMessage.AuthorizationState.AUTHENTICATED, type=rdf_flows.GrrMessage.Type.STATUS, payload=status) # Queue the response now self.queue_manager.QueueResponse(msg) self.QueueNotification(session_id=request_state.session_id)
This notifies the parent flow of our termination.
def get_per_identity_records(self, events: Iterable, data_processor: DataProcessor ) -> Generator[Tuple[str, TimeAndRecord], None, None]: """ Uses the given iteratable events and the data processor convert the event into a list of Records along with its identity and time. :param events: iteratable events. :param data_processor: DataProcessor to process each event in events. :return: yields Tuple[Identity, TimeAndRecord] for all Records in events, """ schema_loader = SchemaLoader() stream_bts_name = schema_loader.add_schema_spec(self._stream_bts) stream_transformer_schema: StreamingTransformerSchema = schema_loader.get_schema_object( stream_bts_name) for event in events: try: for record in data_processor.process_data(event): try: id = stream_transformer_schema.get_identity(record) time = stream_transformer_schema.get_time(record) yield (id, (time, record)) except Exception as err: logging.error('{} in parsing Record {}.'.format(err, record)) except Exception as err: logging.error('{} in parsing Event {}.'.format(err, event))
Uses the given iteratable events and the data processor convert the event into a list of Records along with its identity and time. :param events: iteratable events. :param data_processor: DataProcessor to process each event in events. :return: yields Tuple[Identity, TimeAndRecord] for all Records in events,
def profile_different_methods(search_file, screen_file, method_list, dir_path, file_name): """对指定的图片进行性能测试.""" profiler = ProfileRecorder(0.05) # 加载图片 profiler.load_images(search_file, screen_file) # 传入待测试的方法列表 profiler.profile_methods(method_list) # 将性能数据写入文件 profiler.wite_to_json(dir_path, file_name)
对指定的图片进行性能测试.
def serialize(self, queryset, **options): """ Serialize a queryset. THE OUTPUT OF THIS SERIALIZER IS NOT MEANT TO BE SERIALIZED BACK INTO THE DB. """ self.options = options self.stream = options.get("stream", StringIO()) self.selected_fields = options.get("fields") self.use_natural_keys = options.get("use_natural_keys", True) self.xml = options.get("xml", None) self.root = (self.xml == None) self.start_serialization() for obj in queryset: # hook for having custom serialization if hasattr(obj, '__serialize__'): obj.__serialize__(self.xml) else: self.serialize_object(obj) self.end_serialization() return self.getvalue()
Serialize a queryset. THE OUTPUT OF THIS SERIALIZER IS NOT MEANT TO BE SERIALIZED BACK INTO THE DB.
def _compute_distance(self, rup, dists, C): """ Compute the distance function, equation (9): """ mref = 3.6 rref = 1.0 rval = np.sqrt(dists.rhypo ** 2 + C['h'] ** 2) return (C['c1'] + C['c2'] * (rup.mag - mref)) *\ np.log10(rval / rref) + C['c3'] * (rval - rref)
Compute the distance function, equation (9):
def _are_safety_checks_disabled(self, caller=u"unknown_function"): """ Return ``True`` if safety checks are disabled. :param string caller: the name of the caller function :rtype: bool """ if self.rconf.safety_checks: return False self.log_warn([u"Safety checks disabled => %s passed", caller]) return True
Return ``True`` if safety checks are disabled. :param string caller: the name of the caller function :rtype: bool
def build_package(team, username, package, subpath, yaml_path, checks_path=None, dry_run=False, env='default'): """ Builds a package from a given Yaml file and installs it locally. Returns the name of the package. """ def find(key, value): """ find matching nodes recursively; only descend iterables that aren't strings """ if isinstance(value, Iterable) and not isinstance(value, string_types): for k, v in iteritems(value): if k == key: yield v elif isinstance(v, dict): for result in find(key, v): yield result elif isinstance(v, list): for item in v: for result in find(key, item): yield result build_data = load_yaml(yaml_path) # default to 'checks.yml' if build.yml contents: contains checks, but # there's no inlined checks: defined by build.yml if (checks_path is None and list(find('checks', build_data['contents'])) and 'checks' not in build_data): checks_path = 'checks.yml' checks_contents = load_yaml(checks_path, optional=True) elif checks_path is not None: checks_contents = load_yaml(checks_path) else: checks_contents = None build_package_from_contents(team, username, package, subpath, os.path.dirname(yaml_path), build_data, checks_contents=checks_contents, dry_run=dry_run, env=env)
Builds a package from a given Yaml file and installs it locally. Returns the name of the package.
