function_name
stringlengths
1
63
docstring
stringlengths
50
5.89k
masked_code
stringlengths
50
882k
implementation
stringlengths
169
12.9k
start_line
int32
1
14.6k
end_line
int32
16
14.6k
file_content
stringlengths
274
882k
setup_exceptionhook
Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler.
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one # MASKED: setup_exceptionhook function (lines 1510-1531) def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook
1,510
1,531
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
getpwd
Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function.
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? # MASKED: getpwd function (lines 1571-1650) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) )
1,571
1,650
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
dlabspath
Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath?
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") # MASKED: dlabspath function (lines 1694-1706) def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path
1,694
1,706
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
knows_annex
Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch.
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) # MASKED: knows_annex function (lines 1773-1787) @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex()
1,773
1,787
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
get_trace
Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical.
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) # MASKED: get_trace function (lines 1912-1965) def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None
1,912
1,965
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
get_dataset_root
Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None # MASKED: get_dataset_root function (lines 1968-2009) # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None
1,968
2,009
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
try_multiple_dec
Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug).
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) # MASKED: try_multiple_dec function (lines 2027-2087) @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
@optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec
2,027
2,087
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
open_r_encdetect
Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core # MASKED: open_r_encdetect function (lines 2136-2158) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc)
2,136
2,158
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
import_modules
Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) # MASKED: import_modules function (lines 2222-2256) def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded
2,222
2,256
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
lmtime
Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: # MASKED: lmtime function (lines 673-693) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime))
673
693
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import collections from collections.abc import Callable import re import builtins import time import logging import shutil import os import sys import tempfile from tempfile import NamedTemporaryFile import platform import gc import glob import gzip import stat import string import warnings import os.path as op from copy import copy as shallow_copy from contextlib import contextmanager from functools import ( lru_cache, wraps, ) from time import sleep import inspect from itertools import tee # this import is required because other modules import opj from here. from os.path import join as opj from os.path import ( abspath, basename, commonprefix, curdir, dirname, exists, expanduser, expandvars, isabs, isdir, islink, lexists, normpath, pardir, relpath, sep, split, splitdrive ) import posixpath from shlex import ( quote as shlex_quote, split as shlex_split, ) # from datalad.dochelpers import get_docstring_split from datalad.consts import TIMESTAMP_FMT from datalad.support.exceptions import CapturedException unicode_srctypes = str, bytes lgr = logging.getLogger("datalad.utils") lgr.log(5, "Importing datalad.utils") # # Some useful variables # platform_system = platform.system().lower() on_windows = platform_system == 'windows' on_osx = platform_system == 'darwin' on_linux = platform_system == 'linux' on_msys_tainted_paths = on_windows \ and 'MSYS_NO_PATHCONV' not in os.environ \ and os.environ.get('MSYSTEM', '')[:4] in ('MSYS', 'MING') # Takes ~200msec, so should not be called at import time @lru_cache() # output should not change through life time of datalad process def get_linux_distribution(): """Compatibility wrapper for {platform,distro}.linux_distribution(). """ if hasattr(platform, "linux_distribution"): # Use deprecated (but faster) method if it's available. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) result = platform.linux_distribution() else: import distro # We require this for Python 3.8 and above. result = distro.linux_distribution(full_distribution_name=False) return result # Those weren't used for any critical decision making, thus we just set them to None # Use get_linux_distribution() directly where needed linux_distribution_name = linux_distribution_release = None # Maximal length of cmdline string # Query the system and use hardcoded "knowledge" if None # probably getconf ARG_MAX might not be available # The last one would be the most conservative/Windows CMD_MAX_ARG_HARDCODED = 2097152 if on_linux else 262144 if on_osx else 32767 try: CMD_MAX_ARG = os.sysconf('SC_ARG_MAX') assert CMD_MAX_ARG > 0 if CMD_MAX_ARG > CMD_MAX_ARG_HARDCODED * 1e6: # workaround for some kind of a bug which comes up with python 3.4 # see https://github.com/datalad/datalad/issues/3150 # or on older CentOS with conda and python as new as 3.9 # see https://github.com/datalad/datalad/issues/5943 # TODO: let Yarik know that the world is a paradise now whenever 1e6 # is not large enough CMD_MAX_ARG = min(CMD_MAX_ARG, CMD_MAX_ARG_HARDCODED) except Exception as exc: # ATM (20181005) SC_ARG_MAX available only on POSIX systems # so exception would be thrown e.g. on Windows, or # somehow during Debian build for nd14.04 it is coming up with -1: # https://github.com/datalad/datalad/issues/3015 CMD_MAX_ARG = CMD_MAX_ARG_HARDCODED lgr.debug( "Failed to query or got useless SC_ARG_MAX sysconf, " "will use hardcoded value: %s", exc) # Even with all careful computations we do, due to necessity to account for # environment and what not, we still could not figure out "exact" way to # estimate it, but it was shown that 300k safety margin on linux was sufficient. # https://github.com/datalad/datalad/pull/2977#issuecomment-436264710 # 300k is ~15%, so to be safe, and for paranoid us we will just use up to 50% # of the length for "safety margin". We might probably still blow due to # env vars, unicode, etc... so any hard limit imho is not a proper solution CMD_MAX_ARG = int(0.5 * CMD_MAX_ARG) lgr.debug( "Maximal length of cmdline string (adjusted for safety margin): %d", CMD_MAX_ARG) # # Little helpers # # `getargspec` has been deprecated in Python 3. ArgSpecFake = collections.namedtuple( "ArgSpecFake", ["args", "varargs", "keywords", "defaults"]) def getargspec(func, *, include_kwonlyargs=False): """Compat shim for getargspec deprecated in python 3. The main difference from inspect.getargspec (and inspect.getfullargspec for that matter) is that by using inspect.signature we are providing correct args/defaults for functools.wraps'ed functions. `include_kwonlyargs` option was added to centralize getting all args, even the ones which are kwonly (follow the ``*,``). For internal use and not advised for use in 3rd party code. Please use inspect.signature directly. """ # We use signature, and not getfullargspec, because only signature properly # "passes" args from a functools.wraps decorated function. # Note: getfullargspec works Ok on wrapt-decorated functions f_sign = inspect.signature(func) # Loop through parameters and compose argspec args4 = [[], None, None, {}] # Collect all kwonlyargs into a dedicated dict - name: default kwonlyargs = {} # shortcuts args, defaults = args4[0], args4[3] P = inspect.Parameter for p_name, p in f_sign.parameters.items(): if p.kind in (P.POSITIONAL_ONLY, P.POSITIONAL_OR_KEYWORD): assert not kwonlyargs # yoh: must not come after kwonlyarg args.append(p_name) if p.default is not P.empty: defaults[p_name] = p.default elif p.kind == P.VAR_POSITIONAL: args4[1] = p_name elif p.kind == P.VAR_KEYWORD: args4[2] = p_name elif p.kind == P.KEYWORD_ONLY: assert p.default is not P.empty kwonlyargs[p_name] = p.default if kwonlyargs: if not include_kwonlyargs: raise ValueError( 'Function has keyword-only parameters or annotations, either use ' 'inspect.signature() API which can support them, or provide include_kwonlyargs=True ' 'to this function' ) else: args.extend(list(kwonlyargs)) defaults.update(kwonlyargs) # harmonize defaults to how original getargspec returned them -- just a tuple args4[3] = None if not defaults else tuple(defaults.values()) return ArgSpecFake(*args4) def any_re_search(regexes, value): """Return if any of regexes (list or str) searches successfully for value""" for regex in ensure_tuple_or_list(regexes): if re.search(regex, value): return True return False def not_supported_on_windows(msg=None): """A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows """ if on_windows: raise NotImplementedError("This functionality is not yet implemented for Windows OS" + (": %s" % msg if msg else "")) def get_home_envvars(new_home): """Return dict with env variables to be adjusted for a new HOME Only variables found in current os.environ are adjusted. Parameters ---------- new_home: str or Path New home path, in native to OS "schema" """ new_home = str(new_home) out = {'HOME': new_home} if on_windows: # requires special handling, since it has a number of relevant variables # and also Python changed its behavior and started to respect USERPROFILE only # since python 3.8: https://bugs.python.org/issue36264 out['USERPROFILE'] = new_home out['HOMEDRIVE'], out['HOMEPATH'] = splitdrive(new_home) return {v: val for v, val in out.items() if v in os.environ} def shortened_repr(value, l=30): try: if hasattr(value, '__repr__') and (value.__repr__ is not object.__repr__): value_repr = repr(value) if not value_repr.startswith('<') and len(value_repr) > l: value_repr = "<<%s++%d chars++%s>>" % ( value_repr[:l - 16], len(value_repr) - (l - 16 + 4), value_repr[-4:] ) elif value_repr.startswith('<') and value_repr.endswith('>') and ' object at 0x': raise ValueError("I hate those useless long reprs") else: raise ValueError("gimme class") except Exception as e: value_repr = "<%s>" % value.__class__.__name__.split('.')[-1] return value_repr def __auto_repr__(obj): attr_names = tuple() if hasattr(obj, '__dict__'): attr_names += tuple(obj.__dict__.keys()) if hasattr(obj, '__slots__'): attr_names += tuple(obj.__slots__) items = [] for attr in sorted(set(attr_names)): if attr.startswith('_'): continue value = getattr(obj, attr) # TODO: should we add this feature to minimize some talktative reprs # such as of URL? #if value is None: # continue items.append("%s=%s" % (attr, shortened_repr(value))) return "%s(%s)" % (obj.__class__.__name__, ', '.join(items)) def auto_repr(cls): """Decorator for a class to assign it an automagic quick and dirty __repr__ It uses public class attributes to prepare repr of a class Original idea: http://stackoverflow.com/a/27799004/1265472 """ cls.__repr__ = __auto_repr__ return cls def _is_stream_tty(stream): try: # TODO: check on windows if hasattr check would work correctly and # add value: return stream.isatty() except ValueError as exc: # Who knows why it is a ValueError, but let's try to be specific # If there is a problem with I/O - non-interactive, otherwise reraise if "I/O" in str(exc): return False raise def is_interactive(): """Return True if all in/outs are open and tty. Note that in a somewhat abnormal case where e.g. stdin is explicitly closed, and any operation on it would raise a `ValueError("I/O operation on closed file")` exception, this function would just return False, since the session cannot be used interactively. """ return all(_is_stream_tty(s) for s in (sys.stdin, sys.stdout, sys.stderr)) def get_ipython_shell(): """Detect if running within IPython and returns its `ip` (shell) object Returns None if not under ipython (no `get_ipython` function) """ try: return get_ipython() except NameError: return None def md5sum(filename): """Compute an MD5 sum for the given file """ from datalad.support.digests import Digester return Digester(digests=['md5'])(filename)['md5'] # unused in -core def sorted_files(path): """Return a (sorted) list of files under path """ return sorted(sum([[op.join(r, f)[len(path) + 1:] for f in files] for r, d, files in os.walk(path) if not '.git' in r], [])) _encoded_dirsep = r'\\' if on_windows else r'/' _VCS_REGEX = r'%s\.(?:git|gitattributes|svn|bzr|hg)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) _DATALAD_REGEX = r'%s\.(?:datalad)(?:%s|$)' % ( _encoded_dirsep, _encoded_dirsep) def find_files(regex, topdir=curdir, exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False): """Generator to find files matching regex Parameters ---------- regex: basestring exclude: basestring, optional Matches to exclude exclude_vcs: If True, excludes commonly known VCS subdirectories. If string, used as regex to exclude those files (regex: `%r`) exclude_datalad: If True, excludes files known to be datalad meta-data files (e.g. under .datalad/ subdirectory) (regex: `%r`) topdir: basestring, optional Directory where to search dirs: bool, optional Whether to match directories as well as files """ for dirpath, dirnames, filenames in os.walk(topdir): names = (dirnames + filenames) if dirs else filenames # TODO: might want to uniformize on windows to use '/' paths = (op.join(dirpath, name) for name in names) for path in filter(re.compile(regex).search, paths): path = path.rstrip(sep) if exclude and re.search(exclude, path): continue if exclude_vcs and re.search(_VCS_REGEX, path): continue if exclude_datalad and re.search(_DATALAD_REGEX, path): continue yield path find_files.__doc__ %= (_VCS_REGEX, _DATALAD_REGEX) def expandpath(path, force_absolute=True): """Expand all variables and user handles in a path. By default return an absolute path """ path = expandvars(expanduser(path)) if force_absolute: path = abspath(path) return path def posix_relpath(path, start=None): """Behave like os.path.relpath, but always return POSIX paths... on any platform.""" # join POSIX style return posixpath.join( # split and relpath native style # python2.7 ntpath implementation of relpath cannot handle start=None *split( relpath(path, start=start if start is not None else ''))) def is_explicit_path(path): """Return whether a path explicitly points to a location Any absolute path, or relative path starting with either '../' or './' is assumed to indicate a location on the filesystem. Any other path format is not considered explicit.""" path = expandpath(path, force_absolute=False) return isabs(path) \ or path.startswith(os.curdir + os.sep) \ or path.startswith(os.pardir + os.sep) # handle this dance once, and import pathlib from here # in all other places from pathlib import ( Path, PurePath, PurePosixPath, ) def rotree(path, ro=True, chmod_files=True): """To make tree read-only or writable Parameters ---------- path : string Path to the tree/directory to chmod ro : bool, optional Whether to make it R/O (default) or RW chmod_files : bool, optional Whether to operate also on files (not just directories) """ if ro: chmod = lambda f: os.chmod(f, os.stat(f).st_mode & ~stat.S_IWRITE) else: chmod = lambda f: os.chmod(f, os.stat(f).st_mode | stat.S_IWRITE | stat.S_IREAD) for root, dirs, files in os.walk(path, followlinks=False): if chmod_files: for f in files: fullf = op.join(root, f) # might be the "broken" symlink which would fail to stat etc if exists(fullf): chmod(fullf) chmod(root) def rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs): """To remove git-annex .git it is needed to make all files and directories writable again first Parameters ---------- path: Path or str Path to remove chmod_files : string or bool, optional Whether to make files writable also before removal. Usually it is just a matter of directories to have write permissions. If 'auto' it would chmod files on windows by default children_only : bool, optional If set, all files and subdirectories would be removed while the path itself (must be a directory) would be preserved `*args` : `**kwargs` : Passed into shutil.rmtree call """ # Give W permissions back only to directories, no need to bother with files if chmod_files == 'auto': chmod_files = on_windows # TODO: yoh thinks that if we could quickly check our Flyweight for # repos if any of them is under the path, and could call .precommit # on those to possibly stop batched processes etc, we did not have # to do it on case by case # Check for open files assert_no_open_files(path) # TODO the whole thing should be reimplemented with pathlib, but for now # at least accept Path path = str(path) if children_only: if not isdir(path): raise ValueError("Can remove children only of directories") for p in os.listdir(path): rmtree(op.join(path, p)) return if not (islink(path) or not isdir(path)): rotree(path, ro=False, chmod_files=chmod_files) if on_windows: # shutil fails to remove paths that exceed 260 characters on Windows machines # that did not enable long path support. A workaround to remove long paths # anyway is to preprend \\?\ to the path. # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces path = r'\\?\ '.strip() + path _rmtree(path, *args, **kwargs) else: # just remove the symlink unlink(path) def rmdir(path, *args, **kwargs): """os.rmdir with our optional checking for open files""" assert_no_open_files(path) os.rmdir(path) def get_open_files(path, log_open=False): """Get open files under a path Note: This function is very slow on Windows. Parameters ---------- path : str File or directory to check for open files under log_open : bool or int If set - logger level to use Returns ------- dict path : pid """ # Original idea: https://stackoverflow.com/a/11115521/1265472 import psutil files = {} # since the ones returned by psutil would not be aware of symlinks in the # path we should also get realpath for path # do absolute() in addition to always get an absolute path # even with non-existing paths on windows path = str(Path(path).resolve().absolute()) for proc in psutil.process_iter(): try: open_paths = [p.path for p in proc.open_files()] + [proc.cwd()] for p in open_paths: # note: could be done more efficiently so we do not # renormalize path over and over again etc if path_startswith(p, path): files[p] = proc # Catch a race condition where a process ends # before we can examine its files except psutil.NoSuchProcess: pass except psutil.AccessDenied: pass if files and log_open: lgr.log(log_open, "Open files under %s: %s", path, files) return files _assert_no_open_files_cfg = os.environ.get('DATALAD_ASSERT_NO_OPEN_FILES') if _assert_no_open_files_cfg: def assert_no_open_files(path): files = get_open_files(path, log_open=40) if _assert_no_open_files_cfg == 'assert': assert not files, "Got following files still open: %s" % ','.join(files) elif files: if _assert_no_open_files_cfg == 'pdb': import pdb pdb.set_trace() elif _assert_no_open_files_cfg == 'epdb': import epdb epdb.serve() pass # otherwise we would just issue that error message in the log else: def assert_no_open_files(*args, **kwargs): pass def rmtemp(f, *args, **kwargs): """Wrapper to centralize removing of temp files so we could keep them around It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP environment variable is defined """ if not os.environ.get('DATALAD_TESTS_TEMP_KEEP'): if not os.path.lexists(f): lgr.debug("Path %s does not exist, so can't be removed", f) return lgr.log(5, "Removing temp file: %s", f) # Can also be a directory if isdir(f): rmtree(f, *args, **kwargs) else: unlink(f) else: lgr.info("Keeping temp file: %s", f) def file_basename(name, return_ext=False): """ Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of .tar.gz etc """ bname = basename(name) fbname = re.sub(r'(\.[a-zA-Z_]\S{1,4}){0,2}$', '', bname) if return_ext: return fbname, bname[len(fbname) + 1:] else: return fbname # unused in -core def escape_filename(filename): """Surround filename in "" and escape " in the filename """ filename = filename.replace('"', r'\"').replace('`', r'\`') filename = '"%s"' % filename return filename # unused in -core def encode_filename(filename): """Encode unicode filename """ if isinstance(filename, str): return filename.encode(sys.getfilesystemencoding()) else: return filename # unused in -core def decode_input(s): """Given input string/bytes, decode according to stdin codepage (or UTF-8) if not defined If fails -- issue warning and decode allowing for errors being replaced """ if isinstance(s, str): return s else: encoding = sys.stdin.encoding or 'UTF-8' try: return s.decode(encoding) except UnicodeDecodeError as exc: lgr.warning( "Failed to decode input string using %s encoding. " "Decoding allowing for errors", encoding) return s.decode(encoding, errors='replace') # unused in -core if on_windows: def lmtime(filepath, mtime): """Set mtime for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import WitlessRunner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) WitlessRunner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) filepath = Path(filepath) rfilepath = filepath.resolve() if filepath.is_symlink() and rfilepath.exists(): # trust no one - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(str(rfilepath), (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def ensure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def ensure_iter(s, cls, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything cls: class Which iterable class to ensure copy: bool, optional If correct iterable is passed, it would generate its shallow copy iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ if isinstance(s, cls): return s if not copy else shallow_copy(s) elif isinstance(s, str): return cls((s,)) elif iterate and hasattr(s, '__iter__'): return cls(s) elif s is None: return cls() else: return cls((s,)) def ensure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a str) iterate over it. """ return ensure_iter(s, list, copy=copy, iterate=iterate) def ensure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def ensure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in ensure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def ensure_bytes(s, encoding='utf-8'): """Convert/encode unicode string to bytes. If `s` isn't a string, return it as is. Parameters ---------- encoding: str, optional Encoding to use. "utf-8" is the default """ if not isinstance(s, str): return s return s.encode(encoding) def ensure_unicode(s, encoding=None, confidence=None): """Convert/decode bytestring to unicode. If `s` isn't a bytestring, return it as is. Parameters ---------- encoding: str, optional Encoding to use. If None, "utf-8" is tried, and then if not a valid UTF-8, encoding will be guessed confidence: float, optional A value between 0 and 1, so if guessing of encoding is of lower than specified confidence, ValueError is raised """ if not isinstance(s, bytes): return s if encoding is None: # Figure out encoding, defaulting to 'utf-8' which is our common # target in contemporary digital society try: return s.decode('utf-8') except UnicodeDecodeError as exc: lgr.debug("Failed to decode a string as utf-8: %s", CapturedException(exc)) # And now we could try to guess from chardet import detect enc = detect(s) denc = enc.get('encoding', None) if denc: denc_confidence = enc.get('confidence', 0) if confidence is not None and denc_confidence < confidence: raise ValueError( "Failed to auto-detect encoding with high enough " "confidence. Highest confidence was %s for %s" % (denc_confidence, denc) ) lgr.log(5, "Auto-detected encoding to be %s", denc) return s.decode(denc) else: raise ValueError( "Could not decode value as utf-8, or to guess its encoding: %s" % repr(s) ) else: return s.decode(encoding) def ensure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, str): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def as_unicode(val, cast_types=object): """Given an arbitrary value, would try to obtain unicode value of it For unicode it would return original value, for python2 str or python3 bytes it would use ensure_unicode, for None - an empty (unicode) string, and for any other type (see `cast_types`) - would apply the unicode constructor. If value is not an instance of `cast_types`, TypeError is thrown Parameters ---------- cast_types: type Which types to cast to unicode by providing to constructor """ if val is None: return u'' elif isinstance(val, str): return val elif isinstance(val, unicode_srctypes): return ensure_unicode(val) elif isinstance(val, cast_types): return str(val) else: raise TypeError( "Value %r is not of any of known or provided %s types" % (val, cast_types)) def unique(seq, key=None, reverse=False): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc reverse: bool, optional If True, uniqueness checked in the reverse order, so that the later ones will take the order """ seen = set() seen_add = seen.add trans = reversed if reverse else lambda x: x if not key: out = [x for x in trans(seq) if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine out = [x for x in trans(seq) if not (key(x) in seen or seen_add(key(x)))] return out[::-1] if reverse else out def all_same(items): """Quick check if all items are the same. Identical to a check like len(set(items)) == 1 but should be more efficient while working on generators, since would return False as soon as any difference detected thus possibly avoiding unnecessary evaluations """ first = True first_item = None for item in items: if first: first = False first_item = item else: if item != first_item: return False # So we return False if was empty return not first def map_items(func, v): """A helper to apply `func` to all elements (keys and values) within dict No type checking of values passed to func is done, so `func` should be resilient to values which it should not handle Initial usecase - apply_recursive(url_fragment, ensure_unicode) """ # map all elements within item return v.__class__( item.__class__(map(func, item)) for item in v.items() ) def partition(items, predicate=bool): """Partition `items` by `predicate`. Parameters ---------- items : iterable predicate : callable A function that will be mapped over each element in `items`. The elements will partitioned based on whether the return value is false or true. Returns ------- A tuple with two generators, the first for 'false' items and the second for 'true' ones. Notes ----- Taken from Peter Otten's snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html """ a, b = tee((predicate(item), item) for item in items) return ((item for pred, item in a if not pred), (item for pred, item in b if pred)) def generate_chunks(container, size): """Given a container, generate chunks from it with size up to `size` """ # There could be a "smarter" solution but I think this would suffice assert size > 0, "Size should be non-0 positive" while container: yield container[:size] container = container[size:] def generate_file_chunks(files, cmd=None): """Given a list of files, generate chunks of them to avoid exceeding cmdline length Parameters ---------- files: list of str cmd: str or list of str, optional Command to account for as well """ files = ensure_list(files) cmd = ensure_list(cmd) maxl = max(map(len, files)) if files else 0 chunk_size = max( 1, # should at least be 1. If blows then - not our fault (CMD_MAX_ARG - sum((len(x) + 3) for x in cmd) - 4 # for '--' below ) // (maxl + 3) # +3 for possible quotes and a space ) # TODO: additional treatment for "too many arguments"? although # as https://github.com/datalad/datalad/issues/1883#issuecomment # -436272758 # shows there seems to be no hardcoded limit on # of arguments, # but may be we decide to go for smth like follow to be on safe side # chunk_size = min(10240 - len(cmd), chunk_size) file_chunks = generate_chunks(files, chunk_size) return file_chunks # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # # Originally better_wraps was created to provide `wrapt`-based, instead of # `functools.wraps` implementation to preserve the correct signature of the # decorated function. By using inspect.signature in our getargspec, which # works fine on `functools.wraps`ed functions, we mediated this necessity. better_wraps = wraps # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('TMPDIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def _wrap_line_profile(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return _wrap_line_profile # unused in -core @optional_args def collect_method_callstats(func): """Figure out methods which call the method repeatedly on the same instance Use case(s): - .repo is expensive since does all kinds of checks. - .config is expensive transitively since it calls .repo each time TODO: - fancy one could look through the stack for the same id(self) to see if that location is already in memo. That would hint to the cases where object is not passed into underlying functions, causing them to redo the same work over and over again - ATM might flood with all "1 lines" calls which are not that informative. The underlying possibly suboptimal use might be coming from their callers. It might or not relate to the previous TODO """ from collections import defaultdict import traceback from time import time memo = defaultdict(lambda: defaultdict(int)) # it will be a dict of lineno: count # gross timing times = [] toppath = dirname(__file__) + sep @wraps(func) def _wrap_collect_method_callstats(*args, **kwargs): try: self = args[0] stack = traceback.extract_stack() caller = stack[-2] stack_sig = \ "{relpath}:{s.name}".format( s=caller, relpath=relpath(caller.filename, toppath)) sig = (id(self), stack_sig) # we will count based on id(self) + wherefrom memo[sig][caller.lineno] += 1 t0 = time() return func(*args, **kwargs) finally: times.append(time() - t0) pass def print_stats(): print("The cost of property {}:".format(func.__name__)) if not memo: print("None since no calls") return # total count counts = {k: sum(v.values()) for k,v in memo.items()} total = sum(counts.values()) ids = {self_id for (self_id, _) in memo} print(" Total: {} calls from {} objects with {} contexts taking {:.2f} sec" .format(total, len(ids), len(memo), sum(times))) # now we need to sort by value for (self_id, caller), count in sorted(counts.items(), key=lambda x: x[1], reverse=True): print(" {} {}: {} from {} lines" .format(self_id, caller, count, len(memo[(self_id, caller)]))) # Upon total exit we print the stats import atexit atexit.register(print_stats) return _wrap_collect_method_callstats # Borrowed from duecredit to wrap duecredit-handling to guarantee failsafe def never_fail(f): """Assure that function never fails -- all exceptions are caught Returns `None` if function fails internally. """ @wraps(f) def wrapped_func(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: lgr.warning( "DataLad internal failure while running %s: %r. " "Please report at https://github.com/datalad/datalad/issues" % (f, e) ) if os.environ.get('DATALAD_ALLOW_FAIL', False): return f else: return wrapped_func # # Context Managers # # unused in -core @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = NamedTemporaryFile(delete=False, mode='w', **kw) self._err = NamedTemporaryFile(delete=False, mode='w', **kw) def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if not self._out.closed: self._out.flush() return self._read(self._out) @property def err(self): if not self._err.closed: self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name from datalad import cfg if cfg.getbool('datalad.log', 'outputs', default=False) \ and lgr.getEffectiveLevel() <= logging.DEBUG: for s, sname in ((self.out, 'stdout'), (self.err, 'stderr')): if s: pref = os.linesep + "| " lgr.debug("Swallowed %s:%s%s", sname, pref, s.replace(os.linesep, pref)) else: lgr.debug("Nothing was swallowed for %s", sname) del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock try: sys.stdout.write(sep.join(args) + end) except UnicodeEncodeError as exc: lgr.error( "Failed to write to mocked stdout, got %s, continue as it " "didn't happen", exc) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(builtins, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(builtins, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(builtins, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") self._out = NamedTemporaryFile(mode='a', delete=False, **kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): if self._final_out is not None: # we closed and cleaned up already return self._final_out else: self._out.flush() return self._read(self._out) @property def lines(self): return self.out.split('\n') @property def handle(self): return self._out def cleanup(self): # store for access while object exists self._final_out = self.out self._out.close() out_name = self._out.name del self._out gc.collect() if not file_: rmtemp(out_name) def assert_logged(self, msg=None, level=None, regex=True, **kwargs): """Provide assertion on whether a msg was logged at a given level If neither `msg` nor `level` provided, checks if anything was logged at all. Parameters ---------- msg: str, optional Message (as a regular expression, if `regex`) to be searched. If no msg provided, checks if anything was logged at a given level. level: str, optional String representing the level to be logged regex: bool, optional If False, regular `assert_in` is used **kwargs: str, optional Passed to `assert_re_in` or `assert_in` """ from datalad.tests.utils import assert_re_in from datalad.tests.utils import assert_in if regex: match = r'\[%s\] ' % level if level else r"\[\S+\] " else: match = '[%s] ' % level if level else '' if msg: match += msg if match: (assert_re_in if regex else assert_in)(match, self.out, **kwargs) else: assert not kwargs, "no kwargs to be passed anywhere" assert self.out, "Nothing was logged!?" adapter = StringIOAdapter() # TODO: it does store messages but without any formatting, i.e. even without # date/time prefix etc. IMHO it should preserve formatting in case if file_ is # set swallow_handler = logging.StreamHandler(adapter.handle) # we want to log levelname so we could test against it swallow_handler.setFormatter( logging.Formatter('[%(levelname)s] %(message)s')) swallow_handler.filters = sum([h.filters for h in old_handlers], []) lgr.handlers = [swallow_handler] if old_level < logging.DEBUG: # so if HEAVYDEBUG etc -- show them! lgr.handlers += old_handlers if isinstance(new_level, str): new_level = getattr(logging, new_level) if new_level is not None: lgr.setLevel(new_level) try: yield adapter # TODO: if file_ and there was an exception -- most probably worth logging it? # although ideally it should be the next log outside added to that file_ ... oh well finally: lgr.handlers = old_handlers lgr.setLevel(old_level) adapter.cleanup() # TODO: May be melt in with swallow_logs at some point: @contextmanager def disable_logger(logger=None): """context manager to temporarily disable logging This is to provide one of swallow_logs' purposes without unnecessarily creating temp files (see gh-1865) Parameters ---------- logger: Logger Logger whose handlers will be ordered to not log anything. Default: datalad's topmost Logger ('datalad') """ class NullFilter(logging.Filter): """Filter class to reject all records """ def filter(self, record): return 0 if logger is None: # default: all of datalad's logging: logger = logging.getLogger('datalad') filter_ = NullFilter(logger.name) [h.addFilter(filter_) for h in logger.handlers] try: yield logger finally: [h.removeFilter(filter_) for h in logger.handlers] # # Additional handlers # _sys_excepthook = sys.excepthook # Just in case we ever need original one def setup_exceptionhook(ipython=False): """Overloads default sys.excepthook with our exceptionhook handler. If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default handler. """ def _datalad_pdb_excepthook(type, value, tb): import traceback traceback.print_exception(type, value, tb) print() if is_interactive(): import pdb pdb.post_mortem(tb) if ipython: from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', # color_scheme='Linux', call_pdb=is_interactive()) else: sys.excepthook = _datalad_pdb_excepthook def ensure_dir(*args): """Make sure directory exists. Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet. """ dirname = op.join(*args) if not exists(dirname): os.makedirs(dirname) return dirname def updated(d, update): """Return a copy of the input with the 'update' Primarily for updating dictionaries """ d = d.copy() d.update(update) return d _pwd_mode = None def _switch_to_getcwd(msg, *args): global _pwd_mode _pwd_mode = 'cwd' lgr.debug( msg + ". From now on will be returning os.getcwd(). Directory" " symlinks in the paths will be resolved", *args ) # TODO: we might want to mitigate by going through all flywheighted # repos and tuning up their .paths to be resolved? def getpwd(): """Try to return a CWD without dereferencing possible symlinks This function will try to use PWD environment variable to provide a current working directory, possibly with some directories along the path being symlinks to other directories. Unfortunately, PWD is used/set only by the shell and such functions as `os.chdir` and `os.getcwd` nohow use or modify it, thus `os.getcwd()` returns path with links dereferenced. While returning current working directory based on PWD env variable we verify that the directory is the same as `os.getcwd()` after resolving all symlinks. If that verification fails, we fall back to always use `os.getcwd()`. Initial decision to either use PWD env variable or os.getcwd() is done upon the first call of this function. """ global _pwd_mode if _pwd_mode is None: # we need to decide! try: pwd = os.environ['PWD'] if on_windows and pwd and pwd.startswith('/'): # It should be a path from MSYS. # - it might start with a drive letter or not # - it seems to be "illegal" to have a single letter directories # under / path, i.e. if created - they aren't found # - 'ln -s' does not fail to create a "symlink" but it just # copies! # so we are not likely to need original PWD purpose on # those systems # Verdict: _pwd_mode = 'cwd' else: _pwd_mode = 'PWD' except KeyError: _pwd_mode = 'cwd' if _pwd_mode == 'cwd': return os.getcwd() elif _pwd_mode == 'PWD': try: cwd = os.getcwd() except OSError as exc: if "o such file" in str(exc): # directory was removed but we promised to be robust and # still report the path we might know since we are still in PWD # mode cwd = None else: raise try: pwd = os.environ['PWD'] # do absolute() in addition to always get an absolute path # even with non-existing paths on windows pwd_real = str(Path(pwd).resolve().absolute()) # This logic would fail to catch the case where chdir did happen # to the directory where current PWD is pointing to, e.g. # $> ls -ld $PWD # lrwxrwxrwx 1 yoh yoh 5 Oct 11 13:27 /home/yoh/.tmp/tmp -> /tmp// # hopa:~/.tmp/tmp # $> python -c 'import os; os.chdir("/tmp"); from datalad.utils import getpwd; print(getpwd(), os.getcwd())' # ('/home/yoh/.tmp/tmp', '/tmp') # but I guess that should not be too harmful if cwd is not None and pwd_real != cwd: _switch_to_getcwd( "realpath of PWD=%s is %s whenever os.getcwd()=%s", pwd, pwd_real, cwd ) return cwd return pwd except KeyError: _switch_to_getcwd("PWD env variable is no longer available") return cwd # Must not happen, but may be someone # evil purges PWD from environ? else: raise RuntimeError( "Must have not got here. " "pwd_mode must be either cwd or PWD. And it is now %r" % (_pwd_mode,) ) class chpwd(object): """Wrapper around os.chdir which also adjusts environ['PWD'] The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory path without dereferencing symlinks. If used as a context manager it allows to temporarily change directory to the given path """ def __init__(self, path, mkdir=False, logsuffix=''): if path: pwd = getpwd() self._prev_pwd = pwd else: self._prev_pwd = None return if not isabs(path): path = normpath(op.join(pwd, path)) if not os.path.exists(path) and mkdir: self._mkdir = True os.mkdir(path) else: self._mkdir = False lgr.debug("chdir %r -> %r %s", self._prev_pwd, path, logsuffix) os.chdir(path) # for grep people -- ok, to chdir here! os.environ['PWD'] = str(path) def __enter__(self): # nothing more to do really, chdir was in the constructor pass def __exit__(self, exc_type, exc_val, exc_tb): if self._prev_pwd: # Need to use self.__class__ so this instance, if the entire # thing mocked during the test, still would use correct chpwd self.__class__(self._prev_pwd, logsuffix="(coming back)") def dlabspath(path, norm=False): """Symlinks-in-the-cwd aware abspath os.path.abspath relies on os.getcwd() which would not know about symlinks in the path TODO: we might want to norm=True by default to match behavior of os .path.abspath? """ if not isabs(path): # if not absolute -- relative to pwd path = op.join(getpwd(), path) return normpath(path) if norm else path def with_pathsep(path): """Little helper to guarantee that path ends with /""" return path + sep if not path.endswith(sep) else path def get_path_prefix(path, pwd=None): """Get path prefix (for current directory) Returns relative path to the topdir, if we are under topdir, and if not absolute path to topdir. If `pwd` is not specified - current directory assumed """ pwd = pwd or getpwd() path = dlabspath(path) path_ = with_pathsep(path) pwd_ = with_pathsep(pwd) common = commonprefix((path_, pwd_)) if common.endswith(sep) and common in {path_, pwd_}: # we are in subdir or above the path = use relative path location_prefix = relpath(path, pwd) # if benign "here" - cut off if location_prefix in (curdir, curdir + sep): location_prefix = '' return location_prefix else: # just return absolute path return path def _get_normalized_paths(path, prefix): if isabs(path) != isabs(prefix): raise ValueError("Both paths must either be absolute or relative. " "Got %r and %r" % (path, prefix)) path = with_pathsep(path) prefix = with_pathsep(prefix) return path, prefix def path_startswith(path, prefix): """Return True if path starts with prefix path Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return path.startswith(prefix) def path_is_subpath(path, prefix): """Return True if path is a subpath of prefix It will return False if path == prefix. Parameters ---------- path: str prefix: str """ path, prefix = _get_normalized_paths(path, prefix) return (len(prefix) < len(path)) and path.startswith(prefix) def knows_annex(path): """Returns whether at a given path there is information about an annex It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for `path` to exist first. This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex branch. """ from os.path import exists if not exists(path): lgr.debug("No annex: test path {0} doesn't exist".format(path)) return False from datalad.support.gitrepo import GitRepo return GitRepo(path, init=False, create=False).is_with_annex() @contextmanager def make_tempfile(content=None, wrapped=None, **tkwargs): """Helper class to provide a temporary file name and remove it at the end (context manager) Parameters ---------- mkdir : bool, optional (default: False) If True, temporary directory created using tempfile.mkdtemp() content : str or bytes, optional Content to be stored in the file created wrapped : function, optional If set, function name used to prefix temporary file name `**tkwargs`: All other arguments are passed into the call to tempfile.mk{,d}temp(), and resultant temporary filename is passed as the first argument into the function t. If no 'prefix' argument is provided, it will be constructed using module and function names ('.' replaced with '_'). To change the used directory without providing keyword argument 'dir' set DATALAD_TESTS_TEMP_DIR. Examples -------- >>> from os.path import exists >>> from datalad.utils import make_tempfile >>> with make_tempfile() as fname: ... k = open(fname, 'w').write('silly test') >>> assert not exists(fname) # was removed >>> with make_tempfile(content="blah") as fname: ... assert open(fname).read() == "blah" """ if tkwargs.get('mkdir', None) and content is not None: raise ValueError("mkdir=True while providing content makes no sense") tkwargs_ = get_tempfile_kwargs(tkwargs, wrapped=wrapped) # if DATALAD_TESTS_TEMP_DIR is set, use that as directory, # let mktemp handle it otherwise. However, an explicitly provided # dir=... will override this. mkdir = tkwargs_.pop('mkdir', False) filename = {False: tempfile.mktemp, True: tempfile.mkdtemp}[mkdir](**tkwargs_) # MIH: not clear to me why we need to perform this (possibly expensive) # resolve. It was already part of the original implementation # 008d9ab8cc3e0170c0a9b8479e80dee9ffe6eb7f filename = Path(filename).resolve() if content: (filename.write_bytes if isinstance(content, bytes) else filename.write_text)(content) # TODO globbing below can also be done with pathlib filename = str(filename) if __debug__: lgr.debug( 'Created temporary %s named %s', 'directory' if mkdir else 'file', filename) try: yield filename finally: # glob here for all files with the same name (-suffix) # would be useful whenever we requested .img filename, # and function creates .hdr as well # MIH: this is undocumented behavior, and undesired in the general # case. it should be made conditional and explicit lsuffix = len(tkwargs_.get('suffix', '')) filename_ = lsuffix and filename[:-lsuffix] or filename filenames = glob.glob(filename_ + '*') if len(filename_) < 3 or len(filenames) > 5: # For paranoid yoh who stepped into this already ones ;-) lgr.warning("It is unlikely that it was intended to remove all" " files matching %r. Skipping" % filename_) return for f in filenames: try: rmtemp(f) except OSError: # pragma: no cover pass def _path_(*p): """Given a path in POSIX" notation, regenerate one in native to the env one""" if on_windows: return op.join(*map(lambda x: op.join(*x.split('/')), p)) else: # Assume that all others as POSIX compliant so nothing to be done return op.join(*p) def get_timestamp_suffix(time_=None, prefix='-'): """Return a time stamp (full date and time up to second) primarily to be used for generation of log files names """ args = [] if time_ is not None: if isinstance(time_, int): time_ = time.gmtime(time_) args.append(time_) return time.strftime(prefix + TIMESTAMP_FMT, *args) # unused in -core def get_logfilename(dspath, cmd='datalad'): """Return a filename to use for logging under a dataset/repository directory would be created if doesn't exist, but dspath must exist and be a directory """ assert(exists(dspath)) assert(isdir(dspath)) ds_logdir = ensure_dir(dspath, '.git', 'datalad', 'logs') # TODO: use WEB_META_LOG whenever #789 merged return op.join(ds_logdir, 'crawl-%s.log' % get_timestamp_suffix()) def get_trace(edges, start, end, trace=None): """Return the trace/path to reach a node in a tree. Parameters ---------- edges : sequence(2-tuple) The tree given by a sequence of edges (parent, child) tuples. The nodes can be identified by any value and data type that supports the '==' operation. start : Identifier of the start node. Must be present as a value in the parent location of an edge tuple in order to be found. end : Identifier of the target/end node. Must be present as a value in the child location of an edge tuple in order to be found. trace : list Mostly useful for recursive calls, and used internally. Returns ------- None or list Returns a list with the trace to the target (the starts and the target are not included in the trace, hence if start and end are directly connected an empty list is returned), or None when no trace to the target can be found, or start and end are identical. """ # the term trace is used to avoid confusion with a path in the sense # of a filesystem path, but the analogy fits and nodes can be paths if trace is None: trace = [] if not edges: raise ValueError("no edges given") for cand in edges: cand_super, cand_sub = cand if cand_sub in trace: # only DAGs, skip any cyclic traces continue if trace and cand_super != trace[-1]: # only consider edges that lead off the end of the trace continue if not trace and cand_super != start: # we got nothing yet, and this edges is not matching the start continue if cand_sub == end: return trace # dive into potential subnodes cand_trace = get_trace( edges, start, end, trace + [cand_sub]) if cand_trace: return cand_trace return None def get_dataset_root(path): """Return the root of an existent dataset containing a given path The root path is returned in the same absolute or relative form as the input argument. If no associated dataset exists, or the input path doesn't exist, None is returned. If `path` is a symlink or something other than a directory, its the root dataset containing its parent directory will be reported. If none can be found, at a symlink at `path` is pointing to a dataset, `path` itself will be reported as the root. Parameters ---------- path : Path-like Returns ------- str or None """ path = str(path) suffix = '.git' altered = None if islink(path) or not isdir(path): altered = path path = dirname(path) apath = abspath(path) # while we can still go up while split(apath)[1]: if exists(op.join(path, suffix)): return path # new test path in the format we got it path = normpath(op.join(path, os.pardir)) # no luck, next round apath = abspath(path) # if we applied dirname() at the top, we give it another go with # the actual path, if it was itself a symlink, it could be the # top-level dataset itself if altered and exists(op.join(altered, suffix)): return altered return None # ATM used in datalad_crawler extension, so do not remove yet def try_multiple(ntrials, exception, base, f, *args, **kwargs): """Call f multiple times making exponentially growing delay between the calls""" for trial in range(1, ntrials+1): try: return f(*args, **kwargs) except exception as exc: if trial == ntrials: raise # just reraise on the last trial t = base ** trial lgr.warning("Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) @optional_args def try_multiple_dec( f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None, ): """Decorator to try function multiple times. Main purpose is to decorate functions dealing with removal of files/directories and which might need a few seconds to work correctly on Windows which takes its time to release files/directories. Parameters ---------- ntrials: int, optional duration: float, optional Seconds to sleep before retrying. increment_type: {None, 'exponential'} Note that if it is exponential, duration should typically be > 1.0 so it grows with higher power exceptions: Exception or tuple of Exceptions, optional Exception or a tuple of multiple exceptions, on which to retry exceptions_filter: callable, optional If provided, this function will be called with a caught exception instance. If function returns True - we will re-try, if False - exception will be re-raised without retrying. logger: callable, optional Logger to log upon failure. If not provided, will use stock logger at the level of 5 (heavy debug). """ if not exceptions: exceptions = (OSError, WindowsError, PermissionError) \ if on_windows else OSError if not ntrials: # Life goes fast on proper systems, no need to delay it much ntrials = 100 if on_windows else 10 if logger is None: def logger(*args, **kwargs): return lgr.log(5, *args, **kwargs) assert increment_type in {None, 'exponential'} @wraps(f) def _wrap_try_multiple_dec(*args, **kwargs): t = duration for trial in range(ntrials): try: return f(*args, **kwargs) except exceptions as exc: if exceptions_filter and not exceptions_filter(exc): raise if trial < ntrials - 1: if increment_type == 'exponential': t = duration ** (trial + 1) logger( "Caught %s on trial #%d. Sleeping %f and retrying", CapturedException(exc), trial, t) sleep(t) else: raise return _wrap_try_multiple_dec @try_multiple_dec def unlink(f): """'Robust' unlink. Would try multiple times On windows boxes there is evidence for a latency of more than a second until a file is considered no longer "in-use". WindowsError is not known on Linux, and if IOError or any other exception is thrown then if except statement has WindowsError in it -- NameError also see gh-2533 """ # Check for open files assert_no_open_files(f) return os.unlink(f) @try_multiple_dec def _rmtree(*args, **kwargs): """Just a helper to decorate shutil.rmtree. rmtree defined above does more and ideally should not itself be decorated since a recursive definition and does checks for open files inside etc - might be too runtime expensive """ return shutil.rmtree(*args, **kwargs) def slash_join(base, extension): """Join two strings with a '/', avoiding duplicate slashes If any of the strings is None the other is returned as is. """ if extension is None: return base if base is None: return extension return '/'.join( (base.rstrip('/'), extension.lstrip('/'))) # # IO Helpers # # unused in -core def open_r_encdetect(fname, readahead=1000): """Return a file object in read mode with auto-detected encoding This is helpful when dealing with files of unknown encoding. Parameters ---------- readahead: int, optional How many bytes to read for guessing the encoding type. If negative - full file will be read """ from chardet import detect import io # read some bytes from the file with open(fname, 'rb') as f: head = f.read(readahead) enc = detect(head) denc = enc.get('encoding', None) lgr.debug("Auto-detected encoding %s for file %s (confidence: %s)", denc, fname, enc.get('confidence', 'unknown')) return io.open(fname, encoding=denc) def read_file(fname, decode=True): """A helper to read file passing content via ensure_unicode Parameters ---------- decode: bool, optional if False, no ensure_unicode and file content returned as bytes """ with open(fname, 'rb') as f: content = f.read() return ensure_unicode(content) if decode else content def read_csv_lines(fname, dialect=None, readahead=16384, **kwargs): """A generator of dict records from a CSV/TSV Automatically guesses the encoding for each record to convert to UTF-8 Parameters ---------- fname: str Filename dialect: str, optional Dialect to specify to csv.reader. If not specified -- guessed from the file, if fails to guess, "excel-tab" is assumed readahead: int, optional How many bytes to read from the file to guess the type **kwargs Passed to `csv.reader` """ import csv if dialect is None: with open(fname) as tsvfile: # add robustness, use a sniffer try: dialect = csv.Sniffer().sniff(tsvfile.read(readahead)) except Exception as exc: lgr.warning( 'Could not determine file-format, assuming TSV: %s', CapturedException(exc) ) dialect = 'excel-tab' kw = dict(encoding='utf-8') with open(fname, 'r', **kw) as tsvfile: # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader( tsvfile, dialect=dialect, **kwargs ) header = None for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: row_unicode = map(ensure_unicode, row) if header is None: header = list(row_unicode) else: yield dict(zip(header, row_unicode)) def import_modules(modnames, pkg, msg="Failed to import {module}", log=lgr.debug): """Helper to import a list of modules without failing if N/A Parameters ---------- modnames: list of str List of module names to import pkg: str Package under which to import msg: str, optional Message template for .format() to log at DEBUG level if import fails. Keys {module} and {package} will be provided and ': {exception}' appended log: callable, optional Logger call to use for logging messages """ from importlib import import_module _globals = globals() mods_loaded = [] if pkg and not pkg in sys.modules: # with python 3.5.1 (ok with 3.5.5) somehow kept running into # Failed to import dlsub1: Parent module 'dltestm1' not loaded # while running the test. Preloading pkg resolved the issue import_module(pkg) for modname in modnames: try: _globals[modname] = mod = import_module( '.{}'.format(modname), pkg) mods_loaded.append(mod) except Exception as exc: from datalad.support.exceptions import CapturedException ce = CapturedException(exc) log((msg + ': {exception}').format( module=modname, package=pkg, exception=ce.message)) return mods_loaded def import_module_from_file(modpath, pkg=None, log=lgr.debug): """Import provided module given a path TODO: - RF/make use of it in pipeline.py which has similar logic - join with import_modules above? Parameters ---------- pkg: module, optional If provided, and modpath is under pkg.__path__, relative import will be used """ assert(modpath.endswith('.py')) # for now just for .py files log("Importing %s" % modpath) modname = basename(modpath)[:-3] relmodpath = None if pkg: for pkgpath in pkg.__path__: if path_is_subpath(modpath, pkgpath): # for now relying on having .py extension -- assertion above relmodpath = '.' + relpath(modpath[:-3], pkgpath).replace(sep, '.') break try: if relmodpath: from importlib import import_module mod = import_module(relmodpath, pkg.__name__) else: dirname_ = dirname(modpath) try: sys.path.insert(0, dirname_) mod = __import__(modname, level=0) finally: if dirname_ in sys.path: sys.path.pop(sys.path.index(dirname_)) else: log("Expected path %s to be within sys.path, but it was gone!" % dirname_) except Exception as e: raise RuntimeError( "Failed to import module from %s" % modpath) from e return mod def get_encoding_info(): """Return a dictionary with various encoding/locale information""" import sys, locale from collections import OrderedDict return OrderedDict([ ('default', sys.getdefaultencoding()), ('filesystem', sys.getfilesystemencoding()), ('locale.prefered', locale.getpreferredencoding()), ]) def get_envvars_info(): from collections import OrderedDict envs = [] for var, val in os.environ.items(): if ( var.startswith('PYTHON') or var.startswith('LC_') or var.startswith('GIT_') or var in ('LANG', 'LANGUAGE', 'PATH') ): envs.append((var, val)) return OrderedDict(envs) # This class is modified from Snakemake (v5.1.4) class SequenceFormatter(string.Formatter): """string.Formatter subclass with special behavior for sequences. This class delegates formatting of individual elements to another formatter object. Non-list objects are formatted by calling the delegate formatter's "format_field" method. List-like objects (list, tuple, set, frozenset) are formatted by formatting each element of the list according to the specified format spec using the delegate formatter and then joining the resulting strings with a separator (space by default). """ def __init__(self, separator=" ", element_formatter=string.Formatter(), *args, **kwargs): self.separator = separator self.element_formatter = element_formatter def format_element(self, elem, format_spec): """Format a single element For sequences, this is called once for each element in a sequence. For anything else, it is called on the entire object. It is intended to be overridden in subclases. """ return self.element_formatter.format_field(elem, format_spec) def format_field(self, value, format_spec): if isinstance(value, (list, tuple, set, frozenset)): return self.separator.join(self.format_element(v, format_spec) for v in value) else: return self.format_element(value, format_spec) # TODO: eventually we might want to make use of attr module class File(object): """Helper for a file entry in the create_tree/@with_tree It allows to define additional settings for entries """ def __init__(self, name, executable=False): """ Parameters ---------- name : str Name of the file executable: bool, optional Make it executable """ self.name = name self.executable = executable def __str__(self): return self.name def create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True): """Given an archive `name`, create under `path` with specified `load` tree """ from datalad.support.archives import compress_files dirname = file_basename(name) full_dirname = op.join(path, dirname) os.makedirs(full_dirname) create_tree(full_dirname, load, archives_leading_dir=archives_leading_dir) # create archive if archives_leading_dir: compress_files([dirname], name, path=path, overwrite=overwrite) else: compress_files(list(map(basename, glob.glob(op.join(full_dirname, '*')))), op.join(pardir, name), path=op.join(path, dirname), overwrite=overwrite) # remove original tree rmtree(full_dirname) def create_tree(path, tree, archives_leading_dir=True, remove_existing=False): """Given a list of tuples (name, load) create such a tree if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the tree if name ends with .tar.gz """ lgr.log(5, "Creating a tree under %s", path) if not exists(path): os.makedirs(path) if isinstance(tree, dict): tree = tree.items() for file_, load in tree: if isinstance(file_, File): executable = file_.executable name = file_.name else: executable = False name = file_ full_name = op.join(path, name) if remove_existing and lexists(full_name): rmtree(full_name, chmod_files=True) if isinstance(load, (tuple, list, dict)): if name.endswith('.tar.gz') or name.endswith('.tar') or name.endswith('.zip'): create_tree_archive( path, name, load, archives_leading_dir=archives_leading_dir) else: create_tree( full_name, load, archives_leading_dir=archives_leading_dir, remove_existing=remove_existing) else: open_func = open if full_name.endswith('.gz'): open_func = gzip.open elif full_name.split('.')[-1] in ('xz', 'lzma'): import lzma open_func = lzma.open with open_func(full_name, "wb") as f: f.write(ensure_bytes(load, 'utf-8')) if executable: os.chmod(full_name, os.stat(full_name).st_mode | stat.S_IEXEC) def get_suggestions_msg(values, known, sep="\n "): """Return a formatted string with suggestions for values given the known ones """ import difflib suggestions = [] for value in ensure_list(values): # might not want to do it if we change presentation below suggestions += difflib.get_close_matches(value, known) suggestions = unique(suggestions) msg = "Did you mean any of these?" if suggestions: if '\n' in sep: # if separator includes new line - we add entire separator right away msg += sep else: msg += ' ' return msg + "%s\n" % sep.join(suggestions) return '' def bytes2human(n, format='%(value).1f %(symbol)sB'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> from datalad.utils import bytes2human >>> bytes2human(1) '1.0 B' >>> bytes2human(1024) '1.0 KB' >>> bytes2human(1048576) '1.0 MB' >>> bytes2human(1099511627776127398123789121) '909.5 YB' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' Taken from: http://goo.gl/kTQMs and subsequently simplified Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com> License: MIT """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n) def quote_cmdlinearg(arg): """Perform platform-appropriate argument quoting""" # https://stackoverflow.com/a/15262019 return '"{}"'.format( arg.replace('"', '""') ) if on_windows else shlex_quote(arg) def guard_for_format(arg): """Replace { and } with {{ and }} To be used in cases if arg is not expected to have provided by user .format() placeholders, but 'arg' might become a part of a composite passed to .format(), e.g. via 'Run' """ return arg.replace('{', '{{').replace('}', '}}') def join_cmdline(args): """Join command line args into a string using quote_cmdlinearg """ return ' '.join(map(quote_cmdlinearg, args)) def split_cmdline(s): """Perform platform-appropriate command line splitting. Identical to `shlex.split()` on non-windows platforms. Modified from https://stackoverflow.com/a/35900070 """ if not on_windows: return shlex_split(s) # the rest is for windows RE_CMD_LEX = r'''"((?:""|\\["\\]|[^"])*)"?()|(\\\\(?=\\*")|\\")|(&&?|\|\|?|\d?>|[<])|([^\s"&|<>]+)|(\s+)|(.)''' args = [] accu = None # collects pieces of one arg for qs, qss, esc, pipe, word, white, fail in re.findall(RE_CMD_LEX, s): if word: pass # most frequent elif esc: word = esc[1] elif white or pipe: if accu is not None: args.append(accu) if pipe: args.append(pipe) accu = None continue elif fail: raise ValueError("invalid or incomplete shell string") elif qs: word = qs.replace('\\"', '"').replace('\\\\', '\\') if platform == 0: word = word.replace('""', '"') else: word = qss # may be even empty; must be last accu = (accu or '') + word if accu is not None: args.append(accu) return args def get_wrapped_class(wrapped): """Determine the command class a wrapped __call__ belongs to""" mod = sys.modules[wrapped.__module__] command_class_name = wrapped.__qualname__.split('.')[-2] _func_class = mod.__dict__[command_class_name] lgr.debug("Determined class of decorated function: %s", _func_class) return _func_class def _make_assure_kludge(fn): old_name = fn.__name__.replace("ensure", "assure") @wraps(fn) def compat_fn(*args, **kwargs): warnings.warn( "{} is deprecated and will be removed in a future release. " "Use {} instead." .format(old_name, fn.__name__), DeprecationWarning) return fn(*args, **kwargs) compat_fn.__doc__ = ("Note: This function is deprecated. Use {} instead." .format(fn.__name__)) return compat_fn assure_tuple_or_list = _make_assure_kludge(ensure_tuple_or_list) assure_iter = _make_assure_kludge(ensure_iter) assure_list = _make_assure_kludge(ensure_list) assure_list_from_str = _make_assure_kludge(ensure_list_from_str) assure_dict_from_str = _make_assure_kludge(ensure_dict_from_str) assure_bytes = _make_assure_kludge(ensure_bytes) assure_unicode = _make_assure_kludge(ensure_unicode) assure_bool = _make_assure_kludge(ensure_bool) assure_dir = _make_assure_kludge(ensure_dir) lgr.log(5, "Done importing datalad.utils") def check_symlink_capability(path, target): """helper similar to datalad.tests.utils.has_symlink_capability However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards. Suitable location can therefore be determined by high lever code. Parameters ---------- path: Path target: Path Returns ------- bool """ try: target.touch() path.symlink_to(target) return True except Exception: return False finally: if path.exists(): path.unlink() if target.exists(): target.unlink()
_match_datetime_pattern
Match the datetime pattern at the beginning of the token list. There are several formats that this method needs to understand and distinguish between (see MongoDB's SERVER-7965): ctime-pre2.4 Wed Dec 31 19:00:00 ctime Wed Dec 31 19:00:00.000 iso8601-utc 1970-01-01T00:00:00.000Z iso8601-local 1969-12-31T19:00:00.000+0500
#!/bin/python import json import re import sys from datetime import datetime import dateutil.parser from dateutil.tz import tzutc from six.moves import range from mtools.util.pattern import json2pattern class DateTimeEncoder(json.JSONEncoder): """Custom datetime encoder for json output.""" def default(self, obj): if isinstance(obj, datetime): return obj.isoformat() return json.JSONEncoder.default(self, obj) class LogEvent(object): """ Extract information from log line and store properties/variables. line_str: the original line string split_tokens: a list of string tokens after splitting line_str using whitespace as split points datetime: a datetime object for the logevent. For logfiles created with version 2.4+, it also contains micro-seconds duration: the duration of a timed operation in ms thread: the thread name (e.g. "conn1234") as string operation: insert, update, remove, query, command, getmore, None namespace: the namespace of the operation, or None command: the type of command, if the operation was a "command" pattern: the query pattern for queries, updates, counts, etc ... Certain operations also add the number of affected/scanned documents. If applicable, the following variables are also set, otherwise the default is None: nscanned, ntoreturn, nreturned, ninserted, nupdated For performance reason, all fields are evaluated lazily upon first request. """ # datetime handler for json encoding dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime) else None weekdays = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] log_operations = ['query', 'insert', 'update', 'remove', 'getmore', 'command'] log_levels = ['D', 'F', 'E', 'W', 'I', 'U'] log_components = ['-', 'ACCESS', 'COMMAND', 'CONTROL', 'GEO', 'INDEX', 'NETWORK', 'QUERY', 'REPL', 'SHARDING', 'STORAGE', 'JOURNAL', 'WRITE', 'TOTAL'] def __init__(self, doc_or_str): self._year_rollover = False if isinstance(doc_or_str, bytes): doc_or_str = doc_or_str.decode("utf-8") if isinstance(doc_or_str, str) or (sys.version_info.major == 2 and isinstance(doc_or_str, unicode)): # create from string, remove line breaks at end of _line_str self.from_string = True self._line_str = doc_or_str.rstrip() self._profile_doc = None self._reset() else: self.from_string = False self._profile_doc = doc_or_str # docs don't need to be parsed lazily, they are fast self._parse_document() def _reset(self): self._split_tokens_calculated = False self._split_tokens = None self._duration_calculated = False self._duration = None self._datetime_calculated = False self._datetime = None self._datetime_nextpos = None self._datetime_format = None self._datetime_str = '' self._thread_calculated = False self._thread = None self._operation_calculated = False self._operation = None self._namespace = None self._pattern = None self._sort_pattern = None self._command_calculated = False self._command = None self._counters_calculated = False # TODO: refactor from the legacy names to modern # (eg: nscanned => keysExamined). Currently _extract_counters() # maps newer property names into legacy equivalents for # broader log file support. self._nscanned = None # keysExamined self._nscannedObjects = None # docsExamined self._ntoreturn = None self._nupdated = None # nModified self._nreturned = None # nReturned or nMatched (updates) self._ninserted = None # nInserted self._ndeleted = None # nDeleted self._numYields = None self._planSummary = None self._writeConflicts = None self._r = None self._w = None self._conn = None self._level_calculated = False self._level = None self._component = None self.merge_marker_str = '' def set_line_str(self, line_str): """ Set line_str. Line_str is only writeable if LogEvent was created from a string, not from a system.profile documents. """ if not self.from_string: raise ValueError("can't set line_str for LogEvent created from " "system.profile documents.") if line_str != self._line_str: self._line_str = line_str.rstrip() self._reset() def get_line_str(self): """Return line_str depending on source, logfile or system.profile.""" if self.from_string: return ' '.join([s for s in [self.merge_marker_str, self._datetime_str, self._line_str] if s]) else: return ' '.join([s for s in [self._datetime_str, self._line_str] if s]) line_str = property(get_line_str, set_line_str) @property def split_tokens(self): """Split string into tokens (lazy).""" if not self._split_tokens_calculated: # split into items (whitespace split) self._split_tokens = self._line_str.split() self._split_tokens_calculated = True return self._split_tokens @property def duration(self): """Calculate duration if available (lazy).""" if not self._duration_calculated: self._duration_calculated = True # split_tokens = self.split_tokens line_str = self.line_str if (line_str and line_str.endswith('ms') and 'Scheduled new oplog query' not in line_str): try: # find duration from end space_pos = line_str.rfind(" ") if space_pos == -1: return self._duration = int(line_str[line_str.rfind(" ") + 1:-2].replace(',', '')) except ValueError: self._duration = None elif "flushing" in self.line_str: matchobj = re.search(r'flushing mmaps took (\d+)ms', self.line_str) if matchobj: self._duration = int(matchobj.group(1)) return self._duration @property def datetime(self): """Extract datetime if available (lazy).""" if not self._datetime_calculated: self._datetime_calculated = True # if no datetime after 10 tokens, break to avoid parsing # very long lines split_tokens = self.split_tokens[:10] for offs in range(len(split_tokens)): dt = self._match_datetime_pattern(split_tokens[offs:offs + 4]) if dt: self._datetime = dt self._datetime_nextpos = offs if self._datetime_format.startswith("iso8601"): self._datetime_nextpos += 1 else: self._datetime_nextpos += 4 # separate datetime str and linestr self._line_str = (' '.join(self.split_tokens [self._datetime_nextpos:])) if self.level: self._datetime_nextpos += 2 self._reformat_timestamp(self._datetime_format) break return self._datetime @property def datetime_format(self): if not self._datetime_calculated: _ = self.datetime return self._datetime_format @property def datetime_nextpos(self): if self._datetime_nextpos is None and not self._datetime_calculated: _ = self.datetime return self._datetime_nextpos def set_datetime_hint(self, format, nextpos, rollover): self._datetime_format = format self._datetime_nextpos = nextpos self._year_rollover = rollover # Fast check if timestamp format changed. # If it has, trigger datetime evaluation. if format.startswith('ctime'): if (len(self.split_tokens) < 4 or self.split_tokens[self._datetime_nextpos - 4] not in self.weekdays): _ = self.datetime return False return True else: if len(self.split_tokens) == 0: # empty line, no need to parse datetime self._datetime_calculated = True return False try: if not (self.split_tokens[self._datetime_nextpos - 1][0] .isdigit()): # not the timestamp format that was hinted _ = self.datetime return False except Exception: pass return True # MASKED: _match_datetime_pattern function (lines 279-330) @property def thread(self): """Extract thread name if available (lazy).""" if not self._thread_calculated: self._thread_calculated = True split_tokens = self.split_tokens if not self.datetime_nextpos: return None if len(split_tokens) <= self.datetime_nextpos: return None connection_token = split_tokens[self.datetime_nextpos] match = re.match(r'^\[([^\]]*)\]$', connection_token) if match: self._thread = match.group(1) if self._thread is not None: if self._thread in ['initandlisten', 'mongosMain']: if len(split_tokens) >= 5 and split_tokens[-5][0] == '#': self._conn = 'conn' + split_tokens[-5][1:] elif self._thread.startswith('conn'): self._conn = self._thread return self._thread @property def conn(self): r""" Extract conn name if available (lazy). This value is None for all lines except the log lines related to connections, that is lines matching '\[conn[0-9]+\]' or '\[(initandlisten|mongosMain)\] .* connection accepted from'. """ self.thread return self._conn @property def operation(self): """ Extract operation if available (lazy). Operations: query, insert, update, remove, getmore, command """ if not self._operation_calculated: self._operation_calculated = True self._extract_operation_and_namespace() return self._operation @property def namespace(self): """Extract namespace if available (lazy).""" if not self._operation_calculated: self._operation_calculated = True self._extract_operation_and_namespace() return self._namespace def _extract_operation_and_namespace(self): """ Helper method to extract both operation and namespace from a logevent. It doesn't make sense to only extract one as they appear back to back in the token list. """ split_tokens = self.split_tokens if not self._datetime_nextpos: # force evaluation of thread to get access to datetime_offset and # to protect from changes due to line truncation. _ = self.thread if not self._datetime_nextpos or (len(split_tokens) <= self._datetime_nextpos + 2): return op = split_tokens[self._datetime_nextpos + 1].lower() if op == 'warning:': # check if this log line got truncated if ("warning: log line attempted" in self._line_str and "over max size" in self._line_str): self._datetime_nextpos = split_tokens.index('...') op = split_tokens[self._datetime_nextpos + 1] else: # unknown warning, bail out return if op in self.log_operations: self._operation = op self._namespace = split_tokens[self._datetime_nextpos + 2] @property def pattern(self): """Extract query pattern from operations.""" if not self._pattern: # trigger evaluation of operation if (self.operation in ['query', 'getmore', 'update', 'remove'] or self.command in ['count', 'findandmodify']): self._pattern = self._find_pattern('query: ') elif self.command == 'find': self._pattern = self._find_pattern('filter: ') return self._pattern @property def sort_pattern(self): """Extract query pattern from operations.""" if not self._sort_pattern: # trigger evaluation of operation if self.operation in ['query', 'getmore']: self._sort_pattern = self._find_pattern('orderby: ') return self._sort_pattern @property def command(self): """Extract query pattern from operations.""" if not self._command_calculated: self._command_calculated = True if self.operation == 'command': try: command_idx = self.split_tokens.index('command:') command = self.split_tokens[command_idx + 1] if command == '{': # workaround for <= 2.2 log files, # where command was not listed separately command = self.split_tokens[command_idx + 2][:-1] self._command = command.lower() except ValueError: pass return self._command @property def nscanned(self): """Extract nscanned or keysExamined counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nscanned @property def nscannedObjects(self): """ Extract counters if available (lazy). Looks for nscannedObjects or docsExamined. """ if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nscannedObjects @property def ntoreturn(self): """Extract ntoreturn counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ntoreturn @property def writeConflicts(self): """Extract ntoreturn counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._writeConflicts @property def nreturned(self): """ Extract counters if available (lazy). Looks for nreturned, nReturned, or nMatched counter. """ if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nreturned @property def ninserted(self): """Extract ninserted or nInserted counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ninserted @property def ndeleted(self): """Extract ndeleted or nDeleted counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ndeleted @property def nupdated(self): """Extract nupdated or nModified counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nupdated @property def numYields(self): """Extract numYields counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._numYields @property def planSummary(self): """Extract numYields counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._planSummary @property def r(self): """Extract read lock (r) counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._r @property def w(self): """Extract write lock (w) counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._w def _extract_counters(self): """Extract counters like nscanned and nreturned from the logevent.""" # extract counters (if present) counters = ['nscanned', 'nscannedObjects', 'ntoreturn', 'nreturned', 'ninserted', 'nupdated', 'ndeleted', 'r', 'w', 'numYields', 'planSummary', 'writeConflicts', 'keyUpdates'] # TODO: refactor mtools to use current counter names throughout # Transitionary hack: mapping of current names into prior equivalents counter_equiv = { 'docsExamined': 'nscannedObjects', 'keysExamined': 'nscanned', 'nDeleted': 'ndeleted', 'nInserted': 'ninserted', 'nMatched': 'nreturned', 'nModified': 'nupdated' } counters.extend(counter_equiv.keys()) split_tokens = self.split_tokens # trigger operation evaluation to get access to offset if self.operation: for t, token in enumerate(split_tokens[self.datetime_nextpos + 2:]): for counter in counters: if token.startswith('%s:' % counter): try: # Remap counter to standard name, if applicable counter = counter_equiv.get(counter, counter) vars(self)['_' + counter] = int((token.split(':') [-1]).replace(',', '')) except ValueError: # see if this is a pre-2.5.2 numYields with space # in between (e.g. "numYields: 2") # https://jira.mongodb.org/browse/SERVER-10101 if (counter == 'numYields' and token.startswith('numYields')): try: self._numYields = int((split_tokens[t + 1 + self.datetime_nextpos + 2]).replace(',', '')) except ValueError: pass if (counter == 'planSummary' and token.startswith('planSummary')): try: self._planSummary = split_tokens[t + 1 + self.datetime_nextpos + 2] except ValueError: pass # token not parsable, skip break @property def level(self): """Extract log level if available (lazy).""" if not self._level_calculated: self._level_calculated = True self._extract_level() return self._level @property def component(self): """Extract log component if available (lazy).""" self.level return self._component def _extract_level(self): """Extract level and component if available (lazy).""" if self._level is None: split_tokens = self.split_tokens if not split_tokens: self._level = False self._component = False return x = (self.log_levels.index(split_tokens[1]) if split_tokens[1] in self.log_levels else None) if x is not None: self._level = split_tokens[1] self._component = split_tokens[2] else: self._level = False self._component = False def parse_all(self): """ Trigger extraction of all information. These values are usually evaluated lazily. """ tokens = self.split_tokens duration = self.duration datetime = self.datetime thread = self.thread operation = self.operation namespace = self.namespace pattern = self.pattern nscanned = self.nscanned nscannedObjects = self.nscannedObjects ntoreturn = self.ntoreturn nreturned = self.nreturned ninserted = self.ninserted ndeleted = self.ndeleted nupdated = self.nupdated numYields = self.numYields w = self.w r = self.r def _find_pattern(self, trigger): # get start of json query pattern start_idx = self.line_str.rfind(trigger) if start_idx == -1: # no query pattern found return None stop_idx = 0 brace_counter = 0 search_str = self.line_str[start_idx + len(trigger):] for match in re.finditer(r'{|}', search_str): stop_idx = match.start() if search_str[stop_idx] == '{': brace_counter += 1 else: brace_counter -= 1 if brace_counter == 0: break search_str = search_str[:stop_idx + 1].strip() if search_str: return json2pattern(search_str) else: return None def _reformat_timestamp(self, format, force=False): if format not in ['ctime', 'ctime-pre2.4', 'iso8601-utc', 'iso8601-local']: raise ValueError('invalid datetime format %s, choose from ctime, ' 'ctime-pre2.4, iso8601-utc, iso8601-local.') if ((self.datetime_format is None or (self.datetime_format == format and self._datetime_str != '')) and not force): return elif self.datetime is None: return elif format.startswith('ctime'): dt_string = (self.weekdays[self.datetime.weekday()] + ' ' + self.datetime.strftime("%b %d %H:%M:%S")) # remove zero-padding from day number tokens = dt_string.split(' ') if tokens[2].startswith('0'): tokens[2] = tokens[2].replace('0', ' ', 1) dt_string = ' '.join(tokens) if format == 'ctime': dt_string += '.' + str(int(self.datetime.microsecond / 1000)).zfill(3) elif format == 'iso8601-local': dt_string = self.datetime.isoformat() if self.datetime.utcoffset() is None: dt_string += '+00:00' ms_str = str(int(self.datetime.microsecond / 1000)).zfill(3)[:3] # change isoformat string to have 3 digit milliseconds and no : # in offset dt_string = re.sub(r'(\.\d+)?([+-])(\d\d):(\d\d)', '.%s\\2\\3\\4' % ms_str, dt_string, count=1) elif format == 'iso8601-utc': if self.datetime.utcoffset(): dt_string = self.datetime.astimezone(tzutc()).strftime("%Y-%m-" "%dT%H:" "%M:%S") else: dt_string = self.datetime.strftime("%Y-%m-%dT%H:%M:%S") dt_string += '.' + str(int(self.datetime.microsecond / 1000)).zfill(3)[:3] + 'Z' # set new string and format self._datetime_str = dt_string self._datetime_format = format def __str__(self): """Default string conversion for LogEvent object is its line_str.""" return str(self.line_str) def to_dict(self, labels=None): """Convert LogEvent object to a dictionary.""" output = {} if labels is None: labels = ['line_str', 'split_tokens', 'datetime', 'operation', 'thread', 'namespace', 'nscanned', 'ntoreturn', 'nreturned', 'ninserted', 'nupdated', 'ndeleted', 'duration', 'r', 'w', 'numYields'] for label in labels: value = getattr(self, label, None) if value is not None: output[label] = value return output def to_json(self, labels=None): """Convert LogEvent object to valid JSON.""" output = self.to_dict(labels) return json.dumps(output, cls=DateTimeEncoder, ensure_ascii=False) def _parse_document(self): """Parse system.profile doc, copy all values to member variables.""" self._reset() doc = self._profile_doc self._split_tokens_calculated = True self._split_tokens = None self._duration_calculated = True self._duration = doc[u'millis'] self._datetime_calculated = True self._datetime = doc[u'ts'] if self._datetime.tzinfo is None: self._datetime = self._datetime.replace(tzinfo=tzutc()) self._datetime_format = None self._reformat_timestamp('ctime', force=True) self._thread_calculated = True self._thread = doc['thread'] self._operation_calculated = True self._operation = doc[u'op'] self._namespace = doc[u'ns'] self._command_calculated = True if self.operation == 'command': self._command = doc[u'command'].keys()[0] # query pattern for system.profile events, all three cases. # See SERVER-13245 if 'query' in doc: if 'query' in doc['query'] and isinstance(doc['query']['query'], dict): self._pattern = str(doc['query']['query']).replace("'", '"') elif '$query' in doc['query']: self._pattern = str(doc['query']['$query']).replace("'", '"') else: self._pattern = str(doc['query']).replace("'", '"') # sort pattern if ('orderby' in doc['query'] and isinstance(doc['query']['orderby'], dict)): self._sort_pattern = str(doc['query'] ['orderby']).replace("'", '"') elif '$orderby' in doc['query']: self._sort_pattern = str(doc['query'] ['$orderby']).replace("'", '"') else: self._sort_pattern = None self._counters_calculated = True self._nscanned = doc[u'nscanned'] if 'nscanned' in doc else None self._ntoreturn = doc[u'ntoreturn'] if 'ntoreturn' in doc else None self._nupdated = doc[u'nupdated'] if 'nupdated' in doc else None self._nreturned = doc[u'nreturned'] if 'nreturned' in doc else None self._ninserted = doc[u'ninserted'] if 'ninserted' in doc else None self._ndeleted = doc[u'ndeleted'] if 'ndeleted' in doc else None self._numYields = doc[u'numYield'] if 'numYield' in doc else None if u'lockStats' in doc: self._r = doc[u'lockStats'][u'timeLockedMicros'][u'r'] self._w = doc[u'lockStats'][u'timeLockedMicros'][u'w'] self._r_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'r'] self._w_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'w'] locks = 'w:%i' % self.w if self.w is not None else 'r:%i' % self.r elif u'locks' in doc: locks = json.dumps(doc[u'locks']) else: locks = '' # build a fake line_str payload = '' if 'query' in doc: payload += ('query: %s' % str(doc[u'query']) .replace("u'", "'").replace("'", '"')) if 'command' in doc: payload += ('command: %s' % str(doc[u'command']) .replace("u'", "'").replace("'", '"')) if 'updateobj' in doc: payload += (' update: %s' % str(doc[u'updateobj']) .replace("u'", "'").replace("'", '"')) scanned = 'nscanned:%i' % self._nscanned if 'nscanned' in doc else '' yields = 'numYields:%i' % self._numYields if 'numYield' in doc else '' duration = '%ims' % self.duration if self.duration is not None else '' self._line_str = ("[{thread}] {operation} {namespace} {payload} " "{scanned} {yields} locks(micros) {locks} " "{duration}".format(datetime=self.datetime, thread=self.thread, operation=self.operation, namespace=self.namespace, payload=payload, scanned=scanned, yields=yields, locks=locks, duration=duration))
def _match_datetime_pattern(self, tokens): """ Match the datetime pattern at the beginning of the token list. There are several formats that this method needs to understand and distinguish between (see MongoDB's SERVER-7965): ctime-pre2.4 Wed Dec 31 19:00:00 ctime Wed Dec 31 19:00:00.000 iso8601-utc 1970-01-01T00:00:00.000Z iso8601-local 1969-12-31T19:00:00.000+0500 """ # first check: less than 4 tokens can't be ctime assume_iso8601_format = len(tokens) < 4 # check for ctime-pre-2.4 or ctime format if not assume_iso8601_format: weekday, month, day, time = tokens[:4] if (len(tokens) < 4 or (weekday not in self.weekdays) or (month not in self.months) or not day.isdigit()): assume_iso8601_format = True if assume_iso8601_format: # sanity check, because the dateutil parser could interpret # any numbers as a valid date if not re.match(r'\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{3}', tokens[0]): return None # convinced that this is a ISO-8601 format, the dateutil parser # will do the rest dt = dateutil.parser.parse(tokens[0]) self._datetime_format = "iso8601-utc" \ if tokens[0].endswith('Z') else "iso8601-local" else: # assume current year unless self.year_rollover # is set (from LogFile) year = datetime.now().year dt = dateutil.parser.parse(' '.join(tokens[: 4]), default=datetime(year, 1, 1)) if dt.tzinfo is None: dt = dt.replace(tzinfo=tzutc()) if self._year_rollover and dt > self._year_rollover: dt = dt.replace(year=year - 1) self._datetime_format = "ctime" \ if '.' in tokens[3] else "ctime-pre2.4" return dt
279
330
#!/bin/python import json import re import sys from datetime import datetime import dateutil.parser from dateutil.tz import tzutc from six.moves import range from mtools.util.pattern import json2pattern class DateTimeEncoder(json.JSONEncoder): """Custom datetime encoder for json output.""" def default(self, obj): if isinstance(obj, datetime): return obj.isoformat() return json.JSONEncoder.default(self, obj) class LogEvent(object): """ Extract information from log line and store properties/variables. line_str: the original line string split_tokens: a list of string tokens after splitting line_str using whitespace as split points datetime: a datetime object for the logevent. For logfiles created with version 2.4+, it also contains micro-seconds duration: the duration of a timed operation in ms thread: the thread name (e.g. "conn1234") as string operation: insert, update, remove, query, command, getmore, None namespace: the namespace of the operation, or None command: the type of command, if the operation was a "command" pattern: the query pattern for queries, updates, counts, etc ... Certain operations also add the number of affected/scanned documents. If applicable, the following variables are also set, otherwise the default is None: nscanned, ntoreturn, nreturned, ninserted, nupdated For performance reason, all fields are evaluated lazily upon first request. """ # datetime handler for json encoding dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime) else None weekdays = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] log_operations = ['query', 'insert', 'update', 'remove', 'getmore', 'command'] log_levels = ['D', 'F', 'E', 'W', 'I', 'U'] log_components = ['-', 'ACCESS', 'COMMAND', 'CONTROL', 'GEO', 'INDEX', 'NETWORK', 'QUERY', 'REPL', 'SHARDING', 'STORAGE', 'JOURNAL', 'WRITE', 'TOTAL'] def __init__(self, doc_or_str): self._year_rollover = False if isinstance(doc_or_str, bytes): doc_or_str = doc_or_str.decode("utf-8") if isinstance(doc_or_str, str) or (sys.version_info.major == 2 and isinstance(doc_or_str, unicode)): # create from string, remove line breaks at end of _line_str self.from_string = True self._line_str = doc_or_str.rstrip() self._profile_doc = None self._reset() else: self.from_string = False self._profile_doc = doc_or_str # docs don't need to be parsed lazily, they are fast self._parse_document() def _reset(self): self._split_tokens_calculated = False self._split_tokens = None self._duration_calculated = False self._duration = None self._datetime_calculated = False self._datetime = None self._datetime_nextpos = None self._datetime_format = None self._datetime_str = '' self._thread_calculated = False self._thread = None self._operation_calculated = False self._operation = None self._namespace = None self._pattern = None self._sort_pattern = None self._command_calculated = False self._command = None self._counters_calculated = False # TODO: refactor from the legacy names to modern # (eg: nscanned => keysExamined). Currently _extract_counters() # maps newer property names into legacy equivalents for # broader log file support. self._nscanned = None # keysExamined self._nscannedObjects = None # docsExamined self._ntoreturn = None self._nupdated = None # nModified self._nreturned = None # nReturned or nMatched (updates) self._ninserted = None # nInserted self._ndeleted = None # nDeleted self._numYields = None self._planSummary = None self._writeConflicts = None self._r = None self._w = None self._conn = None self._level_calculated = False self._level = None self._component = None self.merge_marker_str = '' def set_line_str(self, line_str): """ Set line_str. Line_str is only writeable if LogEvent was created from a string, not from a system.profile documents. """ if not self.from_string: raise ValueError("can't set line_str for LogEvent created from " "system.profile documents.") if line_str != self._line_str: self._line_str = line_str.rstrip() self._reset() def get_line_str(self): """Return line_str depending on source, logfile or system.profile.""" if self.from_string: return ' '.join([s for s in [self.merge_marker_str, self._datetime_str, self._line_str] if s]) else: return ' '.join([s for s in [self._datetime_str, self._line_str] if s]) line_str = property(get_line_str, set_line_str) @property def split_tokens(self): """Split string into tokens (lazy).""" if not self._split_tokens_calculated: # split into items (whitespace split) self._split_tokens = self._line_str.split() self._split_tokens_calculated = True return self._split_tokens @property def duration(self): """Calculate duration if available (lazy).""" if not self._duration_calculated: self._duration_calculated = True # split_tokens = self.split_tokens line_str = self.line_str if (line_str and line_str.endswith('ms') and 'Scheduled new oplog query' not in line_str): try: # find duration from end space_pos = line_str.rfind(" ") if space_pos == -1: return self._duration = int(line_str[line_str.rfind(" ") + 1:-2].replace(',', '')) except ValueError: self._duration = None elif "flushing" in self.line_str: matchobj = re.search(r'flushing mmaps took (\d+)ms', self.line_str) if matchobj: self._duration = int(matchobj.group(1)) return self._duration @property def datetime(self): """Extract datetime if available (lazy).""" if not self._datetime_calculated: self._datetime_calculated = True # if no datetime after 10 tokens, break to avoid parsing # very long lines split_tokens = self.split_tokens[:10] for offs in range(len(split_tokens)): dt = self._match_datetime_pattern(split_tokens[offs:offs + 4]) if dt: self._datetime = dt self._datetime_nextpos = offs if self._datetime_format.startswith("iso8601"): self._datetime_nextpos += 1 else: self._datetime_nextpos += 4 # separate datetime str and linestr self._line_str = (' '.join(self.split_tokens [self._datetime_nextpos:])) if self.level: self._datetime_nextpos += 2 self._reformat_timestamp(self._datetime_format) break return self._datetime @property def datetime_format(self): if not self._datetime_calculated: _ = self.datetime return self._datetime_format @property def datetime_nextpos(self): if self._datetime_nextpos is None and not self._datetime_calculated: _ = self.datetime return self._datetime_nextpos def set_datetime_hint(self, format, nextpos, rollover): self._datetime_format = format self._datetime_nextpos = nextpos self._year_rollover = rollover # Fast check if timestamp format changed. # If it has, trigger datetime evaluation. if format.startswith('ctime'): if (len(self.split_tokens) < 4 or self.split_tokens[self._datetime_nextpos - 4] not in self.weekdays): _ = self.datetime return False return True else: if len(self.split_tokens) == 0: # empty line, no need to parse datetime self._datetime_calculated = True return False try: if not (self.split_tokens[self._datetime_nextpos - 1][0] .isdigit()): # not the timestamp format that was hinted _ = self.datetime return False except Exception: pass return True def _match_datetime_pattern(self, tokens): """ Match the datetime pattern at the beginning of the token list. There are several formats that this method needs to understand and distinguish between (see MongoDB's SERVER-7965): ctime-pre2.4 Wed Dec 31 19:00:00 ctime Wed Dec 31 19:00:00.000 iso8601-utc 1970-01-01T00:00:00.000Z iso8601-local 1969-12-31T19:00:00.000+0500 """ # first check: less than 4 tokens can't be ctime assume_iso8601_format = len(tokens) < 4 # check for ctime-pre-2.4 or ctime format if not assume_iso8601_format: weekday, month, day, time = tokens[:4] if (len(tokens) < 4 or (weekday not in self.weekdays) or (month not in self.months) or not day.isdigit()): assume_iso8601_format = True if assume_iso8601_format: # sanity check, because the dateutil parser could interpret # any numbers as a valid date if not re.match(r'\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{3}', tokens[0]): return None # convinced that this is a ISO-8601 format, the dateutil parser # will do the rest dt = dateutil.parser.parse(tokens[0]) self._datetime_format = "iso8601-utc" \ if tokens[0].endswith('Z') else "iso8601-local" else: # assume current year unless self.year_rollover # is set (from LogFile) year = datetime.now().year dt = dateutil.parser.parse(' '.join(tokens[: 4]), default=datetime(year, 1, 1)) if dt.tzinfo is None: dt = dt.replace(tzinfo=tzutc()) if self._year_rollover and dt > self._year_rollover: dt = dt.replace(year=year - 1) self._datetime_format = "ctime" \ if '.' in tokens[3] else "ctime-pre2.4" return dt @property def thread(self): """Extract thread name if available (lazy).""" if not self._thread_calculated: self._thread_calculated = True split_tokens = self.split_tokens if not self.datetime_nextpos: return None if len(split_tokens) <= self.datetime_nextpos: return None connection_token = split_tokens[self.datetime_nextpos] match = re.match(r'^\[([^\]]*)\]$', connection_token) if match: self._thread = match.group(1) if self._thread is not None: if self._thread in ['initandlisten', 'mongosMain']: if len(split_tokens) >= 5 and split_tokens[-5][0] == '#': self._conn = 'conn' + split_tokens[-5][1:] elif self._thread.startswith('conn'): self._conn = self._thread return self._thread @property def conn(self): r""" Extract conn name if available (lazy). This value is None for all lines except the log lines related to connections, that is lines matching '\[conn[0-9]+\]' or '\[(initandlisten|mongosMain)\] .* connection accepted from'. """ self.thread return self._conn @property def operation(self): """ Extract operation if available (lazy). Operations: query, insert, update, remove, getmore, command """ if not self._operation_calculated: self._operation_calculated = True self._extract_operation_and_namespace() return self._operation @property def namespace(self): """Extract namespace if available (lazy).""" if not self._operation_calculated: self._operation_calculated = True self._extract_operation_and_namespace() return self._namespace def _extract_operation_and_namespace(self): """ Helper method to extract both operation and namespace from a logevent. It doesn't make sense to only extract one as they appear back to back in the token list. """ split_tokens = self.split_tokens if not self._datetime_nextpos: # force evaluation of thread to get access to datetime_offset and # to protect from changes due to line truncation. _ = self.thread if not self._datetime_nextpos or (len(split_tokens) <= self._datetime_nextpos + 2): return op = split_tokens[self._datetime_nextpos + 1].lower() if op == 'warning:': # check if this log line got truncated if ("warning: log line attempted" in self._line_str and "over max size" in self._line_str): self._datetime_nextpos = split_tokens.index('...') op = split_tokens[self._datetime_nextpos + 1] else: # unknown warning, bail out return if op in self.log_operations: self._operation = op self._namespace = split_tokens[self._datetime_nextpos + 2] @property def pattern(self): """Extract query pattern from operations.""" if not self._pattern: # trigger evaluation of operation if (self.operation in ['query', 'getmore', 'update', 'remove'] or self.command in ['count', 'findandmodify']): self._pattern = self._find_pattern('query: ') elif self.command == 'find': self._pattern = self._find_pattern('filter: ') return self._pattern @property def sort_pattern(self): """Extract query pattern from operations.""" if not self._sort_pattern: # trigger evaluation of operation if self.operation in ['query', 'getmore']: self._sort_pattern = self._find_pattern('orderby: ') return self._sort_pattern @property def command(self): """Extract query pattern from operations.""" if not self._command_calculated: self._command_calculated = True if self.operation == 'command': try: command_idx = self.split_tokens.index('command:') command = self.split_tokens[command_idx + 1] if command == '{': # workaround for <= 2.2 log files, # where command was not listed separately command = self.split_tokens[command_idx + 2][:-1] self._command = command.lower() except ValueError: pass return self._command @property def nscanned(self): """Extract nscanned or keysExamined counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nscanned @property def nscannedObjects(self): """ Extract counters if available (lazy). Looks for nscannedObjects or docsExamined. """ if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nscannedObjects @property def ntoreturn(self): """Extract ntoreturn counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ntoreturn @property def writeConflicts(self): """Extract ntoreturn counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._writeConflicts @property def nreturned(self): """ Extract counters if available (lazy). Looks for nreturned, nReturned, or nMatched counter. """ if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nreturned @property def ninserted(self): """Extract ninserted or nInserted counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ninserted @property def ndeleted(self): """Extract ndeleted or nDeleted counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._ndeleted @property def nupdated(self): """Extract nupdated or nModified counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._nupdated @property def numYields(self): """Extract numYields counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._numYields @property def planSummary(self): """Extract numYields counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._planSummary @property def r(self): """Extract read lock (r) counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._r @property def w(self): """Extract write lock (w) counter if available (lazy).""" if not self._counters_calculated: self._counters_calculated = True self._extract_counters() return self._w def _extract_counters(self): """Extract counters like nscanned and nreturned from the logevent.""" # extract counters (if present) counters = ['nscanned', 'nscannedObjects', 'ntoreturn', 'nreturned', 'ninserted', 'nupdated', 'ndeleted', 'r', 'w', 'numYields', 'planSummary', 'writeConflicts', 'keyUpdates'] # TODO: refactor mtools to use current counter names throughout # Transitionary hack: mapping of current names into prior equivalents counter_equiv = { 'docsExamined': 'nscannedObjects', 'keysExamined': 'nscanned', 'nDeleted': 'ndeleted', 'nInserted': 'ninserted', 'nMatched': 'nreturned', 'nModified': 'nupdated' } counters.extend(counter_equiv.keys()) split_tokens = self.split_tokens # trigger operation evaluation to get access to offset if self.operation: for t, token in enumerate(split_tokens[self.datetime_nextpos + 2:]): for counter in counters: if token.startswith('%s:' % counter): try: # Remap counter to standard name, if applicable counter = counter_equiv.get(counter, counter) vars(self)['_' + counter] = int((token.split(':') [-1]).replace(',', '')) except ValueError: # see if this is a pre-2.5.2 numYields with space # in between (e.g. "numYields: 2") # https://jira.mongodb.org/browse/SERVER-10101 if (counter == 'numYields' and token.startswith('numYields')): try: self._numYields = int((split_tokens[t + 1 + self.datetime_nextpos + 2]).replace(',', '')) except ValueError: pass if (counter == 'planSummary' and token.startswith('planSummary')): try: self._planSummary = split_tokens[t + 1 + self.datetime_nextpos + 2] except ValueError: pass # token not parsable, skip break @property def level(self): """Extract log level if available (lazy).""" if not self._level_calculated: self._level_calculated = True self._extract_level() return self._level @property def component(self): """Extract log component if available (lazy).""" self.level return self._component def _extract_level(self): """Extract level and component if available (lazy).""" if self._level is None: split_tokens = self.split_tokens if not split_tokens: self._level = False self._component = False return x = (self.log_levels.index(split_tokens[1]) if split_tokens[1] in self.log_levels else None) if x is not None: self._level = split_tokens[1] self._component = split_tokens[2] else: self._level = False self._component = False def parse_all(self): """ Trigger extraction of all information. These values are usually evaluated lazily. """ tokens = self.split_tokens duration = self.duration datetime = self.datetime thread = self.thread operation = self.operation namespace = self.namespace pattern = self.pattern nscanned = self.nscanned nscannedObjects = self.nscannedObjects ntoreturn = self.ntoreturn nreturned = self.nreturned ninserted = self.ninserted ndeleted = self.ndeleted nupdated = self.nupdated numYields = self.numYields w = self.w r = self.r def _find_pattern(self, trigger): # get start of json query pattern start_idx = self.line_str.rfind(trigger) if start_idx == -1: # no query pattern found return None stop_idx = 0 brace_counter = 0 search_str = self.line_str[start_idx + len(trigger):] for match in re.finditer(r'{|}', search_str): stop_idx = match.start() if search_str[stop_idx] == '{': brace_counter += 1 else: brace_counter -= 1 if brace_counter == 0: break search_str = search_str[:stop_idx + 1].strip() if search_str: return json2pattern(search_str) else: return None def _reformat_timestamp(self, format, force=False): if format not in ['ctime', 'ctime-pre2.4', 'iso8601-utc', 'iso8601-local']: raise ValueError('invalid datetime format %s, choose from ctime, ' 'ctime-pre2.4, iso8601-utc, iso8601-local.') if ((self.datetime_format is None or (self.datetime_format == format and self._datetime_str != '')) and not force): return elif self.datetime is None: return elif format.startswith('ctime'): dt_string = (self.weekdays[self.datetime.weekday()] + ' ' + self.datetime.strftime("%b %d %H:%M:%S")) # remove zero-padding from day number tokens = dt_string.split(' ') if tokens[2].startswith('0'): tokens[2] = tokens[2].replace('0', ' ', 1) dt_string = ' '.join(tokens) if format == 'ctime': dt_string += '.' + str(int(self.datetime.microsecond / 1000)).zfill(3) elif format == 'iso8601-local': dt_string = self.datetime.isoformat() if self.datetime.utcoffset() is None: dt_string += '+00:00' ms_str = str(int(self.datetime.microsecond / 1000)).zfill(3)[:3] # change isoformat string to have 3 digit milliseconds and no : # in offset dt_string = re.sub(r'(\.\d+)?([+-])(\d\d):(\d\d)', '.%s\\2\\3\\4' % ms_str, dt_string, count=1) elif format == 'iso8601-utc': if self.datetime.utcoffset(): dt_string = self.datetime.astimezone(tzutc()).strftime("%Y-%m-" "%dT%H:" "%M:%S") else: dt_string = self.datetime.strftime("%Y-%m-%dT%H:%M:%S") dt_string += '.' + str(int(self.datetime.microsecond / 1000)).zfill(3)[:3] + 'Z' # set new string and format self._datetime_str = dt_string self._datetime_format = format def __str__(self): """Default string conversion for LogEvent object is its line_str.""" return str(self.line_str) def to_dict(self, labels=None): """Convert LogEvent object to a dictionary.""" output = {} if labels is None: labels = ['line_str', 'split_tokens', 'datetime', 'operation', 'thread', 'namespace', 'nscanned', 'ntoreturn', 'nreturned', 'ninserted', 'nupdated', 'ndeleted', 'duration', 'r', 'w', 'numYields'] for label in labels: value = getattr(self, label, None) if value is not None: output[label] = value return output def to_json(self, labels=None): """Convert LogEvent object to valid JSON.""" output = self.to_dict(labels) return json.dumps(output, cls=DateTimeEncoder, ensure_ascii=False) def _parse_document(self): """Parse system.profile doc, copy all values to member variables.""" self._reset() doc = self._profile_doc self._split_tokens_calculated = True self._split_tokens = None self._duration_calculated = True self._duration = doc[u'millis'] self._datetime_calculated = True self._datetime = doc[u'ts'] if self._datetime.tzinfo is None: self._datetime = self._datetime.replace(tzinfo=tzutc()) self._datetime_format = None self._reformat_timestamp('ctime', force=True) self._thread_calculated = True self._thread = doc['thread'] self._operation_calculated = True self._operation = doc[u'op'] self._namespace = doc[u'ns'] self._command_calculated = True if self.operation == 'command': self._command = doc[u'command'].keys()[0] # query pattern for system.profile events, all three cases. # See SERVER-13245 if 'query' in doc: if 'query' in doc['query'] and isinstance(doc['query']['query'], dict): self._pattern = str(doc['query']['query']).replace("'", '"') elif '$query' in doc['query']: self._pattern = str(doc['query']['$query']).replace("'", '"') else: self._pattern = str(doc['query']).replace("'", '"') # sort pattern if ('orderby' in doc['query'] and isinstance(doc['query']['orderby'], dict)): self._sort_pattern = str(doc['query'] ['orderby']).replace("'", '"') elif '$orderby' in doc['query']: self._sort_pattern = str(doc['query'] ['$orderby']).replace("'", '"') else: self._sort_pattern = None self._counters_calculated = True self._nscanned = doc[u'nscanned'] if 'nscanned' in doc else None self._ntoreturn = doc[u'ntoreturn'] if 'ntoreturn' in doc else None self._nupdated = doc[u'nupdated'] if 'nupdated' in doc else None self._nreturned = doc[u'nreturned'] if 'nreturned' in doc else None self._ninserted = doc[u'ninserted'] if 'ninserted' in doc else None self._ndeleted = doc[u'ndeleted'] if 'ndeleted' in doc else None self._numYields = doc[u'numYield'] if 'numYield' in doc else None if u'lockStats' in doc: self._r = doc[u'lockStats'][u'timeLockedMicros'][u'r'] self._w = doc[u'lockStats'][u'timeLockedMicros'][u'w'] self._r_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'r'] self._w_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'w'] locks = 'w:%i' % self.w if self.w is not None else 'r:%i' % self.r elif u'locks' in doc: locks = json.dumps(doc[u'locks']) else: locks = '' # build a fake line_str payload = '' if 'query' in doc: payload += ('query: %s' % str(doc[u'query']) .replace("u'", "'").replace("'", '"')) if 'command' in doc: payload += ('command: %s' % str(doc[u'command']) .replace("u'", "'").replace("'", '"')) if 'updateobj' in doc: payload += (' update: %s' % str(doc[u'updateobj']) .replace("u'", "'").replace("'", '"')) scanned = 'nscanned:%i' % self._nscanned if 'nscanned' in doc else '' yields = 'numYields:%i' % self._numYields if 'numYield' in doc else '' duration = '%ims' % self.duration if self.duration is not None else '' self._line_str = ("[{thread}] {operation} {namespace} {payload} " "{scanned} {yields} locks(micros) {locks} " "{duration}".format(datetime=self.datetime, thread=self.thread, operation=self.operation, namespace=self.namespace, payload=payload, scanned=scanned, yields=yields, locks=locks, duration=duration))
merge
Method used to merge multiple reports together. Here it simply concatenates the lists of values saved in the different reports. Parameters ---------- reports : list of dict List of reports that need to be concatenated together Returns ------- report : dict Final report with all concatenated values
"""Module containing examples of report builder functions and classes.""" from collections import OrderedDict import numpy as np def example_fn_build_report(report, pvarray): """Example function that builds a report when used in the :py:class:`~pvfactors.engine.PVEngine` with full mode simulations. Here it will be a dictionary with lists of calculated values. Parameters ---------- report : dict Initially ``None``, this will be passed and updated by the function pvarray : PV array object PV array with updated calculation values Returns ------- report : dict Report updated with newly calculated values """ # Initialize the report if report is None: list_keys = ['qinc_front', 'qinc_back', 'iso_front', 'iso_back'] report = OrderedDict({key: [] for key in list_keys}) # Add elements to the report if pvarray is not None: pvrow = pvarray.pvrows[1] # use center pvrow report['qinc_front'].append( pvrow.front.get_param_weighted('qinc')) report['qinc_back'].append( pvrow.back.get_param_weighted('qinc')) report['iso_front'].append( pvrow.front.get_param_weighted('isotropic')) report['iso_back'].append( pvrow.back.get_param_weighted('isotropic')) else: # No calculation was performed, because sun was down report['qinc_front'].append(np.nan) report['qinc_back'].append(np.nan) report['iso_front'].append(np.nan) report['iso_back'].append(np.nan) return report class ExampleReportBuilder(object): """A class is required to build reports when running calculations with multiprocessing because of python constraints""" @staticmethod def build(report, pvarray): """Method that will build the simulation report. Here we're using the previously defined :py:function:`~pvfactors.report.example_fn_build_report`. Parameters ---------- report : dict Initially ``None``, this will be passed and updated by the function pvarray : PV array object PV array with updated calculation values Returns ------- report : dict Report updated with newly calculated values """ return example_fn_build_report(report, pvarray) # MASKED: merge function (lines 73-95)
@staticmethod def merge(reports): """Method used to merge multiple reports together. Here it simply concatenates the lists of values saved in the different reports. Parameters ---------- reports : list of dict List of reports that need to be concatenated together Returns ------- report : dict Final report with all concatenated values """ report = reports[0] # Merge only if more than 1 report if len(reports) > 1: keys_report = list(reports[0].keys()) for other_report in reports[1:]: for key in keys_report: report[key] += other_report[key] return report
73
95
"""Module containing examples of report builder functions and classes.""" from collections import OrderedDict import numpy as np def example_fn_build_report(report, pvarray): """Example function that builds a report when used in the :py:class:`~pvfactors.engine.PVEngine` with full mode simulations. Here it will be a dictionary with lists of calculated values. Parameters ---------- report : dict Initially ``None``, this will be passed and updated by the function pvarray : PV array object PV array with updated calculation values Returns ------- report : dict Report updated with newly calculated values """ # Initialize the report if report is None: list_keys = ['qinc_front', 'qinc_back', 'iso_front', 'iso_back'] report = OrderedDict({key: [] for key in list_keys}) # Add elements to the report if pvarray is not None: pvrow = pvarray.pvrows[1] # use center pvrow report['qinc_front'].append( pvrow.front.get_param_weighted('qinc')) report['qinc_back'].append( pvrow.back.get_param_weighted('qinc')) report['iso_front'].append( pvrow.front.get_param_weighted('isotropic')) report['iso_back'].append( pvrow.back.get_param_weighted('isotropic')) else: # No calculation was performed, because sun was down report['qinc_front'].append(np.nan) report['qinc_back'].append(np.nan) report['iso_front'].append(np.nan) report['iso_back'].append(np.nan) return report class ExampleReportBuilder(object): """A class is required to build reports when running calculations with multiprocessing because of python constraints""" @staticmethod def build(report, pvarray): """Method that will build the simulation report. Here we're using the previously defined :py:function:`~pvfactors.report.example_fn_build_report`. Parameters ---------- report : dict Initially ``None``, this will be passed and updated by the function pvarray : PV array object PV array with updated calculation values Returns ------- report : dict Report updated with newly calculated values """ return example_fn_build_report(report, pvarray) @staticmethod def merge(reports): """Method used to merge multiple reports together. Here it simply concatenates the lists of values saved in the different reports. Parameters ---------- reports : list of dict List of reports that need to be concatenated together Returns ------- report : dict Final report with all concatenated values """ report = reports[0] # Merge only if more than 1 report if len(reports) > 1: keys_report = list(reports[0].keys()) for other_report in reports[1:]: for key in keys_report: report[key] += other_report[key] return report
call
Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor.