def get_value(self, section, option, default=None): """ :param default: If not None, the given default value will be returned in case the option did not exist :return: a properly typed value, either int, float or string :raise TypeError: in case the value could not be understood Otherwise the exceptions known to the ConfigParser will be raised.""" try: valuestr = self.get(section, option) except Exception: if default is not None: return default raise types = (int, float) for numtype in types: try: val = numtype(valuestr) # truncated value ? if val != float(valuestr): continue return val except (ValueError, TypeError): continue # END for each numeric type # try boolean values as git uses them vl = valuestr.lower() if vl == 'false': return False if vl == 'true': return True if not isinstance(valuestr, string_types): raise TypeError("Invalid value type: only int, long, float and str are allowed", valuestr) return valuestr
:param default: If not None, the given default value will be returned in case the option did not exist :return: a properly typed value, either int, float or string :raise TypeError: in case the value could not be understood Otherwise the exceptions known to the ConfigParser will be raised.
def configure(self, viewport=None, fbo_size=None, fbo_rect=None, canvas=None): """Automatically configure the TransformSystem: * canvas_transform maps from the Canvas logical pixel coordinate system to the framebuffer coordinate system, taking into account the logical/physical pixel scale factor, current FBO position, and y-axis inversion. * framebuffer_transform maps from the current GL viewport on the framebuffer coordinate system to clip coordinates (-1 to 1). Parameters ========== viewport : tuple or None The GL viewport rectangle (x, y, w, h). If None, then it is assumed to cover the entire canvas. fbo_size : tuple or None The size of the active FBO. If None, then it is assumed to have the same size as the canvas's framebuffer. fbo_rect : tuple or None The position and size (x, y, w, h) of the FBO in the coordinate system of the canvas's framebuffer. If None, then the bounds are assumed to cover the entire active framebuffer. canvas : Canvas instance Optionally set the canvas for this TransformSystem. See the `canvas` property. """ # TODO: check that d2f and f2r transforms still contain a single # STTransform (if the user has modified these, then auto-config should # either fail or replace the transforms) if canvas is not None: self.canvas = canvas canvas = self._canvas if canvas is None: raise RuntimeError("No canvas assigned to this TransformSystem.") # By default, this should invert the y axis--canvas origin is in top # left, whereas framebuffer origin is in bottom left. map_from = [(0, 0), canvas.size] map_to = [(0, canvas.physical_size[1]), (canvas.physical_size[0], 0)] self._canvas_transform.transforms[1].set_mapping(map_from, map_to) if fbo_rect is None: self._canvas_transform.transforms[0].scale = (1, 1, 1) self._canvas_transform.transforms[0].translate = (0, 0, 0) else: # Map into FBO coordinates map_from = [(fbo_rect[0], fbo_rect[1]), (fbo_rect[0] + fbo_rect[2], fbo_rect[1] + fbo_rect[3])] map_to = [(0, 0), fbo_size] self._canvas_transform.transforms[0].set_mapping(map_from, map_to) if viewport is None: if fbo_size is None: # viewport covers entire canvas map_from = [(0, 0), canvas.physical_size] else: # viewport covers entire FBO map_from = [(0, 0), fbo_size] else: map_from = [viewport[:2], (viewport[0] + viewport[2], viewport[1] + viewport[3])] map_to = [(-1, -1), (1, 1)] self._framebuffer_transform.transforms[0].set_mapping(map_from, map_to)
Automatically configure the TransformSystem: * canvas_transform maps from the Canvas logical pixel coordinate system to the framebuffer coordinate system, taking into account the logical/physical pixel scale factor, current FBO position, and y-axis inversion. * framebuffer_transform maps from the current GL viewport on the framebuffer coordinate system to clip coordinates (-1 to 1). Parameters ========== viewport : tuple or None The GL viewport rectangle (x, y, w, h). If None, then it is assumed to cover the entire canvas. fbo_size : tuple or None The size of the active FBO. If None, then it is assumed to have the same size as the canvas's framebuffer. fbo_rect : tuple or None The position and size (x, y, w, h) of the FBO in the coordinate system of the canvas's framebuffer. If None, then the bounds are assumed to cover the entire active framebuffer. canvas : Canvas instance Optionally set the canvas for this TransformSystem. See the `canvas` property.
def weather_history_at_id(self, id, start=None, end=None): """ Queries the OWM Weather API for weather history for the specified city ID. A list of *Weather* objects is returned. It is possible to query for weather history in a closed time period, whose boundaries can be passed as optional parameters. :param id: the city ID :type id: int :param start: the object conveying the time value for the start query boundary (defaults to ``None``) :type start: int, ``datetime.datetime`` or ISO8601-formatted string :param end: the object conveying the time value for the end query boundary (defaults to ``None``) :type end: int, ``datetime.datetime`` or ISO8601-formatted string :returns: a list of *Weather* instances or ``None`` if history data is not available for the specified location :raises: *ParseResponseException* when OWM Weather API responses' data cannot be parsed, *APICallException* when OWM Weather API can not be reached, *ValueError* if the time boundaries are not in the correct chronological order, if one of the time boundaries is not ``None`` and the other is or if one or both of the time boundaries are after the current time """ assert type(id) is int, "'id' must be an int" if id < 0: raise ValueError("'id' value must be greater than 0") params = {'id': id, 'lang': self._language} if start is None and end is None: pass elif start is not None and end is not None: unix_start = timeformatutils.to_UNIXtime(start) unix_end = timeformatutils.to_UNIXtime(end) if unix_start >= unix_end: raise ValueError("Error: the start time boundary must " \ "precede the end time!") current_time = time() if unix_start > current_time: raise ValueError("Error: the start time boundary must " \ "precede the current time!") params['start'] = str(unix_start) params['end'] = str(unix_end) else: raise ValueError("Error: one of the time boundaries is None, " \ "while the other is not!") uri = http_client.HttpClient.to_url(CITY_WEATHER_HISTORY_URL, self._API_key, self._subscription_type, self._use_ssl) _, json_data = self._wapi.cacheable_get_json(uri, params=params) return self._parsers['weather_history'].parse_JSON(json_data)
Queries the OWM Weather API for weather history for the specified city ID. A list of *Weather* objects is returned. It is possible to query for weather history in a closed time period, whose boundaries can be passed as optional parameters. :param id: the city ID :type id: int :param start: the object conveying the time value for the start query boundary (defaults to ``None``) :type start: int, ``datetime.datetime`` or ISO8601-formatted string :param end: the object conveying the time value for the end query boundary (defaults to ``None``) :type end: int, ``datetime.datetime`` or ISO8601-formatted string :returns: a list of *Weather* instances or ``None`` if history data is not available for the specified location :raises: *ParseResponseException* when OWM Weather API responses' data cannot be parsed, *APICallException* when OWM Weather API can not be reached, *ValueError* if the time boundaries are not in the correct chronological order, if one of the time boundaries is not ``None`` and the other is or if one or both of the time boundaries are after the current time
def _prepare_data_dir(self, data): """Prepare destination directory where the data will live. :param data: The :class:`~resolwe.flow.models.Data` object for which to prepare the private execution directory. :return: The prepared data directory path. :rtype: str """ logger.debug(__("Preparing data directory for Data with id {}.", data.id)) with transaction.atomic(): # Create a temporary random location and then override it with data # location id since object has to be created first. # TODO Find a better solution, e.g. defer the database constraint. temporary_location_string = uuid.uuid4().hex[:10] data_location = DataLocation.objects.create(subpath=temporary_location_string) data_location.subpath = str(data_location.id) data_location.save() data_location.data.add(data) output_path = self._get_per_data_dir('DATA_DIR', data_location.subpath) dir_mode = self.settings_actual.get('FLOW_EXECUTOR', {}).get('DATA_DIR_MODE', 0o755) os.mkdir(output_path, mode=dir_mode) # os.mkdir is not guaranteed to set the given mode os.chmod(output_path, dir_mode) return output_path
Prepare destination directory where the data will live. :param data: The :class:`~resolwe.flow.models.Data` object for which to prepare the private execution directory. :return: The prepared data directory path. :rtype: str
def omitted_parcov(self): """get the omitted prior parameter covariance matrix Returns ------- omitted_parcov : pyemu.Cov Note ---- returns a reference If ErrorVariance.__omitted_parcov is None, attribute is dynamically loaded """ if self.__omitted_parcov is None: self.log("loading omitted_parcov") self.__load_omitted_parcov() self.log("loading omitted_parcov") return self.__omitted_parcov
get the omitted prior parameter covariance matrix Returns ------- omitted_parcov : pyemu.Cov Note ---- returns a reference If ErrorVariance.__omitted_parcov is None, attribute is dynamically loaded
def stylesheet_declarations(string, is_merc=False, scale=1): """ Parse a string representing a stylesheet into a list of declarations. Required boolean is_merc indicates whether the projection should be interpreted as spherical mercator, so we know what to do with zoom/scale-denominator in parse_rule(). """ # everything is display: map by default display_map = Declaration(Selector(SelectorElement(['*'], [])), Property('display'), Value('map', False), (False, (0, 0, 0), (0, 0))) declarations = [display_map] tokens = cssTokenizer().tokenize(string) variables = {} while True: try: for declaration in parse_rule(tokens, variables, [], [], is_merc): if scale != 1: declaration.scaleBy(scale) declarations.append(declaration) except StopIteration: break # sort by a css-like method return sorted(declarations, key=operator.attrgetter('sort_key'))
Parse a string representing a stylesheet into a list of declarations. Required boolean is_merc indicates whether the projection should be interpreted as spherical mercator, so we know what to do with zoom/scale-denominator in parse_rule().