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 ConvBERT model.""" import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_convbert import ConvBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" _CONFIG_FOR_DOC = "ConvBertConfig" _TOKENIZER_FOR_DOC = "ConvBertTokenizer" TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small", # See all ConvBERT models at https://huggingface.co/models?filter=convbert ] # Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->ConvBert class TFConvBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: ConvBertConfig, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.embedding_size = config.embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.embedding_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call # MASKED: call function (lines 106-143) class TFConvBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) new_num_attention_heads = int(config.num_attention_heads / config.head_ratio) if new_num_attention_heads < 1: self.head_ratio = config.num_attention_heads num_attention_heads = 1 else: num_attention_heads = new_num_attention_heads self.head_ratio = config.head_ratio self.num_attention_heads = num_attention_heads self.conv_kernel_size = config.conv_kernel_size assert ( config.hidden_size % self.num_attention_heads == 0 ), "hidden_size should be divisible by num_attention_heads" self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.key_conv_attn_layer = tf.keras.layers.SeparableConv1D( self.all_head_size, self.conv_kernel_size, padding="same", activation=None, depthwise_initializer=get_initializer(1 / self.conv_kernel_size), pointwise_initializer=get_initializer(config.initializer_range), name="key_conv_attn_layer", ) self.conv_kernel_layer = tf.keras.layers.Dense( self.num_attention_heads * self.conv_kernel_size, activation=None, name="conv_kernel_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.conv_out_layer = tf.keras.layers.Dense( self.all_head_size, activation=None, name="conv_out_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) conv_attn_layer = tf.multiply(mixed_key_conv_attn_layer, mixed_query_layer) conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) conv_kernel_layer = tf.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) conv_kernel_layer = tf.nn.softmax(conv_kernel_layer, axis=1) paddings = tf.constant( [ [ 0, 0, ], [int((self.conv_kernel_size - 1) / 2), int((self.conv_kernel_size - 1) / 2)], [0, 0], ] ) conv_out_layer = self.conv_out_layer(hidden_states) conv_out_layer = tf.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) conv_out_layer = tf.pad(conv_out_layer, paddings, "CONSTANT") unfold_conv_out_layer = tf.stack( [ tf.slice(conv_out_layer, [0, i, 0], [batch_size, shape_list(mixed_query_layer)[1], self.all_head_size]) for i in range(self.conv_kernel_size) ], axis=-1, ) conv_out_layer = tf.reshape(unfold_conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) conv_out_layer = tf.matmul(conv_out_layer, conv_kernel_layer) conv_out_layer = tf.reshape(conv_out_layer, [-1, self.all_head_size]) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask value_layer = tf.reshape( mixed_value_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size] ) value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) conv_out = tf.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) context_layer = tf.concat([context_layer, conv_out], 2) context_layer = tf.reshape( context_layer, (batch_size, -1, self.head_ratio * self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFConvBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFConvBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self_attention = TFConvBertSelfAttention(config, name="self") self.dense_output = TFConvBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, input_tensor, attention_mask, head_mask, output_attentions, training=False): self_outputs = self.self_attention( input_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.dense_output(self_outputs[0], input_tensor, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class GroupedLinearLayer(tf.keras.layers.Layer): def __init__(self, input_size, output_size, num_groups, kernel_initializer, **kwargs): super().__init__(**kwargs) self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.kernel_initializer = kernel_initializer self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups def build(self, input_shape): self.kernel = self.add_weight( "kernel", shape=[self.group_out_dim, self.group_in_dim, self.num_groups], initializer=self.kernel_initializer, trainable=True, ) self.bias = self.add_weight( "bias", shape=[self.output_size], initializer=self.kernel_initializer, dtype=self.dtype, trainable=True ) def call(self, hidden_states): batch_size = shape_list(hidden_states)[0] x = tf.transpose(tf.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]), [1, 0, 2]) x = tf.matmul(x, tf.transpose(self.kernel, [2, 1, 0])) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [batch_size, -1, self.output_size]) x = tf.nn.bias_add(value=x, bias=self.bias) return x class TFConvBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = tf.keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.hidden_size, config.intermediate_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFConvBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.intermediate_size, config.hidden_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFConvBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFConvBertAttention(config, name="attention") self.intermediate = TFConvBertIntermediate(config, name="intermediate") self.bert_output = TFConvBertOutput(config, name="output") def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions, training=training ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFConvBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer = [TFConvBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class TFConvBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @keras_serializable class TFConvBertMainLayer(tf.keras.layers.Layer): config_class = ConvBertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.embeddings = TFConvBertEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project") self.encoder = TFConvBertEncoder(config, name="encoder") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_extended_attention_mask(self, attention_mask, input_shape, dtype): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) hidden_states = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["token_type_ids"], inputs["inputs_embeds"], training=inputs["training"], ) extended_attention_mask = self.get_extended_attention_mask( inputs["attention_mask"], input_shape, hidden_states.dtype ) inputs["head_mask"] = self.get_head_mask(inputs["head_mask"]) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=inputs["training"]) hidden_states = self.encoder( hidden_states, extended_attention_mask, inputs["head_mask"], inputs["output_attentions"], inputs["output_hidden_states"], inputs["return_dict"], training=inputs["training"], ) return hidden_states class TFConvBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvBertConfig base_model_prefix = "convbert" CONVBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Args: config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`ConvBertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.", CONVBERT_START_DOCSTRING, ) class TFConvBertModel(TFConvBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.convbert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) class TFConvBertMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFConvBertGeneratorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense") def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = get_tf_activation("gelu")(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING) class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, **kwargs) self.vocab_size = config.vocab_size self.convbert = TFConvBertMainLayer(config, name="convbert") self.generator_predictions = TFConvBertGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.generator_lm_head = TFConvBertMaskedLMHead(config, self.convbert.embeddings, name="generator_lm_head") def get_lm_head(self): return self.generator_lm_head def get_prefix_bias_name(self): return self.name + "/" + self.generator_lm_head.name @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) generator_hidden_states = self.convbert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=inputs["training"]) prediction_scores = self.generator_lm_head(prediction_scores, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFConvBertClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, hidden_states, **kwargs): x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_tf_activation(self.config.hidden_act)(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ ConvBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.classifier = TFConvBertClassificationHead(config, name="classifier") @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.classifier(outputs[0], training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.convert_to_tensor(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_model_forward( CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.convbert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.sequence_summary(outputs[0], training=inputs["training"]) logits = self.classifier(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=inputs["training"]) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CONVBERT_START_DOCSTRING, ) class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )
def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
106
143
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 ConvBERT model.""" import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_convbert import ConvBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" _CONFIG_FOR_DOC = "ConvBertConfig" _TOKENIZER_FOR_DOC = "ConvBertTokenizer" TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small", # See all ConvBERT models at https://huggingface.co/models?filter=convbert ] # Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->ConvBert class TFConvBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: ConvBertConfig, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.embedding_size = config.embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.embedding_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFConvBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) new_num_attention_heads = int(config.num_attention_heads / config.head_ratio) if new_num_attention_heads < 1: self.head_ratio = config.num_attention_heads num_attention_heads = 1 else: num_attention_heads = new_num_attention_heads self.head_ratio = config.head_ratio self.num_attention_heads = num_attention_heads self.conv_kernel_size = config.conv_kernel_size assert ( config.hidden_size % self.num_attention_heads == 0 ), "hidden_size should be divisible by num_attention_heads" self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.key_conv_attn_layer = tf.keras.layers.SeparableConv1D( self.all_head_size, self.conv_kernel_size, padding="same", activation=None, depthwise_initializer=get_initializer(1 / self.conv_kernel_size), pointwise_initializer=get_initializer(config.initializer_range), name="key_conv_attn_layer", ) self.conv_kernel_layer = tf.keras.layers.Dense( self.num_attention_heads * self.conv_kernel_size, activation=None, name="conv_kernel_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.conv_out_layer = tf.keras.layers.Dense( self.all_head_size, activation=None, name="conv_out_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) conv_attn_layer = tf.multiply(mixed_key_conv_attn_layer, mixed_query_layer) conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) conv_kernel_layer = tf.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) conv_kernel_layer = tf.nn.softmax(conv_kernel_layer, axis=1) paddings = tf.constant( [ [ 0, 0, ], [int((self.conv_kernel_size - 1) / 2), int((self.conv_kernel_size - 1) / 2)], [0, 0], ] ) conv_out_layer = self.conv_out_layer(hidden_states) conv_out_layer = tf.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) conv_out_layer = tf.pad(conv_out_layer, paddings, "CONSTANT") unfold_conv_out_layer = tf.stack( [ tf.slice(conv_out_layer, [0, i, 0], [batch_size, shape_list(mixed_query_layer)[1], self.all_head_size]) for i in range(self.conv_kernel_size) ], axis=-1, ) conv_out_layer = tf.reshape(unfold_conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) conv_out_layer = tf.matmul(conv_out_layer, conv_kernel_layer) conv_out_layer = tf.reshape(conv_out_layer, [-1, self.all_head_size]) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask value_layer = tf.reshape( mixed_value_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size] ) value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) conv_out = tf.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) context_layer = tf.concat([context_layer, conv_out], 2) context_layer = tf.reshape( context_layer, (batch_size, -1, self.head_ratio * self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFConvBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFConvBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self_attention = TFConvBertSelfAttention(config, name="self") self.dense_output = TFConvBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, input_tensor, attention_mask, head_mask, output_attentions, training=False): self_outputs = self.self_attention( input_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.dense_output(self_outputs[0], input_tensor, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class GroupedLinearLayer(tf.keras.layers.Layer): def __init__(self, input_size, output_size, num_groups, kernel_initializer, **kwargs): super().__init__(**kwargs) self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.kernel_initializer = kernel_initializer self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups def build(self, input_shape): self.kernel = self.add_weight( "kernel", shape=[self.group_out_dim, self.group_in_dim, self.num_groups], initializer=self.kernel_initializer, trainable=True, ) self.bias = self.add_weight( "bias", shape=[self.output_size], initializer=self.kernel_initializer, dtype=self.dtype, trainable=True ) def call(self, hidden_states): batch_size = shape_list(hidden_states)[0] x = tf.transpose(tf.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]), [1, 0, 2]) x = tf.matmul(x, tf.transpose(self.kernel, [2, 1, 0])) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [batch_size, -1, self.output_size]) x = tf.nn.bias_add(value=x, bias=self.bias) return x class TFConvBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = tf.keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.hidden_size, config.intermediate_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFConvBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.intermediate_size, config.hidden_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFConvBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFConvBertAttention(config, name="attention") self.intermediate = TFConvBertIntermediate(config, name="intermediate") self.bert_output = TFConvBertOutput(config, name="output") def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions, training=training ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFConvBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer = [TFConvBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class TFConvBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @keras_serializable class TFConvBertMainLayer(tf.keras.layers.Layer): config_class = ConvBertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.embeddings = TFConvBertEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project") self.encoder = TFConvBertEncoder(config, name="encoder") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_extended_attention_mask(self, attention_mask, input_shape, dtype): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) hidden_states = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["token_type_ids"], inputs["inputs_embeds"], training=inputs["training"], ) extended_attention_mask = self.get_extended_attention_mask( inputs["attention_mask"], input_shape, hidden_states.dtype ) inputs["head_mask"] = self.get_head_mask(inputs["head_mask"]) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=inputs["training"]) hidden_states = self.encoder( hidden_states, extended_attention_mask, inputs["head_mask"], inputs["output_attentions"], inputs["output_hidden_states"], inputs["return_dict"], training=inputs["training"], ) return hidden_states class TFConvBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvBertConfig base_model_prefix = "convbert" CONVBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Args: config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`ConvBertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.", CONVBERT_START_DOCSTRING, ) class TFConvBertModel(TFConvBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.convbert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) class TFConvBertMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFConvBertGeneratorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense") def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = get_tf_activation("gelu")(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING) class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, **kwargs) self.vocab_size = config.vocab_size self.convbert = TFConvBertMainLayer(config, name="convbert") self.generator_predictions = TFConvBertGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.generator_lm_head = TFConvBertMaskedLMHead(config, self.convbert.embeddings, name="generator_lm_head") def get_lm_head(self): return self.generator_lm_head def get_prefix_bias_name(self): return self.name + "/" + self.generator_lm_head.name @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) generator_hidden_states = self.convbert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=inputs["training"]) prediction_scores = self.generator_lm_head(prediction_scores, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFConvBertClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, hidden_states, **kwargs): x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_tf_activation(self.config.hidden_act)(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ ConvBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.classifier = TFConvBertClassificationHead(config, name="classifier") @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.classifier(outputs[0], training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.convert_to_tensor(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_model_forward( CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.convbert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.sequence_summary(outputs[0], training=inputs["training"]) logits = self.classifier(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=inputs["training"]) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CONVBERT_START_DOCSTRING, ) class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) outputs = self.convbert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )
simulate_step_response
Compute the linear model response to an Heaviside function (or all-ones array) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given.
import numpy as np from numpy import (reciprocal, einsum, maximum, minimum, zeros_like, atleast_1d, squeeze) from scipy.linalg import eig, eigvals, matrix_balance, norm from harold._classes import Transfer, transfer_to_state from harold._discrete_funcs import discretize from harold._arg_utils import _check_for_state, _check_for_state_or_transfer __all__ = ['simulate_linear_system', 'simulate_step_response', 'simulate_impulse_response'] def simulate_linear_system(sys, u, t=None, x0=None, per_channel=False): """ Compute the linear model response to an input array sampled at given time instances. Parameters ---------- sys : {State, Transfer} The system model to be simulated u : array_like The real-valued input sequence to force the model. 1D arrays for single input models and 2D arrays that has as many columns as the number of inputs are valid inputs. t : array_like, optional The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. x0 : array_like, optional The initial condition array. If omitted an array of zeros is assumed. Note that Transfer models by definition assume zero initial conditions and will raise an error. per_channel : bool, optional If this is set to True and if the system has multiple inputs, the response of each input is returned individually. For example, if a system has 4 inputs and 3 outputs then the response shape becomes (num, p, m) instead of (num, p) where k-th slice (:, :, k) is the response from the k-th input channel. For single input systems, this keyword has no effect. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. Notes ----- For Transfer models, first conversion to a state model is performed and then the resulting model is used for computations. """ _check_for_state_or_transfer(sys) # Quick initial condition checks if x0 is not None: if sys._isgain: raise ValueError('Static system models can\'t have initial ' 'conditions set.') if isinstance(sys, Transfer): raise ValueError('Transfer models can\'t have initial conditions ' 'set.') x0 = np.asarray(x0, dtype=float).squeeze() if x0.ndim > 1: raise ValueError('Initial condition can only be a 1D array.') else: x0 = x0[:, None] if sys.NumberOfStates != x0.size: raise ValueError('The initial condition size does not match the ' 'number of states of the model.') # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) n, m = sys.NumberOfStates, sys.shape[1] is_discrete = sys.SamplingSet == 'Z' u = np.asarray(u, dtype=float).squeeze() if u.ndim == 1: u = u[:, None] t = _check_u_and_t_for_simulation(m, sys._dt, u, t, is_discrete) # input and time arrays are regular move on # Static gains are simple matrix multiplications with no x0 if sys._isgain: if sys._isSISO: yout = u * sys.d.squeeze() else: # don't bother for single inputs if m == 1: per_channel = False if per_channel: yout = np.einsum('ij,jk->ikj', u, sys.d.T) else: yout = u @ sys.d.T # Dynamic model else: # TODO: Add FOH discretization for funky input # ZOH discretize the continuous system based on the time increment if not is_discrete: sys = discretize(sys, t[1]-t[0], method='zoh') sample_num = len(u) a, b, c, d = sys.matrices # Bu and Du are constant matrices so get them ready (transposed) M_u = np.block([b.T, d.T]) at = a.T # Explicitly skip single inputs for per_channel if m == 1: per_channel = False # Shape the response as a 3D array if per_channel: xout = np.empty([sample_num, n, m], dtype=float) for col in range(m): xout[0, :, col] = 0. if x0 is None else x0.T Bu = u[:, [col]] @ b.T[[col], :] # Main loop for xdot eq. for row in range(1, sample_num): xout[row, :, col] = xout[row-1, :, col] @ at + Bu[row-1] # Get the output equation for each slice of inputs # Cx + Du yout = np.einsum('ijk,jl->ilk', xout, c.T) + \ np.einsum('ij,jk->ikj', u, d.T) # Combined output else: BDu = u @ M_u xout = np.empty([sample_num, n], dtype=float) xout[0] = 0. if x0 is None else x0.T # Main loop for xdot eq. for row in range(1, sample_num): xout[row] = (xout[row-1] @ at) + BDu[row-1, :n] # Now we have all the state evolution get the output equation yout = xout @ c.T + BDu[:, n:] return yout, t # MASKED: simulate_step_response function (lines 157-203) def simulate_impulse_response(sys, t=None): """ Compute the linear model response to an Dirac delta pulse (or all-zeros array except the first sample being 1/dt at each channel) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys, is_step=False) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.zeros([len(t), m], dtype=float) u[0] = 1./ts return simulate_linear_system(sys, u=u, t=t, per_channel=1) def _compute_tfinal_and_dt(sys, is_step=True): """ Helper function to estimate a final time and a sampling period for time domain simulations. It is essentially geared towards impulse response but is also used for step responses. For discrete-time models, obviously dt is inherent and only tfinal is computed. Parameters ---------- sys : {State, Transfer} The system to be investigated is_step : bool Scales the dc value by the magnitude of the nonzero mode since integrating the impulse response gives ∫exp(-λt) = -exp(-λt)/λ. Default is True. Returns ------- tfinal : float The final time instance for which the simulation will be performed. dt : float The estimated sampling period for the simulation. Notes ----- Just by evaluating the fastest mode for dt and slowest for tfinal often leads to unnecessary, bloated sampling (e.g., Transfer(1,[1,1001,1000])) since dt will be very small and tfinal will be too large though the fast mode hardly ever contributes. Similarly, change the numerator to [1, 2, 0] and the simulation would be unnecessarily long and the plot is virtually an L shape since the decay is so fast. Instead, a modal decomposition in time domain hence a truncated ZIR and ZSR can be used such that only the modes that have significant effect on the time response are taken. But the sensitivity of the eigenvalues complicate the matter since dλ = <w, dA*v> with <w,v> = 1. Hence we can only work with simple poles with this formulation. See Golub, Van Loan Section 7.2.2 for simple eigenvalue sensitivity about the nonunity of <w,v>. The size of the response is dependent on the size of the eigenshapes rather than the eigenvalues themselves. """ sqrt_eps = np.sqrt(np.spacing(1.)) min_points = 100 # min number of points min_points_z = 20 # min number of points max_points = 10000 # max number of points max_points_z = 75000 # max number of points for discrete models default_tfinal = 5 # Default simulation horizon total_cycles = 5 # number of cycles for oscillating modes pts_per_cycle = 25 # Number of points divide a period of oscillation log_decay_percent = np.log(100) # Factor of reduction for real pole decays # if a static model is given, don't bother with checks if sys._isgain: if sys._isdiscrete: return sys._dt*min_points_z, sys._dt else: return default_tfinal, default_tfinal / min_points if sys._isdiscrete: # System already has sampling fixed hence we can't fall into the same # trap mentioned above. Just get nonintegrating slow modes together # with the damping. dt = sys._dt tfinal = default_tfinal p = eigvals(sys.a) # Array Masks # unstable m_u = (np.abs(p) >= 1 + sqrt_eps) p_u, p = p[m_u], p[~m_u] if p_u.size > 0: m_u = (p_u.real < 0) & (np.abs(p_u.imag) < sqrt_eps) t_emp = np.max(log_decay_percent / np.abs(np.log(p_u[~m_u])/dt)) tfinal = max(tfinal, t_emp) # zero - negligible effect on tfinal m_z = np.abs(p) < sqrt_eps p = p[~m_z] # Negative reals- treated as oscillary mode m_nr = (p.real < 0) & (np.abs(p.imag) < sqrt_eps) p_nr, p = p[m_nr], p[~m_nr] if p_nr.size > 0: t_emp = np.max(log_decay_percent / np.abs((np.log(p_nr)/dt).real)) tfinal = max(tfinal, t_emp) # discrete integrators m_int = (p.real - 1 < sqrt_eps) & (np.abs(p.imag) < sqrt_eps) p_int, p = p[m_int], p[~m_int] # pure oscillatory modes m_w = (np.abs(np.abs(p) - 1) < sqrt_eps) p_w, p = p[m_w], p[~m_w] if p_w.size > 0: t_emp = total_cycles * 2 * np.pi / np.abs(np.log(p_w)/dt).min() tfinal = max(tfinal, t_emp) if p.size > 0: t_emp = log_decay_percent / np.abs((np.log(p)/dt).real).min() tfinal = max(tfinal, t_emp) if p_int.size > 0: tfinal = tfinal * 5 # Make tfinal an integer multiple of dt num_samples = tfinal // dt if num_samples > max_points_z: tfinal = dt * max_points_z else: tfinal = dt * num_samples return tfinal, dt # Improve conditioning via balancing and zeroing tiny entries # See <w,v> for [[1,2,0], [9,1,0.01], [1,2,10*np.pi]] before/after balance b, (sca, perm) = matrix_balance(sys.a, separate=True) p, l, r = eig(b, left=True, right=True) # Reciprocal of inner product <w,v> for each λ, (bound the ~infs by 1e12) # G = Transfer([1], [1,0,1]) gives zero sensitivity (bound by 1e-12) eig_sens = reciprocal(maximum(1e-12, einsum('ij,ij->j', l, r).real)) eig_sens = minimum(1e12, eig_sens) # Tolerances p[np.abs(p) < np.spacing(eig_sens * norm(b, 1))] = 0. # Incorporate balancing to outer factors l[perm, :] *= reciprocal(sca)[:, None] r[perm, :] *= sca[:, None] w, v = sys.c @ r, l.T.conj() @ sys.b origin = False # Computing the "size" of the response of each simple mode wn = np.abs(p) if np.any(wn == 0.): origin = True dc = zeros_like(p, dtype=float) # well-conditioned nonzero poles, np.abs just in case ok = np.abs(eig_sens) <= 1/sqrt_eps # the averaged t→∞ response of each simple λ on each i/o channel # See, A = [[-1, k], [0, -2]], response sizes are k-dependent (that is # R/L eigenvector dependent) dc[ok] = norm(v[ok, :], axis=1)*norm(w[:, ok], axis=0)*eig_sens[ok] dc[wn != 0.] /= wn[wn != 0] if is_step else 1. dc[wn == 0.] = 0. # double the oscillating mode magnitude for the conjugate dc[p.imag != 0.] *= 2 # Now get rid of noncontributing integrators and simple modes if any relevance = (dc > 0.1*dc.max()) | ~ok psub = p[relevance] wnsub = wn[relevance] tfinal, dt = [], [] ints = wnsub == 0. iw = (psub.imag != 0.) & (np.abs(psub.real) <= sqrt_eps) # Pure imaginary? if np.any(iw): tfinal += (total_cycles * 2 * np.pi / wnsub[iw]).tolist() dt += (2 * np.pi / pts_per_cycle / wnsub[iw]).tolist() # The rest ~ts = log(%ss value) / exp(Re(λ)t) texp_mode = log_decay_percent / np.abs(psub[~iw & ~ints].real) tfinal += texp_mode.tolist() dt += minimum(texp_mode / 50, (2 * np.pi / pts_per_cycle / wnsub[~iw & ~ints])).tolist() # All integrators? if len(tfinal) == 0: return default_tfinal*5, default_tfinal*5/min_points tfinal = np.max(tfinal)*(5 if origin else 1) dt = np.min(dt) dt = tfinal / max_points if tfinal // dt > max_points else dt tfinal = dt * min_points if tfinal // dt < min_points else tfinal return tfinal, dt def _check_u_and_t_for_simulation(m, dt, u, t, isdiscrete): """ Helper function to validate the input arguments for simulate_linear_system """ # Discrete models can omit t array, make one here for convenience if t is None: if not isdiscrete: raise ValueError('Continuous time models need an evenly spaced ' 'time sequence from which the sampling period ' 'will be obtained.') else: u_samples = len(u) t = np.linspace(0, (u_samples-1)*dt, num=u_samples) else: t = np.asarray(t, dtype=float).squeeze() if t.ndim != 1: raise ValueError('Time array needs to be a 1D array.') t_diff = np.diff(t) if not np.allclose(t_diff, t_diff[0]) or not t_diff[0] > 0.: raise ValueError('Time array should be equally spaced and ' 'increasing.') if isdiscrete and not np.isclose(dt, t_diff[0]): raise ValueError('Time array increment {} is not equal to the' ' model sampling period {}.'.format(t_diff[0], dt)) if u.size < 1: raise ValueError('The input array should at least have one point.') # First dimension is always # of samples if len(u) != len(t): raise ValueError('The input and time arrays should have the same' ' length. t: {} vs. u: {}'.format(t.shape, u.shape)) if u.shape[1] != m: raise ValueError('Number of input columns ({}) don\'t match the number' ' of inputs ({}) of the given model.' ''.format(u.shape[1], m)) return t def _check_custom_time_input(t): """ Helper function for simple and rather expensive checks for sanity """ t = atleast_1d(t) if t.ndim > 1: t = squeeze(t) if t.ndim > 1: raise ValueError('Time array should be a 1D array but has ' '{} nontrivial dimensions'.format(t.ndim)) if t.size < 2: raise ValueError('Time array should have at least two data points.') dt = t[1] - t[0] if dt <= 0.: raise ValueError('The time increment dt cannot be negative; ' 'Difference of the first two samples t1 - t0 = {}' ''.format(dt)) # np.diff is somewhat slower than the diff of the views if not np.allclose(t[1:] - t[:-1], dt): raise ValueError('Supplied time array is not numerically equally ' 'spaced (checked via numpy.allclose).') return t, dt
def simulate_step_response(sys, t=None): """ Compute the linear model response to an Heaviside function (or all-ones array) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.ones([len(t), m], dtype=float) return simulate_linear_system(sys, u=u, t=t, per_channel=1)
157
203
import numpy as np from numpy import (reciprocal, einsum, maximum, minimum, zeros_like, atleast_1d, squeeze) from scipy.linalg import eig, eigvals, matrix_balance, norm from harold._classes import Transfer, transfer_to_state from harold._discrete_funcs import discretize from harold._arg_utils import _check_for_state, _check_for_state_or_transfer __all__ = ['simulate_linear_system', 'simulate_step_response', 'simulate_impulse_response'] def simulate_linear_system(sys, u, t=None, x0=None, per_channel=False): """ Compute the linear model response to an input array sampled at given time instances. Parameters ---------- sys : {State, Transfer} The system model to be simulated u : array_like The real-valued input sequence to force the model. 1D arrays for single input models and 2D arrays that has as many columns as the number of inputs are valid inputs. t : array_like, optional The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. x0 : array_like, optional The initial condition array. If omitted an array of zeros is assumed. Note that Transfer models by definition assume zero initial conditions and will raise an error. per_channel : bool, optional If this is set to True and if the system has multiple inputs, the response of each input is returned individually. For example, if a system has 4 inputs and 3 outputs then the response shape becomes (num, p, m) instead of (num, p) where k-th slice (:, :, k) is the response from the k-th input channel. For single input systems, this keyword has no effect. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. Notes ----- For Transfer models, first conversion to a state model is performed and then the resulting model is used for computations. """ _check_for_state_or_transfer(sys) # Quick initial condition checks if x0 is not None: if sys._isgain: raise ValueError('Static system models can\'t have initial ' 'conditions set.') if isinstance(sys, Transfer): raise ValueError('Transfer models can\'t have initial conditions ' 'set.') x0 = np.asarray(x0, dtype=float).squeeze() if x0.ndim > 1: raise ValueError('Initial condition can only be a 1D array.') else: x0 = x0[:, None] if sys.NumberOfStates != x0.size: raise ValueError('The initial condition size does not match the ' 'number of states of the model.') # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) n, m = sys.NumberOfStates, sys.shape[1] is_discrete = sys.SamplingSet == 'Z' u = np.asarray(u, dtype=float).squeeze() if u.ndim == 1: u = u[:, None] t = _check_u_and_t_for_simulation(m, sys._dt, u, t, is_discrete) # input and time arrays are regular move on # Static gains are simple matrix multiplications with no x0 if sys._isgain: if sys._isSISO: yout = u * sys.d.squeeze() else: # don't bother for single inputs if m == 1: per_channel = False if per_channel: yout = np.einsum('ij,jk->ikj', u, sys.d.T) else: yout = u @ sys.d.T # Dynamic model else: # TODO: Add FOH discretization for funky input # ZOH discretize the continuous system based on the time increment if not is_discrete: sys = discretize(sys, t[1]-t[0], method='zoh') sample_num = len(u) a, b, c, d = sys.matrices # Bu and Du are constant matrices so get them ready (transposed) M_u = np.block([b.T, d.T]) at = a.T # Explicitly skip single inputs for per_channel if m == 1: per_channel = False # Shape the response as a 3D array if per_channel: xout = np.empty([sample_num, n, m], dtype=float) for col in range(m): xout[0, :, col] = 0. if x0 is None else x0.T Bu = u[:, [col]] @ b.T[[col], :] # Main loop for xdot eq. for row in range(1, sample_num): xout[row, :, col] = xout[row-1, :, col] @ at + Bu[row-1] # Get the output equation for each slice of inputs # Cx + Du yout = np.einsum('ijk,jl->ilk', xout, c.T) + \ np.einsum('ij,jk->ikj', u, d.T) # Combined output else: BDu = u @ M_u xout = np.empty([sample_num, n], dtype=float) xout[0] = 0. if x0 is None else x0.T # Main loop for xdot eq. for row in range(1, sample_num): xout[row] = (xout[row-1] @ at) + BDu[row-1, :n] # Now we have all the state evolution get the output equation yout = xout @ c.T + BDu[:, n:] return yout, t def simulate_step_response(sys, t=None): """ Compute the linear model response to an Heaviside function (or all-ones array) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.ones([len(t), m], dtype=float) return simulate_linear_system(sys, u=u, t=t, per_channel=1) def simulate_impulse_response(sys, t=None): """ Compute the linear model response to an Dirac delta pulse (or all-zeros array except the first sample being 1/dt at each channel) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys, is_step=False) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.zeros([len(t), m], dtype=float) u[0] = 1./ts return simulate_linear_system(sys, u=u, t=t, per_channel=1) def _compute_tfinal_and_dt(sys, is_step=True): """ Helper function to estimate a final time and a sampling period for time domain simulations. It is essentially geared towards impulse response but is also used for step responses. For discrete-time models, obviously dt is inherent and only tfinal is computed. Parameters ---------- sys : {State, Transfer} The system to be investigated is_step : bool Scales the dc value by the magnitude of the nonzero mode since integrating the impulse response gives ∫exp(-λt) = -exp(-λt)/λ. Default is True. Returns ------- tfinal : float The final time instance for which the simulation will be performed. dt : float The estimated sampling period for the simulation. Notes ----- Just by evaluating the fastest mode for dt and slowest for tfinal often leads to unnecessary, bloated sampling (e.g., Transfer(1,[1,1001,1000])) since dt will be very small and tfinal will be too large though the fast mode hardly ever contributes. Similarly, change the numerator to [1, 2, 0] and the simulation would be unnecessarily long and the plot is virtually an L shape since the decay is so fast. Instead, a modal decomposition in time domain hence a truncated ZIR and ZSR can be used such that only the modes that have significant effect on the time response are taken. But the sensitivity of the eigenvalues complicate the matter since dλ = <w, dA*v> with <w,v> = 1. Hence we can only work with simple poles with this formulation. See Golub, Van Loan Section 7.2.2 for simple eigenvalue sensitivity about the nonunity of <w,v>. The size of the response is dependent on the size of the eigenshapes rather than the eigenvalues themselves. """ sqrt_eps = np.sqrt(np.spacing(1.)) min_points = 100 # min number of points min_points_z = 20 # min number of points max_points = 10000 # max number of points max_points_z = 75000 # max number of points for discrete models default_tfinal = 5 # Default simulation horizon total_cycles = 5 # number of cycles for oscillating modes pts_per_cycle = 25 # Number of points divide a period of oscillation log_decay_percent = np.log(100) # Factor of reduction for real pole decays # if a static model is given, don't bother with checks if sys._isgain: if sys._isdiscrete: return sys._dt*min_points_z, sys._dt else: return default_tfinal, default_tfinal / min_points if sys._isdiscrete: # System already has sampling fixed hence we can't fall into the same # trap mentioned above. Just get nonintegrating slow modes together # with the damping. dt = sys._dt tfinal = default_tfinal p = eigvals(sys.a) # Array Masks # unstable m_u = (np.abs(p) >= 1 + sqrt_eps) p_u, p = p[m_u], p[~m_u] if p_u.size > 0: m_u = (p_u.real < 0) & (np.abs(p_u.imag) < sqrt_eps) t_emp = np.max(log_decay_percent / np.abs(np.log(p_u[~m_u])/dt)) tfinal = max(tfinal, t_emp) # zero - negligible effect on tfinal m_z = np.abs(p) < sqrt_eps p = p[~m_z] # Negative reals- treated as oscillary mode m_nr = (p.real < 0) & (np.abs(p.imag) < sqrt_eps) p_nr, p = p[m_nr], p[~m_nr] if p_nr.size > 0: t_emp = np.max(log_decay_percent / np.abs((np.log(p_nr)/dt).real)) tfinal = max(tfinal, t_emp) # discrete integrators m_int = (p.real - 1 < sqrt_eps) & (np.abs(p.imag) < sqrt_eps) p_int, p = p[m_int], p[~m_int] # pure oscillatory modes m_w = (np.abs(np.abs(p) - 1) < sqrt_eps) p_w, p = p[m_w], p[~m_w] if p_w.size > 0: t_emp = total_cycles * 2 * np.pi / np.abs(np.log(p_w)/dt).min() tfinal = max(tfinal, t_emp) if p.size > 0: t_emp = log_decay_percent / np.abs((np.log(p)/dt).real).min() tfinal = max(tfinal, t_emp) if p_int.size > 0: tfinal = tfinal * 5 # Make tfinal an integer multiple of dt num_samples = tfinal // dt if num_samples > max_points_z: tfinal = dt * max_points_z else: tfinal = dt * num_samples return tfinal, dt # Improve conditioning via balancing and zeroing tiny entries # See <w,v> for [[1,2,0], [9,1,0.01], [1,2,10*np.pi]] before/after balance b, (sca, perm) = matrix_balance(sys.a, separate=True) p, l, r = eig(b, left=True, right=True) # Reciprocal of inner product <w,v> for each λ, (bound the ~infs by 1e12) # G = Transfer([1], [1,0,1]) gives zero sensitivity (bound by 1e-12) eig_sens = reciprocal(maximum(1e-12, einsum('ij,ij->j', l, r).real)) eig_sens = minimum(1e12, eig_sens) # Tolerances p[np.abs(p) < np.spacing(eig_sens * norm(b, 1))] = 0. # Incorporate balancing to outer factors l[perm, :] *= reciprocal(sca)[:, None] r[perm, :] *= sca[:, None] w, v = sys.c @ r, l.T.conj() @ sys.b origin = False # Computing the "size" of the response of each simple mode wn = np.abs(p) if np.any(wn == 0.): origin = True dc = zeros_like(p, dtype=float) # well-conditioned nonzero poles, np.abs just in case ok = np.abs(eig_sens) <= 1/sqrt_eps # the averaged t→∞ response of each simple λ on each i/o channel # See, A = [[-1, k], [0, -2]], response sizes are k-dependent (that is # R/L eigenvector dependent) dc[ok] = norm(v[ok, :], axis=1)*norm(w[:, ok], axis=0)*eig_sens[ok] dc[wn != 0.] /= wn[wn != 0] if is_step else 1. dc[wn == 0.] = 0. # double the oscillating mode magnitude for the conjugate dc[p.imag != 0.] *= 2 # Now get rid of noncontributing integrators and simple modes if any relevance = (dc > 0.1*dc.max()) | ~ok psub = p[relevance] wnsub = wn[relevance] tfinal, dt = [], [] ints = wnsub == 0. iw = (psub.imag != 0.) & (np.abs(psub.real) <= sqrt_eps) # Pure imaginary? if np.any(iw): tfinal += (total_cycles * 2 * np.pi / wnsub[iw]).tolist() dt += (2 * np.pi / pts_per_cycle / wnsub[iw]).tolist() # The rest ~ts = log(%ss value) / exp(Re(λ)t) texp_mode = log_decay_percent / np.abs(psub[~iw & ~ints].real) tfinal += texp_mode.tolist() dt += minimum(texp_mode / 50, (2 * np.pi / pts_per_cycle / wnsub[~iw & ~ints])).tolist() # All integrators? if len(tfinal) == 0: return default_tfinal*5, default_tfinal*5/min_points tfinal = np.max(tfinal)*(5 if origin else 1) dt = np.min(dt) dt = tfinal / max_points if tfinal // dt > max_points else dt tfinal = dt * min_points if tfinal // dt < min_points else tfinal return tfinal, dt def _check_u_and_t_for_simulation(m, dt, u, t, isdiscrete): """ Helper function to validate the input arguments for simulate_linear_system """ # Discrete models can omit t array, make one here for convenience if t is None: if not isdiscrete: raise ValueError('Continuous time models need an evenly spaced ' 'time sequence from which the sampling period ' 'will be obtained.') else: u_samples = len(u) t = np.linspace(0, (u_samples-1)*dt, num=u_samples) else: t = np.asarray(t, dtype=float).squeeze() if t.ndim != 1: raise ValueError('Time array needs to be a 1D array.') t_diff = np.diff(t) if not np.allclose(t_diff, t_diff[0]) or not t_diff[0] > 0.: raise ValueError('Time array should be equally spaced and ' 'increasing.') if isdiscrete and not np.isclose(dt, t_diff[0]): raise ValueError('Time array increment {} is not equal to the' ' model sampling period {}.'.format(t_diff[0], dt)) if u.size < 1: raise ValueError('The input array should at least have one point.') # First dimension is always # of samples if len(u) != len(t): raise ValueError('The input and time arrays should have the same' ' length. t: {} vs. u: {}'.format(t.shape, u.shape)) if u.shape[1] != m: raise ValueError('Number of input columns ({}) don\'t match the number' ' of inputs ({}) of the given model.' ''.format(u.shape[1], m)) return t def _check_custom_time_input(t): """ Helper function for simple and rather expensive checks for sanity """ t = atleast_1d(t) if t.ndim > 1: t = squeeze(t) if t.ndim > 1: raise ValueError('Time array should be a 1D array but has ' '{} nontrivial dimensions'.format(t.ndim)) if t.size < 2: raise ValueError('Time array should have at least two data points.') dt = t[1] - t[0] if dt <= 0.: raise ValueError('The time increment dt cannot be negative; ' 'Difference of the first two samples t1 - t0 = {}' ''.format(dt)) # np.diff is somewhat slower than the diff of the views if not np.allclose(t[1:] - t[:-1], dt): raise ValueError('Supplied time array is not numerically equally ' 'spaced (checked via numpy.allclose).') return t, dt
simulate_impulse_response
Compute the linear model response to an Dirac delta pulse (or all-zeros array except the first sample being 1/dt at each channel) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given.
import numpy as np from numpy import (reciprocal, einsum, maximum, minimum, zeros_like, atleast_1d, squeeze) from scipy.linalg import eig, eigvals, matrix_balance, norm from harold._classes import Transfer, transfer_to_state from harold._discrete_funcs import discretize from harold._arg_utils import _check_for_state, _check_for_state_or_transfer __all__ = ['simulate_linear_system', 'simulate_step_response', 'simulate_impulse_response'] def simulate_linear_system(sys, u, t=None, x0=None, per_channel=False): """ Compute the linear model response to an input array sampled at given time instances. Parameters ---------- sys : {State, Transfer} The system model to be simulated u : array_like The real-valued input sequence to force the model. 1D arrays for single input models and 2D arrays that has as many columns as the number of inputs are valid inputs. t : array_like, optional The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. x0 : array_like, optional The initial condition array. If omitted an array of zeros is assumed. Note that Transfer models by definition assume zero initial conditions and will raise an error. per_channel : bool, optional If this is set to True and if the system has multiple inputs, the response of each input is returned individually. For example, if a system has 4 inputs and 3 outputs then the response shape becomes (num, p, m) instead of (num, p) where k-th slice (:, :, k) is the response from the k-th input channel. For single input systems, this keyword has no effect. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. Notes ----- For Transfer models, first conversion to a state model is performed and then the resulting model is used for computations. """ _check_for_state_or_transfer(sys) # Quick initial condition checks if x0 is not None: if sys._isgain: raise ValueError('Static system models can\'t have initial ' 'conditions set.') if isinstance(sys, Transfer): raise ValueError('Transfer models can\'t have initial conditions ' 'set.') x0 = np.asarray(x0, dtype=float).squeeze() if x0.ndim > 1: raise ValueError('Initial condition can only be a 1D array.') else: x0 = x0[:, None] if sys.NumberOfStates != x0.size: raise ValueError('The initial condition size does not match the ' 'number of states of the model.') # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) n, m = sys.NumberOfStates, sys.shape[1] is_discrete = sys.SamplingSet == 'Z' u = np.asarray(u, dtype=float).squeeze() if u.ndim == 1: u = u[:, None] t = _check_u_and_t_for_simulation(m, sys._dt, u, t, is_discrete) # input and time arrays are regular move on # Static gains are simple matrix multiplications with no x0 if sys._isgain: if sys._isSISO: yout = u * sys.d.squeeze() else: # don't bother for single inputs if m == 1: per_channel = False if per_channel: yout = np.einsum('ij,jk->ikj', u, sys.d.T) else: yout = u @ sys.d.T # Dynamic model else: # TODO: Add FOH discretization for funky input # ZOH discretize the continuous system based on the time increment if not is_discrete: sys = discretize(sys, t[1]-t[0], method='zoh') sample_num = len(u) a, b, c, d = sys.matrices # Bu and Du are constant matrices so get them ready (transposed) M_u = np.block([b.T, d.T]) at = a.T # Explicitly skip single inputs for per_channel if m == 1: per_channel = False # Shape the response as a 3D array if per_channel: xout = np.empty([sample_num, n, m], dtype=float) for col in range(m): xout[0, :, col] = 0. if x0 is None else x0.T Bu = u[:, [col]] @ b.T[[col], :] # Main loop for xdot eq. for row in range(1, sample_num): xout[row, :, col] = xout[row-1, :, col] @ at + Bu[row-1] # Get the output equation for each slice of inputs # Cx + Du yout = np.einsum('ijk,jl->ilk', xout, c.T) + \ np.einsum('ij,jk->ikj', u, d.T) # Combined output else: BDu = u @ M_u xout = np.empty([sample_num, n], dtype=float) xout[0] = 0. if x0 is None else x0.T # Main loop for xdot eq. for row in range(1, sample_num): xout[row] = (xout[row-1] @ at) + BDu[row-1, :n] # Now we have all the state evolution get the output equation yout = xout @ c.T + BDu[:, n:] return yout, t def simulate_step_response(sys, t=None): """ Compute the linear model response to an Heaviside function (or all-ones array) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.ones([len(t), m], dtype=float) return simulate_linear_system(sys, u=u, t=t, per_channel=1) # MASKED: simulate_impulse_response function (lines 206-254) def _compute_tfinal_and_dt(sys, is_step=True): """ Helper function to estimate a final time and a sampling period for time domain simulations. It is essentially geared towards impulse response but is also used for step responses. For discrete-time models, obviously dt is inherent and only tfinal is computed. Parameters ---------- sys : {State, Transfer} The system to be investigated is_step : bool Scales the dc value by the magnitude of the nonzero mode since integrating the impulse response gives ∫exp(-λt) = -exp(-λt)/λ. Default is True. Returns ------- tfinal : float The final time instance for which the simulation will be performed. dt : float The estimated sampling period for the simulation. Notes ----- Just by evaluating the fastest mode for dt and slowest for tfinal often leads to unnecessary, bloated sampling (e.g., Transfer(1,[1,1001,1000])) since dt will be very small and tfinal will be too large though the fast mode hardly ever contributes. Similarly, change the numerator to [1, 2, 0] and the simulation would be unnecessarily long and the plot is virtually an L shape since the decay is so fast. Instead, a modal decomposition in time domain hence a truncated ZIR and ZSR can be used such that only the modes that have significant effect on the time response are taken. But the sensitivity of the eigenvalues complicate the matter since dλ = <w, dA*v> with <w,v> = 1. Hence we can only work with simple poles with this formulation. See Golub, Van Loan Section 7.2.2 for simple eigenvalue sensitivity about the nonunity of <w,v>. The size of the response is dependent on the size of the eigenshapes rather than the eigenvalues themselves. """ sqrt_eps = np.sqrt(np.spacing(1.)) min_points = 100 # min number of points min_points_z = 20 # min number of points max_points = 10000 # max number of points max_points_z = 75000 # max number of points for discrete models default_tfinal = 5 # Default simulation horizon total_cycles = 5 # number of cycles for oscillating modes pts_per_cycle = 25 # Number of points divide a period of oscillation log_decay_percent = np.log(100) # Factor of reduction for real pole decays # if a static model is given, don't bother with checks if sys._isgain: if sys._isdiscrete: return sys._dt*min_points_z, sys._dt else: return default_tfinal, default_tfinal / min_points if sys._isdiscrete: # System already has sampling fixed hence we can't fall into the same # trap mentioned above. Just get nonintegrating slow modes together # with the damping. dt = sys._dt tfinal = default_tfinal p = eigvals(sys.a) # Array Masks # unstable m_u = (np.abs(p) >= 1 + sqrt_eps) p_u, p = p[m_u], p[~m_u] if p_u.size > 0: m_u = (p_u.real < 0) & (np.abs(p_u.imag) < sqrt_eps) t_emp = np.max(log_decay_percent / np.abs(np.log(p_u[~m_u])/dt)) tfinal = max(tfinal, t_emp) # zero - negligible effect on tfinal m_z = np.abs(p) < sqrt_eps p = p[~m_z] # Negative reals- treated as oscillary mode m_nr = (p.real < 0) & (np.abs(p.imag) < sqrt_eps) p_nr, p = p[m_nr], p[~m_nr] if p_nr.size > 0: t_emp = np.max(log_decay_percent / np.abs((np.log(p_nr)/dt).real)) tfinal = max(tfinal, t_emp) # discrete integrators m_int = (p.real - 1 < sqrt_eps) & (np.abs(p.imag) < sqrt_eps) p_int, p = p[m_int], p[~m_int] # pure oscillatory modes m_w = (np.abs(np.abs(p) - 1) < sqrt_eps) p_w, p = p[m_w], p[~m_w] if p_w.size > 0: t_emp = total_cycles * 2 * np.pi / np.abs(np.log(p_w)/dt).min() tfinal = max(tfinal, t_emp) if p.size > 0: t_emp = log_decay_percent / np.abs((np.log(p)/dt).real).min() tfinal = max(tfinal, t_emp) if p_int.size > 0: tfinal = tfinal * 5 # Make tfinal an integer multiple of dt num_samples = tfinal // dt if num_samples > max_points_z: tfinal = dt * max_points_z else: tfinal = dt * num_samples return tfinal, dt # Improve conditioning via balancing and zeroing tiny entries # See <w,v> for [[1,2,0], [9,1,0.01], [1,2,10*np.pi]] before/after balance b, (sca, perm) = matrix_balance(sys.a, separate=True) p, l, r = eig(b, left=True, right=True) # Reciprocal of inner product <w,v> for each λ, (bound the ~infs by 1e12) # G = Transfer([1], [1,0,1]) gives zero sensitivity (bound by 1e-12) eig_sens = reciprocal(maximum(1e-12, einsum('ij,ij->j', l, r).real)) eig_sens = minimum(1e12, eig_sens) # Tolerances p[np.abs(p) < np.spacing(eig_sens * norm(b, 1))] = 0. # Incorporate balancing to outer factors l[perm, :] *= reciprocal(sca)[:, None] r[perm, :] *= sca[:, None] w, v = sys.c @ r, l.T.conj() @ sys.b origin = False # Computing the "size" of the response of each simple mode wn = np.abs(p) if np.any(wn == 0.): origin = True dc = zeros_like(p, dtype=float) # well-conditioned nonzero poles, np.abs just in case ok = np.abs(eig_sens) <= 1/sqrt_eps # the averaged t→∞ response of each simple λ on each i/o channel # See, A = [[-1, k], [0, -2]], response sizes are k-dependent (that is # R/L eigenvector dependent) dc[ok] = norm(v[ok, :], axis=1)*norm(w[:, ok], axis=0)*eig_sens[ok] dc[wn != 0.] /= wn[wn != 0] if is_step else 1. dc[wn == 0.] = 0. # double the oscillating mode magnitude for the conjugate dc[p.imag != 0.] *= 2 # Now get rid of noncontributing integrators and simple modes if any relevance = (dc > 0.1*dc.max()) | ~ok psub = p[relevance] wnsub = wn[relevance] tfinal, dt = [], [] ints = wnsub == 0. iw = (psub.imag != 0.) & (np.abs(psub.real) <= sqrt_eps) # Pure imaginary? if np.any(iw): tfinal += (total_cycles * 2 * np.pi / wnsub[iw]).tolist() dt += (2 * np.pi / pts_per_cycle / wnsub[iw]).tolist() # The rest ~ts = log(%ss value) / exp(Re(λ)t) texp_mode = log_decay_percent / np.abs(psub[~iw & ~ints].real) tfinal += texp_mode.tolist() dt += minimum(texp_mode / 50, (2 * np.pi / pts_per_cycle / wnsub[~iw & ~ints])).tolist() # All integrators? if len(tfinal) == 0: return default_tfinal*5, default_tfinal*5/min_points tfinal = np.max(tfinal)*(5 if origin else 1) dt = np.min(dt) dt = tfinal / max_points if tfinal // dt > max_points else dt tfinal = dt * min_points if tfinal // dt < min_points else tfinal return tfinal, dt def _check_u_and_t_for_simulation(m, dt, u, t, isdiscrete): """ Helper function to validate the input arguments for simulate_linear_system """ # Discrete models can omit t array, make one here for convenience if t is None: if not isdiscrete: raise ValueError('Continuous time models need an evenly spaced ' 'time sequence from which the sampling period ' 'will be obtained.') else: u_samples = len(u) t = np.linspace(0, (u_samples-1)*dt, num=u_samples) else: t = np.asarray(t, dtype=float).squeeze() if t.ndim != 1: raise ValueError('Time array needs to be a 1D array.') t_diff = np.diff(t) if not np.allclose(t_diff, t_diff[0]) or not t_diff[0] > 0.: raise ValueError('Time array should be equally spaced and ' 'increasing.') if isdiscrete and not np.isclose(dt, t_diff[0]): raise ValueError('Time array increment {} is not equal to the' ' model sampling period {}.'.format(t_diff[0], dt)) if u.size < 1: raise ValueError('The input array should at least have one point.') # First dimension is always # of samples if len(u) != len(t): raise ValueError('The input and time arrays should have the same' ' length. t: {} vs. u: {}'.format(t.shape, u.shape)) if u.shape[1] != m: raise ValueError('Number of input columns ({}) don\'t match the number' ' of inputs ({}) of the given model.' ''.format(u.shape[1], m)) return t def _check_custom_time_input(t): """ Helper function for simple and rather expensive checks for sanity """ t = atleast_1d(t) if t.ndim > 1: t = squeeze(t) if t.ndim > 1: raise ValueError('Time array should be a 1D array but has ' '{} nontrivial dimensions'.format(t.ndim)) if t.size < 2: raise ValueError('Time array should have at least two data points.') dt = t[1] - t[0] if dt <= 0.: raise ValueError('The time increment dt cannot be negative; ' 'Difference of the first two samples t1 - t0 = {}' ''.format(dt)) # np.diff is somewhat slower than the diff of the views if not np.allclose(t[1:] - t[:-1], dt): raise ValueError('Supplied time array is not numerically equally ' 'spaced (checked via numpy.allclose).') return t, dt
def simulate_impulse_response(sys, t=None): """ Compute the linear model response to an Dirac delta pulse (or all-zeros array except the first sample being 1/dt at each channel) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys, is_step=False) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.zeros([len(t), m], dtype=float) u[0] = 1./ts return simulate_linear_system(sys, u=u, t=t, per_channel=1)
206
254
import numpy as np from numpy import (reciprocal, einsum, maximum, minimum, zeros_like, atleast_1d, squeeze) from scipy.linalg import eig, eigvals, matrix_balance, norm from harold._classes import Transfer, transfer_to_state from harold._discrete_funcs import discretize from harold._arg_utils import _check_for_state, _check_for_state_or_transfer __all__ = ['simulate_linear_system', 'simulate_step_response', 'simulate_impulse_response'] def simulate_linear_system(sys, u, t=None, x0=None, per_channel=False): """ Compute the linear model response to an input array sampled at given time instances. Parameters ---------- sys : {State, Transfer} The system model to be simulated u : array_like The real-valued input sequence to force the model. 1D arrays for single input models and 2D arrays that has as many columns as the number of inputs are valid inputs. t : array_like, optional The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. x0 : array_like, optional The initial condition array. If omitted an array of zeros is assumed. Note that Transfer models by definition assume zero initial conditions and will raise an error. per_channel : bool, optional If this is set to True and if the system has multiple inputs, the response of each input is returned individually. For example, if a system has 4 inputs and 3 outputs then the response shape becomes (num, p, m) instead of (num, p) where k-th slice (:, :, k) is the response from the k-th input channel. For single input systems, this keyword has no effect. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. Notes ----- For Transfer models, first conversion to a state model is performed and then the resulting model is used for computations. """ _check_for_state_or_transfer(sys) # Quick initial condition checks if x0 is not None: if sys._isgain: raise ValueError('Static system models can\'t have initial ' 'conditions set.') if isinstance(sys, Transfer): raise ValueError('Transfer models can\'t have initial conditions ' 'set.') x0 = np.asarray(x0, dtype=float).squeeze() if x0.ndim > 1: raise ValueError('Initial condition can only be a 1D array.') else: x0 = x0[:, None] if sys.NumberOfStates != x0.size: raise ValueError('The initial condition size does not match the ' 'number of states of the model.') # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) n, m = sys.NumberOfStates, sys.shape[1] is_discrete = sys.SamplingSet == 'Z' u = np.asarray(u, dtype=float).squeeze() if u.ndim == 1: u = u[:, None] t = _check_u_and_t_for_simulation(m, sys._dt, u, t, is_discrete) # input and time arrays are regular move on # Static gains are simple matrix multiplications with no x0 if sys._isgain: if sys._isSISO: yout = u * sys.d.squeeze() else: # don't bother for single inputs if m == 1: per_channel = False if per_channel: yout = np.einsum('ij,jk->ikj', u, sys.d.T) else: yout = u @ sys.d.T # Dynamic model else: # TODO: Add FOH discretization for funky input # ZOH discretize the continuous system based on the time increment if not is_discrete: sys = discretize(sys, t[1]-t[0], method='zoh') sample_num = len(u) a, b, c, d = sys.matrices # Bu and Du are constant matrices so get them ready (transposed) M_u = np.block([b.T, d.T]) at = a.T # Explicitly skip single inputs for per_channel if m == 1: per_channel = False # Shape the response as a 3D array if per_channel: xout = np.empty([sample_num, n, m], dtype=float) for col in range(m): xout[0, :, col] = 0. if x0 is None else x0.T Bu = u[:, [col]] @ b.T[[col], :] # Main loop for xdot eq. for row in range(1, sample_num): xout[row, :, col] = xout[row-1, :, col] @ at + Bu[row-1] # Get the output equation for each slice of inputs # Cx + Du yout = np.einsum('ijk,jl->ilk', xout, c.T) + \ np.einsum('ij,jk->ikj', u, d.T) # Combined output else: BDu = u @ M_u xout = np.empty([sample_num, n], dtype=float) xout[0] = 0. if x0 is None else x0.T # Main loop for xdot eq. for row in range(1, sample_num): xout[row] = (xout[row-1] @ at) + BDu[row-1, :n] # Now we have all the state evolution get the output equation yout = xout @ c.T + BDu[:, n:] return yout, t def simulate_step_response(sys, t=None): """ Compute the linear model response to an Heaviside function (or all-ones array) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.ones([len(t), m], dtype=float) return simulate_linear_system(sys, u=u, t=t, per_channel=1) def simulate_impulse_response(sys, t=None): """ Compute the linear model response to an Dirac delta pulse (or all-zeros array except the first sample being 1/dt at each channel) sampled at given time instances. If the time array is omitted then a time sequence is generated based on the poles of the model. Parameters ---------- sys : {State, Transfer} The system model to be simulated t : array_like The real-valued sequence to be used for the evolution of the system. The values should be equally spaced otherwise an error is raised. For discrete time models increments different than the sampling period also raises an error. On the other hand for discrete models this can be omitted and a time sequence will be generated automatically. Returns ------- yout : ndarray The resulting response array. The array is 1D if sys is SISO and has p columns if sys has p outputs. If there are also m inputs the array is 3D array with the shape (<num of samples>, p, m) tout : ndarray The time sequence used in the simulation. If the parameter t is not None then a copy of t is given. """ _check_for_state_or_transfer(sys) # Always works with State Models try: _check_for_state(sys) except ValueError: sys = transfer_to_state(sys) if t is None: tf, ts = _compute_tfinal_and_dt(sys, is_step=False) t = np.arange(0, tf+ts, ts, dtype=float) else: t, ts = _check_custom_time_input(t) m = sys.shape[1] u = np.zeros([len(t), m], dtype=float) u[0] = 1./ts return simulate_linear_system(sys, u=u, t=t, per_channel=1) def _compute_tfinal_and_dt(sys, is_step=True): """ Helper function to estimate a final time and a sampling period for time domain simulations. It is essentially geared towards impulse response but is also used for step responses. For discrete-time models, obviously dt is inherent and only tfinal is computed. Parameters ---------- sys : {State, Transfer} The system to be investigated is_step : bool Scales the dc value by the magnitude of the nonzero mode since integrating the impulse response gives ∫exp(-λt) = -exp(-λt)/λ. Default is True. Returns ------- tfinal : float The final time instance for which the simulation will be performed. dt : float The estimated sampling period for the simulation. Notes ----- Just by evaluating the fastest mode for dt and slowest for tfinal often leads to unnecessary, bloated sampling (e.g., Transfer(1,[1,1001,1000])) since dt will be very small and tfinal will be too large though the fast mode hardly ever contributes. Similarly, change the numerator to [1, 2, 0] and the simulation would be unnecessarily long and the plot is virtually an L shape since the decay is so fast. Instead, a modal decomposition in time domain hence a truncated ZIR and ZSR can be used such that only the modes that have significant effect on the time response are taken. But the sensitivity of the eigenvalues complicate the matter since dλ = <w, dA*v> with <w,v> = 1. Hence we can only work with simple poles with this formulation. See Golub, Van Loan Section 7.2.2 for simple eigenvalue sensitivity about the nonunity of <w,v>. The size of the response is dependent on the size of the eigenshapes rather than the eigenvalues themselves. """ sqrt_eps = np.sqrt(np.spacing(1.)) min_points = 100 # min number of points min_points_z = 20 # min number of points max_points = 10000 # max number of points max_points_z = 75000 # max number of points for discrete models default_tfinal = 5 # Default simulation horizon total_cycles = 5 # number of cycles for oscillating modes pts_per_cycle = 25 # Number of points divide a period of oscillation log_decay_percent = np.log(100) # Factor of reduction for real pole decays # if a static model is given, don't bother with checks if sys._isgain: if sys._isdiscrete: return sys._dt*min_points_z, sys._dt else: return default_tfinal, default_tfinal / min_points if sys._isdiscrete: # System already has sampling fixed hence we can't fall into the same # trap mentioned above. Just get nonintegrating slow modes together # with the damping. dt = sys._dt tfinal = default_tfinal p = eigvals(sys.a) # Array Masks # unstable m_u = (np.abs(p) >= 1 + sqrt_eps) p_u, p = p[m_u], p[~m_u] if p_u.size > 0: m_u = (p_u.real < 0) & (np.abs(p_u.imag) < sqrt_eps) t_emp = np.max(log_decay_percent / np.abs(np.log(p_u[~m_u])/dt)) tfinal = max(tfinal, t_emp) # zero - negligible effect on tfinal m_z = np.abs(p) < sqrt_eps p = p[~m_z] # Negative reals- treated as oscillary mode m_nr = (p.real < 0) & (np.abs(p.imag) < sqrt_eps) p_nr, p = p[m_nr], p[~m_nr] if p_nr.size > 0: t_emp = np.max(log_decay_percent / np.abs((np.log(p_nr)/dt).real)) tfinal = max(tfinal, t_emp) # discrete integrators m_int = (p.real - 1 < sqrt_eps) & (np.abs(p.imag) < sqrt_eps) p_int, p = p[m_int], p[~m_int] # pure oscillatory modes m_w = (np.abs(np.abs(p) - 1) < sqrt_eps) p_w, p = p[m_w], p[~m_w] if p_w.size > 0: t_emp = total_cycles * 2 * np.pi / np.abs(np.log(p_w)/dt).min() tfinal = max(tfinal, t_emp) if p.size > 0: t_emp = log_decay_percent / np.abs((np.log(p)/dt).real).min() tfinal = max(tfinal, t_emp) if p_int.size > 0: tfinal = tfinal * 5 # Make tfinal an integer multiple of dt num_samples = tfinal // dt if num_samples > max_points_z: tfinal = dt * max_points_z else: tfinal = dt * num_samples return tfinal, dt # Improve conditioning via balancing and zeroing tiny entries # See <w,v> for [[1,2,0], [9,1,0.01], [1,2,10*np.pi]] before/after balance b, (sca, perm) = matrix_balance(sys.a, separate=True) p, l, r = eig(b, left=True, right=True) # Reciprocal of inner product <w,v> for each λ, (bound the ~infs by 1e12) # G = Transfer([1], [1,0,1]) gives zero sensitivity (bound by 1e-12) eig_sens = reciprocal(maximum(1e-12, einsum('ij,ij->j', l, r).real)) eig_sens = minimum(1e12, eig_sens) # Tolerances p[np.abs(p) < np.spacing(eig_sens * norm(b, 1))] = 0. # Incorporate balancing to outer factors l[perm, :] *= reciprocal(sca)[:, None] r[perm, :] *= sca[:, None] w, v = sys.c @ r, l.T.conj() @ sys.b origin = False # Computing the "size" of the response of each simple mode wn = np.abs(p) if np.any(wn == 0.): origin = True dc = zeros_like(p, dtype=float) # well-conditioned nonzero poles, np.abs just in case ok = np.abs(eig_sens) <= 1/sqrt_eps # the averaged t→∞ response of each simple λ on each i/o channel # See, A = [[-1, k], [0, -2]], response sizes are k-dependent (that is # R/L eigenvector dependent) dc[ok] = norm(v[ok, :], axis=1)*norm(w[:, ok], axis=0)*eig_sens[ok] dc[wn != 0.] /= wn[wn != 0] if is_step else 1. dc[wn == 0.] = 0. # double the oscillating mode magnitude for the conjugate dc[p.imag != 0.] *= 2 # Now get rid of noncontributing integrators and simple modes if any relevance = (dc > 0.1*dc.max()) | ~ok psub = p[relevance] wnsub = wn[relevance] tfinal, dt = [], [] ints = wnsub == 0. iw = (psub.imag != 0.) & (np.abs(psub.real) <= sqrt_eps) # Pure imaginary? if np.any(iw): tfinal += (total_cycles * 2 * np.pi / wnsub[iw]).tolist() dt += (2 * np.pi / pts_per_cycle / wnsub[iw]).tolist() # The rest ~ts = log(%ss value) / exp(Re(λ)t) texp_mode = log_decay_percent / np.abs(psub[~iw & ~ints].real) tfinal += texp_mode.tolist() dt += minimum(texp_mode / 50, (2 * np.pi / pts_per_cycle / wnsub[~iw & ~ints])).tolist() # All integrators? if len(tfinal) == 0: return default_tfinal*5, default_tfinal*5/min_points tfinal = np.max(tfinal)*(5 if origin else 1) dt = np.min(dt) dt = tfinal / max_points if tfinal // dt > max_points else dt tfinal = dt * min_points if tfinal // dt < min_points else tfinal return tfinal, dt def _check_u_and_t_for_simulation(m, dt, u, t, isdiscrete): """ Helper function to validate the input arguments for simulate_linear_system """ # Discrete models can omit t array, make one here for convenience if t is None: if not isdiscrete: raise ValueError('Continuous time models need an evenly spaced ' 'time sequence from which the sampling period ' 'will be obtained.') else: u_samples = len(u) t = np.linspace(0, (u_samples-1)*dt, num=u_samples) else: t = np.asarray(t, dtype=float).squeeze() if t.ndim != 1: raise ValueError('Time array needs to be a 1D array.') t_diff = np.diff(t) if not np.allclose(t_diff, t_diff[0]) or not t_diff[0] > 0.: raise ValueError('Time array should be equally spaced and ' 'increasing.') if isdiscrete and not np.isclose(dt, t_diff[0]): raise ValueError('Time array increment {} is not equal to the' ' model sampling period {}.'.format(t_diff[0], dt)) if u.size < 1: raise ValueError('The input array should at least have one point.') # First dimension is always # of samples if len(u) != len(t): raise ValueError('The input and time arrays should have the same' ' length. t: {} vs. u: {}'.format(t.shape, u.shape)) if u.shape[1] != m: raise ValueError('Number of input columns ({}) don\'t match the number' ' of inputs ({}) of the given model.' ''.format(u.shape[1], m)) return t def _check_custom_time_input(t): """ Helper function for simple and rather expensive checks for sanity """ t = atleast_1d(t) if t.ndim > 1: t = squeeze(t) if t.ndim > 1: raise ValueError('Time array should be a 1D array but has ' '{} nontrivial dimensions'.format(t.ndim)) if t.size < 2: raise ValueError('Time array should have at least two data points.') dt = t[1] - t[0] if dt <= 0.: raise ValueError('The time increment dt cannot be negative; ' 'Difference of the first two samples t1 - t0 = {}' ''.format(dt)) # np.diff is somewhat slower than the diff of the views if not np.allclose(t[1:] - t[:-1], dt): raise ValueError('Supplied time array is not numerically equally ' 'spaced (checked via numpy.allclose).') return t, dt
XLRDParser
Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) # MASKED: XLRDParser function (lines 96-148) def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0 def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory
96
148
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0 def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
search
Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure!
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False # MASKED: search function (lines 241-257) def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0 def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results
241
257
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0 def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
addCol
Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname).
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) # MASKED: addCol function (lines 308-320) def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0
308
320
import os ''' TableData deals with data that comes from MS Excel, csv, xml. More precisely, it expects a single table which has headings in the first row. It converts between these formats and usually keeps information on a round trip between those formats identical. TableData also allows for simple transformations, like dropping a column. CONVENTIONS *cid is column no or column id *rid is row no or row id *cell refers the content of a cell, a cell is represented by cid|rid, as two integers or (not sure yet) a tuple or a list *cname is the column name (in row 0) NOTE * (x|y) not rows x cols * Currently internal cells do have a type, which may be flattened to str if output is type agnostic. * cid and rid begins with 0, so first cell is 0|0, but ncols and nrows start at 1. Strangely enough, sometimes that is convenient. * interface prefers cname over cid LIMITATIONS Data is stored in memory (in a two dimensional list of lists), so max. size depends on available memory (ram). WHAT NOT TO DO I will NOT allow conversion INTO Excel xsl format, only reading from it. I will not abstract this thing too far. I write it for my current Excel version and the csv flavor that I need (e.g. csv is escaped only for values that contain commas). I don't need multiple Excel sheets, formatting in Excel, lots of types in Excel. UNICODE I am going for UTF-8 encoding, but not sure I have it everywhere yet. xlrd is internally in UTF16LE, I believe. Roundtrip Exceptions *date XML Format made by TableData is <tdx> <row> <cnameA>cell value</cnameA> <cnameB>cell value</cnameB> ... </row> </tdx> The first row will have all columns, even empty ones. The other rows usually omit empty elements with empty values. ''' class TableData: def verbose (self, msg): if self._verbose: print (msg) def _uniqueColumns (self): ''' raise exception if column names (cnames) are not unique ''' if len(set(self.table[0])) != len(self.table[0]): raise Exception('Column names not unique') def __init__ (self, ingester, infile, verbose=None): self._verbose=verbose if ingester == 'xml': self.XMLParser(infile) elif ingester == 'xls': self.XLRDParser(infile) elif ingester == 'csv': self.CSVParser(infile) elif ingester == 'json': self.JSONParser(infile) #todo: modern excel else: raise Exception ('Ingester %s not found' % ingester) self._uniqueColumns() # # INGESTERS (xml, csv) # def load_table (path, verbose=None): ''' File extension aware ingester td=TableData.load_table(path) This is an alternative to _init_. Is this pythonic enough? ''' ext=os.path.splitext(path)[1][1:] return TableData (ext, path,verbose) def XLRDParser (self, infile): ''' Parses old excel file into tableData object. Only first sheet. Dont use this directly, use td=TableData('xsl', infile) td=TableData.load=table(infile) instead xlrd uses UTF16. What comes out of here? TO DO: 1. better tests for -Unicode issues not tested -Excel data fields change appearance 2. conversion/transformation stuff ''' import xlrd import xlrd.sheet from xlrd.sheet import ctype_text self.table=[] # will hold sheet in memory as list of list self.verbose ('xlrd infile %s' % infile) #if not os.path.isfile(infile): # raise Exception ('Input file not found') wb = xlrd.open_workbook(filename=infile, on_demand=True) sheet= wb.sheet_by_index(0) #I'm assuming here that first row consist only of text cells? #start at r=0 because we want to preserve the columns for r in range(0, sheet.nrows): #no row=[] for c in range(sheet.ncols): cell = sheet.cell(r, c) cellTypeStr = ctype_text.get(cell.ctype, 'unknown type') val=cell.value #convert cell types -> dates look changed, but may not be (seconds since epoch)! if cellTypeStr == "number": val=int(float(val)) elif cellTypeStr == "xldate": val=xlrd.xldate.xldate_as_datetime(val, 0) #Warn if comma -> to check if escaped correctly -> quoting works #if ',' in str(val): # self.verbose ("%i/%i contains a comma" % (c,r) ) row.append(val) self.table.append(row) wb.unload_sheet(0) #unload xlrd sheet to save memory def CSVParser (self,infile): import csv self.table=[] # will hold sheet in memory as list of list self.verbose ('csvParser: ' + str(infile)) with open(infile, mode='r', newline='') as csvfile: incsv = csv.reader(csvfile, dialect='excel') for row in incsv: self.table.append(row) #self.verbose (str(row)) def XMLParser (self,infile): #It is practically impossible to reconstruct the full list of columns from xml file #if xmlWriter leaves out empty elements. Instead, I write them at least for first row. self.table=[] # will hold sheet in memory as list of list; overwrite self.verbose ('xml infile %s' % infile) import xml.etree.ElementTree as ET tree = ET.parse(infile) for row in tree.iter("row"): c=0 cnames=[] col=[] for e in row.iter(): if e.tag !='row': #self.verbose ('%s %s' % (e.tag, e.text)) if len(self.table) == 0: #need to create 2 rows from first row in xml cnames.append(e.tag) col.append(e.text) if len(self.table) == 0: self.table.append(cnames) self.table.append(col) #self.verbose (self.table) def JSONParser (self, infile): self.table=[] # will hold sheet in memory as list of list; overwrite import json self.verbose ('json infile %s' % infile) json_data = open(infile, 'r').read() self.table = json.loads(json_data) ## ## read table data, but NO manipulations ## def ncols(self): ''' Returns integer with number of columns in table data ''' return len(self.table[0]) def nrows (self): ''' Returns integer with number of rows in table data ''' return len(self.table) def cell (self, col,row): ''' Return a cell for col,row. td.cell(col,row) Throws exception if col or row are not integer or out of range. What happens on empty cell? I stick to x|y format, although row|col might be more pythonic. Empty cell is '' not None. ''' try: return self.table[row][col] except: self.verbose ('%i|%i doesnt exist' % (col, row)) exit (1) def cindex (self,needle): ''' Returns the column index (c) for column name 'needle'. Throws 'not in list' if 'needle' is not a column name (cname). ''' return self.table[0].index(needle) def colExists (self, cname): try: self.table[0].index(cname) return True except: return False def search (self, needle): ''' Returns list of cells [cid,rid] that contain the needle. r=td.search(needle) # (1,1) tuples, lists? I am not quite sure! ''' results=[] for rid in range(0, self.nrows()): for cid in range(0, self.ncols()): cell=self.cell(cid, rid) #self.verbose ('ce:'+str(cell)) if str(needle) in str(cell): #self.verbose ("%i/%i:%s->%s" % (cid, rid, cell, needle)) results.append ((cid,rid)) return results def search_col (self, cname, needle): ''' Returns list/set of rows that contain the needle for the given col. td.search(cname, needle) ''' results=() c=cindex(cname) for rid in range(0, self.nrows()): if needle in self.cell(c,rid): results.append(rid) def show (self): ''' print representation of table Really print? Why not. ''' for row in self.table: print (row) print ('Table size is %i x %i (cols x rows)' % (self.ncols(), self.nrows())) ## ## SIMPLE UNCONDITIONAL TRANSFORMATIONS ## def delRow (self, r): ''' Drop a row by number. Need to remake the index to cover the hole. ''' #r always means rid self.table.pop(r) #print ('row %i deleted' % r) def delCol (self, cname): ''' Drop a column by cname (Not tested.) ''' c=self.cindex (cname) for r in range(0, self.nrows()): self.table[r].pop(c) def addCol (self,name): ''' Add a new column called name at the end of the row. Cells with be empty. Returns the cid of the new column, same as cindex(cname). ''' #update self.table[0].append(name) self._uniqueColumns() for rid in range(1, self.nrows()): self.table[rid].append('') # append empty cells for all rows return len(self.table[0])-1 # len starts counting at 1, but I want 0 def clean_whitespace (self,cname): cid=self.cindex(cname) for rid in range(1, td.nrows()): td.table[rid][cid]=td.table[rid][cid].replace('\r\n', ' ').replace(' ', ' ') ## ## MORE COMPLEX MANIPULATION ## def delCellAIfColBEq (self,cnameA, cnameB, needle): ''' empty cell in column cnameA if value in column cnameB equals needle in every row untested ''' colA=self.cindex(cnameA) colB=self.cindex(cnameB) for rid in range(1, self.nrows()): if self.table[rid][colB] == needle: self.verbose ('delCellAifColBEq A:%s, B:%s, needle %s' % (cnameA, cnameB, needle)) selt.table[rid][colA]='' def delCellAIfColBContains (self,col_a, col_b, needle): pass def delRowIfColContains (self, cname, needle): ''' Delete row if column equals the value 'needle' Should we use cname or c (colId)? ''' #cant loop thru rows and delete one during the loop col=self.cindex(cname) #it appears that excel and xlrd start with 1 #todo: not sure why I have shave off one here! r=self.nrows()-1 while r> 1: #print ('AA%i/%i: ' % (r,col)) cell=self.cell (r, col) if needle in str(cell): #print ('DD:%i/%s:%s' % (r, cname, cell)) #print ('delRowIfColEq: needle %s found in row %i'% (needle, r)) self.delRow(r) r -=1 def delRowIfColEq (self,col, needle): pass def renameCol (self, cnameOld, cnameNew): ''' renames column cnameOld into cnameNew ''' c=self.cindex(cnameOld) self.table[0][c]=cnameNew def default_per_col (cname, default_value): ''' Default Value: if cell is empty replace with default value self.default_per_col ('status', 'filled') ''' cid=td.cindex(cname) for rid in range(1, td.nrows()): if not td.cell (cid,rid): self.table[rid][cid]=default_value ### ### converting to outside world ### def _outTest(self,out): if os.path.exists(out): self.verbose('Output exists already, will be overwritten: %s' %out) def write (self, out): ''' write to file with extension-awareness ''' ext=os.path.splitext(out)[1][1:].lower() if (ext == 'xml'): self.writeXML (out) elif (ext == 'csv'): self.writeCSV (out) elif (ext == 'json'): self.writeJSON (out) else: print ('Format %s not recognized' % ext) def writeCSV (self,outfile): ''' writes data in tableData object to outfile in csv format Values with commas are quoted. ''' import csv self._outTest(outfile) with open(outfile, mode='w', newline='', encoding='utf-8') as csvfile: out = csv.writer(csvfile, dialect='excel') for r in range(0, self.nrows()): row=self.table[r] out.writerow(row) self.verbose ('csv written to %s' % outfile) def writeXML (self,out): ''' writes table data to file out in xml format ''' import xml.etree.ElementTree as ET from xml.sax.saxutils import escape root = ET.Element("tdx") #table data xml self._outTest(out) def _indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #don't need cnames here, so start at 1, but then write all columns in first row for r in range(1, self.nrows()): doc = ET.SubElement(root, "row") for c in range(0, self.ncols()): cell = self.cell(c,r) #print ('x,y: %i/%i: %s->%s ' % (r, c, self.columns[c], cell)) #for round trip I need empty cells, at least in the first row if cell or r == 1: ET.SubElement(doc, self.table[0][c]).text=escape(str(cell)) tree = ET.ElementTree(root) _indent(root) tree.write(out, encoding='UTF-8', xml_declaration=True) self.verbose ('xml written to %s' % out) def writeJSON (self, out): ''' Writes table data in json to file out JSON doesn't have date type, hence default=str ''' import json self._outTest(out) f = open(out, 'w') with f as outfile: json.dump(self.table, outfile, default=str) self.verbose ('json written to %s' % out) if __name__ == '__main__': pass
get_markdown_text_for_pub
Gets a dictionary `pub`, returns a markdown formatted text. An example pub: {'authors': 'McLellan, S. L., and Eren, A. M.', 'doi': '10.1016/j.tim.2014.08.002', 'issue': '22(12), 697-706', 'title': 'Discovering new indicators of fecal pollution.', 'journal': 'Trends Microbiol', 'year': 2014}
# -*- coding: utf-8 -*- # an ugly hack to convert some stuff into other stuff... # EDIT THESE ##################################################################### names_to_highlight = ['Eren AM', 'Delmont TO', 'Esen ÖC', 'Lee STM', 'Shaiber A', 'Kiefl E', 'Cui S', 'Watson AR', 'Lolans K'] journal_name_fixes = [('The ISME journal', 'ISME J'), ('Proceedings of the National Academy of Sciences of the United States of America', 'Proc Natl Acad Sci U S A'), ('Proceedings of the National Academy of Sciences', 'Proc Natl Acad Sci U S A'), ('Frontiers in Microbiology', 'Front Microbiol')] keep_pubs_after_year = 2009 ################################################################################## import os import sys from datetime import datetime try: import anvio.utils as u from anvio.errors import ConfigError except: sys.stderr.write("This program requires anvi'o to be installed :/\n") sys.exit(-1) class Publications: def __init__(self, pubs_file_path='pubs.txt', pubs_info_file_path='pubs_info.txt'): """Takes an EndNote library exported a TXT file (`pubs_file_path`), and an optional\ TAB-delimited info file path with DOI identifiers (`pubs_info_file_path`), and\ generates some Markdown formatted output. Here is an info line from the EndNote: Winterberg, K. M., and Reznikoff, W. S. (2007). "Screening transposon mutant libraries using full-genome oligonucleotide microarrays." Methods Enzymol, 421, 110-25. Absolute matching to this format is required. Expected headers in the TAB-delimited pubs info file are 'doi', 'highlights',\ and 'featured_image'. - doi: The DOI of the pub matching to a pubs file path entry. - highlights: Brief bullet points about the work. Each pont must be separated\ from the rest with a ';' character. HTML tags are OK. - featured_image: A URL to an image. If things are not working, feel free to write to meren at uchicago.edu """ self.info = {} self.pubs_dict = {} self.journals_list = [] self.authors_list = [] self.recent_authors_list = [] self.author_links = {} self.pubs_file_path = pubs_file_path self.pubs_info_file_path = pubs_info_file_path def get_author_highlights(self, pub): authors_str = [] for author in pub['authors']: if author in pub['co_first_authors']: author_h = author + '<sup>☯</sup>' elif author in pub['co_senior_authors']: author_h = author + '<sup>‡</sup>' else: author_h = author if author in names_to_highlight: authors_str.append('<span class="pub-member-author">%s</span>' % (author_h)) else: authors_str.append(author_h) return ', '.join(authors_str) def parse_pubs_txt(self): if os.path.exists(self.pubs_info_file_path): self.info = u.get_TAB_delimited_file_as_dictionary(self.pubs_info_file_path) pubs_header = u.get_columns_of_TAB_delim_file(self.pubs_file_path, include_first_column=True) headers_expected = ['Authors', 'Title', 'Publication', 'Volume', 'Number', 'Pages', 'Year', 'doi'] missing_headers = [h for h in pubs_header if h not in headers_expected] if len(missing_headers): raise ConfigError("Sorry, the pubs.txt seems to be missing some of the headers that are mandatory. Each of \ the columns in the following list must be present in this file: %s (hint: yours do not have\ the following: %s)." % (', '.join(headers_expected), ', '.join(missing_headers))) self.pubs_txt = u.get_TAB_delimited_file_as_dictionary(self.pubs_file_path, indexing_field=pubs_header.index('doi')) for doi in self.pubs_txt: authors = [] co_first_authors = [] co_senior_authors = [] p = self.pubs_txt[doi] for author in [_.strip() for _ in p['Authors'].split(';')]: if not len(author): continue author_last_name, author_first_name_raw = [_.strip() for _ in author.split(',')] author_first_name = ''.join([n[0] for n in author_first_name_raw.split()]) author_final_name = '%s %s' % (author_last_name, author_first_name) if author_first_name_raw.endswith('*'): co_first_authors.append(author_final_name) elif author_first_name_raw.endswith('+'): co_senior_authors.append(author_final_name) authors.append(author_final_name) if p['Number']: issue = '%s(%s):%s' % (p['Volume'], p['Number'], p['Pages']) else: issue = '%s:%s' % (p['Volume'], p['Pages']) year = p['Year'].strip() pub_entry = {'authors': authors, 'title': p['Title'], 'journal': p['Publication'], 'issue': issue, 'doi': doi, 'year': year, 'co_first_authors': co_first_authors, 'co_senior_authors': co_senior_authors} if year not in self.pubs_dict: self.pubs_dict[year] = [pub_entry] else: self.pubs_dict[year].append(pub_entry) # MASKED: get_markdown_text_for_pub function (lines 138-191) def store_markdown_output_for_pubs(self, output_file_path): # years = ''.join(['<a href="#%s"><span class="category-item">%s <small>(%d)</small></span></a>' % (y, y, len(self.pubs_dict[y])) for y in sorted(list(self.pubs_dict.keys()), reverse=True)]) years = ''.join(['<a href="#%s"><span class="category-item">%s</span></a>' % (y, y) for y in sorted(list(self.pubs_dict.keys()), reverse=True)]) output_file = open(output_file_path, 'w') W = lambda s: output_file.write(s + '\n') W('---') W('layout: publications') W('modified: %s' % datetime.today().strftime('%Y-%m-%d')) W('comments: false') W('---\n') W('''<script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script>\n''') W('''<script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>\n''') W('<div class="category-box">\n%s\n</div>\n' % years) W('{:.notice}\n') W("This page shows publications that are most reflective of our interests. For a complete list, please see <a href='https://scholar.google.com/citations?user=GtLLuxoAAAAJ&view_op=list_works&sortby=pubdate' target='_blank'>Meren's Google Scholar page</a>.\n") for year in sorted(list(self.pubs_dict.keys()), reverse=True): W('<a name="%s">&nbsp;</a>' % year) W('<h1>%s</h1>\n' % year) for pub in self.pubs_dict[year]: W(self.get_markdown_text_for_pub(pub)) W('') if __name__ == '__main__': pubs = Publications() try: pubs.parse_pubs_txt() pubs.store_markdown_output_for_pubs('publications/index.md') except ConfigError as e: print(e) sys.exit(-1)
def get_markdown_text_for_pub(self, pub): """Gets a dictionary `pub`, returns a markdown formatted text. An example pub: {'authors': 'McLellan, S. L., and Eren, A. M.', 'doi': '10.1016/j.tim.2014.08.002', 'issue': '22(12), 697-706', 'title': 'Discovering new indicators of fecal pollution.', 'journal': 'Trends Microbiol', 'year': 2014} """ pub_md = [] A = lambda s: pub_md.append(s) A('<div class="pub">') A('''<div class='altmetric-embed' data-badge-type='donut' data-doi="%s"></div>''' % pub['doi']) A('''<div class="__dimensions_badge_embed__" data-doi="%s" data-hide-zero-citations="true" data-legend="hover-bottom" data-style="small_circle"></div>''' % pub['doi']) if pub['doi']: A(' <h3><a href="%s" target="_new">%s</a></h3>' % (' https://doi.org/%s' % (pub['doi']), pub['title'])) else: A(' <h3><a href="http://scholar.google.com/scholar?hl=en&q=%s" target="_new">%s</a></h3>' % ('http://scholar.google.com/scholar?hl=en&q=%s' % (pub['title'].replace(' ', '+')), pub['title'])) A(' <span class="pub-authors">%s</span>' % self.get_author_highlights(pub)) if pub['co_first_authors'] and not pub['co_senior_authors']: A(' <span class="pub-co-first-authors"><sup>☯</sup>Co-first authors</span>') elif pub['co_first_authors'] and pub['co_senior_authors']: A(' <span class="pub-co-first-authors"><sup>☯</sup>Co-first authors; <sup>‡</sup>Co-senior authors</span>') elif pub['co_senior_authors'] and not pub['co_first_authors']: A(' <span class="pub-co-first-authors"><sup>‡</sup>Co-senior authors</span>') if pub['doi'] in self.info: info = self.info[pub['doi']] A(' <div class="%s">' % ('pub-info' if info['featured_image'] else 'pub-info-no-image')) if info['featured_image']: A(' <div class="pub-featured-image">') A(' <a href="%s"><img src="%s" style="max-width: 100px; max-height: 80px; width: auto; border: none; height: auto; margin: 0 auto; display: block; transform: translateY(15%%);"/></a>' % (info['featured_image'], info['featured_image'])) A(' </div>') highlights = info['highlights'].split(';') if info['highlights'] else None if highlights: A(' <div class="%s">' % ('pub-highlights' if info['featured_image'] else 'pub-highlights-no-image')) A(' %s' % '<br>'.join(['<span style="display: inline-block; padding-bottom: 5px;">- %s</span>' % h for h in highlights])) A(' </div>') A(' </div>') A(' <span class="pub-journal"><b>%s</b>, %s.</span>' % (pub['journal'], pub['issue'])) A('</div>\n') return '\n'.join(pub_md)
138
191
# -*- coding: utf-8 -*- # an ugly hack to convert some stuff into other stuff... # EDIT THESE ##################################################################### names_to_highlight = ['Eren AM', 'Delmont TO', 'Esen ÖC', 'Lee STM', 'Shaiber A', 'Kiefl E', 'Cui S', 'Watson AR', 'Lolans K'] journal_name_fixes = [('The ISME journal', 'ISME J'), ('Proceedings of the National Academy of Sciences of the United States of America', 'Proc Natl Acad Sci U S A'), ('Proceedings of the National Academy of Sciences', 'Proc Natl Acad Sci U S A'), ('Frontiers in Microbiology', 'Front Microbiol')] keep_pubs_after_year = 2009 ################################################################################## import os import sys from datetime import datetime try: import anvio.utils as u from anvio.errors import ConfigError except: sys.stderr.write("This program requires anvi'o to be installed :/\n") sys.exit(-1) class Publications: def __init__(self, pubs_file_path='pubs.txt', pubs_info_file_path='pubs_info.txt'): """Takes an EndNote library exported a TXT file (`pubs_file_path`), and an optional\ TAB-delimited info file path with DOI identifiers (`pubs_info_file_path`), and\ generates some Markdown formatted output. Here is an info line from the EndNote: Winterberg, K. M., and Reznikoff, W. S. (2007). "Screening transposon mutant libraries using full-genome oligonucleotide microarrays." Methods Enzymol, 421, 110-25. Absolute matching to this format is required. Expected headers in the TAB-delimited pubs info file are 'doi', 'highlights',\ and 'featured_image'. - doi: The DOI of the pub matching to a pubs file path entry. - highlights: Brief bullet points about the work. Each pont must be separated\ from the rest with a ';' character. HTML tags are OK. - featured_image: A URL to an image. If things are not working, feel free to write to meren at uchicago.edu """ self.info = {} self.pubs_dict = {} self.journals_list = [] self.authors_list = [] self.recent_authors_list = [] self.author_links = {} self.pubs_file_path = pubs_file_path self.pubs_info_file_path = pubs_info_file_path def get_author_highlights(self, pub): authors_str = [] for author in pub['authors']: if author in pub['co_first_authors']: author_h = author + '<sup>☯</sup>' elif author in pub['co_senior_authors']: author_h = author + '<sup>‡</sup>' else: author_h = author if author in names_to_highlight: authors_str.append('<span class="pub-member-author">%s</span>' % (author_h)) else: authors_str.append(author_h) return ', '.join(authors_str) def parse_pubs_txt(self): if os.path.exists(self.pubs_info_file_path): self.info = u.get_TAB_delimited_file_as_dictionary(self.pubs_info_file_path) pubs_header = u.get_columns_of_TAB_delim_file(self.pubs_file_path, include_first_column=True) headers_expected = ['Authors', 'Title', 'Publication', 'Volume', 'Number', 'Pages', 'Year', 'doi'] missing_headers = [h for h in pubs_header if h not in headers_expected] if len(missing_headers): raise ConfigError("Sorry, the pubs.txt seems to be missing some of the headers that are mandatory. Each of \ the columns in the following list must be present in this file: %s (hint: yours do not have\ the following: %s)." % (', '.join(headers_expected), ', '.join(missing_headers))) self.pubs_txt = u.get_TAB_delimited_file_as_dictionary(self.pubs_file_path, indexing_field=pubs_header.index('doi')) for doi in self.pubs_txt: authors = [] co_first_authors = [] co_senior_authors = [] p = self.pubs_txt[doi] for author in [_.strip() for _ in p['Authors'].split(';')]: if not len(author): continue author_last_name, author_first_name_raw = [_.strip() for _ in author.split(',')] author_first_name = ''.join([n[0] for n in author_first_name_raw.split()]) author_final_name = '%s %s' % (author_last_name, author_first_name) if author_first_name_raw.endswith('*'): co_first_authors.append(author_final_name) elif author_first_name_raw.endswith('+'): co_senior_authors.append(author_final_name) authors.append(author_final_name) if p['Number']: issue = '%s(%s):%s' % (p['Volume'], p['Number'], p['Pages']) else: issue = '%s:%s' % (p['Volume'], p['Pages']) year = p['Year'].strip() pub_entry = {'authors': authors, 'title': p['Title'], 'journal': p['Publication'], 'issue': issue, 'doi': doi, 'year': year, 'co_first_authors': co_first_authors, 'co_senior_authors': co_senior_authors} if year not in self.pubs_dict: self.pubs_dict[year] = [pub_entry] else: self.pubs_dict[year].append(pub_entry) def get_markdown_text_for_pub(self, pub): """Gets a dictionary `pub`, returns a markdown formatted text. An example pub: {'authors': 'McLellan, S. L., and Eren, A. M.', 'doi': '10.1016/j.tim.2014.08.002', 'issue': '22(12), 697-706', 'title': 'Discovering new indicators of fecal pollution.', 'journal': 'Trends Microbiol', 'year': 2014} """ pub_md = [] A = lambda s: pub_md.append(s) A('<div class="pub">') A('''<div class='altmetric-embed' data-badge-type='donut' data-doi="%s"></div>''' % pub['doi']) A('''<div class="__dimensions_badge_embed__" data-doi="%s" data-hide-zero-citations="true" data-legend="hover-bottom" data-style="small_circle"></div>''' % pub['doi']) if pub['doi']: A(' <h3><a href="%s" target="_new">%s</a></h3>' % (' https://doi.org/%s' % (pub['doi']), pub['title'])) else: A(' <h3><a href="http://scholar.google.com/scholar?hl=en&q=%s" target="_new">%s</a></h3>' % ('http://scholar.google.com/scholar?hl=en&q=%s' % (pub['title'].replace(' ', '+')), pub['title'])) A(' <span class="pub-authors">%s</span>' % self.get_author_highlights(pub)) if pub['co_first_authors'] and not pub['co_senior_authors']: A(' <span class="pub-co-first-authors"><sup>☯</sup>Co-first authors</span>') elif pub['co_first_authors'] and pub['co_senior_authors']: A(' <span class="pub-co-first-authors"><sup>☯</sup>Co-first authors; <sup>‡</sup>Co-senior authors</span>') elif pub['co_senior_authors'] and not pub['co_first_authors']: A(' <span class="pub-co-first-authors"><sup>‡</sup>Co-senior authors</span>') if pub['doi'] in self.info: info = self.info[pub['doi']] A(' <div class="%s">' % ('pub-info' if info['featured_image'] else 'pub-info-no-image')) if info['featured_image']: A(' <div class="pub-featured-image">') A(' <a href="%s"><img src="%s" style="max-width: 100px; max-height: 80px; width: auto; border: none; height: auto; margin: 0 auto; display: block; transform: translateY(15%%);"/></a>' % (info['featured_image'], info['featured_image'])) A(' </div>') highlights = info['highlights'].split(';') if info['highlights'] else None if highlights: A(' <div class="%s">' % ('pub-highlights' if info['featured_image'] else 'pub-highlights-no-image')) A(' %s' % '<br>'.join(['<span style="display: inline-block; padding-bottom: 5px;">- %s</span>' % h for h in highlights])) A(' </div>') A(' </div>') A(' <span class="pub-journal"><b>%s</b>, %s.</span>' % (pub['journal'], pub['issue'])) A('</div>\n') return '\n'.join(pub_md) def store_markdown_output_for_pubs(self, output_file_path): # years = ''.join(['<a href="#%s"><span class="category-item">%s <small>(%d)</small></span></a>' % (y, y, len(self.pubs_dict[y])) for y in sorted(list(self.pubs_dict.keys()), reverse=True)]) years = ''.join(['<a href="#%s"><span class="category-item">%s</span></a>' % (y, y) for y in sorted(list(self.pubs_dict.keys()), reverse=True)]) output_file = open(output_file_path, 'w') W = lambda s: output_file.write(s + '\n') W('---') W('layout: publications') W('modified: %s' % datetime.today().strftime('%Y-%m-%d')) W('comments: false') W('---\n') W('''<script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script>\n''') W('''<script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>\n''') W('<div class="category-box">\n%s\n</div>\n' % years) W('{:.notice}\n') W("This page shows publications that are most reflective of our interests. For a complete list, please see <a href='https://scholar.google.com/citations?user=GtLLuxoAAAAJ&view_op=list_works&sortby=pubdate' target='_blank'>Meren's Google Scholar page</a>.\n") for year in sorted(list(self.pubs_dict.keys()), reverse=True): W('<a name="%s">&nbsp;</a>' % year) W('<h1>%s</h1>\n' % year) for pub in self.pubs_dict[year]: W(self.get_markdown_text_for_pub(pub)) W('') if __name__ == '__main__': pubs = Publications() try: pubs.parse_pubs_txt() pubs.store_markdown_output_for_pubs('publications/index.md') except ConfigError as e: print(e) sys.exit(-1)
build_format_file
Creates the non-xml SQL format file. Puts 4 spaces between each section. See https://docs.microsoft.com/en-us/sql/relational-databases/import-export/non-xml-format-files-sql-server for the specification of the file. # TODO add params/options to control: # - the char type (not just SQLCHAR), Parameters ---------- df : pandas DataFrame delimiter : a valid delimiter character db_cols_order : dict, optional Dict of {database column name -> ordinal position of the column}. Maps existing columns in the database to their ordinal position, i.e. the order of the columns in the db table. 1-indexed, so the first columns is 1, second is 2, etc. Only needed if the order of the columns in the dataframe doesn't match the database. Returns ------- A string containing the format file
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 23:07:15 2019 @author: ydima """ import logging import os from pathlib import Path import random import shlex import string from subprocess import PIPE, Popen import tempfile from typing import Dict, List, Optional, Union import pandas as pd from .constants import ( DIRECTIONS, IN, IS_WIN32, NEWLINE, OUT, QUERY, QUERYOUT, SQLCHAR, TABLE, VIEW, BCPandasException, BCPandasValueError, read_data_settings, sql_collation, ) logger = logging.getLogger(__name__) def bcp( sql_item: str, direction: str, flat_file: str, creds, sql_type: str = "table", schema: str = "dbo", format_file_path: str = None, batch_size: int = None, col_delimiter: str = None, row_terminator: str = None, bcp_path: Union[str, Path] = None, error_file_path: str = None ): """ See https://docs.microsoft.com/en-us/sql/tools/bcp-utility """ combos = {TABLE: [IN, OUT], QUERY: [QUERYOUT], VIEW: [IN, OUT]} direc = direction.lower() # validation if direc not in DIRECTIONS: raise BCPandasValueError( f"Param 'direction' must be one of {DIRECTIONS}, you passed {direc}" ) if direc not in combos[sql_type]: raise BCPandasValueError( f"Wrong combo of direction and SQL object, you passed {sql_type} and {direc} ." ) # auth if creds.with_krb_auth: auth = ["-T"] else: auth = ["-U", creds.username, "-P", creds.password] # prepare SQL item string if sql_type == QUERY: # remove newlines for queries, otherwise messes up BCP sql_item_string = quote_this("".join(sql_item.splitlines())) else: sql_item_string = f"{schema}.{sql_item}" # construct BCP command bcp_command = [ "bcp" if bcp_path is None else quote_this(str(bcp_path)), sql_item_string, direc, flat_file, "-S", creds.server, "-d", creds.database, "-q", # Executes the SET QUOTED_IDENTIFIERS ON statement, needed for Azure SQL DW "-e", error_file_path ] + auth if batch_size: bcp_command += ["-b", str(batch_size)] # formats if direc == IN: bcp_command += ["-f", format_file_path] elif direc in (OUT, QUERYOUT): bcp_command += [ "-c", # marking as character data, not Unicode (maybe make as param?) quote_this( f"-t{read_data_settings['delimiter'] if col_delimiter is None else col_delimiter}" ), quote_this( f"-r{read_data_settings['newline'] if row_terminator is None else row_terminator}" ), ] # execute bcp_command_log = [c if c != creds.password else "[REDACTED]" for c in bcp_command] logger.info(f"Executing BCP command now... \nBCP command is: {bcp_command_log}") ret_code = run_cmd(bcp_command) if ret_code: raise BCPandasException(f"Bcp command failed with exit code {ret_code}") def get_temp_file() -> str: """ Returns full path to a temporary file without creating it. """ tmp_dir = tempfile.gettempdir() file_path = os.path.join( tmp_dir, "".join(random.choices(string.ascii_letters + string.digits, k=21)) ) return file_path def _escape(input_string: str) -> str: """ Adopted from https://github.com/titan550/bcpy/blob/master/bcpy/format_file_builder.py#L25 """ return ( input_string.replace('"', '\\"') .replace("'", "\\'") .replace("\r", "\\r") .replace("\n", "\\n") ) # MASKED: build_format_file function (lines 145-193) def quote_this(this: str, skip: bool = False) -> str: """ OS-safe way to quote a string. Returns the string with quotes around it. On Windows ~~it's double quotes~~ we skip quoting, on Linux it's single quotes. """ if isinstance(this, str): if IS_WIN32: return this # TODO maybe change? else: return shlex.quote(this) else: return this def run_cmd(cmd: List[str]) -> int: """ Runs the given command. Prints STDOUT in real time, prints STDERR when command is complete, and logs both STDOUT and STDERR. Paramters --------- cmd : list of str The command to run, to be submitted to `subprocess.Popen()` Returns ------- The exit code of the command """ if IS_WIN32: with_shell = False else: with_shell = True cmd = " ".join(cmd) # type: ignore proc = Popen(cmd, stdout=PIPE, stderr=PIPE, encoding="utf-8", errors="utf-8", shell=with_shell,) # live stream STDOUT while True: outs = proc.stdout.readline() if outs: print(outs, end="") logger.info(outs) if proc.poll() is not None and outs == "": break errs = proc.stderr.readlines() if errs: print(errs, end="") logger.error(errs) return proc.returncode
def build_format_file( df: pd.DataFrame, delimiter: str, db_cols_order: Optional[Dict[str, int]] = None ) -> str: """ Creates the non-xml SQL format file. Puts 4 spaces between each section. See https://docs.microsoft.com/en-us/sql/relational-databases/import-export/non-xml-format-files-sql-server for the specification of the file. # TODO add params/options to control: # - the char type (not just SQLCHAR), Parameters ---------- df : pandas DataFrame delimiter : a valid delimiter character db_cols_order : dict, optional Dict of {database column name -> ordinal position of the column}. Maps existing columns in the database to their ordinal position, i.e. the order of the columns in the db table. 1-indexed, so the first columns is 1, second is 2, etc. Only needed if the order of the columns in the dataframe doesn't match the database. Returns ------- A string containing the format file """ _space = " " * 4 format_file_str = f"9.0\n{len(df.columns)}\n" # Version and Number of columns for col_num, col_name in enumerate(df.columns, start=1): # last col gets a newline sep _delim = delimiter if col_num != len(df.columns) else NEWLINE _line = _space.join( [ str(col_num), # Host file field order SQLCHAR, # Host file data type str(0), # Prefix length str(0), # Host file data length f'"{_escape(_delim)}"', # Terminator (see note below) str( col_num if not db_cols_order else db_cols_order[str(col_name)] ), # Server column order str(col_name), # Server column name, optional as long as not blank sql_collation, # Column collation "\n", ] ) format_file_str += _line # FYI very important to surround the Terminator with quotes, otherwise BCP fails with: # "Unexpected EOF encountered in BCP data-file". Hugely frustrating bug. return format_file_str
145
193
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 23:07:15 2019 @author: ydima """ import logging import os from pathlib import Path import random import shlex import string from subprocess import PIPE, Popen import tempfile from typing import Dict, List, Optional, Union import pandas as pd from .constants import ( DIRECTIONS, IN, IS_WIN32, NEWLINE, OUT, QUERY, QUERYOUT, SQLCHAR, TABLE, VIEW, BCPandasException, BCPandasValueError, read_data_settings, sql_collation, ) logger = logging.getLogger(__name__) def bcp( sql_item: str, direction: str, flat_file: str, creds, sql_type: str = "table", schema: str = "dbo", format_file_path: str = None, batch_size: int = None, col_delimiter: str = None, row_terminator: str = None, bcp_path: Union[str, Path] = None, error_file_path: str = None ): """ See https://docs.microsoft.com/en-us/sql/tools/bcp-utility """ combos = {TABLE: [IN, OUT], QUERY: [QUERYOUT], VIEW: [IN, OUT]} direc = direction.lower() # validation if direc not in DIRECTIONS: raise BCPandasValueError( f"Param 'direction' must be one of {DIRECTIONS}, you passed {direc}" ) if direc not in combos[sql_type]: raise BCPandasValueError( f"Wrong combo of direction and SQL object, you passed {sql_type} and {direc} ." ) # auth if creds.with_krb_auth: auth = ["-T"] else: auth = ["-U", creds.username, "-P", creds.password] # prepare SQL item string if sql_type == QUERY: # remove newlines for queries, otherwise messes up BCP sql_item_string = quote_this("".join(sql_item.splitlines())) else: sql_item_string = f"{schema}.{sql_item}" # construct BCP command bcp_command = [ "bcp" if bcp_path is None else quote_this(str(bcp_path)), sql_item_string, direc, flat_file, "-S", creds.server, "-d", creds.database, "-q", # Executes the SET QUOTED_IDENTIFIERS ON statement, needed for Azure SQL DW "-e", error_file_path ] + auth if batch_size: bcp_command += ["-b", str(batch_size)] # formats if direc == IN: bcp_command += ["-f", format_file_path] elif direc in (OUT, QUERYOUT): bcp_command += [ "-c", # marking as character data, not Unicode (maybe make as param?) quote_this( f"-t{read_data_settings['delimiter'] if col_delimiter is None else col_delimiter}" ), quote_this( f"-r{read_data_settings['newline'] if row_terminator is None else row_terminator}" ), ] # execute bcp_command_log = [c if c != creds.password else "[REDACTED]" for c in bcp_command] logger.info(f"Executing BCP command now... \nBCP command is: {bcp_command_log}") ret_code = run_cmd(bcp_command) if ret_code: raise BCPandasException(f"Bcp command failed with exit code {ret_code}") def get_temp_file() -> str: """ Returns full path to a temporary file without creating it. """ tmp_dir = tempfile.gettempdir() file_path = os.path.join( tmp_dir, "".join(random.choices(string.ascii_letters + string.digits, k=21)) ) return file_path def _escape(input_string: str) -> str: """ Adopted from https://github.com/titan550/bcpy/blob/master/bcpy/format_file_builder.py#L25 """ return ( input_string.replace('"', '\\"') .replace("'", "\\'") .replace("\r", "\\r") .replace("\n", "\\n") ) def build_format_file( df: pd.DataFrame, delimiter: str, db_cols_order: Optional[Dict[str, int]] = None ) -> str: """ Creates the non-xml SQL format file. Puts 4 spaces between each section. See https://docs.microsoft.com/en-us/sql/relational-databases/import-export/non-xml-format-files-sql-server for the specification of the file. # TODO add params/options to control: # - the char type (not just SQLCHAR), Parameters ---------- df : pandas DataFrame delimiter : a valid delimiter character db_cols_order : dict, optional Dict of {database column name -> ordinal position of the column}. Maps existing columns in the database to their ordinal position, i.e. the order of the columns in the db table. 1-indexed, so the first columns is 1, second is 2, etc. Only needed if the order of the columns in the dataframe doesn't match the database. Returns ------- A string containing the format file """ _space = " " * 4 format_file_str = f"9.0\n{len(df.columns)}\n" # Version and Number of columns for col_num, col_name in enumerate(df.columns, start=1): # last col gets a newline sep _delim = delimiter if col_num != len(df.columns) else NEWLINE _line = _space.join( [ str(col_num), # Host file field order SQLCHAR, # Host file data type str(0), # Prefix length str(0), # Host file data length f'"{_escape(_delim)}"', # Terminator (see note below) str( col_num if not db_cols_order else db_cols_order[str(col_name)] ), # Server column order str(col_name), # Server column name, optional as long as not blank sql_collation, # Column collation "\n", ] ) format_file_str += _line # FYI very important to surround the Terminator with quotes, otherwise BCP fails with: # "Unexpected EOF encountered in BCP data-file". Hugely frustrating bug. return format_file_str def quote_this(this: str, skip: bool = False) -> str: """ OS-safe way to quote a string. Returns the string with quotes around it. On Windows ~~it's double quotes~~ we skip quoting, on Linux it's single quotes. """ if isinstance(this, str): if IS_WIN32: return this # TODO maybe change? else: return shlex.quote(this) else: return this def run_cmd(cmd: List[str]) -> int: """ Runs the given command. Prints STDOUT in real time, prints STDERR when command is complete, and logs both STDOUT and STDERR. Paramters --------- cmd : list of str The command to run, to be submitted to `subprocess.Popen()` Returns ------- The exit code of the command """ if IS_WIN32: with_shell = False else: with_shell = True cmd = " ".join(cmd) # type: ignore proc = Popen(cmd, stdout=PIPE, stderr=PIPE, encoding="utf-8", errors="utf-8", shell=with_shell,) # live stream STDOUT while True: outs = proc.stdout.readline() if outs: print(outs, end="") logger.info(outs) if proc.poll() is not None and outs == "": break errs = proc.stderr.readlines() if errs: print(errs, end="") logger.error(errs) return proc.returncode
run_cmd
Runs the given command. Prints STDOUT in real time, prints STDERR when command is complete, and logs both STDOUT and STDERR. Paramters --------- cmd : list of str The command to run, to be submitted to `subprocess.Popen()` Returns ------- The exit code of the command
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 23:07:15 2019 @author: ydima """ import logging import os from pathlib import Path import random import shlex import string from subprocess import PIPE, Popen import tempfile from typing import Dict, List, Optional, Union import pandas as pd from .constants import ( DIRECTIONS, IN, IS_WIN32, NEWLINE, OUT, QUERY, QUERYOUT, SQLCHAR, TABLE, VIEW, BCPandasException, BCPandasValueError, read_data_settings, sql_collation, ) logger = logging.getLogger(__name__) def bcp( sql_item: str, direction: str, flat_file: str, creds, sql_type: str = "table", schema: str = "dbo", format_file_path: str = None, batch_size: int = None, col_delimiter: str = None, row_terminator: str = None, bcp_path: Union[str, Path] = None, error_file_path: str = None ): """ See https://docs.microsoft.com/en-us/sql/tools/bcp-utility """ combos = {TABLE: [IN, OUT], QUERY: [QUERYOUT], VIEW: [IN, OUT]} direc = direction.lower() # validation if direc not in DIRECTIONS: raise BCPandasValueError( f"Param 'direction' must be one of {DIRECTIONS}, you passed {direc}" ) if direc not in combos[sql_type]: raise BCPandasValueError( f"Wrong combo of direction and SQL object, you passed {sql_type} and {direc} ." ) # auth if creds.with_krb_auth: auth = ["-T"] else: auth = ["-U", creds.username, "-P", creds.password] # prepare SQL item string if sql_type == QUERY: # remove newlines for queries, otherwise messes up BCP sql_item_string = quote_this("".join(sql_item.splitlines())) else: sql_item_string = f"{schema}.{sql_item}" # construct BCP command bcp_command = [ "bcp" if bcp_path is None else quote_this(str(bcp_path)), sql_item_string, direc, flat_file, "-S", creds.server, "-d", creds.database, "-q", # Executes the SET QUOTED_IDENTIFIERS ON statement, needed for Azure SQL DW "-e", error_file_path ] + auth if batch_size: bcp_command += ["-b", str(batch_size)] # formats if direc == IN: bcp_command += ["-f", format_file_path] elif direc in (OUT, QUERYOUT): bcp_command += [ "-c", # marking as character data, not Unicode (maybe make as param?) quote_this( f"-t{read_data_settings['delimiter'] if col_delimiter is None else col_delimiter}" ), quote_this( f"-r{read_data_settings['newline'] if row_terminator is None else row_terminator}" ), ] # execute bcp_command_log = [c if c != creds.password else "[REDACTED]" for c in bcp_command] logger.info(f"Executing BCP command now... \nBCP command is: {bcp_command_log}") ret_code = run_cmd(bcp_command) if ret_code: raise BCPandasException(f"Bcp command failed with exit code {ret_code}") def get_temp_file() -> str: """ Returns full path to a temporary file without creating it. """ tmp_dir = tempfile.gettempdir() file_path = os.path.join( tmp_dir, "".join(random.choices(string.ascii_letters + string.digits, k=21)) ) return file_path def _escape(input_string: str) -> str: """ Adopted from https://github.com/titan550/bcpy/blob/master/bcpy/format_file_builder.py#L25 """ return ( input_string.replace('"', '\\"') .replace("'", "\\'") .replace("\r", "\\r") .replace("\n", "\\n") ) def build_format_file( df: pd.DataFrame, delimiter: str, db_cols_order: Optional[Dict[str, int]] = None ) -> str: """ Creates the non-xml SQL format file. Puts 4 spaces between each section. See https://docs.microsoft.com/en-us/sql/relational-databases/import-export/non-xml-format-files-sql-server for the specification of the file. # TODO add params/options to control: # - the char type (not just SQLCHAR), Parameters ---------- df : pandas DataFrame delimiter : a valid delimiter character db_cols_order : dict, optional Dict of {database column name -> ordinal position of the column}. Maps existing columns in the database to their ordinal position, i.e. the order of the columns in the db table. 1-indexed, so the first columns is 1, second is 2, etc. Only needed if the order of the columns in the dataframe doesn't match the database. Returns ------- A string containing the format file """ _space = " " * 4 format_file_str = f"9.0\n{len(df.columns)}\n" # Version and Number of columns for col_num, col_name in enumerate(df.columns, start=1): # last col gets a newline sep _delim = delimiter if col_num != len(df.columns) else NEWLINE _line = _space.join( [ str(col_num), # Host file field order SQLCHAR, # Host file data type str(0), # Prefix length str(0), # Host file data length f'"{_escape(_delim)}"', # Terminator (see note below) str( col_num if not db_cols_order else db_cols_order[str(col_name)] ), # Server column order str(col_name), # Server column name, optional as long as not blank sql_collation, # Column collation "\n", ] ) format_file_str += _line # FYI very important to surround the Terminator with quotes, otherwise BCP fails with: # "Unexpected EOF encountered in BCP data-file". Hugely frustrating bug. return format_file_str def quote_this(this: str, skip: bool = False) -> str: """ OS-safe way to quote a string. Returns the string with quotes around it. On Windows ~~it's double quotes~~ we skip quoting, on Linux it's single quotes. """ if isinstance(this, str): if IS_WIN32: return this # TODO maybe change? else: return shlex.quote(this) else: return this # MASKED: run_cmd function (lines 213-247)
def run_cmd(cmd: List[str]) -> int: """ Runs the given command. Prints STDOUT in real time, prints STDERR when command is complete, and logs both STDOUT and STDERR. Paramters --------- cmd : list of str The command to run, to be submitted to `subprocess.Popen()` Returns ------- The exit code of the command """ if IS_WIN32: with_shell = False else: with_shell = True cmd = " ".join(cmd) # type: ignore proc = Popen(cmd, stdout=PIPE, stderr=PIPE, encoding="utf-8", errors="utf-8", shell=with_shell,) # live stream STDOUT while True: outs = proc.stdout.readline() if outs: print(outs, end="") logger.info(outs) if proc.poll() is not None and outs == "": break errs = proc.stderr.readlines() if errs: print(errs, end="") logger.error(errs) return proc.returncode
213
247
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 23:07:15 2019 @author: ydima """ import logging import os from pathlib import Path import random import shlex import string from subprocess import PIPE, Popen import tempfile from typing import Dict, List, Optional, Union import pandas as pd from .constants import ( DIRECTIONS, IN, IS_WIN32, NEWLINE, OUT, QUERY, QUERYOUT, SQLCHAR, TABLE, VIEW, BCPandasException, BCPandasValueError, read_data_settings, sql_collation, ) logger = logging.getLogger(__name__) def bcp( sql_item: str, direction: str, flat_file: str, creds, sql_type: str = "table", schema: str = "dbo", format_file_path: str = None, batch_size: int = None, col_delimiter: str = None, row_terminator: str = None, bcp_path: Union[str, Path] = None, error_file_path: str = None ): """ See https://docs.microsoft.com/en-us/sql/tools/bcp-utility """ combos = {TABLE: [IN, OUT], QUERY: [QUERYOUT], VIEW: [IN, OUT]} direc = direction.lower() # validation if direc not in DIRECTIONS: raise BCPandasValueError( f"Param 'direction' must be one of {DIRECTIONS}, you passed {direc}" ) if direc not in combos[sql_type]: raise BCPandasValueError( f"Wrong combo of direction and SQL object, you passed {sql_type} and {direc} ." ) # auth if creds.with_krb_auth: auth = ["-T"] else: auth = ["-U", creds.username, "-P", creds.password] # prepare SQL item string if sql_type == QUERY: # remove newlines for queries, otherwise messes up BCP sql_item_string = quote_this("".join(sql_item.splitlines())) else: sql_item_string = f"{schema}.{sql_item}" # construct BCP command bcp_command = [ "bcp" if bcp_path is None else quote_this(str(bcp_path)), sql_item_string, direc, flat_file, "-S", creds.server, "-d", creds.database, "-q", # Executes the SET QUOTED_IDENTIFIERS ON statement, needed for Azure SQL DW "-e", error_file_path ] + auth if batch_size: bcp_command += ["-b", str(batch_size)] # formats if direc == IN: bcp_command += ["-f", format_file_path] elif direc in (OUT, QUERYOUT): bcp_command += [ "-c", # marking as character data, not Unicode (maybe make as param?) quote_this( f"-t{read_data_settings['delimiter'] if col_delimiter is None else col_delimiter}" ), quote_this( f"-r{read_data_settings['newline'] if row_terminator is None else row_terminator}" ), ] # execute bcp_command_log = [c if c != creds.password else "[REDACTED]" for c in bcp_command] logger.info(f"Executing BCP command now... \nBCP command is: {bcp_command_log}") ret_code = run_cmd(bcp_command) if ret_code: raise BCPandasException(f"Bcp command failed with exit code {ret_code}") def get_temp_file() -> str: """ Returns full path to a temporary file without creating it. """ tmp_dir = tempfile.gettempdir() file_path = os.path.join( tmp_dir, "".join(random.choices(string.ascii_letters + string.digits, k=21)) ) return file_path def _escape(input_string: str) -> str: """ Adopted from https://github.com/titan550/bcpy/blob/master/bcpy/format_file_builder.py#L25 """ return ( input_string.replace('"', '\\"') .replace("'", "\\'") .replace("\r", "\\r") .replace("\n", "\\n") ) def build_format_file( df: pd.DataFrame, delimiter: str, db_cols_order: Optional[Dict[str, int]] = None ) -> str: """ Creates the non-xml SQL format file. Puts 4 spaces between each section. See https://docs.microsoft.com/en-us/sql/relational-databases/import-export/non-xml-format-files-sql-server for the specification of the file. # TODO add params/options to control: # - the char type (not just SQLCHAR), Parameters ---------- df : pandas DataFrame delimiter : a valid delimiter character db_cols_order : dict, optional Dict of {database column name -> ordinal position of the column}. Maps existing columns in the database to their ordinal position, i.e. the order of the columns in the db table. 1-indexed, so the first columns is 1, second is 2, etc. Only needed if the order of the columns in the dataframe doesn't match the database. Returns ------- A string containing the format file """ _space = " " * 4 format_file_str = f"9.0\n{len(df.columns)}\n" # Version and Number of columns for col_num, col_name in enumerate(df.columns, start=1): # last col gets a newline sep _delim = delimiter if col_num != len(df.columns) else NEWLINE _line = _space.join( [ str(col_num), # Host file field order SQLCHAR, # Host file data type str(0), # Prefix length str(0), # Host file data length f'"{_escape(_delim)}"', # Terminator (see note below) str( col_num if not db_cols_order else db_cols_order[str(col_name)] ), # Server column order str(col_name), # Server column name, optional as long as not blank sql_collation, # Column collation "\n", ] ) format_file_str += _line # FYI very important to surround the Terminator with quotes, otherwise BCP fails with: # "Unexpected EOF encountered in BCP data-file". Hugely frustrating bug. return format_file_str def quote_this(this: str, skip: bool = False) -> str: """ OS-safe way to quote a string. Returns the string with quotes around it. On Windows ~~it's double quotes~~ we skip quoting, on Linux it's single quotes. """ if isinstance(this, str): if IS_WIN32: return this # TODO maybe change? else: return shlex.quote(this) else: return this def run_cmd(cmd: List[str]) -> int: """ Runs the given command. Prints STDOUT in real time, prints STDERR when command is complete, and logs both STDOUT and STDERR. Paramters --------- cmd : list of str The command to run, to be submitted to `subprocess.Popen()` Returns ------- The exit code of the command """ if IS_WIN32: with_shell = False else: with_shell = True cmd = " ".join(cmd) # type: ignore proc = Popen(cmd, stdout=PIPE, stderr=PIPE, encoding="utf-8", errors="utf-8", shell=with_shell,) # live stream STDOUT while True: outs = proc.stdout.readline() if outs: print(outs, end="") logger.info(outs) if proc.poll() is not None and outs == "": break errs = proc.stderr.readlines() if errs: print(errs, end="") logger.error(errs) return proc.returncode
_setupDistribServer
Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site.