def add_infos(self, *keyvals, **kwargs): """Adds the given info and returns a dict composed of just this added info.""" kv_pairs = [] for key, val in keyvals: key = key.strip() val = str(val).strip() if ':' in key: raise ValueError('info key "{}" must not contain a colon.'.format(key)) kv_pairs.append((key, val)) for k, v in kv_pairs: if k in self._info: raise ValueError('info key "{}" already exists with value {}. ' 'Cannot add it again with value {}.'.format(k, self._info[k], v)) self._info[k] = v try: with open(self._info_file, 'a') as outfile: for k, v in kv_pairs: outfile.write('{}: {}\n'.format(k, v)) except IOError: if not kwargs.get('ignore_errors', False): raise
Adds the given info and returns a dict composed of just this added info.
def write(models, out=None, base=None, propertybase=None, shorteners=None, logger=logging): ''' models - input Versa models from which output is generated. Must be a sequence object, not an iterator ''' assert out is not None #Output stream required if not isinstance(models, list): models = [models] shorteners = shorteners or {} all_propertybase = [propertybase] if propertybase else [] all_propertybase.append(VERSA_BASEIRI) if any((base, propertybase, shorteners)): out.write('# @docheader\n\n* @iri:\n') if base: out.write(' * @base: {0}'.format(base)) #for k, v in shorteners: # out.write(' * @base: {0}'.format(base)) out.write('\n\n') origin_space = set() #base_out = models[0].base for m in models: origin_space.update(all_origins(m)) for o in origin_space: out.write('# {0}\n\n'.format(o)) for o_, r, t, a in m.match(o): abbr_r = abbreviate(r, all_propertybase) value_format(t) out.write('* {0}: {1}\n'.format(abbr_r, value_format(t))) for k, v in a.items(): abbr_k = abbreviate(k, all_propertybase) out.write(' * {0}: {1}\n'.format(k, value_format(v))) out.write('\n') return
models - input Versa models from which output is generated. Must be a sequence object, not an iterator
def mandel(x, y, max_iters): """ Given the real and imaginary parts of a complex number, determine if it is a candidate for membership in the Mandelbrot set given a fixed number of iterations. """ i = 0 c = complex(x,y) z = 0.0j for i in range(max_iters): z = z*z + c if (z.real*z.real + z.imag*z.imag) >= 4: return i return 255
Given the real and imaginary parts of a complex number, determine if it is a candidate for membership in the Mandelbrot set given a fixed number of iterations.
def nvmlUnitGetCount(): r""" /** * Retrieves the number of units in the system. * * For S-class products. * * @param unitCount Reference in which to return the number of units * * @return * - \ref NVML_SUCCESS if \a unitCount has been set * - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized * - \ref NVML_ERROR_INVALID_ARGUMENT if \a unitCount is NULL * - \ref NVML_ERROR_UNKNOWN on any unexpected error */ nvmlReturn_t DECLDIR nvmlUnitGetCount """ """ /** * Retrieves the number of units in the system. * * For S-class products. * * @param unitCount Reference in which to return the number of units * * @return * - \ref NVML_SUCCESS if \a unitCount has been set * - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized * - \ref NVML_ERROR_INVALID_ARGUMENT if \a unitCount is NULL * - \ref NVML_ERROR_UNKNOWN on any unexpected error */ """ c_count = c_uint() fn = _nvmlGetFunctionPointer("nvmlUnitGetCount") ret = fn(byref(c_count)) _nvmlCheckReturn(ret) return bytes_to_str(c_count.value)
r""" /** * Retrieves the number of units in the system. * * For S-class products. * * @param unitCount Reference in which to return the number of units * * @return * - \ref NVML_SUCCESS if \a unitCount has been set * - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized * - \ref NVML_ERROR_INVALID_ARGUMENT if \a unitCount is NULL * - \ref NVML_ERROR_UNKNOWN on any unexpected error */ nvmlReturn_t DECLDIR nvmlUnitGetCount