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d # MASKED: _setupDistribServer function (lines 109-135) def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path) def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr
109
135
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path) def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
test_getPublicHTMLChild
L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory.
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') # MASKED: test_getPublicHTMLChild function (lines 444-456) def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path)
444
456
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path) def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
test_getDistribChild
L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket.
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path) # MASKED: test_getDistribChild function (lines 459-472) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path)
459
472
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.distrib}. """ from os.path import abspath from xml.dom.minidom import parseString try: import pwd except ImportError: pwd = None from zope.interface.verify import verifyObject from twisted.python import filepath, failure from twisted.internet import reactor, defer from twisted.trial import unittest from twisted.spread import pb from twisted.spread.banana import SIZE_LIMIT from twisted.web import distrib, client, resource, static, server from twisted.web.test.test_web import DummyRequest, DummyChannel from twisted.web.test._util import _render from twisted.test import proto_helpers from twisted.web.http_headers import Headers from twisted.logger import globalLogPublisher class MySite(server.Site): pass class PBServerFactory(pb.PBServerFactory): """ A PB server factory which keeps track of the most recent protocol it created. @ivar proto: L{None} or the L{Broker} instance most recently returned from C{buildProtocol}. """ proto = None def buildProtocol(self, addr): self.proto = pb.PBServerFactory.buildProtocol(self, addr) return self.proto class ArbitraryError(Exception): """ An exception for this test. """ class DistribTests(unittest.TestCase): port1 = None port2 = None sub = None f1 = None def tearDown(self): """ Clean up all the event sources left behind by either directly by test methods or indirectly via some distrib API. """ dl = [defer.Deferred(), defer.Deferred()] if self.f1 is not None and self.f1.proto is not None: self.f1.proto.notifyOnDisconnect(lambda: dl[0].callback(None)) else: dl[0].callback(None) if self.sub is not None and self.sub.publisher is not None: self.sub.publisher.broker.notifyOnDisconnect( lambda: dl[1].callback(None)) self.sub.publisher.broker.transport.loseConnection() else: dl[1].callback(None) if self.port1 is not None: dl.append(self.port1.stopListening()) if self.port2 is not None: dl.append(self.port2.stopListening()) return defer.gatherResults(dl) def testDistrib(self): # site1 is the publisher r1 = resource.Resource() r1.putChild(b"there", static.Data(b"root", "text/plain")) site1 = server.Site(r1) self.f1 = PBServerFactory(distrib.ResourcePublisher(site1)) self.port1 = reactor.listenTCP(0, self.f1) self.sub = distrib.ResourceSubscription("127.0.0.1", self.port1.getHost().port) r2 = resource.Resource() r2.putChild(b"here", self.sub) f2 = MySite(r2) self.port2 = reactor.listenTCP(0, f2) agent = client.Agent(reactor) url = "http://127.0.0.1:{}/here/there".format( self.port2.getHost().port) url = url.encode("ascii") d = agent.request(b"GET", url) d.addCallback(client.readBody) d.addCallback(self.assertEqual, b'root') return d def _setupDistribServer(self, child): """ Set up a resource on a distrib site using L{ResourcePublisher}. @param child: The resource to publish using distrib. @return: A tuple consisting of the host and port on which to contact the created site. """ distribRoot = resource.Resource() distribRoot.putChild(b"child", child) distribSite = server.Site(distribRoot) self.f1 = distribFactory = PBServerFactory( distrib.ResourcePublisher(distribSite)) distribPort = reactor.listenTCP( 0, distribFactory, interface="127.0.0.1") self.addCleanup(distribPort.stopListening) addr = distribPort.getHost() self.sub = mainRoot = distrib.ResourceSubscription( addr.host, addr.port) mainSite = server.Site(mainRoot) mainPort = reactor.listenTCP(0, mainSite, interface="127.0.0.1") self.addCleanup(mainPort.stopListening) mainAddr = mainPort.getHost() return mainPort, mainAddr def _requestTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with the result of the request. """ mainPort, mainAddr = self._setupDistribServer(child) agent = client.Agent(reactor) url = "http://%s:%s/child" % (mainAddr.host, mainAddr.port) url = url.encode("ascii") d = agent.request(b"GET", url, **kwargs) d.addCallback(client.readBody) return d def _requestAgentTest(self, child, **kwargs): """ Set up a resource on a distrib site using L{ResourcePublisher} and then retrieve it from a L{ResourceSubscription} via an HTTP client. @param child: The resource to publish using distrib. @param **kwargs: Extra keyword arguments to pass to L{Agent.request} when requesting the resource. @return: A L{Deferred} which fires with a tuple consisting of a L{twisted.test.proto_helpers.AccumulatingProtocol} containing the body of the response and an L{IResponse} with the response itself. """ mainPort, mainAddr = self._setupDistribServer(child) url = "http://{}:{}/child".format(mainAddr.host, mainAddr.port) url = url.encode("ascii") d = client.Agent(reactor).request(b"GET", url, **kwargs) def cbCollectBody(response): protocol = proto_helpers.AccumulatingProtocol() response.deliverBody(protocol) d = protocol.closedDeferred = defer.Deferred() d.addCallback(lambda _: (protocol, response)) return d d.addCallback(cbCollectBody) return d def test_requestHeaders(self): """ The request headers are available on the request object passed to a distributed resource's C{render} method. """ requestHeaders = {} logObserver = proto_helpers.EventLoggingObserver() globalLogPublisher.addObserver(logObserver) req = [None] class ReportRequestHeaders(resource.Resource): def render(self, request): req[0] = request requestHeaders.update(dict( request.requestHeaders.getAllRawHeaders())) return b"" def check_logs(): msgs = [e["log_format"] for e in logObserver] self.assertIn('connected to publisher', msgs) self.assertIn( "could not connect to distributed web service: {msg}", msgs ) self.assertIn(req[0], msgs) globalLogPublisher.removeObserver(logObserver) request = self._requestTest( ReportRequestHeaders(), headers=Headers({'foo': ['bar']})) def cbRequested(result): self.f1.proto.notifyOnDisconnect(check_logs) self.assertEqual(requestHeaders[b'Foo'], [b'bar']) request.addCallback(cbRequested) return request def test_requestResponseCode(self): """ The response code can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200) return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"OK") request.addCallback(cbRequested) return request def test_requestResponseCodeMessage(self): """ The response code and message can be set by the request object passed to a distributed resource's C{render} method. """ class SetResponseCode(resource.Resource): def render(self, request): request.setResponseCode(200, b"some-message") return "" request = self._requestAgentTest(SetResponseCode()) def cbRequested(result): self.assertEqual(result[0].data, b"") self.assertEqual(result[1].code, 200) self.assertEqual(result[1].phrase, b"some-message") request.addCallback(cbRequested) return request def test_largeWrite(self): """ If a string longer than the Banana size limit is passed to the L{distrib.Request} passed to the remote resource, it is broken into smaller strings to be transported over the PB connection. """ class LargeWrite(resource.Resource): def render(self, request): request.write(b'x' * SIZE_LIMIT + b'y') request.finish() return server.NOT_DONE_YET request = self._requestTest(LargeWrite()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_largeReturn(self): """ Like L{test_largeWrite}, but for the case where C{render} returns a long string rather than explicitly passing it to L{Request.write}. """ class LargeReturn(resource.Resource): def render(self, request): return b'x' * SIZE_LIMIT + b'y' request = self._requestTest(LargeReturn()) request.addCallback(self.assertEqual, b'x' * SIZE_LIMIT + b'y') return request def test_connectionLost(self): """ If there is an error issuing the request to the remote publisher, an error response is returned. """ # Using pb.Root as a publisher will cause request calls to fail with an # error every time. Just what we want to test. self.f1 = serverFactory = PBServerFactory(pb.Root()) self.port1 = serverPort = reactor.listenTCP(0, serverFactory) self.sub = subscription = distrib.ResourceSubscription( "127.0.0.1", serverPort.getHost().port) request = DummyRequest([b'']) d = _render(subscription, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 500) # This is the error we caused the request to fail with. It should # have been logged. errors = self.flushLoggedErrors(pb.NoSuchMethod) self.assertEqual(len(errors), 1) # The error page is rendered as HTML. expected = [ b'', b'<html>', b' <head><title>500 - Server Connection Lost</title></head>', b' <body>', b' <h1>Server Connection Lost</h1>', b' <p>Connection to distributed server lost:' b'<pre>' b'[Failure instance: Traceback from remote host -- ' b'twisted.spread.flavors.NoSuchMethod: ' b'No such method: remote_request', b']</pre></p>', b' </body>', b'</html>', b'' ] self.assertEqual([b'\n'.join(expected)], request.written) d.addCallback(cbRendered) return d def test_logFailed(self): """ When a request fails, the string form of the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) f = failure.Failure(ArbitraryError()) request = DummyRequest([b'']) issue = distrib.Issue(request) issue.failed(f) self.assertEquals(1, len(logObserver)) self.assertIn( "Failure instance", logObserver[0]["log_format"] ) def test_requestFail(self): """ When L{twisted.web.distrib.Request}'s fail is called, the failure is logged. """ logObserver = proto_helpers.EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) err = ArbitraryError() f = failure.Failure(err) req = distrib.Request(DummyChannel()) req.fail(f) self.flushLoggedErrors(ArbitraryError) self.assertEquals(1, len(logObserver)) self.assertIs(logObserver[0]["log_failure"], f) class _PasswordDatabase: def __init__(self, users): self._users = users def getpwall(self): return iter(self._users) def getpwnam(self, username): for user in self._users: if user[0] == username: return user raise KeyError() class UserDirectoryTests(unittest.TestCase): """ Tests for L{UserDirectory}, a resource for listing all user resources available on a system. """ def setUp(self): self.alice = ('alice', 'x', 123, 456, 'Alice,,,', self.mktemp(), '/bin/sh') self.bob = ('bob', 'x', 234, 567, 'Bob,,,', self.mktemp(), '/bin/sh') self.database = _PasswordDatabase([self.alice, self.bob]) self.directory = distrib.UserDirectory(self.database) def test_interface(self): """ L{UserDirectory} instances provide L{resource.IResource}. """ self.assertTrue(verifyObject(resource.IResource, self.directory)) def _404Test(self, name): """ Verify that requesting the C{name} child of C{self.directory} results in a 404 response. """ request = DummyRequest([name]) result = self.directory.getChild(name, request) d = _render(result, request) def cbRendered(ignored): self.assertEqual(request.responseCode, 404) d.addCallback(cbRendered) return d def test_getInvalidUser(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which does not correspond to any known user. """ return self._404Test('carol') def test_getUserWithoutResource(self): """ L{UserDirectory.getChild} returns a resource which renders a 404 response when passed a string which corresponds to a known user who has neither a user directory nor a user distrib socket. """ return self._404Test('alice') def test_getPublicHTMLChild(self): """ L{UserDirectory.getChild} returns a L{static.File} instance when passed the name of a user with a home directory containing a I{public_html} directory. """ home = filepath.FilePath(self.bob[-2]) public_html = home.child('public_html') public_html.makedirs() request = DummyRequest(['bob']) result = self.directory.getChild('bob', request) self.assertIsInstance(result, static.File) self.assertEqual(result.path, public_html.path) def test_getDistribChild(self): """ L{UserDirectory.getChild} returns a L{ResourceSubscription} instance when passed the name of a user suffixed with C{".twistd"} who has a home directory containing a I{.twistd-web-pb} socket. """ home = filepath.FilePath(self.bob[-2]) home.makedirs() web = home.child('.twistd-web-pb') request = DummyRequest(['bob']) result = self.directory.getChild('bob.twistd', request) self.assertIsInstance(result, distrib.ResourceSubscription) self.assertEqual(result.host, 'unix') self.assertEqual(abspath(result.port), web.path) def test_invalidMethod(self): """ L{UserDirectory.render} raises L{UnsupportedMethod} in response to a non-I{GET} request. """ request = DummyRequest(['']) request.method = 'POST' self.assertRaises( server.UnsupportedMethod, self.directory.render, request) def test_render(self): """ L{UserDirectory} renders a list of links to available user content in response to a I{GET} request. """ public_html = filepath.FilePath(self.alice[-2]).child('public_html') public_html.makedirs() web = filepath.FilePath(self.bob[-2]) web.makedirs() # This really only works if it's a unix socket, but the implementation # doesn't currently check for that. It probably should someday, and # then skip users with non-sockets. web.child('.twistd-web-pb').setContent(b"") request = DummyRequest(['']) result = _render(self.directory, request) def cbRendered(ignored): document = parseString(b''.join(request.written)) # Each user should have an li with a link to their page. [alice, bob] = document.getElementsByTagName('li') self.assertEqual(alice.firstChild.tagName, 'a') self.assertEqual(alice.firstChild.getAttribute('href'), 'alice/') self.assertEqual(alice.firstChild.firstChild.data, 'Alice (file)') self.assertEqual(bob.firstChild.tagName, 'a') self.assertEqual(bob.firstChild.getAttribute('href'), 'bob.twistd/') self.assertEqual(bob.firstChild.firstChild.data, 'Bob (twistd)') result.addCallback(cbRendered) return result def test_passwordDatabase(self): """ If L{UserDirectory} is instantiated with no arguments, it uses the L{pwd} module as its password database. """ directory = distrib.UserDirectory() self.assertIdentical(directory._pwd, pwd) if pwd is None: test_passwordDatabase.skip = "pwd module required"
length_normalize
Length normalize the matrix Args: matrix (np.ndarray): Input matrix that needs to be normalized Returns: Normalized matrix
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np from sklearn.decomposition import PCA from reco_utils.dataset.download_utils import maybe_download from IPython import embed # MASKED: length_normalize function (lines 10-21) def mean_center(matrix): """Performs mean centering across axis 0 Args: matrix (np.ndarray): Input matrix that needs to be mean centered """ avg = np.mean(matrix, axis=0) matrix -= avg def reduce_dims(matrix, target_dim): """Reduce dimensionality of the data using PCA. Args: matrix (np.ndarray): Matrix of the form (n_sampes, n_features) target_dim (uint): Dimension to which n_features should be reduced to. """ model = PCA(n_components=target_dim) model.fit(matrix) return model.transform(matrix)
def length_normalize(matrix): """Length normalize the matrix Args: matrix (np.ndarray): Input matrix that needs to be normalized Returns: Normalized matrix """ norms = np.sqrt(np.sum(matrix**2, axis=1)) norms[norms == 0] = 1 return matrix / norms[:, np.newaxis]
10
21
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np from sklearn.decomposition import PCA from reco_utils.dataset.download_utils import maybe_download from IPython import embed def length_normalize(matrix): """Length normalize the matrix Args: matrix (np.ndarray): Input matrix that needs to be normalized Returns: Normalized matrix """ norms = np.sqrt(np.sum(matrix**2, axis=1)) norms[norms == 0] = 1 return matrix / norms[:, np.newaxis] def mean_center(matrix): """Performs mean centering across axis 0 Args: matrix (np.ndarray): Input matrix that needs to be mean centered """ avg = np.mean(matrix, axis=0) matrix -= avg def reduce_dims(matrix, target_dim): """Reduce dimensionality of the data using PCA. Args: matrix (np.ndarray): Matrix of the form (n_sampes, n_features) target_dim (uint): Dimension to which n_features should be reduced to. """ model = PCA(n_components=target_dim) model.fit(matrix) return model.transform(matrix)
reduce_dims
Reduce dimensionality of the data using PCA. Args: matrix (np.ndarray): Matrix of the form (n_sampes, n_features) target_dim (uint): Dimension to which n_features should be reduced to.
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np from sklearn.decomposition import PCA from reco_utils.dataset.download_utils import maybe_download from IPython import embed def length_normalize(matrix): """Length normalize the matrix Args: matrix (np.ndarray): Input matrix that needs to be normalized Returns: Normalized matrix """ norms = np.sqrt(np.sum(matrix**2, axis=1)) norms[norms == 0] = 1 return matrix / norms[:, np.newaxis] def mean_center(matrix): """Performs mean centering across axis 0 Args: matrix (np.ndarray): Input matrix that needs to be mean centered """ avg = np.mean(matrix, axis=0) matrix -= avg # MASKED: reduce_dims function (lines 34-44)
def reduce_dims(matrix, target_dim): """Reduce dimensionality of the data using PCA. Args: matrix (np.ndarray): Matrix of the form (n_sampes, n_features) target_dim (uint): Dimension to which n_features should be reduced to. """ model = PCA(n_components=target_dim) model.fit(matrix) return model.transform(matrix)
34
44
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np from sklearn.decomposition import PCA from reco_utils.dataset.download_utils import maybe_download from IPython import embed def length_normalize(matrix): """Length normalize the matrix Args: matrix (np.ndarray): Input matrix that needs to be normalized Returns: Normalized matrix """ norms = np.sqrt(np.sum(matrix**2, axis=1)) norms[norms == 0] = 1 return matrix / norms[:, np.newaxis] def mean_center(matrix): """Performs mean centering across axis 0 Args: matrix (np.ndarray): Input matrix that needs to be mean centered """ avg = np.mean(matrix, axis=0) matrix -= avg def reduce_dims(matrix, target_dim): """Reduce dimensionality of the data using PCA. Args: matrix (np.ndarray): Matrix of the form (n_sampes, n_features) target_dim (uint): Dimension to which n_features should be reduced to. """ model = PCA(n_components=target_dim) model.fit(matrix) return model.transform(matrix)
__init__
Initializes the learning rate scheduler. :param optimizer: A PyTorch optimizer. :param warmup_epochs: The number of epochs during which to linearly increase the learning rate. :param total_epochs: The total number of epochs. :param steps_per_epoch: The number of steps (batches) per epoch. :param init_lr: The initial learning rate. :param max_lr: The maximum learning rate (achieved after warmup_epochs). :param final_lr: The final learning rate (achieved after total_epochs).
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : utils_node.py @Time : 2022/03/08 14:35:13 @Author : Jianwen Chen @Version : 1.0 @Contact : [email protected] @License : (C)Copyright 2021-2022, SAIL-Lab ''' ######################################## import area ######################################## # common library import os import random import torch import torch.nn as nn import numpy as np from tqdm import tqdm from sklearn import metrics from torch.optim.lr_scheduler import _LRScheduler ######################################## function area ######################################## def seed_everything(seed=2021): os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def initialize_weights(model): """ Initializes the weights of a model in place. :param model: An nn.Module. """ for param in model.parameters(): if param.dim() > 1: nn.init.xavier_normal_(param) def loop(data_loader, model, optimizer, scheduler, device): batch_size = data_loader.batch_size data_loader = tqdm(data_loader) if optimizer is not None else data_loader loss_sum, y_true, y_pred = 0.0, list(), list() for batch in data_loader: smiles, mols, batch_node_features, batch_edge_features, batch_distance_matrix, labels = batch # add mask batch_masks = torch.sum(torch.abs(batch_node_features), dim=-1) != 0 # (batch, max_length, node_dim) batch_node_features = batch_node_features.to(device) # (batch, max_length, max_length, edge_dim) batch_edge_features = batch_edge_features.to(device) # (batch, max_length, max_length) batch_distance_matrix = batch_distance_matrix.to(device) # (batch, max_length) batch_masks = batch_masks.to(device) # (batch, max_length, 1) labels = labels.to(device) # (batch, max_length, 1) outputs = model(batch_node_features, batch_edge_features, batch_distance_matrix, batch_masks, device) # loss calculation loss = cal_loss(y_true=labels, y_pred=outputs, device=device) loss_sum += loss.item() if optimizer is not None: # clear gradients for this training step optimizer.zero_grad() # back propagation, compute gradients loss.backward() # apply gradients optimizer.step() # NormLR need step every batch if scheduler is not None: scheduler.step() # collect result labels = labels.detach().cpu().numpy() outputs = outputs.detach().cpu().numpy() y_true.append([]) y_pred.append([]) for label, output in zip(labels, outputs): label, output = label.flatten(), output.flatten() for l, o in zip(label, output): if l != 0.0: y_true[-1].append(l) y_pred[-1].append(o) # clear cuda cache torch.cuda.empty_cache() # metric calculation results = cal_metric(y_true=y_true, y_pred=y_pred) results['loss'] = loss_sum / (len(data_loader) * batch_size) return results def cal_loss(y_true, y_pred, device): y_true, y_pred = y_true.flatten(), y_pred.flatten() y_mask = torch.where(y_true != 0.0, torch.full_like(y_true, 1), torch.full_like(y_true, 0)) loss = torch.sum(torch.abs(y_true - y_pred) * y_mask) / torch.sum(y_mask) return loss def cal_metric(y_true, y_pred): concatenate_true, concatenate_pred = np.concatenate(y_true, axis=-1), np.concatenate(y_pred, axis=-1) mae = metrics.mean_absolute_error(concatenate_true, concatenate_pred) r2 = metrics.r2_score(concatenate_true, concatenate_pred) return {'mae':mae, 'r2':r2} class NoamLR(_LRScheduler): """ Noam learning rate scheduler with piecewise linear increase and exponential decay. The learning rate increases linearly from init_lr to max_lr over the course of the first warmup_steps (where warmup_steps = warmup_epochs * steps_per_epoch). Then the learning rate decreases exponentially from max_lr to final_lr over the course of the remaining total_steps - warmup_steps (where total_steps = total_epochs * steps_per_epoch). This is roughly based on the learning rate schedule from Attention is All You Need, section 5.3 (https://arxiv.org/abs/1706.03762). """ # MASKED: __init__ function (lines 139-171) def get_lr(self): """Gets a list of the current learning rates.""" return list(self.lr) def step(self, current_step: int = None): """ Updates the learning rate by taking a step. :param current_step: Optionally specify what step to set the learning rate to. If None, current_step = self.current_step + 1. """ if current_step is not None: self.current_step = current_step else: self.current_step += 1 for i in range(self.num_lrs): if self.current_step <= self.warmup_steps[i]: self.lr[i] = self.init_lr[i] + self.current_step * self.linear_increment[i] elif self.current_step <= self.total_steps[i]: self.lr[i] = self.max_lr[i] * (self.exponential_gamma[i] ** (self.current_step - self.warmup_steps[i])) else: # theoretically this case should never be reached since training should stop at total_steps self.lr[i] = self.final_lr[i] self.optimizer.param_groups[i]['lr'] = self.lr[i]
def __init__(self, optimizer, warmup_epochs, total_epochs, steps_per_epoch, init_lr, max_lr, final_lr): """ Initializes the learning rate scheduler. :param optimizer: A PyTorch optimizer. :param warmup_epochs: The number of epochs during which to linearly increase the learning rate. :param total_epochs: The total number of epochs. :param steps_per_epoch: The number of steps (batches) per epoch. :param init_lr: The initial learning rate. :param max_lr: The maximum learning rate (achieved after warmup_epochs). :param final_lr: The final learning rate (achieved after total_epochs). """ assert len(optimizer.param_groups) == len(warmup_epochs) == len(total_epochs) == len(init_lr) == len(max_lr) == len(final_lr) self.num_lrs = len(optimizer.param_groups) self.optimizer = optimizer self.warmup_epochs = np.array(warmup_epochs) self.total_epochs = np.array(total_epochs) self.steps_per_epoch = steps_per_epoch self.init_lr = np.array(init_lr) self.max_lr = np.array(max_lr) self.final_lr = np.array(final_lr) self.current_step = 0 self.lr = init_lr self.warmup_steps = (self.warmup_epochs * self.steps_per_epoch).astype(int) self.total_steps = self.total_epochs * self.steps_per_epoch self.linear_increment = (self.max_lr - self.init_lr) / self.warmup_steps self.exponential_gamma = (self.final_lr / self.max_lr) ** (1 / (self.total_steps - self.warmup_steps)) super(NoamLR, self).__init__(optimizer)
139
171
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : utils_node.py @Time : 2022/03/08 14:35:13 @Author : Jianwen Chen @Version : 1.0 @Contact : [email protected] @License : (C)Copyright 2021-2022, SAIL-Lab ''' ######################################## import area ######################################## # common library import os import random import torch import torch.nn as nn import numpy as np from tqdm import tqdm from sklearn import metrics from torch.optim.lr_scheduler import _LRScheduler ######################################## function area ######################################## def seed_everything(seed=2021): os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def initialize_weights(model): """ Initializes the weights of a model in place. :param model: An nn.Module. """ for param in model.parameters(): if param.dim() > 1: nn.init.xavier_normal_(param) def loop(data_loader, model, optimizer, scheduler, device): batch_size = data_loader.batch_size data_loader = tqdm(data_loader) if optimizer is not None else data_loader loss_sum, y_true, y_pred = 0.0, list(), list() for batch in data_loader: smiles, mols, batch_node_features, batch_edge_features, batch_distance_matrix, labels = batch # add mask batch_masks = torch.sum(torch.abs(batch_node_features), dim=-1) != 0 # (batch, max_length, node_dim) batch_node_features = batch_node_features.to(device) # (batch, max_length, max_length, edge_dim) batch_edge_features = batch_edge_features.to(device) # (batch, max_length, max_length) batch_distance_matrix = batch_distance_matrix.to(device) # (batch, max_length) batch_masks = batch_masks.to(device) # (batch, max_length, 1) labels = labels.to(device) # (batch, max_length, 1) outputs = model(batch_node_features, batch_edge_features, batch_distance_matrix, batch_masks, device) # loss calculation loss = cal_loss(y_true=labels, y_pred=outputs, device=device) loss_sum += loss.item() if optimizer is not None: # clear gradients for this training step optimizer.zero_grad() # back propagation, compute gradients loss.backward() # apply gradients optimizer.step() # NormLR need step every batch if scheduler is not None: scheduler.step() # collect result labels = labels.detach().cpu().numpy() outputs = outputs.detach().cpu().numpy() y_true.append([]) y_pred.append([]) for label, output in zip(labels, outputs): label, output = label.flatten(), output.flatten() for l, o in zip(label, output): if l != 0.0: y_true[-1].append(l) y_pred[-1].append(o) # clear cuda cache torch.cuda.empty_cache() # metric calculation results = cal_metric(y_true=y_true, y_pred=y_pred) results['loss'] = loss_sum / (len(data_loader) * batch_size) return results def cal_loss(y_true, y_pred, device): y_true, y_pred = y_true.flatten(), y_pred.flatten() y_mask = torch.where(y_true != 0.0, torch.full_like(y_true, 1), torch.full_like(y_true, 0)) loss = torch.sum(torch.abs(y_true - y_pred) * y_mask) / torch.sum(y_mask) return loss def cal_metric(y_true, y_pred): concatenate_true, concatenate_pred = np.concatenate(y_true, axis=-1), np.concatenate(y_pred, axis=-1) mae = metrics.mean_absolute_error(concatenate_true, concatenate_pred) r2 = metrics.r2_score(concatenate_true, concatenate_pred) return {'mae':mae, 'r2':r2} class NoamLR(_LRScheduler): """ Noam learning rate scheduler with piecewise linear increase and exponential decay. The learning rate increases linearly from init_lr to max_lr over the course of the first warmup_steps (where warmup_steps = warmup_epochs * steps_per_epoch). Then the learning rate decreases exponentially from max_lr to final_lr over the course of the remaining total_steps - warmup_steps (where total_steps = total_epochs * steps_per_epoch). This is roughly based on the learning rate schedule from Attention is All You Need, section 5.3 (https://arxiv.org/abs/1706.03762). """ def __init__(self, optimizer, warmup_epochs, total_epochs, steps_per_epoch, init_lr, max_lr, final_lr): """ Initializes the learning rate scheduler. :param optimizer: A PyTorch optimizer. :param warmup_epochs: The number of epochs during which to linearly increase the learning rate. :param total_epochs: The total number of epochs. :param steps_per_epoch: The number of steps (batches) per epoch. :param init_lr: The initial learning rate. :param max_lr: The maximum learning rate (achieved after warmup_epochs). :param final_lr: The final learning rate (achieved after total_epochs). """ assert len(optimizer.param_groups) == len(warmup_epochs) == len(total_epochs) == len(init_lr) == len(max_lr) == len(final_lr) self.num_lrs = len(optimizer.param_groups) self.optimizer = optimizer self.warmup_epochs = np.array(warmup_epochs) self.total_epochs = np.array(total_epochs) self.steps_per_epoch = steps_per_epoch self.init_lr = np.array(init_lr) self.max_lr = np.array(max_lr) self.final_lr = np.array(final_lr) self.current_step = 0 self.lr = init_lr self.warmup_steps = (self.warmup_epochs * self.steps_per_epoch).astype(int) self.total_steps = self.total_epochs * self.steps_per_epoch self.linear_increment = (self.max_lr - self.init_lr) / self.warmup_steps self.exponential_gamma = (self.final_lr / self.max_lr) ** (1 / (self.total_steps - self.warmup_steps)) super(NoamLR, self).__init__(optimizer) def get_lr(self): """Gets a list of the current learning rates.""" return list(self.lr) def step(self, current_step: int = None): """ Updates the learning rate by taking a step. :param current_step: Optionally specify what step to set the learning rate to. If None, current_step = self.current_step + 1. """ if current_step is not None: self.current_step = current_step else: self.current_step += 1 for i in range(self.num_lrs): if self.current_step <= self.warmup_steps[i]: self.lr[i] = self.init_lr[i] + self.current_step * self.linear_increment[i] elif self.current_step <= self.total_steps[i]: self.lr[i] = self.max_lr[i] * (self.exponential_gamma[i] ** (self.current_step - self.warmup_steps[i])) else: # theoretically this case should never be reached since training should stop at total_steps self.lr[i] = self.final_lr[i] self.optimizer.param_groups[i]['lr'] = self.lr[i]
get_indices
This is a tool that will read a CIF file and return the unique T-sites, their multiplicities, and an example atom index. It also does the same for the unique O-sites in the framework. This tool only works on CIFs that are formatted the same way as the IZA Structure Database CIFs.
__all__ = ['read_cif','cif_site_labels'] from ase.io import read from ase.spacegroup import spacegroup import sys import os import logging from math import * import numpy as np import pkg_resources import warnings warnings.filterwarnings("ignore") path = '.temp_files/' filepath = pkg_resources.resource_filename(__name__,path) ''' NOTE ABOUT CIF FILE FORMATS: CIFs must include '_symmetry_Int_Taables_number' to be read by ASE. If this is not included please edit your CIF file to include this information. ''' def get_atom_lines(alllines): order = [] for i,line in enumerate(alllines): if '_atom' in line: order.append(line) start = i+1 end = None for i,line in enumerate(alllines[start:]): if len(line.split()) == 0: end = start+i-1 break if not end: end = len(alllines)-1 new_order = [] for i,o in enumerate(order): if 'site_label' in o: new_order.append(i) if 'site_type_symbol' in o: new_order.append(i) if 'fract_x' in o: new_order.append(i) if 'fract_y' in o: new_order.append(i) if 'fract_z' in o: new_order.append(i) return start,end,new_order def fix_cif(cif): f = open(cif,"r") alllines = f.readlines() f.close() for i, line in enumerate(alllines): if 'IT_coordinate_system_code' in line: fields = line.split() alllines[i] = '_symmetry_space_group_setting {0} \n'.format(fields[-1]) if '_atom_site_type_symbol' in line and '_atom_site_label' in alllines[i+1]: alllines[i],alllines[i+1] = alllines[i+1],alllines[i] file_name = cif.rstrip('.cif') temp_file = '{0}/{1}_temp.cif'.format(filepath,file_name.split('/')[-1]) f = open(temp_file,"w") f.writelines(alllines) f.close() atoms = read(temp_file); os.remove(temp_file) return atoms, alllines def get_tsites(cif): from ase.geometry import get_distances tsites = [] tpos = [] z,alllines = fix_cif(cif) si = [atom.index for atom in z if atom.symbol!='O'] start,end,order = get_atom_lines(alllines) for line in alllines[start:end+1]: if 'Si' in line or 'T' in line: line = line.split() temp_label = line[order[0]] if not any(str.isdigit(c) for c in temp_label): temp_label = line[order[1]] if 'Si' in temp_label: temp_label = temp_label.replace('Si','T') tsites.append(temp_label) pos = [float(line[order[2]]),float(line[order[3]]),float(line[order[4]])] tpos.append([round(num,2) for num in pos]) tpos = np.array(tpos) pos = z[si].get_scaled_positions() tinds = [] tmults = [] t_class = [] for tp in tpos: for i,p in enumerate(pos): p = [round(num,2) for num in p] diff = abs(tp-p) if sum(diff) <= 0.03: tinds.append(si[i]) for i in range(1,len(tsites)): tmults.append(tinds[i]-tinds[i-1]) tmults.append(si[-1]-tinds[-1]+1) # # si = [atom.index for atom in z if atom.symbol=='Si'] # o = [atom.index for atom in z if atom.symbol=='O'] # si_pos = z[si].positions # cell = z.cell # distances = get_distances(si_pos,si_pos,cell=cell,pbc=[1,1,1])[1] # # for i in tinds: # orig_ind = si.index(i) # dists = sorted(distances[orig_ind]) # t_class.append([round(num,2) for num in dists]) # # # for i,d in enumerate(t_class): # for j,t in enumerate(distances): # dist = [round(num,2) for num in sorted(t)] # if np.array_equal(dist,d): # dist = [round(num,2) for num in sorted(t)] # d = np.array(d) # dist = np.array(dist) # diff = abs(d - dist) # if sum(diff) <= 0.1: # tmults[i]+=1 n = len(si) sn = sum(tmults) if n != sn: print('Something Went Wrong With T Sites') return tsites, tmults, tinds def get_osites(cif): from ase.geometry import get_distances osites = [] opos = [] z,alllines = fix_cif(cif) start,end,order = get_atom_lines(alllines) for line in alllines[start:end+1]: if 'O' in line: line = line.split() temp_label = line[order[0]] if not any(str.isdigit(c) for c in temp_label): temp_label = line[order[1]] osites.append(temp_label) pos = [float(line[order[2]]),float(line[order[3]]),float(line[order[4]])] opos.append([round(num,2) for num in pos]) opos = np.array(opos) pos = z.get_scaled_positions() oinds = [] omults = [] o_class = [] si = [atom.index for atom in z if atom.symbol=='Si'] o = [atom.index for atom in z if atom.symbol=='O'] o_pos = z[o].get_scaled_positions() for op in opos: for i,p in enumerate(o_pos): p = np.array([round(num,2) for num in p]) diff = abs(op-p) if sum(diff) <= 0.02: oinds.append(o[i]) for i in range(1,len(osites)): omults.append(oinds[i]-oinds[i-1]) omults.append(o[-1]-oinds[-1]+1) # all_pos = z.positions # o_pos = z[o].positions # si_pos = z[si].positions # cell = z.cell # distances = get_distances(o_pos,all_pos,cell=cell,pbc=[1,1,1])[1] # # for i in oinds: # orig_ind = o.index(i) # dists = sorted(distances[orig_ind]) # o_class.append([round(num,2) for num in dists]) # # for i,d in enumerate(o_class): # for j,t in enumerate(distances): # dist = [round(num,2) for num in sorted(t)] # d = np.array(d) # dist = np.array(dist) # diff = abs(d - dist) # if sum(diff) <= 0.05: # omults[i]+=1 n = len(o) sn = sum(omults) if n != sn: print('Something Went Wrong With O Sites') return osites, omults, oinds def read_cif(cif): atoms, alllines = fix_cif(cif) ts,tm,tinds = get_tsites(cif) os,om,oinds = get_osites(cif) return atoms,ts,tm,tinds,os,om,oinds def cif_site_labels(cif): atoms,ts,tm,tinds,os,om,oinds = read_cif(cif) labels = {} for i,t in enumerate(ts): for j in range(tm[i]): labels[tinds[i]+j] = t for i,o in enumerate(os): for j in range(om[i]): labels[oinds[i]+j] = o return labels ''' DEPRECRATED FUNCTIONS''' def float_with_error(x): """ some value in cif accompanies error like "1.234(5) """ if "?" in x: return 0 pos = x.find("(") if pos >= 0: x = x[:pos] return float(x) def get_mults(cif): # read the cif file F = open(cif,"r") alllines = F.readlines() F.close() # Parse out data from the cif file for i,line in enumerate(alllines): if '_cell_length_a' in line: fields = line.split() field = fields[-1] field = float_with_error(field) La = field if '_cell_length_b' in line: fields = line.split() field = fields[-1] field = float_with_error(field) Lb = field if '_cell_length_c' in line: fields = line.split() field = fields[-1] field = float_with_error(field) Lc = field if '_cell_angle_alpha' in line: fields = line.split() field = fields[-1] field = float_with_error(field) alpha = field if '_cell_angle_beta' in line: fields = line.split() field = fields[-1] field = float_with_error(field) beta = field if '_cell_angle_gamma' in line: fields = line.split() field = fields[-1] field = float_with_error(field) gamma = field if '_space_group_symop' in line or '_symmetry_equiv_pos' in line or '_space_group' in line: n = i lastline = len(alllines) loops = [] for i,line in enumerate(alllines): if 'loop' in line: loops.append(i) ops = [] for i in range(n+1,loops[1]): n+=1 line = alllines[i] if 'x' in line or 'X' in line: ops.append(line.replace("'",'')) for i in range(len(ops)): ops[i] = ops[i].replace("0/", "0./") # also for e.g. 10/9 ops[i] = ops[i].replace("1/", "1./") ops[i] = ops[i].replace("2/", "2./") ops[i] = ops[i].replace("3/", "3./") ops[i] = ops[i].replace("4/", "4./") ops[i] = ops[i].replace("5/", "5./") ops[i] = ops[i].replace("6/", "6./") ops[i] = ops[i].replace("7/", "7./") ops[i] = ops[i].replace("8/", "8./") ops[i] = ops[i].replace("9/", "9./") osites = [] tsites = [] atoms = [] for j in range(n,lastline): line = alllines[j] if '_' not in line: fields = line.split() if len(fields) >3: tmp = (fields[0],float(fields[2]),float(fields[3]),float(fields[4])) if 'O' in fields[0]: osites.append(fields[0]) if 'T' in fields[0]: tsites.append(fields[0]) atoms.append(tmp) for i in range(len(atoms)): (name,xn,yn,zn) = atoms[i] xn = (xn + 10.0) % 1.0 yn = (yn + 10.0) % 1.0 zn = (zn + 10.0) % 1.0 atoms[i] = (name,xn,yn,zn) # perfrom symmetry operations label_list = [] symbols = [] positions = [] for i in atoms: label_list.append(i[0]) eps = 0.01 imax = len(atoms) i=0 while (i<imax): label,x,y,z=atoms[i] for op in ops: op = op.replace("'",'') op = op.lower() xn,yn,zn = eval(op) xn = (xn + 10.0) % 1.0 yn = (yn + 10.0) % 1.0 zn = (zn + 10.0) % 1.0 new_atom = True for at in atoms: if (abs(at[1]-xn) < eps and abs(at[2]-yn) < eps and abs(at[3]-zn) < eps): new_atom = False if new_atom: p1 = np.array([at[1],at[2],at[3]]) p2 = np.array([xn,yn,zn]) diff = abs(p1-p2) diff = np.round(diff,2) count = np.count_nonzero(diff) if count ==1 and 1 in diff: new_atom = False if new_atom: atoms.append( (label,xn,yn,zn) ) label_list.append(label) i += 1 imax =len(atoms) #atoms2 = Atoms(symbols,scaled_positions=positions,cell = [La,Lb,Lc,alpha,beta,gamma]) # count up the osits label_list = sorted(label_list) omults = [] for o in osites: count = label_list.count(o) omults.append(count) tmults = [] for t in tsites: count = label_list.count(t) tmults.append(count) return tsites, tmults, osites, omults # MASKED: get_indices function (lines 378-415)
def get_indices(cif): ''' This is a tool that will read a CIF file and return the unique T-sites, their multiplicities, and an example atom index. It also does the same for the unique O-sites in the framework. This tool only works on CIFs that are formatted the same way as the IZA Structure Database CIFs. ''' tsites, tmults, osites, omults = get_mults(cif) f = open(cif,"r") alllines = f.read() f.close() for i, line in enumerate(alllines): if 'IT_coordinate_system_code' in line: fields = line.split() alllines[i] = '_symmetry_space_group_setting {0}'.format(fields[-1]) atoms = read(cif) oinds = [atom.index for atom in atoms if atom.symbol=='O'] index = 0 first_os = [] for i,m in enumerate(omults): first_os.append(oinds[index]) index+=m tinds = [atom.index for atom in atoms if atom.symbol !='O'] index = 0 first_ts = [] for i,m, in enumerate(tmults): first_ts.append(tinds[index]) index+=m return tsites,tmults,first_ts, osites, omults, first_os
378
415
__all__ = ['read_cif','cif_site_labels'] from ase.io import read from ase.spacegroup import spacegroup import sys import os import logging from math import * import numpy as np import pkg_resources import warnings warnings.filterwarnings("ignore") path = '.temp_files/' filepath = pkg_resources.resource_filename(__name__,path) ''' NOTE ABOUT CIF FILE FORMATS: CIFs must include '_symmetry_Int_Taables_number' to be read by ASE. If this is not included please edit your CIF file to include this information. ''' def get_atom_lines(alllines): order = [] for i,line in enumerate(alllines): if '_atom' in line: order.append(line) start = i+1 end = None for i,line in enumerate(alllines[start:]): if len(line.split()) == 0: end = start+i-1 break if not end: end = len(alllines)-1 new_order = [] for i,o in enumerate(order): if 'site_label' in o: new_order.append(i) if 'site_type_symbol' in o: new_order.append(i) if 'fract_x' in o: new_order.append(i) if 'fract_y' in o: new_order.append(i) if 'fract_z' in o: new_order.append(i) return start,end,new_order def fix_cif(cif): f = open(cif,"r") alllines = f.readlines() f.close() for i, line in enumerate(alllines): if 'IT_coordinate_system_code' in line: fields = line.split() alllines[i] = '_symmetry_space_group_setting {0} \n'.format(fields[-1]) if '_atom_site_type_symbol' in line and '_atom_site_label' in alllines[i+1]: alllines[i],alllines[i+1] = alllines[i+1],alllines[i] file_name = cif.rstrip('.cif') temp_file = '{0}/{1}_temp.cif'.format(filepath,file_name.split('/')[-1]) f = open(temp_file,"w") f.writelines(alllines) f.close() atoms = read(temp_file); os.remove(temp_file) return atoms, alllines def get_tsites(cif): from ase.geometry import get_distances tsites = [] tpos = [] z,alllines = fix_cif(cif) si = [atom.index for atom in z if atom.symbol!='O'] start,end,order = get_atom_lines(alllines) for line in alllines[start:end+1]: if 'Si' in line or 'T' in line: line = line.split() temp_label = line[order[0]] if not any(str.isdigit(c) for c in temp_label): temp_label = line[order[1]] if 'Si' in temp_label: temp_label = temp_label.replace('Si','T') tsites.append(temp_label) pos = [float(line[order[2]]),float(line[order[3]]),float(line[order[4]])] tpos.append([round(num,2) for num in pos]) tpos = np.array(tpos) pos = z[si].get_scaled_positions() tinds = [] tmults = [] t_class = [] for tp in tpos: for i,p in enumerate(pos): p = [round(num,2) for num in p] diff = abs(tp-p) if sum(diff) <= 0.03: tinds.append(si[i]) for i in range(1,len(tsites)): tmults.append(tinds[i]-tinds[i-1]) tmults.append(si[-1]-tinds[-1]+1) # # si = [atom.index for atom in z if atom.symbol=='Si'] # o = [atom.index for atom in z if atom.symbol=='O'] # si_pos = z[si].positions # cell = z.cell # distances = get_distances(si_pos,si_pos,cell=cell,pbc=[1,1,1])[1] # # for i in tinds: # orig_ind = si.index(i) # dists = sorted(distances[orig_ind]) # t_class.append([round(num,2) for num in dists]) # # # for i,d in enumerate(t_class): # for j,t in enumerate(distances): # dist = [round(num,2) for num in sorted(t)] # if np.array_equal(dist,d): # dist = [round(num,2) for num in sorted(t)] # d = np.array(d) # dist = np.array(dist) # diff = abs(d - dist) # if sum(diff) <= 0.1: # tmults[i]+=1 n = len(si) sn = sum(tmults) if n != sn: print('Something Went Wrong With T Sites') return tsites, tmults, tinds def get_osites(cif): from ase.geometry import get_distances osites = [] opos = [] z,alllines = fix_cif(cif) start,end,order = get_atom_lines(alllines) for line in alllines[start:end+1]: if 'O' in line: line = line.split() temp_label = line[order[0]] if not any(str.isdigit(c) for c in temp_label): temp_label = line[order[1]] osites.append(temp_label) pos = [float(line[order[2]]),float(line[order[3]]),float(line[order[4]])] opos.append([round(num,2) for num in pos]) opos = np.array(opos) pos = z.get_scaled_positions() oinds = [] omults = [] o_class = [] si = [atom.index for atom in z if atom.symbol=='Si'] o = [atom.index for atom in z if atom.symbol=='O'] o_pos = z[o].get_scaled_positions() for op in opos: for i,p in enumerate(o_pos): p = np.array([round(num,2) for num in p]) diff = abs(op-p) if sum(diff) <= 0.02: oinds.append(o[i]) for i in range(1,len(osites)): omults.append(oinds[i]-oinds[i-1]) omults.append(o[-1]-oinds[-1]+1) # all_pos = z.positions # o_pos = z[o].positions # si_pos = z[si].positions # cell = z.cell # distances = get_distances(o_pos,all_pos,cell=cell,pbc=[1,1,1])[1] # # for i in oinds: # orig_ind = o.index(i) # dists = sorted(distances[orig_ind]) # o_class.append([round(num,2) for num in dists]) # # for i,d in enumerate(o_class): # for j,t in enumerate(distances): # dist = [round(num,2) for num in sorted(t)] # d = np.array(d) # dist = np.array(dist) # diff = abs(d - dist) # if sum(diff) <= 0.05: # omults[i]+=1 n = len(o) sn = sum(omults) if n != sn: print('Something Went Wrong With O Sites') return osites, omults, oinds def read_cif(cif): atoms, alllines = fix_cif(cif) ts,tm,tinds = get_tsites(cif) os,om,oinds = get_osites(cif) return atoms,ts,tm,tinds,os,om,oinds def cif_site_labels(cif): atoms,ts,tm,tinds,os,om,oinds = read_cif(cif) labels = {} for i,t in enumerate(ts): for j in range(tm[i]): labels[tinds[i]+j] = t for i,o in enumerate(os): for j in range(om[i]): labels[oinds[i]+j] = o return labels ''' DEPRECRATED FUNCTIONS''' def float_with_error(x): """ some value in cif accompanies error like "1.234(5) """ if "?" in x: return 0 pos = x.find("(") if pos >= 0: x = x[:pos] return float(x) def get_mults(cif): # read the cif file F = open(cif,"r") alllines = F.readlines() F.close() # Parse out data from the cif file for i,line in enumerate(alllines): if '_cell_length_a' in line: fields = line.split() field = fields[-1] field = float_with_error(field) La = field if '_cell_length_b' in line: fields = line.split() field = fields[-1] field = float_with_error(field) Lb = field if '_cell_length_c' in line: fields = line.split() field = fields[-1] field = float_with_error(field) Lc = field if '_cell_angle_alpha' in line: fields = line.split() field = fields[-1] field = float_with_error(field) alpha = field if '_cell_angle_beta' in line: fields = line.split() field = fields[-1] field = float_with_error(field) beta = field if '_cell_angle_gamma' in line: fields = line.split() field = fields[-1] field = float_with_error(field) gamma = field if '_space_group_symop' in line or '_symmetry_equiv_pos' in line or '_space_group' in line: n = i lastline = len(alllines) loops = [] for i,line in enumerate(alllines): if 'loop' in line: loops.append(i) ops = [] for i in range(n+1,loops[1]): n+=1 line = alllines[i] if 'x' in line or 'X' in line: ops.append(line.replace("'",'')) for i in range(len(ops)): ops[i] = ops[i].replace("0/", "0./") # also for e.g. 10/9 ops[i] = ops[i].replace("1/", "1./") ops[i] = ops[i].replace("2/", "2./") ops[i] = ops[i].replace("3/", "3./") ops[i] = ops[i].replace("4/", "4./") ops[i] = ops[i].replace("5/", "5./") ops[i] = ops[i].replace("6/", "6./") ops[i] = ops[i].replace("7/", "7./") ops[i] = ops[i].replace("8/", "8./") ops[i] = ops[i].replace("9/", "9./") osites = [] tsites = [] atoms = [] for j in range(n,lastline): line = alllines[j] if '_' not in line: fields = line.split() if len(fields) >3: tmp = (fields[0],float(fields[2]),float(fields[3]),float(fields[4])) if 'O' in fields[0]: osites.append(fields[0]) if 'T' in fields[0]: tsites.append(fields[0]) atoms.append(tmp) for i in range(len(atoms)): (name,xn,yn,zn) = atoms[i] xn = (xn + 10.0) % 1.0 yn = (yn + 10.0) % 1.0 zn = (zn + 10.0) % 1.0 atoms[i] = (name,xn,yn,zn) # perfrom symmetry operations label_list = [] symbols = [] positions = [] for i in atoms: label_list.append(i[0]) eps = 0.01 imax = len(atoms) i=0 while (i<imax): label,x,y,z=atoms[i] for op in ops: op = op.replace("'",'') op = op.lower() xn,yn,zn = eval(op) xn = (xn + 10.0) % 1.0 yn = (yn + 10.0) % 1.0 zn = (zn + 10.0) % 1.0 new_atom = True for at in atoms: if (abs(at[1]-xn) < eps and abs(at[2]-yn) < eps and abs(at[3]-zn) < eps): new_atom = False if new_atom: p1 = np.array([at[1],at[2],at[3]]) p2 = np.array([xn,yn,zn]) diff = abs(p1-p2) diff = np.round(diff,2) count = np.count_nonzero(diff) if count ==1 and 1 in diff: new_atom = False if new_atom: atoms.append( (label,xn,yn,zn) ) label_list.append(label) i += 1 imax =len(atoms) #atoms2 = Atoms(symbols,scaled_positions=positions,cell = [La,Lb,Lc,alpha,beta,gamma]) # count up the osits label_list = sorted(label_list) omults = [] for o in osites: count = label_list.count(o) omults.append(count) tmults = [] for t in tsites: count = label_list.count(t) tmults.append(count) return tsites, tmults, osites, omults def get_indices(cif): ''' This is a tool that will read a CIF file and return the unique T-sites, their multiplicities, and an example atom index. It also does the same for the unique O-sites in the framework. This tool only works on CIFs that are formatted the same way as the IZA Structure Database CIFs. ''' tsites, tmults, osites, omults = get_mults(cif) f = open(cif,"r") alllines = f.read() f.close() for i, line in enumerate(alllines): if 'IT_coordinate_system_code' in line: fields = line.split() alllines[i] = '_symmetry_space_group_setting {0}'.format(fields[-1]) atoms = read(cif) oinds = [atom.index for atom in atoms if atom.symbol=='O'] index = 0 first_os = [] for i,m in enumerate(omults): first_os.append(oinds[index]) index+=m tinds = [atom.index for atom in atoms if atom.symbol !='O'] index = 0 first_ts = [] for i,m, in enumerate(tmults): first_ts.append(tinds[index]) index+=m return tsites,tmults,first_ts, osites, omults, first_os
from_service_account_file
Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TextToSpeechClient: The constructed client.
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.cloud.texttospeech.v1beta1 TextToSpeech API.""" import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.grpc_helpers import grpc from google.cloud.texttospeech_v1beta1.gapic import enums from google.cloud.texttospeech_v1beta1.gapic import text_to_speech_client_config from google.cloud.texttospeech_v1beta1.gapic.transports import ( text_to_speech_grpc_transport, ) from google.cloud.texttospeech_v1beta1.proto import cloud_tts_pb2 from google.cloud.texttospeech_v1beta1.proto import cloud_tts_pb2_grpc _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( "google-cloud-texttospeech" ).version class TextToSpeechClient(object): """Service that implements Google Cloud Text-to-Speech API.""" SERVICE_ADDRESS = "texttospeech.googleapis.com:443" """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = "google.cloud.texttospeech.v1beta1.TextToSpeech" # MASKED: from_service_account_file function (lines 51-67) from_service_account_json = from_service_account_file def __init__( self, transport=None, channel=None, credentials=None, client_config=None, client_info=None, ): """Constructor. Args: transport (Union[~.TextToSpeechGrpcTransport, Callable[[~.Credentials, type], ~.TextToSpeechGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn( "The `client_config` argument is deprecated.", PendingDeprecationWarning, stacklevel=2, ) else: client_config = text_to_speech_client_config.config if channel: warnings.warn( "The `channel` argument is deprecated; use " "`transport` instead.", PendingDeprecationWarning, stacklevel=2, ) # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=text_to_speech_grpc_transport.TextToSpeechGrpcTransport, ) else: if credentials: raise ValueError( "Received both a transport instance and " "credentials; these are mutually exclusive." ) self.transport = transport else: self.transport = text_to_speech_grpc_transport.TextToSpeechGrpcTransport( address=self.SERVICE_ADDRESS, channel=channel, credentials=credentials ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config["interfaces"][self._INTERFACE_NAME] ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def list_voices( self, language_code=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Returns a list of ``Voice`` supported for synthesis. Example: >>> from google.cloud import texttospeech_v1beta1 >>> >>> client = texttospeech_v1beta1.TextToSpeechClient() >>> >>> response = client.list_voices() Args: language_code (str): Optional (but recommended) `BCP-47 <https://www.rfc-editor.org/rfc/bcp/bcp47.txt>`__ language tag. If specified, the ListVoices call will only return voices that can be used to synthesize this language\_code. E.g. when specifying "en-NZ", you will get supported "en-*" voices; when specifying "no", you will get supported "no-*" (Norwegian) and "nb-*" (Norwegian Bokmal) voices; specifying "zh" will also get supported "cmn-*" voices; specifying "zh-hk" will also get supported "yue-\*" voices. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.texttospeech_v1beta1.types.ListVoicesResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "list_voices" not in self._inner_api_calls: self._inner_api_calls[ "list_voices" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.list_voices, default_retry=self._method_configs["ListVoices"].retry, default_timeout=self._method_configs["ListVoices"].timeout, client_info=self._client_info, ) request = cloud_tts_pb2.ListVoicesRequest(language_code=language_code) return self._inner_api_calls["list_voices"]( request, retry=retry, timeout=timeout, metadata=metadata ) def synthesize_speech( self, input_, voice, audio_config, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Synthesizes speech synchronously: receive results after all text input has been processed. Example: >>> from google.cloud import texttospeech_v1beta1 >>> >>> client = texttospeech_v1beta1.TextToSpeechClient() >>> >>> # TODO: Initialize `input_`: >>> input_ = {} >>> >>> # TODO: Initialize `voice`: >>> voice = {} >>> >>> # TODO: Initialize `audio_config`: >>> audio_config = {} >>> >>> response = client.synthesize_speech(input_, voice, audio_config) Args: input_ (Union[dict, ~google.cloud.texttospeech_v1beta1.types.SynthesisInput]): Required. The Synthesizer requires either plain text or SSML as input. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.SynthesisInput` voice (Union[dict, ~google.cloud.texttospeech_v1beta1.types.VoiceSelectionParams]): Required. The desired voice of the synthesized audio. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.VoiceSelectionParams` audio_config (Union[dict, ~google.cloud.texttospeech_v1beta1.types.AudioConfig]): Required. The configuration of the synthesized audio. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.AudioConfig` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.texttospeech_v1beta1.types.SynthesizeSpeechResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "synthesize_speech" not in self._inner_api_calls: self._inner_api_calls[ "synthesize_speech" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.synthesize_speech, default_retry=self._method_configs["SynthesizeSpeech"].retry, default_timeout=self._method_configs["SynthesizeSpeech"].timeout, client_info=self._client_info, ) request = cloud_tts_pb2.SynthesizeSpeechRequest( input=input_, voice=voice, audio_config=audio_config ) return self._inner_api_calls["synthesize_speech"]( request, retry=retry, timeout=timeout, metadata=metadata )
@classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TextToSpeechClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file(filename) kwargs["credentials"] = credentials return cls(*args, **kwargs)
51
67
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.cloud.texttospeech.v1beta1 TextToSpeech API.""" import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.grpc_helpers import grpc from google.cloud.texttospeech_v1beta1.gapic import enums from google.cloud.texttospeech_v1beta1.gapic import text_to_speech_client_config from google.cloud.texttospeech_v1beta1.gapic.transports import ( text_to_speech_grpc_transport, ) from google.cloud.texttospeech_v1beta1.proto import cloud_tts_pb2 from google.cloud.texttospeech_v1beta1.proto import cloud_tts_pb2_grpc _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( "google-cloud-texttospeech" ).version class TextToSpeechClient(object): """Service that implements Google Cloud Text-to-Speech API.""" SERVICE_ADDRESS = "texttospeech.googleapis.com:443" """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = "google.cloud.texttospeech.v1beta1.TextToSpeech" @classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TextToSpeechClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file(filename) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file def __init__( self, transport=None, channel=None, credentials=None, client_config=None, client_info=None, ): """Constructor. Args: transport (Union[~.TextToSpeechGrpcTransport, Callable[[~.Credentials, type], ~.TextToSpeechGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn( "The `client_config` argument is deprecated.", PendingDeprecationWarning, stacklevel=2, ) else: client_config = text_to_speech_client_config.config if channel: warnings.warn( "The `channel` argument is deprecated; use " "`transport` instead.", PendingDeprecationWarning, stacklevel=2, ) # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=text_to_speech_grpc_transport.TextToSpeechGrpcTransport, ) else: if credentials: raise ValueError( "Received both a transport instance and " "credentials; these are mutually exclusive." ) self.transport = transport else: self.transport = text_to_speech_grpc_transport.TextToSpeechGrpcTransport( address=self.SERVICE_ADDRESS, channel=channel, credentials=credentials ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config["interfaces"][self._INTERFACE_NAME] ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def list_voices( self, language_code=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Returns a list of ``Voice`` supported for synthesis. Example: >>> from google.cloud import texttospeech_v1beta1 >>> >>> client = texttospeech_v1beta1.TextToSpeechClient() >>> >>> response = client.list_voices() Args: language_code (str): Optional (but recommended) `BCP-47 <https://www.rfc-editor.org/rfc/bcp/bcp47.txt>`__ language tag. If specified, the ListVoices call will only return voices that can be used to synthesize this language\_code. E.g. when specifying "en-NZ", you will get supported "en-*" voices; when specifying "no", you will get supported "no-*" (Norwegian) and "nb-*" (Norwegian Bokmal) voices; specifying "zh" will also get supported "cmn-*" voices; specifying "zh-hk" will also get supported "yue-\*" voices. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.texttospeech_v1beta1.types.ListVoicesResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "list_voices" not in self._inner_api_calls: self._inner_api_calls[ "list_voices" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.list_voices, default_retry=self._method_configs["ListVoices"].retry, default_timeout=self._method_configs["ListVoices"].timeout, client_info=self._client_info, ) request = cloud_tts_pb2.ListVoicesRequest(language_code=language_code) return self._inner_api_calls["list_voices"]( request, retry=retry, timeout=timeout, metadata=metadata ) def synthesize_speech( self, input_, voice, audio_config, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Synthesizes speech synchronously: receive results after all text input has been processed. Example: >>> from google.cloud import texttospeech_v1beta1 >>> >>> client = texttospeech_v1beta1.TextToSpeechClient() >>> >>> # TODO: Initialize `input_`: >>> input_ = {} >>> >>> # TODO: Initialize `voice`: >>> voice = {} >>> >>> # TODO: Initialize `audio_config`: >>> audio_config = {} >>> >>> response = client.synthesize_speech(input_, voice, audio_config) Args: input_ (Union[dict, ~google.cloud.texttospeech_v1beta1.types.SynthesisInput]): Required. The Synthesizer requires either plain text or SSML as input. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.SynthesisInput` voice (Union[dict, ~google.cloud.texttospeech_v1beta1.types.VoiceSelectionParams]): Required. The desired voice of the synthesized audio. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.VoiceSelectionParams` audio_config (Union[dict, ~google.cloud.texttospeech_v1beta1.types.AudioConfig]): Required. The configuration of the synthesized audio. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.texttospeech_v1beta1.types.AudioConfig` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.texttospeech_v1beta1.types.SynthesizeSpeechResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "synthesize_speech" not in self._inner_api_calls: self._inner_api_calls[ "synthesize_speech" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.synthesize_speech, default_retry=self._method_configs["SynthesizeSpeech"].retry, default_timeout=self._method_configs["SynthesizeSpeech"].timeout, client_info=self._client_info, ) request = cloud_tts_pb2.SynthesizeSpeechRequest( input=input_, voice=voice, audio_config=audio_config ) return self._inner_api_calls["synthesize_speech"]( request, retry=retry, timeout=timeout, metadata=metadata )
keras_convert_hdf5_model_to_tf_saved_model
Converts Keras HDF5 model to Tensorflow SavedModel format. Args: model_path: Keras model in HDF5 format. converted_model_path: Keras model in Tensorflow SavedModel format. Annotations: author: Alexey Volkov <[email protected]>
from kfp.components import create_component_from_func, InputPath, OutputPath # MASKED: keras_convert_hdf5_model_to_tf_saved_model function (lines 3-20) if __name__ == '__main__': keras_convert_hdf5_model_to_tf_saved_model_op = create_component_from_func( keras_convert_hdf5_model_to_tf_saved_model, base_image='tensorflow/tensorflow:2.3.0', packages_to_install=['h5py==2.10.0'], output_component_file='component.yaml', annotations={ "author": "Alexey Volkov <[email protected]>", "canonical_location": "https://raw.githubusercontent.com/Ark-kun/pipeline_components/master/components/_converters/KerasModelHdf5/to_TensorflowSavedModel/component.yaml", }, )
def keras_convert_hdf5_model_to_tf_saved_model( model_path: InputPath('KerasModelHdf5'), converted_model_path: OutputPath('TensorflowSavedModel'), ): '''Converts Keras HDF5 model to Tensorflow SavedModel format. Args: model_path: Keras model in HDF5 format. converted_model_path: Keras model in Tensorflow SavedModel format. Annotations: author: Alexey Volkov <[email protected]> ''' from pathlib import Path from tensorflow import keras model = keras.models.load_model(filepath=model_path) keras.models.save_model(model=model, filepath=converted_model_path, save_format='tf')
3
20
from kfp.components import create_component_from_func, InputPath, OutputPath def keras_convert_hdf5_model_to_tf_saved_model( model_path: InputPath('KerasModelHdf5'), converted_model_path: OutputPath('TensorflowSavedModel'), ): '''Converts Keras HDF5 model to Tensorflow SavedModel format. Args: model_path: Keras model in HDF5 format. converted_model_path: Keras model in Tensorflow SavedModel format. Annotations: author: Alexey Volkov <[email protected]> ''' from pathlib import Path from tensorflow import keras model = keras.models.load_model(filepath=model_path) keras.models.save_model(model=model, filepath=converted_model_path, save_format='tf') if __name__ == '__main__': keras_convert_hdf5_model_to_tf_saved_model_op = create_component_from_func( keras_convert_hdf5_model_to_tf_saved_model, base_image='tensorflow/tensorflow:2.3.0', packages_to_install=['h5py==2.10.0'], output_component_file='component.yaml', annotations={ "author": "Alexey Volkov <[email protected]>", "canonical_location": "https://raw.githubusercontent.com/Ark-kun/pipeline_components/master/components/_converters/KerasModelHdf5/to_TensorflowSavedModel/component.yaml", }, )
filter_with_CNNPatientUI
Check the list, only retain the relevant records with matching PatientID are retained. :param dataset: CNBPIDs & record ID correspondence list. :param CNNPatientUI: :return:
import sys from query_common import filter_records, ProjectMixins from redcap import Project # note this is from PyCap.redcap from typing import List """ This class of functions are responsible of retrieving relevant data structures from the CNFUN tables """ class CNFUN_project(ProjectMixins): """ One baby can have many admissions CaseIDs. One hospital record can have many CaseIDs. One baby has only one hospital record number. """ def __init__( self, Token, URL, get_all_field=False, ): """ Create a project using PyCap :param Token: :param URL: :return: """ # Several key properties we'll use throughout self.project = Project(URL, Token) # These are very important ID fields from the fields_keyid = ["patientID", "cf_p_cnnpatientui"] # For now, make sure to onyl get the data related to these key ids to reduce load time self.data = self.get_fields(fields_keyid) # if specified, get all the records. if get_all_field: self.data = self.project.export_records() # MASKED: filter_with_CNNPatientUI function (lines 39-56) def get_PatientID_with_CNNPatientUI(self, CNNPatientUI: str or List[str]): """ PatientID has 1:1 correspondence with CNNPatientUI which is the same as PatientUI from CNN Baby table. :return: """ # Listify the CNNPatientUI if type(CNNPatientUI) is str: CNNPatientUI = [CNNPatientUI] # Filter with the information list_filtered_dict = self.filter_with_CNNPatientUI(CNNPatientUI) # Aggregate the list_PatientID list_PatientID = [] for case in list_filtered_dict: list_PatientID.append(case["patientid"]) return list_PatientID def get_records_CNFUN(self, PatientID: str or List[str]): """ Retrieve the cases based on their INDEX which is the :param cases: :return: """ if type(PatientID) is str: PatientID = [PatientID] cases_data = self.project.export_records(records=PatientID) return cases_data
def filter_with_CNNPatientUI(self, CNNPatientUI: str or List[str]): """ Check the list, only retain the relevant records with matching PatientID are retained. :param dataset: CNBPIDs & record ID correspondence list. :param CNNPatientUI: :return: """ list_filtered = None filtered_field = "cf_p_cnnpatientui" # Handling when babyIDs is string instead of list (allowing batch function). if type(CNNPatientUI) is str: CNNPatientUI = [CNNPatientUI] list_filtered = filter_records(self.data, filtered_field, CNNPatientUI) return list_filtered
39
56
import sys from query_common import filter_records, ProjectMixins from redcap import Project # note this is from PyCap.redcap from typing import List """ This class of functions are responsible of retrieving relevant data structures from the CNFUN tables """ class CNFUN_project(ProjectMixins): """ One baby can have many admissions CaseIDs. One hospital record can have many CaseIDs. One baby has only one hospital record number. """ def __init__( self, Token, URL, get_all_field=False, ): """ Create a project using PyCap :param Token: :param URL: :return: """ # Several key properties we'll use throughout self.project = Project(URL, Token) # These are very important ID fields from the fields_keyid = ["patientID", "cf_p_cnnpatientui"] # For now, make sure to onyl get the data related to these key ids to reduce load time self.data = self.get_fields(fields_keyid) # if specified, get all the records. if get_all_field: self.data = self.project.export_records() def filter_with_CNNPatientUI(self, CNNPatientUI: str or List[str]): """ Check the list, only retain the relevant records with matching PatientID are retained. :param dataset: CNBPIDs & record ID correspondence list. :param CNNPatientUI: :return: """ list_filtered = None filtered_field = "cf_p_cnnpatientui" # Handling when babyIDs is string instead of list (allowing batch function). if type(CNNPatientUI) is str: CNNPatientUI = [CNNPatientUI] list_filtered = filter_records(self.data, filtered_field, CNNPatientUI) return list_filtered def get_PatientID_with_CNNPatientUI(self, CNNPatientUI: str or List[str]): """ PatientID has 1:1 correspondence with CNNPatientUI which is the same as PatientUI from CNN Baby table. :return: """ # Listify the CNNPatientUI if type(CNNPatientUI) is str: CNNPatientUI = [CNNPatientUI] # Filter with the information list_filtered_dict = self.filter_with_CNNPatientUI(CNNPatientUI) # Aggregate the list_PatientID list_PatientID = [] for case in list_filtered_dict: list_PatientID.append(case["patientid"]) return list_PatientID def get_records_CNFUN(self, PatientID: str or List[str]): """ Retrieve the cases based on their INDEX which is the :param cases: :return: """ if type(PatientID) is str: PatientID = [PatientID] cases_data = self.project.export_records(records=PatientID) return cases_data
_calculate_reciprocal_rank
Calculate the reciprocal rank for a given hypothesis and reference Params: hypothesis_ids: Iterator of hypothesis ids (as numpy array) ordered by its relevance reference_id: Reference id (as a integer) of the correct id of response Returns: reciprocal rank
# Import dependencies # Math/Torch import numpy as np import torch.nn as nn # Typing from typing import List # Instantiate class class MRR(nn.Module): """Compute MRR metric (Mean reciprocal rank)""" def __init__(self, max_rank = 10): super(MRR, self).__init__() # Set max mrr rank self.max_rank = max_rank # MASKED: _calculate_reciprocal_rank function (lines 20-47) def forward(self, batch_hypothesis_ids: List[np.ndarray], batch_reference_id: List[int]) -> float: """Score the mean reciprocal rank for the batch Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> batch_hypothesis_ids = [[1, 0, 2], [0, 2, 1], [1, 0, 2]] >>> batch_reference_id = [2, 2, 1] >>> mrr = MRR() >>> mrr(batch_hypothesis_ids, batch_reference_id) 0.61111111111111105 Args: batch_hypothesis_ids: Batch of hypothesis ids (as numpy array) ordered by its relevance reference_id: Batch of reference id (as a integer) of the correct id of response Returns: Mean reciprocal rank (MRR) """ # Assure batches have same length assert len(batch_hypothesis_ids) == len(batch_reference_id), "Hypothesis batch and reference batch must have same length." # Size of batch batch_size = len(batch_hypothesis_ids) # MRR to be calculated mrr = 0 for hypothesis_ids, reference_id in zip(batch_hypothesis_ids, batch_reference_id): # Calculate reciprocal rank reciprocal_rank = self._calculate_reciprocal_rank(hypothesis_ids, reference_id) # Add to MRR mrr += reciprocal_rank/batch_size return mrr
def _calculate_reciprocal_rank(self, hypothesis_ids: np.ndarray, reference_id: int) -> float: """Calculate the reciprocal rank for a given hypothesis and reference Params: hypothesis_ids: Iterator of hypothesis ids (as numpy array) ordered by its relevance reference_id: Reference id (as a integer) of the correct id of response Returns: reciprocal rank """ # Assure hypothesis_ids is a numpy array hypothesis_ids = np.asarray(hypothesis_ids) # Calculate rank try: rank = np.where(hypothesis_ids == reference_id)[0][0] + 1 except IndexError: rank = self.max_rank + 1 # Rank grater then max_rank is set to zero if rank > self.max_rank: reciprocal_rank = 0.0 else: # Calculate reciprocal rank reciprocal_rank = 1. / rank return reciprocal_rank
20
47
# Import dependencies # Math/Torch import numpy as np import torch.nn as nn # Typing from typing import List # Instantiate class class MRR(nn.Module): """Compute MRR metric (Mean reciprocal rank)""" def __init__(self, max_rank = 10): super(MRR, self).__init__() # Set max mrr rank self.max_rank = max_rank def _calculate_reciprocal_rank(self, hypothesis_ids: np.ndarray, reference_id: int) -> float: """Calculate the reciprocal rank for a given hypothesis and reference Params: hypothesis_ids: Iterator of hypothesis ids (as numpy array) ordered by its relevance reference_id: Reference id (as a integer) of the correct id of response Returns: reciprocal rank """ # Assure hypothesis_ids is a numpy array hypothesis_ids = np.asarray(hypothesis_ids) # Calculate rank try: rank = np.where(hypothesis_ids == reference_id)[0][0] + 1 except IndexError: rank = self.max_rank + 1 # Rank grater then max_rank is set to zero if rank > self.max_rank: reciprocal_rank = 0.0 else: # Calculate reciprocal rank reciprocal_rank = 1. / rank return reciprocal_rank def forward(self, batch_hypothesis_ids: List[np.ndarray], batch_reference_id: List[int]) -> float: """Score the mean reciprocal rank for the batch Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> batch_hypothesis_ids = [[1, 0, 2], [0, 2, 1], [1, 0, 2]] >>> batch_reference_id = [2, 2, 1] >>> mrr = MRR() >>> mrr(batch_hypothesis_ids, batch_reference_id) 0.61111111111111105 Args: batch_hypothesis_ids: Batch of hypothesis ids (as numpy array) ordered by its relevance reference_id: Batch of reference id (as a integer) of the correct id of response Returns: Mean reciprocal rank (MRR) """ # Assure batches have same length assert len(batch_hypothesis_ids) == len(batch_reference_id), "Hypothesis batch and reference batch must have same length." # Size of batch batch_size = len(batch_hypothesis_ids) # MRR to be calculated mrr = 0 for hypothesis_ids, reference_id in zip(batch_hypothesis_ids, batch_reference_id): # Calculate reciprocal rank reciprocal_rank = self._calculate_reciprocal_rank(hypothesis_ids, reference_id) # Add to MRR mrr += reciprocal_rank/batch_size return mrr
prepare_for_launch
Load config, figure out working directory, create runner. - when args.config_file is empty, returned cfg will be the default one - returned output_dir will always be non empty, args.output_dir has higher priority than cfg.OUTPUT_DIR.
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import logging import os import time import detectron2.utils.comm as comm import torch from d2go.config import ( CfgNode as CN, auto_scale_world_size, reroute_config_path, temp_defrost, ) from d2go.distributed import get_local_rank, get_num_processes_per_machine from d2go.runner import GeneralizedRCNNRunner, create_runner from d2go.utils.launch_environment import get_launch_environment from detectron2.utils.collect_env import collect_env_info from detectron2.utils.logger import setup_logger from detectron2.utils.serialize import PicklableWrapper from d2go.utils.helper import run_once from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.py import FolderLock, MultiprocessingPdb, post_mortem_if_fail logger = logging.getLogger(__name__) def basic_argument_parser( distributed=True, requires_config_file=True, requires_output_dir=True, ): """ Basic cli tool parser for Detectron2Go binaries """ parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--runner", type=str, default="d2go.runner.GeneralizedRCNNRunner", help="Full class name, i.e. (package.)module.class", ) parser.add_argument( "--config-file", help="path to config file", default="", required=requires_config_file, metavar="FILE", ) parser.add_argument( "--output-dir", help="When given, this will override the OUTPUT_DIR in the config-file", required=requires_output_dir, default=None, type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) if distributed: parser.add_argument( "--num-processes", type=int, default=1, help="number of gpus per machine" ) parser.add_argument("--num-machines", type=int, default=1) parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)", ) parser.add_argument( "--dist-url", default="file:///tmp/d2go_dist_file_{}".format(time.time()) ) parser.add_argument("--dist-backend", type=str, default="NCCL") if not requires_config_file: # NOTE if not passing yaml file, user should explicitly set the # following args, and use `opts` for non-common usecase. parser.add_argument( "--datasets", type=str, nargs="+", required=True, help="cfg.DATASETS.TEST", ) parser.add_argument( "--min_size", type=int, required=True, help="cfg.INPUT.MIN_SIZE_TEST", ) parser.add_argument( "--max_size", type=int, required=True, help="cfg.INPUT.MAX_SIZE_TEST", ) return parser return parser def create_cfg_from_cli_args(args, default_cfg): """ Instead of loading from defaults.py, this binary only includes necessary configs building from scratch, and overrides them from args. There're two levels of config: _C: the config system used by this binary, which is a sub-set of training config, override by configurable_cfg. It can also be override by args.opts for convinience. configurable_cfg: common configs that user should explicitly specify in the args. """ _C = CN() _C.INPUT = default_cfg.INPUT _C.DATASETS = default_cfg.DATASETS _C.DATALOADER = default_cfg.DATALOADER _C.TEST = default_cfg.TEST if hasattr(default_cfg, "D2GO_DATA"): _C.D2GO_DATA = default_cfg.D2GO_DATA if hasattr(default_cfg, "TENSORBOARD"): _C.TENSORBOARD = default_cfg.TENSORBOARD # NOTE configs below might not be necessary, but must add to make code work _C.MODEL = CN() _C.MODEL.META_ARCHITECTURE = default_cfg.MODEL.META_ARCHITECTURE _C.MODEL.MASK_ON = default_cfg.MODEL.MASK_ON _C.MODEL.KEYPOINT_ON = default_cfg.MODEL.KEYPOINT_ON _C.MODEL.LOAD_PROPOSALS = default_cfg.MODEL.LOAD_PROPOSALS assert _C.MODEL.LOAD_PROPOSALS is False, "caffe2 model doesn't support" _C.OUTPUT_DIR = args.output_dir configurable_cfg = [ "DATASETS.TEST", args.datasets, "INPUT.MIN_SIZE_TEST", args.min_size, "INPUT.MAX_SIZE_TEST", args.max_size, ] cfg = _C.clone() cfg.merge_from_list(configurable_cfg) cfg.merge_from_list(args.opts) return cfg # MASKED: prepare_for_launch function (lines 157-179) def setup_after_launch(cfg, output_dir, runner): """ Set things up after entering DDP, including - creating working directory - setting up logger - logging environment - initializing runner """ create_dir_on_global_main_process(output_dir) comm.synchronize() setup_loggers(output_dir) cfg.freeze() if cfg.OUTPUT_DIR != output_dir: with temp_defrost(cfg): logger.warning( "Override cfg.OUTPUT_DIR ({}) to be the same as output_dir {}".format( cfg.OUTPUT_DIR, output_dir ) ) cfg.OUTPUT_DIR = output_dir logger.info("Initializing runner ...") runner = initialize_runner(runner, cfg) log_info(cfg, runner) dump_cfg(cfg, os.path.join(output_dir, "config.yaml")) auto_scale_world_size(cfg, new_world_size=comm.get_world_size()) @run_once() def setup_loggers(output_dir, color=None): if not color: color = get_launch_environment() == "local" d2_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="detectron2", abbrev_name="d2", ) fvcore_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="fvcore", ) d2go_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="d2go", abbrev_name="d2go", ) mobile_cv_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="mobile_cv", abbrev_name="mobile_cv", ) # NOTE: all above loggers have FileHandler pointing to the same file as d2_logger. # Those files are opened upon creation, but it seems fine in 'a' mode. # NOTE: the root logger might has been configured by other applications, # since this already sub-top level, just don't propagate to root. d2_logger.propagate = False fvcore_logger.propagate = False d2go_logger.propagate = False mobile_cv_logger.propagate = False def log_info(cfg, runner): num_processes = get_num_processes_per_machine() logger.info( "Using {} processes per machine. Rank of current process: {}".format( num_processes, comm.get_rank() ) ) logger.info("Environment info:\n" + collect_env_info()) logger.info("Running with full config:\n{}".format(cfg)) logger.info("Running with runner: {}".format(runner)) def dump_cfg(cfg, path): if comm.is_main_process(): with PathManager.open(path, "w") as f: f.write(cfg.dump()) logger.info("Full config saved to {}".format(path)) def create_dir_on_local_main_process(dir): if get_local_rank() == 0 and dir: PathManager.mkdirs(dir) def create_dir_on_global_main_process(dir): if comm.get_rank() == 0 and dir: PathManager.mkdirs(dir) def initialize_runner(runner, cfg): runner = runner or GeneralizedRCNNRunner() runner._initialize(cfg) return runner def caffe2_global_init(logging_print_net_summary=0, num_threads=None): if num_threads is None: if get_num_processes_per_machine() > 1: # by default use single thread when DDP with multiple processes num_threads = 1 else: # GlobalInit will clean PyTorch's num_threads and set it to 1, # thus keep PyTorch's default value to make it truly default. num_threads = torch.get_num_threads() if not get_local_rank() == 0: logging_print_net_summary = 0 # only enable for local main process from caffe2.python import workspace workspace.GlobalInit( [ "caffe2", "--caffe2_log_level=2", "--caffe2_logging_print_net_summary={}".format(logging_print_net_summary), "--caffe2_omp_num_threads={}".format(num_threads), "--caffe2_mkl_num_threads={}".format(num_threads), ] ) logger.info("Using {} threads after GlobalInit".format(torch.get_num_threads())) def post_mortem_if_fail_for_main(main_func): def new_main_func(cfg, output_dir, *args, **kwargs): pdb_ = ( MultiprocessingPdb(FolderLock(output_dir)) if comm.get_world_size() > 1 else None # fallback to use normal pdb for single process ) return post_mortem_if_fail(pdb_)(main_func)(cfg, output_dir, *args, **kwargs) return PicklableWrapper(new_main_func)
def prepare_for_launch(args): """ Load config, figure out working directory, create runner. - when args.config_file is empty, returned cfg will be the default one - returned output_dir will always be non empty, args.output_dir has higher priority than cfg.OUTPUT_DIR. """ print(args) runner = create_runner(args.runner) cfg = runner.get_default_cfg() if args.config_file: with PathManager.open(reroute_config_path(args.config_file), "r") as f: print("Loaded config file {}:\n{}".format(args.config_file, f.read())) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) else: cfg = create_cfg_from_cli_args(args, default_cfg=cfg) cfg.freeze() assert args.output_dir or args.config_file output_dir = args.output_dir or cfg.OUTPUT_DIR return cfg, output_dir, runner
157
179
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import logging import os import time import detectron2.utils.comm as comm import torch from d2go.config import ( CfgNode as CN, auto_scale_world_size, reroute_config_path, temp_defrost, ) from d2go.distributed import get_local_rank, get_num_processes_per_machine from d2go.runner import GeneralizedRCNNRunner, create_runner from d2go.utils.launch_environment import get_launch_environment from detectron2.utils.collect_env import collect_env_info from detectron2.utils.logger import setup_logger from detectron2.utils.serialize import PicklableWrapper from d2go.utils.helper import run_once from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.py import FolderLock, MultiprocessingPdb, post_mortem_if_fail logger = logging.getLogger(__name__) def basic_argument_parser( distributed=True, requires_config_file=True, requires_output_dir=True, ): """ Basic cli tool parser for Detectron2Go binaries """ parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--runner", type=str, default="d2go.runner.GeneralizedRCNNRunner", help="Full class name, i.e. (package.)module.class", ) parser.add_argument( "--config-file", help="path to config file", default="", required=requires_config_file, metavar="FILE", ) parser.add_argument( "--output-dir", help="When given, this will override the OUTPUT_DIR in the config-file", required=requires_output_dir, default=None, type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) if distributed: parser.add_argument( "--num-processes", type=int, default=1, help="number of gpus per machine" ) parser.add_argument("--num-machines", type=int, default=1) parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)", ) parser.add_argument( "--dist-url", default="file:///tmp/d2go_dist_file_{}".format(time.time()) ) parser.add_argument("--dist-backend", type=str, default="NCCL") if not requires_config_file: # NOTE if not passing yaml file, user should explicitly set the # following args, and use `opts` for non-common usecase. parser.add_argument( "--datasets", type=str, nargs="+", required=True, help="cfg.DATASETS.TEST", ) parser.add_argument( "--min_size", type=int, required=True, help="cfg.INPUT.MIN_SIZE_TEST", ) parser.add_argument( "--max_size", type=int, required=True, help="cfg.INPUT.MAX_SIZE_TEST", ) return parser return parser def create_cfg_from_cli_args(args, default_cfg): """ Instead of loading from defaults.py, this binary only includes necessary configs building from scratch, and overrides them from args. There're two levels of config: _C: the config system used by this binary, which is a sub-set of training config, override by configurable_cfg. It can also be override by args.opts for convinience. configurable_cfg: common configs that user should explicitly specify in the args. """ _C = CN() _C.INPUT = default_cfg.INPUT _C.DATASETS = default_cfg.DATASETS _C.DATALOADER = default_cfg.DATALOADER _C.TEST = default_cfg.TEST if hasattr(default_cfg, "D2GO_DATA"): _C.D2GO_DATA = default_cfg.D2GO_DATA if hasattr(default_cfg, "TENSORBOARD"): _C.TENSORBOARD = default_cfg.TENSORBOARD # NOTE configs below might not be necessary, but must add to make code work _C.MODEL = CN() _C.MODEL.META_ARCHITECTURE = default_cfg.MODEL.META_ARCHITECTURE _C.MODEL.MASK_ON = default_cfg.MODEL.MASK_ON _C.MODEL.KEYPOINT_ON = default_cfg.MODEL.KEYPOINT_ON _C.MODEL.LOAD_PROPOSALS = default_cfg.MODEL.LOAD_PROPOSALS assert _C.MODEL.LOAD_PROPOSALS is False, "caffe2 model doesn't support" _C.OUTPUT_DIR = args.output_dir configurable_cfg = [ "DATASETS.TEST", args.datasets, "INPUT.MIN_SIZE_TEST", args.min_size, "INPUT.MAX_SIZE_TEST", args.max_size, ] cfg = _C.clone() cfg.merge_from_list(configurable_cfg) cfg.merge_from_list(args.opts) return cfg def prepare_for_launch(args): """ Load config, figure out working directory, create runner. - when args.config_file is empty, returned cfg will be the default one - returned output_dir will always be non empty, args.output_dir has higher priority than cfg.OUTPUT_DIR. """ print(args) runner = create_runner(args.runner) cfg = runner.get_default_cfg() if args.config_file: with PathManager.open(reroute_config_path(args.config_file), "r") as f: print("Loaded config file {}:\n{}".format(args.config_file, f.read())) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) else: cfg = create_cfg_from_cli_args(args, default_cfg=cfg) cfg.freeze() assert args.output_dir or args.config_file output_dir = args.output_dir or cfg.OUTPUT_DIR return cfg, output_dir, runner def setup_after_launch(cfg, output_dir, runner): """ Set things up after entering DDP, including - creating working directory - setting up logger - logging environment - initializing runner """ create_dir_on_global_main_process(output_dir) comm.synchronize() setup_loggers(output_dir) cfg.freeze() if cfg.OUTPUT_DIR != output_dir: with temp_defrost(cfg): logger.warning( "Override cfg.OUTPUT_DIR ({}) to be the same as output_dir {}".format( cfg.OUTPUT_DIR, output_dir ) ) cfg.OUTPUT_DIR = output_dir logger.info("Initializing runner ...") runner = initialize_runner(runner, cfg) log_info(cfg, runner) dump_cfg(cfg, os.path.join(output_dir, "config.yaml")) auto_scale_world_size(cfg, new_world_size=comm.get_world_size()) @run_once() def setup_loggers(output_dir, color=None): if not color: color = get_launch_environment() == "local" d2_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="detectron2", abbrev_name="d2", ) fvcore_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="fvcore", ) d2go_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="d2go", abbrev_name="d2go", ) mobile_cv_logger = setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name="mobile_cv", abbrev_name="mobile_cv", ) # NOTE: all above loggers have FileHandler pointing to the same file as d2_logger. # Those files are opened upon creation, but it seems fine in 'a' mode. # NOTE: the root logger might has been configured by other applications, # since this already sub-top level, just don't propagate to root. d2_logger.propagate = False fvcore_logger.propagate = False d2go_logger.propagate = False mobile_cv_logger.propagate = False def log_info(cfg, runner): num_processes = get_num_processes_per_machine() logger.info( "Using {} processes per machine. Rank of current process: {}".format( num_processes, comm.get_rank() ) ) logger.info("Environment info:\n" + collect_env_info()) logger.info("Running with full config:\n{}".format(cfg)) logger.info("Running with runner: {}".format(runner)) def dump_cfg(cfg, path): if comm.is_main_process(): with PathManager.open(path, "w") as f: f.write(cfg.dump()) logger.info("Full config saved to {}".format(path)) def create_dir_on_local_main_process(dir): if get_local_rank() == 0 and dir: PathManager.mkdirs(dir) def create_dir_on_global_main_process(dir): if comm.get_rank() == 0 and dir: PathManager.mkdirs(dir) def initialize_runner(runner, cfg): runner = runner or GeneralizedRCNNRunner() runner._initialize(cfg) return runner def caffe2_global_init(logging_print_net_summary=0, num_threads=None): if num_threads is None: if get_num_processes_per_machine() > 1: # by default use single thread when DDP with multiple processes num_threads = 1 else: # GlobalInit will clean PyTorch's num_threads and set it to 1, # thus keep PyTorch's default value to make it truly default. num_threads = torch.get_num_threads() if not get_local_rank() == 0: logging_print_net_summary = 0 # only enable for local main process from caffe2.python import workspace workspace.GlobalInit( [ "caffe2", "--caffe2_log_level=2", "--caffe2_logging_print_net_summary={}".format(logging_print_net_summary), "--caffe2_omp_num_threads={}".format(num_threads), "--caffe2_mkl_num_threads={}".format(num_threads), ] ) logger.info("Using {} threads after GlobalInit".format(torch.get_num_threads())) def post_mortem_if_fail_for_main(main_func): def new_main_func(cfg, output_dir, *args, **kwargs): pdb_ = ( MultiprocessingPdb(FolderLock(output_dir)) if comm.get_world_size() > 1 else None # fallback to use normal pdb for single process ) return post_mortem_if_fail(pdb_)(main_func)(cfg, output_dir, *args, **kwargs) return PicklableWrapper(new_main_func)
__init__
Creates a new window for user to input which regions to add to scene. Arguments: ---------- main_window: reference to the App's main window palette: main_window's palette, used to style widgets
from qtpy.QtWidgets import QDialog, QLineEdit, QPushButton, QLabel, QVBoxLayout from brainrender_gui.style import style, update_css class AddRegionsWindow(QDialog): left = 250 top = 250 width = 400 height = 300 label_msg = ( "Write the acronyms of brainregions " + "you wish to add.\n[as 'space' separated strings (e.g.: STN TH)]" ) # MASKED: __init__ function (lines 16-31) def ui(self): """ Define UI's elements """ self.setGeometry(self.left, self.top, self.width, self.height) layout = QVBoxLayout() # Regions label = QLabel(self) label.setObjectName("PopupLabel") label.setText(self.label_msg) self.textbox = QLineEdit(self) # Alpha alpha_label = QLabel(self) alpha_label.setObjectName("PopupLabel") alpha_label.setText("Alpha") self.alpha_textbox = QLineEdit(self) self.alpha_textbox.setText(str(1.0)) # Color color_label = QLabel(self) color_label.setObjectName("PopupLabel") color_label.setText("Color") self.color_textbox = QLineEdit(self) self.color_textbox.setText("atlas") # Create a button in the window self.button = QPushButton("Add regions", self) self.button.clicked.connect(self.on_click) self.button.setObjectName("RegionsButton") layout.addWidget(label) layout.addWidget(self.textbox) layout.addWidget(alpha_label) layout.addWidget(self.alpha_textbox) layout.addWidget(color_label) layout.addWidget(self.color_textbox) layout.addWidget(self.button) self.setLayout(layout) self.show() def on_click(self): """ On click or 'Enter' get the regions from the input and call the add_regions method of the main window """ regions = self.textbox.text().split(" ") self.main_window.add_regions( regions, self.alpha_textbox.text(), self.color_textbox.text() ) self.close()
def __init__(self, main_window, palette): """ Creates a new window for user to input which regions to add to scene. Arguments: ---------- main_window: reference to the App's main window palette: main_window's palette, used to style widgets """ super().__init__() self.setWindowTitle("Add brain regions") self.ui() self.main_window = main_window self.setStyleSheet(update_css(style, palette))
16
31
from qtpy.QtWidgets import QDialog, QLineEdit, QPushButton, QLabel, QVBoxLayout from brainrender_gui.style import style, update_css class AddRegionsWindow(QDialog): left = 250 top = 250 width = 400 height = 300 label_msg = ( "Write the acronyms of brainregions " + "you wish to add.\n[as 'space' separated strings (e.g.: STN TH)]" ) def __init__(self, main_window, palette): """ Creates a new window for user to input which regions to add to scene. Arguments: ---------- main_window: reference to the App's main window palette: main_window's palette, used to style widgets """ super().__init__() self.setWindowTitle("Add brain regions") self.ui() self.main_window = main_window self.setStyleSheet(update_css(style, palette)) def ui(self): """ Define UI's elements """ self.setGeometry(self.left, self.top, self.width, self.height) layout = QVBoxLayout() # Regions label = QLabel(self) label.setObjectName("PopupLabel") label.setText(self.label_msg) self.textbox = QLineEdit(self) # Alpha alpha_label = QLabel(self) alpha_label.setObjectName("PopupLabel") alpha_label.setText("Alpha") self.alpha_textbox = QLineEdit(self) self.alpha_textbox.setText(str(1.0)) # Color color_label = QLabel(self) color_label.setObjectName("PopupLabel") color_label.setText("Color") self.color_textbox = QLineEdit(self) self.color_textbox.setText("atlas") # Create a button in the window self.button = QPushButton("Add regions", self) self.button.clicked.connect(self.on_click) self.button.setObjectName("RegionsButton") layout.addWidget(label) layout.addWidget(self.textbox) layout.addWidget(alpha_label) layout.addWidget(self.alpha_textbox) layout.addWidget(color_label) layout.addWidget(self.color_textbox) layout.addWidget(self.button) self.setLayout(layout) self.show() def on_click(self): """ On click or 'Enter' get the regions from the input and call the add_regions method of the main window """ regions = self.textbox.text().split(" ") self.main_window.add_regions( regions, self.alpha_textbox.text(), self.color_textbox.text() ) self.close()
binary_image_to_lut_indices
Convert a binary image to an index image that can be used with a lookup table to perform morphological operations. Non-zero elements in the image are interpreted as 1, zero elements as 0 :param x: a 2D NumPy array. :return: a 2D NumPy array, same shape as x
import numpy as np # Thinning morphological operation applied using lookup tables. # We convert the 3x3 neighbourhood surrounding a pixel to an index # used to lookup the output in a lookup table. # Bit masks for each neighbour # 1 2 4 # 8 16 32 # 64 128 256 NEIGH_MASK_EAST = 32 NEIGH_MASK_NORTH_EAST = 4 NEIGH_MASK_NORTH = 2 NEIGH_MASK_NORTH_WEST = 1 NEIGH_MASK_WEST = 8 NEIGH_MASK_SOUTH_WEST = 64 NEIGH_MASK_SOUTH = 128 NEIGH_MASK_SOUTH_EAST = 256 NEIGH_MASK_CENTRE = 16 # Masks in a list # MASKS[0] = centre # MASKS[1..8] = start from east, counter-clockwise MASKS = [NEIGH_MASK_CENTRE, NEIGH_MASK_EAST, NEIGH_MASK_NORTH_EAST, NEIGH_MASK_NORTH, NEIGH_MASK_NORTH_WEST, NEIGH_MASK_WEST, NEIGH_MASK_SOUTH_WEST, NEIGH_MASK_SOUTH, NEIGH_MASK_SOUTH_EAST, ] # Constant listing all indices _LUT_INDS = np.arange(512) # MASKED: binary_image_to_lut_indices function (lines 33-63) def apply_lut(x, lut): """ Perform a morphological operation on the binary image x using the supplied lookup table :param x: :param lut: :return: """ if lut.ndim != 1: raise ValueError('lut should have 1 dimension, not {}'.format(lut.ndim)) if lut.shape[0] != 512: raise ValueError('lut should have 512 entries, not {}'.format(lut.shape[0])) lut_indices = binary_image_to_lut_indices(x) return lut[lut_indices] def identity_lut(): """ Create identity lookup tablef :return: """ lut = np.zeros((512,), dtype=bool) inds = np.arange(512) lut[(inds & NEIGH_MASK_CENTRE) != 0] = True return lut def _lut_mutate_mask(lut): """ Get a mask that shows which neighbourhood shapes result in changes to the image :param lut: lookup table :return: mask indicating which lookup indices result in changes """ return lut != identity_lut() def lut_masks_zero(neigh): """ Create a LUT index mask for which the specified neighbour is 0 :param neigh: neighbour index; counter-clockwise from 1 staring at the eastern neighbour :return: a LUT index mask """ if neigh > 8: neigh -= 8 return (_LUT_INDS & MASKS[neigh]) == 0 def lut_masks_one(neigh): """ Create a LUT index mask for which the specified neighbour is 1 :param neigh: neighbour index; counter-clockwise from 1 staring at the eastern neighbour :return: a LUT index mask """ if neigh > 8: neigh -= 8 return (_LUT_INDS & MASKS[neigh]) != 0 def _thin_cond_g1(): """ Thinning morphological operation; condition G1 :return: a LUT index mask """ b = np.zeros(512, dtype=int) for i in range(1, 5): b += lut_masks_zero(2 * i - 1) & (lut_masks_one(2 * i) | lut_masks_one(2 * i + 1)) return b == 1 def _thin_cond_g2(): """ Thinning morphological operation; condition G2 :return: a LUT index mask """ n1 = np.zeros(512, dtype=int) n2 = np.zeros(512, dtype=int) for k in range(1, 5): n1 += (lut_masks_one(2 * k - 1) | lut_masks_one(2 * k)) n2 += (lut_masks_one(2 * k) | lut_masks_one(2 * k + 1)) m = np.minimum(n1, n2) return (m >= 2) & (m <= 3) def _thin_cond_g3(): """ Thinning morphological operation; condition G3 :return: a LUT index mask """ return ((lut_masks_one(2) | lut_masks_one(3) | lut_masks_zero(8)) & lut_masks_one(1)) == 0 def _thin_cond_g3_prime(): """ Thinning morphological operation; condition G3' :return: a LUT index mask """ return ((lut_masks_one(6) | lut_masks_one(7) | lut_masks_zero(4)) & lut_masks_one(5)) == 0 def _thin_iter_1_lut(): """ Thinning morphological operation; lookup table for iteration 1 :return: lookup table """ lut = identity_lut() cond = _thin_cond_g1() & _thin_cond_g2() & _thin_cond_g3() lut[cond] = False return lut def _thin_iter_2_lut(): """ Thinning morphological operation; lookup table for iteration 2 :return: lookup table """ lut = identity_lut() cond = _thin_cond_g1() & _thin_cond_g2() & _thin_cond_g3_prime() lut[cond] = False return lut def binary_thin(x, max_iter=None): """ Binary thinning morphological operation :param x: a binary image, or an image that is to be converted to a binary image :param max_iter: maximum number of iterations; default is `None` that results in an infinite number of iterations (note that `binary_thin` will automatically terminate when no more changes occur) :return: """ thin1 = _thin_iter_1_lut() thin2 = _thin_iter_2_lut() thin1_mut = _lut_mutate_mask(thin1) thin2_mut = _lut_mutate_mask(thin2) iter_count = 0 while max_iter is None or iter_count < max_iter: # Iter 1 lut_indices = binary_image_to_lut_indices(x) x_mut = thin1_mut[lut_indices] if x_mut.sum() == 0: break x = thin1[lut_indices] # Iter 2 lut_indices = binary_image_to_lut_indices(x) x_mut = thin2_mut[lut_indices] if x_mut.sum() == 0: break x = thin2[lut_indices] iter_count += 1 return x
def binary_image_to_lut_indices(x): """ Convert a binary image to an index image that can be used with a lookup table to perform morphological operations. Non-zero elements in the image are interpreted as 1, zero elements as 0 :param x: a 2D NumPy array. :return: a 2D NumPy array, same shape as x """ if x.ndim != 2: raise ValueError('x should have 2 dimensions, not {}'.format(x.ndim)) # If the dtype of x is not bool, convert if x.dtype != np.bool: x = x != 0 # Add x = np.pad(x, [(1, 1), (1, 1)], mode='constant') # Convert to LUT indices lut_indices = x[:-2, :-2] * NEIGH_MASK_NORTH_WEST + \ x[:-2, 1:-1] * NEIGH_MASK_NORTH + \ x[:-2, 2:] * NEIGH_MASK_NORTH_EAST + \ x[1:-1, :-2] * NEIGH_MASK_WEST + \ x[1:-1, 1:-1] * NEIGH_MASK_CENTRE + \ x[1:-1, 2:] * NEIGH_MASK_EAST + \ x[2:, :-2] * NEIGH_MASK_SOUTH_WEST + \ x[2:, 1:-1] * NEIGH_MASK_SOUTH + \ x[2:, 2:] * NEIGH_MASK_SOUTH_EAST return lut_indices.astype(np.int32)
33
63
import numpy as np # Thinning morphological operation applied using lookup tables. # We convert the 3x3 neighbourhood surrounding a pixel to an index # used to lookup the output in a lookup table. # Bit masks for each neighbour # 1 2 4 # 8 16 32 # 64 128 256 NEIGH_MASK_EAST = 32 NEIGH_MASK_NORTH_EAST = 4 NEIGH_MASK_NORTH = 2 NEIGH_MASK_NORTH_WEST = 1 NEIGH_MASK_WEST = 8 NEIGH_MASK_SOUTH_WEST = 64 NEIGH_MASK_SOUTH = 128 NEIGH_MASK_SOUTH_EAST = 256 NEIGH_MASK_CENTRE = 16 # Masks in a list # MASKS[0] = centre # MASKS[1..8] = start from east, counter-clockwise MASKS = [NEIGH_MASK_CENTRE, NEIGH_MASK_EAST, NEIGH_MASK_NORTH_EAST, NEIGH_MASK_NORTH, NEIGH_MASK_NORTH_WEST, NEIGH_MASK_WEST, NEIGH_MASK_SOUTH_WEST, NEIGH_MASK_SOUTH, NEIGH_MASK_SOUTH_EAST, ] # Constant listing all indices _LUT_INDS = np.arange(512) def binary_image_to_lut_indices(x): """ Convert a binary image to an index image that can be used with a lookup table to perform morphological operations. Non-zero elements in the image are interpreted as 1, zero elements as 0 :param x: a 2D NumPy array. :return: a 2D NumPy array, same shape as x """ if x.ndim != 2: raise ValueError('x should have 2 dimensions, not {}'.format(x.ndim)) # If the dtype of x is not bool, convert if x.dtype != np.bool: x = x != 0 # Add x = np.pad(x, [(1, 1), (1, 1)], mode='constant') # Convert to LUT indices lut_indices = x[:-2, :-2] * NEIGH_MASK_NORTH_WEST + \ x[:-2, 1:-1] * NEIGH_MASK_NORTH + \ x[:-2, 2:] * NEIGH_MASK_NORTH_EAST + \ x[1:-1, :-2] * NEIGH_MASK_WEST + \ x[1:-1, 1:-1] * NEIGH_MASK_CENTRE + \ x[1:-1, 2:] * NEIGH_MASK_EAST + \ x[2:, :-2] * NEIGH_MASK_SOUTH_WEST + \ x[2:, 1:-1] * NEIGH_MASK_SOUTH + \ x[2:, 2:] * NEIGH_MASK_SOUTH_EAST return lut_indices.astype(np.int32) def apply_lut(x, lut): """ Perform a morphological operation on the binary image x using the supplied lookup table :param x: :param lut: :return: """ if lut.ndim != 1: raise ValueError('lut should have 1 dimension, not {}'.format(lut.ndim)) if lut.shape[0] != 512: raise ValueError('lut should have 512 entries, not {}'.format(lut.shape[0])) lut_indices = binary_image_to_lut_indices(x) return lut[lut_indices] def identity_lut(): """ Create identity lookup tablef :return: """ lut = np.zeros((512,), dtype=bool) inds = np.arange(512) lut[(inds & NEIGH_MASK_CENTRE) != 0] = True return lut def _lut_mutate_mask(lut): """ Get a mask that shows which neighbourhood shapes result in changes to the image :param lut: lookup table :return: mask indicating which lookup indices result in changes """ return lut != identity_lut() def lut_masks_zero(neigh): """ Create a LUT index mask for which the specified neighbour is 0 :param neigh: neighbour index; counter-clockwise from 1 staring at the eastern neighbour :return: a LUT index mask """ if neigh > 8: neigh -= 8 return (_LUT_INDS & MASKS[neigh]) == 0 def lut_masks_one(neigh): """ Create a LUT index mask for which the specified neighbour is 1 :param neigh: neighbour index; counter-clockwise from 1 staring at the eastern neighbour :return: a LUT index mask """ if neigh > 8: neigh -= 8 return (_LUT_INDS & MASKS[neigh]) != 0 def _thin_cond_g1(): """ Thinning morphological operation; condition G1 :return: a LUT index mask """ b = np.zeros(512, dtype=int) for i in range(1, 5): b += lut_masks_zero(2 * i - 1) & (lut_masks_one(2 * i) | lut_masks_one(2 * i + 1)) return b == 1 def _thin_cond_g2(): """ Thinning morphological operation; condition G2 :return: a LUT index mask """ n1 = np.zeros(512, dtype=int) n2 = np.zeros(512, dtype=int) for k in range(1, 5): n1 += (lut_masks_one(2 * k - 1) | lut_masks_one(2 * k)) n2 += (lut_masks_one(2 * k) | lut_masks_one(2 * k + 1)) m = np.minimum(n1, n2) return (m >= 2) & (m <= 3) def _thin_cond_g3(): """ Thinning morphological operation; condition G3 :return: a LUT index mask """ return ((lut_masks_one(2) | lut_masks_one(3) | lut_masks_zero(8)) & lut_masks_one(1)) == 0 def _thin_cond_g3_prime(): """ Thinning morphological operation; condition G3' :return: a LUT index mask """ return ((lut_masks_one(6) | lut_masks_one(7) | lut_masks_zero(4)) & lut_masks_one(5)) == 0 def _thin_iter_1_lut(): """ Thinning morphological operation; lookup table for iteration 1 :return: lookup table """ lut = identity_lut() cond = _thin_cond_g1() & _thin_cond_g2() & _thin_cond_g3() lut[cond] = False return lut def _thin_iter_2_lut(): """ Thinning morphological operation; lookup table for iteration 2 :return: lookup table """ lut = identity_lut() cond = _thin_cond_g1() & _thin_cond_g2() & _thin_cond_g3_prime() lut[cond] = False return lut def binary_thin(x, max_iter=None): """ Binary thinning morphological operation :param x: a binary image, or an image that is to be converted to a binary image :param max_iter: maximum number of iterations; default is `None` that results in an infinite number of iterations (note that `binary_thin` will automatically terminate when no more changes occur) :return: """ thin1 = _thin_iter_1_lut() thin2 = _thin_iter_2_lut() thin1_mut = _lut_mutate_mask(thin1) thin2_mut = _lut_mutate_mask(thin2) iter_count = 0 while max_iter is None or iter_count < max_iter: # Iter 1 lut_indices = binary_image_to_lut_indices(x) x_mut = thin1_mut[lut_indices] if x_mut.sum() == 0: break x = thin1[lut_indices] # Iter 2 lut_indices = binary_image_to_lut_indices(x) x_mut = thin2_mut[lut_indices] if x_mut.sum() == 0: break x = thin2[lut_indices] iter_count += 1 return x
play
# 1. Create a deck of 52 cards # 2. Shuffle the deck # 3. Ask the Player for their bet # 4. Make sure that the Player's bet does not exceed their available chips # 5. Deal two cards to the Dealer and two cards to the Player # 6. Show only one of the Dealer's cards, the other remains hidden # 7. Show both of the Player's cards # 8. Ask the Player if they wish to Hit, and take another card # 9. If the Player's hand doesn't Bust (go over 21), ask if they'd like to Hit again. # 10. If a Player Stands, play the Dealer's hand. # The dealer will always Hit until the Dealer's value meets or exceeds 17 # 11. Determine the winner and adjust the Player's chips accordingly # 12. Ask the Player if they'd like to play again
import random class Card: def __init__(self, suit, rank): self.suit = suit self.rank = rank def __str__(self): return f"{self.suit} {self.rank}: {BlackJack.values[self.rank]}" class Hand: def __init__(self): self.cards = [] # start with empty list self.value = 0 self.aces = 0 def adjust_for_ace(self): while self.value > 21 and self.aces: self.value -= 10 self.aces -= 1 def add_card(self, card): self.cards.append(card) self.value += BlackJack.values[card.rank] if card.rank == 'Ace': self.aces += 1 def __str__(self): return f"Current Hand:{self.cards}\nCurrent Value:{self.value}\nCurrent Aces:{self.aces}\n" class Deck: def __init__(self, card_game): self.game = card_game # create deck with all 52 cards self.cards = list() for suit in self.game.suits: for rank in self.game.ranks: self.cards.append(Card(suit, rank)) def shuffle(self): random.shuffle(self.cards) def deal_card(self): return self.cards.pop() def __str__(self): return f"{[x for x in self.cards]}" class Chips: def __init__(self, total=100): self.total = total self.bet = 0 def win_bet(self): self.total += self.bet self.bet = 0 def lose_bet(self): self.total -= self.bet self.bet = 0 def make_bet(self, bet): if bet <= self.total: self.bet = bet else: raise ValueError(f"The bet ({bet}) exceeds available chips ({self.total})") def __str__(self): return f"Total: {self.total}\nCurrent Bet:{self.bet}\n" class Player: def __init__(self, name): self.name = name self.wins = 0 self.lost_games = 0 self.chips = Chips() def __str__(self): return f"{self.name}:\n{self.wins} wins\n{self.lost_games} losses\nChips:{self.chips}\n" class BlackJack: suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5, 'Six': 6, 'Seven': 7, 'Eight': 8, 'Nine': 9, 'Ten': 10, 'Jack': 10, 'Queen': 10, 'King': 10, 'Ace': 11} def __init__(self, player): self.player = player self.deck = Deck(self) self.playing = False def greeting(self): print("WELCOME TO BLACKJACK!") def take_bet(self): while True: try: # Ask the Player for their bet bet = int(input("Please put your bet: ")) # Make sure that the Player's bet does not exceed their available chips self.player.chips.make_bet(bet) break except TypeError: print("Invalid input. Please try again") except ValueError as exc: print(f"{exc} Please try again") def hit(self, hand): cd = self.deck.deal_card() # print(f"Deal Card: {cd}") hand.add_card(cd) hand.adjust_for_ace() def hit_or_stand(self, hand): while True: print(f"{self.player.name}: current {hand.value}") action = input("Hit or Stand? Enter 'h' or 's': ") if action[0].lower() == 's': print("STAY\n") self.playing = False elif action[0].lower() == 'h': print("HIT\n") self.hit(hand) else: print(f"Sorry, I do not understand your choice '{action}'. Please try again") continue break def player_busts(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} BUSTED!") self.player.chips.lose_bet() self.player.lost_games += 1 def player_wins(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} WINS! ") self.player.chips.win_bet() self.player.wins += 1 def dealer_busts(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} WINS - Dealer BUSTED!") self.player.chips.win_bet() self.player.wins += 1 def dealer_wins(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: Dealer WINS") self.player.chips.lose_bet() self.player.lost_games += 1 def push(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: Dealer and {self.player.name} tie - PUSH!") def show_some(self, p_hand, d_hand): # Show only one of the Dealer's cards, the other remains hidden print(f"Dealer's card (one hidden): {d_hand.cards[0]}") # Show both of the Player's cards print(f"{self.player.name}'s Cards:") for card in p_hand.cards: print(card) print(f"total= {p_hand.value}") def show_all_cards(self, p_hand, d_hand): # Show both of the Player's cards print(f"{self.player.name}'s Cards:") for card in p_hand.cards: print(card) print(f"total= {p_hand.value}") # Show both of the Player's cards print(f"Dealer's Cards:") for card in d_hand.cards: print(card) print(f"total= {d_hand.value}") # MASKED: play function (lines 190-253) if __name__ == "__main__": game_on = True # Play a new game of BlackJack with Player Daniela player = Player('Daniela') game = BlackJack(player) game.greeting() while game_on: game.play() print(f"GAME DONE.\nGame Stats:\n\n{player}") # Ask the Player if they'd like to play again if input("Would you like another game? y/n: ") != 'y': game_on = False
def play(self): """ # 1. Create a deck of 52 cards # 2. Shuffle the deck # 3. Ask the Player for their bet # 4. Make sure that the Player's bet does not exceed their available chips # 5. Deal two cards to the Dealer and two cards to the Player # 6. Show only one of the Dealer's cards, the other remains hidden # 7. Show both of the Player's cards # 8. Ask the Player if they wish to Hit, and take another card # 9. If the Player's hand doesn't Bust (go over 21), ask if they'd like to Hit again. # 10. If a Player Stands, play the Dealer's hand. # The dealer will always Hit until the Dealer's value meets or exceeds 17 # 11. Determine the winner and adjust the Player's chips accordingly # 12. Ask the Player if they'd like to play again """ print("--NEW GAME---") self.playing = True self.deck.shuffle() dealer_hand = Hand() player_hand = Hand() # Deal two cards to the Dealer and two cards to the Player player_hand.add_card(self.deck.deal_card()) dealer_hand.add_card(self.deck.deal_card()) player_hand.add_card(self.deck.deal_card()) dealer_hand.add_card(self.deck.deal_card()) self.take_bet() # show cards, but keep one dealer card hidden self.show_some(player_hand, dealer_hand) while self.playing: # Ask the Player if they wish to Hit, and take another card # If the Player's hand doesn't Bust (go over 21), ask if they'd like to Hit again. self.hit_or_stand(player_hand) self.show_some(player_hand, dealer_hand) if player_hand.value > 21: # player busts - lost his bet self.player_busts(player_hand, dealer_hand) break # If Player has not busted if player_hand.value <= 21: # The dealer will always Hit until the Dealer's value meets or exceeds 17 while dealer_hand.value < 17: self.hit(dealer_hand) # Determine for the winner - show all cards self.show_all_cards(player_hand, dealer_hand) # Determine the winner and adjust the Player's chips accordingly if dealer_hand.value > 21: self.dealer_busts(player_hand, dealer_hand) elif player_hand.value > dealer_hand.value: self.player_wins(player_hand, dealer_hand) elif player_hand.value < dealer_hand.value: self.dealer_wins(player_hand, dealer_hand) else: self.push(player_hand, dealer_hand)
190
253
import random class Card: def __init__(self, suit, rank): self.suit = suit self.rank = rank def __str__(self): return f"{self.suit} {self.rank}: {BlackJack.values[self.rank]}" class Hand: def __init__(self): self.cards = [] # start with empty list self.value = 0 self.aces = 0 def adjust_for_ace(self): while self.value > 21 and self.aces: self.value -= 10 self.aces -= 1 def add_card(self, card): self.cards.append(card) self.value += BlackJack.values[card.rank] if card.rank == 'Ace': self.aces += 1 def __str__(self): return f"Current Hand:{self.cards}\nCurrent Value:{self.value}\nCurrent Aces:{self.aces}\n" class Deck: def __init__(self, card_game): self.game = card_game # create deck with all 52 cards self.cards = list() for suit in self.game.suits: for rank in self.game.ranks: self.cards.append(Card(suit, rank)) def shuffle(self): random.shuffle(self.cards) def deal_card(self): return self.cards.pop() def __str__(self): return f"{[x for x in self.cards]}" class Chips: def __init__(self, total=100): self.total = total self.bet = 0 def win_bet(self): self.total += self.bet self.bet = 0 def lose_bet(self): self.total -= self.bet self.bet = 0 def make_bet(self, bet): if bet <= self.total: self.bet = bet else: raise ValueError(f"The bet ({bet}) exceeds available chips ({self.total})") def __str__(self): return f"Total: {self.total}\nCurrent Bet:{self.bet}\n" class Player: def __init__(self, name): self.name = name self.wins = 0 self.lost_games = 0 self.chips = Chips() def __str__(self): return f"{self.name}:\n{self.wins} wins\n{self.lost_games} losses\nChips:{self.chips}\n" class BlackJack: suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5, 'Six': 6, 'Seven': 7, 'Eight': 8, 'Nine': 9, 'Ten': 10, 'Jack': 10, 'Queen': 10, 'King': 10, 'Ace': 11} def __init__(self, player): self.player = player self.deck = Deck(self) self.playing = False def greeting(self): print("WELCOME TO BLACKJACK!") def take_bet(self): while True: try: # Ask the Player for their bet bet = int(input("Please put your bet: ")) # Make sure that the Player's bet does not exceed their available chips self.player.chips.make_bet(bet) break except TypeError: print("Invalid input. Please try again") except ValueError as exc: print(f"{exc} Please try again") def hit(self, hand): cd = self.deck.deal_card() # print(f"Deal Card: {cd}") hand.add_card(cd) hand.adjust_for_ace() def hit_or_stand(self, hand): while True: print(f"{self.player.name}: current {hand.value}") action = input("Hit or Stand? Enter 'h' or 's': ") if action[0].lower() == 's': print("STAY\n") self.playing = False elif action[0].lower() == 'h': print("HIT\n") self.hit(hand) else: print(f"Sorry, I do not understand your choice '{action}'. Please try again") continue break def player_busts(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} BUSTED!") self.player.chips.lose_bet() self.player.lost_games += 1 def player_wins(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} WINS! ") self.player.chips.win_bet() self.player.wins += 1 def dealer_busts(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: {self.player.name} WINS - Dealer BUSTED!") self.player.chips.win_bet() self.player.wins += 1 def dealer_wins(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: Dealer WINS") self.player.chips.lose_bet() self.player.lost_games += 1 def push(self, p_hand, d_hand): print(f"[P={p_hand.value},D={d_hand.value}]: Dealer and {self.player.name} tie - PUSH!") def show_some(self, p_hand, d_hand): # Show only one of the Dealer's cards, the other remains hidden print(f"Dealer's card (one hidden): {d_hand.cards[0]}") # Show both of the Player's cards print(f"{self.player.name}'s Cards:") for card in p_hand.cards: print(card) print(f"total= {p_hand.value}") def show_all_cards(self, p_hand, d_hand): # Show both of the Player's cards print(f"{self.player.name}'s Cards:") for card in p_hand.cards: print(card) print(f"total= {p_hand.value}") # Show both of the Player's cards print(f"Dealer's Cards:") for card in d_hand.cards: print(card) print(f"total= {d_hand.value}") def play(self): """ # 1. Create a deck of 52 cards # 2. Shuffle the deck # 3. Ask the Player for their bet # 4. Make sure that the Player's bet does not exceed their available chips # 5. Deal two cards to the Dealer and two cards to the Player # 6. Show only one of the Dealer's cards, the other remains hidden # 7. Show both of the Player's cards # 8. Ask the Player if they wish to Hit, and take another card # 9. If the Player's hand doesn't Bust (go over 21), ask if they'd like to Hit again. # 10. If a Player Stands, play the Dealer's hand. # The dealer will always Hit until the Dealer's value meets or exceeds 17 # 11. Determine the winner and adjust the Player's chips accordingly # 12. Ask the Player if they'd like to play again """ print("--NEW GAME---") self.playing = True self.deck.shuffle() dealer_hand = Hand() player_hand = Hand() # Deal two cards to the Dealer and two cards to the Player player_hand.add_card(self.deck.deal_card()) dealer_hand.add_card(self.deck.deal_card()) player_hand.add_card(self.deck.deal_card()) dealer_hand.add_card(self.deck.deal_card()) self.take_bet() # show cards, but keep one dealer card hidden self.show_some(player_hand, dealer_hand) while self.playing: # Ask the Player if they wish to Hit, and take another card # If the Player's hand doesn't Bust (go over 21), ask if they'd like to Hit again. self.hit_or_stand(player_hand) self.show_some(player_hand, dealer_hand) if player_hand.value > 21: # player busts - lost his bet self.player_busts(player_hand, dealer_hand) break # If Player has not busted if player_hand.value <= 21: # The dealer will always Hit until the Dealer's value meets or exceeds 17 while dealer_hand.value < 17: self.hit(dealer_hand) # Determine for the winner - show all cards self.show_all_cards(player_hand, dealer_hand) # Determine the winner and adjust the Player's chips accordingly if dealer_hand.value > 21: self.dealer_busts(player_hand, dealer_hand) elif player_hand.value > dealer_hand.value: self.player_wins(player_hand, dealer_hand) elif player_hand.value < dealer_hand.value: self.dealer_wins(player_hand, dealer_hand) else: self.push(player_hand, dealer_hand) if __name__ == "__main__": game_on = True # Play a new game of BlackJack with Player Daniela player = Player('Daniela') game = BlackJack(player) game.greeting() while game_on: game.play() print(f"GAME DONE.\nGame Stats:\n\n{player}") # Ask the Player if they'd like to play again if input("Would you like another game? y/n: ") != 'y': game_on = False
__init__
NetApp account resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]] active_directories: Active Directories :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Account'] class Account(pulumi.CustomResource): # MASKED: __init__ function (lines 17-72) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Account': """ Get an existing Account resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["active_directories"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["tags"] = None __props__["type"] = None return Account(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="activeDirectories") def active_directories(self) -> pulumi.Output[Optional[Sequence['outputs.ActiveDirectoryResponse']]]: """ Active Directories """ return pulumi.get(self, "active_directories") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, active_directories: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ NetApp account resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]] active_directories: Active Directories :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['account_name'] = account_name __props__['active_directories'] = active_directories __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Account"), pulumi.Alias(type_="azure-native:netapp:Account"), pulumi.Alias(type_="azure-nextgen:netapp:Account"), pulumi.Alias(type_="azure-native:netapp/latest:Account"), pulumi.Alias(type_="azure-nextgen:netapp/latest:Account"), pulumi.Alias(type_="azure-native:netapp/v20170815:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20170815:Account"), pulumi.Alias(type_="azure-native:netapp/v20190501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190501:Account"), pulumi.Alias(type_="azure-native:netapp/v20190601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190601:Account"), pulumi.Alias(type_="azure-native:netapp/v20190701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190701:Account"), pulumi.Alias(type_="azure-native:netapp/v20190801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190801:Account"), pulumi.Alias(type_="azure-native:netapp/v20191001:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191001:Account"), pulumi.Alias(type_="azure-native:netapp/v20191101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191101:Account"), pulumi.Alias(type_="azure-native:netapp/v20200201:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200201:Account"), pulumi.Alias(type_="azure-native:netapp/v20200301:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200301:Account"), pulumi.Alias(type_="azure-native:netapp/v20200501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Account"), pulumi.Alias(type_="azure-native:netapp/v20200601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Account"), pulumi.Alias(type_="azure-native:netapp/v20200701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Account"), pulumi.Alias(type_="azure-native:netapp/v20200801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Account"), pulumi.Alias(type_="azure-native:netapp/v20201101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Account")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Account, __self__).__init__( 'azure-native:netapp/v20200901:Account', resource_name, __props__, opts)
17
72
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Account'] class Account(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, active_directories: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ NetApp account resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]] active_directories: Active Directories :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['account_name'] = account_name __props__['active_directories'] = active_directories __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Account"), pulumi.Alias(type_="azure-native:netapp:Account"), pulumi.Alias(type_="azure-nextgen:netapp:Account"), pulumi.Alias(type_="azure-native:netapp/latest:Account"), pulumi.Alias(type_="azure-nextgen:netapp/latest:Account"), pulumi.Alias(type_="azure-native:netapp/v20170815:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20170815:Account"), pulumi.Alias(type_="azure-native:netapp/v20190501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190501:Account"), pulumi.Alias(type_="azure-native:netapp/v20190601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190601:Account"), pulumi.Alias(type_="azure-native:netapp/v20190701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190701:Account"), pulumi.Alias(type_="azure-native:netapp/v20190801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190801:Account"), pulumi.Alias(type_="azure-native:netapp/v20191001:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191001:Account"), pulumi.Alias(type_="azure-native:netapp/v20191101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191101:Account"), pulumi.Alias(type_="azure-native:netapp/v20200201:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200201:Account"), pulumi.Alias(type_="azure-native:netapp/v20200301:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200301:Account"), pulumi.Alias(type_="azure-native:netapp/v20200501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Account"), pulumi.Alias(type_="azure-native:netapp/v20200601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Account"), pulumi.Alias(type_="azure-native:netapp/v20200701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Account"), pulumi.Alias(type_="azure-native:netapp/v20200801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Account"), pulumi.Alias(type_="azure-native:netapp/v20201101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Account")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Account, __self__).__init__( 'azure-native:netapp/v20200901:Account', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Account': """ Get an existing Account resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["active_directories"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["tags"] = None __props__["type"] = None return Account(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="activeDirectories") def active_directories(self) -> pulumi.Output[Optional[Sequence['outputs.ActiveDirectoryResponse']]]: """ Active Directories """ return pulumi.get(self, "active_directories") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
get
Get an existing Account resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource.
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Account'] class Account(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, active_directories: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ NetApp account resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]] active_directories: Active Directories :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['account_name'] = account_name __props__['active_directories'] = active_directories __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Account"), pulumi.Alias(type_="azure-native:netapp:Account"), pulumi.Alias(type_="azure-nextgen:netapp:Account"), pulumi.Alias(type_="azure-native:netapp/latest:Account"), pulumi.Alias(type_="azure-nextgen:netapp/latest:Account"), pulumi.Alias(type_="azure-native:netapp/v20170815:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20170815:Account"), pulumi.Alias(type_="azure-native:netapp/v20190501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190501:Account"), pulumi.Alias(type_="azure-native:netapp/v20190601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190601:Account"), pulumi.Alias(type_="azure-native:netapp/v20190701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190701:Account"), pulumi.Alias(type_="azure-native:netapp/v20190801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190801:Account"), pulumi.Alias(type_="azure-native:netapp/v20191001:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191001:Account"), pulumi.Alias(type_="azure-native:netapp/v20191101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191101:Account"), pulumi.Alias(type_="azure-native:netapp/v20200201:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200201:Account"), pulumi.Alias(type_="azure-native:netapp/v20200301:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200301:Account"), pulumi.Alias(type_="azure-native:netapp/v20200501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Account"), pulumi.Alias(type_="azure-native:netapp/v20200601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Account"), pulumi.Alias(type_="azure-native:netapp/v20200701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Account"), pulumi.Alias(type_="azure-native:netapp/v20200801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Account"), pulumi.Alias(type_="azure-native:netapp/v20201101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Account")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Account, __self__).__init__( 'azure-native:netapp/v20200901:Account', resource_name, __props__, opts) # MASKED: get function (lines 74-96) @property @pulumi.getter(name="activeDirectories") def active_directories(self) -> pulumi.Output[Optional[Sequence['outputs.ActiveDirectoryResponse']]]: """ Active Directories """ return pulumi.get(self, "active_directories") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Account': """ Get an existing Account resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["active_directories"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["tags"] = None __props__["type"] = None return Account(resource_name, opts=opts, __props__=__props__)
74
96
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Account'] class Account(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, active_directories: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ NetApp account resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ActiveDirectoryArgs']]]] active_directories: Active Directories :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['account_name'] = account_name __props__['active_directories'] = active_directories __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Account"), pulumi.Alias(type_="azure-native:netapp:Account"), pulumi.Alias(type_="azure-nextgen:netapp:Account"), pulumi.Alias(type_="azure-native:netapp/latest:Account"), pulumi.Alias(type_="azure-nextgen:netapp/latest:Account"), pulumi.Alias(type_="azure-native:netapp/v20170815:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20170815:Account"), pulumi.Alias(type_="azure-native:netapp/v20190501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190501:Account"), pulumi.Alias(type_="azure-native:netapp/v20190601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190601:Account"), pulumi.Alias(type_="azure-native:netapp/v20190701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190701:Account"), pulumi.Alias(type_="azure-native:netapp/v20190801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20190801:Account"), pulumi.Alias(type_="azure-native:netapp/v20191001:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191001:Account"), pulumi.Alias(type_="azure-native:netapp/v20191101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20191101:Account"), pulumi.Alias(type_="azure-native:netapp/v20200201:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200201:Account"), pulumi.Alias(type_="azure-native:netapp/v20200301:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200301:Account"), pulumi.Alias(type_="azure-native:netapp/v20200501:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Account"), pulumi.Alias(type_="azure-native:netapp/v20200601:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Account"), pulumi.Alias(type_="azure-native:netapp/v20200701:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Account"), pulumi.Alias(type_="azure-native:netapp/v20200801:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Account"), pulumi.Alias(type_="azure-native:netapp/v20201101:Account"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Account")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Account, __self__).__init__( 'azure-native:netapp/v20200901:Account', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Account': """ Get an existing Account resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["active_directories"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["tags"] = None __props__["type"] = None return Account(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="activeDirectories") def active_directories(self) -> pulumi.Output[Optional[Sequence['outputs.ActiveDirectoryResponse']]]: """ Active Directories """ return pulumi.get(self, "active_directories") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
make_layer
Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Default: 6.
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.utils.checkpoint as cp from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.utils import make_divisible from ..builder import BACKBONES from .base_backbone import BaseBackbone class InvertedResidual(BaseModule): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): adjusts number of channels of the hidden layer in InvertedResidual by this amount. conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor """ def __init__(self, in_channels, out_channels, stride, expand_ratio, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False, init_cfg=None): super(InvertedResidual, self).__init__(init_cfg) self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=1, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) ]) self.conv = nn.Sequential(*layers) def forward(self, x): def _inner_forward(x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out @BACKBONES.register_module() class MobileNetV2(BaseBackbone): """MobileNetV2 backbone. Args: widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. out_indices (None or Sequence[int]): Output from which stages. Default: (7, ). frozen_stages (int): Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters. conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ # Parameters to build layers. 4 parameters are needed to construct a # layer, from left to right: expand_ratio, channel, num_blocks, stride. arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] def __init__(self, widen_factor=1., out_indices=(7, ), frozen_stages=-1, deep_stem=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), norm_eval=False, with_cp=False, init_cfg=[ dict(type='Kaiming', layer=['Conv2d']), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ]): super(MobileNetV2, self).__init__(init_cfg) self.widen_factor = widen_factor self.out_indices = out_indices for index in out_indices: if index not in range(0, 8): raise ValueError('the item in out_indices must in ' f'range(0, 8). But received {index}') if frozen_stages not in range(-1, 8): raise ValueError('frozen_stages must be in range(-1, 8). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.in_channels = make_divisible(32 * widen_factor, 8) if deep_stem: self.conv0 = ConvModule(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) in_channels_ = 16 else: in_channels_ = 3 self.conv0 = nn.Sequential() self.conv1 = ConvModule( in_channels=in_channels_, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.layers = [] for i, layer_cfg in enumerate(self.arch_settings): expand_ratio, channel, num_blocks, stride = layer_cfg out_channels = make_divisible(channel * widen_factor, 8) inverted_res_layer = self.make_layer( out_channels=out_channels, num_blocks=num_blocks, stride=stride, expand_ratio=expand_ratio) layer_name = f'layer{i + 1}' self.add_module(layer_name, inverted_res_layer) self.layers.append(layer_name) if widen_factor > 1.0: self.out_channel = int(1280 * widen_factor) else: self.out_channel = 1280 layer = ConvModule( in_channels=self.in_channels, out_channels=self.out_channel, kernel_size=1, stride=1, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.add_module('conv2', layer) self.layers.append('conv2') # MASKED: make_layer function (lines 214-240) def forward(self, x): x = self.conv0(x) x = self.conv1(x) outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) return tuple(outs) def _freeze_stages(self): if self.frozen_stages >= 0: for param in self.conv1.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): layer = getattr(self, f'layer{i}') layer.eval() for param in layer.parameters(): param.requires_grad = False def train(self, mode=True): super(MobileNetV2, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
def make_layer(self, out_channels, num_blocks, stride, expand_ratio): """Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Default: 6. """ layers = [] for i in range(num_blocks): if i >= 1: stride = 1 layers.append( InvertedResidual( self.in_channels, out_channels, stride, expand_ratio=expand_ratio, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers)
214
240
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.utils.checkpoint as cp from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.utils import make_divisible from ..builder import BACKBONES from .base_backbone import BaseBackbone class InvertedResidual(BaseModule): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): adjusts number of channels of the hidden layer in InvertedResidual by this amount. conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor """ def __init__(self, in_channels, out_channels, stride, expand_ratio, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False, init_cfg=None): super(InvertedResidual, self).__init__(init_cfg) self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=1, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) ]) self.conv = nn.Sequential(*layers) def forward(self, x): def _inner_forward(x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out @BACKBONES.register_module() class MobileNetV2(BaseBackbone): """MobileNetV2 backbone. Args: widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. out_indices (None or Sequence[int]): Output from which stages. Default: (7, ). frozen_stages (int): Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters. conv_cfg (dict, optional): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ # Parameters to build layers. 4 parameters are needed to construct a # layer, from left to right: expand_ratio, channel, num_blocks, stride. arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] def __init__(self, widen_factor=1., out_indices=(7, ), frozen_stages=-1, deep_stem=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), norm_eval=False, with_cp=False, init_cfg=[ dict(type='Kaiming', layer=['Conv2d']), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ]): super(MobileNetV2, self).__init__(init_cfg) self.widen_factor = widen_factor self.out_indices = out_indices for index in out_indices: if index not in range(0, 8): raise ValueError('the item in out_indices must in ' f'range(0, 8). But received {index}') if frozen_stages not in range(-1, 8): raise ValueError('frozen_stages must be in range(-1, 8). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.in_channels = make_divisible(32 * widen_factor, 8) if deep_stem: self.conv0 = ConvModule(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) in_channels_ = 16 else: in_channels_ = 3 self.conv0 = nn.Sequential() self.conv1 = ConvModule( in_channels=in_channels_, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.layers = [] for i, layer_cfg in enumerate(self.arch_settings): expand_ratio, channel, num_blocks, stride = layer_cfg out_channels = make_divisible(channel * widen_factor, 8) inverted_res_layer = self.make_layer( out_channels=out_channels, num_blocks=num_blocks, stride=stride, expand_ratio=expand_ratio) layer_name = f'layer{i + 1}' self.add_module(layer_name, inverted_res_layer) self.layers.append(layer_name) if widen_factor > 1.0: self.out_channel = int(1280 * widen_factor) else: self.out_channel = 1280 layer = ConvModule( in_channels=self.in_channels, out_channels=self.out_channel, kernel_size=1, stride=1, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.add_module('conv2', layer) self.layers.append('conv2') def make_layer(self, out_channels, num_blocks, stride, expand_ratio): """Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Default: 6. """ layers = [] for i in range(num_blocks): if i >= 1: stride = 1 layers.append( InvertedResidual( self.in_channels, out_channels, stride, expand_ratio=expand_ratio, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers) def forward(self, x): x = self.conv0(x) x = self.conv1(x) outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) return tuple(outs) def _freeze_stages(self): if self.frozen_stages >= 0: for param in self.conv1.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): layer = getattr(self, f'layer{i}') layer.eval() for param in layer.parameters(): param.requires_grad = False def train(self, mode=True): super(MobileNetV2, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
dlrn_http_factory
Create a DlrnData instance based on a host. :param host: A host name string to build instances :param config_file: A dlrn config file(s) to use in addition to the default. :param link_name: A dlrn symlink to use. This overrides the config files link parameter. :param logger: An atkinson logger to use. Default is the base logger. :return: A DlrnData instance
#! /usr/bin/env python """Functions for working with the DLRN API""" import csv import os.path import requests from toolchest import yaml from atkinson.config.manager import ConfigManager from atkinson.logging.logger import getLogger def _raw_fetch(url, logger): """ Fetch remote data and return the text output. :param url: The URL to fetch the data from :param logger: A logger instance to use. :return: Raw text data, None otherwise """ ret_data = None try: req = requests.get(url) if req.status_code == requests.codes.ok: ret_data = req.text except requests.exceptions.ConnectionError as error: logger.warning(error.request) return ret_data def _fetch_yaml(url, logger): """ Fetch remote data and process the text as yaml. :param url: The URL to fetch the data from :param logger: A logger instance to use. :return: Parsed yaml data in the form of a dictionary """ ret_data = None raw_data = _raw_fetch(url, logger) if raw_data is not None: ret_data = yaml.parse(raw_data) return ret_data # MASKED: dlrn_http_factory function (lines 49-87) class DlrnHttpData(): """A class used to interact with the dlrn API""" def __init__(self, url, release, link_name='current', logger=getLogger()): """ Class constructor :param url: The URL to the host to obtain data. :param releases: The release name to use for lookup. :param link_name: The name of the dlrn symlink to fetch data from. :param logger: An atkinson logger to use. Default is the base logger. """ self.url = os.path.join(url, release) self.release = release self._logger = logger self._link_name = link_name self._commit_data = {} self._fetch_commit() def _fetch_commit(self): """ Fetch the commit data from dlrn """ full_url = os.path.join(self.url, self._link_name, 'commit.yaml') data = _fetch_yaml(full_url, self._logger) if data is not None and 'commits' in data: pkg = data['commits'][0] if pkg['status'] == 'SUCCESS': self._commit_data = {'name': pkg['project_name'], 'dist_hash': pkg['distro_hash'], 'commit_hash': pkg['commit_hash'], 'extended_hash': pkg.get('extended_hash')} else: msg = '{0} has a status of error'.format(str(pkg)) self._logger.warning(msg) def _build_url(self): """ Generate a url given a commit hash and distgit hash to match the format base/AB/CD/ABCD123_XYZ987 where ABCD123 is the commit hash and XYZ987 is a portion of the distgit hash. :return: A string with the full URL. """ first = self._commit_data['commit_hash'][0:2] second = self._commit_data['commit_hash'][2:4] third = self._commit_data['commit_hash'] for key in ['dist_hash', 'extended_hash']: if self._commit_data.get(key, 'None') != 'None': third += '_' + self._commit_data[key][0:8] return os.path.join(self.url, first, second, third) @property def commit(self): """ Get the dlrn commit information :return: A dictionary of name, dist-git hash, commit hash and extended hash. An empty dictionary is returned otherwise. """ return self._commit_data @property def versions(self): """ Get the version data for the versions.csv file and return the data in a dictionary :return: A dictionary of packages with commit and dist-git hashes """ ret_dict = {} full_url = os.path.join(self._build_url(), 'versions.csv') data = _raw_fetch(full_url, self._logger) if data is not None: data = data.replace(' ', '_') split_data = data.split() reader = csv.DictReader(split_data) for row in reader: ret_dict[row['Project']] = {'source': row['Source_Sha'], 'state': row['Status'], 'distgit': row['Dist_Sha'], 'nvr': row['Pkg_NVR']} else: msg = 'Could not fetch {0}'.format(full_url) self._logger.error(msg) return ret_dict
def dlrn_http_factory(host, config_file=None, link_name=None, logger=getLogger()): """ Create a DlrnData instance based on a host. :param host: A host name string to build instances :param config_file: A dlrn config file(s) to use in addition to the default. :param link_name: A dlrn symlink to use. This overrides the config files link parameter. :param logger: An atkinson logger to use. Default is the base logger. :return: A DlrnData instance """ manager = None files = ['dlrn.yml'] if config_file is not None: if isinstance(config_file, list): files.extend(config_file) else: files.append(config_file) local_path = os.path.realpath(os.path.dirname(__file__)) manager = ConfigManager(filenames=files, paths=local_path) if manager is None: return None config = manager.config if host not in config: return None link = config[host]['link'] if link_name is not None: link = link_name return DlrnHttpData(config[host]['url'], config[host]['release'], link_name=link, logger=logger)
49
87
#! /usr/bin/env python """Functions for working with the DLRN API""" import csv import os.path import requests from toolchest import yaml from atkinson.config.manager import ConfigManager from atkinson.logging.logger import getLogger def _raw_fetch(url, logger): """ Fetch remote data and return the text output. :param url: The URL to fetch the data from :param logger: A logger instance to use. :return: Raw text data, None otherwise """ ret_data = None try: req = requests.get(url) if req.status_code == requests.codes.ok: ret_data = req.text except requests.exceptions.ConnectionError as error: logger.warning(error.request) return ret_data def _fetch_yaml(url, logger): """ Fetch remote data and process the text as yaml. :param url: The URL to fetch the data from :param logger: A logger instance to use. :return: Parsed yaml data in the form of a dictionary """ ret_data = None raw_data = _raw_fetch(url, logger) if raw_data is not None: ret_data = yaml.parse(raw_data) return ret_data def dlrn_http_factory(host, config_file=None, link_name=None, logger=getLogger()): """ Create a DlrnData instance based on a host. :param host: A host name string to build instances :param config_file: A dlrn config file(s) to use in addition to the default. :param link_name: A dlrn symlink to use. This overrides the config files link parameter. :param logger: An atkinson logger to use. Default is the base logger. :return: A DlrnData instance """ manager = None files = ['dlrn.yml'] if config_file is not None: if isinstance(config_file, list): files.extend(config_file) else: files.append(config_file) local_path = os.path.realpath(os.path.dirname(__file__)) manager = ConfigManager(filenames=files, paths=local_path) if manager is None: return None config = manager.config if host not in config: return None link = config[host]['link'] if link_name is not None: link = link_name return DlrnHttpData(config[host]['url'], config[host]['release'], link_name=link, logger=logger) class DlrnHttpData(): """A class used to interact with the dlrn API""" def __init__(self, url, release, link_name='current', logger=getLogger()): """ Class constructor :param url: The URL to the host to obtain data. :param releases: The release name to use for lookup. :param link_name: The name of the dlrn symlink to fetch data from. :param logger: An atkinson logger to use. Default is the base logger. """ self.url = os.path.join(url, release) self.release = release self._logger = logger self._link_name = link_name self._commit_data = {} self._fetch_commit() def _fetch_commit(self): """ Fetch the commit data from dlrn """ full_url = os.path.join(self.url, self._link_name, 'commit.yaml') data = _fetch_yaml(full_url, self._logger) if data is not None and 'commits' in data: pkg = data['commits'][0] if pkg['status'] == 'SUCCESS': self._commit_data = {'name': pkg['project_name'], 'dist_hash': pkg['distro_hash'], 'commit_hash': pkg['commit_hash'], 'extended_hash': pkg.get('extended_hash')} else: msg = '{0} has a status of error'.format(str(pkg)) self._logger.warning(msg) def _build_url(self): """ Generate a url given a commit hash and distgit hash to match the format base/AB/CD/ABCD123_XYZ987 where ABCD123 is the commit hash and XYZ987 is a portion of the distgit hash. :return: A string with the full URL. """ first = self._commit_data['commit_hash'][0:2] second = self._commit_data['commit_hash'][2:4] third = self._commit_data['commit_hash'] for key in ['dist_hash', 'extended_hash']: if self._commit_data.get(key, 'None') != 'None': third += '_' + self._commit_data[key][0:8] return os.path.join(self.url, first, second, third) @property def commit(self): """ Get the dlrn commit information :return: A dictionary of name, dist-git hash, commit hash and extended hash. An empty dictionary is returned otherwise. """ return self._commit_data @property def versions(self): """ Get the version data for the versions.csv file and return the data in a dictionary :return: A dictionary of packages with commit and dist-git hashes """ ret_dict = {} full_url = os.path.join(self._build_url(), 'versions.csv') data = _raw_fetch(full_url, self._logger) if data is not None: data = data.replace(' ', '_') split_data = data.split() reader = csv.DictReader(split_data) for row in reader: ret_dict[row['Project']] = {'source': row['Source_Sha'], 'state': row['Status'], 'distgit': row['Dist_Sha'], 'nvr': row['Pkg_NVR']} else: msg = 'Could not fetch {0}'.format(full_url) self._logger.error(msg) return ret_dict
to_shapefile
Export stress period boundary condition (MfList) data for a specified stress period Parameters ---------- filename : str Shapefile name to write kper : int MODFLOW zero-based stress period number to return. (default is None) Returns ---------- None See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.wel.to_shapefile('test_hk.shp', kper=1)
""" util_list module. Contains the mflist class. This classes encapsulates modflow-style list inputs away from the individual packages. The end-user should not need to instantiate this class directly. some more info """ from __future__ import division, print_function import os import warnings import numpy as np from ..datbase import DataInterface, DataListInterface, DataType from ..utils.recarray_utils import create_empty_recarray try: from numpy.lib import NumpyVersion numpy114 = NumpyVersion(np.__version__) >= "1.14.0" except ImportError: numpy114 = False class MfList(DataInterface, DataListInterface): """ a generic object for handling transient boundary condition lists Parameters ---------- package : package object The package object (of type :class:`flopy.pakbase.Package`) to which this MfList will be added. data : varies the data of the transient list (optional). (the default is None) Attributes ---------- mxact : int the max number of active bc for any stress period Methods ------- add_record(kper,index,value) : None add a record to stress period kper at index location write_transient(f) : None write the transient sequence to the model input file f check_kij() : None checks for boundaries outside of model domain - issues warnings only See Also -------- Notes ----- Examples -------- """ def __init__( self, package, data=None, dtype=None, model=None, list_free_format=None, binary=False, ): if isinstance(data, MfList): for attr in data.__dict__.items(): setattr(self, attr[0], attr[1]) if model is None: self._model = package.parent else: self._model = model self._package = package return self._package = package if model is None: self._model = package.parent else: self._model = model if dtype is None: assert isinstance(self.package.dtype, np.dtype) self.__dtype = self.package.dtype else: self.__dtype = dtype self.__binary = binary self.__vtype = {} self.__data = {} if data is not None: self.__cast_data(data) self.__df = None if list_free_format is None: if package.parent.version == "mf2k": list_free_format = False self.list_free_format = list_free_format return @property def name(self): return self.package.name @property def mg(self): return self._model.modelgrid @property def sr(self): return self.mg.sr @property def model(self): return self._model @property def package(self): return self._package @property def data_type(self): return DataType.transientlist @property def plotable(self): return True def get_empty(self, ncell=0): d = create_empty_recarray(ncell, self.dtype, default_value=-1.0e10) return d def export(self, f, **kwargs): from flopy import export return export.utils.mflist_export(f, self, **kwargs) def append(self, other): """ append the recarrays from one MfList to another Parameters ---------- other: variable: an item that can be cast in to an MfList that corresponds with self Returns ------- dict of {kper:recarray} """ if not isinstance(other, MfList): other = MfList( self.package, data=other, dtype=self.dtype, model=self._model, list_free_format=self.list_free_format, ) msg = ( "MfList.append(): other arg must be " + "MfList or dict, not {0}".format(type(other)) ) assert isinstance(other, MfList), msg other_kpers = list(other.data.keys()) other_kpers.sort() self_kpers = list(self.data.keys()) self_kpers.sort() new_dict = {} for kper in range(self._model.nper): other_data = other[kper].copy() self_data = self[kper].copy() other_len = other_data.shape[0] self_len = self_data.shape[0] if (other_len == 0 and self_len == 0) or ( kper not in self_kpers and kper not in other_kpers ): continue elif self_len == 0: new_dict[kper] = other_data elif other_len == 0: new_dict[kper] = self_data else: new_len = other_data.shape[0] + self_data.shape[0] new_data = np.recarray(new_len, dtype=self.dtype) new_data[:self_len] = self_data new_data[self_len : self_len + other_len] = other_data new_dict[kper] = new_data return new_dict def drop(self, fields): """drop fields from an MfList Parameters ---------- fields : list or set of field names to drop Returns ------- dropped : MfList without the dropped fields """ if not isinstance(fields, list): fields = [fields] names = [n for n in self.dtype.names if n not in fields] dtype = np.dtype( [(k, d) for k, d in self.dtype.descr if k not in fields] ) spd = {} for k, v in self.data.items(): # because np 1.9 doesn't support indexing by list of columns newarr = np.array([self.data[k][n] for n in names]).transpose() newarr = np.array(list(map(tuple, newarr)), dtype=dtype).view( np.recarray ) for n in dtype.names: newarr[n] = self.data[k][n] spd[k] = newarr return MfList(self.package, spd, dtype=dtype) @property def data(self): return self.__data @property def df(self): if self.__df is None: self.__df = self.get_dataframe() return self.__df @property def vtype(self): return self.__vtype @property def dtype(self): return self.__dtype # Get the itmp for a given kper def get_itmp(self, kper): if kper not in list(self.__data.keys()): return None if self.__vtype[kper] is None: return -1 # If an external file, have to load it if self.__vtype[kper] == str: return self.__fromfile(self.__data[kper]).shape[0] if self.__vtype[kper] == np.recarray: return self.__data[kper].shape[0] # If not any of the above, it must be an int return self.__data[kper] @property def mxact(self): mxact = 0 for kper in list(self.__data.keys()): mxact = max(mxact, self.get_itmp(kper)) return mxact @property def fmt_string(self): """Returns a C-style fmt string for numpy savetxt that corresponds to the dtype""" if self.list_free_format is not None: use_free = self.list_free_format else: use_free = True if self.package.parent.has_package("bas6"): use_free = self.package.parent.bas6.ifrefm # mt3d list data is fixed format if "mt3d" in self.package.parent.version.lower(): use_free = False fmts = [] for field in self.dtype.descr: vtype = field[1][1].lower() if vtype in ("i", "b"): if use_free: fmts.append("%9d") else: fmts.append("%10d") elif vtype == "f": if use_free: if numpy114: # Use numpy's floating-point formatter (Dragon4) fmts.append("%15s") else: fmts.append("%15.7E") else: fmts.append("%10G") elif vtype == "o": if use_free: fmts.append("%9s") else: fmts.append("%10s") elif vtype == "s": msg = ( "MfList.fmt_string error: 'str' type found in dtype. " "This gives unpredictable results when " "recarray to file - change to 'object' type" ) raise TypeError(msg) else: raise TypeError( "MfList.fmt_string error: unknown vtype in " "field: {}".format(field) ) if use_free: fmt_string = " " + " ".join(fmts) else: fmt_string = "".join(fmts) return fmt_string # Private method to cast the data argument # Should only be called by the constructor def __cast_data(self, data): # If data is a list, then all we can do is try to cast it to # an ndarray, then cast again to a recarray if isinstance(data, list): # warnings.warn("MfList casting list to array") try: data = np.array(data) except Exception as e: raise Exception( "MfList error: casting list to ndarray: " + str(e) ) # If data is a dict, the we have to assume it is keyed on kper if isinstance(data, dict): if not list(data.keys()): raise Exception("MfList error: data dict is empty") for kper, d in data.items(): try: kper = int(kper) except Exception as e: raise Exception( "MfList error: data dict key " + "{0:s} not integer: ".format(kper) + str(type(kper)) + "\n" + str(e) ) # Same as before, just try... if isinstance(d, list): # warnings.warn("MfList: casting list to array at " +\ # "kper {0:d}".format(kper)) try: d = np.array(d) except Exception as e: raise Exception( "MfList error: casting list " + "to ndarray: " + str(e) ) # super hack - sick of recarrays already # if (isinstance(d,np.ndarray) and len(d.dtype.fields) > 1): # d = d.view(np.recarray) if isinstance(d, np.recarray): self.__cast_recarray(kper, d) elif isinstance(d, np.ndarray): self.__cast_ndarray(kper, d) elif isinstance(d, int): self.__cast_int(kper, d) elif isinstance(d, str): self.__cast_str(kper, d) elif d is None: self.__data[kper] = -1 self.__vtype[kper] = None else: raise Exception( "MfList error: unsupported data type: " + str(type(d)) + " at kper " + "{0:d}".format(kper) ) # A single recarray - same MfList for all stress periods elif isinstance(data, np.recarray): self.__cast_recarray(0, data) # A single ndarray elif isinstance(data, np.ndarray): self.__cast_ndarray(0, data) # A single filename elif isinstance(data, str): self.__cast_str(0, data) else: raise Exception( "MfList error: unsupported data type: " + str(type(data)) ) def __cast_str(self, kper, d): # If d is a string, assume it is a filename and check that it exists assert os.path.exists(d), ( "MfList error: dict filename (string) '" + d + "' value for " + "kper {0:d} not found".format(kper) ) self.__data[kper] = d self.__vtype[kper] = str def __cast_int(self, kper, d): # If d is an integer, then it must be 0 or -1 if d > 0: raise Exception( "MfList error: dict integer value for " "kper {0:10d} must be 0 or -1, " "not {1:10d}".format(kper, d) ) if d == 0: self.__data[kper] = 0 self.__vtype[kper] = None else: self.__data[kper] = -1 self.__vtype[kper] = None def __cast_recarray(self, kper, d): assert d.dtype == self.__dtype, ( "MfList error: recarray dtype: " + str(d.dtype) + " doesn't match " + "self dtype: " + str(self.dtype) ) self.__data[kper] = d self.__vtype[kper] = np.recarray def __cast_ndarray(self, kper, d): d = np.atleast_2d(d) if d.dtype != self.__dtype: assert d.shape[1] == len(self.dtype), ( "MfList error: ndarray " + "shape " + str(d.shape) + " doesn't match dtype " + "len: " + str(len(self.dtype)) ) # warnings.warn("MfList: ndarray dtype does not match self " +\ # "dtype, trying to cast") try: self.__data[kper] = np.core.records.fromarrays( d.transpose(), dtype=self.dtype ) except Exception as e: raise Exception( "MfList error: casting ndarray to recarray: " + str(e) ) self.__vtype[kper] = np.recarray def get_dataframe(self, squeeze=True): """ Cast recarrays for stress periods into single dataframe containing all stress periods. Parameters ---------- squeeze : bool Reduce number of columns in dataframe to only include stress periods where a variable changes. Returns ------- df : dataframe Dataframe of shape nrow = ncells, ncol = nvar x nper. If the squeeze option is chosen, nper is the number of stress periods where at least one cells is different, otherwise it is equal to the number of keys in MfList.data. Notes ----- Requires pandas. """ try: import pandas as pd except Exception as e: msg = "MfList.get_dataframe() requires pandas" raise ImportError(msg) # make a dataframe of all data for all stress periods names = ["k", "i", "j"] if "MNW2" in self.package.name: names += ["wellid"] # find relevant variable names # may have to iterate over the first stress period for per in range(self._model.nper): if hasattr(self.data[per], "dtype"): varnames = list( [n for n in self.data[per].dtype.names if n not in names] ) break # create list of dataframes for each stress period # each with index of k, i, j dfs = [] for per in self.data.keys(): recs = self.data[per] if recs is None or len(recs) == 0: # add an empty dataframe if a stress period is # empty (e.g. no pumping during a predevelopment # period) columns = names + list( ["{}{}".format(c, per) for c in varnames] ) dfi = pd.DataFrame(data=None, columns=columns) dfi = dfi.set_index(names) else: dfi = pd.DataFrame.from_records(recs) dfg = dfi.groupby(names) count = dfg[varnames[0]].count().rename("n") if (count > 1).values.any(): print( "Duplicated list entry locations aggregated " "for kper {}".format(per) ) for kij in count[count > 1].index.values: print(" (k,i,j) {}".format(kij)) dfi = dfg.sum() # aggregate dfi.columns = list(["{}{}".format(c, per) for c in varnames]) dfs.append(dfi) df = pd.concat(dfs, axis=1) if squeeze: keep = [] for var in varnames: diffcols = list([n for n in df.columns if var in n]) diff = df[diffcols].fillna(0).diff(axis=1) diff[ "{}0".format(var) ] = 1 # always return the first stress period changed = diff.sum(axis=0) != 0 keep.append(df.loc[:, changed.index[changed]]) df = pd.concat(keep, axis=1) df = df.reset_index() df.insert(len(names), "node", df.i * self._model.ncol + df.j) return df def add_record(self, kper, index, values): # Add a record to possible already set list for a given kper # index is a list of k,i,j or nodes. # values is a list of floats. # The length of index + values must be equal to the number of names # in dtype assert len(index) + len(values) == len(self.dtype), ( "MfList.add_record() error: length of index arg +" + "length of value arg != length of self dtype" ) # If we already have something for this kper, then add to it if kper in list(self.__data.keys()): if self.vtype[kper] == int: # If a 0 or -1, reset self.__data[kper] = self.get_empty(1) self.__vtype[kper] = np.recarray elif self.vtype[kper] == str: # If filename, load into recarray d = self.__fromfile(self.data[kper]) d.resize(d.shape[0], d.shape[1]) self.__data[kper] = d self.__vtype[kper] = np.recarray elif self.vtype[kper] == np.recarray: # Extend the recarray self.__data[kper] = np.append( self.__data[kper], self.get_empty(1) ) else: self.__data[kper] = self.get_empty(1) self.__vtype[kper] = np.recarray rec = list(index) rec.extend(list(values)) try: self.__data[kper][-1] = tuple(rec) except Exception as e: raise Exception( "MfList.add_record() error: adding record to " + "recarray: " + str(e) ) def __getitem__(self, kper): # Get the recarray for a given kper # If the data entry for kper is a string, # return the corresponding recarray, # but don't reset the value in the data dict # assert kper in list(self.data.keys()), "MfList.__getitem__() kper " + \ # str(kper) + " not in data.keys()" try: kper = int(kper) except Exception as e: raise Exception( "MfList error: _getitem__() passed invalid kper index:" + str(kper) ) if kper not in list(self.data.keys()): if kper == 0: return self.get_empty() else: return self.data[self.__find_last_kper(kper)] if self.vtype[kper] == int: if self.data[kper] == 0: return self.get_empty() else: return self.data[self.__find_last_kper(kper)] if self.vtype[kper] == str: return self.__fromfile(self.data[kper]) if self.vtype[kper] == np.recarray: return self.data[kper] def __setitem__(self, kper, data): if kper in list(self.__data.keys()): if self._model.verbose: print("removing existing data for kper={}".format(kper)) self.data.pop(kper) # If data is a list, then all we can do is try to cast it to # an ndarray, then cast again to a recarray if isinstance(data, list): # warnings.warn("MfList casting list to array") try: data = np.array(data) except Exception as e: raise Exception( "MfList error: casting list to ndarray: " + str(e) ) # cast data if isinstance(data, int): self.__cast_int(kper, data) elif isinstance(data, np.recarray): self.__cast_recarray(kper, data) # A single ndarray elif isinstance(data, np.ndarray): self.__cast_ndarray(kper, data) # A single filename elif isinstance(data, str): self.__cast_str(kper, data) else: raise Exception( "MfList error: unsupported data type: " + str(type(data)) ) # raise NotImplementedError("MfList.__setitem__() not implemented") def __fromfile(self, f): # d = np.fromfile(f,dtype=self.dtype,count=count) try: d = np.genfromtxt(f, dtype=self.dtype) except Exception as e: raise Exception( "MfList.__fromfile() error reading recarray " + "from file " + str(e) ) return d def get_filenames(self): kpers = list(self.data.keys()) kpers.sort() filenames = [] first = kpers[0] for kper in list(range(0, max(self._model.nper, max(kpers) + 1))): # Fill missing early kpers with 0 if kper < first: itmp = 0 kper_vtype = int elif kper in kpers: kper_vtype = self.__vtype[kper] if ( self._model.array_free_format and self._model.external_path is not None ): # py_filepath = '' # py_filepath = os.path.join(py_filepath, # self._model.external_path) filename = self.package.name[0] + "_{0:04d}.dat".format(kper) filenames.append(filename) return filenames def get_filename(self, kper): ext = "dat" if self.binary: ext = "bin" return self.package.name[0] + "_{0:04d}.{1}".format(kper, ext) @property def binary(self): return bool(self.__binary) def write_transient(self, f, single_per=None, forceInternal=False): # forceInternal overrides isExternal (set below) for cases where # external arrays are not supported (oh hello MNW1!) # write the transient sequence described by the data dict nr, nc, nl, nper = self._model.get_nrow_ncol_nlay_nper() assert hasattr(f, "read"), ( "MfList.write() error: " + "f argument must be a file handle" ) kpers = list(self.data.keys()) kpers.sort() first = kpers[0] if single_per is None: loop_over_kpers = list(range(0, max(nper, max(kpers) + 1))) else: if not isinstance(single_per, list): single_per = [single_per] loop_over_kpers = single_per for kper in loop_over_kpers: # Fill missing early kpers with 0 if kper < first: itmp = 0 kper_vtype = int elif kper in kpers: kper_data = self.__data[kper] kper_vtype = self.__vtype[kper] if kper_vtype == str: if not self._model.array_free_format: kper_data = self.__fromfile(kper_data) kper_vtype = np.recarray itmp = self.get_itmp(kper) if kper_vtype == np.recarray: itmp = kper_data.shape[0] elif (kper_vtype == int) or (kper_vtype is None): itmp = kper_data # Fill late missing kpers with -1 else: itmp = -1 kper_vtype = int f.write( " {0:9d} {1:9d} # stress period {2:d}\n".format( itmp, 0, kper + 1 ) ) isExternal = False if ( self._model.array_free_format and self._model.external_path is not None and forceInternal is False ): isExternal = True if self.__binary: isExternal = True if isExternal: if kper_vtype == np.recarray: py_filepath = "" if self._model.model_ws is not None: py_filepath = self._model.model_ws if self._model.external_path is not None: py_filepath = os.path.join( py_filepath, self._model.external_path ) filename = self.get_filename(kper) py_filepath = os.path.join(py_filepath, filename) model_filepath = filename if self._model.external_path is not None: model_filepath = os.path.join( self._model.external_path, filename ) self.__tofile(py_filepath, kper_data) kper_vtype = str kper_data = model_filepath if kper_vtype == np.recarray: name = f.name if self.__binary or not numpy114: f.close() # switch file append mode to binary with open(name, "ab+") as f: self.__tofile(f, kper_data) # continue back to non-binary f = open(name, "a") else: self.__tofile(f, kper_data) elif kper_vtype == str: f.write(" open/close " + kper_data) if self.__binary: f.write(" (BINARY)") f.write("\n") def __tofile(self, f, data): # Write the recarray (data) to the file (or file handle) f assert isinstance(data, np.recarray), ( "MfList.__tofile() data arg " + "not a recarray" ) # Add one to the kij indices lnames = [name.lower() for name in self.dtype.names] # --make copy of data for multiple calls d = data.copy() for idx in ["k", "i", "j", "node"]: if idx in lnames: d[idx] += 1 if self.__binary: dtype2 = [] for name in self.dtype.names: dtype2.append((name, np.float32)) dtype2 = np.dtype(dtype2) d = np.array(d, dtype=dtype2) d.tofile(f) else: np.savetxt(f, d, fmt=self.fmt_string, delimiter="") def check_kij(self): names = self.dtype.names if ("k" not in names) or ("i" not in names) or ("j" not in names): warnings.warn( "MfList.check_kij(): index fieldnames 'k,i,j' " + "not found in self.dtype names: " + str(names) ) return nr, nc, nl, nper = self._model.get_nrow_ncol_nlay_nper() if nl == 0: warnings.warn( "MfList.check_kij(): unable to get dis info from " + "model" ) return for kper in list(self.data.keys()): out_idx = [] data = self[kper] if data is not None: k = data["k"] k_idx = np.where(np.logical_or(k < 0, k >= nl)) if k_idx[0].shape[0] > 0: out_idx.extend(list(k_idx[0])) i = data["i"] i_idx = np.where(np.logical_or(i < 0, i >= nr)) if i_idx[0].shape[0] > 0: out_idx.extend(list(i_idx[0])) j = data["j"] j_idx = np.where(np.logical_or(j < 0, j >= nc)) if j_idx[0].shape[0]: out_idx.extend(list(j_idx[0])) if len(out_idx) > 0: warn_str = ( "MfList.check_kij(): warning the following " + "indices are out of bounds in kper " + str(kper) + ":\n" ) for idx in out_idx: d = data[idx] warn_str += " {0:9d} {1:9d} {2:9d}\n".format( d["k"] + 1, d["i"] + 1, d["j"] + 1 ) warnings.warn(warn_str) def __find_last_kper(self, kper): kpers = list(self.data.keys()) kpers.sort() last = 0 for kkper in kpers[::-1]: # if this entry is valid if self.vtype[kkper] != int or self.data[kkper] != -1: last = kkper if kkper <= kper: break return kkper def get_indices(self): """ a helper function for plotting - get all unique indices """ names = self.dtype.names lnames = [] [lnames.append(name.lower()) for name in names] if "k" not in lnames or "j" not in lnames: raise NotImplementedError("MfList.get_indices requires kij") kpers = list(self.data.keys()) kpers.sort() indices = [] for i, kper in enumerate(kpers): kper_vtype = self.__vtype[kper] if (kper_vtype != int) or (kper_vtype is not None): d = self.data[kper] if not indices: indices = list(zip(d["k"], d["i"], d["j"])) else: new_indices = list(zip(d["k"], d["i"], d["j"])) for ni in new_indices: if ni not in indices: indices.append(ni) return indices def attribute_by_kper(self, attr, function=np.mean, idx_val=None): assert attr in self.dtype.names if idx_val is not None: assert idx_val[0] in self.dtype.names kpers = list(self.data.keys()) kpers.sort() values = [] for kper in range(0, max(self._model.nper, max(kpers))): if kper < min(kpers): values.append(0) elif kper > max(kpers) or kper not in kpers: values.append(values[-1]) else: kper_data = self.__data[kper] if idx_val is not None: kper_data = kper_data[ np.where(kper_data[idx_val[0]] == idx_val[1]) ] # kper_vtype = self.__vtype[kper] v = function(kper_data[attr]) values.append(v) return values def plot( self, key=None, names=None, kper=0, filename_base=None, file_extension=None, mflay=None, **kwargs ): """ Plot stress period boundary condition (MfList) data for a specified stress period Parameters ---------- key : str MfList dictionary key. (default is None) names : list List of names for figure titles. (default is None) kper : int MODFLOW zero-based stress period number to return. (default is zero) filename_base : str Base file name that will be used to automatically generate file names for output image files. Plots will be exported as image files if file_name_base is not None. (default is None) file_extension : str Valid matplotlib.pyplot file extension for savefig(). Only used if filename_base is not None. (default is 'png') mflay : int MODFLOW zero-based layer number to return. If None, then all all layers will be included. (default is None) **kwargs : dict axes : list of matplotlib.pyplot.axis List of matplotlib.pyplot.axis that will be used to plot data for each layer. If axes=None axes will be generated. (default is None) pcolor : bool Boolean used to determine if matplotlib.pyplot.pcolormesh plot will be plotted. (default is True) colorbar : bool Boolean used to determine if a color bar will be added to the matplotlib.pyplot.pcolormesh. Only used if pcolor=True. (default is False) inactive : bool Boolean used to determine if a black overlay in inactive cells in a layer will be displayed. (default is True) contour : bool Boolean used to determine if matplotlib.pyplot.contour plot will be plotted. (default is False) clabel : bool Boolean used to determine if matplotlib.pyplot.clabel will be plotted. Only used if contour=True. (default is False) grid : bool Boolean used to determine if the model grid will be plotted on the figure. (default is False) masked_values : list List of unique values to be excluded from the plot. Returns ---------- out : list Empty list is returned if filename_base is not None. Otherwise a list of matplotlib.pyplot.axis is returned. See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.wel.stress_period_data.plot(ml.wel, kper=1) """ from flopy.plot import PlotUtilities axes = PlotUtilities._plot_mflist_helper( self, key=key, names=names, kper=kper, filename_base=filename_base, file_extension=file_extension, mflay=mflay, **kwargs ) return axes # MASKED: to_shapefile function (lines 1010-1062) def to_array(self, kper=0, mask=False): """ Convert stress period boundary condition (MfList) data for a specified stress period to a 3-D numpy array Parameters ---------- kper : int MODFLOW zero-based stress period number to return. (default is zero) mask : boolean return array with np.NaN instead of zero Returns ---------- out : dict of numpy.ndarrays Dictionary of 3-D numpy arrays containing the stress period data for a selected stress period. The dictionary keys are the MfList dtype names for the stress period data ('cond', 'flux', 'bhead', etc.). See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> v = ml.wel.stress_period_data.to_array(kper=1) """ i0 = 3 unstructured = False if "inode" in self.dtype.names: raise NotImplementedError() if "node" in self.dtype.names: if "i" not in self.dtype.names and "j" not in self.dtype.names: i0 = 1 unstructured = True arrays = {} for name in self.dtype.names[i0:]: if not self.dtype.fields[name][0] == object: if unstructured: arr = np.zeros((self._model.nlay * self._model.ncpl,)) else: arr = np.zeros( (self._model.nlay, self._model.nrow, self._model.ncol) ) arrays[name] = arr.copy() # if this kper is not found if kper not in self.data.keys(): kpers = list(self.data.keys()) kpers.sort() # if this kper is before the first entry, # (maybe) mask and return if kper < kpers[0]: if mask: for name, arr in arrays.items(): arrays[name][:] = np.NaN return arrays # find the last kper else: kper = self.__find_last_kper(kper) sarr = self.data[kper] if np.isscalar(sarr): # if there are no entries for this kper if sarr == 0: if mask: for name, arr in arrays.items(): arrays[name][:] = np.NaN return arrays else: raise Exception("MfList: something bad happened") for name, arr in arrays.items(): if unstructured: cnt = np.zeros( (self._model.nlay * self._model.ncpl,), dtype=np.float ) else: cnt = np.zeros( (self._model.nlay, self._model.nrow, self._model.ncol), dtype=np.float, ) # print(name,kper) for rec in sarr: if unstructured: arr[rec["node"]] += rec[name] cnt[rec["node"]] += 1.0 else: arr[rec["k"], rec["i"], rec["j"]] += rec[name] cnt[rec["k"], rec["i"], rec["j"]] += 1.0 # average keys that should not be added if name not in ("cond", "flux"): idx = cnt > 0.0 arr[idx] /= cnt[idx] if mask: arr = np.ma.masked_where(cnt == 0.0, arr) arr[cnt == 0.0] = np.NaN arrays[name] = arr.copy() # elif mask: # for name, arr in arrays.items(): # arrays[name][:] = np.NaN return arrays @property def masked_4D_arrays(self): # get the first kper arrays = self.to_array(kper=0, mask=True) # initialize these big arrays m4ds = {} for name, array in arrays.items(): m4d = np.zeros( ( self._model.nper, self._model.nlay, self._model.nrow, self._model.ncol, ) ) m4d[0, :, :, :] = array m4ds[name] = m4d for kper in range(1, self._model.nper): arrays = self.to_array(kper=kper, mask=True) for name, array in arrays.items(): m4ds[name][kper, :, :, :] = array return m4ds def masked_4D_arrays_itr(self): # get the first kper arrays = self.to_array(kper=0, mask=True) # initialize these big arrays for name, array in arrays.items(): m4d = np.zeros( ( self._model.nper, self._model.nlay, self._model.nrow, self._model.ncol, ) ) m4d[0, :, :, :] = array for kper in range(1, self._model.nper): arrays = self.to_array(kper=kper, mask=True) for tname, array in arrays.items(): if tname == name: m4d[kper, :, :, :] = array yield name, m4d @property def array(self): return self.masked_4D_arrays @classmethod def from_4d(cls, model, pak_name, m4ds): """construct an MfList instance from a dict of (attribute_name,masked 4D ndarray Parameters ---------- model : mbase derived type pak_name : str package name (e.g GHB) m4ds : {attribute name:4d masked numpy.ndarray} Returns ------- MfList instance """ sp_data = MfList.masked4D_arrays_to_stress_period_data( model.get_package(pak_name).get_default_dtype(), m4ds ) return cls(model.get_package(pak_name), data=sp_data) @staticmethod def masked4D_arrays_to_stress_period_data(dtype, m4ds): """ convert a dictionary of 4-dim masked arrays to a stress_period_data style dict of recarray Parameters ---------- dtype : numpy dtype m4ds : dict {name:masked numpy 4-dim ndarray} Returns ------- dict {kper:recarray} """ assert isinstance(m4ds, dict) for name, m4d in m4ds.items(): assert isinstance(m4d, np.ndarray) assert name in dtype.names assert m4d.ndim == 4 keys = list(m4ds.keys()) for i1, key1 in enumerate(keys): a1 = np.isnan(m4ds[key1]) for i2, key2 in enumerate(keys[i1:]): a2 = np.isnan(m4ds[key2]) if not np.array_equal(a1, a2): raise Exception( "Transient2d error: masking not equal" + " for {0} and {1}".format(key1, key2) ) sp_data = {} for kper in range(m4d.shape[0]): vals = {} for name, m4d in m4ds.items(): arr = m4d[kper, :, :, :] isnan = np.argwhere(~np.isnan(arr)) v = [] for k, i, j in isnan: v.append(arr[k, i, j]) vals[name] = v kk = isnan[:, 0] ii = isnan[:, 1] jj = isnan[:, 2] spd = np.recarray(shape=isnan.shape[0], dtype=dtype) spd["i"] = ii spd["k"] = kk spd["j"] = jj for n, v in vals.items(): spd[n] = v sp_data[kper] = spd return sp_data
def to_shapefile(self, filename, kper=None): """ Export stress period boundary condition (MfList) data for a specified stress period Parameters ---------- filename : str Shapefile name to write kper : int MODFLOW zero-based stress period number to return. (default is None) Returns ---------- None See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.wel.to_shapefile('test_hk.shp', kper=1) """ import warnings warnings.warn( "Deprecation warning: to_shapefile() is deprecated. use .export()" ) # if self.sr is None: # raise Exception("MfList.to_shapefile: SpatialReference not set") # import flopy.utils.flopy_io as fio # if kper is None: # keys = self.data.keys() # keys.sort() # else: # keys = [kper] # array_dict = {} # for kk in keys: # arrays = self.to_array(kk) # for name, array in arrays.items(): # for k in range(array.shape[0]): # #aname = name+"{0:03d}_{1:02d}".format(kk, k) # n = fio.shape_attr_name(name, length=4) # aname = "{}{:03d}{:03d}".format(n, k+1, int(kk)+1) # array_dict[aname] = array[k] # fio.write_grid_shapefile(filename, self.sr, array_dict) self.export(filename, kper=kper)
1,010
1,062
""" util_list module. Contains the mflist class. This classes encapsulates modflow-style list inputs away from the individual packages. The end-user should not need to instantiate this class directly. some more info """ from __future__ import division, print_function import os import warnings import numpy as np from ..datbase import DataInterface, DataListInterface, DataType from ..utils.recarray_utils import create_empty_recarray try: from numpy.lib import NumpyVersion numpy114 = NumpyVersion(np.__version__) >= "1.14.0" except ImportError: numpy114 = False class MfList(DataInterface, DataListInterface): """ a generic object for handling transient boundary condition lists Parameters ---------- package : package object The package object (of type :class:`flopy.pakbase.Package`) to which this MfList will be added. data : varies the data of the transient list (optional). (the default is None) Attributes ---------- mxact : int the max number of active bc for any stress period Methods ------- add_record(kper,index,value) : None add a record to stress period kper at index location write_transient(f) : None write the transient sequence to the model input file f check_kij() : None checks for boundaries outside of model domain - issues warnings only See Also -------- Notes ----- Examples -------- """ def __init__( self, package, data=None, dtype=None, model=None, list_free_format=None, binary=False, ): if isinstance(data, MfList): for attr in data.__dict__.items(): setattr(self, attr[0], attr[1]) if model is None: self._model = package.parent else: self._model = model self._package = package return self._package = package if model is None: self._model = package.parent else: self._model = model if dtype is None: assert isinstance(self.package.dtype, np.dtype) self.__dtype = self.package.dtype else: self.__dtype = dtype self.__binary = binary self.__vtype = {} self.__data = {} if data is not None: self.__cast_data(data) self.__df = None if list_free_format is None: if package.parent.version == "mf2k": list_free_format = False self.list_free_format = list_free_format return @property def name(self): return self.package.name @property def mg(self): return self._model.modelgrid @property def sr(self): return self.mg.sr @property def model(self): return self._model @property def package(self): return self._package @property def data_type(self): return DataType.transientlist @property def plotable(self): return True def get_empty(self, ncell=0): d = create_empty_recarray(ncell, self.dtype, default_value=-1.0e10) return d def export(self, f, **kwargs): from flopy import export return export.utils.mflist_export(f, self, **kwargs) def append(self, other): """ append the recarrays from one MfList to another Parameters ---------- other: variable: an item that can be cast in to an MfList that corresponds with self Returns ------- dict of {kper:recarray} """ if not isinstance(other, MfList): other = MfList( self.package, data=other, dtype=self.dtype, model=self._model, list_free_format=self.list_free_format, ) msg = ( "MfList.append(): other arg must be " + "MfList or dict, not {0}".format(type(other)) ) assert isinstance(other, MfList), msg other_kpers = list(other.data.keys()) other_kpers.sort() self_kpers = list(self.data.keys()) self_kpers.sort() new_dict = {} for kper in range(self._model.nper): other_data = other[kper].copy() self_data = self[kper].copy() other_len = other_data.shape[0] self_len = self_data.shape[0] if (other_len == 0 and self_len == 0) or ( kper not in self_kpers and kper not in other_kpers ): continue elif self_len == 0: new_dict[kper] = other_data elif other_len == 0: new_dict[kper] = self_data else: new_len = other_data.shape[0] + self_data.shape[0] new_data = np.recarray(new_len, dtype=self.dtype) new_data[:self_len] = self_data new_data[self_len : self_len + other_len] = other_data new_dict[kper] = new_data return new_dict def drop(self, fields): """drop fields from an MfList Parameters ---------- fields : list or set of field names to drop Returns ------- dropped : MfList without the dropped fields """ if not isinstance(fields, list): fields = [fields] names = [n for n in self.dtype.names if n not in fields] dtype = np.dtype( [(k, d) for k, d in self.dtype.descr if k not in fields] ) spd = {} for k, v in self.data.items(): # because np 1.9 doesn't support indexing by list of columns newarr = np.array([self.data[k][n] for n in names]).transpose() newarr = np.array(list(map(tuple, newarr)), dtype=dtype).view( np.recarray ) for n in dtype.names: newarr[n] = self.data[k][n] spd[k] = newarr return MfList(self.package, spd, dtype=dtype) @property def data(self): return self.__data @property def df(self): if self.__df is None: self.__df = self.get_dataframe() return self.__df @property def vtype(self): return self.__vtype @property def dtype(self): return self.__dtype # Get the itmp for a given kper def get_itmp(self, kper): if kper not in list(self.__data.keys()): return None if self.__vtype[kper] is None: return -1 # If an external file, have to load it if self.__vtype[kper] == str: return self.__fromfile(self.__data[kper]).shape[0] if self.__vtype[kper] == np.recarray: return self.__data[kper].shape[0] # If not any of the above, it must be an int return self.__data[kper] @property def mxact(self): mxact = 0 for kper in list(self.__data.keys()): mxact = max(mxact, self.get_itmp(kper)) return mxact @property def fmt_string(self): """Returns a C-style fmt string for numpy savetxt that corresponds to the dtype""" if self.list_free_format is not None: use_free = self.list_free_format else: use_free = True if self.package.parent.has_package("bas6"): use_free = self.package.parent.bas6.ifrefm # mt3d list data is fixed format if "mt3d" in self.package.parent.version.lower(): use_free = False fmts = [] for field in self.dtype.descr: vtype = field[1][1].lower() if vtype in ("i", "b"): if use_free: fmts.append("%9d") else: fmts.append("%10d") elif vtype == "f": if use_free: if numpy114: # Use numpy's floating-point formatter (Dragon4) fmts.append("%15s") else: fmts.append("%15.7E") else: fmts.append("%10G") elif vtype == "o": if use_free: fmts.append("%9s") else: fmts.append("%10s") elif vtype == "s": msg = ( "MfList.fmt_string error: 'str' type found in dtype. " "This gives unpredictable results when " "recarray to file - change to 'object' type" ) raise TypeError(msg) else: raise TypeError( "MfList.fmt_string error: unknown vtype in " "field: {}".format(field) ) if use_free: fmt_string = " " + " ".join(fmts) else: fmt_string = "".join(fmts) return fmt_string # Private method to cast the data argument # Should only be called by the constructor def __cast_data(self, data): # If data is a list, then all we can do is try to cast it to # an ndarray, then cast again to a recarray if isinstance(data, list): # warnings.warn("MfList casting list to array") try: data = np.array(data) except Exception as e: raise Exception( "MfList error: casting list to ndarray: " + str(e) ) # If data is a dict, the we have to assume it is keyed on kper if isinstance(data, dict): if not list(data.keys()): raise Exception("MfList error: data dict is empty") for kper, d in data.items(): try: kper = int(kper) except Exception as e: raise Exception( "MfList error: data dict key " + "{0:s} not integer: ".format(kper) + str(type(kper)) + "\n" + str(e) ) # Same as before, just try... if isinstance(d, list): # warnings.warn("MfList: casting list to array at " +\ # "kper {0:d}".format(kper)) try: d = np.array(d) except Exception as e: raise Exception( "MfList error: casting list " + "to ndarray: " + str(e) ) # super hack - sick of recarrays already # if (isinstance(d,np.ndarray) and len(d.dtype.fields) > 1): # d = d.view(np.recarray) if isinstance(d, np.recarray): self.__cast_recarray(kper, d) elif isinstance(d, np.ndarray): self.__cast_ndarray(kper, d) elif isinstance(d, int): self.__cast_int(kper, d) elif isinstance(d, str): self.__cast_str(kper, d) elif d is None: self.__data[kper] = -1 self.__vtype[kper] = None else: raise Exception( "MfList error: unsupported data type: " + str(type(d)) + " at kper " + "{0:d}".format(kper) ) # A single recarray - same MfList for all stress periods elif isinstance(data, np.recarray): self.__cast_recarray(0, data) # A single ndarray elif isinstance(data, np.ndarray): self.__cast_ndarray(0, data) # A single filename elif isinstance(data, str): self.__cast_str(0, data) else: raise Exception( "MfList error: unsupported data type: " + str(type(data)) ) def __cast_str(self, kper, d): # If d is a string, assume it is a filename and check that it exists assert os.path.exists(d), ( "MfList error: dict filename (string) '" + d + "' value for " + "kper {0:d} not found".format(kper) ) self.__data[kper] = d self.__vtype[kper] = str def __cast_int(self, kper, d): # If d is an integer, then it must be 0 or -1 if d > 0: raise Exception( "MfList error: dict integer value for " "kper {0:10d} must be 0 or -1, " "not {1:10d}".format(kper, d) ) if d == 0: self.__data[kper] = 0 self.__vtype[kper] = None else: self.__data[kper] = -1 self.__vtype[kper] = None def __cast_recarray(self, kper, d): assert d.dtype == self.__dtype, ( "MfList error: recarray dtype: " + str(d.dtype) + " doesn't match " + "self dtype: " + str(self.dtype) ) self.__data[kper] = d self.__vtype[kper] = np.recarray def __cast_ndarray(self, kper, d): d = np.atleast_2d(d) if d.dtype != self.__dtype: assert d.shape[1] == len(self.dtype), ( "MfList error: ndarray " + "shape " + str(d.shape) + " doesn't match dtype " + "len: " + str(len(self.dtype)) ) # warnings.warn("MfList: ndarray dtype does not match self " +\ # "dtype, trying to cast") try: self.__data[kper] = np.core.records.fromarrays( d.transpose(), dtype=self.dtype ) except Exception as e: raise Exception( "MfList error: casting ndarray to recarray: " + str(e) ) self.__vtype[kper] = np.recarray def get_dataframe(self, squeeze=True): """ Cast recarrays for stress periods into single dataframe containing all stress periods. Parameters ---------- squeeze : bool Reduce number of columns in dataframe to only include stress periods where a variable changes. Returns ------- df : dataframe Dataframe of shape nrow = ncells, ncol = nvar x nper. If the squeeze option is chosen, nper is the number of stress periods where at least one cells is different, otherwise it is equal to the number of keys in MfList.data. Notes ----- Requires pandas. """ try: import pandas as pd except Exception as e: msg = "MfList.get_dataframe() requires pandas" raise ImportError(msg) # make a dataframe of all data for all stress periods names = ["k", "i", "j"] if "MNW2" in self.package.name: names += ["wellid"] # find relevant variable names # may have to iterate over the first stress period for per in range(self._model.nper): if hasattr(self.data[per], "dtype"): varnames = list( [n for n in self.data[per].dtype.names if n not in names] ) break # create list of dataframes for each stress period # each with index of k, i, j dfs = [] for per in self.data.keys(): recs = self.data[per] if recs is None or len(recs) == 0: # add an empty dataframe if a stress period is # empty (e.g. no pumping during a predevelopment # period) columns = names + list( ["{}{}".format(c, per) for c in varnames] ) dfi = pd.DataFrame(data=None, columns=columns) dfi = dfi.set_index(names) else: dfi = pd.DataFrame.from_records(recs) dfg = dfi.groupby(names) count = dfg[varnames[0]].count().rename("n") if (count > 1).values.any(): print( "Duplicated list entry locations aggregated " "for kper {}".format(per) ) for kij in count[count > 1].index.values: print(" (k,i,j) {}".format(kij)) dfi = dfg.sum() # aggregate dfi.columns = list(["{}{}".format(c, per) for c in varnames]) dfs.append(dfi) df = pd.concat(dfs, axis=1) if squeeze: keep = [] for var in varnames: diffcols = list([n for n in df.columns if var in n]) diff = df[diffcols].fillna(0).diff(axis=1) diff[ "{}0".format(var) ] = 1 # always return the first stress period changed = diff.sum(axis=0) != 0 keep.append(df.loc[:, changed.index[changed]]) df = pd.concat(keep, axis=1) df = df.reset_index() df.insert(len(names), "node", df.i * self._model.ncol + df.j) return df def add_record(self, kper, index, values): # Add a record to possible already set list for a given kper # index is a list of k,i,j or nodes. # values is a list of floats. # The length of index + values must be equal to the number of names # in dtype assert len(index) + len(values) == len(self.dtype), ( "MfList.add_record() error: length of index arg +" + "length of value arg != length of self dtype" ) # If we already have something for this kper, then add to it if kper in list(self.__data.keys()): if self.vtype[kper] == int: # If a 0 or -1, reset self.__data[kper] = self.get_empty(1) self.__vtype[kper] = np.recarray elif self.vtype[kper] == str: # If filename, load into recarray d = self.__fromfile(self.data[kper]) d.resize(d.shape[0], d.shape[1]) self.__data[kper] = d self.__vtype[kper] = np.recarray elif self.vtype[kper] == np.recarray: # Extend the recarray self.__data[kper] = np.append( self.__data[kper], self.get_empty(1) ) else: self.__data[kper] = self.get_empty(1) self.__vtype[kper] = np.recarray rec = list(index) rec.extend(list(values)) try: self.__data[kper][-1] = tuple(rec) except Exception as e: raise Exception( "MfList.add_record() error: adding record to " + "recarray: " + str(e) ) def __getitem__(self, kper): # Get the recarray for a given kper # If the data entry for kper is a string, # return the corresponding recarray, # but don't reset the value in the data dict # assert kper in list(self.data.keys()), "MfList.__getitem__() kper " + \ # str(kper) + " not in data.keys()" try: kper = int(kper) except Exception as e: raise Exception( "MfList error: _getitem__() passed invalid kper index:" + str(kper) ) if kper not in list(self.data.keys()): if kper == 0: return self.get_empty() else: return self.data[self.__find_last_kper(kper)] if self.vtype[kper] == int: if self.data[kper] == 0: return self.get_empty() else: return self.data[self.__find_last_kper(kper)] if self.vtype[kper] == str: return self.__fromfile(self.data[kper]) if self.vtype[kper] == np.recarray: return self.data[kper] def __setitem__(self, kper, data): if kper in list(self.__data.keys()): if self._model.verbose: print("removing existing data for kper={}".format(kper)) self.data.pop(kper) # If data is a list, then all we can do is try to cast it to # an ndarray, then cast again to a recarray if isinstance(data, list): # warnings.warn("MfList casting list to array") try: data = np.array(data) except Exception as e: raise Exception( "MfList error: casting list to ndarray: " + str(e) ) # cast data if isinstance(data, int): self.__cast_int(kper, data) elif isinstance(data, np.recarray): self.__cast_recarray(kper, data) # A single ndarray elif isinstance(data, np.ndarray): self.__cast_ndarray(kper, data) # A single filename elif isinstance(data, str): self.__cast_str(kper, data) else: raise Exception( "MfList error: unsupported data type: " + str(type(data)) ) # raise NotImplementedError("MfList.__setitem__() not implemented") def __fromfile(self, f): # d = np.fromfile(f,dtype=self.dtype,count=count) try: d = np.genfromtxt(f, dtype=self.dtype) except Exception as e: raise Exception( "MfList.__fromfile() error reading recarray " + "from file " + str(e) ) return d def get_filenames(self): kpers = list(self.data.keys()) kpers.sort() filenames = [] first = kpers[0] for kper in list(range(0, max(self._model.nper, max(kpers) + 1))): # Fill missing early kpers with 0 if kper < first: itmp = 0 kper_vtype = int elif kper in kpers: kper_vtype = self.__vtype[kper] if ( self._model.array_free_format and self._model.external_path is not None ): # py_filepath = '' # py_filepath = os.path.join(py_filepath, # self._model.external_path) filename = self.package.name[0] + "_{0:04d}.dat".format(kper) filenames.append(filename) return filenames def get_filename(self, kper): ext = "dat" if self.binary: ext = "bin" return self.package.name[0] + "_{0:04d}.{1}".format(kper, ext) @property def binary(self): return bool(self.__binary) def write_transient(self, f, single_per=None, forceInternal=False): # forceInternal overrides isExternal (set below) for cases where # external arrays are not supported (oh hello MNW1!) # write the transient sequence described by the data dict nr, nc, nl, nper = self._model.get_nrow_ncol_nlay_nper() assert hasattr(f, "read"), ( "MfList.write() error: " + "f argument must be a file handle" ) kpers = list(self.data.keys()) kpers.sort() first = kpers[0] if single_per is None: loop_over_kpers = list(range(0, max(nper, max(kpers) + 1))) else: if not isinstance(single_per, list): single_per = [single_per] loop_over_kpers = single_per for kper in loop_over_kpers: # Fill missing early kpers with 0 if kper < first: itmp = 0 kper_vtype = int elif kper in kpers: kper_data = self.__data[kper] kper_vtype = self.__vtype[kper] if kper_vtype == str: if not self._model.array_free_format: kper_data = self.__fromfile(kper_data) kper_vtype = np.recarray itmp = self.get_itmp(kper) if kper_vtype == np.recarray: itmp = kper_data.shape[0] elif (kper_vtype == int) or (kper_vtype is None): itmp = kper_data # Fill late missing kpers with -1 else: itmp = -1 kper_vtype = int f.write( " {0:9d} {1:9d} # stress period {2:d}\n".format( itmp, 0, kper + 1 ) ) isExternal = False if ( self._model.array_free_format and self._model.external_path is not None and forceInternal is False ): isExternal = True if self.__binary: isExternal = True if isExternal: if kper_vtype == np.recarray: py_filepath = "" if self._model.model_ws is not None: py_filepath = self._model.model_ws if self._model.external_path is not None: py_filepath = os.path.join( py_filepath, self._model.external_path ) filename = self.get_filename(kper) py_filepath = os.path.join(py_filepath, filename) model_filepath = filename if self._model.external_path is not None: model_filepath = os.path.join( self._model.external_path, filename ) self.__tofile(py_filepath, kper_data) kper_vtype = str kper_data = model_filepath if kper_vtype == np.recarray: name = f.name if self.__binary or not numpy114: f.close() # switch file append mode to binary with open(name, "ab+") as f: self.__tofile(f, kper_data) # continue back to non-binary f = open(name, "a") else: self.__tofile(f, kper_data) elif kper_vtype == str: f.write(" open/close " + kper_data) if self.__binary: f.write(" (BINARY)") f.write("\n") def __tofile(self, f, data): # Write the recarray (data) to the file (or file handle) f assert isinstance(data, np.recarray), ( "MfList.__tofile() data arg " + "not a recarray" ) # Add one to the kij indices lnames = [name.lower() for name in self.dtype.names] # --make copy of data for multiple calls d = data.copy() for idx in ["k", "i", "j", "node"]: if idx in lnames: d[idx] += 1 if self.__binary: dtype2 = [] for name in self.dtype.names: dtype2.append((name, np.float32)) dtype2 = np.dtype(dtype2) d = np.array(d, dtype=dtype2) d.tofile(f) else: np.savetxt(f, d, fmt=self.fmt_string, delimiter="") def check_kij(self): names = self.dtype.names if ("k" not in names) or ("i" not in names) or ("j" not in names): warnings.warn( "MfList.check_kij(): index fieldnames 'k,i,j' " + "not found in self.dtype names: " + str(names) ) return nr, nc, nl, nper = self._model.get_nrow_ncol_nlay_nper() if nl == 0: warnings.warn( "MfList.check_kij(): unable to get dis info from " + "model" ) return for kper in list(self.data.keys()): out_idx = [] data = self[kper] if data is not None: k = data["k"] k_idx = np.where(np.logical_or(k < 0, k >= nl)) if k_idx[0].shape[0] > 0: out_idx.extend(list(k_idx[0])) i = data["i"] i_idx = np.where(np.logical_or(i < 0, i >= nr)) if i_idx[0].shape[0] > 0: out_idx.extend(list(i_idx[0])) j = data["j"] j_idx = np.where(np.logical_or(j < 0, j >= nc)) if j_idx[0].shape[0]: out_idx.extend(list(j_idx[0])) if len(out_idx) > 0: warn_str = ( "MfList.check_kij(): warning the following " + "indices are out of bounds in kper " + str(kper) + ":\n" ) for idx in out_idx: d = data[idx] warn_str += " {0:9d} {1:9d} {2:9d}\n".format( d["k"] + 1, d["i"] + 1, d["j"] + 1 ) warnings.warn(warn_str) def __find_last_kper(self, kper): kpers = list(self.data.keys()) kpers.sort() last = 0 for kkper in kpers[::-1]: # if this entry is valid if self.vtype[kkper] != int or self.data[kkper] != -1: last = kkper if kkper <= kper: break return kkper def get_indices(self): """ a helper function for plotting - get all unique indices """ names = self.dtype.names lnames = [] [lnames.append(name.lower()) for name in names] if "k" not in lnames or "j" not in lnames: raise NotImplementedError("MfList.get_indices requires kij") kpers = list(self.data.keys()) kpers.sort() indices = [] for i, kper in enumerate(kpers): kper_vtype = self.__vtype[kper] if (kper_vtype != int) or (kper_vtype is not None): d = self.data[kper] if not indices: indices = list(zip(d["k"], d["i"], d["j"])) else: new_indices = list(zip(d["k"], d["i"], d["j"])) for ni in new_indices: if ni not in indices: indices.append(ni) return indices def attribute_by_kper(self, attr, function=np.mean, idx_val=None): assert attr in self.dtype.names if idx_val is not None: assert idx_val[0] in self.dtype.names kpers = list(self.data.keys()) kpers.sort() values = [] for kper in range(0, max(self._model.nper, max(kpers))): if kper < min(kpers): values.append(0) elif kper > max(kpers) or kper not in kpers: values.append(values[-1]) else: kper_data = self.__data[kper] if idx_val is not None: kper_data = kper_data[ np.where(kper_data[idx_val[0]] == idx_val[1]) ] # kper_vtype = self.__vtype[kper] v = function(kper_data[attr]) values.append(v) return values def plot( self, key=None, names=None, kper=0, filename_base=None, file_extension=None, mflay=None, **kwargs ): """ Plot stress period boundary condition (MfList) data for a specified stress period Parameters ---------- key : str MfList dictionary key. (default is None) names : list List of names for figure titles. (default is None) kper : int MODFLOW zero-based stress period number to return. (default is zero) filename_base : str Base file name that will be used to automatically generate file names for output image files. Plots will be exported as image files if file_name_base is not None. (default is None) file_extension : str Valid matplotlib.pyplot file extension for savefig(). Only used if filename_base is not None. (default is 'png') mflay : int MODFLOW zero-based layer number to return. If None, then all all layers will be included. (default is None) **kwargs : dict axes : list of matplotlib.pyplot.axis List of matplotlib.pyplot.axis that will be used to plot data for each layer. If axes=None axes will be generated. (default is None) pcolor : bool Boolean used to determine if matplotlib.pyplot.pcolormesh plot will be plotted. (default is True) colorbar : bool Boolean used to determine if a color bar will be added to the matplotlib.pyplot.pcolormesh. Only used if pcolor=True. (default is False) inactive : bool Boolean used to determine if a black overlay in inactive cells in a layer will be displayed. (default is True) contour : bool Boolean used to determine if matplotlib.pyplot.contour plot will be plotted. (default is False) clabel : bool Boolean used to determine if matplotlib.pyplot.clabel will be plotted. Only used if contour=True. (default is False) grid : bool Boolean used to determine if the model grid will be plotted on the figure. (default is False) masked_values : list List of unique values to be excluded from the plot. Returns ---------- out : list Empty list is returned if filename_base is not None. Otherwise a list of matplotlib.pyplot.axis is returned. See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.wel.stress_period_data.plot(ml.wel, kper=1) """ from flopy.plot import PlotUtilities axes = PlotUtilities._plot_mflist_helper( self, key=key, names=names, kper=kper, filename_base=filename_base, file_extension=file_extension, mflay=mflay, **kwargs ) return axes def to_shapefile(self, filename, kper=None): """ Export stress period boundary condition (MfList) data for a specified stress period Parameters ---------- filename : str Shapefile name to write kper : int MODFLOW zero-based stress period number to return. (default is None) Returns ---------- None See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.wel.to_shapefile('test_hk.shp', kper=1) """ import warnings warnings.warn( "Deprecation warning: to_shapefile() is deprecated. use .export()" ) # if self.sr is None: # raise Exception("MfList.to_shapefile: SpatialReference not set") # import flopy.utils.flopy_io as fio # if kper is None: # keys = self.data.keys() # keys.sort() # else: # keys = [kper] # array_dict = {} # for kk in keys: # arrays = self.to_array(kk) # for name, array in arrays.items(): # for k in range(array.shape[0]): # #aname = name+"{0:03d}_{1:02d}".format(kk, k) # n = fio.shape_attr_name(name, length=4) # aname = "{}{:03d}{:03d}".format(n, k+1, int(kk)+1) # array_dict[aname] = array[k] # fio.write_grid_shapefile(filename, self.sr, array_dict) self.export(filename, kper=kper) def to_array(self, kper=0, mask=False): """ Convert stress period boundary condition (MfList) data for a specified stress period to a 3-D numpy array Parameters ---------- kper : int MODFLOW zero-based stress period number to return. (default is zero) mask : boolean return array with np.NaN instead of zero Returns ---------- out : dict of numpy.ndarrays Dictionary of 3-D numpy arrays containing the stress period data for a selected stress period. The dictionary keys are the MfList dtype names for the stress period data ('cond', 'flux', 'bhead', etc.). See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> v = ml.wel.stress_period_data.to_array(kper=1) """ i0 = 3 unstructured = False if "inode" in self.dtype.names: raise NotImplementedError() if "node" in self.dtype.names: if "i" not in self.dtype.names and "j" not in self.dtype.names: i0 = 1 unstructured = True arrays = {} for name in self.dtype.names[i0:]: if not self.dtype.fields[name][0] == object: if unstructured: arr = np.zeros((self._model.nlay * self._model.ncpl,)) else: arr = np.zeros( (self._model.nlay, self._model.nrow, self._model.ncol) ) arrays[name] = arr.copy() # if this kper is not found if kper not in self.data.keys(): kpers = list(self.data.keys()) kpers.sort() # if this kper is before the first entry, # (maybe) mask and return if kper < kpers[0]: if mask: for name, arr in arrays.items(): arrays[name][:] = np.NaN return arrays # find the last kper else: kper = self.__find_last_kper(kper) sarr = self.data[kper] if np.isscalar(sarr): # if there are no entries for this kper if sarr == 0: if mask: for name, arr in arrays.items(): arrays[name][:] = np.NaN return arrays else: raise Exception("MfList: something bad happened") for name, arr in arrays.items(): if unstructured: cnt = np.zeros( (self._model.nlay * self._model.ncpl,), dtype=np.float ) else: cnt = np.zeros( (self._model.nlay, self._model.nrow, self._model.ncol), dtype=np.float, ) # print(name,kper) for rec in sarr: if unstructured: arr[rec["node"]] += rec[name] cnt[rec["node"]] += 1.0 else: arr[rec["k"], rec["i"], rec["j"]] += rec[name] cnt[rec["k"], rec["i"], rec["j"]] += 1.0 # average keys that should not be added if name not in ("cond", "flux"): idx = cnt > 0.0 arr[idx] /= cnt[idx] if mask: arr = np.ma.masked_where(cnt == 0.0, arr) arr[cnt == 0.0] = np.NaN arrays[name] = arr.copy() # elif mask: # for name, arr in arrays.items(): # arrays[name][:] = np.NaN return arrays @property def masked_4D_arrays(self): # get the first kper arrays = self.to_array(kper=0, mask=True) # initialize these big arrays m4ds = {} for name, array in arrays.items(): m4d = np.zeros( ( self._model.nper, self._model.nlay, self._model.nrow, self._model.ncol, ) ) m4d[0, :, :, :] = array m4ds[name] = m4d for kper in range(1, self._model.nper): arrays = self.to_array(kper=kper, mask=True) for name, array in arrays.items(): m4ds[name][kper, :, :, :] = array return m4ds def masked_4D_arrays_itr(self): # get the first kper arrays = self.to_array(kper=0, mask=True) # initialize these big arrays for name, array in arrays.items(): m4d = np.zeros( ( self._model.nper, self._model.nlay, self._model.nrow, self._model.ncol, ) ) m4d[0, :, :, :] = array for kper in range(1, self._model.nper): arrays = self.to_array(kper=kper, mask=True) for tname, array in arrays.items(): if tname == name: m4d[kper, :, :, :] = array yield name, m4d @property def array(self): return self.masked_4D_arrays @classmethod def from_4d(cls, model, pak_name, m4ds): """construct an MfList instance from a dict of (attribute_name,masked 4D ndarray Parameters ---------- model : mbase derived type pak_name : str package name (e.g GHB) m4ds : {attribute name:4d masked numpy.ndarray} Returns ------- MfList instance """ sp_data = MfList.masked4D_arrays_to_stress_period_data( model.get_package(pak_name).get_default_dtype(), m4ds ) return cls(model.get_package(pak_name), data=sp_data) @staticmethod def masked4D_arrays_to_stress_period_data(dtype, m4ds): """ convert a dictionary of 4-dim masked arrays to a stress_period_data style dict of recarray Parameters ---------- dtype : numpy dtype m4ds : dict {name:masked numpy 4-dim ndarray} Returns ------- dict {kper:recarray} """ assert isinstance(m4ds, dict) for name, m4d in m4ds.items(): assert isinstance(m4d, np.ndarray) assert name in dtype.names assert m4d.ndim == 4 keys = list(m4ds.keys()) for i1, key1 in enumerate(keys): a1 = np.isnan(m4ds[key1]) for i2, key2 in enumerate(keys[i1:]): a2 = np.isnan(m4ds[key2]) if not np.array_equal(a1, a2): raise Exception( "Transient2d error: masking not equal" + " for {0} and {1}".format(key1, key2) ) sp_data = {} for kper in range(m4d.shape[0]): vals = {} for name, m4d in m4ds.items(): arr = m4d[kper, :, :, :] isnan = np.argwhere(~np.isnan(arr)) v = [] for k, i, j in isnan: v.append(arr[k, i, j]) vals[name] = v kk = isnan[:, 0] ii = isnan[:, 1] jj = isnan[:, 2] spd = np.recarray(shape=isnan.shape[0], dtype=dtype) spd["i"] = ii spd["k"] = kk spd["j"] = jj for n, v in vals.items(): spd[n] = v sp_data[kper] = spd return sp_data
get_precision
Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data.
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin from ..utils.validation import check_is_fitted from abc import ABCMeta, abstractmethod class _BasePCA( _ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta ): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array of shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov # MASKED: get_precision function (lines 49-79) @abstractmethod def fit(self, X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like of shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like of shape (n_samples, n_components) Projection of X in the first principal components, where `n_samples` is the number of samples and `n_components` is the number of the components. """ check_is_fitted(self) X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False) if self.mean_ is not None: X = X - self.mean_ X_transformed = np.dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space. In other words, return an input `X_original` whose transform would be X. Parameters ---------- X : array-like of shape (n_samples, n_components) New data, where `n_samples` is the number of samples and `n_components` is the number of components. Returns ------- X_original array-like of shape (n_samples, n_features) Original data, where `n_samples` is the number of samples and `n_features` is the number of features. Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return ( np.dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_, ) + self.mean_ ) else: return np.dot(X, self.components_) + self.mean_ @property def _n_features_out(self): """Number of transformed output features.""" return self.components_.shape[0]
def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[:: len(precision) + 1] += 1.0 / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_ return precision
49
79
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin from ..utils.validation import check_is_fitted from abc import ABCMeta, abstractmethod class _BasePCA( _ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta ): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array of shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[:: len(precision) + 1] += 1.0 / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_ return precision @abstractmethod def fit(self, X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like of shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like of shape (n_samples, n_components) Projection of X in the first principal components, where `n_samples` is the number of samples and `n_components` is the number of the components. """ check_is_fitted(self) X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False) if self.mean_ is not None: X = X - self.mean_ X_transformed = np.dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space. In other words, return an input `X_original` whose transform would be X. Parameters ---------- X : array-like of shape (n_samples, n_components) New data, where `n_samples` is the number of samples and `n_components` is the number of components. Returns ------- X_original array-like of shape (n_samples, n_features) Original data, where `n_samples` is the number of samples and `n_features` is the number of features. Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return ( np.dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_, ) + self.mean_ ) else: return np.dot(X, self.components_) + self.mean_ @property def _n_features_out(self): """Number of transformed output features.""" return self.components_.shape[0]
_reverse_seq
Reverse a list of Tensors up to specified lengths. Args: input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features) or nested tuples of tensors. lengths: A `Tensor` of dimension batch_size, containing lengths for each sequence in the batch. If "None" is specified, simply reverses the list. Returns: time-reversed sequence
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """RNN helpers for TensorFlow models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.util import nest # pylint: disable=protected-access _state_size_with_prefix = rnn_cell_impl._state_size_with_prefix # pylint: enable=protected-access def _infer_state_dtype(explicit_dtype, state): """Infer the dtype of an RNN state. Args: explicit_dtype: explicitly declared dtype or None. state: RNN's hidden state. Must be a Tensor or a nested iterable containing Tensors. Returns: dtype: inferred dtype of hidden state. Raises: ValueError: if `state` has heterogeneous dtypes or is empty. """ if explicit_dtype is not None: return explicit_dtype elif nest.is_sequence(state): inferred_dtypes = [element.dtype for element in nest.flatten(state)] if not inferred_dtypes: raise ValueError("Unable to infer dtype from empty state.") all_same = all([x == inferred_dtypes[0] for x in inferred_dtypes]) if not all_same: raise ValueError( "State has tensors of different inferred_dtypes. Unable to infer a " "single representative dtype.") return inferred_dtypes[0] else: return state.dtype def _on_device(fn, device): """Build the subgraph defined by lambda `fn` on `device` if it's not None.""" if device: with ops.device(device): return fn() else: return fn() # pylint: disable=unused-argument def _rnn_step( time, sequence_length, min_sequence_length, max_sequence_length, zero_output, state, call_cell, state_size, skip_conditionals=False): """Calculate one step of a dynamic RNN minibatch. Returns an (output, state) pair conditioned on the sequence_lengths. When skip_conditionals=False, the pseudocode is something like: if t >= max_sequence_length: return (zero_output, state) if t < min_sequence_length: return call_cell() # Selectively output zeros or output, old state or new state depending # on if we've finished calculating each row. new_output, new_state = call_cell() final_output = np.vstack([ zero_output if time >= sequence_lengths[r] else new_output_r for r, new_output_r in enumerate(new_output) ]) final_state = np.vstack([ state[r] if time >= sequence_lengths[r] else new_state_r for r, new_state_r in enumerate(new_state) ]) return (final_output, final_state) Args: time: Python int, the current time step sequence_length: int32 `Tensor` vector of size [batch_size] min_sequence_length: int32 `Tensor` scalar, min of sequence_length max_sequence_length: int32 `Tensor` scalar, max of sequence_length zero_output: `Tensor` vector of shape [output_size] state: Either a single `Tensor` matrix of shape `[batch_size, state_size]`, or a list/tuple of such tensors. call_cell: lambda returning tuple of (new_output, new_state) where new_output is a `Tensor` matrix of shape `[batch_size, output_size]`. new_state is a `Tensor` matrix of shape `[batch_size, state_size]`. state_size: The `cell.state_size` associated with the state. skip_conditionals: Python bool, whether to skip using the conditional calculations. This is useful for `dynamic_rnn`, where the input tensor matches `max_sequence_length`, and using conditionals just slows everything down. Returns: A tuple of (`final_output`, `final_state`) as given by the pseudocode above: final_output is a `Tensor` matrix of shape [batch_size, output_size] final_state is either a single `Tensor` matrix, or a tuple of such matrices (matching length and shapes of input `state`). Raises: ValueError: If the cell returns a state tuple whose length does not match that returned by `state_size`. """ # Convert state to a list for ease of use flat_state = nest.flatten(state) flat_zero_output = nest.flatten(zero_output) def _copy_one_through(output, new_output): copy_cond = (time >= sequence_length) return _on_device( lambda: array_ops.where(copy_cond, output, new_output), device=new_output.op.device) def _copy_some_through(flat_new_output, flat_new_state): # Use broadcasting select to determine which values should get # the previous state & zero output, and which values should get # a calculated state & output. flat_new_output = [ _copy_one_through(zero_output, new_output) for zero_output, new_output in zip(flat_zero_output, flat_new_output)] flat_new_state = [ _copy_one_through(state, new_state) for state, new_state in zip(flat_state, flat_new_state)] return flat_new_output + flat_new_state def _maybe_copy_some_through(): """Run RNN step. Pass through either no or some past state.""" new_output, new_state = call_cell() nest.assert_same_structure(state, new_state) flat_new_state = nest.flatten(new_state) flat_new_output = nest.flatten(new_output) return control_flow_ops.cond( # if t < min_seq_len: calculate and return everything time < min_sequence_length, lambda: flat_new_output + flat_new_state, # else copy some of it through lambda: _copy_some_through(flat_new_output, flat_new_state)) # TODO(ebrevdo): skipping these conditionals may cause a slowdown, # but benefits from removing cond() and its gradient. We should # profile with and without this switch here. if skip_conditionals: # Instead of using conditionals, perform the selective copy at all time # steps. This is faster when max_seq_len is equal to the number of unrolls # (which is typical for dynamic_rnn). new_output, new_state = call_cell() nest.assert_same_structure(state, new_state) new_state = nest.flatten(new_state) new_output = nest.flatten(new_output) final_output_and_state = _copy_some_through(new_output, new_state) else: empty_update = lambda: flat_zero_output + flat_state final_output_and_state = control_flow_ops.cond( # if t >= max_seq_len: copy all state through, output zeros time >= max_sequence_length, empty_update, # otherwise calculation is required: copy some or all of it through _maybe_copy_some_through) if len(final_output_and_state) != len(flat_zero_output) + len(flat_state): raise ValueError("Internal error: state and output were not concatenated " "correctly.") final_output = final_output_and_state[:len(flat_zero_output)] final_state = final_output_and_state[len(flat_zero_output):] for output, flat_output in zip(final_output, flat_zero_output): output.set_shape(flat_output.get_shape()) for substate, flat_substate in zip(final_state, flat_state): substate.set_shape(flat_substate.get_shape()) final_output = nest.pack_sequence_as( structure=zero_output, flat_sequence=final_output) final_state = nest.pack_sequence_as( structure=state, flat_sequence=final_state) return final_output, final_state # MASKED: _reverse_seq function (lines 209-252) def bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs, sequence_length=None, initial_state_fw=None, initial_state_bw=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a dynamic version of bidirectional recurrent neural network. Similar to the unidirectional case above (rnn) but takes input and builds independent forward and backward RNNs. The input_size of forward and backward cell must match. The initial state for both directions is zero by default (but can be set optionally) and no intermediate states are ever returned -- the network is fully unrolled for the given (passed in) length(s) of the sequence(s) or completely unrolled if length(s) is not given. Args: cell_fw: An instance of RNNCell, to be used for forward direction. cell_bw: An instance of RNNCell, to be used for backward direction. inputs: The RNN inputs. If time_major == False (default), this must be a tensor of shape: `[batch_size, max_time, input_size]`. If time_major == True, this must be a tensor of shape: `[max_time, batch_size, input_size]`. [batch_size, input_size]. sequence_length: An int32/int64 vector, size `[batch_size]`, containing the actual lengths for each of the sequences. initial_state_fw: (optional) An initial state for the forward RNN. This must be a tensor of appropriate type and shape `[batch_size, cell_fw.state_size]`. If `cell_fw.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell_fw.state_size`. initial_state_bw: (optional) Same as for `initial_state_fw`, but using the corresponding properties of `cell_bw`. dtype: (optional) The data type for the initial states and expected output. Required if initial_states are not provided or RNN states have a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. dtype: (optional) The data type for the initial state. Required if either of the initial states are not provided. scope: VariableScope for the created subgraph; defaults to "bidirectional_rnn" Returns: A tuple (outputs, output_states) where: outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output `Tensor`. If time_major == False (default), output_fw will be a `Tensor` shaped: `[batch_size, max_time, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[batch_size, max_time, cell_bw.output_size]`. If time_major == True, output_fw will be a `Tensor` shaped: `[max_time, batch_size, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[max_time, batch_size, cell_bw.output_size]`. It returns a tuple instead of a single concatenated `Tensor`, unlike in the `bidirectional_rnn`. If the concatenated one is preferred, the forward and backward outputs can be concatenated as `tf.concat(outputs, 2)`. output_states: A tuple (output_state_fw, output_state_bw) containing the forward and the backward final states of bidirectional rnn. Raises: TypeError: If `cell_fw` or `cell_bw` is not an instance of `RNNCell`. """ # pylint: disable=protected-access if not isinstance(cell_fw, rnn_cell_impl._RNNCell): raise TypeError("cell_fw must be an instance of RNNCell") if not isinstance(cell_bw, rnn_cell_impl._RNNCell): raise TypeError("cell_bw must be an instance of RNNCell") # pylint: enable=protected-access with vs.variable_scope(scope or "bidirectional_rnn"): # Forward direction with vs.variable_scope("fw") as fw_scope: output_fw, output_state_fw = dynamic_rnn( cell=cell_fw, inputs=inputs, sequence_length=sequence_length, initial_state=initial_state_fw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=fw_scope) # Backward direction if not time_major: time_dim = 1 batch_dim = 0 else: time_dim = 0 batch_dim = 1 with vs.variable_scope("bw") as bw_scope: inputs_reverse = array_ops.reverse_sequence( input=inputs, seq_lengths=sequence_length, seq_dim=time_dim, batch_dim=batch_dim) tmp, output_state_bw = dynamic_rnn( cell=cell_bw, inputs=inputs_reverse, sequence_length=sequence_length, initial_state=initial_state_bw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=bw_scope) output_bw = array_ops.reverse_sequence( input=tmp, seq_lengths=sequence_length, seq_dim=time_dim, batch_dim=batch_dim) outputs = (output_fw, output_bw) output_states = (output_state_fw, output_state_bw) return (outputs, output_states) def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a recurrent neural network specified by RNNCell `cell`. This function is functionally identical to the function `rnn` above, but performs fully dynamic unrolling of `inputs`. Unlike `rnn`, the input `inputs` is not a Python list of `Tensors`, one for each frame. Instead, `inputs` may be a single `Tensor` where the maximum time is either the first or second dimension (see the parameter `time_major`). Alternatively, it may be a (possibly nested) tuple of Tensors, each of them having matching batch and time dimensions. The corresponding output is either a single `Tensor` having the same number of time steps and batch size, or a (possibly nested) tuple of such tensors, matching the nested structure of `cell.output_size`. The parameter `sequence_length` is optional and is used to copy-through state and zero-out outputs when past a batch element's sequence length. So it's more for correctness than performance, unlike in rnn(). Args: cell: An instance of RNNCell. inputs: The RNN inputs. If `time_major == False` (default), this must be a `Tensor` of shape: `[batch_size, max_time, ...]`, or a nested tuple of such elements. If `time_major == True`, this must be a `Tensor` of shape: `[max_time, batch_size, ...]`, or a nested tuple of such elements. This may also be a (possibly nested) tuple of Tensors satisfying this property. The first two dimensions must match across all the inputs, but otherwise the ranks and other shape components may differ. In this case, input to `cell` at each time-step will replicate the structure of these tuples, except for the time dimension (from which the time is taken). The input to `cell` at each time step will be a `Tensor` or (possibly nested) tuple of Tensors each with dimensions `[batch_size, ...]`. sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. initial_state: (optional) An initial state for the RNN. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. dtype: (optional) The data type for the initial state and expected output. Required if initial_state is not provided or RNN state has a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A pair (outputs, state) where: outputs: The RNN output `Tensor`. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. Note, if `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `outputs` will be a tuple having the same structure as `cell.output_size`, containing Tensors having shapes corresponding to the shape data in `cell.output_size`. state: The final state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. Raises: TypeError: If `cell` is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ # pylint: disable=protected-access if not isinstance(cell, rnn_cell_impl._RNNCell): raise TypeError("cell must be an instance of RNNCell") # pylint: enable=protected-access # By default, time_major==False and inputs are batch-major: shaped # [batch, time, depth] # For internal calculations, we transpose to [time, batch, depth] flat_input = nest.flatten(inputs) if not time_major: # (B,T,D) => (T,B,D) flat_input = tuple(array_ops.transpose(input_, [1, 0, 2]) for input_ in flat_input) parallel_iterations = parallel_iterations or 32 if sequence_length is not None: sequence_length = math_ops.to_int32(sequence_length) if sequence_length.get_shape().ndims not in (None, 1): raise ValueError( "sequence_length must be a vector of length batch_size, " "but saw shape: %s" % sequence_length.get_shape()) sequence_length = array_ops.identity( # Just to find it in the graph. sequence_length, name="sequence_length") # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "rnn") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) input_shape = tuple(array_ops.shape(input_) for input_ in flat_input) batch_size = input_shape[0][1] for input_ in input_shape: if input_[1].get_shape() != batch_size.get_shape(): raise ValueError("All inputs should have the same batch size") if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If no initial_state is provided, dtype must be.") state = cell.zero_state(batch_size, dtype) def _assert_has_shape(x, shape): x_shape = array_ops.shape(x) packed_shape = array_ops.stack(shape) return control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), ["Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape]) if sequence_length is not None: # Perform some shape validation with ops.control_dependencies( [_assert_has_shape(sequence_length, [batch_size])]): sequence_length = array_ops.identity( sequence_length, name="CheckSeqLen") inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input) (outputs, final_state) = _dynamic_rnn_loop( cell, inputs, state, parallel_iterations=parallel_iterations, swap_memory=swap_memory, sequence_length=sequence_length, dtype=dtype) # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth]. # If we are performing batch-major calculations, transpose output back # to shape [batch, time, depth] if not time_major: # (T,B,D) => (B,T,D) flat_output = nest.flatten(outputs) flat_output = [array_ops.transpose(output, [1, 0, 2]) for output in flat_output] outputs = nest.pack_sequence_as( structure=outputs, flat_sequence=flat_output) return (outputs, final_state) def _dynamic_rnn_loop(cell, inputs, initial_state, parallel_iterations, swap_memory, sequence_length=None, dtype=None): """Internal implementation of Dynamic RNN. Args: cell: An instance of RNNCell. inputs: A `Tensor` of shape [time, batch_size, input_size], or a nested tuple of such elements. initial_state: A `Tensor` of shape `[batch_size, state_size]`, or if `cell.state_size` is a tuple, then this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. parallel_iterations: Positive Python int. swap_memory: A Python boolean sequence_length: (optional) An `int32` `Tensor` of shape [batch_size]. dtype: (optional) Expected dtype of output. If not specified, inferred from initial_state. Returns: Tuple `(final_outputs, final_state)`. final_outputs: A `Tensor` of shape `[time, batch_size, cell.output_size]`. If `cell.output_size` is a (possibly nested) tuple of ints or `TensorShape` objects, then this returns a (possibly nsted) tuple of Tensors matching the corresponding shapes. final_state: A `Tensor`, or possibly nested tuple of Tensors, matching in length and shapes to `initial_state`. Raises: ValueError: If the input depth cannot be inferred via shape inference from the inputs. """ state = initial_state assert isinstance(parallel_iterations, int), "parallel_iterations must be int" state_size = cell.state_size flat_input = nest.flatten(inputs) flat_output_size = nest.flatten(cell.output_size) # Construct an initial output input_shape = array_ops.shape(flat_input[0]) time_steps = input_shape[0] batch_size = input_shape[1] inputs_got_shape = tuple(input_.get_shape().with_rank_at_least(3) for input_ in flat_input) const_time_steps, const_batch_size = inputs_got_shape[0].as_list()[:2] for shape in inputs_got_shape: if not shape[2:].is_fully_defined(): raise ValueError( "Input size (depth of inputs) must be accessible via shape inference," " but saw value None.") got_time_steps = shape[0].value got_batch_size = shape[1].value if const_time_steps != got_time_steps: raise ValueError( "Time steps is not the same for all the elements in the input in a " "batch.") if const_batch_size != got_batch_size: raise ValueError( "Batch_size is not the same for all the elements in the input.") # Prepare dynamic conditional copying of state & output def _create_zero_arrays(size): size = _state_size_with_prefix(size, prefix=[batch_size]) return array_ops.zeros( array_ops.stack(size), _infer_state_dtype(dtype, state)) flat_zero_output = tuple(_create_zero_arrays(output) for output in flat_output_size) zero_output = nest.pack_sequence_as(structure=cell.output_size, flat_sequence=flat_zero_output) if sequence_length is not None: min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) time = array_ops.constant(0, dtype=dtypes.int32, name="time") with ops.name_scope("dynamic_rnn") as scope: base_name = scope def _create_ta(name, dtype): return tensor_array_ops.TensorArray(dtype=dtype, size=time_steps, tensor_array_name=base_name + name) output_ta = tuple(_create_ta("output_%d" % i, _infer_state_dtype(dtype, state)) for i in range(len(flat_output_size))) input_ta = tuple(_create_ta("input_%d" % i, flat_input[0].dtype) for i in range(len(flat_input))) input_ta = tuple(ta.unstack(input_) for ta, input_ in zip(input_ta, flat_input)) def _time_step(time, output_ta_t, state): """Take a time step of the dynamic RNN. Args: time: int32 scalar Tensor. output_ta_t: List of `TensorArray`s that represent the output. state: nested tuple of vector tensors that represent the state. Returns: The tuple (time + 1, output_ta_t with updated flow, new_state). """ input_t = tuple(ta.read(time) for ta in input_ta) # Restore some shape information for input_, shape in zip(input_t, inputs_got_shape): input_.set_shape(shape[1:]) input_t = nest.pack_sequence_as(structure=inputs, flat_sequence=input_t) call_cell = lambda: cell(input_t, state) if sequence_length is not None: (output, new_state) = _rnn_step( time=time, sequence_length=sequence_length, min_sequence_length=min_sequence_length, max_sequence_length=max_sequence_length, zero_output=zero_output, state=state, call_cell=call_cell, state_size=state_size, skip_conditionals=True) else: (output, new_state) = call_cell() # Pack state if using state tuples output = nest.flatten(output) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, output)) return (time + 1, output_ta_t, new_state) _, output_final_ta, final_state = control_flow_ops.while_loop( cond=lambda time, *_: time < time_steps, body=_time_step, loop_vars=(time, output_ta, state), parallel_iterations=parallel_iterations, swap_memory=swap_memory) # Unpack final output if not using output tuples. final_outputs = tuple(ta.stack() for ta in output_final_ta) # Restore some shape information for output, output_size in zip(final_outputs, flat_output_size): shape = _state_size_with_prefix( output_size, prefix=[const_time_steps, const_batch_size]) output.set_shape(shape) final_outputs = nest.pack_sequence_as( structure=cell.output_size, flat_sequence=final_outputs) return (final_outputs, final_state) def raw_rnn(cell, loop_fn, parallel_iterations=None, swap_memory=False, scope=None): """Creates an `RNN` specified by RNNCell `cell` and loop function `loop_fn`. **NOTE: This method is still in testing, and the API may change.** This function is a more primitive version of `dynamic_rnn` that provides more direct access to the inputs each iteration. It also provides more control over when to start and finish reading the sequence, and what to emit for the output. For example, it can be used to implement the dynamic decoder of a seq2seq model. Instead of working with `Tensor` objects, most operations work with `TensorArray` objects directly. The operation of `raw_rnn`, in pseudo-code, is basically the following: ```python time = tf.constant(0, dtype=tf.int32) (finished, next_input, initial_state, _, loop_state) = loop_fn( time=time, cell_output=None, cell_state=None, loop_state=None) emit_ta = TensorArray(dynamic_size=True, dtype=initial_state.dtype) state = initial_state while not all(finished): (output, cell_state) = cell(next_input, state) (next_finished, next_input, next_state, emit, loop_state) = loop_fn( time=time + 1, cell_output=output, cell_state=cell_state, loop_state=loop_state) # Emit zeros and copy forward state for minibatch entries that are finished. state = tf.where(finished, state, next_state) emit = tf.where(finished, tf.zeros_like(emit), emit) emit_ta = emit_ta.write(time, emit) # If any new minibatch entries are marked as finished, mark these. finished = tf.logical_or(finished, next_finished) time += 1 return (emit_ta, state, loop_state) ``` with the additional properties that output and state may be (possibly nested) tuples, as determined by `cell.output_size` and `cell.state_size`, and as a result the final `state` and `emit_ta` may themselves be tuples. A simple implementation of `dynamic_rnn` via `raw_rnn` looks like this: ```python inputs = tf.placeholder(shape=(max_time, batch_size, input_depth), dtype=tf.float32) sequence_length = tf.placeholder(shape=(batch_size,), dtype=tf.int32) inputs_ta = tf.TensorArray(dtype=tf.float32, size=max_time) inputs_ta = inputs_ta.unstack(inputs) cell = tf.contrib.rnn.LSTMCell(num_units) def loop_fn(time, cell_output, cell_state, loop_state): emit_output = cell_output # == None for time == 0 if cell_output is None: # time == 0 next_cell_state = cell.zero_state(batch_size, tf.float32) else: next_cell_state = cell_state elements_finished = (time >= sequence_length) finished = tf.reduce_all(elements_finished) next_input = tf.cond( finished, lambda: tf.zeros([batch_size, input_depth], dtype=tf.float32), lambda: inputs_ta.read(time)) next_loop_state = None return (elements_finished, next_input, next_cell_state, emit_output, next_loop_state) outputs_ta, final_state, _ = raw_rnn(cell, loop_fn) outputs = outputs_ta.stack() ``` Args: cell: An instance of RNNCell. loop_fn: A callable that takes inputs `(time, cell_output, cell_state, loop_state)` and returns the tuple `(finished, next_input, next_cell_state, emit_output, next_loop_state)`. Here `time` is an int32 scalar `Tensor`, `cell_output` is a `Tensor` or (possibly nested) tuple of tensors as determined by `cell.output_size`, and `cell_state` is a `Tensor` or (possibly nested) tuple of tensors, as determined by the `loop_fn` on its first call (and should match `cell.state_size`). The outputs are: `finished`, a boolean `Tensor` of shape `[batch_size]`, `next_input`: the next input to feed to `cell`, `next_cell_state`: the next state to feed to `cell`, and `emit_output`: the output to store for this iteration. Note that `emit_output` should be a `Tensor` or (possibly nested) tuple of tensors with shapes and structure matching `cell.output_size` and `cell_output` above. The parameter `cell_state` and output `next_cell_state` may be either a single or (possibly nested) tuple of tensors. The parameter `loop_state` and output `next_loop_state` may be either a single or (possibly nested) tuple of `Tensor` and `TensorArray` objects. This last parameter may be ignored by `loop_fn` and the return value may be `None`. If it is not `None`, then the `loop_state` will be propagated through the RNN loop, for use purely by `loop_fn` to keep track of its own state. The `next_loop_state` parameter returned may be `None`. The first call to `loop_fn` will be `time = 0`, `cell_output = None`, `cell_state = None`, and `loop_state = None`. For this call: The `next_cell_state` value should be the value with which to initialize the cell's state. It may be a final state from a previous RNN or it may be the output of `cell.zero_state()`. It should be a (possibly nested) tuple structure of tensors. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a `TensorShape`, this must be a `Tensor` of appropriate type and shape `[batch_size] + cell.state_size`. If `cell.state_size` is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. The `emit_output` value may be either `None` or a (possibly nested) tuple structure of tensors, e.g., `(tf.zeros(shape_0, dtype=dtype_0), tf.zeros(shape_1, dtype=dtype_1))`. If this first `emit_output` return value is `None`, then the `emit_ta` result of `raw_rnn` will have the same structure and dtypes as `cell.output_size`. Otherwise `emit_ta` will have the same structure, shapes (prepended with a `batch_size` dimension), and dtypes as `emit_output`. The actual values returned for `emit_output` at this initializing call are ignored. Note, this emit structure must be consistent across all time steps. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A tuple `(emit_ta, final_state, final_loop_state)` where: `emit_ta`: The RNN output `TensorArray`. If `loop_fn` returns a (possibly nested) set of Tensors for `emit_output` during initialization, (inputs `time = 0`, `cell_output = None`, and `loop_state = None`), then `emit_ta` will have the same structure, dtypes, and shapes as `emit_output` instead. If `loop_fn` returns `emit_output = None` during this call, the structure of `cell.output_size` is used: If `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `emit_ta` will be a tuple having the same structure as `cell.output_size`, containing TensorArrays whose elements' shapes correspond to the shape data in `cell.output_size`. `final_state`: The final cell state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. `final_loop_state`: The final loop state as returned by `loop_fn`. Raises: TypeError: If `cell` is not an instance of RNNCell, or `loop_fn` is not a `callable`. """ # pylint: disable=protected-access if not isinstance(cell, rnn_cell_impl._RNNCell): raise TypeError("cell must be an instance of RNNCell") # pylint: enable=protected-access if not callable(loop_fn): raise TypeError("loop_fn must be a callable") parallel_iterations = parallel_iterations or 32 # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "rnn") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) time = constant_op.constant(0, dtype=dtypes.int32) (elements_finished, next_input, initial_state, emit_structure, init_loop_state) = loop_fn( time, None, None, None) # time, cell_output, cell_state, loop_state flat_input = nest.flatten(next_input) # Need a surrogate loop state for the while_loop if none is available. loop_state = (init_loop_state if init_loop_state is not None else constant_op.constant(0, dtype=dtypes.int32)) input_shape = [input_.get_shape() for input_ in flat_input] static_batch_size = input_shape[0][0] for input_shape_i in input_shape: # Static verification that batch sizes all match static_batch_size.merge_with(input_shape_i[0]) batch_size = static_batch_size.value if batch_size is None: batch_size = array_ops.shape(flat_input[0])[0] nest.assert_same_structure(initial_state, cell.state_size) state = initial_state flat_state = nest.flatten(state) flat_state = [ops.convert_to_tensor(s) for s in flat_state] state = nest.pack_sequence_as(structure=state, flat_sequence=flat_state) if emit_structure is not None: flat_emit_structure = nest.flatten(emit_structure) flat_emit_size = [emit.get_shape() for emit in flat_emit_structure] flat_emit_dtypes = [emit.dtype for emit in flat_emit_structure] else: emit_structure = cell.output_size flat_emit_size = nest.flatten(emit_structure) flat_emit_dtypes = [flat_state[0].dtype] * len(flat_emit_size) flat_emit_ta = [ tensor_array_ops.TensorArray( dtype=dtype_i, dynamic_size=True, size=0, name="rnn_output_%d" % i) for i, dtype_i in enumerate(flat_emit_dtypes)] emit_ta = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_emit_ta) flat_zero_emit = [ array_ops.zeros( _state_size_with_prefix(size_i, prefix=[batch_size]), dtype_i) for size_i, dtype_i in zip(flat_emit_size, flat_emit_dtypes)] zero_emit = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_zero_emit) def condition(unused_time, elements_finished, *_): return math_ops.logical_not(math_ops.reduce_all(elements_finished)) def body(time, elements_finished, current_input, emit_ta, state, loop_state): """Internal while loop body for raw_rnn. Args: time: time scalar. elements_finished: batch-size vector. current_input: possibly nested tuple of input tensors. emit_ta: possibly nested tuple of output TensorArrays. state: possibly nested tuple of state tensors. loop_state: possibly nested tuple of loop state tensors. Returns: Tuple having the same size as Args but with updated values. """ (next_output, cell_state) = cell(current_input, state) nest.assert_same_structure(state, cell_state) nest.assert_same_structure(cell.output_size, next_output) next_time = time + 1 (next_finished, next_input, next_state, emit_output, next_loop_state) = loop_fn( next_time, next_output, cell_state, loop_state) nest.assert_same_structure(state, next_state) nest.assert_same_structure(current_input, next_input) nest.assert_same_structure(emit_ta, emit_output) # If loop_fn returns None for next_loop_state, just reuse the # previous one. loop_state = loop_state if next_loop_state is None else next_loop_state def _copy_some_through(current, candidate): """Copy some tensors through via array_ops.where.""" current_flat = nest.flatten(current) candidate_flat = nest.flatten(candidate) # pylint: disable=g-long-lambda,cell-var-from-loop result_flat = [ _on_device( lambda: array_ops.where( elements_finished, current_i, candidate_i), device=candidate_i.op.device) for (current_i, candidate_i) in zip(current_flat, candidate_flat)] # pylint: enable=g-long-lambda,cell-var-from-loop return nest.pack_sequence_as( structure=current, flat_sequence=result_flat) emit_output = _copy_some_through(zero_emit, emit_output) next_state = _copy_some_through(state, next_state) emit_output_flat = nest.flatten(emit_output) emit_ta_flat = nest.flatten(emit_ta) elements_finished = math_ops.logical_or(elements_finished, next_finished) emit_ta_flat = [ ta.write(time, emit) for (ta, emit) in zip(emit_ta_flat, emit_output_flat)] emit_ta = nest.pack_sequence_as( structure=emit_structure, flat_sequence=emit_ta_flat) return (next_time, elements_finished, next_input, emit_ta, next_state, loop_state) returned = control_flow_ops.while_loop( condition, body, loop_vars=[ time, elements_finished, next_input, emit_ta, state, loop_state], parallel_iterations=parallel_iterations, swap_memory=swap_memory) (emit_ta, final_state, final_loop_state) = returned[-3:] if init_loop_state is None: final_loop_state = None return (emit_ta, final_state, final_loop_state)
def _reverse_seq(input_seq, lengths): """Reverse a list of Tensors up to specified lengths. Args: input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features) or nested tuples of tensors. lengths: A `Tensor` of dimension batch_size, containing lengths for each sequence in the batch. If "None" is specified, simply reverses the list. Returns: time-reversed sequence """ if lengths is None: return list(reversed(input_seq)) flat_input_seq = tuple(nest.flatten(input_) for input_ in input_seq) flat_results = [[] for _ in range(len(input_seq))] for sequence in zip(*flat_input_seq): input_shape = tensor_shape.unknown_shape( ndims=sequence[0].get_shape().ndims) for input_ in sequence: input_shape.merge_with(input_.get_shape()) input_.set_shape(input_shape) # Join into (time, batch_size, depth) s_joined = array_ops.stack(sequence) # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32 if lengths is not None: lengths = math_ops.to_int64(lengths) # Reverse along dimension 0 s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1) # Split again into list result = array_ops.unstack(s_reversed) for r, flat_result in zip(result, flat_results): r.set_shape(input_shape) flat_result.append(r) results = [nest.pack_sequence_as(structure=input_, flat_sequence=flat_result) for input_, flat_result in zip(input_seq, flat_results)] return results
209
252
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """RNN helpers for TensorFlow models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.util import nest # pylint: disable=protected-access _state_size_with_prefix = rnn_cell_impl._state_size_with_prefix # pylint: enable=protected-access def _infer_state_dtype(explicit_dtype, state): """Infer the dtype of an RNN state. Args: explicit_dtype: explicitly declared dtype or None. state: RNN's hidden state. Must be a Tensor or a nested iterable containing Tensors. Returns: dtype: inferred dtype of hidden state. Raises: ValueError: if `state` has heterogeneous dtypes or is empty. """ if explicit_dtype is not None: return explicit_dtype elif nest.is_sequence(state): inferred_dtypes = [element.dtype for element in nest.flatten(state)] if not inferred_dtypes: raise ValueError("Unable to infer dtype from empty state.") all_same = all([x == inferred_dtypes[0] for x in inferred_dtypes]) if not all_same: raise ValueError( "State has tensors of different inferred_dtypes. Unable to infer a " "single representative dtype.") return inferred_dtypes[0] else: return state.dtype def _on_device(fn, device): """Build the subgraph defined by lambda `fn` on `device` if it's not None.""" if device: with ops.device(device): return fn() else: return fn() # pylint: disable=unused-argument def _rnn_step( time, sequence_length, min_sequence_length, max_sequence_length, zero_output, state, call_cell, state_size, skip_conditionals=False): """Calculate one step of a dynamic RNN minibatch. Returns an (output, state) pair conditioned on the sequence_lengths. When skip_conditionals=False, the pseudocode is something like: if t >= max_sequence_length: return (zero_output, state) if t < min_sequence_length: return call_cell() # Selectively output zeros or output, old state or new state depending # on if we've finished calculating each row. new_output, new_state = call_cell() final_output = np.vstack([ zero_output if time >= sequence_lengths[r] else new_output_r for r, new_output_r in enumerate(new_output) ]) final_state = np.vstack([ state[r] if time >= sequence_lengths[r] else new_state_r for r, new_state_r in enumerate(new_state) ]) return (final_output, final_state) Args: time: Python int, the current time step sequence_length: int32 `Tensor` vector of size [batch_size] min_sequence_length: int32 `Tensor` scalar, min of sequence_length max_sequence_length: int32 `Tensor` scalar, max of sequence_length zero_output: `Tensor` vector of shape [output_size] state: Either a single `Tensor` matrix of shape `[batch_size, state_size]`, or a list/tuple of such tensors. call_cell: lambda returning tuple of (new_output, new_state) where new_output is a `Tensor` matrix of shape `[batch_size, output_size]`. new_state is a `Tensor` matrix of shape `[batch_size, state_size]`. state_size: The `cell.state_size` associated with the state. skip_conditionals: Python bool, whether to skip using the conditional calculations. This is useful for `dynamic_rnn`, where the input tensor matches `max_sequence_length`, and using conditionals just slows everything down. Returns: A tuple of (`final_output`, `final_state`) as given by the pseudocode above: final_output is a `Tensor` matrix of shape [batch_size, output_size] final_state is either a single `Tensor` matrix, or a tuple of such matrices (matching length and shapes of input `state`). Raises: ValueError: If the cell returns a state tuple whose length does not match that returned by `state_size`. """ # Convert state to a list for ease of use flat_state = nest.flatten(state) flat_zero_output = nest.flatten(zero_output) def _copy_one_through(output, new_output): copy_cond = (time >= sequence_length) return _on_device( lambda: array_ops.where(copy_cond, output, new_output), device=new_output.op.device) def _copy_some_through(flat_new_output, flat_new_state): # Use broadcasting select to determine which values should get # the previous state & zero output, and which values should get # a calculated state & output. flat_new_output = [ _copy_one_through(zero_output, new_output) for zero_output, new_output in zip(flat_zero_output, flat_new_output)] flat_new_state = [ _copy_one_through(state, new_state) for state, new_state in zip(flat_state, flat_new_state)] return flat_new_output + flat_new_state def _maybe_copy_some_through(): """Run RNN step. Pass through either no or some past state.""" new_output, new_state = call_cell() nest.assert_same_structure(state, new_state) flat_new_state = nest.flatten(new_state) flat_new_output = nest.flatten(new_output) return control_flow_ops.cond( # if t < min_seq_len: calculate and return everything time < min_sequence_length, lambda: flat_new_output + flat_new_state, # else copy some of it through lambda: _copy_some_through(flat_new_output, flat_new_state)) # TODO(ebrevdo): skipping these conditionals may cause a slowdown, # but benefits from removing cond() and its gradient. We should # profile with and without this switch here. if skip_conditionals: # Instead of using conditionals, perform the selective copy at all time # steps. This is faster when max_seq_len is equal to the number of unrolls # (which is typical for dynamic_rnn). new_output, new_state = call_cell() nest.assert_same_structure(state, new_state) new_state = nest.flatten(new_state) new_output = nest.flatten(new_output) final_output_and_state = _copy_some_through(new_output, new_state) else: empty_update = lambda: flat_zero_output + flat_state final_output_and_state = control_flow_ops.cond( # if t >= max_seq_len: copy all state through, output zeros time >= max_sequence_length, empty_update, # otherwise calculation is required: copy some or all of it through _maybe_copy_some_through) if len(final_output_and_state) != len(flat_zero_output) + len(flat_state): raise ValueError("Internal error: state and output were not concatenated " "correctly.") final_output = final_output_and_state[:len(flat_zero_output)] final_state = final_output_and_state[len(flat_zero_output):] for output, flat_output in zip(final_output, flat_zero_output): output.set_shape(flat_output.get_shape()) for substate, flat_substate in zip(final_state, flat_state): substate.set_shape(flat_substate.get_shape()) final_output = nest.pack_sequence_as( structure=zero_output, flat_sequence=final_output) final_state = nest.pack_sequence_as( structure=state, flat_sequence=final_state) return final_output, final_state def _reverse_seq(input_seq, lengths): """Reverse a list of Tensors up to specified lengths. Args: input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features) or nested tuples of tensors. lengths: A `Tensor` of dimension batch_size, containing lengths for each sequence in the batch. If "None" is specified, simply reverses the list. Returns: time-reversed sequence """ if lengths is None: return list(reversed(input_seq)) flat_input_seq = tuple(nest.flatten(input_) for input_ in input_seq) flat_results = [[] for _ in range(len(input_seq))] for sequence in zip(*flat_input_seq): input_shape = tensor_shape.unknown_shape( ndims=sequence[0].get_shape().ndims) for input_ in sequence: input_shape.merge_with(input_.get_shape()) input_.set_shape(input_shape) # Join into (time, batch_size, depth) s_joined = array_ops.stack(sequence) # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32 if lengths is not None: lengths = math_ops.to_int64(lengths) # Reverse along dimension 0 s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1) # Split again into list result = array_ops.unstack(s_reversed) for r, flat_result in zip(result, flat_results): r.set_shape(input_shape) flat_result.append(r) results = [nest.pack_sequence_as(structure=input_, flat_sequence=flat_result) for input_, flat_result in zip(input_seq, flat_results)] return results def bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs, sequence_length=None, initial_state_fw=None, initial_state_bw=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a dynamic version of bidirectional recurrent neural network. Similar to the unidirectional case above (rnn) but takes input and builds independent forward and backward RNNs. The input_size of forward and backward cell must match. The initial state for both directions is zero by default (but can be set optionally) and no intermediate states are ever returned -- the network is fully unrolled for the given (passed in) length(s) of the sequence(s) or completely unrolled if length(s) is not given. Args: cell_fw: An instance of RNNCell, to be used for forward direction. cell_bw: An instance of RNNCell, to be used for backward direction. inputs: The RNN inputs. If time_major == False (default), this must be a tensor of shape: `[batch_size, max_time, input_size]`. If time_major == True, this must be a tensor of shape: `[max_time, batch_size, input_size]`. [batch_size, input_size]. sequence_length: An int32/int64 vector, size `[batch_size]`, containing the actual lengths for each of the sequences. initial_state_fw: (optional) An initial state for the forward RNN. This must be a tensor of appropriate type and shape `[batch_size, cell_fw.state_size]`. If `cell_fw.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell_fw.state_size`. initial_state_bw: (optional) Same as for `initial_state_fw`, but using the corresponding properties of `cell_bw`. dtype: (optional) The data type for the initial states and expected output. Required if initial_states are not provided or RNN states have a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. dtype: (optional) The data type for the initial state. Required if either of the initial states are not provided. scope: VariableScope for the created subgraph; defaults to "bidirectional_rnn" Returns: A tuple (outputs, output_states) where: outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output `Tensor`. If time_major == False (default), output_fw will be a `Tensor` shaped: `[batch_size, max_time, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[batch_size, max_time, cell_bw.output_size]`. If time_major == True, output_fw will be a `Tensor` shaped: `[max_time, batch_size, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[max_time, batch_size, cell_bw.output_size]`. It returns a tuple instead of a single concatenated `Tensor`, unlike in the `bidirectional_rnn`. If the concatenated one is preferred, the forward and backward outputs can be concatenated as `tf.concat(outputs, 2)`. output_states: A tuple (output_state_fw, output_state_bw) containing the forward and the backward final states of bidirectional rnn. Raises: TypeError: If `cell_fw` or `cell_bw` is not an instance of `RNNCell`. """ # pylint: disable=protected-access if not isinstance(cell_fw, rnn_cell_impl._RNNCell): raise TypeError("cell_fw must be an instance of RNNCell") if not isinstance(cell_bw, rnn_cell_impl._RNNCell): raise TypeError("cell_bw must be an instance of RNNCell") # pylint: enable=protected-access with vs.variable_scope(scope or "bidirectional_rnn"): # Forward direction with vs.variable_scope("fw") as fw_scope: output_fw, output_state_fw = dynamic_rnn( cell=cell_fw, inputs=inputs, sequence_length=sequence_length, initial_state=initial_state_fw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=fw_scope) # Backward direction if not time_major: time_dim = 1 batch_dim = 0 else: time_dim = 0 batch_dim = 1 with vs.variable_scope("bw") as bw_scope: inputs_reverse = array_ops.reverse_sequence( input=inputs, seq_lengths=sequence_length, seq_dim=time_dim, batch_dim=batch_dim) tmp, output_state_bw = dynamic_rnn( cell=cell_bw, inputs=inputs_reverse, sequence_length=sequence_length, initial_state=initial_state_bw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=bw_scope) output_bw = array_ops.reverse_sequence( input=tmp, seq_lengths=sequence_length, seq_dim=time_dim, batch_dim=batch_dim) outputs = (output_fw, output_bw) output_states = (output_state_fw, output_state_bw) return (outputs, output_states) def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a recurrent neural network specified by RNNCell `cell`. This function is functionally identical to the function `rnn` above, but performs fully dynamic unrolling of `inputs`. Unlike `rnn`, the input `inputs` is not a Python list of `Tensors`, one for each frame. Instead, `inputs` may be a single `Tensor` where the maximum time is either the first or second dimension (see the parameter `time_major`). Alternatively, it may be a (possibly nested) tuple of Tensors, each of them having matching batch and time dimensions. The corresponding output is either a single `Tensor` having the same number of time steps and batch size, or a (possibly nested) tuple of such tensors, matching the nested structure of `cell.output_size`. The parameter `sequence_length` is optional and is used to copy-through state and zero-out outputs when past a batch element's sequence length. So it's more for correctness than performance, unlike in rnn(). Args: cell: An instance of RNNCell. inputs: The RNN inputs. If `time_major == False` (default), this must be a `Tensor` of shape: `[batch_size, max_time, ...]`, or a nested tuple of such elements. If `time_major == True`, this must be a `Tensor` of shape: `[max_time, batch_size, ...]`, or a nested tuple of such elements. This may also be a (possibly nested) tuple of Tensors satisfying this property. The first two dimensions must match across all the inputs, but otherwise the ranks and other shape components may differ. In this case, input to `cell` at each time-step will replicate the structure of these tuples, except for the time dimension (from which the time is taken). The input to `cell` at each time step will be a `Tensor` or (possibly nested) tuple of Tensors each with dimensions `[batch_size, ...]`. sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. initial_state: (optional) An initial state for the RNN. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. dtype: (optional) The data type for the initial state and expected output. Required if initial_state is not provided or RNN state has a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A pair (outputs, state) where: outputs: The RNN output `Tensor`. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. Note, if `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `outputs` will be a tuple having the same structure as `cell.output_size`, containing Tensors having shapes corresponding to the shape data in `cell.output_size`. state: The final state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. Raises: TypeError: If `cell` is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ # pylint: disable=protected-access if not isinstance(cell, rnn_cell_impl._RNNCell): raise TypeError("cell must be an instance of RNNCell") # pylint: enable=protected-access # By default, time_major==False and inputs are batch-major: shaped # [batch, time, depth] # For internal calculations, we transpose to [time, batch, depth] flat_input = nest.flatten(inputs) if not time_major: # (B,T,D) => (T,B,D) flat_input = tuple(array_ops.transpose(input_, [1, 0, 2]) for input_ in flat_input) parallel_iterations = parallel_iterations or 32 if sequence_length is not None: sequence_length = math_ops.to_int32(sequence_length) if sequence_length.get_shape().ndims not in (None, 1): raise ValueError( "sequence_length must be a vector of length batch_size, " "but saw shape: %s" % sequence_length.get_shape()) sequence_length = array_ops.identity( # Just to find it in the graph. sequence_length, name="sequence_length") # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "rnn") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) input_shape = tuple(array_ops.shape(input_) for input_ in flat_input) batch_size = input_shape[0][1] for input_ in input_shape: if input_[1].get_shape() != batch_size.get_shape(): raise ValueError("All inputs should have the same batch size") if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If no initial_state is provided, dtype must be.") state = cell.zero_state(batch_size, dtype) def _assert_has_shape(x, shape): x_shape = array_ops.shape(x) packed_shape = array_ops.stack(shape) return control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), ["Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape]) if sequence_length is not None: # Perform some shape validation with ops.control_dependencies( [_assert_has_shape(sequence_length, [batch_size])]): sequence_length = array_ops.identity( sequence_length, name="CheckSeqLen") inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input) (outputs, final_state) = _dynamic_rnn_loop( cell, inputs, state, parallel_iterations=parallel_iterations, swap_memory=swap_memory, sequence_length=sequence_length, dtype=dtype) # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth]. # If we are performing batch-major calculations, transpose output back # to shape [batch, time, depth] if not time_major: # (T,B,D) => (B,T,D) flat_output = nest.flatten(outputs) flat_output = [array_ops.transpose(output, [1, 0, 2]) for output in flat_output] outputs = nest.pack_sequence_as( structure=outputs, flat_sequence=flat_output) return (outputs, final_state) def _dynamic_rnn_loop(cell, inputs, initial_state, parallel_iterations, swap_memory, sequence_length=None, dtype=None): """Internal implementation of Dynamic RNN. Args: cell: An instance of RNNCell. inputs: A `Tensor` of shape [time, batch_size, input_size], or a nested tuple of such elements. initial_state: A `Tensor` of shape `[batch_size, state_size]`, or if `cell.state_size` is a tuple, then this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. parallel_iterations: Positive Python int. swap_memory: A Python boolean sequence_length: (optional) An `int32` `Tensor` of shape [batch_size]. dtype: (optional) Expected dtype of output. If not specified, inferred from initial_state. Returns: Tuple `(final_outputs, final_state)`. final_outputs: A `Tensor` of shape `[time, batch_size, cell.output_size]`. If `cell.output_size` is a (possibly nested) tuple of ints or `TensorShape` objects, then this returns a (possibly nsted) tuple of Tensors matching the corresponding shapes. final_state: A `Tensor`, or possibly nested tuple of Tensors, matching in length and shapes to `initial_state`. Raises: ValueError: If the input depth cannot be inferred via shape inference from the inputs. """ state = initial_state assert isinstance(parallel_iterations, int), "parallel_iterations must be int" state_size = cell.state_size flat_input = nest.flatten(inputs) flat_output_size = nest.flatten(cell.output_size) # Construct an initial output input_shape = array_ops.shape(flat_input[0]) time_steps = input_shape[0] batch_size = input_shape[1] inputs_got_shape = tuple(input_.get_shape().with_rank_at_least(3) for input_ in flat_input) const_time_steps, const_batch_size = inputs_got_shape[0].as_list()[:2] for shape in inputs_got_shape: if not shape[2:].is_fully_defined(): raise ValueError( "Input size (depth of inputs) must be accessible via shape inference," " but saw value None.") got_time_steps = shape[0].value got_batch_size = shape[1].value if const_time_steps != got_time_steps: raise ValueError( "Time steps is not the same for all the elements in the input in a " "batch.") if const_batch_size != got_batch_size: raise ValueError( "Batch_size is not the same for all the elements in the input.") # Prepare dynamic conditional copying of state & output def _create_zero_arrays(size): size = _state_size_with_prefix(size, prefix=[batch_size]) return array_ops.zeros( array_ops.stack(size), _infer_state_dtype(dtype, state)) flat_zero_output = tuple(_create_zero_arrays(output) for output in flat_output_size) zero_output = nest.pack_sequence_as(structure=cell.output_size, flat_sequence=flat_zero_output) if sequence_length is not None: min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) time = array_ops.constant(0, dtype=dtypes.int32, name="time") with ops.name_scope("dynamic_rnn") as scope: base_name = scope def _create_ta(name, dtype): return tensor_array_ops.TensorArray(dtype=dtype, size=time_steps, tensor_array_name=base_name + name) output_ta = tuple(_create_ta("output_%d" % i, _infer_state_dtype(dtype, state)) for i in range(len(flat_output_size))) input_ta = tuple(_create_ta("input_%d" % i, flat_input[0].dtype) for i in range(len(flat_input))) input_ta = tuple(ta.unstack(input_) for ta, input_ in zip(input_ta, flat_input)) def _time_step(time, output_ta_t, state): """Take a time step of the dynamic RNN. Args: time: int32 scalar Tensor. output_ta_t: List of `TensorArray`s that represent the output. state: nested tuple of vector tensors that represent the state. Returns: The tuple (time + 1, output_ta_t with updated flow, new_state). """ input_t = tuple(ta.read(time) for ta in input_ta) # Restore some shape information for input_, shape in zip(input_t, inputs_got_shape): input_.set_shape(shape[1:]) input_t = nest.pack_sequence_as(structure=inputs, flat_sequence=input_t) call_cell = lambda: cell(input_t, state) if sequence_length is not None: (output, new_state) = _rnn_step( time=time, sequence_length=sequence_length, min_sequence_length=min_sequence_length, max_sequence_length=max_sequence_length, zero_output=zero_output, state=state, call_cell=call_cell, state_size=state_size, skip_conditionals=True) else: (output, new_state) = call_cell() # Pack state if using state tuples output = nest.flatten(output) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, output)) return (time + 1, output_ta_t, new_state) _, output_final_ta, final_state = control_flow_ops.while_loop( cond=lambda time, *_: time < time_steps, body=_time_step, loop_vars=(time, output_ta, state), parallel_iterations=parallel_iterations, swap_memory=swap_memory) # Unpack final output if not using output tuples. final_outputs = tuple(ta.stack() for ta in output_final_ta) # Restore some shape information for output, output_size in zip(final_outputs, flat_output_size): shape = _state_size_with_prefix( output_size, prefix=[const_time_steps, const_batch_size]) output.set_shape(shape) final_outputs = nest.pack_sequence_as( structure=cell.output_size, flat_sequence=final_outputs) return (final_outputs, final_state) def raw_rnn(cell, loop_fn, parallel_iterations=None, swap_memory=False, scope=None): """Creates an `RNN` specified by RNNCell `cell` and loop function `loop_fn`. **NOTE: This method is still in testing, and the API may change.** This function is a more primitive version of `dynamic_rnn` that provides more direct access to the inputs each iteration. It also provides more control over when to start and finish reading the sequence, and what to emit for the output. For example, it can be used to implement the dynamic decoder of a seq2seq model. Instead of working with `Tensor` objects, most operations work with `TensorArray` objects directly. The operation of `raw_rnn`, in pseudo-code, is basically the following: ```python time = tf.constant(0, dtype=tf.int32) (finished, next_input, initial_state, _, loop_state) = loop_fn( time=time, cell_output=None, cell_state=None, loop_state=None) emit_ta = TensorArray(dynamic_size=True, dtype=initial_state.dtype) state = initial_state while not all(finished): (output, cell_state) = cell(next_input, state) (next_finished, next_input, next_state, emit, loop_state) = loop_fn( time=time + 1, cell_output=output, cell_state=cell_state, loop_state=loop_state) # Emit zeros and copy forward state for minibatch entries that are finished. state = tf.where(finished, state, next_state) emit = tf.where(finished, tf.zeros_like(emit), emit) emit_ta = emit_ta.write(time, emit) # If any new minibatch entries are marked as finished, mark these. finished = tf.logical_or(finished, next_finished) time += 1 return (emit_ta, state, loop_state) ``` with the additional properties that output and state may be (possibly nested) tuples, as determined by `cell.output_size` and `cell.state_size`, and as a result the final `state` and `emit_ta` may themselves be tuples. A simple implementation of `dynamic_rnn` via `raw_rnn` looks like this: ```python inputs = tf.placeholder(shape=(max_time, batch_size, input_depth), dtype=tf.float32) sequence_length = tf.placeholder(shape=(batch_size,), dtype=tf.int32) inputs_ta = tf.TensorArray(dtype=tf.float32, size=max_time) inputs_ta = inputs_ta.unstack(inputs) cell = tf.contrib.rnn.LSTMCell(num_units) def loop_fn(time, cell_output, cell_state, loop_state): emit_output = cell_output # == None for time == 0 if cell_output is None: # time == 0 next_cell_state = cell.zero_state(batch_size, tf.float32) else: next_cell_state = cell_state elements_finished = (time >= sequence_length) finished = tf.reduce_all(elements_finished) next_input = tf.cond( finished, lambda: tf.zeros([batch_size, input_depth], dtype=tf.float32), lambda: inputs_ta.read(time)) next_loop_state = None return (elements_finished, next_input, next_cell_state, emit_output, next_loop_state) outputs_ta, final_state, _ = raw_rnn(cell, loop_fn) outputs = outputs_ta.stack() ``` Args: cell: An instance of RNNCell. loop_fn: A callable that takes inputs `(time, cell_output, cell_state, loop_state)` and returns the tuple `(finished, next_input, next_cell_state, emit_output, next_loop_state)`. Here `time` is an int32 scalar `Tensor`, `cell_output` is a `Tensor` or (possibly nested) tuple of tensors as determined by `cell.output_size`, and `cell_state` is a `Tensor` or (possibly nested) tuple of tensors, as determined by the `loop_fn` on its first call (and should match `cell.state_size`). The outputs are: `finished`, a boolean `Tensor` of shape `[batch_size]`, `next_input`: the next input to feed to `cell`, `next_cell_state`: the next state to feed to `cell`, and `emit_output`: the output to store for this iteration. Note that `emit_output` should be a `Tensor` or (possibly nested) tuple of tensors with shapes and structure matching `cell.output_size` and `cell_output` above. The parameter `cell_state` and output `next_cell_state` may be either a single or (possibly nested) tuple of tensors. The parameter `loop_state` and output `next_loop_state` may be either a single or (possibly nested) tuple of `Tensor` and `TensorArray` objects. This last parameter may be ignored by `loop_fn` and the return value may be `None`. If it is not `None`, then the `loop_state` will be propagated through the RNN loop, for use purely by `loop_fn` to keep track of its own state. The `next_loop_state` parameter returned may be `None`. The first call to `loop_fn` will be `time = 0`, `cell_output = None`, `cell_state = None`, and `loop_state = None`. For this call: The `next_cell_state` value should be the value with which to initialize the cell's state. It may be a final state from a previous RNN or it may be the output of `cell.zero_state()`. It should be a (possibly nested) tuple structure of tensors. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a `TensorShape`, this must be a `Tensor` of appropriate type and shape `[batch_size] + cell.state_size`. If `cell.state_size` is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. The `emit_output` value may be either `None` or a (possibly nested) tuple structure of tensors, e.g., `(tf.zeros(shape_0, dtype=dtype_0), tf.zeros(shape_1, dtype=dtype_1))`. If this first `emit_output` return value is `None`, then the `emit_ta` result of `raw_rnn` will have the same structure and dtypes as `cell.output_size`. Otherwise `emit_ta` will have the same structure, shapes (prepended with a `batch_size` dimension), and dtypes as `emit_output`. The actual values returned for `emit_output` at this initializing call are ignored. Note, this emit structure must be consistent across all time steps. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A tuple `(emit_ta, final_state, final_loop_state)` where: `emit_ta`: The RNN output `TensorArray`. If `loop_fn` returns a (possibly nested) set of Tensors for `emit_output` during initialization, (inputs `time = 0`, `cell_output = None`, and `loop_state = None`), then `emit_ta` will have the same structure, dtypes, and shapes as `emit_output` instead. If `loop_fn` returns `emit_output = None` during this call, the structure of `cell.output_size` is used: If `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `emit_ta` will be a tuple having the same structure as `cell.output_size`, containing TensorArrays whose elements' shapes correspond to the shape data in `cell.output_size`. `final_state`: The final cell state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. `final_loop_state`: The final loop state as returned by `loop_fn`. Raises: TypeError: If `cell` is not an instance of RNNCell, or `loop_fn` is not a `callable`. """ # pylint: disable=protected-access if not isinstance(cell, rnn_cell_impl._RNNCell): raise TypeError("cell must be an instance of RNNCell") # pylint: enable=protected-access if not callable(loop_fn): raise TypeError("loop_fn must be a callable") parallel_iterations = parallel_iterations or 32 # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "rnn") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) time = constant_op.constant(0, dtype=dtypes.int32) (elements_finished, next_input, initial_state, emit_structure, init_loop_state) = loop_fn( time, None, None, None) # time, cell_output, cell_state, loop_state flat_input = nest.flatten(next_input) # Need a surrogate loop state for the while_loop if none is available. loop_state = (init_loop_state if init_loop_state is not None else constant_op.constant(0, dtype=dtypes.int32)) input_shape = [input_.get_shape() for input_ in flat_input] static_batch_size = input_shape[0][0] for input_shape_i in input_shape: # Static verification that batch sizes all match static_batch_size.merge_with(input_shape_i[0]) batch_size = static_batch_size.value if batch_size is None: batch_size = array_ops.shape(flat_input[0])[0] nest.assert_same_structure(initial_state, cell.state_size) state = initial_state flat_state = nest.flatten(state) flat_state = [ops.convert_to_tensor(s) for s in flat_state] state = nest.pack_sequence_as(structure=state, flat_sequence=flat_state) if emit_structure is not None: flat_emit_structure = nest.flatten(emit_structure) flat_emit_size = [emit.get_shape() for emit in flat_emit_structure] flat_emit_dtypes = [emit.dtype for emit in flat_emit_structure] else: emit_structure = cell.output_size flat_emit_size = nest.flatten(emit_structure) flat_emit_dtypes = [flat_state[0].dtype] * len(flat_emit_size) flat_emit_ta = [ tensor_array_ops.TensorArray( dtype=dtype_i, dynamic_size=True, size=0, name="rnn_output_%d" % i) for i, dtype_i in enumerate(flat_emit_dtypes)] emit_ta = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_emit_ta) flat_zero_emit = [ array_ops.zeros( _state_size_with_prefix(size_i, prefix=[batch_size]), dtype_i) for size_i, dtype_i in zip(flat_emit_size, flat_emit_dtypes)] zero_emit = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_zero_emit) def condition(unused_time, elements_finished, *_): return math_ops.logical_not(math_ops.reduce_all(elements_finished)) def body(time, elements_finished, current_input, emit_ta, state, loop_state): """Internal while loop body for raw_rnn. Args: time: time scalar. elements_finished: batch-size vector. current_input: possibly nested tuple of input tensors. emit_ta: possibly nested tuple of output TensorArrays. state: possibly nested tuple of state tensors. loop_state: possibly nested tuple of loop state tensors. Returns: Tuple having the same size as Args but with updated values. """ (next_output, cell_state) = cell(current_input, state) nest.assert_same_structure(state, cell_state) nest.assert_same_structure(cell.output_size, next_output) next_time = time + 1 (next_finished, next_input, next_state, emit_output, next_loop_state) = loop_fn( next_time, next_output, cell_state, loop_state) nest.assert_same_structure(state, next_state) nest.assert_same_structure(current_input, next_input) nest.assert_same_structure(emit_ta, emit_output) # If loop_fn returns None for next_loop_state, just reuse the # previous one. loop_state = loop_state if next_loop_state is None else next_loop_state def _copy_some_through(current, candidate): """Copy some tensors through via array_ops.where.""" current_flat = nest.flatten(current) candidate_flat = nest.flatten(candidate) # pylint: disable=g-long-lambda,cell-var-from-loop result_flat = [ _on_device( lambda: array_ops.where( elements_finished, current_i, candidate_i), device=candidate_i.op.device) for (current_i, candidate_i) in zip(current_flat, candidate_flat)] # pylint: enable=g-long-lambda,cell-var-from-loop return nest.pack_sequence_as( structure=current, flat_sequence=result_flat) emit_output = _copy_some_through(zero_emit, emit_output) next_state = _copy_some_through(state, next_state) emit_output_flat = nest.flatten(emit_output) emit_ta_flat = nest.flatten(emit_ta) elements_finished = math_ops.logical_or(elements_finished, next_finished) emit_ta_flat = [ ta.write(time, emit) for (ta, emit) in zip(emit_ta_flat, emit_output_flat)] emit_ta = nest.pack_sequence_as( structure=emit_structure, flat_sequence=emit_ta_flat) return (next_time, elements_finished, next_input, emit_ta, next_state, loop_state) returned = control_flow_ops.while_loop( condition, body, loop_vars=[ time, elements_finished, next_input, emit_ta, state, loop_state], parallel_iterations=parallel_iterations, swap_memory=swap_memory) (emit_ta, final_state, final_loop_state) = returned[-3:] if init_loop_state is None: final_loop_state = None return (emit_ta, final_state, final_loop_state)
_get_ports
Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use.
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") # MASKED: _get_ports function (lines 549-573) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port)
549
573
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
close
Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks.
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) # MASKED: close function (lines 725-752) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc
725
752
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
stop_preview
Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing.
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer # MASKED: stop_preview function (lines 804-816) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT])
804
816
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
_disable_camera
An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist).
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) # MASKED: _disable_camera function (lines 1961-1968) def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable()
1,961
1,968
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
_configure_camera
An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic).
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc # MASKED: _configure_camera function (lines 2005-2091) def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise
2,005
2,091
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's str equivalent to Py3's str = type('') import warnings import datetime import mimetypes import ctypes as ct import threading from fractions import Fraction from operator import itemgetter from collections import namedtuple from . import bcm_host, mmal, mmalobj as mo from .exc import ( PiCameraError, PiCameraValueError, PiCameraRuntimeError, PiCameraClosed, PiCameraNotRecording, PiCameraAlreadyRecording, PiCameraMMALError, PiCameraDeprecated, PiCameraFallback, ) from .encoders import ( PiVideoFrame, PiVideoEncoder, PiRawVideoEncoder, PiCookedVideoEncoder, PiRawOneImageEncoder, PiRawMultiImageEncoder, PiCookedOneImageEncoder, PiCookedMultiImageEncoder, ) from .renderers import ( PiPreviewRenderer, PiOverlayRenderer, PiNullSink, ) from .color import Color try: from RPi import GPIO except ImportError: # Can't find RPi.GPIO so just null-out the reference GPIO = None def docstring_values(values, indent=8): """ Formats a dictionary of values for inclusion in a docstring. """ return ('\n' + ' ' * indent).join( "* ``'%s'``" % k for (k, v) in sorted(values.items(), key=itemgetter(1))) class PiCameraMaxResolution(object): """ Singleton representing the maximum resolution of the camera module. """ PiCameraMaxResolution = PiCameraMaxResolution() class PiCameraMaxFramerate(object): """ Singleton representing the maximum framerate of the camera module. """ PiCameraMaxFramerate = PiCameraMaxFramerate() class PiCamera(object): """ Provides a pure Python interface to the Raspberry Pi's camera module. Upon construction, this class initializes the camera. The *camera_num* parameter (which defaults to 0) selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently supports more than one camera. The *sensor_mode*, *resolution*, *framerate*, *framerate_range*, and *clock_mode* parameters provide initial values for the :attr:`sensor_mode`, :attr:`resolution`, :attr:`framerate`, :attr:`framerate_range`, and :attr:`clock_mode` attributes of the class (these attributes are all relatively expensive to set individually, hence setting them all upon construction is a speed optimization). Please refer to the attribute documentation for more information and default values. The *stereo_mode* and *stereo_decimate* parameters configure dual cameras on a compute module for sterescopic mode. These parameters can only be set at construction time; they cannot be altered later without closing the :class:`PiCamera` instance and recreating it. The *stereo_mode* parameter defaults to ``'none'`` (no stereoscopic mode) but can be set to ``'side-by-side'`` or ``'top-bottom'`` to activate a stereoscopic mode. If the *stereo_decimate* parameter is ``True``, the resolution of the two cameras will be halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used. The *led_pin* parameter can be used to specify the GPIO pin which should be used to control the camera's LED via the :attr:`led` attribute. If this is not specified, it should default to the correct value for your Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this is only typical on the `Compute Module`_ platform). No preview or recording is started automatically upon construction. Use the :meth:`capture` method to capture images, the :meth:`start_recording` method to begin recording video, or the :meth:`start_preview` method to start live display of the camera's input. Several attributes are provided to adjust the camera's configuration. Some of these can be adjusted while a recording is running, like :attr:`brightness`. Others, like :attr:`resolution`, can only be adjusted when the camera is idle. When you are finished with the camera, you should ensure you call the :meth:`close` method to release the camera resources:: camera = PiCamera() try: # do something with the camera pass finally: camera.close() The class supports the context manager protocol to make this particularly easy (upon exiting the :keyword:`with` statement, the :meth:`close` method is automatically called):: with PiCamera() as camera: # do something with the camera pass .. versionchanged:: 1.8 Added *stereo_mode* and *stereo_decimate* parameters. .. versionchanged:: 1.9 Added *resolution*, *framerate*, and *sensor_mode* parameters. .. versionchanged:: 1.10 Added *led_pin* parameter. .. versionchanged:: 1.11 Added *clock_mode* parameter, and permitted setting of resolution as appropriately formatted string. .. versionchanged:: 1.13 Added *framerate_range* parameter. .. _Compute Module: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md """ CAMERA_PREVIEW_PORT = 0 CAMERA_VIDEO_PORT = 1 CAMERA_CAPTURE_PORT = 2 MAX_RESOLUTION = PiCameraMaxResolution # modified by PiCamera.__init__ MAX_FRAMERATE = PiCameraMaxFramerate # modified by PiCamera.__init__ DEFAULT_ANNOTATE_SIZE = 32 CAPTURE_TIMEOUT = 60 METER_MODES = { 'average': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE, 'spot': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_SPOT, 'backlit': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_BACKLIT, 'matrix': mmal.MMAL_PARAM_EXPOSUREMETERINGMODE_MATRIX, } EXPOSURE_MODES = { 'off': mmal.MMAL_PARAM_EXPOSUREMODE_OFF, 'auto': mmal.MMAL_PARAM_EXPOSUREMODE_AUTO, 'night': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHT, 'nightpreview': mmal.MMAL_PARAM_EXPOSUREMODE_NIGHTPREVIEW, 'backlight': mmal.MMAL_PARAM_EXPOSUREMODE_BACKLIGHT, 'spotlight': mmal.MMAL_PARAM_EXPOSUREMODE_SPOTLIGHT, 'sports': mmal.MMAL_PARAM_EXPOSUREMODE_SPORTS, 'snow': mmal.MMAL_PARAM_EXPOSUREMODE_SNOW, 'beach': mmal.MMAL_PARAM_EXPOSUREMODE_BEACH, 'verylong': mmal.MMAL_PARAM_EXPOSUREMODE_VERYLONG, 'fixedfps': mmal.MMAL_PARAM_EXPOSUREMODE_FIXEDFPS, 'antishake': mmal.MMAL_PARAM_EXPOSUREMODE_ANTISHAKE, 'fireworks': mmal.MMAL_PARAM_EXPOSUREMODE_FIREWORKS, } FLASH_MODES = { 'off': mmal.MMAL_PARAM_FLASH_OFF, 'auto': mmal.MMAL_PARAM_FLASH_AUTO, 'on': mmal.MMAL_PARAM_FLASH_ON, 'redeye': mmal.MMAL_PARAM_FLASH_REDEYE, 'fillin': mmal.MMAL_PARAM_FLASH_FILLIN, 'torch': mmal.MMAL_PARAM_FLASH_TORCH, } AWB_MODES = { 'off': mmal.MMAL_PARAM_AWBMODE_OFF, 'auto': mmal.MMAL_PARAM_AWBMODE_AUTO, 'sunlight': mmal.MMAL_PARAM_AWBMODE_SUNLIGHT, 'cloudy': mmal.MMAL_PARAM_AWBMODE_CLOUDY, 'shade': mmal.MMAL_PARAM_AWBMODE_SHADE, 'tungsten': mmal.MMAL_PARAM_AWBMODE_TUNGSTEN, 'fluorescent': mmal.MMAL_PARAM_AWBMODE_FLUORESCENT, 'incandescent': mmal.MMAL_PARAM_AWBMODE_INCANDESCENT, 'flash': mmal.MMAL_PARAM_AWBMODE_FLASH, 'horizon': mmal.MMAL_PARAM_AWBMODE_HORIZON, } IMAGE_EFFECTS = { 'none': mmal.MMAL_PARAM_IMAGEFX_NONE, 'negative': mmal.MMAL_PARAM_IMAGEFX_NEGATIVE, 'solarize': mmal.MMAL_PARAM_IMAGEFX_SOLARIZE, # The following don't work #'posterize': mmal.MMAL_PARAM_IMAGEFX_POSTERIZE, #'whiteboard': mmal.MMAL_PARAM_IMAGEFX_WHITEBOARD, #'blackboard': mmal.MMAL_PARAM_IMAGEFX_BLACKBOARD, 'sketch': mmal.MMAL_PARAM_IMAGEFX_SKETCH, 'denoise': mmal.MMAL_PARAM_IMAGEFX_DENOISE, 'emboss': mmal.MMAL_PARAM_IMAGEFX_EMBOSS, 'oilpaint': mmal.MMAL_PARAM_IMAGEFX_OILPAINT, 'hatch': mmal.MMAL_PARAM_IMAGEFX_HATCH, 'gpen': mmal.MMAL_PARAM_IMAGEFX_GPEN, 'pastel': mmal.MMAL_PARAM_IMAGEFX_PASTEL, 'watercolor': mmal.MMAL_PARAM_IMAGEFX_WATERCOLOUR, 'film': mmal.MMAL_PARAM_IMAGEFX_FILM, 'blur': mmal.MMAL_PARAM_IMAGEFX_BLUR, 'saturation': mmal.MMAL_PARAM_IMAGEFX_SATURATION, 'colorswap': mmal.MMAL_PARAM_IMAGEFX_COLOURSWAP, 'washedout': mmal.MMAL_PARAM_IMAGEFX_WASHEDOUT, 'posterise': mmal.MMAL_PARAM_IMAGEFX_POSTERISE, 'colorpoint': mmal.MMAL_PARAM_IMAGEFX_COLOURPOINT, 'colorbalance': mmal.MMAL_PARAM_IMAGEFX_COLOURBALANCE, 'cartoon': mmal.MMAL_PARAM_IMAGEFX_CARTOON, 'deinterlace1': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_DOUBLE, 'deinterlace2': mmal.MMAL_PARAM_IMAGEFX_DEINTERLACE_ADV, } DRC_STRENGTHS = { 'off': mmal.MMAL_PARAMETER_DRC_STRENGTH_OFF, 'low': mmal.MMAL_PARAMETER_DRC_STRENGTH_LOW, 'medium': mmal.MMAL_PARAMETER_DRC_STRENGTH_MEDIUM, 'high': mmal.MMAL_PARAMETER_DRC_STRENGTH_HIGH, } RAW_FORMATS = { 'yuv', 'rgb', 'rgba', 'bgr', 'bgra', } STEREO_MODES = { 'none': mmal.MMAL_STEREOSCOPIC_MODE_NONE, 'side-by-side': mmal.MMAL_STEREOSCOPIC_MODE_SIDE_BY_SIDE, 'top-bottom': mmal.MMAL_STEREOSCOPIC_MODE_BOTTOM, } CLOCK_MODES = { 'reset': mmal.MMAL_PARAM_TIMESTAMP_MODE_RESET_STC, 'raw': mmal.MMAL_PARAM_TIMESTAMP_MODE_RAW_STC, } _METER_MODES_R = {v: k for (k, v) in METER_MODES.items()} _EXPOSURE_MODES_R = {v: k for (k, v) in EXPOSURE_MODES.items()} _FLASH_MODES_R = {v: k for (k, v) in FLASH_MODES.items()} _AWB_MODES_R = {v: k for (k, v) in AWB_MODES.items()} _IMAGE_EFFECTS_R = {v: k for (k, v) in IMAGE_EFFECTS.items()} _DRC_STRENGTHS_R = {v: k for (k, v) in DRC_STRENGTHS.items()} _STEREO_MODES_R = {v: k for (k, v) in STEREO_MODES.items()} _CLOCK_MODES_R = {v: k for (k, v) in CLOCK_MODES.items()} __slots__ = ( '_used_led', '_led_pin', '_camera', '_camera_config', '_camera_exception', '_revision', '_preview', '_preview_alpha', '_preview_layer', '_preview_fullscreen', '_preview_window', '_splitter', '_splitter_connection', '_encoders_lock', '_encoders', '_overlays', '_raw_format', '_image_effect_params', '_exif_tags', ) def __init__( self, camera_num=0, stereo_mode='none', stereo_decimate=False, resolution=None, framerate=None, sensor_mode=0, led_pin=None, clock_mode='reset', framerate_range=None): bcm_host.bcm_host_init() mimetypes.add_type('application/h264', '.h264', False) mimetypes.add_type('application/mjpeg', '.mjpg', False) mimetypes.add_type('application/mjpeg', '.mjpeg', False) self._used_led = False if GPIO and led_pin is None: try: led_pin = { (0, 0): 2, # compute module (default for cam 0) (0, 1): 30, # compute module (default for cam 1) (1, 0): 5, # Pi 1 model B rev 1 (2, 0): 5, # Pi 1 model B rev 2 or model A (3, 0): 32, # Pi 1 model B+ or Pi 2 model B }[(GPIO.RPI_REVISION, camera_num)] except KeyError: raise PiCameraError( 'Unable to determine default GPIO LED pin for RPi ' 'revision %d and camera num %d' % ( GPIO.RPI_REVISION, camera_num)) self._led_pin = led_pin self._camera = None self._camera_config = None self._camera_exception = None self._preview = None self._preview_alpha = 255 self._preview_layer = 2 self._preview_fullscreen = True self._preview_window = None self._splitter = None self._splitter_connection = None self._encoders_lock = threading.Lock() self._encoders = {} self._overlays = [] self._raw_format = 'yuv' self._image_effect_params = None with mo.MMALCameraInfo() as camera_info: info = camera_info.control.params[mmal.MMAL_PARAMETER_CAMERA_INFO] self._revision = 'ov5647' if camera_info.info_rev > 1: self._revision = info.cameras[camera_num].camera_name.decode('ascii') self._exif_tags = { 'IFD0.Model': 'RP_%s' % self._revision, 'IFD0.Make': 'RaspberryPi', } if PiCamera.MAX_RESOLUTION is PiCameraMaxResolution: PiCamera.MAX_RESOLUTION = mo.PiResolution( info.cameras[camera_num].max_width, info.cameras[camera_num].max_height, ) if PiCamera.MAX_FRAMERATE is PiCameraMaxFramerate: if self._revision.upper() == 'OV5647': PiCamera.MAX_FRAMERATE = 90 else: PiCamera.MAX_FRAMERATE = 120 if resolution is None: # Get screen resolution w = ct.c_uint32() h = ct.c_uint32() if bcm_host.graphics_get_display_size(0, w, h) == -1: w = 1280 h = 720 else: w = int(w.value) h = int(h.value) resolution = mo.PiResolution(w, h) elif resolution is PiCameraMaxResolution: resolution = PiCamera.MAX_RESOLUTION else: resolution = mo.to_resolution(resolution) if framerate_range is None: if framerate is None: framerate = 30 elif framerate is PiCameraMaxFramerate: framerate = PiCamera.MAX_FRAMERATE else: framerate = mo.to_fraction(framerate) elif framerate is not None: raise PiCameraValueError( "Can't specify framerate and framerate_range") else: try: low, high = framerate_range except TypeError: raise PiCameraValueError( "framerate_range must have (low, high) values") if low is PiCameraMaxFramerate: low = PiCamera.MAX_FRAMERATE if high is PiCameraMaxFramerate: high = PiCamera.MAX_FRAMERATE framerate = (mo.to_fraction(low), mo.to_fraction(high)) try: stereo_mode = self.STEREO_MODES[stereo_mode] except KeyError: raise PiCameraValueError('Invalid stereo mode: %s' % stereo_mode) try: clock_mode = self.CLOCK_MODES[clock_mode] except KeyError: raise PiCameraValueError('Invalid clock mode: %s' % clock_mode) try: self._init_camera(camera_num, stereo_mode, stereo_decimate) self._configure_camera(sensor_mode, framerate, resolution, clock_mode) self._init_preview() self._init_splitter() self._camera.enable() self._init_defaults() except: self.close() raise def _init_led(self): global GPIO if GPIO: try: GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._led_pin, GPIO.OUT, initial=GPIO.LOW) self._used_led = True except RuntimeError: # We're probably not running as root. In this case, forget the # GPIO reference so we don't try anything further GPIO = None def _init_camera(self, num, stereo_mode, stereo_decimate): try: self._camera = mo.MMALCamera() except PiCameraMMALError as e: if e.status == mmal.MMAL_ENOMEM: raise PiCameraError( "Camera is not enabled. Try running 'sudo raspi-config' " "and ensure that the camera has been enabled.") else: raise self._camera_config = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] # Don't attempt to set this if stereo mode isn't requested as it'll # break compatibility on older firmwares if stereo_mode != mmal.MMAL_STEREOSCOPIC_MODE_NONE: for p in self._camera.outputs: mp = mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE, ct.sizeof(mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE_T), ), mode=stereo_mode, decimate=stereo_decimate, swap_eyes=False, ) p.params[mmal.MMAL_PARAMETER_STEREOSCOPIC_MODE] = mp # Must be done *after* stereo-scopic setting self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_NUM] = num def _init_defaults(self): self.sharpness = 0 self.contrast = 0 self.brightness = 50 self.saturation = 0 self.iso = 0 # auto self.video_stabilization = False self.exposure_compensation = 0 self.exposure_mode = 'auto' self.meter_mode = 'average' self.awb_mode = 'auto' self.image_effect = 'none' self.color_effects = None self.rotation = 0 self.hflip = self.vflip = False self.zoom = (0.0, 0.0, 1.0, 1.0) def _init_splitter(self): # Create a splitter component for the video port. This is to permit # video recordings and captures where use_video_port=True to occur # simultaneously (#26) self._splitter = mo.MMALSplitter() self._splitter.inputs[0].connect( self._camera.outputs[self.CAMERA_VIDEO_PORT]).enable() def _init_preview(self): # Create a null-sink component, enable it and connect it to the # camera's preview port. If nothing is connected to the preview port, # the camera doesn't measure exposure and captured images gradually # fade to black (issue #22) self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def _start_capture(self, port): # Only enable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = True def _stop_capture(self, port): # Only disable capture if the port is the camera's still port, or if # there's a single active encoder on the video splitter if ( port == self._camera.outputs[self.CAMERA_CAPTURE_PORT] or len([e for e in self._encoders.values() if e.active]) == 1): port.params[mmal.MMAL_PARAMETER_CAPTURE] = False def _check_camera_open(self): """ Raise an exception if the camera is already closed, or if the camera has encountered a fatal error. """ exc, self._camera_exception = self._camera_exception, None if exc: raise exc if self.closed: raise PiCameraClosed("Camera is closed") def _check_recording_stopped(self): """ Raise an exception if the camera is currently recording. """ if self.recording: raise PiCameraRuntimeError("Recording is currently running") def _get_ports(self, from_video_port, splitter_port): """ Determine the camera and output ports for given capture options. See :ref:`camera_hardware` for more information on picamera's usage of camera, splitter, and encoder ports. The general idea here is that the capture (still) port operates on its own, while the video port is always connected to a splitter component, so requests for a video port also have to specify which splitter port they want to use. """ self._check_camera_open() if from_video_port and (splitter_port in self._encoders): raise PiCameraAlreadyRecording( 'The camera is already using port %d ' % splitter_port) camera_port = ( self._camera.outputs[self.CAMERA_VIDEO_PORT] if from_video_port else self._camera.outputs[self.CAMERA_CAPTURE_PORT] ) output_port = ( self._splitter.outputs[splitter_port] if from_video_port else camera_port ) return (camera_port, output_port) def _get_output_format(self, output): """ Given an output object, attempt to determine the requested format. We attempt to determine the filename of the *output* object and derive a MIME type from the extension. If *output* has no filename, an error is raised. """ if isinstance(output, bytes): filename = output.decode('utf-8') elif isinstance(output, str): filename = output else: try: filename = output.name except AttributeError: raise PiCameraValueError( 'Format must be specified when output has no filename') (type, encoding) = mimetypes.guess_type(filename, strict=False) if not type: raise PiCameraValueError( 'Unable to determine type from filename %s' % filename) return type def _get_image_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested image format. This method is used by all capture methods to determine the requested output format. If *format* is specified as a MIME-type the "image/" prefix is stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('image/') else format) if format == 'x-ms-bmp': format = 'bmp' if format == 'raw': format = self.raw_format return format def _get_video_format(self, output, format=None): """ Given an output object and an optional format, attempt to determine the requested video format. This method is used by all recording methods to determine the requested output format. If *format* is specified as a MIME-type the "video/" or "application/" prefix will be stripped. If *format* is not specified, then :meth:`_get_output_format` will be called to attempt to determine format from the *output* object. """ if isinstance(format, bytes): format = format.decode('utf-8') format = format or self._get_output_format(output) format = ( format[6:] if format.startswith('video/') else format[12:] if format.startswith('application/') else format) return format def _get_image_encoder( self, camera_port, output_port, format, resize, **options): """ Construct an image encoder for the requested parameters. This method is called by :meth:`capture` and :meth:`capture_continuous` to construct an image encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the image format and will be one of: * ``'jpeg'`` * ``'png'`` * ``'gif'`` * ``'bmp'`` * ``'yuv'`` * ``'rgb'`` * ``'rgba'`` * ``'bgr'`` * ``'bgra'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawOneImageEncoder if format in self.RAW_FORMATS else PiCookedOneImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_images_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a multi-image encoder for the requested parameters. This method is largely equivalent to :meth:`_get_image_encoder` with the exception that the encoder returned should expect to be passed an iterable of outputs to its :meth:`~PiEncoder.start` method, rather than a single output object. This method is called by the :meth:`capture_sequence` method. All parameters are the same as in :meth:`_get_image_encoder`. Please refer to the documentation for that method for further information. """ encoder_class = ( PiRawMultiImageEncoder if format in self.RAW_FORMATS else PiCookedMultiImageEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def _get_video_encoder( self, camera_port, output_port, format, resize, **options): """ Construct a video encoder for the requested parameters. This method is called by :meth:`start_recording` and :meth:`record_sequence` to construct a video encoder. The *camera_port* parameter gives the MMAL camera port that should be enabled for capture by the encoder. The *output_port* parameter gives the MMAL port that the encoder should read output from (this may be the same as the camera port, but may be different if other component(s) like a splitter have been placed in the pipeline). The *format* parameter indicates the video format and will be one of: * ``'h264'`` * ``'mjpeg'`` The *resize* parameter indicates the size that the encoder should resize the output to (presumably by including a resizer in the pipeline). Finally, *options* includes extra keyword arguments that should be passed verbatim to the encoder. """ encoder_class = ( PiRawVideoEncoder if format in self.RAW_FORMATS else PiCookedVideoEncoder) return encoder_class( self, camera_port, output_port, format, resize, **options) def close(self): """ Finalizes the state of the camera. After successfully constructing a :class:`PiCamera` object, you should ensure you call the :meth:`close` method once you are finished with the camera (e.g. in the ``finally`` section of a ``try..finally`` block). This method stops all recording and preview activities and releases all resources associated with the camera; this is necessary to prevent GPU memory leaks. """ for port in list(self._encoders): self.stop_recording(splitter_port=port) assert not self.recording for overlay in list(self._overlays): self.remove_overlay(overlay) if self._preview: self._preview.close() self._preview = None if self._splitter: self._splitter.close() self._splitter = None if self._camera: self._camera.close() self._camera = None exc, self._camera_exception = self._camera_exception, None if exc: raise exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def start_preview(self, **options): """ Displays the preview overlay. This method starts a camera preview as an overlay on the Pi's primary display (HDMI or composite). A :class:`PiRenderer` instance (more specifically, a :class:`PiPreviewRenderer`) is constructed with the keyword arguments captured in *options*, and is returned from the method (this instance is also accessible from the :attr:`preview` attribute for as long as the renderer remains active). By default, the renderer will be opaque and fullscreen. This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi's video output. To stop the preview and reveal the display again, call :meth:`stop_preview`. The preview can be started and stopped multiple times during the lifetime of the :class:`PiCamera` object. All other camera properties can be modified "live" while the preview is running (e.g. :attr:`brightness`). .. note:: Because the default preview typically obscures the screen, ensure you have a means of stopping a preview before starting one. If the preview obscures your interactive console you won't be able to Alt+Tab back to it as the preview isn't in a window. If you are in an interactive Python session, simply pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated preview. """ self._check_camera_open() self._preview.close() options.setdefault('layer', self._preview_layer) options.setdefault('alpha', self._preview_alpha) options.setdefault('fullscreen', self._preview_fullscreen) options.setdefault('window', self._preview_window) renderer = PiPreviewRenderer( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT], **options) self._preview = renderer return renderer def stop_preview(self): """ Hides the preview overlay. If :meth:`start_preview` has previously been called, this method shuts down the preview display which generally results in the underlying display becoming visible again. If a preview is not currently running, no exception is raised - the method will simply do nothing. """ self._check_camera_open() self._preview.close() self._preview = PiNullSink( self, self._camera.outputs[self.CAMERA_PREVIEW_PORT]) def add_overlay(self, source, size=None, format=None, **options): """ Adds a static overlay to the preview output. This method creates a new static overlay using the same rendering mechanism as the preview. Overlays will appear on the Pi's video output, but will not appear in captures or video recordings. Multiple overlays can exist; each call to :meth:`add_overlay` returns a new :class:`PiOverlayRenderer` instance representing the overlay. The *source* must be an object that supports the :ref:`buffer protocol <bufferobjects>` in one of the supported unencoded formats: ``'yuv'``, ``'rgb'``, ``'rgba'``, ``'bgr'``, or ``'bgra'``. The format can specified explicitly with the optional *format* parameter. If not specified, the method will attempt to guess the format based on the length of *source* and the *size* (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA). The optional *size* parameter specifies the size of the source image as a ``(width, height)`` tuple. If this is omitted or ``None`` then the size is assumed to be the same as the camera's current :attr:`resolution`. The length of *source* must take into account that widths are rounded up to the nearest multiple of 32, and heights to the nearest multiple of 16. For example, if *size* is ``(1280, 720)``, and *format* is ``'rgb'``, then *source* must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because 1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if *size* is ``(97, 57)``, and *format* is ``'rgb'`` then *source* must be a buffer with length 128 × 64 × 3 bytes, or 24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored). New overlays default to *layer* 0, whilst the preview defaults to layer 2. Higher numbered layers obscure lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You can make the new overlay visible either by making any existing preview transparent (with the :attr:`~PiRenderer.alpha` property) or by moving the overlay into a layer higher than the preview (with the :attr:`~PiRenderer.layer` property). All keyword arguments captured in *options* are passed onto the :class:`PiRenderer` constructor. All camera properties except :attr:`resolution` and :attr:`framerate` can be modified while overlays exist. The reason for these exceptions is that the overlay has a static resolution and changing the camera's mode would require resizing of the source. .. warning:: If too many overlays are added, the display output will be disabled and a reboot will generally be required to restore the display. Overlays are composited "on the fly". Hence, a real-time constraint exists wherein for each horizontal line of HDMI output, the content of all source layers must be fetched, resized, converted, and blended to produce the output pixels. If enough overlays exist (where "enough" is a number dependent on overlay size, display resolution, bus frequency, and several other factors making it unrealistic to calculate in advance), this process breaks down and video output fails. One solution is to add ``dispmanx_offline=1`` to ``/boot/config.txt`` to force the use of an off-screen buffer. Be aware that this requires more GPU memory and may reduce the update rate. .. _RGB: https://en.wikipedia.org/wiki/RGB .. _RGBA: https://en.wikipedia.org/wiki/RGBA_color_space .. versionadded:: 1.8 .. versionchanged:: 1.13 Added *format* parameter """ self._check_camera_open() renderer = PiOverlayRenderer(self, source, size, format, **options) self._overlays.append(renderer) return renderer def remove_overlay(self, overlay): """ Removes a static overlay from the preview output. This method removes an overlay which was previously created by :meth:`add_overlay`. The *overlay* parameter specifies the :class:`PiRenderer` instance that was returned by :meth:`add_overlay`. .. versionadded:: 1.8 """ if not overlay in self._overlays: raise PiCameraValueError( "The specified overlay is not owned by this instance of " "PiCamera") overlay.close() self._overlays.remove(overlay) def start_recording( self, output, format=None, resize=None, splitter_port=1, **options): """ Start recording video from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the video will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the video data is appended to it (the implementation only assumes the object has a ``write()`` method - no other methods are required but ``flush`` will be called at the end of recording if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer (which must be large enough to accept all frame data). If *format* is ``None`` (the default), the method will attempt to guess the required video format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the video output in. The format can be a MIME-type or one of the following strings: * ``'h264'`` - Write an H.264 video stream * ``'mjpeg'`` - Write an M-JPEG video stream * ``'yuv'`` - Write the raw video data to a file in YUV420 format * ``'rgb'`` - Write the raw video data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw video data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw video data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw video data to a file in 32-bit BGRA format If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the video recording should be resized to. This is particularly useful for recording video using the full resolution of the camera sensor (which is not possible in H.264 without down-sizing the output). The *splitter_port* parameter specifies the port of the built-in splitter that the video encoder will be attached to. This defaults to ``1`` and most users will have no need to specify anything different. If you wish to record multiple (presumably resized) streams simultaneously, specify a value between ``0`` and ``3`` inclusive for this parameter, ensuring that you do not specify a port that is currently in use. Certain formats accept additional options which can be specified as keyword arguments. The ``'h264'`` format accepts the following additional options: * *profile* - The H.264 profile to use for encoding. Defaults to 'high', but can be one of 'baseline', 'main', 'extended', 'high', or 'constrained'. * *level* - The `H.264 level`_ to use for encoding. Defaults to '4', but can be any H.264 level up to '4.2'. * *intra_period* - The key frame rate (the rate at which I-frames are inserted in the output). Defaults to ``None``, but can be any 32-bit integer value representing the number of frames between successive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then only P-frames subsequently. Note that :meth:`split_recording` will fail in this mode. * *intra_refresh* - The key frame format (the way in which I-frames will be inserted into the output stream). Defaults to ``None``, but can be one of 'cyclic', 'adaptive', 'both', or 'cyclicrows'. * *inline_headers* - When ``True``, specifies that the encoder should output SPS/PPS headers within the stream to ensure GOPs (groups of pictures) are self describing. This is important for streaming applications where the client may wish to seek within the stream, and enables the use of :meth:`split_recording`. Defaults to ``True`` if not specified. * *sei* - When ``True``, specifies the encoder should include "Supplemental Enhancement Information" within the output stream. Defaults to ``False`` if not specified. * *sps_timing* - When ``True`` the encoder includes the camera's framerate in the SPS header. Defaults to ``False`` if not specified. * *motion_output* - Indicates the output destination for motion vector estimation data. When ``None`` (the default), motion data is not output. Otherwise, this can be a filename string, a file-like object, or a writeable buffer object (as with the *output* parameter). All encoded formats accept the following additional options: * *bitrate* - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not specified. The maximum value depends on the selected `H.264 level`_ and profile. Bitrate 0 indicates the encoder should not use bitrate control (the encoder is limited by the quality only). * *quality* - Specifies the quality that the encoder should attempt to maintain. For the ``'h264'`` format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely low (20-25 is usually a reasonable range for H.264 encoding). For the ``mjpeg`` format, use JPEG quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special and seems to be a "reasonable quality" default. * *quantization* - Deprecated alias for *quality*. .. versionchanged:: 1.0 The *resize* parameter was added, and ``'mjpeg'`` was added as a recording format .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *quantization* parameter was deprecated in favor of *quality*, and the *motion_output* parameter was added. .. versionchanged:: 1.11 Support for buffer outputs was added. .. _H.264 level: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels """ if 'quantization' in options: warnings.warn( PiCameraDeprecated( 'The quantization option is deprecated; please use ' 'quality instead (same value)')) with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format(output, format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: encoder.start(output, options.get('motion_output')) except Exception as e: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] raise def split_recording(self, output, splitter_port=1, **options): """ Continue the recording in the specified output; close existing output. When called, the video encoder will wait for the next appropriate split point (an inline SPS header), then will cease writing to the current output (and close it, if it was specified as a filename), and continue writing to the newly specified *output*. The *output* parameter is treated as in the :meth:`start_recording` method (it can be a string, a file-like object, or a writeable buffer object). The *motion_output* parameter can be used to redirect the output of the motion vector data in the same fashion as *output*. If *motion_output* is ``None`` (the default) then motion vector data will not be redirected and will continue being written to the output specified by the *motion_output* parameter given to :meth:`start_recording`. Alternatively, if you only wish to redirect motion vector data, you can set *output* to ``None`` and given a new value for *motion_output*. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to change outputs is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. Note that unlike :meth:`start_recording`, you cannot specify format or other options as these cannot be changed in the middle of recording. Only the new *output* (and *motion_output*) can be specified. Furthermore, the format of the recording is currently limited to H264, and *inline_headers* must be ``True`` when :meth:`start_recording` is called (this is the default). .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.5 The *motion_output* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.split(output, options.get('motion_output')) def request_key_frame(self, splitter_port=1): """ Request the encoder generate a key-frame as soon as possible. When called, the video encoder running on the specified *splitter_port* will attempt to produce a key-frame (full-image frame) as soon as possible. The *splitter_port* defaults to ``1``. Valid values are between ``0`` and ``3`` inclusive. .. note:: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces full frames for every frame recorded. Furthermore, there's no guarantee that the *next* frame will be a key-frame; this is simply a request to produce one as soon as possible after the call. .. versionadded:: 1.11 """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.request_key_frame() def wait_recording(self, timeout=0, splitter_port=1): """ Wait on the video encoder for timeout seconds. It is recommended that this method is called while recording to check for exceptions. If an error occurs during recording (for example out of disk space) the recording will stop, but an exception will only be raised when the :meth:`wait_recording` or :meth:`stop_recording` methods are called. If ``timeout`` is 0 (the default) the function will immediately return (or raise an exception if an error has occurred). The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to wait on is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ assert timeout is not None try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: encoder.wait(timeout) def stop_recording(self, splitter_port=1): """ Stop recording video from the camera. After calling this method the video encoder will be shut down and output will stop being written to the file-like object specified with :meth:`start_recording`. If an error occurred during recording and :meth:`wait_recording` has not been called since the error then this method will raise the exception. The *splitter_port* parameter specifies which port of the video splitter the encoder you wish to stop is attached to. This defaults to ``1`` and most users will have no need to specify anything different. Valid values are between ``0`` and ``3`` inclusive. .. versionchanged:: 1.3 The *splitter_port* parameter was added """ try: with self._encoders_lock: encoder = self._encoders[splitter_port] except KeyError: raise PiCameraNotRecording( 'There is no recording in progress on ' 'port %d' % splitter_port) else: try: self.wait_recording(0, splitter_port) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def record_sequence( self, outputs, format='h264', resize=None, splitter_port=1, **options): """ Record a sequence of video clips from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method. The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller can control how long to record to each item by only permitting the loop to continue when ready to switch to the next output. The *format*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`start_recording`, but *format* defaults to ``'h264'``. The format is **not** derived from the filenames in *outputs* by this method. For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264 files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence([ 'clip01.h264', 'clip02.h264', 'clip03.h264']): print('Recording to %s' % filename) camera.wait_recording(10) Alternatively, a more flexible method of writing the previous example (which is easier to expand to a large number of output files) is by using a generator expression as the input sequence:: import picamera with picamera.PiCamera() as camera: for filename in camera.record_sequence( 'clip%02d.h264' % i for i in range(3)): print('Recording to %s' % filename) camera.wait_recording(10) More advanced techniques are also possible by utilising infinite sequences, such as those generated by :func:`itertools.cycle`. In the following example, recording is switched between two in-memory streams. Whilst one stream is recording, the other is being analysed. The script only stops recording when a video recording meets some criteria defined by the ``process`` function:: import io import itertools import picamera with picamera.PiCamera() as camera: analyse = None for stream in camera.record_sequence( itertools.cycle((io.BytesIO(), io.BytesIO()))): if analyse is not None: if process(analyse): break analyse.seek(0) analyse.truncate() camera.wait_recording(5) analyse = stream .. versionadded:: 1.3 """ with self._encoders_lock: camera_port, output_port = self._get_ports(True, splitter_port) format = self._get_video_format('', format) encoder = self._get_video_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder try: start = True for output in outputs: if start: start = False encoder.start(output, options.get('motion_output')) else: encoder.split(output) yield output finally: try: encoder.wait(0) finally: encoder.close() with self._encoders_lock: del self._encoders[splitter_port] def capture( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, bayer=False, **options): """ Capture an image from the camera, storing it in *output*. If *output* is a string, it will be treated as a filename for a new file which the image will be written to. If *output* is not a string, but is an object with a ``write`` method, it is assumed to be a file-like object and the image data is appended to it (the implementation only assumes the object has a ``write`` method - no other methods are required but ``flush`` will be called at the end of capture if it is present). If *output* is not a string, and has no ``write`` method it is assumed to be a writeable object implementing the buffer protocol. In this case, the image data will be written directly to the underlying buffer (which must be large enough to accept the image data). If *format* is ``None`` (the default), the method will attempt to guess the required image format from the extension of *output* (if it's a string), or from the *name* attribute of *output* (if it has one). In the case that the format cannot be determined, a :exc:`PiCameraValueError` will be raised. If *format* is not ``None``, it must be a string specifying the format that you want the image output in. The format can be a MIME-type or one of the following strings: * ``'jpeg'`` - Write a JPEG file * ``'png'`` - Write a PNG file * ``'gif'`` - Write a GIF file * ``'bmp'`` - Write a Windows bitmap file * ``'yuv'`` - Write the raw image data to a file in YUV420 format * ``'rgb'`` - Write the raw image data to a file in 24-bit RGB format * ``'rgba'`` - Write the raw image data to a file in 32-bit RGBA format * ``'bgr'`` - Write the raw image data to a file in 24-bit BGR format * ``'bgra'`` - Write the raw image data to a file in 32-bit BGRA format * ``'raw'`` - Deprecated option for raw captures; the format is taken from the deprecated :attr:`raw_format` attribute The *use_video_port* parameter controls whether the camera's image or video port is used to capture images. It defaults to ``False`` which means that the camera's image port is used. This port is slow but produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to ``True``. When *use_video_port* is ``True``, the *splitter_port* parameter specifies the port of the video splitter that the image encoder will be attached to. This defaults to ``0`` and most users will have no need to specify anything different. This parameter is ignored when *use_video_port* is ``False``. See :ref:`mmal` for more information about the video splitter. If *resize* is not ``None`` (the default), it must be a two-element tuple specifying the width and height that the image should be resized to. .. warning:: If *resize* is specified, or *use_video_port* is ``True``, Exif metadata will **not** be included in JPEG output. This is due to an underlying firmware limitation. Certain file formats accept additional options which can be specified as keyword arguments. Currently, only the ``'jpeg'`` encoder accepts additional options, which are: * *quality* - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to 85. Please note that JPEG quality is not a percentage and `definitions of quality`_ vary widely. * *restart* - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual restart interval used will be a multiple of the number of MCUs per row in the resulting image. * *thumbnail* - Defines the size and quality of the thumbnail to embed in the Exif metadata. Specifying ``None`` disables thumbnail generation. Otherwise, specify a tuple of ``(width, height, quality)``. Defaults to ``(64, 48, 35)``. * *bayer* - If ``True``, the raw bayer data from the camera's sensor is included in the Exif metadata. .. note:: The so-called "raw" formats listed above (``'yuv'``, ``'rgb'``, etc.) do not represent the raw bayer data from the camera's sensor. Rather they provide access to the image data after GPU processing, but before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the *bayer* parameter described above. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added, and *bayer* was added as an option for the ``'jpeg'`` format .. versionchanged:: 1.11 Support for buffer outputs was added. .. _definitions of quality: http://photo.net/learn/jpeg/#qual """ if format == 'raw': warnings.warn( PiCameraDeprecated( 'The "raw" format option is deprecated; specify the ' 'required format directly instead ("yuv", "rgb", etc.)')) if use_video_port and bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') if 'burst' in options: raise PiCameraValueError( 'burst is only valid with capture_sequence or capture_continuous') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) # Wait for the callback to set the event indicating the end of # image capture if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_sequence( self, outputs, format='jpeg', use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture a sequence of consecutive images from the camera. This method accepts a sequence or iterator of *outputs* each of which must either be a string specifying a filename for output, or a file-like object with a ``write`` method, or a writeable buffer object. For each item in the sequence or iterator of outputs, the camera captures a single image as fast as it can. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`, but *format* defaults to ``'jpeg'``. The format is **not** derived from the filenames in *outputs* by this method. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 3 consecutive images:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image1.jpg', 'image2.jpg', 'image3.jpg', ]) camera.stop_preview() If you wish to capture a large number of images, a list comprehension or generator expression can be used to construct the list of filenames to use:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture_sequence([ 'image%02d.jpg' % i for i in range(100) ]) camera.stop_preview() More complex effects can be obtained by using a generator function to provide the filenames or output objects. .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format('', format) if use_video_port: encoder = self._get_images_encoder( camera_port, output_port, format, resize, **options) self._encoders[splitter_port] = encoder else: encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) try: if use_video_port: encoder.start(outputs) encoder.wait() else: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: for output in outputs: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] def capture_continuous( self, output, format=None, use_video_port=False, resize=None, splitter_port=0, burst=False, bayer=False, **options): """ Capture images continuously from the camera as an infinite iterator. This method returns an infinite iterator of images captured continuously from the camera. If *output* is a string, each captured image is stored in a file named after *output* after substitution of two values with the :meth:`~str.format` method. Those two values are: * ``{counter}`` - a simple incrementor that starts at 1 and increases by 1 for each image taken * ``{timestamp}`` - a :class:`~datetime.datetime` instance The table below contains several example values of *output* and the sequence of filenames those values could produce: .. tabularcolumns:: |p{80mm}|p{40mm}|p{10mm}| +--------------------------------------------+--------------------------------------------+-------+ | *output* Value | Filenames | Notes | +============================================+============================================+=======+ | ``'image{counter}.jpg'`` | image1.jpg, image2.jpg, image3.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{counter:02d}.jpg'`` | image01.jpg, image02.jpg, image03.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp}.jpg'`` | image2013-10-05 12:07:12.346743.jpg, | (1) | | | image2013-10-05 12:07:32.498539, ... | | +--------------------------------------------+--------------------------------------------+-------+ | ``'image{timestamp:%H-%M-%S-%f}.jpg'`` | image12-10-02-561527.jpg, | | | | image12-10-14-905398.jpg | | +--------------------------------------------+--------------------------------------------+-------+ | ``'{timestamp:%H%M%S}-{counter:03d}.jpg'`` | 121002-001.jpg, 121013-002.jpg, | (2) | | | 121014-003.jpg, ... | | +--------------------------------------------+--------------------------------------------+-------+ 1. Note that because timestamp's default output includes colons (:), the resulting filenames are not suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly recommended you always specify a format when using ``{timestamp}``. 2. You can use both ``{timestamp}`` and ``{counter}`` in a single format string (multiple times too!) although this tends to be redundant. If *output* is not a string, but has a ``write`` method, it is assumed to be a file-like object and each image is simply written to this object sequentially. In this case you will likely either want to write something to the object between the images to distinguish them, or clear the object between iterations. If *output* is not a string, and has no ``write`` method, it is assumed to be a writeable object supporting the buffer protocol; each image is simply written to the buffer sequentially. The *format*, *use_video_port*, *splitter_port*, *resize*, and *options* parameters are the same as in :meth:`capture`. If *use_video_port* is ``False`` (the default), the *burst* parameter can be used to make still port captures faster. Specifically, this prevents the preview from switching resolutions between captures which significantly speeds up consecutive captures from the still port. The downside is that this mode is currently has several bugs; the major issue is that if captures are performed too quickly some frames will come back severely underexposed. It is recommended that users avoid the *burst* parameter unless they absolutely require it and are prepared to work around such issues. For example, to capture 60 images with a one second delay between them, writing the output to a series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:: import time import picamera with picamera.PiCamera() as camera: camera.start_preview() try: for i, filename in enumerate( camera.capture_continuous('image{counter:02d}.jpg')): print(filename) time.sleep(1) if i == 59: break finally: camera.stop_preview() Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some processing on each stream until some condition is satisfied:: import io import time import picamera with picamera.PiCamera() as camera: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='jpeg'): # Truncate the stream to the current position (in case # prior iterations output a longer image) stream.truncate() stream.seek(0) if process(stream): break .. versionchanged:: 1.0 The *resize* parameter was added, and raw capture formats can now be specified directly .. versionchanged:: 1.3 The *splitter_port* parameter was added .. versionchanged:: 1.11 Support for buffer outputs was added. """ if use_video_port: if burst: raise PiCameraValueError( 'burst is only valid with still port captures') if bayer: raise PiCameraValueError( 'bayer is only valid with still port captures') with self._encoders_lock: camera_port, output_port = self._get_ports(use_video_port, splitter_port) format = self._get_image_format(output, format) encoder = self._get_image_encoder( camera_port, output_port, format, resize, **options) if use_video_port: self._encoders[splitter_port] = encoder try: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = True try: if isinstance(output, bytes): # If we're fed a bytes string, assume it's UTF-8 encoded # and convert it to Unicode. Technically this is wrong # (file-systems use all sorts of encodings), but UTF-8 is a # reasonable default and this keeps compatibility with # Python 2 simple although it breaks the edge cases of # non-UTF-8 encoded bytes strings with non-UTF-8 encoded # file-systems output = output.decode('utf-8') if isinstance(output, str): counter = 1 while True: filename = output.format( counter=counter, timestamp=datetime.datetime.now(), ) if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(filename) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield filename counter += 1 else: while True: if bayer: camera_port.params[mmal.MMAL_PARAMETER_ENABLE_RAW_CAPTURE] = True encoder.start(output) if not encoder.wait(self.CAPTURE_TIMEOUT): raise PiCameraRuntimeError( 'Timed out waiting for capture to end') yield output finally: if burst: camera_port.params[mmal.MMAL_PARAMETER_CAMERA_BURST_CAPTURE] = False finally: encoder.close() with self._encoders_lock: if use_video_port: del self._encoders[splitter_port] @property def closed(self): """ Returns ``True`` if the :meth:`close` method has been called. """ return not self._camera @property def recording(self): """ Returns ``True`` if the :meth:`start_recording` method has been called, and no :meth:`stop_recording` call has been made yet. """ return any( isinstance(e, PiVideoEncoder) and e.active for e in self._encoders.values() ) @property def previewing(self): """ Returns ``True`` if the :meth:`start_preview` method has been called, and no :meth:`stop_preview` call has been made yet. .. deprecated:: 1.8 Test whether :attr:`preview` is ``None`` instead. """ warnings.warn( PiCameraDeprecated( 'PiCamera.previewing is deprecated; test PiCamera.preview ' 'is not None instead')) return isinstance(self._preview, PiPreviewRenderer) @property def revision(self): """ Returns a string representing the revision of the Pi's camera module. At the time of writing, the string returned is 'ov5647' for the V1 module, and 'imx219' for the V2 module. """ return self._revision @property def exif_tags(self): """ Holds a mapping of the Exif tags to apply to captured images. .. note:: Please note that Exif tagging is only supported with the ``jpeg`` format. By default several Exif tags are automatically applied to any images taken with the :meth:`capture` method: ``IFD0.Make`` (which is set to ``RaspberryPi``), ``IFD0.Model`` (which is set to ``RP_OV5647``), and three timestamp tags: ``IFD0.DateTime``, ``EXIF.DateTimeOriginal``, and ``EXIF.DateTimeDigitized`` which are all set to the current date and time just before the picture is taken. If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries to the exif_tags map before calling :meth:`capture`. For example:: camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries' The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII characters will cause an encoding error to be raised when :meth:`capture` is called. If you wish to set binary values, use a :func:`bytes` value:: camera.exif_tags['EXIF.UserComment'] = b'Something containing\\x00NULL characters' .. warning:: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug. You may also specify datetime values, integer, or float values, all of which will be converted to appropriate ASCII strings (datetime values are formatted as ``YYYY:MM:DD HH:MM:SS`` in accordance with the Exif standard). The currently supported Exif tags are: +-------+-------------------------------------------------------------+ | Group | Tags | +=======+=============================================================+ | IFD0, | ImageWidth, ImageLength, BitsPerSample, Compression, | | IFD1 | PhotometricInterpretation, ImageDescription, Make, Model, | | | StripOffsets, Orientation, SamplesPerPixel, RowsPerString, | | | StripByteCounts, Xresolution, Yresolution, | | | PlanarConfiguration, ResolutionUnit, TransferFunction, | | | Software, DateTime, Artist, WhitePoint, | | | PrimaryChromaticities, JPEGInterchangeFormat, | | | JPEGInterchangeFormatLength, YcbCrCoefficients, | | | YcbCrSubSampling, YcbCrPositioning, ReferenceBlackWhite, | | | Copyright | +-------+-------------------------------------------------------------+ | EXIF | ExposureTime, FNumber, ExposureProgram, | | | SpectralSensitivity, ISOSpeedRatings, OECF, ExifVersion, | | | DateTimeOriginal, DateTimeDigitized, | | | ComponentsConfiguration, CompressedBitsPerPixel, | | | ShutterSpeedValue, ApertureValue, BrightnessValue, | | | ExposureBiasValue, MaxApertureValue, SubjectDistance, | | | MeteringMode, LightSource, Flash, FocalLength, SubjectArea, | | | MakerNote, UserComment, SubSecTime, SubSecTimeOriginal, | | | SubSecTimeDigitized, FlashpixVersion, ColorSpace, | | | PixelXDimension, PixelYDimension, RelatedSoundFile, | | | FlashEnergy, SpacialFrequencyResponse, | | | FocalPlaneXResolution, FocalPlaneYResolution, | | | FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, | | | SensingMethod, FileSource, SceneType, CFAPattern, | | | CustomRendered, ExposureMode, WhiteBalance, | | | DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, | | | GainControl, Contrast, Saturation, Sharpness, | | | DeviceSettingDescription, SubjectDistanceRange, | | | ImageUniqueID | +-------+-------------------------------------------------------------+ | GPS | GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, | | | GPSLongitude, GPSAltitudeRef, GPSAltitude, GPSTimeStamp, | | | GPSSatellites, GPSStatus, GPSMeasureMode, GPSDOP, | | | GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, | | | GPSImgDirectionRef, GPSImgDirection, GPSMapDatum, | | | GPSDestLatitudeRef, GPSDestLatitude, GPSDestLongitudeRef, | | | GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, | | | GPSDestDistanceRef, GPSDestDistance, GPSProcessingMethod, | | | GPSAreaInformation, GPSDateStamp, GPSDifferential | +-------+-------------------------------------------------------------+ | EINT | InteroperabilityIndex, InteroperabilityVersion, | | | RelatedImageFileFormat, RelatedImageWidth, | | | RelatedImageLength | +-------+-------------------------------------------------------------+ """ return self._exif_tags def _set_led(self, value): if not self._used_led: self._init_led() if not GPIO: raise PiCameraRuntimeError( "GPIO library not found, or not accessible; please install " "RPi.GPIO and run the script as root") GPIO.output(self._led_pin, bool(value)) led = property(None, _set_led, doc=""" Sets the state of the camera's LED via GPIO. If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has the necessary privileges (typically this means running as root via sudo), this property can be used to set the state of the camera's LED as a boolean value (``True`` is on, ``False`` is off). .. note:: This is a write-only property. While it can be used to control the camera's LED, you cannot query the state of the camera's LED using this property. .. note:: At present, the camera's LED cannot be controlled on the Pi 3 (the GPIOs used to control the camera LED were re-routed to GPIO expander on the Pi 3). .. warning:: There are circumstances in which the camera firmware may override an existing LED setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2 timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times, you may prefer to use the ``disable_camera_led`` option in `config.txt`_ (this has the added advantage that sudo privileges and GPIO access are not required, at least for LED control). .. _config.txt: https://www.raspberrypi.org/documentation/configuration/config-txt.md """) def _get_raw_format(self): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) return self._raw_format def _set_raw_format(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.raw_format is deprecated; use required format ' 'directly with capture methods instead')) if value not in self.RAW_FORMATS: raise PiCameraValueError("Invalid raw format: %s" % value) self._raw_format = value raw_format = property(_get_raw_format, _set_raw_format, doc=""" Retrieves or sets the raw format of the camera's ports. .. deprecated:: 1.0 Please use ``'yuv'`` or ``'rgb'`` directly as a format in the various capture methods instead. """) def _get_timestamp(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME] timestamp = property(_get_timestamp, doc=""" Retrieves the system time according to the camera firmware. The camera's timestamp is a 64-bit integer representing the number of microseconds since the last system boot. When the camera's :attr:`clock_mode` is ``'raw'`` the values returned by this attribute are comparable to those from the :attr:`frame` :attr:`~PiVideoFrame.timestamp` attribute. """) def _get_frame(self): self._check_camera_open() for e in self._encoders.values(): try: return e.frame except AttributeError: pass raise PiCameraRuntimeError( "Cannot query frame information when camera is not recording") frame = property(_get_frame, doc=""" Retrieves information about the current frame recorded from the camera. When video recording is active (after a call to :meth:`start_recording`), this attribute will return a :class:`PiVideoFrame` tuple containing information about the current frame that the camera is recording. If multiple video recordings are currently in progress (after multiple calls to :meth:`start_recording` with different values for the ``splitter_port`` parameter), which encoder's frame information is returned is arbitrary. If you require information from a specific encoder, you will need to extract it from :attr:`_encoders` explicitly. Querying this property when the camera is not recording will result in an exception. .. note:: There is a small window of time when querying this attribute will return ``None`` after calling :meth:`start_recording`. If this attribute returns ``None``, this means that the video encoder has been initialized, but the camera has not yet returned any frames. """) def _disable_camera(self): """ An internal method for disabling the camera, e.g. for re-configuration. This disables the splitter and preview connections (if they exist). """ self._splitter.connection.disable() self._preview.renderer.connection.disable() self._camera.disable() def _enable_camera(self): """ An internal method for enabling the camera after re-configuration. This ensures the splitter configuration is consistent, then re-enables the camera along with the splitter and preview connections. """ self._camera.enable() self._preview.renderer.connection.enable() self._splitter.connection.enable() def _configure_splitter(self): """ Ensures all splitter output ports have a sensible format (I420) and buffer sizes. This method is used to ensure the splitter configuration is sane, typically after :meth:`_configure_camera` is called. """ self._splitter.inputs[0].copy_from(self._camera.outputs[self.CAMERA_VIDEO_PORT]) self._splitter.inputs[0].commit() def _control_callback(self, port, buf): try: if buf.command == mmal.MMAL_EVENT_ERROR: raise PiCameraRuntimeError( "No data recevied from sensor. Check all connections, " "including the SUNNY chip on the camera board") elif buf.command != mmal.MMAL_EVENT_PARAMETER_CHANGED: raise PiCameraRuntimeError( "Received unexpected camera control callback event, 0x%08x" % buf[0].cmd) except Exception as exc: # Pass the exception to the main thread; next time # check_camera_open() is called this will get raised self._camera_exception = exc def _configure_camera( self, sensor_mode, framerate, resolution, clock_mode, old_sensor_mode=0): """ An internal method for setting a new camera mode, framerate, resolution, and/or clock_mode. This method is used by the setters of the :attr:`resolution`, :attr:`framerate`, and :attr:`sensor_mode` properties. It assumes the camera is currently disabled. The *old_mode* and *new_mode* arguments are required to ensure correct operation on older firmwares (specifically that we don't try to set the sensor mode when both old and new modes are 0 or automatic). """ old_cc = mmal.MMAL_PARAMETER_CAMERA_CONFIG_T.from_buffer_copy(self._camera_config) old_ports = [ (port.framesize, port.framerate, port.params[mmal.MMAL_PARAMETER_FPS_RANGE]) for port in self._camera.outputs ] if old_sensor_mode != 0 or sensor_mode != 0: self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] = sensor_mode if not self._camera.control.enabled: # Initial setup self._camera.control.enable(self._control_callback) preview_resolution = resolution elif ( self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize == self._camera.outputs[self.CAMERA_VIDEO_PORT].framesize ): preview_resolution = resolution else: preview_resolution = self._camera.outputs[self.CAMERA_PREVIEW_PORT].framesize try: try: fps_low, fps_high = framerate except TypeError: fps_low = fps_high = framerate else: framerate = 0 fps_range = mmal.MMAL_PARAMETER_FPS_RANGE_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_FPS_RANGE, ct.sizeof(mmal.MMAL_PARAMETER_FPS_RANGE_T) ), fps_low=mo.to_rational(fps_low), fps_high=mo.to_rational(fps_high), ) cc = self._camera_config cc.max_stills_w = resolution.width cc.max_stills_h = resolution.height cc.stills_yuv422 = 0 cc.one_shot_stills = 1 cc.max_preview_video_w = resolution.width cc.max_preview_video_h = resolution.height cc.num_preview_video_frames = max(3, fps_high // 10) cc.stills_capture_circular_buffer_height = 0 cc.fast_preview_resume = 0 cc.use_stc_timestamp = clock_mode self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = cc # Clamp preview resolution to camera's resolution if ( preview_resolution.width > resolution.width or preview_resolution.height > resolution.height ): preview_resolution = resolution for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range if port.index == self.CAMERA_PREVIEW_PORT: port.framesize = preview_resolution else: port.framesize = resolution port.framerate = framerate port.commit() except: # If anything goes wrong, restore original resolution and # framerate otherwise the camera can be left in unusual states # (camera config not matching ports, etc). self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CONFIG] = old_cc self._camera_config = old_cc for port, (res, fps, fps_range) in zip(self._camera.outputs, old_ports): port.framesize = res port.framerate = fps port.params[mmal.MMAL_PARAMETER_FPS_RANGE] = fps_range port.commit() raise def _get_framerate(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return mo.PiCameraFraction(self._camera.outputs[port_num].framerate) def _set_framerate(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_fraction(value, den_limit=256) if not (0 < value <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid framerate: %.2ffps" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=value, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate = property(_get_framerate, _set_framerate, doc="""\ Retrieves or sets the framerate at which video-port based image captures, video recordings, and previews will run. When queried, the :attr:`framerate` property returns the rate at which the camera's video and preview ports will operate as a :class:`~fractions.Fraction` instance (which can be easily converted to an :class:`int` or :class:`float`). If :attr:`framerate_range` has been set, then :attr:`framerate` will be 0 which indicates that a dynamic range of framerates is being used. .. note:: For backwards compatibility, a derivative of the :class:`~fractions.Fraction` class is actually used which permits the value to be treated as a tuple of ``(numerator, denominator)``. Setting and retrieving framerate as a ``(numerator, denominator)`` tuple is deprecated and will be removed in 2.0. Please use a :class:`~fractions.Fraction` instance instead (which is just as accurate and also permits direct use with math operators). When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate. Setting this property implicitly sets :attr:`framerate_range` so that the low and high values are equal to the new framerate. The framerate can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction`, or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate = 30 camera.framerate = 30 / 1 camera.framerate = Fraction(30, 1) camera.framerate = (30, 1) # deprecated The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`resolution`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *framerate* parameter in the :class:`PiCamera` constructor, and will default to 30 if not specified. """) def _get_sensor_mode(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_CUSTOM_SENSOR_CONFIG] def _set_sensor_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: if not (0 <= value <= 7): raise PiCameraValueError( "Invalid sensor mode: %d (valid range 0..7)" % value) except TypeError: raise PiCameraValueError("Invalid sensor mode: %s" % value) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( old_sensor_mode=sensor_mode, sensor_mode=value, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() sensor_mode = property(_get_sensor_mode, _set_sensor_mode, doc="""\ Retrieves or sets the input mode of the camera's sensor. This is an advanced property which can be used to control the camera's sensor mode. By default, mode 0 is used which allows the camera to automatically select an input mode based on the requested :attr:`resolution` and :attr:`framerate`. Valid values are currently between 0 and 7. The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed in the :ref:`camera_modes` section of the documentation. .. note:: At the time of writing, setting this property does nothing unless the camera has been initialized with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the property twice (in a row). This appears to be a firmware limitation. The initial value of this property can be specified with the *sensor_mode* parameter in the :class:`PiCamera` constructor, and will default to 0 if not specified. .. versionadded:: 1.9 """) def _get_clock_mode(self): self._check_camera_open() return self._CLOCK_MODES_R[self._camera_config.use_stc_timestamp] def _set_clock_mode(self, value): self._check_camera_open() self._check_recording_stopped() try: clock_mode = self.CLOCK_MODES[value] except KeyError: raise PiCameraValueError("Invalid clock mode %s" % value) sensor_mode = self.sensor_mode framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() clock_mode = property(_get_clock_mode, _set_clock_mode, doc="""\ Retrieves or sets the mode of the camera's clock. This is an advanced property which can be used to control the nature of the frame timestamps available from the :attr:`frame` property. When this is "reset" (the default) each frame's timestamp will be relative to the start of the recording. When this is "raw", each frame's timestamp will be relative to the last initialization of the camera. The initial value of this property can be specified with the *clock_mode* parameter in the :class:`PiCamera` constructor, and will default to "reset" if not specified. .. versionadded:: 1.11 """) def _get_resolution(self): self._check_camera_open() return mo.PiResolution( int(self._camera_config.max_stills_w), int(self._camera_config.max_stills_h) ) def _set_resolution(self, value): self._check_camera_open() self._check_recording_stopped() value = mo.to_resolution(value) if not ( (0 < value.width <= self.MAX_RESOLUTION.width) and (0 < value.height <= self.MAX_RESOLUTION.height)): raise PiCameraValueError( "Invalid resolution requested: %r" % (value,)) sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] framerate = Fraction(self.framerate) if framerate == 0: framerate = self.framerate_range self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=framerate, resolution=value, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() resolution = property(_get_resolution, _set_resolution, doc=""" Retrieves or sets the resolution at which image captures, video recordings, and previews will be captured. When queried, the :attr:`resolution` property returns the resolution at which the camera will operate as a tuple of ``(width, height)`` measured in pixels. This is the resolution that the :meth:`capture` method will produce images at, and the resolution that :meth:`start_recording` will produce videos at. When set, the property configures the camera so that the next call to these methods will use the new resolution. The resolution can be specified as a ``(width, height)`` tuple, as a string formatted ``'WIDTHxHEIGHT'``, or as a string containing a commonly recognized `display resolution`_ name (e.g. "VGA", "HD", "1080p", etc). For example, the following definitions are all equivalent:: camera.resolution = (1280, 720) camera.resolution = '1280x720' camera.resolution = '1280 x 720' camera.resolution = 'HD' camera.resolution = '720p' The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, in combination with :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. The initial value of this property can be specified with the *resolution* parameter in the :class:`PiCamera` constructor, and will default to the display's resolution or 1280x720 if the display has been disabled (with ``tvservice -o``). .. versionchanged:: 1.11 Resolution permitted to be set as a string. Preview resolution added as separate property. .. _display resolution: https://en.wikipedia.org/wiki/Graphics_display_resolution """) def _get_framerate_range(self): self._check_camera_open() port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) mp = self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FPS_RANGE] return mo.PiFramerateRange( mo.to_fraction(mp.fps_low), mo.to_fraction(mp.fps_high)) def _set_framerate_range(self, value): self._check_camera_open() self._check_recording_stopped() low, high = value low = mo.to_fraction(low, den_limit=256) high = mo.to_fraction(high, den_limit=256) if not (0 < low <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid low framerate: %.2ffps" % low) if not (0 < high <= self.MAX_FRAMERATE): raise PiCameraValueError("Invalid high framerate: %.2ffps" % high) if high < low: raise PiCameraValueError("framerate_range is backwards") sensor_mode = self.sensor_mode clock_mode = self.CLOCK_MODES[self.clock_mode] resolution = self.resolution self._disable_camera() self._configure_camera( sensor_mode=sensor_mode, framerate=(low, high), resolution=resolution, clock_mode=clock_mode) self._configure_splitter() self._enable_camera() framerate_range = property(_get_framerate_range, _set_framerate_range, doc="""\ Retrieves or sets a range between which the camera's framerate is allowed to float. When queried, the :attr:`framerate_range` property returns a :func:`~collections.namedtuple` derivative with ``low`` and ``high`` components (index 0 and 1 respectively) which specify the limits of the permitted framerate range. When set, the property configures the camera so that the next call to recording and previewing methods will use the new framerate range. Setting this property will implicitly set the :attr:`framerate` property to 0 (indicating that a dynamic range of framerates is in use by the camera). .. note:: Use of this property prevents use of :attr:`framerate_delta` (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). The low and high framerates can be specified as :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, or :class:`~fractions.Fraction` values. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_range = (0.16666, 30) camera.framerate_range = (Fraction(1, 6), 30 / 1) camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) The camera must not be closed, and no recording must be active when the property is set. .. note:: This attribute, like :attr:`framerate`, determines the mode that the camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by this property. See :attr:`sensor_mode` for more information. .. versionadded:: 1.13 """) def _get_framerate_delta(self): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') port_num = ( self.CAMERA_VIDEO_PORT if self._encoders else self.CAMERA_PREVIEW_PORT ) return self._camera.outputs[port_num].params[mmal.MMAL_PARAMETER_FRAME_RATE] - self.framerate def _set_framerate_delta(self, value): self._check_camera_open() if self.framerate == 0: raise PiCameraValueError( 'framerate_delta cannot be used with framerate_range') value = mo.to_fraction(self.framerate + value, den_limit=256) self._camera.outputs[self.CAMERA_PREVIEW_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value self._camera.outputs[self.CAMERA_VIDEO_PORT].params[mmal.MMAL_PARAMETER_FRAME_RATE] = value framerate_delta = property(_get_framerate_delta, _set_framerate_delta, doc="""\ Retrieves or sets a fractional amount that is added to the camera's framerate for the purpose of minor framerate adjustments. When queried, the :attr:`framerate_delta` property returns the amount that the camera's :attr:`framerate` has been adjusted. This defaults to 0 (so the camera's framerate is the actual framerate used). When set, the property adjusts the camera's framerate on the fly. The property can be set while recordings or previews are in progress. Thus the framerate used by the camera is actually :attr:`framerate` + :attr:`framerate_delta`. .. note:: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible (finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to achieve synchronization between the camera framerate and other devices. If the new framerate demands a mode switch (such as moving between a low framerate and a high framerate mode), currently active recordings may drop a frame. This should only happen when specifying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps). The framerate delta can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>`, :class:`~fractions.Fraction` or a ``(numerator, denominator)`` tuple. For example, the following definitions are all equivalent:: from fractions import Fraction camera.framerate_delta = 0.5 camera.framerate_delta = 1 / 2 # in python 3 camera.framerate_delta = Fraction(1, 2) camera.framerate_delta = (1, 2) # deprecated .. note:: This property is implicitly reset to 0 when :attr:`framerate` or :attr:`framerate_range` is set. When :attr:`framerate` is 0 (indicating that :attr:`framerate_range` is set), this property cannot be used. (there would be little point in making fractional adjustments to the framerate when the framerate itself is variable). .. versionadded:: 1.11 """) def _get_still_stats(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] def _set_still_stats(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_CAPTURE_STATS_PASS] = value still_stats = property(_get_still_stats, _set_still_stats, doc="""\ Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame. When queried, the :attr:`still_stats` property returns a boolean value indicating when scene statistics will be calculated for still captures (that is, captures where the *use_video_port* parameter of :meth:`capture` is ``False``). When this property is ``False`` (the default), statistics will be calculated from the preceding preview frame (this also applies when the preview is not visible). When `True`, statistics will be calculated from the captured image itself. When set, the propetry controls when scene statistics will be calculated for still captures. The property can be set while recordings or previews are in progress. The default value is ``False``. The advantages to calculating scene statistics from the captured image are that time between startup and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is that processing time for captures increases and that white balance and gain won't necessarily match the preview. .. warning:: Enabling the still statistics pass will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.9 """) def _get_saturation(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] * 100) def _set_saturation(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid saturation value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SATURATION] = Fraction(value, 100) saturation = property(_get_saturation, _set_saturation, doc="""\ Retrieves or sets the saturation setting of the camera. When queried, the :attr:`saturation` property returns the color saturation of the camera as an integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_sharpness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] * 100) def _set_sharpness(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid sharpness value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_SHARPNESS] = Fraction(value, 100) sharpness = property(_get_sharpness, _set_sharpness, doc="""\ Retrieves or sets the sharpness setting of the camera. When queried, the :attr:`sharpness` property returns the sharpness level of the camera (a measure of the amount of post-processing to reduce or increase image sharpness) as an integer between -100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_contrast(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] * 100) def _set_contrast(self, value): self._check_camera_open() if not (-100 <= value <= 100): raise PiCameraValueError( "Invalid contrast value: %d (valid range -100..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_CONTRAST] = Fraction(value, 100) contrast = property(_get_contrast, _set_contrast, doc="""\ Retrieves or sets the contrast setting of the camera. When queried, the :attr:`contrast` property returns the contrast level of the camera as an integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can be adjusted while previews or recordings are in progress. The default value is 0. """) def _get_brightness(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] * 100) def _set_brightness(self, value): self._check_camera_open() if not (0 <= value <= 100): raise PiCameraValueError( "Invalid brightness value: %d (valid range 0..100)" % value) self._camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = Fraction(value, 100) brightness = property(_get_brightness, _set_brightness, doc="""\ Retrieves or sets the brightness setting of the camera. When queried, the :attr:`brightness` property returns the brightness level of the camera as an integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness can be adjusted while previews or recordings are in progress. The default value is 50. """) def _get_shutter_speed(self): self._check_camera_open() return int(self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED]) def _set_shutter_speed(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_SHUTTER_SPEED] = value shutter_speed = property(_get_shutter_speed, _set_shutter_speed, doc="""\ Retrieves or sets the shutter speed of the camera in microseconds. When queried, the :attr:`shutter_speed` property returns the shutter speed of the camera in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice versa. When set, the property adjusts the shutter speed of the camera, which most obviously affects the illumination of subsequently captured images. Shutter speed can be adjusted while previews or recordings are running. The default value is 0 (auto). .. note:: You can query the :attr:`exposure_speed` attribute to determine the actual shutter speed being used when this attribute is set to 0. Please note that this capability requires an up to date firmware (#692 or later). .. note:: In later firmwares, this attribute is limited by the value of the :attr:`framerate` attribute. For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps). """) def _get_exposure_speed(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].exposure exposure_speed = property(_get_exposure_speed, doc="""\ Retrieves the current shutter speed of the camera. When queried, this property returns the shutter speed currently being used by the camera. If you have set :attr:`shutter_speed` to a non-zero value, then :attr:`exposure_speed` and :attr:`shutter_speed` should be equal. However, if :attr:`shutter_speed` is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. The value is returned as an integer representing a number of microseconds. This is a read-only property. .. versionadded:: 1.6 """) def _get_analog_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].analog_gain) analog_gain = property(_get_analog_gain, doc="""\ Retrieves the current analog gain of the camera. When queried, this property returns the analog gain currently being used by the camera. The value represents the analog gain of the sensor prior to digital conversion. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_digital_gain(self): self._check_camera_open() return mo.to_fraction( self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS].digital_gain) digital_gain = property(_get_digital_gain, doc="""\ Retrieves the current digital gain of the camera. When queried, this property returns the digital gain currently being used by the camera. The value represents the digital gain the camera applies after conversion of the sensor's analog output. The value is returned as a :class:`~fractions.Fraction` instance. .. versionadded:: 1.6 """) def _get_video_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] def _set_video_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_DENOISE] = value video_denoise = property(_get_video_denoise, _set_video_denoise, doc="""\ Retrieves or sets whether denoise will be applied to video recordings. When queried, the :attr:`video_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to video recordings. When set, the property activates or deactivates the denoise algorithm for video recordings. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_image_denoise(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] def _set_image_denoise(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_STILLS_DENOISE] = value image_denoise = property(_get_image_denoise, _set_image_denoise, doc="""\ Retrieves or sets whether denoise will be applied to image captures. When queried, the :attr:`image_denoise` property returns a boolean value indicating whether or not the camera software will apply a denoise algorithm to image captures. When set, the property activates or deactivates the denoise algorithm for image captures. The property can be set while recordings or previews are in progress. The default value is ``True``. .. versionadded:: 1.7 """) def _get_drc_strength(self): self._check_camera_open() return self._DRC_STRENGTHS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION].strength ] def _set_drc_strength(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] mp.strength = self.DRC_STRENGTHS[value] except KeyError: raise PiCameraValueError( "Invalid dynamic range compression strength: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_DYNAMIC_RANGE_COMPRESSION] = mp drc_strength = property(_get_drc_strength, _set_drc_strength, doc="""\ Retrieves or sets the dynamic range compression strength of the camera. When queried, the :attr:`drc_strength` property returns a string indicating the amount of `dynamic range compression`_ the camera applies to images. When set, the attributes adjusts the strength of the dynamic range compression applied to the camera's output. Valid values are given in the list below: {values} The default value is ``'off'``. All possible values for the attribute can be obtained from the ``PiCamera.DRC_STRENGTHS`` attribute. .. warning:: Enabling DRC will `override fixed white balance`_ gains (set via :attr:`awb_gains` and :attr:`awb_mode`). .. _dynamic range compression: https://en.wikipedia.org/wiki/Gain_compression .. _override fixed white balance: https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772 .. versionadded:: 1.6 """.format(values=docstring_values(DRC_STRENGTHS))) def _get_ISO(self): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) return self.iso def _set_ISO(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.ISO is deprecated; use PiCamera.iso instead')) self.iso = value ISO = property(_get_ISO, _set_ISO, doc=""" Retrieves or sets the apparent ISO setting of the camera. .. deprecated:: 1.8 Please use the :attr:`iso` attribute instead. """) def _get_iso(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_ISO] def _set_iso(self, value): self._check_camera_open() try: if not (0 <= value <= 1600): raise PiCameraValueError( "Invalid iso value: %d (valid range 0..800)" % value) except TypeError: raise PiCameraValueError("Invalid iso value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_ISO] = value iso = property(_get_iso, _set_iso, doc="""\ Retrieves or sets the apparent ISO setting of the camera. When queried, the :attr:`iso` property returns the ISO setting of the camera, a value which represents the `sensitivity of the camera to light`_. Lower values (e.g. 100) imply less sensitivity than higher values (e.g. 400 or 800). Lower sensitivities tend to produce less "noisy" (smoother) images, but operate poorly in low light conditions. When set, the property adjusts the sensitivity of the camera (by adjusting the :attr:`analog_gain` and :attr:`digital_gain`). Valid values are between 0 (auto) and 1600. The actual value used when iso is explicitly set will be one of the following values (whichever is closest): 100, 200, 320, 400, 500, 640, 800. On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise. On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts to produce overall gain of ~14.72 (the V2 camera module was calibrated against the `ISO film speed`_ standard). The attribute can be adjusted while previews or recordings are in progress. The default value is 0 which means automatically determine a value according to image-taking conditions. .. note:: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up to 1600) can be achieved in certain conditions with :attr:`exposure_mode` set to ``'sports'`` and :attr:`iso` set to 0. It doesn't appear to be possible to manually request an ISO setting higher than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware permits such settings in particular circumstances. .. note:: Certain :attr:`exposure_mode` values override the ISO setting. For example, ``'off'`` fixes :attr:`analog_gain` and :attr:`digital_gain` entirely, preventing this property from adjusting them when set. .. _sensitivity of the camera to light: https://en.wikipedia.org/wiki/Film_speed#Digital .. _ISO film speed: https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO """) def _get_meter_mode(self): self._check_camera_open() return self._METER_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE].value ] def _set_meter_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] mp.value = self.METER_MODES[value] except KeyError: raise PiCameraValueError("Invalid metering mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXP_METERING_MODE] = mp meter_mode = property(_get_meter_mode, _set_meter_mode, doc="""\ Retrieves or sets the metering mode of the camera. When queried, the :attr:`meter_mode` property returns the method by which the camera `determines the exposure`_ as one of the following strings: {values} When set, the property adjusts the camera's metering mode. All modes set up two regions: a center region, and an outer region. The major `difference between each mode`_ is the size of the center region. The ``'backlit'`` mode has the largest central region (30% of the width), while ``'spot'`` has the smallest (10% of the width). The property can be set while recordings or previews are in progress. The default value is ``'average'``. All possible values for the attribute can be obtained from the ``PiCamera.METER_MODES`` attribute. .. _determines the exposure: https://en.wikipedia.org/wiki/Metering_mode .. _difference between each mode: https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644 """.format(values=docstring_values(METER_MODES))) def _get_video_stabilization(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] def _set_video_stabilization(self, value): self._check_camera_open() self._camera.control.params[mmal.MMAL_PARAMETER_VIDEO_STABILISATION] = value video_stabilization = property( _get_video_stabilization, _set_video_stabilization, doc="""\ Retrieves or sets the video stabilization mode of the camera. When queried, the :attr:`video_stabilization` property returns a boolean value indicating whether or not the camera attempts to compensate for motion. When set, the property activates or deactivates video stabilization. The property can be set while recordings or previews are in progress. The default value is ``False``. .. note:: The built-in video stabilization only accounts for `vertical and horizontal motion`_, not rotation. .. _vertical and horizontal motion: https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667 """) def _get_exposure_compensation(self): self._check_camera_open() return self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] def _set_exposure_compensation(self, value): self._check_camera_open() try: if not (-25 <= value <= 25): raise PiCameraValueError( "Invalid exposure compensation value: " "%d (valid range -25..25)" % value) except TypeError: raise PiCameraValueError( "Invalid exposure compensation value: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_COMP] = value exposure_compensation = property( _get_exposure_compensation, _set_exposure_compensation, doc="""\ Retrieves or sets the exposure compensation level of the camera. When queried, the :attr:`exposure_compensation` property returns an integer value between -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images. When set, the property adjusts the camera's exposure compensation level. Each increment represents 1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set while recordings or previews are in progress. The default value is 0. """) def _get_exposure_mode(self): self._check_camera_open() return self._EXPOSURE_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE].value ] def _set_exposure_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] mp.value = self.EXPOSURE_MODES[value] except KeyError: raise PiCameraValueError("Invalid exposure mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_EXPOSURE_MODE] = mp exposure_mode = property(_get_exposure_mode, _set_exposure_mode, doc="""\ Retrieves or sets the exposure mode of the camera. When queried, the :attr:`exposure_mode` property returns a string representing the exposure setting of the camera. The possible values can be obtained from the ``PiCamera.EXPOSURE_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's exposure mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: Exposure mode ``'off'`` is special: this disables the camera's automatic gain control, fixing the values of :attr:`digital_gain` and :attr:`analog_gain`. Please note that these properties are not directly settable (although they can be influenced by setting :attr:`iso` *prior* to fixing the gains), and default to low values when the camera is first initialized. Therefore it is important to let them settle on higher values before disabling automatic gain control otherwise all frames captured will appear black. """.format(values=docstring_values(EXPOSURE_MODES))) def _get_flash_mode(self): self._check_camera_open() return self._FLASH_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_FLASH].value ] def _set_flash_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] mp.value = self.FLASH_MODES[value] except KeyError: raise PiCameraValueError("Invalid flash mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_FLASH] = mp flash_mode = property(_get_flash_mode, _set_flash_mode, doc="""\ Retrieves or sets the flash mode of the camera. When queried, the :attr:`flash_mode` property returns a string representing the flash setting of the camera. The possible values can be obtained from the ``PiCamera.FLASH_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's flash mode. The property can be set while recordings or previews are in progress. The default value is ``'off'``. .. note:: You must define which GPIO pins the camera is to use for flash and privacy indicators. This is done within the `Device Tree configuration`_ which is considered an advanced topic. Specifically, you need to define pins ``FLASH_0_ENABLE`` and optionally ``FLASH_0_INDICATOR`` (for the privacy indicator). More information can be found in this :ref:`recipe <flash_configuration>`. .. _Device Tree configuration: https://www.raspberrypi.org/documentation/configuration/pin-configuration.md .. versionadded:: 1.10 """.format(values=docstring_values(FLASH_MODES))) def _get_awb_mode(self): self._check_camera_open() return self._AWB_MODES_R[ self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE].value ] def _set_awb_mode(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] mp.value = self.AWB_MODES[value] except KeyError: raise PiCameraValueError("Invalid auto-white-balance mode: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_AWB_MODE] = mp awb_mode = property(_get_awb_mode, _set_awb_mode, doc="""\ Retrieves or sets the auto-white-balance mode of the camera. When queried, the :attr:`awb_mode` property returns a string representing the auto white balance setting of the camera. The possible values can be obtained from the ``PiCamera.AWB_MODES`` attribute, and are as follows: {values} When set, the property adjusts the camera's auto-white-balance mode. The property can be set while recordings or previews are in progress. The default value is ``'auto'``. .. note:: AWB mode ``'off'`` is special: this disables the camera's automatic white balance permitting manual control of the white balance via the :attr:`awb_gains` property. However, even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. """.format(values=docstring_values(AWB_MODES))) def _get_awb_gains(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_CAMERA_SETTINGS] return ( mo.to_fraction(mp.awb_red_gain), mo.to_fraction(mp.awb_blue_gain), ) def _set_awb_gains(self, value): self._check_camera_open() try: red_gain, blue_gain = value except (ValueError, TypeError): red_gain = blue_gain = value if not (0.0 <= red_gain <= 8.0 and 0.0 <= blue_gain <= 8.0): raise PiCameraValueError( "Invalid gain(s) in (%f, %f) (valid range: 0.0-8.0)" % ( red_gain, blue_gain)) mp = mmal.MMAL_PARAMETER_AWB_GAINS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS, ct.sizeof(mmal.MMAL_PARAMETER_AWB_GAINS_T) ), mo.to_rational(red_gain), mo.to_rational(blue_gain), ) self._camera.control.params[mmal.MMAL_PARAMETER_CUSTOM_AWB_GAINS] = mp awb_gains = property(_get_awb_gains, _set_awb_gains, doc="""\ Gets or sets the auto-white-balance gains of the camera. When queried, this attribute returns a tuple of values representing the `(red, blue)` balance of the camera. The `red` and `blue` values are returned :class:`~fractions.Fraction` instances. The values will be between 0.0 and 8.0. When set, this attribute adjusts the camera's auto-white-balance gains. The property can be specified as a single value in which case both red and blue gains will be adjusted equally, or as a `(red, blue)` tuple. Values can be specified as an :ref:`int <typesnumeric>`, :ref:`float <typesnumeric>` or :class:`~fractions.Fraction` and each gain must be between 0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while recordings or previews are in progress. .. note:: This attribute only has an effect when :attr:`awb_mode` is set to ``'off'``. Also note that even with AWB disabled, some attributes (specifically :attr:`still_stats` and :attr:`drc_strength`) can cause AWB re-calculations. .. versionchanged:: 1.6 Prior to version 1.6, this attribute was write-only. """) def _get_image_effect(self): self._check_camera_open() return self._IMAGE_EFFECTS_R[ self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT].value ] def _set_image_effect(self, value): self._check_camera_open() try: mp = self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] mp.value = self.IMAGE_EFFECTS[value] self._image_effect_params = None except KeyError: raise PiCameraValueError("Invalid image effect: %s" % value) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mp image_effect = property(_get_image_effect, _set_image_effect, doc="""\ Retrieves or sets the current image effect applied by the camera. When queried, the :attr:`image_effect` property returns a string representing the effect the camera will apply to captured video. The possible values can be obtained from the ``PiCamera.IMAGE_EFFECTS`` attribute, and are as follows: {values} When set, the property changes the effect applied by the camera. The property can be set while recordings or previews are in progress, but only certain effects work while recording video (notably ``'negative'`` and ``'solarize'``). The default value is ``'none'``. """.format(values=docstring_values(IMAGE_EFFECTS))) def _get_image_effect_params(self): self._check_camera_open() return self._image_effect_params def _set_image_effect_params(self, value): self._check_camera_open() to_int = lambda x: int(x) to_byte = lambda x: max(0, min(255, int(x))) to_bool = lambda x: (0, 1)[bool(x)] to_8dot8 = lambda x: int(x * 256) valid_transforms = { 'solarize': [ (to_bool, to_byte, to_byte, to_byte, to_byte), (to_byte, to_byte, to_byte, to_byte), (to_bool,), ], 'colorpoint': [ (lambda x: max(0, min(3, int(x))),), ], 'colorbalance': [ (to_8dot8, to_8dot8, to_8dot8, to_8dot8, to_int, to_int), (to_8dot8, to_8dot8, to_8dot8, to_8dot8), (to_8dot8, to_8dot8, to_8dot8), ], 'colorswap': [ (to_bool,), ], 'posterise': [ (lambda x: max(2, min(31, int(x))),), ], 'blur': [ (lambda x: max(1, min(2, int(x))),), ], 'film': [ (to_byte, to_byte, to_byte), ], 'watercolor': [ (), (to_byte, to_byte), ] } # Ensure params is a tuple try: params = tuple(i for i in value) except TypeError: params = (value,) # Find the parameter combination for the current effect effect = self.image_effect param_transforms = [ transforms for transforms in valid_transforms.get(effect, []) if len(transforms) == len(params) ] if not param_transforms: raise PiCameraValueError( 'invalid set of parameters for effect "%s"' % effect) param_transforms = param_transforms[0] params = tuple( transform(p) for (transform, p) in zip(param_transforms, params) ) mp = mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS, ct.sizeof(mmal.MMAL_PARAMETER_IMAGEFX_PARAMETERS_T) ), effect=self.IMAGE_EFFECTS[effect], num_effect_params=len(params), effect_parameter=params, ) self._camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT_PARAMETERS] = mp self._image_effect_params = value image_effect_params = property( _get_image_effect_params, _set_image_effect_params, doc="""\ Retrieves or sets the parameters for the current :attr:`effect <image_effect>`. When queried, the :attr:`image_effect_params` property either returns ``None`` (for effects which have no configurable parameters, or if no parameters have been configured), or a tuple of numeric values up to six elements long. When set, the property changes the parameters of the current :attr:`effect <image_effect>` as a sequence of numbers, or a single number. Attempting to set parameters on an effect which does not support parameters, or providing an incompatible set of parameters for an effect will raise a :exc:`PiCameraValueError` exception. The effects which have parameters, and what combinations those parameters can take is as follows: .. tabularcolumns:: |p{30mm}|p{25mm}|p{75mm}| +--------------------+----------------+-----------------------------------------+ | Effect | Parameters | Description | +====================+================+=========================================+ | ``'solarize'`` | *yuv*, | *yuv* controls whether data is | | | *x0*, *y1*, | processed as RGB (0) or YUV(1). Input | | | *y2*, *y3* | values from 0 to *x0* - 1 are remapped | | | | linearly onto the range 0 to *y0*. | | | | Values from *x0* to 255 are remapped | | | | linearly onto the range *y1* to *y2*. | | +----------------+-----------------------------------------+ | | *x0*, *y0*, | Same as above, but *yuv* defaults to | | | *y1*, *y2* | 0 (process as RGB). | | +----------------+-----------------------------------------+ | | *yuv* | Same as above, but *x0*, *y0*, *y1*, | | | | *y2* default to 128, 128, 128, 0 | | | | respectively. | +--------------------+----------------+-----------------------------------------+ | ``'colorpoint'`` | *quadrant* | *quadrant* specifies which quadrant | | | | of the U/V space to retain chroma | | | | from: 0=green, 1=red/yellow, 2=blue, | | | | 3=purple. There is no default; this | | | | effect does nothing until parameters | | | | are set. | +--------------------+----------------+-----------------------------------------+ | ``'colorbalance'`` | *lens*, | *lens* specifies the lens shading | | | *r*, *g*, *b*, | strength (0.0 to 256.0, where 0.0 | | | *u*, *v* | indicates lens shading has no effect). | | | | *r*, *g*, *b* are multipliers for their | | | | respective color channels (0.0 to | | | | 256.0). *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *u* are defaulted | | | *r*, *g*, *b* | to 0. | | +----------------+-----------------------------------------+ | | *lens*, | Same as above but *g* also defaults to | | | *r*, *b* | to 1.0. | +--------------------+----------------+-----------------------------------------+ | ``'colorswap'`` | *dir* | If *dir* is 0, swap RGB to BGR. If | | | | *dir* is 1, swap RGB to BRG. | +--------------------+----------------+-----------------------------------------+ | ``'posterise'`` | *steps* | Control the quantization steps for the | | | | image. Valid values are 2 to 32, and | | | | the default is 4. | +--------------------+----------------+-----------------------------------------+ | ``'blur'`` | *size* | Specifies the size of the kernel. Valid | | | | values are 1 or 2. | +--------------------+----------------+-----------------------------------------+ | ``'film'`` | *strength*, | *strength* specifies the strength of | | | *u*, *v* | effect. *u* and *v* are offsets added | | | | to the U/V plane (0 to 255). | +--------------------+----------------+-----------------------------------------+ | ``'watercolor'`` | *u*, *v* | *u* and *v* specify offsets to add to | | | | the U/V plane (0 to 255). | | +----------------+-----------------------------------------+ | | | No parameters indicates no U/V effect. | +--------------------+----------------+-----------------------------------------+ .. versionadded:: 1.8 """) def _get_color_effects(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] if mp.enable != mmal.MMAL_FALSE: return (mp.u, mp.v) else: return None def _set_color_effects(self, value): self._check_camera_open() if value is None: enable = mmal.MMAL_FALSE u = v = 128 else: enable = mmal.MMAL_TRUE try: u, v = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid color effect (u, v) tuple: %s" % value) if not ((0 <= u <= 255) and (0 <= v <= 255)): raise PiCameraValueError( "(u, v) values must be between 0 and 255") mp = mmal.MMAL_PARAMETER_COLOURFX_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_COLOUR_EFFECT, ct.sizeof(mmal.MMAL_PARAMETER_COLOURFX_T) ), enable, u, v ) self._camera.control.params[mmal.MMAL_PARAMETER_COLOUR_EFFECT] = mp color_effects = property(_get_color_effects, _set_color_effects, doc="""\ Retrieves or sets the current color effect applied by the camera. When queried, the :attr:`color_effects` property either returns ``None`` which indicates that the camera is using normal color settings, or a ``(u, v)`` tuple where ``u`` and ``v`` are integer values between 0 and 255. When set, the property changes the color effect applied by the camera. The property can be set while recordings or previews are in progress. For example, to make the image black and white set the value to ``(128, 128)``. The default value is ``None``. """) def _get_rotation(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_ROTATION] def _set_rotation(self, value): self._check_camera_open() try: value = ((int(value) % 360) // 90) * 90 except ValueError: raise PiCameraValueError("Invalid rotation angle: %s" % value) for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_ROTATION] = value rotation = property(_get_rotation, _set_rotation, doc="""\ Retrieves or sets the current rotation of the camera's image. When queried, the :attr:`rotation` property returns the rotation applied to the image. Valid values are 0, 90, 180, and 270. When set, the property changes the rotation applied to the camera's input. The property can be set while recordings or previews are in progress. The default value is ``0``. """) def _get_vflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_VERTICAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_vflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(bool(value), self.hflip)] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value vflip = property(_get_vflip, _set_vflip, doc="""\ Retrieves or sets whether the camera's output is vertically flipped. When queried, the :attr:`vflip` property returns a boolean indicating whether or not the camera's output is vertically flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_hflip(self): self._check_camera_open() return self._camera.outputs[0].params[mmal.MMAL_PARAMETER_MIRROR] in ( mmal.MMAL_PARAM_MIRROR_HORIZONTAL, mmal.MMAL_PARAM_MIRROR_BOTH) def _set_hflip(self, value): self._check_camera_open() value = { (False, False): mmal.MMAL_PARAM_MIRROR_NONE, (True, False): mmal.MMAL_PARAM_MIRROR_VERTICAL, (False, True): mmal.MMAL_PARAM_MIRROR_HORIZONTAL, (True, True): mmal.MMAL_PARAM_MIRROR_BOTH, }[(self.vflip, bool(value))] for port in self._camera.outputs: port.params[mmal.MMAL_PARAMETER_MIRROR] = value hflip = property(_get_hflip, _set_hflip, doc="""\ Retrieves or sets whether the camera's output is horizontally flipped. When queried, the :attr:`hflip` property returns a boolean indicating whether or not the camera's output is horizontally flipped. The property can be set while recordings or previews are in progress. The default value is ``False``. """) def _get_zoom(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] return ( mp.rect.x / 65535.0, mp.rect.y / 65535.0, mp.rect.width / 65535.0, mp.rect.height / 65535.0, ) def _set_zoom(self, value): self._check_camera_open() try: x, y, w, h = value except (TypeError, ValueError) as e: raise PiCameraValueError( "Invalid zoom rectangle (x, y, w, h) tuple: %s" % value) mp = mmal.MMAL_PARAMETER_INPUT_CROP_T( mmal.MMAL_PARAMETER_HEADER_T( mmal.MMAL_PARAMETER_INPUT_CROP, ct.sizeof(mmal.MMAL_PARAMETER_INPUT_CROP_T) ), mmal.MMAL_RECT_T( max(0, min(65535, int(65535 * x))), max(0, min(65535, int(65535 * y))), max(0, min(65535, int(65535 * w))), max(0, min(65535, int(65535 * h))), ), ) self._camera.control.params[mmal.MMAL_PARAMETER_INPUT_CROP] = mp zoom = property(_get_zoom, _set_zoom, doc="""\ Retrieves or sets the zoom applied to the camera's input. When queried, the :attr:`zoom` property returns a ``(x, y, w, h)`` tuple of floating point values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also known as the "Region of Interest" or ROI). The default value is ``(0.0, 0.0, 1.0, 1.0)`` which indicates that everything should be included. The property can be set while recordings or previews are in progress. The `zoom` is applied to the processed image, after rotation and rescale. If rotation has been used, zoom is composed of ``(y, x, h, w)`` instead. The values `w` and `h` can modify the aspect ratio of the image: use equal values for `w` and `h` if you want to keep the same the aspect ratio. """) def _get_crop(self): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) return self.zoom def _set_crop(self, value): warnings.warn( PiCameraDeprecated( 'PiCamera.crop is deprecated; use PiCamera.zoom instead')) self.zoom = value crop = property(_get_crop, _set_crop, doc=""" Retrieves or sets the zoom applied to the camera's input. .. deprecated:: 1.8 Please use the :attr:`zoom` attribute instead. """) def _get_overlays(self): self._check_camera_open() return self._overlays overlays = property(_get_overlays, doc="""\ Retrieves all active :class:`PiRenderer` overlays. If no overlays are current active, :attr:`overlays` will return an empty iterable. Otherwise, it will return an iterable of :class:`PiRenderer` instances which are currently acting as overlays. Note that the preview renderer is an exception to this: it is *not* included as an overlay despite being derived from :class:`PiRenderer`. .. versionadded:: 1.8 """) def _get_preview(self): self._check_camera_open() if isinstance(self._preview, PiPreviewRenderer): return self._preview preview = property(_get_preview, doc="""\ Retrieves the :class:`PiRenderer` displaying the camera preview. If no preview is currently active, :attr:`preview` will return ``None``. Otherwise, it will return the instance of :class:`PiRenderer` which is currently connected to the camera's preview port for rendering what the camera sees. You can use the attributes of the :class:`PiRenderer` class to configure the appearance of the preview. For example, to make the preview semi-transparent:: import picamera with picamera.PiCamera() as camera: camera.start_preview() camera.preview.alpha = 128 .. versionadded:: 1.8 """) def _get_preview_alpha(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: return self.preview.alpha else: return self._preview_alpha def _set_preview_alpha(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_alpha is deprecated; use ' 'PiCamera.preview.alpha instead')) if self.preview: self.preview.alpha = value else: self._preview_alpha = value preview_alpha = property(_get_preview_alpha, _set_preview_alpha, doc="""\ Retrieves or sets the opacity of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.alpha` attribute of the :attr:`preview` object instead. """) def _get_preview_layer(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: return self.preview.layer else: return self._preview_layer def _set_preview_layer(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_layer is deprecated; ' 'use PiCamera.preview.layer instead')) if self.preview: self.preview.layer = value else: self._preview_layer = value preview_layer = property(_get_preview_layer, _set_preview_layer, doc="""\ Retrieves or sets the layer of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.layer` attribute of the :attr:`preview` object instead. """) def _get_preview_fullscreen(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: return self.preview.fullscreen else: return self._preview_fullscreen def _set_preview_fullscreen(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_fullscreen is deprecated; ' 'use PiCamera.preview.fullscreen instead')) if self.preview: self.preview.fullscreen = value else: self._preview_fullscreen = value preview_fullscreen = property( _get_preview_fullscreen, _set_preview_fullscreen, doc="""\ Retrieves or sets full-screen for the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.fullscreen` attribute of the :attr:`preview` object instead. """) def _get_preview_window(self): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: return self.preview.window else: return self._preview_window def _set_preview_window(self, value): self._check_camera_open() warnings.warn( PiCameraDeprecated( 'PiCamera.preview_window is deprecated; ' 'use PiCamera.preview.window instead')) if self.preview: self.preview.window = value else: self._preview_window = value preview_window = property( _get_preview_window, _set_preview_window, doc="""\ Retrieves or sets the size of the preview window. .. deprecated:: 1.8 Please use the :attr:`~PiRenderer.window` attribute of the :attr:`preview` object instead. """) def _get_annotate_text(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if mp.enable: return mp.text.decode('ascii') else: return '' def _set_annotate_text(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.show_frame_num) if mp.enable: try: mp.text = value.encode('ascii') except ValueError as e: raise PiCameraValueError(str(e)) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_text = property(_get_annotate_text, _set_annotate_text, doc="""\ Retrieves or sets a text annotation for all output. When queried, the :attr:`annotate_text` property returns the current annotation (if no annotation has been set, this is simply a blank string). When set, the property immediately applies the annotation to the preview (if it is running) and to any future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII characters will raise a :exc:`PiCameraValueError`. The default value is ``''``. .. versionchanged:: 1.8 Text annotations can now be 255 characters long. The prior limit was 32 characters. """) def _get_annotate_frame_num(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.show_frame_num.value != mmal.MMAL_FALSE def _set_annotate_frame_num(self, value): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.enable = bool(value or mp.text) mp.show_frame_num = bool(value) self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_frame_num = property( _get_annotate_frame_num, _set_annotate_frame_num, doc="""\ Controls whether the current frame number is drawn as an annotation. The :attr:`annotate_frame_num` attribute is a bool indicating whether or not the current frame number is rendered as an annotation, similar to :attr:`annotate_text`. The default is ``False``. .. versionadded:: 1.8 """) def _get_annotate_text_size(self): self._check_camera_open() if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] return mp.text_size or self.DEFAULT_ANNOTATE_SIZE else: return self.DEFAULT_ANNOTATE_SIZE def _set_annotate_text_size(self, value): self._check_camera_open() if not (6 <= value <= 160): raise PiCameraValueError( "Invalid annotation text size: %d (valid range 6-160)" % value) if self._camera.annotate_rev == 3: mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.text_size = value self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp elif value != self.DEFAULT_ANNOTATE_SIZE: warnings.warn( PiCameraFallback( "Firmware does not support setting annotation text " "size; using default (%d) instead" % self.DEFAULT_ANNOTATE_SIZE)) annotate_text_size = property( _get_annotate_text_size, _set_annotate_text_size, doc="""\ Controls the size of the annotation text. The :attr:`annotate_text_size` attribute is an int which determines how large the annotation text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is {size}. .. versionadded:: 1.10 """.format(size=DEFAULT_ANNOTATE_SIZE)) def _get_annotate_foreground(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3 and mp.custom_text_color: return Color.from_yuv_bytes( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V) else: return Color('white') def _set_annotate_foreground(self, value): self._check_camera_open() if not isinstance(value, Color): raise PiCameraValueError( 'annotate_foreground must be a Color') elif self._camera.annotate_rev < 3: if value.rgb_bytes != (255, 255, 255): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom foreground " "annotation color; using white instead")) return mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] mp.custom_text_color = True ( mp.custom_text_Y, mp.custom_text_U, mp.custom_text_V, ) = value.yuv_bytes self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_foreground = property( _get_annotate_foreground, _set_annotate_foreground, doc="""\ Controls the color of the annotation text. The :attr:`annotate_foreground` attribute specifies, partially, the color of the annotation text. The value is specified as a :class:`Color`. The default is white. .. note:: The underlying firmware does not directly support setting all components of the text color, only the Y' component of a `Y'UV`_ tuple. This is roughly (but not precisely) analogous to the "brightness" of a color, so you may choose to think of this as setting how bright the annotation text will be relative to its background. In order to specify just the Y' component when setting this attribute, you may choose to construct the :class:`Color` instance as follows:: camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0) .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. versionadded:: 1.10 """) def _get_annotate_background(self): self._check_camera_open() mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if mp.enable_text_background: if mp.custom_background_color: return Color.from_yuv_bytes( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V) else: return Color('black') else: return None else: if mp.black_text_background: return Color('black') else: return None def _set_annotate_background(self, value): self._check_camera_open() if value is True: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to True is ' 'deprecated; use PiCamera.color.Color("black") instead')) value = Color('black') elif value is False: warnings.warn( PiCameraDeprecated( 'Setting PiCamera.annotate_background to False is ' 'deprecated; use None instead')) value = None elif value is None: pass elif not isinstance(value, Color): raise PiCameraValueError( 'annotate_background must be a Color or None') elif self._camera.annotate_rev < 3 and value.rgb_bytes != (0, 0, 0): warnings.warn( PiCameraFallback( "Firmware does not support setting a custom background " "annotation color; using black instead")) mp = self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] if self._camera.annotate_rev == 3: if value is None: mp.enable_text_background = False else: mp.enable_text_background = True mp.custom_background_color = True ( mp.custom_background_Y, mp.custom_background_U, mp.custom_background_V, ) = value.yuv_bytes else: if value is None: mp.black_text_background = False else: mp.black_text_background = True self._camera.control.params[mmal.MMAL_PARAMETER_ANNOTATE] = mp annotate_background = property( _get_annotate_background, _set_annotate_background, doc="""\ Controls what background is drawn behind the annotation. The :attr:`annotate_background` attribute specifies if a background will be drawn behind the :attr:`annotation text <annotate_text>` and, if so, what color it will be. The value is specified as a :class:`Color` or ``None`` if no background should be drawn. The default is ``None``. .. note:: For backward compatibility purposes, the value ``False`` will be treated as ``None``, and the value ``True`` will be treated as the color black. The "truthiness" of the values returned by the attribute are backward compatible although the values themselves are not. .. versionadded:: 1.8 .. versionchanged:: 1.10 In prior versions this was a bool value with ``True`` representing a black background. """)
all_valid_variations
Returns all leet variations of a triplet which result in a Base32 only charset words on base64 encoding Args: word: An english triplet Returns: list: of all valid variations
"""inter-base steganography producing base32 and base64 decodable strings""" from base64 import b64encode, b64decode import string from itertools import product from argparse import ArgumentParser CHARSET = string.printable.encode() B32_CHARSET = (string.ascii_uppercase + '234567').encode() B64_CHARSET = ( string.ascii_lowercase + string.ascii_uppercase + string.digits + '+/').encode() ASCII_LOWER = string.ascii_lowercase.encode() WHITESPACE = string.whitespace.encode() ALPHA_SPACE = ( string.ascii_uppercase + string.ascii_lowercase + string.whitespace).encode() ASCII_SUBS = {"a": ["a", "A", "4", "@"], "b": ["b", "B", "8", "6"], "c": ["c", "C", "("], "d": ["d", "D"], "e": ["e", "E", "3"], "f": ["f", "F"], "g": ["g", "G", "6", "9"], "h": ["h", "H", "#"], "i": ["i", "I", "1", "|", "!"], "j": ["j", "J", "]", ";"], "k": ["k", "K"], "l": ["l", "L", "1", "|"], "m": ["m", "M"], "n": ["n", "N"], "o": ["o", "O", "0"], "p": ["p", "P"], "q": ["q", "Q", "9"], "r": ["r", "R", "2"], "s": ["s", "S", "5", "$"], "t": ["t", "T", "7", "+"], "u": ["u", "U"], "v": ["v", "V"], "w": ["w", "W"], "x": ["x", "X"], "y": ["y", "Y"], "z": ["z", "Z", "2", "%"], "0": ["0"], "1": ["1"], "2": ["2"], "3": ["3"], "4": ["4"], "5": ["5"], "6": ["6"], "7": ["7"], "8": ["8"], "9": ["9"], " ": [" ", "\t", "_"] } def all_variations(word: str) -> list: """ Produce all single-character leet variations of a string """ ans = [""] for leet_letter in [ASCII_SUBS[i] for i in word]: ans = [x + y for x in ans for y in leet_letter] return ans def variation_gen(word: str): """ Produces all single-character leet variations of a string Args: word: a 3 character string to generate all variations Returns: generator: generator for all possible leet variations """ return product(*(ASCII_SUBS[i] for i in word)) # MASKED: all_valid_variations function (lines 85-100) def valid_variation(word: str) -> str: """ Generates a single valid variation Args: word: the triplet to generate a variation from Returns: str: A valid variation of `word` or None otherwise """ for variation in variation_gen(word): if all(i in B32_CHARSET for i in b64encode( ''.join(variation).encode())): return "".join(variation) return None # List to precompute the triplets for which there doesnt exist a valid # variation NON_LEET = [] for perm in product(string.ascii_lowercase + ' ' + string.digits, repeat=3): if not valid_variation(''.join(perm)): NON_LEET.append(''.join(perm)) def transform(strng: str) -> str: """ Transform the string to only lower alpha and numerics and spaces Converts uppercase to lower case and strips all other characters except space """ for char in string.punctuation + string.whitespace[1:]: strng = strng.replace(char, '') return strng.lower() + ' ' * (8 - len(strng) % 8) def master_encode(strng: str) -> bytes: """ Encodes a string to its leet equivalent (sans punctuation) which when base64 encoded contains only base32 characters """ if isinstance(strng, (bytes, bytearray)): strng = strng.decode() strng = transform(strng) result = '' i = 0 while i < len(strng): try: current = strng[i:i + 3] if current in NON_LEET: if current[:2] + ' ' not in NON_LEET: result += valid_variation(current[:2] + ' ') i += 2 elif current[0] + ' ' not in NON_LEET: result += valid_variation(current[0] + ' ') i += 1 elif ' {} '.format(current[0]) not in NON_LEET: result += valid_variation(' {} '.format(current[0])) i += 1 elif ' {}'.format(current[0]) not in NON_LEET: result += valid_variation(' {}'.format(current[0])) i += 1 else: i += 1 else: result += valid_variation(current) i += 3 except TypeError: i += 1 return b64encode(result.encode()) if __name__ == "__main__": PARSER = ArgumentParser(description="") PARSER.add_argument( '--input', help='read a single line directly from input', action="store_true") PARSER.add_argument( '--show', help='shows the transformed input which results in correct encoding', action="store_true") PARSER.add_argument( '--file', help='reading text from file for conversion', action="append") ARGS = PARSER.parse_args() TEST_STRING = """Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The word steganography comes from Greek steganographia, which combines the words steganos meaning "covered or concealed", and graphia meaning "writing". The first recorded use of the term was by Johannes Trithemius in his Steganographia, a treatise on cryptography and steganography, disguised as a book on magic. Generally, the hidden messages appear to be (or to be part of) something else: images, articles, shopping lists, or some other cover text. For example, the hidden message may be in invisible ink between the visible lines of a private letter. Some implementations of steganography that lack a shared secret are forms of security through obscurity, and key-dependent steganographic schemes adhere to Kerckhoffs's principle.""" if ARGS.file: with open(ARGS.file[0], 'rb') as inp_file: TEST_STRING = inp_file.read() else: TEST_STRING = input("input the line to encode:\n") ENCODED_STRING = master_encode(TEST_STRING) print("ENCODED STRING: {}".format(ENCODED_STRING)) if ARGS.show: print("Transformed string: {}".format(b64decode(ENCODED_STRING))) # WTBVICAJV2VSZSBFWHBFY3RJIG4JOSBGTGFHNSBCVXQJYTFMICAJWTBVIDZFVCBJNSB3ZTFS\ # ZCBCYXNFNSBCYSAJTWJPMDJMZSAJTWVOVCBET25UICAJICB3T3JSWSBJVHMJIGYJVW4JIG4JZXZ\ # FIHIJVCNFTGVTNSAJ
def all_valid_variations(word: str) -> list: """ Returns all leet variations of a triplet which result in a Base32 only charset words on base64 encoding Args: word: An english triplet Returns: list: of all valid variations """ result = [] for variation in variation_gen(word): if all(i in B32_CHARSET for i in b64encode( ''.join(variation).encode())): result.append("".join(variation)) return result
85
100
"""inter-base steganography producing base32 and base64 decodable strings""" from base64 import b64encode, b64decode import string from itertools import product from argparse import ArgumentParser CHARSET = string.printable.encode() B32_CHARSET = (string.ascii_uppercase + '234567').encode() B64_CHARSET = ( string.ascii_lowercase + string.ascii_uppercase + string.digits + '+/').encode() ASCII_LOWER = string.ascii_lowercase.encode() WHITESPACE = string.whitespace.encode() ALPHA_SPACE = ( string.ascii_uppercase + string.ascii_lowercase + string.whitespace).encode() ASCII_SUBS = {"a": ["a", "A", "4", "@"], "b": ["b", "B", "8", "6"], "c": ["c", "C", "("], "d": ["d", "D"], "e": ["e", "E", "3"], "f": ["f", "F"], "g": ["g", "G", "6", "9"], "h": ["h", "H", "#"], "i": ["i", "I", "1", "|", "!"], "j": ["j", "J", "]", ";"], "k": ["k", "K"], "l": ["l", "L", "1", "|"], "m": ["m", "M"], "n": ["n", "N"], "o": ["o", "O", "0"], "p": ["p", "P"], "q": ["q", "Q", "9"], "r": ["r", "R", "2"], "s": ["s", "S", "5", "$"], "t": ["t", "T", "7", "+"], "u": ["u", "U"], "v": ["v", "V"], "w": ["w", "W"], "x": ["x", "X"], "y": ["y", "Y"], "z": ["z", "Z", "2", "%"], "0": ["0"], "1": ["1"], "2": ["2"], "3": ["3"], "4": ["4"], "5": ["5"], "6": ["6"], "7": ["7"], "8": ["8"], "9": ["9"], " ": [" ", "\t", "_"] } def all_variations(word: str) -> list: """ Produce all single-character leet variations of a string """ ans = [""] for leet_letter in [ASCII_SUBS[i] for i in word]: ans = [x + y for x in ans for y in leet_letter] return ans def variation_gen(word: str): """ Produces all single-character leet variations of a string Args: word: a 3 character string to generate all variations Returns: generator: generator for all possible leet variations """ return product(*(ASCII_SUBS[i] for i in word)) def all_valid_variations(word: str) -> list: """ Returns all leet variations of a triplet which result in a Base32 only charset words on base64 encoding Args: word: An english triplet Returns: list: of all valid variations """ result = [] for variation in variation_gen(word): if all(i in B32_CHARSET for i in b64encode( ''.join(variation).encode())): result.append("".join(variation)) return result def valid_variation(word: str) -> str: """ Generates a single valid variation Args: word: the triplet to generate a variation from Returns: str: A valid variation of `word` or None otherwise """ for variation in variation_gen(word): if all(i in B32_CHARSET for i in b64encode( ''.join(variation).encode())): return "".join(variation) return None # List to precompute the triplets for which there doesnt exist a valid # variation NON_LEET = [] for perm in product(string.ascii_lowercase + ' ' + string.digits, repeat=3): if not valid_variation(''.join(perm)): NON_LEET.append(''.join(perm)) def transform(strng: str) -> str: """ Transform the string to only lower alpha and numerics and spaces Converts uppercase to lower case and strips all other characters except space """ for char in string.punctuation + string.whitespace[1:]: strng = strng.replace(char, '') return strng.lower() + ' ' * (8 - len(strng) % 8) def master_encode(strng: str) -> bytes: """ Encodes a string to its leet equivalent (sans punctuation) which when base64 encoded contains only base32 characters """ if isinstance(strng, (bytes, bytearray)): strng = strng.decode() strng = transform(strng) result = '' i = 0 while i < len(strng): try: current = strng[i:i + 3] if current in NON_LEET: if current[:2] + ' ' not in NON_LEET: result += valid_variation(current[:2] + ' ') i += 2 elif current[0] + ' ' not in NON_LEET: result += valid_variation(current[0] + ' ') i += 1 elif ' {} '.format(current[0]) not in NON_LEET: result += valid_variation(' {} '.format(current[0])) i += 1 elif ' {}'.format(current[0]) not in NON_LEET: result += valid_variation(' {}'.format(current[0])) i += 1 else: i += 1 else: result += valid_variation(current) i += 3 except TypeError: i += 1 return b64encode(result.encode()) if __name__ == "__main__": PARSER = ArgumentParser(description="") PARSER.add_argument( '--input', help='read a single line directly from input', action="store_true") PARSER.add_argument( '--show', help='shows the transformed input which results in correct encoding', action="store_true") PARSER.add_argument( '--file', help='reading text from file for conversion', action="append") ARGS = PARSER.parse_args() TEST_STRING = """Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The word steganography comes from Greek steganographia, which combines the words steganos meaning "covered or concealed", and graphia meaning "writing". The first recorded use of the term was by Johannes Trithemius in his Steganographia, a treatise on cryptography and steganography, disguised as a book on magic. Generally, the hidden messages appear to be (or to be part of) something else: images, articles, shopping lists, or some other cover text. For example, the hidden message may be in invisible ink between the visible lines of a private letter. Some implementations of steganography that lack a shared secret are forms of security through obscurity, and key-dependent steganographic schemes adhere to Kerckhoffs's principle.""" if ARGS.file: with open(ARGS.file[0], 'rb') as inp_file: TEST_STRING = inp_file.read() else: TEST_STRING = input("input the line to encode:\n") ENCODED_STRING = master_encode(TEST_STRING) print("ENCODED STRING: {}".format(ENCODED_STRING)) if ARGS.show: print("Transformed string: {}".format(b64decode(ENCODED_STRING))) # WTBVICAJV2VSZSBFWHBFY3RJIG4JOSBGTGFHNSBCVXQJYTFMICAJWTBVIDZFVCBJNSB3ZTFS\ # ZCBCYXNFNSBCYSAJTWJPMDJMZSAJTWVOVCBET25UICAJICB3T3JSWSBJVHMJIGYJVW4JIG4JZXZ\ # FIHIJVCNFTGVTNSAJ
transform_boolean_operand_to_numeric
Transform boolean operand to numeric. If the `operand` is: - a boolean IndexOpsMixin, transform the `operand` to the `spark_type`. - a boolean literal, transform to the int value. Otherwise, return the operand as it is.
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from abc import ABCMeta from itertools import chain from typing import Any, Optional, Union import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from pyspark.sql import functions as F, Column from pyspark.sql.types import ( ArrayType, BinaryType, BooleanType, DataType, DateType, DecimalType, FractionalType, IntegralType, MapType, NullType, NumericType, StringType, StructType, TimestampType, TimestampNTZType, UserDefinedType, ) from pyspark.pandas._typing import Dtype, IndexOpsLike, SeriesOrIndex from pyspark.pandas.spark import functions as SF from pyspark.pandas.typedef import extension_dtypes from pyspark.pandas.typedef.typehints import ( extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, spark_type_to_pandas_dtype, ) if extension_dtypes_available: from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype if extension_float_dtypes_available: from pandas import Float32Dtype, Float64Dtype if extension_object_dtypes_available: from pandas import BooleanDtype, StringDtype def is_valid_operand_for_numeric_arithmetic(operand: Any, *, allow_bool: bool = True) -> bool: """Check whether the `operand` is valid for arithmetic operations against numerics.""" from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, numbers.Number): return not isinstance(operand, bool) or allow_bool elif isinstance(operand, IndexOpsMixin): if isinstance(operand.dtype, CategoricalDtype): return False else: return isinstance(operand.spark.data_type, NumericType) or ( allow_bool and isinstance(operand.spark.data_type, BooleanType) ) else: return False # MASKED: transform_boolean_operand_to_numeric function (lines 83-108) def _as_categorical_type( index_ops: IndexOpsLike, dtype: CategoricalDtype, spark_type: DataType ) -> IndexOpsLike: """Cast `index_ops` to categorical dtype, given `dtype` and `spark_type`.""" assert isinstance(dtype, CategoricalDtype) if dtype.categories is None: codes, uniques = index_ops.factorize() return codes._with_new_scol( codes.spark.column, field=codes._internal.data_fields[0].copy(dtype=CategoricalDtype(categories=uniques)), ) else: categories = dtype.categories if len(categories) == 0: scol = SF.lit(-1) else: kvs = chain( *[(SF.lit(category), SF.lit(code)) for code, category in enumerate(categories)] ) map_scol = F.create_map(*kvs) scol = F.coalesce(map_scol[index_ops.spark.column], SF.lit(-1)) return index_ops._with_new_scol( scol.cast(spark_type), field=index_ops._internal.data_fields[0].copy( dtype=dtype, spark_type=spark_type, nullable=False ), ) def _as_bool_type(index_ops: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: """Cast `index_ops` to BooleanType Spark type, given `dtype`.""" spark_type = BooleanType() if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(spark_type) else: scol = F.when(index_ops.spark.column.isNull(), SF.lit(False)).otherwise( index_ops.spark.column.cast(spark_type) ) return index_ops._with_new_scol( scol, field=index_ops._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type) ) def _as_string_type( index_ops: IndexOpsLike, dtype: Union[str, type, Dtype], *, null_str: str = str(None) ) -> IndexOpsLike: """Cast `index_ops` to StringType Spark type, given `dtype` and `null_str`, representing null Spark column. Note that `null_str` is for non-extension dtypes only. """ spark_type = StringType() if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(spark_type) else: casted = index_ops.spark.column.cast(spark_type) scol = F.when(index_ops.spark.column.isNull(), null_str).otherwise(casted) return index_ops._with_new_scol( scol, field=index_ops._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type) ) def _as_other_type( index_ops: IndexOpsLike, dtype: Union[str, type, Dtype], spark_type: DataType ) -> IndexOpsLike: """Cast `index_ops` to a `dtype` (`spark_type`) that needs no pre-processing. Destination types that need pre-processing: CategoricalDtype, BooleanType, and StringType. """ from pyspark.pandas.internal import InternalField need_pre_process = ( isinstance(dtype, CategoricalDtype) or isinstance(spark_type, BooleanType) or isinstance(spark_type, StringType) ) assert not need_pre_process, "Pre-processing is needed before the type casting." scol = index_ops.spark.column.cast(spark_type) return index_ops._with_new_scol(scol, field=InternalField(dtype=dtype)) def _sanitize_list_like(operand: Any) -> None: """Raise TypeError if operand is list-like.""" if isinstance(operand, (list, tuple, dict, set)): raise TypeError("The operation can not be applied to %s." % type(operand).__name__) def _is_valid_for_logical_operator(right: Any) -> bool: from pyspark.pandas.base import IndexOpsMixin return isinstance(right, (int, bool)) or ( isinstance(right, IndexOpsMixin) and ( isinstance(right.spark.data_type, BooleanType) or isinstance(right.spark.data_type, IntegralType) ) ) def _is_boolean_type(right: Any) -> bool: from pyspark.pandas.base import IndexOpsMixin return isinstance(right, bool) or ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, BooleanType) ) class DataTypeOps(object, metaclass=ABCMeta): """The base class for binary operations of pandas-on-Spark objects (of different data types).""" def __new__(cls, dtype: Dtype, spark_type: DataType) -> "DataTypeOps": from pyspark.pandas.data_type_ops.binary_ops import BinaryOps from pyspark.pandas.data_type_ops.boolean_ops import BooleanOps, BooleanExtensionOps from pyspark.pandas.data_type_ops.categorical_ops import CategoricalOps from pyspark.pandas.data_type_ops.complex_ops import ArrayOps, MapOps, StructOps from pyspark.pandas.data_type_ops.date_ops import DateOps from pyspark.pandas.data_type_ops.datetime_ops import DatetimeOps, DatetimeNTZOps from pyspark.pandas.data_type_ops.null_ops import NullOps from pyspark.pandas.data_type_ops.num_ops import ( DecimalOps, FractionalExtensionOps, FractionalOps, IntegralExtensionOps, IntegralOps, ) from pyspark.pandas.data_type_ops.string_ops import StringOps, StringExtensionOps from pyspark.pandas.data_type_ops.udt_ops import UDTOps if isinstance(dtype, CategoricalDtype): return object.__new__(CategoricalOps) elif isinstance(spark_type, DecimalType): return object.__new__(DecimalOps) elif isinstance(spark_type, FractionalType): if extension_float_dtypes_available and type(dtype) in [Float32Dtype, Float64Dtype]: return object.__new__(FractionalExtensionOps) else: return object.__new__(FractionalOps) elif isinstance(spark_type, IntegralType): if extension_dtypes_available and type(dtype) in [ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, ]: return object.__new__(IntegralExtensionOps) else: return object.__new__(IntegralOps) elif isinstance(spark_type, StringType): if extension_object_dtypes_available and isinstance(dtype, StringDtype): return object.__new__(StringExtensionOps) else: return object.__new__(StringOps) elif isinstance(spark_type, BooleanType): if extension_object_dtypes_available and isinstance(dtype, BooleanDtype): return object.__new__(BooleanExtensionOps) else: return object.__new__(BooleanOps) elif isinstance(spark_type, TimestampType): return object.__new__(DatetimeOps) elif isinstance(spark_type, TimestampNTZType): return object.__new__(DatetimeNTZOps) elif isinstance(spark_type, DateType): return object.__new__(DateOps) elif isinstance(spark_type, BinaryType): return object.__new__(BinaryOps) elif isinstance(spark_type, ArrayType): return object.__new__(ArrayOps) elif isinstance(spark_type, MapType): return object.__new__(MapOps) elif isinstance(spark_type, StructType): return object.__new__(StructOps) elif isinstance(spark_type, NullType): return object.__new__(NullOps) elif isinstance(spark_type, UserDefinedType): return object.__new__(UDTOps) else: raise TypeError("Type %s was not understood." % dtype) def __init__(self, dtype: Dtype, spark_type: DataType): self.dtype = dtype self.spark_type = spark_type @property def pretty_name(self) -> str: raise NotImplementedError() def add(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def sub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def mul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def truediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("True division can not be applied to %s." % self.pretty_name) def floordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def mod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def pow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def radd(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def rsub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def rmul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def rtruediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("True division can not be applied to %s." % self.pretty_name) def rfloordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def rmod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def rpow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def __and__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise and can not be applied to %s." % self.pretty_name) def xor(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise xor can not be applied to %s." % self.pretty_name) def __or__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise or can not be applied to %s." % self.pretty_name) def rand(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left.__and__(right) def rxor(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left ^ right def ror(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left.__or__(right) def neg(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary - can not be applied to %s." % self.pretty_name) def abs(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("abs() can not be applied to %s." % self.pretty_name) def lt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("< can not be applied to %s." % self.pretty_name) def le(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("<= can not be applied to %s." % self.pretty_name) def gt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("> can not be applied to %s." % self.pretty_name) def ge(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError(">= can not be applied to %s." % self.pretty_name) def eq(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op _sanitize_list_like(right) return column_op(Column.__eq__)(left, right) def ne(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op _sanitize_list_like(right) return column_op(Column.__ne__)(left, right) def invert(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary ~ can not be applied to %s." % self.pretty_name) def restore(self, col: pd.Series) -> pd.Series: """Restore column when to_pandas.""" return col def prepare(self, col: pd.Series) -> pd.Series: """Prepare column when from_pandas.""" return col.replace({np.nan: None}) def isnull(self, index_ops: IndexOpsLike) -> IndexOpsLike: return index_ops._with_new_scol( index_ops.spark.column.isNull(), field=index_ops._internal.data_fields[0].copy( dtype=np.dtype("bool"), spark_type=BooleanType(), nullable=False ), ) def nan_to_null(self, index_ops: IndexOpsLike) -> IndexOpsLike: return index_ops.copy() def astype(self, index_ops: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: raise TypeError("astype can not be applied to %s." % self.pretty_name)
def transform_boolean_operand_to_numeric( operand: Any, *, spark_type: Optional[DataType] = None ) -> Any: """Transform boolean operand to numeric. If the `operand` is: - a boolean IndexOpsMixin, transform the `operand` to the `spark_type`. - a boolean literal, transform to the int value. Otherwise, return the operand as it is. """ from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, IndexOpsMixin) and isinstance(operand.spark.data_type, BooleanType): assert spark_type, "spark_type must be provided if the operand is a boolean IndexOpsMixin" assert isinstance(spark_type, NumericType), "spark_type must be NumericType" dtype = spark_type_to_pandas_dtype( spark_type, use_extension_dtypes=operand._internal.data_fields[0].is_extension_dtype ) return operand._with_new_scol( operand.spark.column.cast(spark_type), field=operand._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type), ) elif isinstance(operand, bool): return int(operand) else: return operand
83
108
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from abc import ABCMeta from itertools import chain from typing import Any, Optional, Union import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from pyspark.sql import functions as F, Column from pyspark.sql.types import ( ArrayType, BinaryType, BooleanType, DataType, DateType, DecimalType, FractionalType, IntegralType, MapType, NullType, NumericType, StringType, StructType, TimestampType, TimestampNTZType, UserDefinedType, ) from pyspark.pandas._typing import Dtype, IndexOpsLike, SeriesOrIndex from pyspark.pandas.spark import functions as SF from pyspark.pandas.typedef import extension_dtypes from pyspark.pandas.typedef.typehints import ( extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, spark_type_to_pandas_dtype, ) if extension_dtypes_available: from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype if extension_float_dtypes_available: from pandas import Float32Dtype, Float64Dtype if extension_object_dtypes_available: from pandas import BooleanDtype, StringDtype def is_valid_operand_for_numeric_arithmetic(operand: Any, *, allow_bool: bool = True) -> bool: """Check whether the `operand` is valid for arithmetic operations against numerics.""" from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, numbers.Number): return not isinstance(operand, bool) or allow_bool elif isinstance(operand, IndexOpsMixin): if isinstance(operand.dtype, CategoricalDtype): return False else: return isinstance(operand.spark.data_type, NumericType) or ( allow_bool and isinstance(operand.spark.data_type, BooleanType) ) else: return False def transform_boolean_operand_to_numeric( operand: Any, *, spark_type: Optional[DataType] = None ) -> Any: """Transform boolean operand to numeric. If the `operand` is: - a boolean IndexOpsMixin, transform the `operand` to the `spark_type`. - a boolean literal, transform to the int value. Otherwise, return the operand as it is. """ from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, IndexOpsMixin) and isinstance(operand.spark.data_type, BooleanType): assert spark_type, "spark_type must be provided if the operand is a boolean IndexOpsMixin" assert isinstance(spark_type, NumericType), "spark_type must be NumericType" dtype = spark_type_to_pandas_dtype( spark_type, use_extension_dtypes=operand._internal.data_fields[0].is_extension_dtype ) return operand._with_new_scol( operand.spark.column.cast(spark_type), field=operand._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type), ) elif isinstance(operand, bool): return int(operand) else: return operand def _as_categorical_type( index_ops: IndexOpsLike, dtype: CategoricalDtype, spark_type: DataType ) -> IndexOpsLike: """Cast `index_ops` to categorical dtype, given `dtype` and `spark_type`.""" assert isinstance(dtype, CategoricalDtype) if dtype.categories is None: codes, uniques = index_ops.factorize() return codes._with_new_scol( codes.spark.column, field=codes._internal.data_fields[0].copy(dtype=CategoricalDtype(categories=uniques)), ) else: categories = dtype.categories if len(categories) == 0: scol = SF.lit(-1) else: kvs = chain( *[(SF.lit(category), SF.lit(code)) for code, category in enumerate(categories)] ) map_scol = F.create_map(*kvs) scol = F.coalesce(map_scol[index_ops.spark.column], SF.lit(-1)) return index_ops._with_new_scol( scol.cast(spark_type), field=index_ops._internal.data_fields[0].copy( dtype=dtype, spark_type=spark_type, nullable=False ), ) def _as_bool_type(index_ops: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: """Cast `index_ops` to BooleanType Spark type, given `dtype`.""" spark_type = BooleanType() if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(spark_type) else: scol = F.when(index_ops.spark.column.isNull(), SF.lit(False)).otherwise( index_ops.spark.column.cast(spark_type) ) return index_ops._with_new_scol( scol, field=index_ops._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type) ) def _as_string_type( index_ops: IndexOpsLike, dtype: Union[str, type, Dtype], *, null_str: str = str(None) ) -> IndexOpsLike: """Cast `index_ops` to StringType Spark type, given `dtype` and `null_str`, representing null Spark column. Note that `null_str` is for non-extension dtypes only. """ spark_type = StringType() if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(spark_type) else: casted = index_ops.spark.column.cast(spark_type) scol = F.when(index_ops.spark.column.isNull(), null_str).otherwise(casted) return index_ops._with_new_scol( scol, field=index_ops._internal.data_fields[0].copy(dtype=dtype, spark_type=spark_type) ) def _as_other_type( index_ops: IndexOpsLike, dtype: Union[str, type, Dtype], spark_type: DataType ) -> IndexOpsLike: """Cast `index_ops` to a `dtype` (`spark_type`) that needs no pre-processing. Destination types that need pre-processing: CategoricalDtype, BooleanType, and StringType. """ from pyspark.pandas.internal import InternalField need_pre_process = ( isinstance(dtype, CategoricalDtype) or isinstance(spark_type, BooleanType) or isinstance(spark_type, StringType) ) assert not need_pre_process, "Pre-processing is needed before the type casting." scol = index_ops.spark.column.cast(spark_type) return index_ops._with_new_scol(scol, field=InternalField(dtype=dtype)) def _sanitize_list_like(operand: Any) -> None: """Raise TypeError if operand is list-like.""" if isinstance(operand, (list, tuple, dict, set)): raise TypeError("The operation can not be applied to %s." % type(operand).__name__) def _is_valid_for_logical_operator(right: Any) -> bool: from pyspark.pandas.base import IndexOpsMixin return isinstance(right, (int, bool)) or ( isinstance(right, IndexOpsMixin) and ( isinstance(right.spark.data_type, BooleanType) or isinstance(right.spark.data_type, IntegralType) ) ) def _is_boolean_type(right: Any) -> bool: from pyspark.pandas.base import IndexOpsMixin return isinstance(right, bool) or ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, BooleanType) ) class DataTypeOps(object, metaclass=ABCMeta): """The base class for binary operations of pandas-on-Spark objects (of different data types).""" def __new__(cls, dtype: Dtype, spark_type: DataType) -> "DataTypeOps": from pyspark.pandas.data_type_ops.binary_ops import BinaryOps from pyspark.pandas.data_type_ops.boolean_ops import BooleanOps, BooleanExtensionOps from pyspark.pandas.data_type_ops.categorical_ops import CategoricalOps from pyspark.pandas.data_type_ops.complex_ops import ArrayOps, MapOps, StructOps from pyspark.pandas.data_type_ops.date_ops import DateOps from pyspark.pandas.data_type_ops.datetime_ops import DatetimeOps, DatetimeNTZOps from pyspark.pandas.data_type_ops.null_ops import NullOps from pyspark.pandas.data_type_ops.num_ops import ( DecimalOps, FractionalExtensionOps, FractionalOps, IntegralExtensionOps, IntegralOps, ) from pyspark.pandas.data_type_ops.string_ops import StringOps, StringExtensionOps from pyspark.pandas.data_type_ops.udt_ops import UDTOps if isinstance(dtype, CategoricalDtype): return object.__new__(CategoricalOps) elif isinstance(spark_type, DecimalType): return object.__new__(DecimalOps) elif isinstance(spark_type, FractionalType): if extension_float_dtypes_available and type(dtype) in [Float32Dtype, Float64Dtype]: return object.__new__(FractionalExtensionOps) else: return object.__new__(FractionalOps) elif isinstance(spark_type, IntegralType): if extension_dtypes_available and type(dtype) in [ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, ]: return object.__new__(IntegralExtensionOps) else: return object.__new__(IntegralOps) elif isinstance(spark_type, StringType): if extension_object_dtypes_available and isinstance(dtype, StringDtype): return object.__new__(StringExtensionOps) else: return object.__new__(StringOps) elif isinstance(spark_type, BooleanType): if extension_object_dtypes_available and isinstance(dtype, BooleanDtype): return object.__new__(BooleanExtensionOps) else: return object.__new__(BooleanOps) elif isinstance(spark_type, TimestampType): return object.__new__(DatetimeOps) elif isinstance(spark_type, TimestampNTZType): return object.__new__(DatetimeNTZOps) elif isinstance(spark_type, DateType): return object.__new__(DateOps) elif isinstance(spark_type, BinaryType): return object.__new__(BinaryOps) elif isinstance(spark_type, ArrayType): return object.__new__(ArrayOps) elif isinstance(spark_type, MapType): return object.__new__(MapOps) elif isinstance(spark_type, StructType): return object.__new__(StructOps) elif isinstance(spark_type, NullType): return object.__new__(NullOps) elif isinstance(spark_type, UserDefinedType): return object.__new__(UDTOps) else: raise TypeError("Type %s was not understood." % dtype) def __init__(self, dtype: Dtype, spark_type: DataType): self.dtype = dtype self.spark_type = spark_type @property def pretty_name(self) -> str: raise NotImplementedError() def add(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def sub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def mul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def truediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("True division can not be applied to %s." % self.pretty_name) def floordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def mod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def pow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def radd(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def rsub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def rmul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def rtruediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("True division can not be applied to %s." % self.pretty_name) def rfloordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def rmod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def rpow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def __and__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise and can not be applied to %s." % self.pretty_name) def xor(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise xor can not be applied to %s." % self.pretty_name) def __or__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("Bitwise or can not be applied to %s." % self.pretty_name) def rand(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left.__and__(right) def rxor(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left ^ right def ror(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: _sanitize_list_like(right) return left.__or__(right) def neg(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary - can not be applied to %s." % self.pretty_name) def abs(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("abs() can not be applied to %s." % self.pretty_name) def lt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("< can not be applied to %s." % self.pretty_name) def le(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("<= can not be applied to %s." % self.pretty_name) def gt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError("> can not be applied to %s." % self.pretty_name) def ge(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: raise TypeError(">= can not be applied to %s." % self.pretty_name) def eq(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op _sanitize_list_like(right) return column_op(Column.__eq__)(left, right) def ne(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op _sanitize_list_like(right) return column_op(Column.__ne__)(left, right) def invert(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary ~ can not be applied to %s." % self.pretty_name) def restore(self, col: pd.Series) -> pd.Series: """Restore column when to_pandas.""" return col def prepare(self, col: pd.Series) -> pd.Series: """Prepare column when from_pandas.""" return col.replace({np.nan: None}) def isnull(self, index_ops: IndexOpsLike) -> IndexOpsLike: return index_ops._with_new_scol( index_ops.spark.column.isNull(), field=index_ops._internal.data_fields[0].copy( dtype=np.dtype("bool"), spark_type=BooleanType(), nullable=False ), ) def nan_to_null(self, index_ops: IndexOpsLike) -> IndexOpsLike: return index_ops.copy() def astype(self, index_ops: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: raise TypeError("astype can not be applied to %s." % self.pretty_name)
eventFilter
Event filter implementation. For information, see the QT docs: http://doc.qt.io/qt-4.8/qobject.html#eventFilter This will emit the resized signal (in this class) whenever the linked up object is being resized. :param obj: The object that is being watched for events :param event: Event object that the object has emitted :returns: Always returns False to indicate that no events should ever be discarded by the filter.
# Copyright (c) 2015 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. from sgtk.platform.qt import QtCore, QtGui import sgtk class WorkAreaButton(QtGui.QToolButton): """ UX for switching work area. This displays a "change work area" button which a user can interact with The button is designed to expand so that it is subtle until a user hovers over it. :signal clicked(str, int): Fires when someone clicks the change work area button. Arguments passed are the entity type and entity id """ WIDGET_WIDTH_COLLAPSED = 30 WIDGET_HEIGHT = 30 NON_WORK_AREA_TYPES = [ "PublishedFile", "Project", "TankPublishedFile", "Version", "Note", "Group", "HumanUser", "ScriptUser", "ApiUser", "ClientUser", "Department", "Cut", "CutItem", "Delivery", "Playlist", "Ticket" ] change_work_area = QtCore.Signal(str, int) def __init__(self, parent): """ :param parent: The model parent. :type parent: :class:`~PySide.QtGui.QObject` """ super(WorkAreaButton, self).__init__(parent) # an icon to represent all items which # aren't the current work area self._normal_icon = QtGui.QIcon() self._normal_icon.addPixmap( QtGui.QPixmap(":/tk_multi_infopanel/pin.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off ) # an icon to represent the current work area self._current_work_area_icon = QtGui.QIcon() self._current_work_area_icon.addPixmap( QtGui.QPixmap(":/tk_multi_infopanel/pin_blue.png"), QtGui.QIcon.Disabled, QtGui.QIcon.Off ) self.setIcon(self._normal_icon) self.setIconSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) self._bundle = sgtk.platform.current_bundle() self._entity_type = None self._entity_id = None self._is_static = False self._caption = "Set Work Area" self._width = 120 self.clicked.connect(self._on_click) self.setVisible(False) def set_up(self, entity_type, entity_id): """ Sets up the button for a given entity. :param entity_type: Entity type to set up button for :param entity_id: Entity id to set up button for """ self._entity_id = entity_id self._entity_type = entity_type if not self._bundle.get_setting("enable_context_switch"): # context switch button not enabled return # figure out if this is the current project context = self._bundle.context context_entity = context.task or context.entity or context.project or None self.setVisible(True) self.setEnabled(True) self.setIcon(self._normal_icon) self._is_static = False if context_entity and context_entity["type"] == entity_type and context_entity["id"] == entity_id: # the current work area self.setPopupMode(QtGui.QToolButton.DelayedPopup) self.setToolTip( "This is your current work area.\n" "The work you do will be associated with this item in Shotgun." ) # set blue icon self.setIcon(self._current_work_area_icon) # disable the button self.setEnabled(False) # make sure it doesn't pop on mouseover self._is_static = True elif entity_type in self.NON_WORK_AREA_TYPES: # don't show the ctx selector for some types self.setToolTip("This cannot be a work area.") # disable the button self.setEnabled(False) # make sure it doesn't pop on mouse over self._is_static = True else: if entity_type == "Task": self._caption = "Set Work Area" self.setToolTip("Click to set your work area to the current task.") else: self._caption = "Pick Work Area" self.setToolTip("Click to select a task.") self._init_default_state() def _init_default_state(self): """ Sets up the default collapsed state of the button """ self.setText("") self.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.setMinimumSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) self.setMaximumSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) # tell the style sheet to adjust self.setProperty("is_expanded", False) self.style().unpolish(self) self.style().polish(self) def _on_click(self): """ Executed when the button is clicked """ self.change_work_area.emit(self._entity_type, self._entity_id) def enterEvent(self, evt): """ QT Mouse enter event """ if not self._is_static: # not the current work area. so expand the button self.setText(self._caption) self.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.setMinimumSize(QtCore.QSize(self._width, self.WIDGET_HEIGHT)) self.setMaximumSize(QtCore.QSize(self._width, self.WIDGET_HEIGHT)) # tell the style sheet to adjust self.setProperty("is_expanded", True) self.style().unpolish(self) self.style().polish(self) return super(WorkAreaButton, self).enterEvent(evt) def leaveEvent(self, evt): """ QT Mouse leave event """ if not self._is_static: # collapse button after a delay QtCore.QTimer.singleShot(300, self._init_default_state) return super(WorkAreaButton, self).leaveEvent(evt) class FloatingWorkAreaButton(WorkAreaButton): """ UX for switching work area. This displays a "change work area" button which a user can interact with The button is designed to expand so that it is subtle until a user hovers over it. Derives from :class:`WorkAreaButton` and positions the widget relative to the bottom-right corner of the parent widget. :signal clicked(str, int): Fires when someone clicks the change work area button. Arguments passed are the entity type and entity id """ RIGHT_OFFSET = 6 BOTTOM_OFFSET = 6 def __init__(self, parent): """ :param right_side_offset: Right hand side offset in pixels :param bottom_offset: Bottom offset in pixels :param parent: The model parent. :type parent: :class:`~PySide.QtGui.QObject` """ super(FloatingWorkAreaButton, self).__init__(parent) # hook up a listener to the parent window so this widget # follows along when the parent window changes size filter = ResizeEventFilter(parent) filter.resized.connect(self._on_parent_resized) parent.installEventFilter(filter) def set_up(self, entity_type, entity_id): """ Sets up the button for a given entity. :param entity_type: Entity type to set up button for :param entity_id: Entity id to set up button for """ if entity_type in self.NON_WORK_AREA_TYPES: # hide the widget self.setVisible(False) else: # base class implementation super(FloatingWorkAreaButton, self).set_up(entity_type, entity_id) def __position_widget(self): """ Moves the widget to the bottom-right corner of the parent widget. """ self.move( self.parentWidget().width() - self.width() - self.RIGHT_OFFSET, self.parentWidget().height() - self.height() - self.BOTTOM_OFFSET ) def _init_default_state(self): """ Sets up the default collapsed state of the button """ super(FloatingWorkAreaButton, self)._init_default_state() self.__position_widget() def enterEvent(self, evt): """ QT Mouse enter event """ status = super(FloatingWorkAreaButton, self).enterEvent(evt) if not self._is_static: self.__position_widget() return status def _on_parent_resized(self): """ Special slot hooked up to the event filter. When associated widget is resized this slot is being called. """ self.__position_widget() class ResizeEventFilter(QtCore.QObject): """ Utility and helper. Event filter which emits a resized signal whenever the monitored widget resizes. You use it like this: # create the filter object. Typically, it's # it's easiest to parent it to the object that is # being monitored (in this case self.ui.thumbnail) filter = ResizeEventFilter(self.ui.thumbnail) # now set up a signal/slot connection so that the # __on_thumb_resized slot gets called every time # the widget is resized filter.resized.connect(self.__on_thumb_resized) # finally, install the event filter into the QT # event system self.ui.thumbnail.installEventFilter(filter) """ resized = QtCore.Signal() # MASKED: eventFilter function (lines 302-321)
def eventFilter(self, obj, event): """ Event filter implementation. For information, see the QT docs: http://doc.qt.io/qt-4.8/qobject.html#eventFilter This will emit the resized signal (in this class) whenever the linked up object is being resized. :param obj: The object that is being watched for events :param event: Event object that the object has emitted :returns: Always returns False to indicate that no events should ever be discarded by the filter. """ # peek at the message if event.type() == QtCore.QEvent.Resize: # re-broadcast any resize events self.resized.emit() # pass it on! return False
302
321
# Copyright (c) 2015 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. from sgtk.platform.qt import QtCore, QtGui import sgtk class WorkAreaButton(QtGui.QToolButton): """ UX for switching work area. This displays a "change work area" button which a user can interact with The button is designed to expand so that it is subtle until a user hovers over it. :signal clicked(str, int): Fires when someone clicks the change work area button. Arguments passed are the entity type and entity id """ WIDGET_WIDTH_COLLAPSED = 30 WIDGET_HEIGHT = 30 NON_WORK_AREA_TYPES = [ "PublishedFile", "Project", "TankPublishedFile", "Version", "Note", "Group", "HumanUser", "ScriptUser", "ApiUser", "ClientUser", "Department", "Cut", "CutItem", "Delivery", "Playlist", "Ticket" ] change_work_area = QtCore.Signal(str, int) def __init__(self, parent): """ :param parent: The model parent. :type parent: :class:`~PySide.QtGui.QObject` """ super(WorkAreaButton, self).__init__(parent) # an icon to represent all items which # aren't the current work area self._normal_icon = QtGui.QIcon() self._normal_icon.addPixmap( QtGui.QPixmap(":/tk_multi_infopanel/pin.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off ) # an icon to represent the current work area self._current_work_area_icon = QtGui.QIcon() self._current_work_area_icon.addPixmap( QtGui.QPixmap(":/tk_multi_infopanel/pin_blue.png"), QtGui.QIcon.Disabled, QtGui.QIcon.Off ) self.setIcon(self._normal_icon) self.setIconSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) self._bundle = sgtk.platform.current_bundle() self._entity_type = None self._entity_id = None self._is_static = False self._caption = "Set Work Area" self._width = 120 self.clicked.connect(self._on_click) self.setVisible(False) def set_up(self, entity_type, entity_id): """ Sets up the button for a given entity. :param entity_type: Entity type to set up button for :param entity_id: Entity id to set up button for """ self._entity_id = entity_id self._entity_type = entity_type if not self._bundle.get_setting("enable_context_switch"): # context switch button not enabled return # figure out if this is the current project context = self._bundle.context context_entity = context.task or context.entity or context.project or None self.setVisible(True) self.setEnabled(True) self.setIcon(self._normal_icon) self._is_static = False if context_entity and context_entity["type"] == entity_type and context_entity["id"] == entity_id: # the current work area self.setPopupMode(QtGui.QToolButton.DelayedPopup) self.setToolTip( "This is your current work area.\n" "The work you do will be associated with this item in Shotgun." ) # set blue icon self.setIcon(self._current_work_area_icon) # disable the button self.setEnabled(False) # make sure it doesn't pop on mouseover self._is_static = True elif entity_type in self.NON_WORK_AREA_TYPES: # don't show the ctx selector for some types self.setToolTip("This cannot be a work area.") # disable the button self.setEnabled(False) # make sure it doesn't pop on mouse over self._is_static = True else: if entity_type == "Task": self._caption = "Set Work Area" self.setToolTip("Click to set your work area to the current task.") else: self._caption = "Pick Work Area" self.setToolTip("Click to select a task.") self._init_default_state() def _init_default_state(self): """ Sets up the default collapsed state of the button """ self.setText("") self.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.setMinimumSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) self.setMaximumSize(QtCore.QSize(self.WIDGET_WIDTH_COLLAPSED, self.WIDGET_HEIGHT)) # tell the style sheet to adjust self.setProperty("is_expanded", False) self.style().unpolish(self) self.style().polish(self) def _on_click(self): """ Executed when the button is clicked """ self.change_work_area.emit(self._entity_type, self._entity_id) def enterEvent(self, evt): """ QT Mouse enter event """ if not self._is_static: # not the current work area. so expand the button self.setText(self._caption) self.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.setMinimumSize(QtCore.QSize(self._width, self.WIDGET_HEIGHT)) self.setMaximumSize(QtCore.QSize(self._width, self.WIDGET_HEIGHT)) # tell the style sheet to adjust self.setProperty("is_expanded", True) self.style().unpolish(self) self.style().polish(self) return super(WorkAreaButton, self).enterEvent(evt) def leaveEvent(self, evt): """ QT Mouse leave event """ if not self._is_static: # collapse button after a delay QtCore.QTimer.singleShot(300, self._init_default_state) return super(WorkAreaButton, self).leaveEvent(evt) class FloatingWorkAreaButton(WorkAreaButton): """ UX for switching work area. This displays a "change work area" button which a user can interact with The button is designed to expand so that it is subtle until a user hovers over it. Derives from :class:`WorkAreaButton` and positions the widget relative to the bottom-right corner of the parent widget. :signal clicked(str, int): Fires when someone clicks the change work area button. Arguments passed are the entity type and entity id """ RIGHT_OFFSET = 6 BOTTOM_OFFSET = 6 def __init__(self, parent): """ :param right_side_offset: Right hand side offset in pixels :param bottom_offset: Bottom offset in pixels :param parent: The model parent. :type parent: :class:`~PySide.QtGui.QObject` """ super(FloatingWorkAreaButton, self).__init__(parent) # hook up a listener to the parent window so this widget # follows along when the parent window changes size filter = ResizeEventFilter(parent) filter.resized.connect(self._on_parent_resized) parent.installEventFilter(filter) def set_up(self, entity_type, entity_id): """ Sets up the button for a given entity. :param entity_type: Entity type to set up button for :param entity_id: Entity id to set up button for """ if entity_type in self.NON_WORK_AREA_TYPES: # hide the widget self.setVisible(False) else: # base class implementation super(FloatingWorkAreaButton, self).set_up(entity_type, entity_id) def __position_widget(self): """ Moves the widget to the bottom-right corner of the parent widget. """ self.move( self.parentWidget().width() - self.width() - self.RIGHT_OFFSET, self.parentWidget().height() - self.height() - self.BOTTOM_OFFSET ) def _init_default_state(self): """ Sets up the default collapsed state of the button """ super(FloatingWorkAreaButton, self)._init_default_state() self.__position_widget() def enterEvent(self, evt): """ QT Mouse enter event """ status = super(FloatingWorkAreaButton, self).enterEvent(evt) if not self._is_static: self.__position_widget() return status def _on_parent_resized(self): """ Special slot hooked up to the event filter. When associated widget is resized this slot is being called. """ self.__position_widget() class ResizeEventFilter(QtCore.QObject): """ Utility and helper. Event filter which emits a resized signal whenever the monitored widget resizes. You use it like this: # create the filter object. Typically, it's # it's easiest to parent it to the object that is # being monitored (in this case self.ui.thumbnail) filter = ResizeEventFilter(self.ui.thumbnail) # now set up a signal/slot connection so that the # __on_thumb_resized slot gets called every time # the widget is resized filter.resized.connect(self.__on_thumb_resized) # finally, install the event filter into the QT # event system self.ui.thumbnail.installEventFilter(filter) """ resized = QtCore.Signal() def eventFilter(self, obj, event): """ Event filter implementation. For information, see the QT docs: http://doc.qt.io/qt-4.8/qobject.html#eventFilter This will emit the resized signal (in this class) whenever the linked up object is being resized. :param obj: The object that is being watched for events :param event: Event object that the object has emitted :returns: Always returns False to indicate that no events should ever be discarded by the filter. """ # peek at the message if event.type() == QtCore.QEvent.Resize: # re-broadcast any resize events self.resized.emit() # pass it on! return False
broadcast_trick
Provide a decorator to wrap common numpy function with a broadcast trick. Dask arrays are currently immutable; thus when we know an array is uniform, we can replace the actual data by a single value and have all elements point to it, thus reducing the size. >>> x = np.broadcast_to(1, (100,100,100)) >>> x.base.nbytes 8 Those array are not only more efficient locally, but dask serialisation is aware of the _real_ size of those array and thus can send them around efficiently and schedule accordingly. Note that those array are read-only and numpy will refuse to assign to them, so should be safe.
from functools import partial from itertools import product import numpy as np from tlz import curry from ..base import tokenize from ..utils import funcname from .blockwise import BlockwiseCreateArray from .core import Array, normalize_chunks from .utils import ( meta_from_array, empty_like_safe, full_like_safe, ones_like_safe, zeros_like_safe, ) def _parse_wrap_args(func, args, kwargs, shape): if isinstance(shape, np.ndarray): shape = shape.tolist() if not isinstance(shape, (tuple, list)): shape = (shape,) name = kwargs.pop("name", None) chunks = kwargs.pop("chunks", "auto") dtype = kwargs.pop("dtype", None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype dtype = np.dtype(dtype) chunks = normalize_chunks(chunks, shape, dtype=dtype) name = name or funcname(func) + "-" + tokenize( func, shape, chunks, dtype, args, kwargs ) return { "shape": shape, "dtype": dtype, "kwargs": kwargs, "chunks": chunks, "name": name, } def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np creation function into blocked version """ if "shape" not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop("shape") if isinstance(shape, Array): raise TypeError( "Dask array input not supported. " "Please use tuple, list, or a 1D numpy array instead." ) parsed = _parse_wrap_args(func, args, kwargs, shape) shape = parsed["shape"] dtype = parsed["dtype"] chunks = parsed["chunks"] name = parsed["name"] kwargs = parsed["kwargs"] func = partial(func, dtype=dtype, **kwargs) graph = BlockwiseCreateArray( name, func, shape, chunks, ) return Array(graph, name, chunks, dtype=dtype, meta=kwargs.get("meta", None)) def wrap_func_like(func, *args, **kwargs): """ Transform np creation function into blocked version """ x = args[0] meta = meta_from_array(x) shape = kwargs.get("shape", x.shape) parsed = _parse_wrap_args(func, args, kwargs, shape) shape = parsed["shape"] dtype = parsed["dtype"] chunks = parsed["chunks"] name = parsed["name"] kwargs = parsed["kwargs"] keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) shapes = list(shapes) kw = [kwargs for _ in shapes] for i, s in enumerate(list(shapes)): kw[i]["shape"] = s vals = ((partial(func, dtype=dtype, **k),) + args for (k, s) in zip(kw, shapes)) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, meta=meta.astype(dtype)) def wrap_func_like_safe(func, func_like, *args, **kwargs): """ Safe implementation for wrap_func_like(), attempts to use func_like(), if the shape keyword argument, falls back to func(). """ try: return func_like(*args, **kwargs) except TypeError: return func(*args, **kwargs) @curry def wrap(wrap_func, func, **kwargs): func_like = kwargs.pop("func_like", None) if func_like is None: f = partial(wrap_func, func, **kwargs) else: f = partial(wrap_func, func_like, **kwargs) template = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also features optional keyword arguments ``chunks: int, tuple, or dict`` and ``name: str``. Original signature follows below. """ if func.__doc__ is not None: f.__doc__ = template % {"name": func.__name__} + func.__doc__ f.__name__ = "blocked_" + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) @curry def _broadcast_trick_inner(func, shape, meta=(), *args, **kwargs): if shape == (): return np.broadcast_to(func(meta, shape=(), *args, **kwargs), shape) else: return np.broadcast_to(func(meta, shape=1, *args, **kwargs), shape) # MASKED: broadcast_trick function (lines 154-181) ones = w(broadcast_trick(ones_like_safe), dtype="f8") zeros = w(broadcast_trick(zeros_like_safe), dtype="f8") empty = w(broadcast_trick(empty_like_safe), dtype="f8") w_like = wrap(wrap_func_like_safe) empty_like = w_like(np.empty, func_like=np.empty_like) # full and full_like require special casing due to argument check on fill_value # Generate wrapped functions only once _full = w(broadcast_trick(full_like_safe)) _full_like = w_like(np.full, func_like=np.full_like) # workaround for numpy doctest failure: https://github.com/numpy/numpy/pull/17472 _full.__doc__ = _full.__doc__.replace( "array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])", "array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])", ) def full(shape, fill_value, *args, **kwargs): # np.isscalar has somewhat strange behavior: # https://docs.scipy.org/doc/numpy/reference/generated/numpy.isscalar.html if np.ndim(fill_value) != 0: raise ValueError( f"fill_value must be scalar. Received {type(fill_value).__name__} instead." ) return _full(shape=shape, fill_value=fill_value, *args, **kwargs) def full_like(a, fill_value, *args, **kwargs): if np.ndim(fill_value) != 0: raise ValueError( f"fill_value must be scalar. Received {type(fill_value).__name__} instead." ) return _full_like( a=a, fill_value=fill_value, *args, **kwargs, ) full.__doc__ = _full.__doc__ full_like.__doc__ = _full_like.__doc__
def broadcast_trick(func): """ Provide a decorator to wrap common numpy function with a broadcast trick. Dask arrays are currently immutable; thus when we know an array is uniform, we can replace the actual data by a single value and have all elements point to it, thus reducing the size. >>> x = np.broadcast_to(1, (100,100,100)) >>> x.base.nbytes 8 Those array are not only more efficient locally, but dask serialisation is aware of the _real_ size of those array and thus can send them around efficiently and schedule accordingly. Note that those array are read-only and numpy will refuse to assign to them, so should be safe. """ inner = _broadcast_trick_inner(func) if func.__doc__ is not None: inner.__doc__ = func.__doc__ inner.__name__ = func.__name__ if inner.__name__.endswith("_like_safe"): inner.__name__ = inner.__name__[:-10] return inner
154
181
from functools import partial from itertools import product import numpy as np from tlz import curry from ..base import tokenize from ..utils import funcname from .blockwise import BlockwiseCreateArray from .core import Array, normalize_chunks from .utils import ( meta_from_array, empty_like_safe, full_like_safe, ones_like_safe, zeros_like_safe, ) def _parse_wrap_args(func, args, kwargs, shape): if isinstance(shape, np.ndarray): shape = shape.tolist() if not isinstance(shape, (tuple, list)): shape = (shape,) name = kwargs.pop("name", None) chunks = kwargs.pop("chunks", "auto") dtype = kwargs.pop("dtype", None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype dtype = np.dtype(dtype) chunks = normalize_chunks(chunks, shape, dtype=dtype) name = name or funcname(func) + "-" + tokenize( func, shape, chunks, dtype, args, kwargs ) return { "shape": shape, "dtype": dtype, "kwargs": kwargs, "chunks": chunks, "name": name, } def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np creation function into blocked version """ if "shape" not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop("shape") if isinstance(shape, Array): raise TypeError( "Dask array input not supported. " "Please use tuple, list, or a 1D numpy array instead." ) parsed = _parse_wrap_args(func, args, kwargs, shape) shape = parsed["shape"] dtype = parsed["dtype"] chunks = parsed["chunks"] name = parsed["name"] kwargs = parsed["kwargs"] func = partial(func, dtype=dtype, **kwargs) graph = BlockwiseCreateArray( name, func, shape, chunks, ) return Array(graph, name, chunks, dtype=dtype, meta=kwargs.get("meta", None)) def wrap_func_like(func, *args, **kwargs): """ Transform np creation function into blocked version """ x = args[0] meta = meta_from_array(x) shape = kwargs.get("shape", x.shape) parsed = _parse_wrap_args(func, args, kwargs, shape) shape = parsed["shape"] dtype = parsed["dtype"] chunks = parsed["chunks"] name = parsed["name"] kwargs = parsed["kwargs"] keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) shapes = list(shapes) kw = [kwargs for _ in shapes] for i, s in enumerate(list(shapes)): kw[i]["shape"] = s vals = ((partial(func, dtype=dtype, **k),) + args for (k, s) in zip(kw, shapes)) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, meta=meta.astype(dtype)) def wrap_func_like_safe(func, func_like, *args, **kwargs): """ Safe implementation for wrap_func_like(), attempts to use func_like(), if the shape keyword argument, falls back to func(). """ try: return func_like(*args, **kwargs) except TypeError: return func(*args, **kwargs) @curry def wrap(wrap_func, func, **kwargs): func_like = kwargs.pop("func_like", None) if func_like is None: f = partial(wrap_func, func, **kwargs) else: f = partial(wrap_func, func_like, **kwargs) template = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also features optional keyword arguments ``chunks: int, tuple, or dict`` and ``name: str``. Original signature follows below. """ if func.__doc__ is not None: f.__doc__ = template % {"name": func.__name__} + func.__doc__ f.__name__ = "blocked_" + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) @curry def _broadcast_trick_inner(func, shape, meta=(), *args, **kwargs): if shape == (): return np.broadcast_to(func(meta, shape=(), *args, **kwargs), shape) else: return np.broadcast_to(func(meta, shape=1, *args, **kwargs), shape) def broadcast_trick(func): """ Provide a decorator to wrap common numpy function with a broadcast trick. Dask arrays are currently immutable; thus when we know an array is uniform, we can replace the actual data by a single value and have all elements point to it, thus reducing the size. >>> x = np.broadcast_to(1, (100,100,100)) >>> x.base.nbytes 8 Those array are not only more efficient locally, but dask serialisation is aware of the _real_ size of those array and thus can send them around efficiently and schedule accordingly. Note that those array are read-only and numpy will refuse to assign to them, so should be safe. """ inner = _broadcast_trick_inner(func) if func.__doc__ is not None: inner.__doc__ = func.__doc__ inner.__name__ = func.__name__ if inner.__name__.endswith("_like_safe"): inner.__name__ = inner.__name__[:-10] return inner ones = w(broadcast_trick(ones_like_safe), dtype="f8") zeros = w(broadcast_trick(zeros_like_safe), dtype="f8") empty = w(broadcast_trick(empty_like_safe), dtype="f8") w_like = wrap(wrap_func_like_safe) empty_like = w_like(np.empty, func_like=np.empty_like) # full and full_like require special casing due to argument check on fill_value # Generate wrapped functions only once _full = w(broadcast_trick(full_like_safe)) _full_like = w_like(np.full, func_like=np.full_like) # workaround for numpy doctest failure: https://github.com/numpy/numpy/pull/17472 _full.__doc__ = _full.__doc__.replace( "array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])", "array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])", ) def full(shape, fill_value, *args, **kwargs): # np.isscalar has somewhat strange behavior: # https://docs.scipy.org/doc/numpy/reference/generated/numpy.isscalar.html if np.ndim(fill_value) != 0: raise ValueError( f"fill_value must be scalar. Received {type(fill_value).__name__} instead." ) return _full(shape=shape, fill_value=fill_value, *args, **kwargs) def full_like(a, fill_value, *args, **kwargs): if np.ndim(fill_value) != 0: raise ValueError( f"fill_value must be scalar. Received {type(fill_value).__name__} instead." ) return _full_like( a=a, fill_value=fill_value, *args, **kwargs, ) full.__doc__ = _full.__doc__ full_like.__doc__ = _full_like.__doc__
__init__
Keyword args: iqn (str): The iSCSI Qualified Name (or `null` if target is not iSCSI). nqn (str): NVMe Qualified Name (or `null` if target is not NVMeoF). portal (str): IP and port number (or `null` if target is not iSCSI). wwn (str): Fibre Channel World Wide Name (or `null` if target is not Fibre Channel).
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.11 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_11 import models class PortCommon(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'iqn': 'str', 'nqn': 'str', 'portal': 'str', 'wwn': 'str' } attribute_map = { 'iqn': 'iqn', 'nqn': 'nqn', 'portal': 'portal', 'wwn': 'wwn' } required_args = { } # MASKED: __init__ function (lines 49-70) def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `PortCommon`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PortCommon, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PortCommon): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
def __init__( self, iqn=None, # type: str nqn=None, # type: str portal=None, # type: str wwn=None, # type: str ): """ Keyword args: iqn (str): The iSCSI Qualified Name (or `null` if target is not iSCSI). nqn (str): NVMe Qualified Name (or `null` if target is not NVMeoF). portal (str): IP and port number (or `null` if target is not iSCSI). wwn (str): Fibre Channel World Wide Name (or `null` if target is not Fibre Channel). """ if iqn is not None: self.iqn = iqn if nqn is not None: self.nqn = nqn if portal is not None: self.portal = portal if wwn is not None: self.wwn = wwn
49
70
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.11 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_11 import models class PortCommon(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'iqn': 'str', 'nqn': 'str', 'portal': 'str', 'wwn': 'str' } attribute_map = { 'iqn': 'iqn', 'nqn': 'nqn', 'portal': 'portal', 'wwn': 'wwn' } required_args = { } def __init__( self, iqn=None, # type: str nqn=None, # type: str portal=None, # type: str wwn=None, # type: str ): """ Keyword args: iqn (str): The iSCSI Qualified Name (or `null` if target is not iSCSI). nqn (str): NVMe Qualified Name (or `null` if target is not NVMeoF). portal (str): IP and port number (or `null` if target is not iSCSI). wwn (str): Fibre Channel World Wide Name (or `null` if target is not Fibre Channel). """ if iqn is not None: self.iqn = iqn if nqn is not None: self.nqn = nqn if portal is not None: self.portal = portal if wwn is not None: self.wwn = wwn def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `PortCommon`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PortCommon, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PortCommon): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
get_primaries
prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy # MASKED: get_primaries function (lines 123-144) def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb
123
144
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
get_secondaries
secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan.
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point # MASKED: get_secondaries function (lines 211-239) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3))
211
239
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
dot_pattern
dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image.
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img # MASKED: dot_pattern function (lines 770-809) def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img
770
809
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
complex_dot_pattern
dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image.
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img # MASKED: complex_dot_pattern function (lines 812-859) def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img
812
859
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
make_ycbcr_checker
YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) # MASKED: make_ycbcr_checker function (lines 946-988) def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img
946
988
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
get_log10_x_scale
Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch # MASKED: get_log10_x_scale function (lines 1070-1086) def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x
1,070
1,086
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
get_log2_x_scale
Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x # MASKED: get_log2_x_scale function (lines 1089-1104) def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x
1,089
1,104
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
shaper_func_log2_to_linear
ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized # MASKED: shaper_func_log2_to_linear function (lines 1150-1170) def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y
1,150
1,170
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
draw_straight_line
直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y # MASKED: draw_straight_line function (lines 1173-1224) def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color
1,173
1,224
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
draw_outline
img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color # MASKED: draw_outline function (lines 1227-1271) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width)
1,227
1,271
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
calc_rad_patch_idx2
以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) # MASKED: calc_rad_patch_idx2 function (lines 1299-1334) def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx
1,299
1,334
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
_calc_rgb_from_same_lstar_radial_data
以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx # MASKED: _calc_rgb_from_same_lstar_radial_data function (lines 1337-1357) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0)
1,337
1,357
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
calc_same_lstar_radial_color_patch_data
以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) # MASKED: calc_same_lstar_radial_color_patch_data function (lines 1360-1392) def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list
1,360
1,392
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
get_accelerated_x_1x
単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) # MASKED: get_accelerated_x_1x function (lines 1416-1442) def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x
1,416
1,442
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
get_accelerated_x_2x
単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x # MASKED: get_accelerated_x_2x function (lines 1445-1473) def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x
1,445
1,473
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
generate_color_checker_rgb_value
Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x # MASKED: generate_color_checker_rgb_value function (lines 1523-1590) def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb
1,523
1,590
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
calc_st_pos_for_centering
Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img # MASKED: calc_st_pos_for_centering function (lines 1625-1656) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v)
1,625
1,656
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = RGB_COLOURSPACES[name].whitepoint chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) rgb_to_large_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb_org = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb = rgb_org * mask_rgb rgba = np.dstack((rgb, mask)) # こっからもういちど XYZ に変換。Yを求めるために。 # --------------------------------------------- large_xyz2 = RGB_to_XYZ(rgb, illuminant_RGB, illuminant_XYZ, rgb_to_large_xyz_matrix, chromatic_adaptation_transform) # ログスケールに変換する準備 # -------------------------- large_y = large_xyz2[..., 1] * 1000 large_y[large_y < 1] = 1.0 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(xy[..., 0], xy[..., 1], np.log10(large_y), # rcount=100, ccount=100) ax.plot_surface(xy[..., 0], xy[..., 1], np.log10(large_y), rcount=64, ccount=64, facecolors=rgb_org) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("Y") ax.set_zticks([0, 1, 2, 3]) ax.set_zticklabels([1, 10, 100, 1000]) # chromatcity_image の取得。z=0 の位置に貼り付ける # ---------------------------------------------- cie1931_rgb = get_chromaticity_image(samples=samples, bg_color=0.0) alpha = np.zeros_like(cie1931_rgb[..., 0]) rgb_sum = np.sum(cie1931_rgb, axis=-1) alpha[rgb_sum > 0.00001] = 1 cie1931_rgb = np.dstack((cie1931_rgb[..., 0], cie1931_rgb[..., 1], cie1931_rgb[..., 2], alpha)) zz = np.zeros_like(xy[..., 0]) ax.plot_surface(xy[..., 0], xy[..., 1], zz, facecolors=cie1931_rgb) plt.show() def log_tick_formatter(val, pos=None): return "{:.0e}".format(10**val) def get_3d_grid_cube_format(grid_num=4): """ # 概要 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), ... みたいな配列を返す。 CUBE形式の3DLUTを作成する時に便利。 """ base = np.linspace(0, 1, grid_num) ones_x = np.ones((grid_num, grid_num, 1)) ones_y = np.ones((grid_num, 1, grid_num)) ones_z = np.ones((1, grid_num, grid_num)) r_3d = base[np.newaxis, np.newaxis, :] * ones_x g_3d = base[np.newaxis, :, np.newaxis] * ones_y b_3d = base[:, np.newaxis, np.newaxis] * ones_z r_3d = r_3d.flatten() g_3d = g_3d.flatten() b_3d = b_3d.flatten() return np.dstack((r_3d, g_3d, b_3d)) def quadratic_bezier_curve(t, p0, p1, p2, samples=1024): # x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ # + (t ** 2) * p2[0] # y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ # + (t ** 2) * p2[1] x = ((1 - t) ** 2) * p0[0] + 2 * (1 - t) * t * p1[0]\ + (t ** 2) * p2[0] y = ((1 - t) ** 2) * p0[1] + 2 * (1 - t) * t * p1[1]\ + (t ** 2) * p2[1] # ax1 = pu.plot_1_graph(fontsize=20, # figsize=(10, 8), # graph_title="Title", # graph_title_size=None, # xlabel="X Axis Label", ylabel="Y Axis Label", # axis_label_size=None, # legend_size=17, # xlim=None, # ylim=None, # xtick=None, # ytick=None, # xtick_size=None, ytick_size=None, # linewidth=3, # minor_xtick_num=None, # minor_ytick_num=None) # ax1.plot(x, y, label='aaa') # plt.legend(loc='upper left') # plt.show() def gen_step_gradation(width=1024, height=128, step_num=17, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h', debug=False): """ # 概要 階段状に変化するグラデーションパターンを作る。 なお、引数の調整により正確に1階調ずつ変化するパターンも作成可能。 # 注意事項 正確に1階調ずつ変化するグラデーションを作る場合は ```step_num = (2 ** bit_depth) + 1``` となるようにパラメータを指定すること。具体例は以下のExample参照。 # Example ``` grad_8 = gen_step_gradation(width=grad_width, height=grad_height, step_num=257, bit_depth=8, color=(1.0, 1.0, 1.0), direction='h') grad_10 = gen_step_gradation(width=grad_width, height=grad_height, step_num=1025, bit_depth=10, color=(1.0, 1.0, 1.0), direction='h') ``` """ max = 2 ** bit_depth # グラデーション方向設定 # ---------------------- if direction == 'h': pass else: temp = height height = width width = temp if (max + 1 != step_num): """ 1階調ずつの増加では無いパターン。 末尾のデータが 256 や 1024 になるため -1 する。 """ val_list = np.linspace(0, max, step_num) val_list[-1] -= 1 else: """ 正確に1階調ずつ変化するパターン。 末尾のデータが 256 や 1024 になるため除外する。 """ val_list = np.linspace(0, max, step_num)[0:-1] step_num -= 1 # step_num は 引数で余計に +1 されてるので引く # 念のため1階調ずつの変化か確認 # --------------------------- diff = val_list[1:] - val_list[0:-1] if (diff == 1).all(): pass else: raise ValueError("calculated value is invalid.") # まずは水平1LINEのグラデーションを作る # ----------------------------------- step_length_list = equal_devision(width, step_num) step_bar_list = [] for step_idx, length in enumerate(step_length_list): step = [np.ones((length)) * color[c_idx] * val_list[step_idx] for c_idx in range(3)] if direction == 'h': step = np.dstack(step) step_bar_list.append(step) step_bar = np.hstack(step_bar_list) else: step = np.dstack(step).reshape((length, 1, 3)) step_bar_list.append(step) step_bar = np.vstack(step_bar_list) # ブロードキャストを利用して2次元に拡張する # ------------------------------------------ if direction == 'h': img = step_bar * np.ones((height, 1, 3)) else: img = step_bar * np.ones((1, height, 3)) # np.uint16 にコンバート # ------------------------------ # img = np.uint16(np.round(img * (2 ** (16 - bit_depth)))) if debug: preview_image(img, 'rgb') return img def merge(img_a, img_b, pos=(0, 0)): """ img_a に img_b をマージする。 img_a にデータを上書きする。 pos = (horizontal_st, vertical_st) """ b_width = img_b.shape[1] b_height = img_b.shape[0] img_a[pos[1]:b_height+pos[1], pos[0]:b_width+pos[0]] = img_b def merge_with_alpha(bg_img, fg_img, tf_str=tf.SRGB, pos=(0, 0)): """ 合成する。 Parameters ---------- bg_img : array_like(float, 3-channel) image data. fg_img : array_like(float, 4-channel) image data tf : strings transfer function pos : list(int) (pos_h, pos_v) """ f_width = fg_img.shape[1] f_height = fg_img.shape[0] bg_merge_area = bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] bg_linear = tf.eotf_to_luminance(bg_merge_area, tf_str) fg_linear = tf.eotf_to_luminance(fg_img, tf_str) alpha = fg_linear[:, :, 3:] / tf.PEAK_LUMINANCE[tf_str] out_linear = (1 - alpha) * bg_linear + fg_linear[:, :, :-1] out_merge_area = tf.oetf_from_luminance(out_linear, tf_str) bg_img[pos[1]:f_height+pos[1], pos[0]:f_width+pos[0]] = out_merge_area return bg_img def dot_pattern(dot_size=4, repeat=4, color=np.array([1.0, 1.0, 1.0])): """ dot pattern 作る。 Parameters ---------- dot_size : integer dot size. repeat : integer The number of high-low pairs. color : array_like color value. Returns ------- array_like dot pattern image. """ # 水平・垂直のピクセル数 pixel_num = dot_size * 2 * repeat # High-Log の 論理配列を生成 even_logic = [(np.arange(pixel_num) % (dot_size * 2)) - dot_size < 0] even_logic = np.dstack((even_logic, even_logic, even_logic)) odd_logic = np.logical_not(even_logic) # 着色 color = color.reshape((1, 1, 3)) even_line = (np.ones((1, pixel_num, 3)) * even_logic) * color odd_line = (np.ones((1, pixel_num, 3)) * odd_logic) * color # V方向にコピー&Even-Oddの結合 even_block = np.repeat(even_line, dot_size, axis=0) odd_block = np.repeat(odd_line, dot_size, axis=0) pair_block = np.vstack((even_block, odd_block)) img = np.vstack([pair_block for x in range(repeat)]) return img def complex_dot_pattern(kind_num=3, whole_repeat=2, fg_color=np.array([1.0, 1.0, 1.0]), bg_color=np.array([0.15, 0.15, 0.15])): """ dot pattern 作る。 Parameters ---------- kind_num : integer 作成するドットサイズの種類。 例えば、kind_num=3 ならば、1dot, 2dot, 4dot のパターンを作成。 whole_repeat : integer 異なる複数種類のドットパターンの組数。 例えば、kind_num=3, whole_repeat=2 ならば、 1dot, 2dot, 4dot のパターンを水平・垂直に2組作る。 fg_color : array_like foreground color value. bg_color : array_like background color value. reduce : bool HDRテストパターンの3840x2160専用。縦横を半分にする。 Returns ------- array_like dot pattern image. """ max_dot_width = 2 ** kind_num img_list = [] for size_idx in range(kind_num)[::-1]: dot_size = 2 ** size_idx repeat = max_dot_width // dot_size dot_img = dot_pattern(dot_size, repeat, fg_color) img_list.append(dot_img) img_list.append(np.ones_like(dot_img) * bg_color) # preview_image(dot_img) line_upper_img = np.hstack(img_list) line_upper_img = np.hstack([line_upper_img for x in range(whole_repeat)]) line_lower_img = line_upper_img.copy()[:, ::-1, :] h_unit_img = np.vstack((line_upper_img, line_lower_img)) img = np.vstack([h_unit_img for x in range(kind_num * whole_repeat)]) # preview_image(img) # cv2.imwrite("hoge.tiff", np.uint8(img * 0xFF)[..., ::-1]) return img def make_csf_color_image(width=640, height=640, lv1=np.array([940, 940, 940], dtype=np.uint16), lv2=np.array([1023, 1023, 1023], dtype=np.uint16), stripe_num=6): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは10bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : array_like video level 1. this value must be 10bit. lv2 : array_like video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1 if (idx % 2) == 0 else lv2 temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) temp_img = temp_img * lv.reshape((1, 1, 3)) ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] # preview_image(img / 1023) return img def make_tile_pattern(width=480, height=960, h_tile_num=4, v_tile_num=4, low_level=(940, 940, 940), high_level=(1023, 1023, 1023)): """ タイル状の縞々パターンを作る """ width_array = equal_devision(width, h_tile_num) height_array = equal_devision(height, v_tile_num) high_level = np.array(high_level, dtype=np.uint16) low_level = np.array(low_level, dtype=np.uint16) v_buf = [] for v_idx, height in enumerate(height_array): h_buf = [] for h_idx, width in enumerate(width_array): tile_judge = (h_idx + v_idx) % 2 == 0 h_temp = np.zeros((height, width, 3), dtype=np.uint16) h_temp[:, :] = high_level if tile_judge else low_level h_buf.append(h_temp) v_buf.append(np.hstack(h_buf)) img = np.vstack(v_buf) # preview_image(img/1024.0) return img def get_marker_idx(img, marker_value): return np.all(img == marker_value, axis=-1) def make_ycbcr_checker(height=480, v_tile_num=4): """ YCbCr係数誤りを確認するテストパターンを作る。 正直かなり汚い組み方です。雑に作ったパターンを悪魔合体させています。 Parameters ---------- height : numeric. height of the pattern image. v_tile_num : numeric number of the tile in the vertical direction. Note ---- 横長のパターンになる。以下の式が成立する。 ``` h_tile_num = v_tile_num * 2 width = height * 2 ``` Returns ------- array_like ycbcr checker image """ cyan_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[0, 990, 990], high_level=[0, 1023, 1023]) magenta_img = make_tile_pattern(width=height, height=height, h_tile_num=v_tile_num, v_tile_num=v_tile_num, low_level=[990, 0, 312], high_level=[1023, 0, 312]) out_img = np.hstack([cyan_img, magenta_img]) # preview_image(out_img/1023.0) return out_img def plot_color_checker_image(rgb, rgb2=None, size=(1920, 1080), block_size=1/4.5, padding=0.01): """ ColorCheckerをプロットする Parameters ---------- rgb : array_like RGB value of the ColorChecker. RGB's shape must be (24, 3). rgb2 : array_like It's a optional parameter. If You want to draw two different ColorCheckers, set the RGB value to this variable. size : tuple canvas size. block_size : float A each block's size. This value is ratio to height of the canvas. padding : float A padding to the block. Returns ------- array_like A ColorChecker image. """ IMG_HEIGHT = size[1] IMG_WIDTH = size[0] COLOR_CHECKER_SIZE = block_size COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 COLOR_CHECKER_PADDING = 0.01 # 基本パラメータ算出 # -------------------------------------- COLOR_CHECKER_H_NUM = 6 COLOR_CHECKER_V_NUM = 4 img_height = IMG_HEIGHT img_width = IMG_WIDTH patch_st_h = int(IMG_WIDTH / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_H_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_H_NUM / 2.0 - 0.5)) / 2.0)) patch_st_v = int(IMG_HEIGHT / 2.0 - (IMG_HEIGHT * COLOR_CHECKER_SIZE * COLOR_CHECKER_V_NUM / 2.0 + (IMG_HEIGHT * COLOR_CHECKER_PADDING * (COLOR_CHECKER_V_NUM / 2.0 - 0.5)) / 2.0)) patch_width = int(img_height * COLOR_CHECKER_SIZE) patch_height = patch_width patch_space = int(img_height * COLOR_CHECKER_PADDING) # 24ループで1枚の画像に24パッチを描画 # ------------------------------------------------- img_all_patch = np.zeros((img_height, img_width, 3), dtype=np.uint8) for idx in range(COLOR_CHECKER_H_NUM * COLOR_CHECKER_V_NUM): v_idx = idx // COLOR_CHECKER_H_NUM h_idx = (idx % COLOR_CHECKER_H_NUM) patch = np.ones((patch_height, patch_width, 3)) patch[:, :] = rgb[idx] st_h = patch_st_h + (patch_width + patch_space) * h_idx st_v = patch_st_v + (patch_height + patch_space) * v_idx img_all_patch[st_v:st_v+patch_height, st_h:st_h+patch_width] = patch # pt1 = (st_h, st_v) # upper left pt2 = (st_h + patch_width, st_v) # upper right pt3 = (st_h, st_v + patch_height) # lower left pt4 = (st_h + patch_width, st_v + patch_height) # lower right pts = np.array((pt2, pt3, pt4)) sub_color = rgb[idx].tolist() if rgb2 is None else rgb2[idx].tolist() cv2.fillPoly(img_all_patch, [pts], sub_color) preview_image(img_all_patch) return img_all_patch def get_log10_x_scale( sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6): """ Log10スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale( ... sample_num=8, ref_val=1.0, min_exposure=-1, max_exposure=6) array([ 1.0000e-01 1.0000e+00 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04 1.0000e+05 1.0000e+06]) """ x_min = np.log10(ref_val * (10 ** min_exposure)) x_max = np.log10(ref_val * (10 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 10.0 ** x def get_log2_x_scale( sample_num=32, ref_val=1.0, min_exposure=-6.5, max_exposure=6.5): """ Log2スケールのx軸データを作る。 Examples -------- >>> get_log2_x_scale(sample_num=10, min_exposure=-4.0, max_exposure=4.0) array([[ 0.0625 0.11573434 0.214311 0.39685026 0.73486725 1.36079 2.5198421 4.66611616 8.64047791 16. ]]) """ x_min = np.log2(ref_val * (2 ** min_exposure)) x_max = np.log2(ref_val * (2 ** max_exposure)) x = np.linspace(x_min, x_max, sample_num) return 2.0 ** x def shaper_func_linear_to_log2( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Lin_to_Log2_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Lin_to_Log2_param.ctl Parameters ---------- x : array_like linear data. mid_gray : float 18% gray value on linear scale. min_exposure : float minimum value on log scale. max_exposure : float maximum value on log scale. Returns ------- array_like log2 value that is transformed from linear x value. Examples -------- >>> shaper_func_linear_to_log2( ... x=0.18, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) 0.5 >>> shaper_func_linear_to_log2( ... x=np.array([0.00198873782209, 16.2917402385]) ... mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([ 1.58232402e-13 1.00000000e+00]) """ # log2空間への変換。mid_gray が 0.0 となるように補正 y = np.log2(x / mid_gray) # min, max の範囲で正規化。 y_normalized = (y - min_exposure) / (max_exposure - min_exposure) y_normalized[y_normalized < 0] = 0 return y_normalized def shaper_func_log2_to_linear( x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5): """ ACESutil.Log2_to_Lin_param.ctl を参考に作成。 https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESutil.Log2_to_Lin_param.ctl Log2空間の補足は shaper_func_linear_to_log2() の説明を参照 Examples -------- >>> x = np.array([0.0, 1.0]) >>> shaper_func_log2_to_linear( ... x, mid_gray=0.18, min_exposure=-6.5, max_exposure=6.5) array([0.00198873782209, 16.2917402385]) """ x_re_scale = x * (max_exposure - min_exposure) + min_exposure y = (2.0 ** x_re_scale) * mid_gray # plt.plot(x, y) # plt.show() return y def draw_straight_line(img, pt1, pt2, color, thickness): """ 直線を引く。OpenCV だと 8bit しか対応してないっぽいので自作。 Parameters ---------- img : array_like image data. pt1 : list(pos_h, pos_v) start point. pt2 : list(pos_h, pos_v) end point. color : array_like color thickness : int thickness. Returns ------- array_like image data with line. Notes ----- thickness のパラメータは pt1 の点から右下方向に効きます。 pt1 を中心として太さではない事に注意。 Examples -------- >>> pt1 = (0, 0) >>> pt2 = (1920, 0) >>> color = (940, 940, 940) >>> thickness = 4 >>> draw_straight_line(img, pt1, pt2, color, thickness) """ # parameter check if (pt1[0] != pt2[0]) and (pt1[1] != pt2[1]): raise ValueError("invalid pt1, pt2 parameters") # check direction if pt1[0] == pt2[0]: thickness_direction = 'h' else: thickness_direction = 'v' if thickness_direction == 'h': for h_idx in range(thickness): img[pt1[1]:pt2[1], pt1[0] + h_idx, :] = color elif thickness_direction == 'v': for v_idx in range(thickness): img[pt1[1] + v_idx, pt1[0]:pt2[0], :] = color def draw_outline(img, fg_color, outline_width): """ img に対して外枠線を引く Parameters ---------- img : array_like image data. fg_color : array_like color outline_width : int thickness. Returns ------- array_like image data with line. Examples -------- >>> img = np.zeros((1080, 1920, 3)) >>> color = (940, 940, 940) >>> thickness = 2 >>> draw_outline(img, color, thickness) """ width = img.shape[1] height = img.shape[0] # upper left pt1 = (0, 0) pt2 = (width, 0) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, 0) pt2 = (0, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) # lower right pt1 = (width - outline_width, 0) pt2 = (width - outline_width, height) draw_straight_line( img, pt1, pt2, fg_color, outline_width) pt1 = (0, height - outline_width) pt2 = (width, height - outline_width) draw_straight_line( img, pt1, pt2, fg_color, outline_width) def convert_luminance_to_color_value(luminance, transfer_function): """ 輝度[cd/m2] から code value の RGB値に変換する。 luminance の単位は [cd/m2]。無彩色である。 Examples -------- >>> convert_luminance_to_color_value(100, tf.GAMMA24) >>> [ 1.0 1.0 1.0 ] >>> convert_luminance_to_color_value(100, tf.ST2084) >>> [ 0.50807842 0.50807842 0.50807842 ] """ code_value = convert_luminance_to_code_value( luminance, transfer_function) return np.array([code_value, code_value, code_value]) def convert_luminance_to_code_value(luminance, transfer_function): """ 輝度[cd/m2] から code value に変換する。 luminance の単位は [cd/m2] """ return tf.oetf_from_luminance(luminance, transfer_function) def calc_rad_patch_idx2(outmost_num=5, current_num=3): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 本関数はまさにその変換を行う。 """ base = np.arange(outmost_num ** 2).reshape((outmost_num, outmost_num)) # print(base) t_idx = (outmost_num - current_num) // 2 trimmed = base[t_idx:t_idx+current_num, t_idx:t_idx+current_num] # print(trimmed) # print(np.arange(current_num**2).reshape((current_num, current_num))) half_num = current_num // 2 conv_idx = [] for idx in range(half_num): val = (current_num ** 2) // 2 + half_num - current_num * idx conv_idx.append(val) for idx in range(current_num)[::-1]: conv_idx.append(idx) for idx in range(1, current_num - 1): conv_idx.append(idx * current_num) for idx in range(current_num): val = (current_num ** 2) - current_num + idx conv_idx.append(val) for idx in range(1, half_num): val = (current_num ** 2) - 1 - idx * current_num conv_idx.append(val) conv_idx = trimmed.flatten()[conv_idx] return conv_idx def _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られたデータは並べ替えが済んでいないため、calc_rad_patch_idx2() で 得られる変換テーブルを使った変換が必要。 """ current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rad = np.linspace(0, 2 * np.pi, current_patch_num, endpoint=False) ll = np.ones((current_patch_num)) * lstar aa = np.cos(rad) * temp_chroma bb = np.sin(rad) * temp_chroma lab = np.dstack((ll, aa, bb)) large_xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB(large_xyz, D65_WHITE, D65_WHITE, color_space.XYZ_to_RGB_matrix) return np.clip(rgb, 0.0, 1.0) def calc_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): """ 以下のような、中心がGray、周りは CIELAB 空間の a*b*平面のカラーパッチの RGB値のリストを得る。 https://user-images.githubusercontent.com/3609012/75444470-d3bc5600-59a6-11ea-962b-c315648782a9.png 得られた RGB値のリストは最初のデータが画像左上の緑データ、 最後のデータが画像右下の紫データとなるよう既に**並べ替え**が行われている。 よってパッチをプロットする場合はRGB値リストの先頭から順にデータを取り出し、 右下に向かって並べていけば良い。 """ patch_num = outmost_num ** 2 transfer_function = tf.GAMMA24 rgb_list = np.ones((patch_num, 3)) current_num_list = range(1, outmost_num + 1, 2) chroma_list = np.linspace(0, chroma, len(current_num_list)) for temp_chroma, current_num in zip(chroma_list, current_num_list): current_patch_num = (current_num - 1) * 4 if current_num > 1 else 1 rgb = _calc_rgb_from_same_lstar_radial_data( lstar, temp_chroma, current_num, color_space) rgb = np.reshape(rgb, (current_patch_num, 3)) rgb = tf.oetf(rgb, transfer_function) conv_idx = calc_rad_patch_idx2( outmost_num=outmost_num, current_num=current_num) for idx in range(current_patch_num): rgb_list[conv_idx[idx]] = rgb[idx] return rgb_list def _plot_same_lstar_radial_color_patch_data( lstar=58, chroma=32.5, outmost_num=9, color_space=BT709_COLOURSPACE, transfer_function=tf.GAMMA24): patch_size = 1080 // outmost_num img = np.ones((1080, 1080, 3)) * 0.0 rgb = calc_same_lstar_radial_color_patch_data( lstar=lstar, chroma=chroma, outmost_num=outmost_num, color_space=color_space, transfer_function=transfer_function) for idx in range(outmost_num ** 2): h_idx = idx % outmost_num v_idx = idx // outmost_num st_pos = (h_idx * patch_size, v_idx * patch_size) temp_img = np.ones((patch_size, patch_size, 3))\ * rgb[idx][np.newaxis, np.newaxis, :] merge(img, temp_img, st_pos) cv2.imwrite("hoge2.tiff", np.uint16(np.round(img[:, :, ::-1] * 0xFFFF))) def get_accelerated_x_1x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x1 = get_accelerated_x_1x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x1) >>> [ 0. 0.049 0.188 0.388 0.611 0.811 0.950 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_2x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の2倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list Examples -------- >>> x0 = np.linspace(0, 1, 8) >>> x2 = get_accelerated_x_2x(8) >>> print(x0) >>> [ 0. 0.142 0.285 0.428 0.571 0.714 0.857 1. ] >>> print(x2) >>> [ 0. 0.006 0.084 0.328 0.671 0.915 0.993 1. ] """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_4x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def get_accelerated_x_8x(sample_num=64): """ 単調増加ではなく、加速度が 0→1→0 となるような x を作る。 加速度が `get_accelerated_x_1x` の4倍!! Parameters ---------- sample_num : int the number of the sample. Returns ------- array_like accelerated value list """ rad = np.linspace(-0.5 * np.pi, 0.5 * np.pi, sample_num) rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi rad = np.sin(rad) * 0.5 * np.pi x = (np.sin(rad) + 1) / 2 return x def generate_color_checker_rgb_value( color_space=BT709_COLOURSPACE, target_white=D65_WHITE): """ Generate the 24 RGB values of the color checker. Parameters ---------- color_space : color space color space object in `colour` module. target_white : array_like the xy values of the white point of target color space. Returns ------- array_like 24 RGB values. This is linear. OETF is not applied. Examples -------- >>> generate_color_checker_rgb_value( ... color_space=colour.models.BT709_COLOURSPACE, ... target_white=[0.3127, 0.3290]) >>> [[ 0.17289286 0.08205728 0.05714562] >>> [ 0.5680292 0.29250401 0.21951748] >>> [ 0.10435534 0.19656108 0.32958666] >>> [ 0.1008804 0.14839018 0.05327639] >>> [ 0.22303549 0.2169701 0.43166537] >>> [ 0.10715338 0.513512 0.41415978] >>> [ 0.74639182 0.20020473 0.03081343] >>> [ 0.05947812 0.10659045 0.39897686] >>> [ 0.5673215 0.08485376 0.11945382] >>> [ 0.11177253 0.04285397 0.14166202] >>> [ 0.34250836 0.5062777 0.0557734 ] >>> [ 0.79262553 0.35803886 0.025485 ] >>> [ 0.01864598 0.05139665 0.28886469] >>> [ 0.054392 0.29876719 0.07187681] >>> [ 0.45628547 0.03075684 0.04092033] >>> [ 0.85379178 0.56503558 0.01475575] >>> [ 0.53533883 0.09006355 0.3047824 ] >>> [-0.03662977 0.24753781 0.39824679] >>> [ 0.91177068 0.91497623 0.89427332] >>> [ 0.57973934 0.59203191 0.59370647] >>> [ 0.35495537 0.36538027 0.36772001] >>> [ 0.19009594 0.19180133 0.19316719] >>> [ 0.08524707 0.08890587 0.09255774] >>> [ 0.03038879 0.03118623 0.03279615]] """ colour_checker_param = COLOURCHECKERS.get('ColorChecker 2005') # 今回の処理では必要ないデータもあるので xyY と whitepoint だけ抽出 # ------------------------------------------------------------- _name, data, whitepoint = colour_checker_param temp_xyY = [] for key in data.keys(): temp_xyY.append(data[key]) temp_xyY = np.array(temp_xyY) large_xyz = xyY_to_XYZ(temp_xyY) rgb_white_point = D65_WHITE illuminant_XYZ = whitepoint # ColorCheckerのオリジナルデータの白色点 illuminant_RGB = rgb_white_point # XYZ to RGB 変換後の白色点を設定 chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix rgb = XYZ_to_RGB( large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) return rgb def make_color_checker_image(rgb, width=1920, padding_rate=0.01): """ 6x4 の カラーチェッカーの画像を作る。 Height は Width から自動計算される。padding_rate で少し値が変わる。 """ h_patch_num = 6 v_patch_num = 4 # 各種パラメータ計算 each_padding = int(width * padding_rate + 0.5) h_padding_total = each_padding * (h_patch_num + 1) h_patch_width_total = width - h_padding_total patch_height = h_patch_width_total // h_patch_num height = patch_height * v_patch_num + each_padding * (v_patch_num + 1) patch_width_list = equal_devision(h_patch_width_total, h_patch_num) # パッチを並べる img = np.zeros((height, width, 3)) for v_idx in range(v_patch_num): h_pos_st = each_padding v_pos_st = each_padding + v_idx * (patch_height + each_padding) for h_idx in range(h_patch_num): rgb_idx = v_idx * h_patch_num + h_idx pos = (h_pos_st, v_pos_st) patch_img = np.ones((patch_height, patch_width_list[h_idx], 3))\ * rgb[rgb_idx] merge(img, patch_img, pos) h_pos_st += (patch_width_list[h_idx] + each_padding) return img def calc_st_pos_for_centering(bg_size, fg_size): """ Calculate start postion for centering. Parameters ---------- bg_size : touple(int) (width, height) of the background image. fg_size : touple(int) (width, height) of the foreground image. Returns ------- touple (int) (st_pos_h, st_pos_v) Examples -------- >>> calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)) >>> (640, 300) """ bg_width = bg_size[0] bg_height = bg_size[1] fg_width = fg_size[0] fg_height = fg_size[1] st_pos_h = bg_width // 2 - fg_width // 2 st_pos_v = bg_height // 2 - fg_height // 2 return (st_pos_h, st_pos_v) def get_size_from_image(img): """ `calc_st_pos_for_centering()` の引数計算が面倒だったので関数化。 """ return (img.shape[1], img.shape[0]) if __name__ == '__main__': os.chdir(os.path.dirname(os.path.abspath(__file__))) # print(calc_rad_patch_idx(outmost_num=9, current_num=1)) # _plot_same_lstar_radial_color_patch_data( # lstar=58, chroma=32.5, outmost_num=7, # color_space=BT709_COLOURSPACE, # transfer_function=tf.GAMMA24) # calc_rad_patch_idx2(outmost_num=9, current_num=7) # print(convert_luminance_to_color_value(100, tf.ST2084)) # print(generate_color_checker_rgb_value(target_white=[0.3127, 0.3290])) print(calc_st_pos_for_centering(bg_size=(1920, 1080), fg_size=(640, 480)))
moving_average
Moving average over one-dimensional array. Parameters ---------- a One-dimensional array. n Number of entries to average over. n=2 means averaging over the currrent the previous entry. Returns ------- An array view storing the moving average.
"""Utility functions and classes """ import sys import inspect import warnings import importlib.util from enum import Enum from pathlib import Path from weakref import WeakSet from collections import namedtuple from functools import partial, wraps from types import ModuleType, MethodType from typing import Union, Callable, Optional, Mapping, Any, Dict, Tuple import numpy as np from numpy import random from scipy import sparse from anndata import AnnData, __version__ as anndata_version from textwrap import dedent from packaging import version from ._settings import settings from ._compat import Literal from . import logging as logg class Empty(Enum): token = 0 _empty = Empty.token # e.g. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html AnyRandom = Union[None, int, random.RandomState] # maybe in the future random.Generator EPS = 1e-15 def check_versions(): from ._compat import pkg_version umap_version = pkg_version("umap-learn") if version.parse(anndata_version) < version.parse('0.6.10'): from . import __version__ raise ImportError( f'Scanpy {__version__} needs anndata version >=0.6.10, ' f'not {anndata_version}.\nRun `pip install anndata -U --no-deps`.' ) if umap_version < version.parse('0.3.0'): from . import __version__ # make this a warning, not an error # it might be useful for people to still be able to run it logg.warning( f'Scanpy {__version__} needs umap ' f'version >=0.3.0, not {umap_version}.' ) def getdoc(c_or_f: Union[Callable, type]) -> Optional[str]: if getattr(c_or_f, '__doc__', None) is None: return None doc = inspect.getdoc(c_or_f) if isinstance(c_or_f, type) and hasattr(c_or_f, '__init__'): sig = inspect.signature(c_or_f.__init__) else: sig = inspect.signature(c_or_f) def type_doc(name: str): param: inspect.Parameter = sig.parameters[name] cls = getattr(param.annotation, '__qualname__', repr(param.annotation)) if param.default is not param.empty: return f'{cls}, optional (default: {param.default!r})' else: return cls return '\n'.join( f'{line} : {type_doc(line)}' if line.strip() in sig.parameters else line for line in doc.split('\n') ) def deprecated_arg_names(arg_mapping: Mapping[str, str]): """ Decorator which marks a functions keyword arguments as deprecated. It will result in a warning being emitted when the deprecated keyword argument is used, and the function being called with the new argument. Parameters ---------- arg_mapping Mapping from deprecated argument name to current argument name. """ def decorator(func): @wraps(func) def func_wrapper(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter for old, new in arg_mapping.items(): if old in kwargs: warnings.warn( f"Keyword argument '{old}' has been " f"deprecated in favour of '{new}'. " f"'{old}' will be removed in a future version.", category=DeprecationWarning, stacklevel=2, ) val = kwargs.pop(old) kwargs[new] = val # reset filter warnings.simplefilter('default', DeprecationWarning) return func(*args, **kwargs) return func_wrapper return decorator def _one_of_ours(obj, root: str): return ( hasattr(obj, "__name__") and not obj.__name__.split(".")[-1].startswith("_") and getattr( obj, '__module__', getattr(obj, '__qualname__', obj.__name__) ).startswith(root) ) def descend_classes_and_funcs(mod: ModuleType, root: str, encountered=None): if encountered is None: encountered = WeakSet() for obj in vars(mod).values(): if not _one_of_ours(obj, root): continue if callable(obj) and not isinstance(obj, MethodType): yield obj if isinstance(obj, type): for m in vars(obj).values(): if callable(m) and _one_of_ours(m, root): yield m elif isinstance(obj, ModuleType) and obj not in encountered: if obj.__name__.startswith('scanpy.tests'): # Python’s import mechanism seems to add this to `scanpy`’s attributes continue encountered.add(obj) yield from descend_classes_and_funcs(obj, root, encountered) def annotate_doc_types(mod: ModuleType, root: str): for c_or_f in descend_classes_and_funcs(mod, root): c_or_f.getdoc = partial(getdoc, c_or_f) def _doc_params(**kwds): """\ Docstrings should start with "\" in the first line for proper formatting. """ def dec(obj): obj.__orig_doc__ = obj.__doc__ obj.__doc__ = dedent(obj.__doc__).format_map(kwds) return obj return dec def _check_array_function_arguments(**kwargs): """Checks for invalid arguments when an array is passed. Helper for functions that work on either AnnData objects or array-likes. """ # TODO: Figure out a better solution for documenting dispatched functions invalid_args = [k for k, v in kwargs.items() if v is not None] if len(invalid_args) > 0: raise TypeError( f"Arguments {invalid_args} are only valid if an AnnData object is passed." ) def _check_use_raw(adata: AnnData, use_raw: Union[None, bool]) -> bool: """ Normalize checking `use_raw`. My intentention here is to also provide a single place to throw a deprecation warning from in future. """ if use_raw is not None: return use_raw else: if adata.raw is not None: return True else: return False # -------------------------------------------------------------------------------- # Graph stuff # -------------------------------------------------------------------------------- def get_igraph_from_adjacency(adjacency, directed=None): """Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except: pass if g.vcount() != adjacency.shape[0]: logg.warning( f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.' ) return g def get_sparse_from_igraph(graph, weight_attr=None): from scipy.sparse import csr_matrix edges = graph.get_edgelist() if weight_attr is None: weights = [1] * len(edges) else: weights = graph.es[weight_attr] if not graph.is_directed(): edges.extend([(v, u) for u, v in edges]) weights.extend(weights) shape = graph.vcount() shape = (shape, shape) if len(edges) > 0: return csr_matrix((weights, zip(*edges)), shape=shape) else: return csr_matrix(shape) # -------------------------------------------------------------------------------- # Group stuff # -------------------------------------------------------------------------------- def compute_association_matrix_of_groups( adata: AnnData, prediction: str, reference: str, normalization: Literal['prediction', 'reference'] = 'prediction', threshold: float = 0.01, max_n_names: Optional[int] = 2, ): """Compute overlaps between groups. See ``identify_groups`` for identifying the groups. Parameters ---------- adata prediction Field name of adata.obs. reference Field name of adata.obs. normalization Whether to normalize with respect to the predicted groups or the reference groups. threshold Do not consider associations whose overlap is below this fraction. max_n_names Control how many reference names you want to be associated with per predicted name. Set to `None`, if you want all. Returns ------- asso_names List of associated reference names (`max_n_names` for each predicted name). asso_matrix Matrix where rows correspond to the predicted labels and columns to the reference labels, entries are proportional to degree of association. """ if normalization not in {'prediction', 'reference'}: raise ValueError( '`normalization` needs to be either "prediction" or "reference".' ) sanitize_anndata(adata) cats = adata.obs[reference].cat.categories for cat in cats: if cat in settings.categories_to_ignore: logg.info( f'Ignoring category {cat!r} ' 'as it’s in `settings.categories_to_ignore`.' ) asso_names = [] asso_matrix = [] for ipred_group, pred_group in enumerate(adata.obs[prediction].cat.categories): if '?' in pred_group: pred_group = str(ipred_group) # starting from numpy version 1.13, subtractions of boolean arrays are deprecated mask_pred = adata.obs[prediction].values == pred_group mask_pred_int = mask_pred.astype(np.int8) asso_matrix += [[]] for ref_group in adata.obs[reference].cat.categories: mask_ref = (adata.obs[reference].values == ref_group).astype(np.int8) mask_ref_or_pred = mask_ref.copy() mask_ref_or_pred[mask_pred] = 1 # e.g. if the pred group is contained in mask_ref, mask_ref and # mask_ref_or_pred are the same if normalization == 'prediction': # compute which fraction of the predicted group is contained in # the ref group ratio_contained = ( np.sum(mask_pred_int) - np.sum(mask_ref_or_pred - mask_ref) ) / np.sum(mask_pred_int) else: # compute which fraction of the reference group is contained in # the predicted group ratio_contained = ( np.sum(mask_ref) - np.sum(mask_ref_or_pred - mask_pred_int) ) / np.sum(mask_ref) asso_matrix[-1] += [ratio_contained] name_list_pred = [ cats[i] if cats[i] not in settings.categories_to_ignore else '' for i in np.argsort(asso_matrix[-1])[::-1] if asso_matrix[-1][i] > threshold ] asso_names += ['\n'.join(name_list_pred[:max_n_names])] Result = namedtuple( 'compute_association_matrix_of_groups', ['asso_names', 'asso_matrix'] ) return Result(asso_names=asso_names, asso_matrix=np.array(asso_matrix)) def get_associated_colors_of_groups(reference_colors, asso_matrix): return [ { reference_colors[i_ref]: asso_matrix[i_pred, i_ref] for i_ref in range(asso_matrix.shape[1]) } for i_pred in range(asso_matrix.shape[0]) ] def identify_groups(ref_labels, pred_labels, return_overlaps=False): """Which predicted label explains which reference label? A predicted label explains the reference label which maximizes the minimum of ``relative_overlaps_pred`` and ``relative_overlaps_ref``. Compare this with ``compute_association_matrix_of_groups``. Returns ------- A dictionary of length ``len(np.unique(ref_labels))`` that stores for each reference label the predicted label that best explains it. If ``return_overlaps`` is ``True``, this will in addition return the overlap of the reference group with the predicted group; normalized with respect to the reference group size and the predicted group size, respectively. """ ref_unique, ref_counts = np.unique(ref_labels, return_counts=True) ref_dict = dict(zip(ref_unique, ref_counts)) pred_unique, pred_counts = np.unique(pred_labels, return_counts=True) pred_dict = dict(zip(pred_unique, pred_counts)) associated_predictions = {} associated_overlaps = {} for ref_label in ref_unique: sub_pred_unique, sub_pred_counts = np.unique( pred_labels[ref_label == ref_labels], return_counts=True ) relative_overlaps_pred = [ sub_pred_counts[i] / pred_dict[n] for i, n in enumerate(sub_pred_unique) ] relative_overlaps_ref = [ sub_pred_counts[i] / ref_dict[ref_label] for i, n in enumerate(sub_pred_unique) ] relative_overlaps = np.c_[relative_overlaps_pred, relative_overlaps_ref] relative_overlaps_min = np.min(relative_overlaps, axis=1) pred_best_index = np.argsort(relative_overlaps_min)[::-1] associated_predictions[ref_label] = sub_pred_unique[pred_best_index] associated_overlaps[ref_label] = relative_overlaps[pred_best_index] if return_overlaps: return associated_predictions, associated_overlaps else: return associated_predictions # -------------------------------------------------------------------------------- # Other stuff # -------------------------------------------------------------------------------- # backwards compat... remove this in the future def sanitize_anndata(adata): """Transform string annotations to categoricals.""" adata._sanitize() def view_to_actual(adata): if adata.is_view: warnings.warn( "Revieved a view of an AnnData. Making a copy.", stacklevel=2, ) adata._init_as_actual(adata.copy()) # MASKED: moving_average function (lines 413-430) # -------------------------------------------------------------------------------- # Deal with tool parameters # -------------------------------------------------------------------------------- def update_params( old_params: Mapping[str, Any], new_params: Mapping[str, Any], check=False, ) -> Dict[str, Any]: """\ Update old_params with new_params. If check==False, this merely adds and overwrites the content of old_params. If check==True, this only allows updating of parameters that are already present in old_params. Parameters ---------- old_params new_params check Returns ------- updated_params """ updated_params = dict(old_params) if new_params: # allow for new_params to be None for key, val in new_params.items(): if key not in old_params and check: raise ValueError( '\'' + key + '\' is not a valid parameter key, ' + 'consider one of \n' + str(list(old_params.keys())) ) if val is not None: updated_params[key] = val return updated_params # -------------------------------------------------------------------------------- # Others # -------------------------------------------------------------------------------- def check_nonnegative_integers(X: Union[np.ndarray, sparse.spmatrix]): """Checks values of X to ensure it is count data""" from numbers import Integral data = X if isinstance(X, np.ndarray) else X.data # Check no negatives if np.signbit(data).any(): return False # Check all are integers elif issubclass(data.dtype.type, Integral): return True elif np.any(~np.equal(np.mod(data, 1), 0)): return False else: return True def select_groups(adata, groups_order_subset='all', key='groups'): """Get subset of groups in adata.obs[key].""" groups_order = adata.obs[key].cat.categories if key + '_masks' in adata.uns: groups_masks = adata.uns[key + '_masks'] else: groups_masks = np.zeros( (len(adata.obs[key].cat.categories), adata.obs[key].values.size), dtype=bool ) for iname, name in enumerate(adata.obs[key].cat.categories): # if the name is not found, fallback to index retrieval if adata.obs[key].cat.categories[iname] in adata.obs[key].values: mask = adata.obs[key].cat.categories[iname] == adata.obs[key].values else: mask = str(iname) == adata.obs[key].values groups_masks[iname] = mask groups_ids = list(range(len(groups_order))) if groups_order_subset != 'all': groups_ids = [] for name in groups_order_subset: groups_ids.append( np.where(adata.obs[key].cat.categories.values == name)[0][0] ) if len(groups_ids) == 0: # fallback to index retrieval groups_ids = np.where( np.in1d( np.arange(len(adata.obs[key].cat.categories)).astype(str), np.array(groups_order_subset), ) )[0] if len(groups_ids) == 0: logg.debug( f'{np.array(groups_order_subset)} invalid! specify valid ' f'groups_order (or indices) from {adata.obs[key].cat.categories}', ) from sys import exit exit(0) groups_masks = groups_masks[groups_ids] groups_order_subset = adata.obs[key].cat.categories[groups_ids].values else: groups_order_subset = groups_order.values return groups_order_subset, groups_masks def warn_with_traceback(message, category, filename, lineno, file=None, line=None): """Get full tracebacks when warning is raised by setting warnings.showwarning = warn_with_traceback See also -------- http://stackoverflow.com/questions/22373927/get-traceback-of-warnings """ import traceback traceback.print_stack() log = file if hasattr(file, 'write') else sys.stderr settings.write(warnings.formatwarning(message, category, filename, lineno, line)) def subsample( X: np.ndarray, subsample: int = 1, seed: int = 0, ) -> Tuple[np.ndarray, np.ndarray]: """\ Subsample a fraction of 1/subsample samples from the rows of X. Parameters ---------- X Data array. subsample 1/subsample is the fraction of data sampled, n = X.shape[0]/subsample. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if subsample == 1 and seed == 0: return X, np.arange(X.shape[0], dtype=int) if seed == 0: # this sequence is defined simply by skipping rows # is faster than sampling rows = np.arange(0, X.shape[0], subsample, dtype=int) n = rows.size Xsampled = np.array(X[rows]) else: if seed < 0: raise ValueError(f'Invalid seed value < 0: {seed}') n = int(X.shape[0] / subsample) np.random.seed(seed) Xsampled, rows = subsample_n(X, n=n) logg.debug(f'... subsampled to {n} of {X.shape[0]} data points') return Xsampled, rows def subsample_n( X: np.ndarray, n: int = 0, seed: int = 0 ) -> Tuple[np.ndarray, np.ndarray]: """Subsample n samples from rows of array. Parameters ---------- X Data array. n Sample size. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if n < 0: raise ValueError('n must be greater 0') np.random.seed(seed) n = X.shape[0] if (n == 0 or n > X.shape[0]) else n rows = np.random.choice(X.shape[0], size=n, replace=False) Xsampled = X[rows] return Xsampled, rows def check_presence_download(filename: Path, backup_url): """Check if file is present otherwise download.""" if not filename.is_file(): from .readwrite import _download _download(backup_url, filename) def lazy_import(full_name): """Imports a module in a way that it’s only executed on member access""" try: return sys.modules[full_name] except KeyError: spec = importlib.util.find_spec(full_name) module = importlib.util.module_from_spec(spec) loader = importlib.util.LazyLoader(spec.loader) # Make module with proper locking and get it inserted into sys.modules. loader.exec_module(module) return module # -------------------------------------------------------------------------------- # Neighbors # -------------------------------------------------------------------------------- def _fallback_to_uns(dct, conns, dists, conns_key, dists_key): if conns is None and conns_key in dct: conns = dct[conns_key] if dists is None and dists_key in dct: dists = dct[dists_key] return conns, dists class NeighborsView: """Convenience class for accessing neighbors graph representations. Allows to access neighbors distances, connectivities and settings dictionary in a uniform manner. Parameters ---------- adata AnnData object. key This defines where to look for neighbors dictionary, connectivities, distances. neigh = NeighborsView(adata, key) neigh['distances'] neigh['connectivities'] neigh['params'] 'connectivities' in neigh 'params' in neigh is the same as adata.obsp[adata.uns[key]['distances_key']] adata.obsp[adata.uns[key]['connectivities_key']] adata.uns[key]['params'] adata.uns[key]['connectivities_key'] in adata.obsp 'params' in adata.uns[key] """ def __init__(self, adata, key=None): self._connectivities = None self._distances = None if key is None or key == 'neighbors': if 'neighbors' not in adata.uns: raise KeyError('No "neighbors" in .uns') self._neighbors_dict = adata.uns['neighbors'] self._conns_key = 'connectivities' self._dists_key = 'distances' else: if key not in adata.uns: raise KeyError(f'No "{key}" in .uns') self._neighbors_dict = adata.uns[key] self._conns_key = self._neighbors_dict['connectivities_key'] self._dists_key = self._neighbors_dict['distances_key'] if self._conns_key in adata.obsp: self._connectivities = adata.obsp[self._conns_key] if self._dists_key in adata.obsp: self._distances = adata.obsp[self._dists_key] # fallback to uns self._connectivities, self._distances = _fallback_to_uns( self._neighbors_dict, self._connectivities, self._distances, self._conns_key, self._dists_key, ) def __getitem__(self, key): if key == 'distances': if 'distances' not in self: raise KeyError(f'No "{self._dists_key}" in .obsp') return self._distances elif key == 'connectivities': if 'connectivities' not in self: raise KeyError(f'No "{self._conns_key}" in .obsp') return self._connectivities else: return self._neighbors_dict[key] def __contains__(self, key): if key == 'distances': return self._distances is not None elif key == 'connectivities': return self._connectivities is not None else: return key in self._neighbors_dict def _choose_graph(adata, obsp, neighbors_key): """Choose connectivities from neighbbors or another obsp column""" if obsp is not None and neighbors_key is not None: raise ValueError( 'You can\'t specify both obsp, neighbors_key. ' 'Please select only one.' ) if obsp is not None: return adata.obsp[obsp] else: neighbors = NeighborsView(adata, neighbors_key) if 'connectivities' not in neighbors: raise ValueError( 'You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.' ) return neighbors['connectivities']
def moving_average(a: np.ndarray, n: int): """Moving average over one-dimensional array. Parameters ---------- a One-dimensional array. n Number of entries to average over. n=2 means averaging over the currrent the previous entry. Returns ------- An array view storing the moving average. """ ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n
413
430
"""Utility functions and classes """ import sys import inspect import warnings import importlib.util from enum import Enum from pathlib import Path from weakref import WeakSet from collections import namedtuple from functools import partial, wraps from types import ModuleType, MethodType from typing import Union, Callable, Optional, Mapping, Any, Dict, Tuple import numpy as np from numpy import random from scipy import sparse from anndata import AnnData, __version__ as anndata_version from textwrap import dedent from packaging import version from ._settings import settings from ._compat import Literal from . import logging as logg class Empty(Enum): token = 0 _empty = Empty.token # e.g. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html AnyRandom = Union[None, int, random.RandomState] # maybe in the future random.Generator EPS = 1e-15 def check_versions(): from ._compat import pkg_version umap_version = pkg_version("umap-learn") if version.parse(anndata_version) < version.parse('0.6.10'): from . import __version__ raise ImportError( f'Scanpy {__version__} needs anndata version >=0.6.10, ' f'not {anndata_version}.\nRun `pip install anndata -U --no-deps`.' ) if umap_version < version.parse('0.3.0'): from . import __version__ # make this a warning, not an error # it might be useful for people to still be able to run it logg.warning( f'Scanpy {__version__} needs umap ' f'version >=0.3.0, not {umap_version}.' ) def getdoc(c_or_f: Union[Callable, type]) -> Optional[str]: if getattr(c_or_f, '__doc__', None) is None: return None doc = inspect.getdoc(c_or_f) if isinstance(c_or_f, type) and hasattr(c_or_f, '__init__'): sig = inspect.signature(c_or_f.__init__) else: sig = inspect.signature(c_or_f) def type_doc(name: str): param: inspect.Parameter = sig.parameters[name] cls = getattr(param.annotation, '__qualname__', repr(param.annotation)) if param.default is not param.empty: return f'{cls}, optional (default: {param.default!r})' else: return cls return '\n'.join( f'{line} : {type_doc(line)}' if line.strip() in sig.parameters else line for line in doc.split('\n') ) def deprecated_arg_names(arg_mapping: Mapping[str, str]): """ Decorator which marks a functions keyword arguments as deprecated. It will result in a warning being emitted when the deprecated keyword argument is used, and the function being called with the new argument. Parameters ---------- arg_mapping Mapping from deprecated argument name to current argument name. """ def decorator(func): @wraps(func) def func_wrapper(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter for old, new in arg_mapping.items(): if old in kwargs: warnings.warn( f"Keyword argument '{old}' has been " f"deprecated in favour of '{new}'. " f"'{old}' will be removed in a future version.", category=DeprecationWarning, stacklevel=2, ) val = kwargs.pop(old) kwargs[new] = val # reset filter warnings.simplefilter('default', DeprecationWarning) return func(*args, **kwargs) return func_wrapper return decorator def _one_of_ours(obj, root: str): return ( hasattr(obj, "__name__") and not obj.__name__.split(".")[-1].startswith("_") and getattr( obj, '__module__', getattr(obj, '__qualname__', obj.__name__) ).startswith(root) ) def descend_classes_and_funcs(mod: ModuleType, root: str, encountered=None): if encountered is None: encountered = WeakSet() for obj in vars(mod).values(): if not _one_of_ours(obj, root): continue if callable(obj) and not isinstance(obj, MethodType): yield obj if isinstance(obj, type): for m in vars(obj).values(): if callable(m) and _one_of_ours(m, root): yield m elif isinstance(obj, ModuleType) and obj not in encountered: if obj.__name__.startswith('scanpy.tests'): # Python’s import mechanism seems to add this to `scanpy`’s attributes continue encountered.add(obj) yield from descend_classes_and_funcs(obj, root, encountered) def annotate_doc_types(mod: ModuleType, root: str): for c_or_f in descend_classes_and_funcs(mod, root): c_or_f.getdoc = partial(getdoc, c_or_f) def _doc_params(**kwds): """\ Docstrings should start with "\" in the first line for proper formatting. """ def dec(obj): obj.__orig_doc__ = obj.__doc__ obj.__doc__ = dedent(obj.__doc__).format_map(kwds) return obj return dec def _check_array_function_arguments(**kwargs): """Checks for invalid arguments when an array is passed. Helper for functions that work on either AnnData objects or array-likes. """ # TODO: Figure out a better solution for documenting dispatched functions invalid_args = [k for k, v in kwargs.items() if v is not None] if len(invalid_args) > 0: raise TypeError( f"Arguments {invalid_args} are only valid if an AnnData object is passed." ) def _check_use_raw(adata: AnnData, use_raw: Union[None, bool]) -> bool: """ Normalize checking `use_raw`. My intentention here is to also provide a single place to throw a deprecation warning from in future. """ if use_raw is not None: return use_raw else: if adata.raw is not None: return True else: return False # -------------------------------------------------------------------------------- # Graph stuff # -------------------------------------------------------------------------------- def get_igraph_from_adjacency(adjacency, directed=None): """Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except: pass if g.vcount() != adjacency.shape[0]: logg.warning( f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.' ) return g def get_sparse_from_igraph(graph, weight_attr=None): from scipy.sparse import csr_matrix edges = graph.get_edgelist() if weight_attr is None: weights = [1] * len(edges) else: weights = graph.es[weight_attr] if not graph.is_directed(): edges.extend([(v, u) for u, v in edges]) weights.extend(weights) shape = graph.vcount() shape = (shape, shape) if len(edges) > 0: return csr_matrix((weights, zip(*edges)), shape=shape) else: return csr_matrix(shape) # -------------------------------------------------------------------------------- # Group stuff # -------------------------------------------------------------------------------- def compute_association_matrix_of_groups( adata: AnnData, prediction: str, reference: str, normalization: Literal['prediction', 'reference'] = 'prediction', threshold: float = 0.01, max_n_names: Optional[int] = 2, ): """Compute overlaps between groups. See ``identify_groups`` for identifying the groups. Parameters ---------- adata prediction Field name of adata.obs. reference Field name of adata.obs. normalization Whether to normalize with respect to the predicted groups or the reference groups. threshold Do not consider associations whose overlap is below this fraction. max_n_names Control how many reference names you want to be associated with per predicted name. Set to `None`, if you want all. Returns ------- asso_names List of associated reference names (`max_n_names` for each predicted name). asso_matrix Matrix where rows correspond to the predicted labels and columns to the reference labels, entries are proportional to degree of association. """ if normalization not in {'prediction', 'reference'}: raise ValueError( '`normalization` needs to be either "prediction" or "reference".' ) sanitize_anndata(adata) cats = adata.obs[reference].cat.categories for cat in cats: if cat in settings.categories_to_ignore: logg.info( f'Ignoring category {cat!r} ' 'as it’s in `settings.categories_to_ignore`.' ) asso_names = [] asso_matrix = [] for ipred_group, pred_group in enumerate(adata.obs[prediction].cat.categories): if '?' in pred_group: pred_group = str(ipred_group) # starting from numpy version 1.13, subtractions of boolean arrays are deprecated mask_pred = adata.obs[prediction].values == pred_group mask_pred_int = mask_pred.astype(np.int8) asso_matrix += [[]] for ref_group in adata.obs[reference].cat.categories: mask_ref = (adata.obs[reference].values == ref_group).astype(np.int8) mask_ref_or_pred = mask_ref.copy() mask_ref_or_pred[mask_pred] = 1 # e.g. if the pred group is contained in mask_ref, mask_ref and # mask_ref_or_pred are the same if normalization == 'prediction': # compute which fraction of the predicted group is contained in # the ref group ratio_contained = ( np.sum(mask_pred_int) - np.sum(mask_ref_or_pred - mask_ref) ) / np.sum(mask_pred_int) else: # compute which fraction of the reference group is contained in # the predicted group ratio_contained = ( np.sum(mask_ref) - np.sum(mask_ref_or_pred - mask_pred_int) ) / np.sum(mask_ref) asso_matrix[-1] += [ratio_contained] name_list_pred = [ cats[i] if cats[i] not in settings.categories_to_ignore else '' for i in np.argsort(asso_matrix[-1])[::-1] if asso_matrix[-1][i] > threshold ] asso_names += ['\n'.join(name_list_pred[:max_n_names])] Result = namedtuple( 'compute_association_matrix_of_groups', ['asso_names', 'asso_matrix'] ) return Result(asso_names=asso_names, asso_matrix=np.array(asso_matrix)) def get_associated_colors_of_groups(reference_colors, asso_matrix): return [ { reference_colors[i_ref]: asso_matrix[i_pred, i_ref] for i_ref in range(asso_matrix.shape[1]) } for i_pred in range(asso_matrix.shape[0]) ] def identify_groups(ref_labels, pred_labels, return_overlaps=False): """Which predicted label explains which reference label? A predicted label explains the reference label which maximizes the minimum of ``relative_overlaps_pred`` and ``relative_overlaps_ref``. Compare this with ``compute_association_matrix_of_groups``. Returns ------- A dictionary of length ``len(np.unique(ref_labels))`` that stores for each reference label the predicted label that best explains it. If ``return_overlaps`` is ``True``, this will in addition return the overlap of the reference group with the predicted group; normalized with respect to the reference group size and the predicted group size, respectively. """ ref_unique, ref_counts = np.unique(ref_labels, return_counts=True) ref_dict = dict(zip(ref_unique, ref_counts)) pred_unique, pred_counts = np.unique(pred_labels, return_counts=True) pred_dict = dict(zip(pred_unique, pred_counts)) associated_predictions = {} associated_overlaps = {} for ref_label in ref_unique: sub_pred_unique, sub_pred_counts = np.unique( pred_labels[ref_label == ref_labels], return_counts=True ) relative_overlaps_pred = [ sub_pred_counts[i] / pred_dict[n] for i, n in enumerate(sub_pred_unique) ] relative_overlaps_ref = [ sub_pred_counts[i] / ref_dict[ref_label] for i, n in enumerate(sub_pred_unique) ] relative_overlaps = np.c_[relative_overlaps_pred, relative_overlaps_ref] relative_overlaps_min = np.min(relative_overlaps, axis=1) pred_best_index = np.argsort(relative_overlaps_min)[::-1] associated_predictions[ref_label] = sub_pred_unique[pred_best_index] associated_overlaps[ref_label] = relative_overlaps[pred_best_index] if return_overlaps: return associated_predictions, associated_overlaps else: return associated_predictions # -------------------------------------------------------------------------------- # Other stuff # -------------------------------------------------------------------------------- # backwards compat... remove this in the future def sanitize_anndata(adata): """Transform string annotations to categoricals.""" adata._sanitize() def view_to_actual(adata): if adata.is_view: warnings.warn( "Revieved a view of an AnnData. Making a copy.", stacklevel=2, ) adata._init_as_actual(adata.copy()) def moving_average(a: np.ndarray, n: int): """Moving average over one-dimensional array. Parameters ---------- a One-dimensional array. n Number of entries to average over. n=2 means averaging over the currrent the previous entry. Returns ------- An array view storing the moving average. """ ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n # -------------------------------------------------------------------------------- # Deal with tool parameters # -------------------------------------------------------------------------------- def update_params( old_params: Mapping[str, Any], new_params: Mapping[str, Any], check=False, ) -> Dict[str, Any]: """\ Update old_params with new_params. If check==False, this merely adds and overwrites the content of old_params. If check==True, this only allows updating of parameters that are already present in old_params. Parameters ---------- old_params new_params check Returns ------- updated_params """ updated_params = dict(old_params) if new_params: # allow for new_params to be None for key, val in new_params.items(): if key not in old_params and check: raise ValueError( '\'' + key + '\' is not a valid parameter key, ' + 'consider one of \n' + str(list(old_params.keys())) ) if val is not None: updated_params[key] = val return updated_params # -------------------------------------------------------------------------------- # Others # -------------------------------------------------------------------------------- def check_nonnegative_integers(X: Union[np.ndarray, sparse.spmatrix]): """Checks values of X to ensure it is count data""" from numbers import Integral data = X if isinstance(X, np.ndarray) else X.data # Check no negatives if np.signbit(data).any(): return False # Check all are integers elif issubclass(data.dtype.type, Integral): return True elif np.any(~np.equal(np.mod(data, 1), 0)): return False else: return True def select_groups(adata, groups_order_subset='all', key='groups'): """Get subset of groups in adata.obs[key].""" groups_order = adata.obs[key].cat.categories if key + '_masks' in adata.uns: groups_masks = adata.uns[key + '_masks'] else: groups_masks = np.zeros( (len(adata.obs[key].cat.categories), adata.obs[key].values.size), dtype=bool ) for iname, name in enumerate(adata.obs[key].cat.categories): # if the name is not found, fallback to index retrieval if adata.obs[key].cat.categories[iname] in adata.obs[key].values: mask = adata.obs[key].cat.categories[iname] == adata.obs[key].values else: mask = str(iname) == adata.obs[key].values groups_masks[iname] = mask groups_ids = list(range(len(groups_order))) if groups_order_subset != 'all': groups_ids = [] for name in groups_order_subset: groups_ids.append( np.where(adata.obs[key].cat.categories.values == name)[0][0] ) if len(groups_ids) == 0: # fallback to index retrieval groups_ids = np.where( np.in1d( np.arange(len(adata.obs[key].cat.categories)).astype(str), np.array(groups_order_subset), ) )[0] if len(groups_ids) == 0: logg.debug( f'{np.array(groups_order_subset)} invalid! specify valid ' f'groups_order (or indices) from {adata.obs[key].cat.categories}', ) from sys import exit exit(0) groups_masks = groups_masks[groups_ids] groups_order_subset = adata.obs[key].cat.categories[groups_ids].values else: groups_order_subset = groups_order.values return groups_order_subset, groups_masks def warn_with_traceback(message, category, filename, lineno, file=None, line=None): """Get full tracebacks when warning is raised by setting warnings.showwarning = warn_with_traceback See also -------- http://stackoverflow.com/questions/22373927/get-traceback-of-warnings """ import traceback traceback.print_stack() log = file if hasattr(file, 'write') else sys.stderr settings.write(warnings.formatwarning(message, category, filename, lineno, line)) def subsample( X: np.ndarray, subsample: int = 1, seed: int = 0, ) -> Tuple[np.ndarray, np.ndarray]: """\ Subsample a fraction of 1/subsample samples from the rows of X. Parameters ---------- X Data array. subsample 1/subsample is the fraction of data sampled, n = X.shape[0]/subsample. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if subsample == 1 and seed == 0: return X, np.arange(X.shape[0], dtype=int) if seed == 0: # this sequence is defined simply by skipping rows # is faster than sampling rows = np.arange(0, X.shape[0], subsample, dtype=int) n = rows.size Xsampled = np.array(X[rows]) else: if seed < 0: raise ValueError(f'Invalid seed value < 0: {seed}') n = int(X.shape[0] / subsample) np.random.seed(seed) Xsampled, rows = subsample_n(X, n=n) logg.debug(f'... subsampled to {n} of {X.shape[0]} data points') return Xsampled, rows def subsample_n( X: np.ndarray, n: int = 0, seed: int = 0 ) -> Tuple[np.ndarray, np.ndarray]: """Subsample n samples from rows of array. Parameters ---------- X Data array. n Sample size. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if n < 0: raise ValueError('n must be greater 0') np.random.seed(seed) n = X.shape[0] if (n == 0 or n > X.shape[0]) else n rows = np.random.choice(X.shape[0], size=n, replace=False) Xsampled = X[rows] return Xsampled, rows def check_presence_download(filename: Path, backup_url): """Check if file is present otherwise download.""" if not filename.is_file(): from .readwrite import _download _download(backup_url, filename) def lazy_import(full_name): """Imports a module in a way that it’s only executed on member access""" try: return sys.modules[full_name] except KeyError: spec = importlib.util.find_spec(full_name) module = importlib.util.module_from_spec(spec) loader = importlib.util.LazyLoader(spec.loader) # Make module with proper locking and get it inserted into sys.modules. loader.exec_module(module) return module # -------------------------------------------------------------------------------- # Neighbors # -------------------------------------------------------------------------------- def _fallback_to_uns(dct, conns, dists, conns_key, dists_key): if conns is None and conns_key in dct: conns = dct[conns_key] if dists is None and dists_key in dct: dists = dct[dists_key] return conns, dists class NeighborsView: """Convenience class for accessing neighbors graph representations. Allows to access neighbors distances, connectivities and settings dictionary in a uniform manner. Parameters ---------- adata AnnData object. key This defines where to look for neighbors dictionary, connectivities, distances. neigh = NeighborsView(adata, key) neigh['distances'] neigh['connectivities'] neigh['params'] 'connectivities' in neigh 'params' in neigh is the same as adata.obsp[adata.uns[key]['distances_key']] adata.obsp[adata.uns[key]['connectivities_key']] adata.uns[key]['params'] adata.uns[key]['connectivities_key'] in adata.obsp 'params' in adata.uns[key] """ def __init__(self, adata, key=None): self._connectivities = None self._distances = None if key is None or key == 'neighbors': if 'neighbors' not in adata.uns: raise KeyError('No "neighbors" in .uns') self._neighbors_dict = adata.uns['neighbors'] self._conns_key = 'connectivities' self._dists_key = 'distances' else: if key not in adata.uns: raise KeyError(f'No "{key}" in .uns') self._neighbors_dict = adata.uns[key] self._conns_key = self._neighbors_dict['connectivities_key'] self._dists_key = self._neighbors_dict['distances_key'] if self._conns_key in adata.obsp: self._connectivities = adata.obsp[self._conns_key] if self._dists_key in adata.obsp: self._distances = adata.obsp[self._dists_key] # fallback to uns self._connectivities, self._distances = _fallback_to_uns( self._neighbors_dict, self._connectivities, self._distances, self._conns_key, self._dists_key, ) def __getitem__(self, key): if key == 'distances': if 'distances' not in self: raise KeyError(f'No "{self._dists_key}" in .obsp') return self._distances elif key == 'connectivities': if 'connectivities' not in self: raise KeyError(f'No "{self._conns_key}" in .obsp') return self._connectivities else: return self._neighbors_dict[key] def __contains__(self, key): if key == 'distances': return self._distances is not None elif key == 'connectivities': return self._connectivities is not None else: return key in self._neighbors_dict def _choose_graph(adata, obsp, neighbors_key): """Choose connectivities from neighbbors or another obsp column""" if obsp is not None and neighbors_key is not None: raise ValueError( 'You can\'t specify both obsp, neighbors_key. ' 'Please select only one.' ) if obsp is not None: return adata.obsp[obsp] else: neighbors = NeighborsView(adata, neighbors_key) if 'connectivities' not in neighbors: raise ValueError( 'You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.' ) return neighbors['connectivities']
warn_with_traceback
Get full tracebacks when warning is raised by setting warnings.showwarning = warn_with_traceback See also -------- http://stackoverflow.com/questions/22373927/get-traceback-of-warnings
"""Utility functions and classes """ import sys import inspect import warnings import importlib.util from enum import Enum from pathlib import Path from weakref import WeakSet from collections import namedtuple from functools import partial, wraps from types import ModuleType, MethodType from typing import Union, Callable, Optional, Mapping, Any, Dict, Tuple import numpy as np from numpy import random from scipy import sparse from anndata import AnnData, __version__ as anndata_version from textwrap import dedent from packaging import version from ._settings import settings from ._compat import Literal from . import logging as logg class Empty(Enum): token = 0 _empty = Empty.token # e.g. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html AnyRandom = Union[None, int, random.RandomState] # maybe in the future random.Generator EPS = 1e-15 def check_versions(): from ._compat import pkg_version umap_version = pkg_version("umap-learn") if version.parse(anndata_version) < version.parse('0.6.10'): from . import __version__ raise ImportError( f'Scanpy {__version__} needs anndata version >=0.6.10, ' f'not {anndata_version}.\nRun `pip install anndata -U --no-deps`.' ) if umap_version < version.parse('0.3.0'): from . import __version__ # make this a warning, not an error # it might be useful for people to still be able to run it logg.warning( f'Scanpy {__version__} needs umap ' f'version >=0.3.0, not {umap_version}.' ) def getdoc(c_or_f: Union[Callable, type]) -> Optional[str]: if getattr(c_or_f, '__doc__', None) is None: return None doc = inspect.getdoc(c_or_f) if isinstance(c_or_f, type) and hasattr(c_or_f, '__init__'): sig = inspect.signature(c_or_f.__init__) else: sig = inspect.signature(c_or_f) def type_doc(name: str): param: inspect.Parameter = sig.parameters[name] cls = getattr(param.annotation, '__qualname__', repr(param.annotation)) if param.default is not param.empty: return f'{cls}, optional (default: {param.default!r})' else: return cls return '\n'.join( f'{line} : {type_doc(line)}' if line.strip() in sig.parameters else line for line in doc.split('\n') ) def deprecated_arg_names(arg_mapping: Mapping[str, str]): """ Decorator which marks a functions keyword arguments as deprecated. It will result in a warning being emitted when the deprecated keyword argument is used, and the function being called with the new argument. Parameters ---------- arg_mapping Mapping from deprecated argument name to current argument name. """ def decorator(func): @wraps(func) def func_wrapper(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter for old, new in arg_mapping.items(): if old in kwargs: warnings.warn( f"Keyword argument '{old}' has been " f"deprecated in favour of '{new}'. " f"'{old}' will be removed in a future version.", category=DeprecationWarning, stacklevel=2, ) val = kwargs.pop(old) kwargs[new] = val # reset filter warnings.simplefilter('default', DeprecationWarning) return func(*args, **kwargs) return func_wrapper return decorator def _one_of_ours(obj, root: str): return ( hasattr(obj, "__name__") and not obj.__name__.split(".")[-1].startswith("_") and getattr( obj, '__module__', getattr(obj, '__qualname__', obj.__name__) ).startswith(root) ) def descend_classes_and_funcs(mod: ModuleType, root: str, encountered=None): if encountered is None: encountered = WeakSet() for obj in vars(mod).values(): if not _one_of_ours(obj, root): continue if callable(obj) and not isinstance(obj, MethodType): yield obj if isinstance(obj, type): for m in vars(obj).values(): if callable(m) and _one_of_ours(m, root): yield m elif isinstance(obj, ModuleType) and obj not in encountered: if obj.__name__.startswith('scanpy.tests'): # Python’s import mechanism seems to add this to `scanpy`’s attributes continue encountered.add(obj) yield from descend_classes_and_funcs(obj, root, encountered) def annotate_doc_types(mod: ModuleType, root: str): for c_or_f in descend_classes_and_funcs(mod, root): c_or_f.getdoc = partial(getdoc, c_or_f) def _doc_params(**kwds): """\ Docstrings should start with "\" in the first line for proper formatting. """ def dec(obj): obj.__orig_doc__ = obj.__doc__ obj.__doc__ = dedent(obj.__doc__).format_map(kwds) return obj return dec def _check_array_function_arguments(**kwargs): """Checks for invalid arguments when an array is passed. Helper for functions that work on either AnnData objects or array-likes. """ # TODO: Figure out a better solution for documenting dispatched functions invalid_args = [k for k, v in kwargs.items() if v is not None] if len(invalid_args) > 0: raise TypeError( f"Arguments {invalid_args} are only valid if an AnnData object is passed." ) def _check_use_raw(adata: AnnData, use_raw: Union[None, bool]) -> bool: """ Normalize checking `use_raw`. My intentention here is to also provide a single place to throw a deprecation warning from in future. """ if use_raw is not None: return use_raw else: if adata.raw is not None: return True else: return False # -------------------------------------------------------------------------------- # Graph stuff # -------------------------------------------------------------------------------- def get_igraph_from_adjacency(adjacency, directed=None): """Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except: pass if g.vcount() != adjacency.shape[0]: logg.warning( f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.' ) return g def get_sparse_from_igraph(graph, weight_attr=None): from scipy.sparse import csr_matrix edges = graph.get_edgelist() if weight_attr is None: weights = [1] * len(edges) else: weights = graph.es[weight_attr] if not graph.is_directed(): edges.extend([(v, u) for u, v in edges]) weights.extend(weights) shape = graph.vcount() shape = (shape, shape) if len(edges) > 0: return csr_matrix((weights, zip(*edges)), shape=shape) else: return csr_matrix(shape) # -------------------------------------------------------------------------------- # Group stuff # -------------------------------------------------------------------------------- def compute_association_matrix_of_groups( adata: AnnData, prediction: str, reference: str, normalization: Literal['prediction', 'reference'] = 'prediction', threshold: float = 0.01, max_n_names: Optional[int] = 2, ): """Compute overlaps between groups. See ``identify_groups`` for identifying the groups. Parameters ---------- adata prediction Field name of adata.obs. reference Field name of adata.obs. normalization Whether to normalize with respect to the predicted groups or the reference groups. threshold Do not consider associations whose overlap is below this fraction. max_n_names Control how many reference names you want to be associated with per predicted name. Set to `None`, if you want all. Returns ------- asso_names List of associated reference names (`max_n_names` for each predicted name). asso_matrix Matrix where rows correspond to the predicted labels and columns to the reference labels, entries are proportional to degree of association. """ if normalization not in {'prediction', 'reference'}: raise ValueError( '`normalization` needs to be either "prediction" or "reference".' ) sanitize_anndata(adata) cats = adata.obs[reference].cat.categories for cat in cats: if cat in settings.categories_to_ignore: logg.info( f'Ignoring category {cat!r} ' 'as it’s in `settings.categories_to_ignore`.' ) asso_names = [] asso_matrix = [] for ipred_group, pred_group in enumerate(adata.obs[prediction].cat.categories): if '?' in pred_group: pred_group = str(ipred_group) # starting from numpy version 1.13, subtractions of boolean arrays are deprecated mask_pred = adata.obs[prediction].values == pred_group mask_pred_int = mask_pred.astype(np.int8) asso_matrix += [[]] for ref_group in adata.obs[reference].cat.categories: mask_ref = (adata.obs[reference].values == ref_group).astype(np.int8) mask_ref_or_pred = mask_ref.copy() mask_ref_or_pred[mask_pred] = 1 # e.g. if the pred group is contained in mask_ref, mask_ref and # mask_ref_or_pred are the same if normalization == 'prediction': # compute which fraction of the predicted group is contained in # the ref group ratio_contained = ( np.sum(mask_pred_int) - np.sum(mask_ref_or_pred - mask_ref) ) / np.sum(mask_pred_int) else: # compute which fraction of the reference group is contained in # the predicted group ratio_contained = ( np.sum(mask_ref) - np.sum(mask_ref_or_pred - mask_pred_int) ) / np.sum(mask_ref) asso_matrix[-1] += [ratio_contained] name_list_pred = [ cats[i] if cats[i] not in settings.categories_to_ignore else '' for i in np.argsort(asso_matrix[-1])[::-1] if asso_matrix[-1][i] > threshold ] asso_names += ['\n'.join(name_list_pred[:max_n_names])] Result = namedtuple( 'compute_association_matrix_of_groups', ['asso_names', 'asso_matrix'] ) return Result(asso_names=asso_names, asso_matrix=np.array(asso_matrix)) def get_associated_colors_of_groups(reference_colors, asso_matrix): return [ { reference_colors[i_ref]: asso_matrix[i_pred, i_ref] for i_ref in range(asso_matrix.shape[1]) } for i_pred in range(asso_matrix.shape[0]) ] def identify_groups(ref_labels, pred_labels, return_overlaps=False): """Which predicted label explains which reference label? A predicted label explains the reference label which maximizes the minimum of ``relative_overlaps_pred`` and ``relative_overlaps_ref``. Compare this with ``compute_association_matrix_of_groups``. Returns ------- A dictionary of length ``len(np.unique(ref_labels))`` that stores for each reference label the predicted label that best explains it. If ``return_overlaps`` is ``True``, this will in addition return the overlap of the reference group with the predicted group; normalized with respect to the reference group size and the predicted group size, respectively. """ ref_unique, ref_counts = np.unique(ref_labels, return_counts=True) ref_dict = dict(zip(ref_unique, ref_counts)) pred_unique, pred_counts = np.unique(pred_labels, return_counts=True) pred_dict = dict(zip(pred_unique, pred_counts)) associated_predictions = {} associated_overlaps = {} for ref_label in ref_unique: sub_pred_unique, sub_pred_counts = np.unique( pred_labels[ref_label == ref_labels], return_counts=True ) relative_overlaps_pred = [ sub_pred_counts[i] / pred_dict[n] for i, n in enumerate(sub_pred_unique) ] relative_overlaps_ref = [ sub_pred_counts[i] / ref_dict[ref_label] for i, n in enumerate(sub_pred_unique) ] relative_overlaps = np.c_[relative_overlaps_pred, relative_overlaps_ref] relative_overlaps_min = np.min(relative_overlaps, axis=1) pred_best_index = np.argsort(relative_overlaps_min)[::-1] associated_predictions[ref_label] = sub_pred_unique[pred_best_index] associated_overlaps[ref_label] = relative_overlaps[pred_best_index] if return_overlaps: return associated_predictions, associated_overlaps else: return associated_predictions # -------------------------------------------------------------------------------- # Other stuff # -------------------------------------------------------------------------------- # backwards compat... remove this in the future def sanitize_anndata(adata): """Transform string annotations to categoricals.""" adata._sanitize() def view_to_actual(adata): if adata.is_view: warnings.warn( "Revieved a view of an AnnData. Making a copy.", stacklevel=2, ) adata._init_as_actual(adata.copy()) def moving_average(a: np.ndarray, n: int): """Moving average over one-dimensional array. Parameters ---------- a One-dimensional array. n Number of entries to average over. n=2 means averaging over the currrent the previous entry. Returns ------- An array view storing the moving average. """ ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n # -------------------------------------------------------------------------------- # Deal with tool parameters # -------------------------------------------------------------------------------- def update_params( old_params: Mapping[str, Any], new_params: Mapping[str, Any], check=False, ) -> Dict[str, Any]: """\ Update old_params with new_params. If check==False, this merely adds and overwrites the content of old_params. If check==True, this only allows updating of parameters that are already present in old_params. Parameters ---------- old_params new_params check Returns ------- updated_params """ updated_params = dict(old_params) if new_params: # allow for new_params to be None for key, val in new_params.items(): if key not in old_params and check: raise ValueError( '\'' + key + '\' is not a valid parameter key, ' + 'consider one of \n' + str(list(old_params.keys())) ) if val is not None: updated_params[key] = val return updated_params # -------------------------------------------------------------------------------- # Others # -------------------------------------------------------------------------------- def check_nonnegative_integers(X: Union[np.ndarray, sparse.spmatrix]): """Checks values of X to ensure it is count data""" from numbers import Integral data = X if isinstance(X, np.ndarray) else X.data # Check no negatives if np.signbit(data).any(): return False # Check all are integers elif issubclass(data.dtype.type, Integral): return True elif np.any(~np.equal(np.mod(data, 1), 0)): return False else: return True def select_groups(adata, groups_order_subset='all', key='groups'): """Get subset of groups in adata.obs[key].""" groups_order = adata.obs[key].cat.categories if key + '_masks' in adata.uns: groups_masks = adata.uns[key + '_masks'] else: groups_masks = np.zeros( (len(adata.obs[key].cat.categories), adata.obs[key].values.size), dtype=bool ) for iname, name in enumerate(adata.obs[key].cat.categories): # if the name is not found, fallback to index retrieval if adata.obs[key].cat.categories[iname] in adata.obs[key].values: mask = adata.obs[key].cat.categories[iname] == adata.obs[key].values else: mask = str(iname) == adata.obs[key].values groups_masks[iname] = mask groups_ids = list(range(len(groups_order))) if groups_order_subset != 'all': groups_ids = [] for name in groups_order_subset: groups_ids.append( np.where(adata.obs[key].cat.categories.values == name)[0][0] ) if len(groups_ids) == 0: # fallback to index retrieval groups_ids = np.where( np.in1d( np.arange(len(adata.obs[key].cat.categories)).astype(str), np.array(groups_order_subset), ) )[0] if len(groups_ids) == 0: logg.debug( f'{np.array(groups_order_subset)} invalid! specify valid ' f'groups_order (or indices) from {adata.obs[key].cat.categories}', ) from sys import exit exit(0) groups_masks = groups_masks[groups_ids] groups_order_subset = adata.obs[key].cat.categories[groups_ids].values else: groups_order_subset = groups_order.values return groups_order_subset, groups_masks # MASKED: warn_with_traceback function (lines 545-558) def subsample( X: np.ndarray, subsample: int = 1, seed: int = 0, ) -> Tuple[np.ndarray, np.ndarray]: """\ Subsample a fraction of 1/subsample samples from the rows of X. Parameters ---------- X Data array. subsample 1/subsample is the fraction of data sampled, n = X.shape[0]/subsample. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if subsample == 1 and seed == 0: return X, np.arange(X.shape[0], dtype=int) if seed == 0: # this sequence is defined simply by skipping rows # is faster than sampling rows = np.arange(0, X.shape[0], subsample, dtype=int) n = rows.size Xsampled = np.array(X[rows]) else: if seed < 0: raise ValueError(f'Invalid seed value < 0: {seed}') n = int(X.shape[0] / subsample) np.random.seed(seed) Xsampled, rows = subsample_n(X, n=n) logg.debug(f'... subsampled to {n} of {X.shape[0]} data points') return Xsampled, rows def subsample_n( X: np.ndarray, n: int = 0, seed: int = 0 ) -> Tuple[np.ndarray, np.ndarray]: """Subsample n samples from rows of array. Parameters ---------- X Data array. n Sample size. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if n < 0: raise ValueError('n must be greater 0') np.random.seed(seed) n = X.shape[0] if (n == 0 or n > X.shape[0]) else n rows = np.random.choice(X.shape[0], size=n, replace=False) Xsampled = X[rows] return Xsampled, rows def check_presence_download(filename: Path, backup_url): """Check if file is present otherwise download.""" if not filename.is_file(): from .readwrite import _download _download(backup_url, filename) def lazy_import(full_name): """Imports a module in a way that it’s only executed on member access""" try: return sys.modules[full_name] except KeyError: spec = importlib.util.find_spec(full_name) module = importlib.util.module_from_spec(spec) loader = importlib.util.LazyLoader(spec.loader) # Make module with proper locking and get it inserted into sys.modules. loader.exec_module(module) return module # -------------------------------------------------------------------------------- # Neighbors # -------------------------------------------------------------------------------- def _fallback_to_uns(dct, conns, dists, conns_key, dists_key): if conns is None and conns_key in dct: conns = dct[conns_key] if dists is None and dists_key in dct: dists = dct[dists_key] return conns, dists class NeighborsView: """Convenience class for accessing neighbors graph representations. Allows to access neighbors distances, connectivities and settings dictionary in a uniform manner. Parameters ---------- adata AnnData object. key This defines where to look for neighbors dictionary, connectivities, distances. neigh = NeighborsView(adata, key) neigh['distances'] neigh['connectivities'] neigh['params'] 'connectivities' in neigh 'params' in neigh is the same as adata.obsp[adata.uns[key]['distances_key']] adata.obsp[adata.uns[key]['connectivities_key']] adata.uns[key]['params'] adata.uns[key]['connectivities_key'] in adata.obsp 'params' in adata.uns[key] """ def __init__(self, adata, key=None): self._connectivities = None self._distances = None if key is None or key == 'neighbors': if 'neighbors' not in adata.uns: raise KeyError('No "neighbors" in .uns') self._neighbors_dict = adata.uns['neighbors'] self._conns_key = 'connectivities' self._dists_key = 'distances' else: if key not in adata.uns: raise KeyError(f'No "{key}" in .uns') self._neighbors_dict = adata.uns[key] self._conns_key = self._neighbors_dict['connectivities_key'] self._dists_key = self._neighbors_dict['distances_key'] if self._conns_key in adata.obsp: self._connectivities = adata.obsp[self._conns_key] if self._dists_key in adata.obsp: self._distances = adata.obsp[self._dists_key] # fallback to uns self._connectivities, self._distances = _fallback_to_uns( self._neighbors_dict, self._connectivities, self._distances, self._conns_key, self._dists_key, ) def __getitem__(self, key): if key == 'distances': if 'distances' not in self: raise KeyError(f'No "{self._dists_key}" in .obsp') return self._distances elif key == 'connectivities': if 'connectivities' not in self: raise KeyError(f'No "{self._conns_key}" in .obsp') return self._connectivities else: return self._neighbors_dict[key] def __contains__(self, key): if key == 'distances': return self._distances is not None elif key == 'connectivities': return self._connectivities is not None else: return key in self._neighbors_dict def _choose_graph(adata, obsp, neighbors_key): """Choose connectivities from neighbbors or another obsp column""" if obsp is not None and neighbors_key is not None: raise ValueError( 'You can\'t specify both obsp, neighbors_key. ' 'Please select only one.' ) if obsp is not None: return adata.obsp[obsp] else: neighbors = NeighborsView(adata, neighbors_key) if 'connectivities' not in neighbors: raise ValueError( 'You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.' ) return neighbors['connectivities']
def warn_with_traceback(message, category, filename, lineno, file=None, line=None): """Get full tracebacks when warning is raised by setting warnings.showwarning = warn_with_traceback See also -------- http://stackoverflow.com/questions/22373927/get-traceback-of-warnings """ import traceback traceback.print_stack() log = file if hasattr(file, 'write') else sys.stderr settings.write(warnings.formatwarning(message, category, filename, lineno, line))
545
558
"""Utility functions and classes """ import sys import inspect import warnings import importlib.util from enum import Enum from pathlib import Path from weakref import WeakSet from collections import namedtuple from functools import partial, wraps from types import ModuleType, MethodType from typing import Union, Callable, Optional, Mapping, Any, Dict, Tuple import numpy as np from numpy import random from scipy import sparse from anndata import AnnData, __version__ as anndata_version from textwrap import dedent from packaging import version from ._settings import settings from ._compat import Literal from . import logging as logg class Empty(Enum): token = 0 _empty = Empty.token # e.g. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html AnyRandom = Union[None, int, random.RandomState] # maybe in the future random.Generator EPS = 1e-15 def check_versions(): from ._compat import pkg_version umap_version = pkg_version("umap-learn") if version.parse(anndata_version) < version.parse('0.6.10'): from . import __version__ raise ImportError( f'Scanpy {__version__} needs anndata version >=0.6.10, ' f'not {anndata_version}.\nRun `pip install anndata -U --no-deps`.' ) if umap_version < version.parse('0.3.0'): from . import __version__ # make this a warning, not an error # it might be useful for people to still be able to run it logg.warning( f'Scanpy {__version__} needs umap ' f'version >=0.3.0, not {umap_version}.' ) def getdoc(c_or_f: Union[Callable, type]) -> Optional[str]: if getattr(c_or_f, '__doc__', None) is None: return None doc = inspect.getdoc(c_or_f) if isinstance(c_or_f, type) and hasattr(c_or_f, '__init__'): sig = inspect.signature(c_or_f.__init__) else: sig = inspect.signature(c_or_f) def type_doc(name: str): param: inspect.Parameter = sig.parameters[name] cls = getattr(param.annotation, '__qualname__', repr(param.annotation)) if param.default is not param.empty: return f'{cls}, optional (default: {param.default!r})' else: return cls return '\n'.join( f'{line} : {type_doc(line)}' if line.strip() in sig.parameters else line for line in doc.split('\n') ) def deprecated_arg_names(arg_mapping: Mapping[str, str]): """ Decorator which marks a functions keyword arguments as deprecated. It will result in a warning being emitted when the deprecated keyword argument is used, and the function being called with the new argument. Parameters ---------- arg_mapping Mapping from deprecated argument name to current argument name. """ def decorator(func): @wraps(func) def func_wrapper(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter for old, new in arg_mapping.items(): if old in kwargs: warnings.warn( f"Keyword argument '{old}' has been " f"deprecated in favour of '{new}'. " f"'{old}' will be removed in a future version.", category=DeprecationWarning, stacklevel=2, ) val = kwargs.pop(old) kwargs[new] = val # reset filter warnings.simplefilter('default', DeprecationWarning) return func(*args, **kwargs) return func_wrapper return decorator def _one_of_ours(obj, root: str): return ( hasattr(obj, "__name__") and not obj.__name__.split(".")[-1].startswith("_") and getattr( obj, '__module__', getattr(obj, '__qualname__', obj.__name__) ).startswith(root) ) def descend_classes_and_funcs(mod: ModuleType, root: str, encountered=None): if encountered is None: encountered = WeakSet() for obj in vars(mod).values(): if not _one_of_ours(obj, root): continue if callable(obj) and not isinstance(obj, MethodType): yield obj if isinstance(obj, type): for m in vars(obj).values(): if callable(m) and _one_of_ours(m, root): yield m elif isinstance(obj, ModuleType) and obj not in encountered: if obj.__name__.startswith('scanpy.tests'): # Python’s import mechanism seems to add this to `scanpy`’s attributes continue encountered.add(obj) yield from descend_classes_and_funcs(obj, root, encountered) def annotate_doc_types(mod: ModuleType, root: str): for c_or_f in descend_classes_and_funcs(mod, root): c_or_f.getdoc = partial(getdoc, c_or_f) def _doc_params(**kwds): """\ Docstrings should start with "\" in the first line for proper formatting. """ def dec(obj): obj.__orig_doc__ = obj.__doc__ obj.__doc__ = dedent(obj.__doc__).format_map(kwds) return obj return dec def _check_array_function_arguments(**kwargs): """Checks for invalid arguments when an array is passed. Helper for functions that work on either AnnData objects or array-likes. """ # TODO: Figure out a better solution for documenting dispatched functions invalid_args = [k for k, v in kwargs.items() if v is not None] if len(invalid_args) > 0: raise TypeError( f"Arguments {invalid_args} are only valid if an AnnData object is passed." ) def _check_use_raw(adata: AnnData, use_raw: Union[None, bool]) -> bool: """ Normalize checking `use_raw`. My intentention here is to also provide a single place to throw a deprecation warning from in future. """ if use_raw is not None: return use_raw else: if adata.raw is not None: return True else: return False # -------------------------------------------------------------------------------- # Graph stuff # -------------------------------------------------------------------------------- def get_igraph_from_adjacency(adjacency, directed=None): """Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except: pass if g.vcount() != adjacency.shape[0]: logg.warning( f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.' ) return g def get_sparse_from_igraph(graph, weight_attr=None): from scipy.sparse import csr_matrix edges = graph.get_edgelist() if weight_attr is None: weights = [1] * len(edges) else: weights = graph.es[weight_attr] if not graph.is_directed(): edges.extend([(v, u) for u, v in edges]) weights.extend(weights) shape = graph.vcount() shape = (shape, shape) if len(edges) > 0: return csr_matrix((weights, zip(*edges)), shape=shape) else: return csr_matrix(shape) # -------------------------------------------------------------------------------- # Group stuff # -------------------------------------------------------------------------------- def compute_association_matrix_of_groups( adata: AnnData, prediction: str, reference: str, normalization: Literal['prediction', 'reference'] = 'prediction', threshold: float = 0.01, max_n_names: Optional[int] = 2, ): """Compute overlaps between groups. See ``identify_groups`` for identifying the groups. Parameters ---------- adata prediction Field name of adata.obs. reference Field name of adata.obs. normalization Whether to normalize with respect to the predicted groups or the reference groups. threshold Do not consider associations whose overlap is below this fraction. max_n_names Control how many reference names you want to be associated with per predicted name. Set to `None`, if you want all. Returns ------- asso_names List of associated reference names (`max_n_names` for each predicted name). asso_matrix Matrix where rows correspond to the predicted labels and columns to the reference labels, entries are proportional to degree of association. """ if normalization not in {'prediction', 'reference'}: raise ValueError( '`normalization` needs to be either "prediction" or "reference".' ) sanitize_anndata(adata) cats = adata.obs[reference].cat.categories for cat in cats: if cat in settings.categories_to_ignore: logg.info( f'Ignoring category {cat!r} ' 'as it’s in `settings.categories_to_ignore`.' ) asso_names = [] asso_matrix = [] for ipred_group, pred_group in enumerate(adata.obs[prediction].cat.categories): if '?' in pred_group: pred_group = str(ipred_group) # starting from numpy version 1.13, subtractions of boolean arrays are deprecated mask_pred = adata.obs[prediction].values == pred_group mask_pred_int = mask_pred.astype(np.int8) asso_matrix += [[]] for ref_group in adata.obs[reference].cat.categories: mask_ref = (adata.obs[reference].values == ref_group).astype(np.int8) mask_ref_or_pred = mask_ref.copy() mask_ref_or_pred[mask_pred] = 1 # e.g. if the pred group is contained in mask_ref, mask_ref and # mask_ref_or_pred are the same if normalization == 'prediction': # compute which fraction of the predicted group is contained in # the ref group ratio_contained = ( np.sum(mask_pred_int) - np.sum(mask_ref_or_pred - mask_ref) ) / np.sum(mask_pred_int) else: # compute which fraction of the reference group is contained in # the predicted group ratio_contained = ( np.sum(mask_ref) - np.sum(mask_ref_or_pred - mask_pred_int) ) / np.sum(mask_ref) asso_matrix[-1] += [ratio_contained] name_list_pred = [ cats[i] if cats[i] not in settings.categories_to_ignore else '' for i in np.argsort(asso_matrix[-1])[::-1] if asso_matrix[-1][i] > threshold ] asso_names += ['\n'.join(name_list_pred[:max_n_names])] Result = namedtuple( 'compute_association_matrix_of_groups', ['asso_names', 'asso_matrix'] ) return Result(asso_names=asso_names, asso_matrix=np.array(asso_matrix)) def get_associated_colors_of_groups(reference_colors, asso_matrix): return [ { reference_colors[i_ref]: asso_matrix[i_pred, i_ref] for i_ref in range(asso_matrix.shape[1]) } for i_pred in range(asso_matrix.shape[0]) ] def identify_groups(ref_labels, pred_labels, return_overlaps=False): """Which predicted label explains which reference label? A predicted label explains the reference label which maximizes the minimum of ``relative_overlaps_pred`` and ``relative_overlaps_ref``. Compare this with ``compute_association_matrix_of_groups``. Returns ------- A dictionary of length ``len(np.unique(ref_labels))`` that stores for each reference label the predicted label that best explains it. If ``return_overlaps`` is ``True``, this will in addition return the overlap of the reference group with the predicted group; normalized with respect to the reference group size and the predicted group size, respectively. """ ref_unique, ref_counts = np.unique(ref_labels, return_counts=True) ref_dict = dict(zip(ref_unique, ref_counts)) pred_unique, pred_counts = np.unique(pred_labels, return_counts=True) pred_dict = dict(zip(pred_unique, pred_counts)) associated_predictions = {} associated_overlaps = {} for ref_label in ref_unique: sub_pred_unique, sub_pred_counts = np.unique( pred_labels[ref_label == ref_labels], return_counts=True ) relative_overlaps_pred = [ sub_pred_counts[i] / pred_dict[n] for i, n in enumerate(sub_pred_unique) ] relative_overlaps_ref = [ sub_pred_counts[i] / ref_dict[ref_label] for i, n in enumerate(sub_pred_unique) ] relative_overlaps = np.c_[relative_overlaps_pred, relative_overlaps_ref] relative_overlaps_min = np.min(relative_overlaps, axis=1) pred_best_index = np.argsort(relative_overlaps_min)[::-1] associated_predictions[ref_label] = sub_pred_unique[pred_best_index] associated_overlaps[ref_label] = relative_overlaps[pred_best_index] if return_overlaps: return associated_predictions, associated_overlaps else: return associated_predictions # -------------------------------------------------------------------------------- # Other stuff # -------------------------------------------------------------------------------- # backwards compat... remove this in the future def sanitize_anndata(adata): """Transform string annotations to categoricals.""" adata._sanitize() def view_to_actual(adata): if adata.is_view: warnings.warn( "Revieved a view of an AnnData. Making a copy.", stacklevel=2, ) adata._init_as_actual(adata.copy()) def moving_average(a: np.ndarray, n: int): """Moving average over one-dimensional array. Parameters ---------- a One-dimensional array. n Number of entries to average over. n=2 means averaging over the currrent the previous entry. Returns ------- An array view storing the moving average. """ ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n # -------------------------------------------------------------------------------- # Deal with tool parameters # -------------------------------------------------------------------------------- def update_params( old_params: Mapping[str, Any], new_params: Mapping[str, Any], check=False, ) -> Dict[str, Any]: """\ Update old_params with new_params. If check==False, this merely adds and overwrites the content of old_params. If check==True, this only allows updating of parameters that are already present in old_params. Parameters ---------- old_params new_params check Returns ------- updated_params """ updated_params = dict(old_params) if new_params: # allow for new_params to be None for key, val in new_params.items(): if key not in old_params and check: raise ValueError( '\'' + key + '\' is not a valid parameter key, ' + 'consider one of \n' + str(list(old_params.keys())) ) if val is not None: updated_params[key] = val return updated_params # -------------------------------------------------------------------------------- # Others # -------------------------------------------------------------------------------- def check_nonnegative_integers(X: Union[np.ndarray, sparse.spmatrix]): """Checks values of X to ensure it is count data""" from numbers import Integral data = X if isinstance(X, np.ndarray) else X.data # Check no negatives if np.signbit(data).any(): return False # Check all are integers elif issubclass(data.dtype.type, Integral): return True elif np.any(~np.equal(np.mod(data, 1), 0)): return False else: return True def select_groups(adata, groups_order_subset='all', key='groups'): """Get subset of groups in adata.obs[key].""" groups_order = adata.obs[key].cat.categories if key + '_masks' in adata.uns: groups_masks = adata.uns[key + '_masks'] else: groups_masks = np.zeros( (len(adata.obs[key].cat.categories), adata.obs[key].values.size), dtype=bool ) for iname, name in enumerate(adata.obs[key].cat.categories): # if the name is not found, fallback to index retrieval if adata.obs[key].cat.categories[iname] in adata.obs[key].values: mask = adata.obs[key].cat.categories[iname] == adata.obs[key].values else: mask = str(iname) == adata.obs[key].values groups_masks[iname] = mask groups_ids = list(range(len(groups_order))) if groups_order_subset != 'all': groups_ids = [] for name in groups_order_subset: groups_ids.append( np.where(adata.obs[key].cat.categories.values == name)[0][0] ) if len(groups_ids) == 0: # fallback to index retrieval groups_ids = np.where( np.in1d( np.arange(len(adata.obs[key].cat.categories)).astype(str), np.array(groups_order_subset), ) )[0] if len(groups_ids) == 0: logg.debug( f'{np.array(groups_order_subset)} invalid! specify valid ' f'groups_order (or indices) from {adata.obs[key].cat.categories}', ) from sys import exit exit(0) groups_masks = groups_masks[groups_ids] groups_order_subset = adata.obs[key].cat.categories[groups_ids].values else: groups_order_subset = groups_order.values return groups_order_subset, groups_masks def warn_with_traceback(message, category, filename, lineno, file=None, line=None): """Get full tracebacks when warning is raised by setting warnings.showwarning = warn_with_traceback See also -------- http://stackoverflow.com/questions/22373927/get-traceback-of-warnings """ import traceback traceback.print_stack() log = file if hasattr(file, 'write') else sys.stderr settings.write(warnings.formatwarning(message, category, filename, lineno, line)) def subsample( X: np.ndarray, subsample: int = 1, seed: int = 0, ) -> Tuple[np.ndarray, np.ndarray]: """\ Subsample a fraction of 1/subsample samples from the rows of X. Parameters ---------- X Data array. subsample 1/subsample is the fraction of data sampled, n = X.shape[0]/subsample. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if subsample == 1 and seed == 0: return X, np.arange(X.shape[0], dtype=int) if seed == 0: # this sequence is defined simply by skipping rows # is faster than sampling rows = np.arange(0, X.shape[0], subsample, dtype=int) n = rows.size Xsampled = np.array(X[rows]) else: if seed < 0: raise ValueError(f'Invalid seed value < 0: {seed}') n = int(X.shape[0] / subsample) np.random.seed(seed) Xsampled, rows = subsample_n(X, n=n) logg.debug(f'... subsampled to {n} of {X.shape[0]} data points') return Xsampled, rows def subsample_n( X: np.ndarray, n: int = 0, seed: int = 0 ) -> Tuple[np.ndarray, np.ndarray]: """Subsample n samples from rows of array. Parameters ---------- X Data array. n Sample size. seed Seed for sampling. Returns ------- Xsampled Subsampled X. rows Indices of rows that are stored in Xsampled. """ if n < 0: raise ValueError('n must be greater 0') np.random.seed(seed) n = X.shape[0] if (n == 0 or n > X.shape[0]) else n rows = np.random.choice(X.shape[0], size=n, replace=False) Xsampled = X[rows] return Xsampled, rows def check_presence_download(filename: Path, backup_url): """Check if file is present otherwise download.""" if not filename.is_file(): from .readwrite import _download _download(backup_url, filename) def lazy_import(full_name): """Imports a module in a way that it’s only executed on member access""" try: return sys.modules[full_name] except KeyError: spec = importlib.util.find_spec(full_name) module = importlib.util.module_from_spec(spec) loader = importlib.util.LazyLoader(spec.loader) # Make module with proper locking and get it inserted into sys.modules. loader.exec_module(module) return module # -------------------------------------------------------------------------------- # Neighbors # -------------------------------------------------------------------------------- def _fallback_to_uns(dct, conns, dists, conns_key, dists_key): if conns is None and conns_key in dct: conns = dct[conns_key] if dists is None and dists_key in dct: dists = dct[dists_key] return conns, dists class NeighborsView: """Convenience class for accessing neighbors graph representations. Allows to access neighbors distances, connectivities and settings dictionary in a uniform manner. Parameters ---------- adata AnnData object. key This defines where to look for neighbors dictionary, connectivities, distances. neigh = NeighborsView(adata, key) neigh['distances'] neigh['connectivities'] neigh['params'] 'connectivities' in neigh 'params' in neigh is the same as adata.obsp[adata.uns[key]['distances_key']] adata.obsp[adata.uns[key]['connectivities_key']] adata.uns[key]['params'] adata.uns[key]['connectivities_key'] in adata.obsp 'params' in adata.uns[key] """ def __init__(self, adata, key=None): self._connectivities = None self._distances = None if key is None or key == 'neighbors': if 'neighbors' not in adata.uns: raise KeyError('No "neighbors" in .uns') self._neighbors_dict = adata.uns['neighbors'] self._conns_key = 'connectivities' self._dists_key = 'distances' else: if key not in adata.uns: raise KeyError(f'No "{key}" in .uns') self._neighbors_dict = adata.uns[key] self._conns_key = self._neighbors_dict['connectivities_key'] self._dists_key = self._neighbors_dict['distances_key'] if self._conns_key in adata.obsp: self._connectivities = adata.obsp[self._conns_key] if self._dists_key in adata.obsp: self._distances = adata.obsp[self._dists_key] # fallback to uns self._connectivities, self._distances = _fallback_to_uns( self._neighbors_dict, self._connectivities, self._distances, self._conns_key, self._dists_key, ) def __getitem__(self, key): if key == 'distances': if 'distances' not in self: raise KeyError(f'No "{self._dists_key}" in .obsp') return self._distances elif key == 'connectivities': if 'connectivities' not in self: raise KeyError(f'No "{self._conns_key}" in .obsp') return self._connectivities else: return self._neighbors_dict[key] def __contains__(self, key): if key == 'distances': return self._distances is not None elif key == 'connectivities': return self._connectivities is not None else: return key in self._neighbors_dict def _choose_graph(adata, obsp, neighbors_key): """Choose connectivities from neighbbors or another obsp column""" if obsp is not None and neighbors_key is not None: raise ValueError( 'You can\'t specify both obsp, neighbors_key. ' 'Please select only one.' ) if obsp is not None: return adata.obsp[obsp] else: neighbors = NeighborsView(adata, neighbors_key) if 'connectivities' not in neighbors: raise ValueError( 'You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.' ) return neighbors['connectivities']
backup_models
Save the current best models. Save CER model, the best loss model and the best WER model. This occurs at a specified period. Args: i: no. of iterations.
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ''' In this file, we define the classes that live inside 'worker 0', the worker responsible for orchestration and aggregation. The main class is the OptimizationServer, which sends clients to the other workers to process and combines the resulting models. ''' import json import logging import os import random import shutil import time from collections import defaultdict import numpy as np import torch # Internal imports from core.globals import TRAINING_FRAMEWORK_TYPE if TRAINING_FRAMEWORK_TYPE == 'mpi': import core.federated as federated else: raise NotImplementedError('{} is not supported'.format(TRAINING_FRAMEWORK_TYPE)) from core.evaluation import Evaluation from core.client import Client from .strategies import select_strategy from .trainer import ( ModelUpdater, Trainer, set_component_wise_lr, ) from utils import ( get_lr, print_rank, update_json_log, ) # For profiling import cProfile import pstats # AzureML-related libs from azureml.core import Run run = Run.get_context() class OptimizationServer(federated.Server): def __init__(self, num_clients, model, optimizer, ss_scheduler, data_path, model_path, train_dataloader, val_dataloader, test_dataloader, config, config_server): '''Implement Server's orchestration and aggregation. This is the main Server class, that actually implements orchestration and aggregation, inheriting from `federated.Server`, which deals with communication only. The `train` method is central in FLUTE, as it defines good part of what happens during training. Args: num_clients (int): total available clients. model (torch.nn.Module): neural network model. optimizer (torch.optim.Optimizer): optimizer. ss_scheduler: scheduled sampling scheduler. data_path (str): points to where data is. model_path (str): points to where pretrained model is. train_dataloader (torch.utils.data.DataLoader): dataloader for training val_dataloader (torch.utils.data.DataLoader): dataloader for validation test_dataloader (torch.utils.data.DataLoader): dataloader for test, can be None config (dict): JSON style configuration parameters config_server: deprecated, kept for API compatibility only. ''' super().__init__() # Initialize all attributes from arguments self.client_idx_list = list(range(num_clients)) self.config = config server_config = config['server_config'] decoder_config = config.get('decoder_config', None) self.max_iteration = server_config['max_iteration'] self.do_clustering = server_config.get('clustering', False) self.num_clients_per_iteration = [int(x) for x in server_config['num_clients_per_iteration'].split(',')] \ if isinstance(server_config['num_clients_per_iteration'], str) \ else [server_config['num_clients_per_iteration']] self.val_freq = server_config['val_freq'] self.req_freq = server_config['rec_freq'] self.evaluation = Evaluation(config, model_path, self.process_testvalidate, val_dataloader, test_dataloader) # TODO: does this need to be adjusted for custom metrics? self.metrics = { 'best_val_loss': float('inf'), 'best_val_acc': 0.0, 'best_test_loss': float('inf'), 'best_test_acc': 0.0 } self.model_backup_freq = server_config.get('model_backup_freq', 100) self.worker_trainer_config = server_config.get('trainer_config', {}) self.aggregate_median = server_config['aggregate_median'] self.initial_lr_client = server_config.get('initial_lr_client', -1.0) self.lr_decay_factor = server_config.get('lr_decay_factor', 1.0) self.model_type = config['model_config']['model_type'] self.quant_thresh = config['client_config'].get('quant_thresh', None) self.quant_bits = config['client_config'].get('quant_bits', 10) self.list_of_train_data = config['client_config']['data_config']['train']['list_of_train_data'] self.data_path = data_path # Get max grad norm from data config if 'train' in server_config['data_config']: max_grad_norm = server_config['data_config']['train'].get('max_grad_norm', None) else: max_grad_norm = None # Creating an instance to update the model with stats aggregated from workers self.worker_trainer = ModelUpdater( model=model, optimizer=optimizer, ss_scheduler=ss_scheduler, train_dataloader=train_dataloader if train_dataloader is not None else val_dataloader, val_dataloader=val_dataloader, max_grad_norm=max_grad_norm, anneal_config=server_config['annealing_config'], model_type=self.model_type, decoder_config=decoder_config ) self.metrics['worker_trainer'] = self.worker_trainer # Creating an instance for the server-side trainer (runs mini-batch SGD) self.server_replay_iterations = None self.server_trainer = None if train_dataloader is not None: assert 'server_replay_config' in server_config, 'server_replay_config is not set' assert 'optimizer_config' in server_config[ 'server_replay_config'], 'server-side replay training optimizer is not set' self.server_optimizer_config = server_config['server_replay_config']['optimizer_config'] self.server_trainer_config = server_config['server_replay_config'].get('trainer_config', {}) self.server_replay_iterations = server_config['server_replay_config']['server_iterations'] self.server_trainer = Trainer( model=model, optimizer=None, ss_scheduler=ss_scheduler, train_dataloader=train_dataloader, server_replay_config=server_config['server_replay_config'], val_dataloader=None, max_grad_norm=server_config['server_replay_config']\ .get('max_grad_norm',server_config['data_config']['train']\ .get('max_grad_norm',None)), anneal_config=server_config['server_replay_config'].get('annealing_config', None) ) self.skip_model_update = False # will not update the model if True self.train_loss = 0.0 self.model_path = model_path self.best_model_criterion = server_config['best_model_criterion'] self.fall_back_to_best_model = server_config['fall_back_to_best_model'] self.last_model_path = os.path.join(self.model_path, 'latest_model.tar') self.best_model_path = os.path.join(self.model_path, 'best_val_{}_model.tar'.format(self.best_model_criterion)) self.log_path = os.path.join(self.model_path, 'status_log.json') self.cur_iter_no = 0 # keep the iteration number for Tensor board plotting self.lr_weight = 1.0 self.losses = [] self.no_label_updates = 0 # no. label updates # Update the parameters above if the log file if server_config.get('resume_from_checkpoint', False): self.load_saved_status() # Decoding config self.decoder_config = decoder_config self.spm_model = server_config['data_config']['test'].get('spm_model', None) self.do_profiling = server_config.get('do_profiling', False) # Parallel processing self.clients_in_parallel = config['client_config'].get('clients_in_parallel', None) StrategyClass = select_strategy(config['strategy']) self.strategy = StrategyClass('server', self.config, self.model_path) print_rank(f'Server successfully instantiated strategy {self.strategy}', loglevel=logging.DEBUG) def load_saved_status(self): '''Load checkpoint from disk''' # Check if model is on disk, if so loads it onto trainer if os.path.exists(self.last_model_path): print_rank('Resuming from checkpoint model {}'.format(self.last_model_path)) self.worker_trainer.load(self.last_model_path, update_lr_scheduler=True, update_ss_scheduler=True) if self.server_trainer is not None: self.server_trainer.model = self.worker_trainer.model # make sure that the models are in sync # Check if log is on disk, if so loads it onto current stats if os.path.exists(self.log_path): with open(self.log_path, 'r') as logfp: # loading the iteration no., best loss and CER elems = json.load(logfp) self.cur_iter_no = elems.get('i', 0) self.metrics['best_val_loss'] = elems.get('best_val_loss', float('inf')) self.metrics['best_val_acc'] = elems.get('best_val_acc', 0) self.metrics['best_test_loss'] = elems.get('best_test_loss', float('inf')) self.metrics['best_test_acc'] = elems.get('best_test_acc', 0) self.lr_weight = elems.get('weight', 1.0) self.no_label_updates = elems.get('num_label_updates', 0) print_rank(f'Resuming from status_log: cur_iter: {self.cur_iter_no}') def run(self): '''Trigger training. This is a simple wrapper to the `train` method. ''' print_rank('server started') self.train() print_rank('server terminated') def train(self): '''Main method for training.''' self.run_stats = { 'secsPerClientRound': [], 'secsPerClient': [], 'secsPerClientTraining': [], 'secsPerClientSetup': [], 'secsPerClientFull': [], 'secsPerRoundHousekeeping': [], 'secsPerRoundTotal': [], 'mpiCosts': [] } run.log('Max iterations', self.max_iteration) try: self.worker_trainer.model.cuda() if torch.cuda.is_available() else None # Do an initial validation round to understand the pretrained model's validation accuracy # Skip if we resumed from a checkpoint (cur_iter_no > 0) eval_list = [] if self.cur_iter_no == 0: if self.config['server_config']['initial_rec']: eval_list.append('test') if self.config['server_config']['initial_val']: eval_list.append('val') run.log('LR for agg. opt.', get_lr(self.worker_trainer.optimizer)) print_rank("Running {} at itr={}".format(eval_list, self.cur_iter_no)) self.metrics = self.evaluation.run(eval_list, self.metrics, metric_logger=run.log) eval_list = [] # some cleanup # Dump all the information in aggregate_metric print_rank('Saving Model Before Starting Training', loglevel=logging.INFO) for token in ['best_val_loss', 'best_val_acc', 'best_test_acc', 'latest']: self.worker_trainer.save( model_path=self.model_path, token=token, config=self.config['server_config'] ) # Training loop self.worker_trainer.model.train() for i in range(self.cur_iter_no, self.max_iteration): begin = time.time() metrics_payload = {} def log_metric(k, v): metrics_payload[k] = v print_rank('==== iteration {}'.format(i)) log_metric('Current iteration', i) # Initial value for the learning rate of the worker initial_lr = self.initial_lr_client * self.lr_weight print_rank('Client learning rate {}'.format(initial_lr)) # Run training on clients self.worker_trainer.model.zero_grad() self.train_loss = [] server_data = ( initial_lr, [p.data.to(torch.device('cpu')) for p in self.worker_trainer.model.parameters()] ) # Random number of clients per iteration if len(self.num_clients_per_iteration) > 1: num_clients_curr_iter = random.randint( self.num_clients_per_iteration[0], self.num_clients_per_iteration[1] ) else: num_clients_curr_iter = self.num_clients_per_iteration[0] log_metric('Clients for round', num_clients_curr_iter) # Perform annealing in quantization threshold if self.quant_thresh is not None: self.config['client_config']['quant_thresh'] *= self.config['client_config'].get('quant_anneal', 1.0) self.quant_thresh = self.config['client_config']['quant_thresh'] log_metric('Quantization Thresh.', self.config['client_config']['quant_thresh']) # Create the pool of clients -- sample from this pool to assign to workers sampled_idx_clients = random.sample(self.client_idx_list, num_clients_curr_iter) if num_clients_curr_iter > 0 else self.client_idx_list sampled_clients = [ Client( client_id, self.config, self.config['client_config']['type'] == 'optimization', None ) for client_id in sampled_idx_clients ] # Initialize stats clients_begin = time.time() client_losses = [] client_mag_grads = [] client_mean_grads = [] client_var_grads = [] client_norm_grads = [] self.run_stats['secsPerClient'].append([]) self.run_stats['secsPerClientFull'].append([]) self.run_stats['secsPerClientTraining'].append([]) self.run_stats['secsPerClientSetup'].append([]) self.run_stats['mpiCosts'].append([]) # Check if we want privacy metrics apply_privacy_metrics = self.config.get('privacy_metrics_config', None) and \ self.config['privacy_metrics_config']['apply_metrics'] adaptive_leakage = apply_privacy_metrics and \ self.config['privacy_metrics_config'].get('adaptive_leakage_threshold', None) if apply_privacy_metrics: privacy_metrics_stats = defaultdict(list) # Initialize profiler profiler = None if self.do_profiling: profiler = cProfile.Profile() profiler.enable() # Reset gradient for the model before assigning the new gradients self.worker_trainer.model.zero_grad() for client_output in self.process_clients(sampled_clients, server_data, self.clients_in_parallel): # Process client output client_timestamp = client_output['ts'] client_stats = client_output['cs'] client_loss = client_output['tl'] client_mag_grad = client_output['mg'] client_mean_grad = client_output['ng'] client_var_grad = client_output['vg'] client_norm_grad = client_output['rg'] client_payload = client_output['pl'] if apply_privacy_metrics: privacy_stats = client_output['ps'] for metric, value in privacy_stats.items(): privacy_metrics_stats[metric].append(value) self.run_stats['mpiCosts'][-1].append(time.time() - client_timestamp) # Get actual pseudo-gradients for aggregation payload_processed = self.strategy.process_individual_payload(self.worker_trainer, client_payload) if not payload_processed: print_rank('Dropping client', loglevel=logging.DEBUG) num_clients_curr_iter -= 1 continue # Aggregate stats self.train_loss.append(client_loss) client_losses.append(client_loss) client_mag_grads.append(client_mag_grad.item()) client_mean_grads.append(client_mean_grad.item()) client_var_grads.append(client_var_grad.item()) client_norm_grads.append(client_norm_grad.item()) # Mark the end of client processing client_end = time.time() self.run_stats['secsPerClientFull'][-1].append(client_stats['full cost']) self.run_stats['secsPerClientTraining'][-1].append(client_stats['training']) self.run_stats['secsPerClientSetup'][-1].append(client_stats['setup']) self.run_stats['secsPerClient'][-1].append(client_end - clients_begin) # Tear down profiler if self.do_profiling: profiler.disable() stats = pstats.Stats(profiler) stats.sort_stats('cumulative').print_stats() # Prepare output client_mag_grads = np.array(client_mag_grads) client_mean_grads = np.array(client_mean_grads) client_var_grads = np.array(client_var_grads) client_norm_grads = np.array(client_norm_grads) client_stats = (client_mag_grads, client_mean_grads, client_var_grads) dump_norm_stats = self.config.get('dump_norm_stats', False) if dump_norm_stats: with open(os.path.join(self.model_path, 'norm_stats.txt'), 'a', encoding='utf-8') as outF: outF.write('{}\n'.format(json.dumps(list(client_norm_grads)))) # Print the privacy metrics if apply_privacy_metrics: for metric, values in privacy_metrics_stats.items(): if metric == 'Dropped clients': log_metric(metric, sum(values)) else: log_metric(metric, max(values)) if type(adaptive_leakage) is float: values = privacy_metrics_stats['Practical epsilon (Max leakage)'] new_threshold = list(sorted(values))[int(adaptive_leakage*len(values))] print_rank('Updating leakage threshold to {}'.format(new_threshold)) self.config['privacy_metrics_config']['max_allowed_leakage'] = new_threshold # Mark that all clients have been processed end = time.time() self.run_stats['secsPerClientRound'].append(end - begin) begin = end # Log the training loss to tensorboard/AML log_metric('Training loss', sum(self.train_loss)) # Combine payloads self.losses = self.strategy.combine_payloads( worker_trainer=self.worker_trainer, curr_iter=i, num_clients_curr_iter=num_clients_curr_iter, client_stats=client_stats, logger=log_metric, ) # Run a couple of iterations of training data on the server if self.server_trainer is not None: print_rank('Running replay iterations on server') if 'updatable_names' in self.server_trainer_config: set_component_wise_lr( self.worker_trainer.model, self.server_optimizer_config, self.server_trainer_config['updatable_names'] ) self.server_trainer.prepare_iteration(self.worker_trainer.model) self.server_trainer.train_desired_samples(self.server_replay_iterations) self.worker_trainer.model.load_state_dict(self.server_trainer.model.state_dict()) torch.cuda.empty_cache() # Update a sampling scheduler print_rank('Run ss scheduler') self.worker_trainer.run_ss_scheduler() # Run inference and score on val/test depending on the iter. number if ((i+1) % self.val_freq) == 0: eval_list.append("val") if ((i+1) % self.req_freq) == 0 : eval_list.append("test") if len(eval_list)> 0: print_rank('Running {} at itr={}'.format(eval_list,i+1)) self.metrics['worker_trainer'] = self.worker_trainer self.metrics = self.evaluation.run(eval_list, self.metrics, metric_logger=run.log) self.losses = self.evaluation.losses eval_list = [] # Create a schedule for the initial_lr (for the worker) if 'val' in eval_list: run.log('LR for agg. opt.', get_lr(self.worker_trainer.optimizer)) if not (self.losses[0] < self.metrics['best_val_loss']): self.lr_weight *= self.lr_decay_factor print_rank('LOG: Client weight of learning rate {}..'.format(self.lr_weight)) # Backup the current best models self.backup_models(i) # Fall back to the best model if the option is enabled self.fall_back_to_prev_best_status() # Logging the latest best values update_json_log( self.log_path, { 'i': i + 1, 'best_val_loss': float(self.metrics['best_val_loss']), 'best_val_acc': float(self.metrics['best_val_acc']), 'best_test_loss': float(self.metrics['best_test_loss']), 'best_test_acc': float(self.metrics['best_test_acc']), 'weight': float(self.lr_weight), 'num_label_updates': int(self.no_label_updates) }, ) end = time.time() # Aggregate stats self.run_stats['secsPerRoundHousekeeping'].append(end - begin) self.run_stats['secsPerRoundTotal'].append(self.run_stats['secsPerClientRound'][-1] + \ self.run_stats['secsPerRoundHousekeeping'][-1]) log_metric('secsPerRoundTotal', self.run_stats['secsPerRoundTotal'][-1]) if self.do_profiling: log_metric('secsPerClientRound', self.run_stats['secsPerClientRound'][-1]) log_metric('secsPerRoundHousekeeping', self.run_stats['secsPerRoundHousekeeping'][-1]) metrics_for_stats = [ 'secsPerClient', 'secsPerClientTraining', 'secsPerClientFull', 'secsPerClientSetup', 'mpiCosts', ] for metric in metrics_for_stats: log_metric(f'{metric}Mean', np.mean(self.run_stats[metric][-1])) log_metric(f'{metric}Median', np.median(self.run_stats[metric][-1])) log_metric(f'{metric}Max', max(self.run_stats[metric][-1])) for k in self.run_stats: if k in metrics_for_stats: print_rank('{}: {}'.format(k, max(self.run_stats[k][-1])), loglevel=logging.DEBUG) else: print_rank('{}: {}'.format(k, self.run_stats[k][-1]), loglevel=logging.DEBUG) # Log all the metrics for k in metrics_payload: run.log(k, metrics_payload[k]) finally: # perform cleanup even if error was raised above self.terminate_workers(terminate=(not self.do_clustering)) # MASKED: backup_models function (lines 539-568) def fall_back_to_prev_best_status(self): '''Go back to the past best status and switch to the recent best model.''' if self.fall_back_to_best_model: print_rank('falling back to model {}'.format(self.best_model_path)) # Save current learning rate tmp_lr = get_lr(self.worker_trainer.optimizer) # Load previous best model self.worker_trainer.load(self.best_model_path, update_lr_scheduler=False, update_ss_scheduler=False) # Update previous learning rate on optimizer for g in self.worker_trainer.optimizer.param_groups: g['lr'] = tmp_lr if self.server_trainer is not None: self.server_trainer.model = self.worker_trainer.model # make sure that the models are in sync def select_server(server_type, config): '''Select a server type using different possible strings. Right now this just returns `OptimizationServer`, but this function could be useful when there are multiple choices of server. Args: server_type (str): indicates server choice. config (dict): config parsed from YAML, passed so that parameters can be used to select a given server. ''' return OptimizationServer
def backup_models(self, i): '''Save the current best models. Save CER model, the best loss model and the best WER model. This occurs at a specified period. Args: i: no. of iterations. ''' # Always save the latest model self.worker_trainer.save( model_path=self.model_path, token='latest', config=self.config['server_config'], ) if (i % self.model_backup_freq) == 0: # save the current best models self.worker_trainer.save( model_path=self.model_path, token='epoch{}'.format(i), config=self.config['server_config'] ) for bodyname in ['best_val_acc', 'best_val_loss', 'best_test_acc']: src_model_path = os.path.join(self.model_path, '{}_model.tar'.format(bodyname)) if os.path.exists(src_model_path): dst_model_path = os.path.join(self.model_path, 'epoch{}_{}_model.tar'.format(i, bodyname)) shutil.copyfile(src_model_path, dst_model_path) print_rank('Saved {}'.format(dst_model_path))
539
568
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ''' In this file, we define the classes that live inside 'worker 0', the worker responsible for orchestration and aggregation. The main class is the OptimizationServer, which sends clients to the other workers to process and combines the resulting models. ''' import json import logging import os import random import shutil import time from collections import defaultdict import numpy as np import torch # Internal imports from core.globals import TRAINING_FRAMEWORK_TYPE if TRAINING_FRAMEWORK_TYPE == 'mpi': import core.federated as federated else: raise NotImplementedError('{} is not supported'.format(TRAINING_FRAMEWORK_TYPE)) from core.evaluation import Evaluation from core.client import Client from .strategies import select_strategy from .trainer import ( ModelUpdater, Trainer, set_component_wise_lr, ) from utils import ( get_lr, print_rank, update_json_log, ) # For profiling import cProfile import pstats # AzureML-related libs from azureml.core import Run run = Run.get_context() class OptimizationServer(federated.Server): def __init__(self, num_clients, model, optimizer, ss_scheduler, data_path, model_path, train_dataloader, val_dataloader, test_dataloader, config, config_server): '''Implement Server's orchestration and aggregation. This is the main Server class, that actually implements orchestration and aggregation, inheriting from `federated.Server`, which deals with communication only. The `train` method is central in FLUTE, as it defines good part of what happens during training. Args: num_clients (int): total available clients. model (torch.nn.Module): neural network model. optimizer (torch.optim.Optimizer): optimizer. ss_scheduler: scheduled sampling scheduler. data_path (str): points to where data is. model_path (str): points to where pretrained model is. train_dataloader (torch.utils.data.DataLoader): dataloader for training val_dataloader (torch.utils.data.DataLoader): dataloader for validation test_dataloader (torch.utils.data.DataLoader): dataloader for test, can be None config (dict): JSON style configuration parameters config_server: deprecated, kept for API compatibility only. ''' super().__init__() # Initialize all attributes from arguments self.client_idx_list = list(range(num_clients)) self.config = config server_config = config['server_config'] decoder_config = config.get('decoder_config', None) self.max_iteration = server_config['max_iteration'] self.do_clustering = server_config.get('clustering', False) self.num_clients_per_iteration = [int(x) for x in server_config['num_clients_per_iteration'].split(',')] \ if isinstance(server_config['num_clients_per_iteration'], str) \ else [server_config['num_clients_per_iteration']] self.val_freq = server_config['val_freq'] self.req_freq = server_config['rec_freq'] self.evaluation = Evaluation(config, model_path, self.process_testvalidate, val_dataloader, test_dataloader) # TODO: does this need to be adjusted for custom metrics? self.metrics = { 'best_val_loss': float('inf'), 'best_val_acc': 0.0, 'best_test_loss': float('inf'), 'best_test_acc': 0.0 } self.model_backup_freq = server_config.get('model_backup_freq', 100) self.worker_trainer_config = server_config.get('trainer_config', {}) self.aggregate_median = server_config['aggregate_median'] self.initial_lr_client = server_config.get('initial_lr_client', -1.0) self.lr_decay_factor = server_config.get('lr_decay_factor', 1.0) self.model_type = config['model_config']['model_type'] self.quant_thresh = config['client_config'].get('quant_thresh', None) self.quant_bits = config['client_config'].get('quant_bits', 10) self.list_of_train_data = config['client_config']['data_config']['train']['list_of_train_data'] self.data_path = data_path # Get max grad norm from data config if 'train' in server_config['data_config']: max_grad_norm = server_config['data_config']['train'].get('max_grad_norm', None) else: max_grad_norm = None # Creating an instance to update the model with stats aggregated from workers self.worker_trainer = ModelUpdater( model=model, optimizer=optimizer, ss_scheduler=ss_scheduler, train_dataloader=train_dataloader if train_dataloader is not None else val_dataloader, val_dataloader=val_dataloader, max_grad_norm=max_grad_norm, anneal_config=server_config['annealing_config'], model_type=self.model_type, decoder_config=decoder_config ) self.metrics['worker_trainer'] = self.worker_trainer # Creating an instance for the server-side trainer (runs mini-batch SGD) self.server_replay_iterations = None self.server_trainer = None if train_dataloader is not None: assert 'server_replay_config' in server_config, 'server_replay_config is not set' assert 'optimizer_config' in server_config[ 'server_replay_config'], 'server-side replay training optimizer is not set' self.server_optimizer_config = server_config['server_replay_config']['optimizer_config'] self.server_trainer_config = server_config['server_replay_config'].get('trainer_config', {}) self.server_replay_iterations = server_config['server_replay_config']['server_iterations'] self.server_trainer = Trainer( model=model, optimizer=None, ss_scheduler=ss_scheduler, train_dataloader=train_dataloader, server_replay_config=server_config['server_replay_config'], val_dataloader=None, max_grad_norm=server_config['server_replay_config']\ .get('max_grad_norm',server_config['data_config']['train']\ .get('max_grad_norm',None)), anneal_config=server_config['server_replay_config'].get('annealing_config', None) ) self.skip_model_update = False # will not update the model if True self.train_loss = 0.0 self.model_path = model_path self.best_model_criterion = server_config['best_model_criterion'] self.fall_back_to_best_model = server_config['fall_back_to_best_model'] self.last_model_path = os.path.join(self.model_path, 'latest_model.tar') self.best_model_path = os.path.join(self.model_path, 'best_val_{}_model.tar'.format(self.best_model_criterion)) self.log_path = os.path.join(self.model_path, 'status_log.json') self.cur_iter_no = 0 # keep the iteration number for Tensor board plotting self.lr_weight = 1.0 self.losses = [] self.no_label_updates = 0 # no. label updates # Update the parameters above if the log file if server_config.get('resume_from_checkpoint', False): self.load_saved_status() # Decoding config self.decoder_config = decoder_config self.spm_model = server_config['data_config']['test'].get('spm_model', None) self.do_profiling = server_config.get('do_profiling', False) # Parallel processing self.clients_in_parallel = config['client_config'].get('clients_in_parallel', None) StrategyClass = select_strategy(config['strategy']) self.strategy = StrategyClass('server', self.config, self.model_path) print_rank(f'Server successfully instantiated strategy {self.strategy}', loglevel=logging.DEBUG) def load_saved_status(self): '''Load checkpoint from disk''' # Check if model is on disk, if so loads it onto trainer if os.path.exists(self.last_model_path): print_rank('Resuming from checkpoint model {}'.format(self.last_model_path)) self.worker_trainer.load(self.last_model_path, update_lr_scheduler=True, update_ss_scheduler=True) if self.server_trainer is not None: self.server_trainer.model = self.worker_trainer.model # make sure that the models are in sync # Check if log is on disk, if so loads it onto current stats if os.path.exists(self.log_path): with open(self.log_path, 'r') as logfp: # loading the iteration no., best loss and CER elems = json.load(logfp) self.cur_iter_no = elems.get('i', 0) self.metrics['best_val_loss'] = elems.get('best_val_loss', float('inf')) self.metrics['best_val_acc'] = elems.get('best_val_acc', 0) self.metrics['best_test_loss'] = elems.get('best_test_loss', float('inf')) self.metrics['best_test_acc'] = elems.get('best_test_acc', 0) self.lr_weight = elems.get('weight', 1.0) self.no_label_updates = elems.get('num_label_updates', 0) print_rank(f'Resuming from status_log: cur_iter: {self.cur_iter_no}') def run(self): '''Trigger training. This is a simple wrapper to the `train` method. ''' print_rank('server started') self.train() print_rank('server terminated') def train(self): '''Main method for training.''' self.run_stats = { 'secsPerClientRound': [], 'secsPerClient': [], 'secsPerClientTraining': [], 'secsPerClientSetup': [], 'secsPerClientFull': [], 'secsPerRoundHousekeeping': [], 'secsPerRoundTotal': [], 'mpiCosts': [] } run.log('Max iterations', self.max_iteration) try: self.worker_trainer.model.cuda() if torch.cuda.is_available() else None # Do an initial validation round to understand the pretrained model's validation accuracy # Skip if we resumed from a checkpoint (cur_iter_no > 0) eval_list = [] if self.cur_iter_no == 0: if self.config['server_config']['initial_rec']: eval_list.append('test') if self.config['server_config']['initial_val']: eval_list.append('val') run.log('LR for agg. opt.', get_lr(self.worker_trainer.optimizer)) print_rank("Running {} at itr={}".format(eval_list, self.cur_iter_no)) self.metrics = self.evaluation.run(eval_list, self.metrics, metric_logger=run.log) eval_list = [] # some cleanup # Dump all the information in aggregate_metric print_rank('Saving Model Before Starting Training', loglevel=logging.INFO) for token in ['best_val_loss', 'best_val_acc', 'best_test_acc', 'latest']: self.worker_trainer.save( model_path=self.model_path, token=token, config=self.config['server_config'] ) # Training loop self.worker_trainer.model.train() for i in range(self.cur_iter_no, self.max_iteration): begin = time.time() metrics_payload = {} def log_metric(k, v): metrics_payload[k] = v print_rank('==== iteration {}'.format(i)) log_metric('Current iteration', i) # Initial value for the learning rate of the worker initial_lr = self.initial_lr_client * self.lr_weight print_rank('Client learning rate {}'.format(initial_lr)) # Run training on clients self.worker_trainer.model.zero_grad() self.train_loss = [] server_data = ( initial_lr, [p.data.to(torch.device('cpu')) for p in self.worker_trainer.model.parameters()] ) # Random number of clients per iteration if len(self.num_clients_per_iteration) > 1: num_clients_curr_iter = random.randint( self.num_clients_per_iteration[0], self.num_clients_per_iteration[1] ) else: num_clients_curr_iter = self.num_clients_per_iteration[0] log_metric('Clients for round', num_clients_curr_iter) # Perform annealing in quantization threshold if self.quant_thresh is not None: self.config['client_config']['quant_thresh'] *= self.config['client_config'].get('quant_anneal', 1.0) self.quant_thresh = self.config['client_config']['quant_thresh'] log_metric('Quantization Thresh.', self.config['client_config']['quant_thresh']) # Create the pool of clients -- sample from this pool to assign to workers sampled_idx_clients = random.sample(self.client_idx_list, num_clients_curr_iter) if num_clients_curr_iter > 0 else self.client_idx_list sampled_clients = [ Client( client_id, self.config, self.config['client_config']['type'] == 'optimization', None ) for client_id in sampled_idx_clients ] # Initialize stats clients_begin = time.time() client_losses = [] client_mag_grads = [] client_mean_grads = [] client_var_grads = [] client_norm_grads = [] self.run_stats['secsPerClient'].append([]) self.run_stats['secsPerClientFull'].append([]) self.run_stats['secsPerClientTraining'].append([]) self.run_stats['secsPerClientSetup'].append([]) self.run_stats['mpiCosts'].append([]) # Check if we want privacy metrics apply_privacy_metrics = self.config.get('privacy_metrics_config', None) and \ self.config['privacy_metrics_config']['apply_metrics'] adaptive_leakage = apply_privacy_metrics and \ self.config['privacy_metrics_config'].get('adaptive_leakage_threshold', None) if apply_privacy_metrics: privacy_metrics_stats = defaultdict(list) # Initialize profiler profiler = None if self.do_profiling: profiler = cProfile.Profile() profiler.enable() # Reset gradient for the model before assigning the new gradients self.worker_trainer.model.zero_grad() for client_output in self.process_clients(sampled_clients, server_data, self.clients_in_parallel): # Process client output client_timestamp = client_output['ts'] client_stats = client_output['cs'] client_loss = client_output['tl'] client_mag_grad = client_output['mg'] client_mean_grad = client_output['ng'] client_var_grad = client_output['vg'] client_norm_grad = client_output['rg'] client_payload = client_output['pl'] if apply_privacy_metrics: privacy_stats = client_output['ps'] for metric, value in privacy_stats.items(): privacy_metrics_stats[metric].append(value) self.run_stats['mpiCosts'][-1].append(time.time() - client_timestamp) # Get actual pseudo-gradients for aggregation payload_processed = self.strategy.process_individual_payload(self.worker_trainer, client_payload) if not payload_processed: print_rank('Dropping client', loglevel=logging.DEBUG) num_clients_curr_iter -= 1 continue # Aggregate stats self.train_loss.append(client_loss) client_losses.append(client_loss) client_mag_grads.append(client_mag_grad.item()) client_mean_grads.append(client_mean_grad.item()) client_var_grads.append(client_var_grad.item()) client_norm_grads.append(client_norm_grad.item()) # Mark the end of client processing client_end = time.time() self.run_stats['secsPerClientFull'][-1].append(client_stats['full cost']) self.run_stats['secsPerClientTraining'][-1].append(client_stats['training']) self.run_stats['secsPerClientSetup'][-1].append(client_stats['setup']) self.run_stats['secsPerClient'][-1].append(client_end - clients_begin) # Tear down profiler if self.do_profiling: profiler.disable() stats = pstats.Stats(profiler) stats.sort_stats('cumulative').print_stats() # Prepare output client_mag_grads = np.array(client_mag_grads) client_mean_grads = np.array(client_mean_grads) client_var_grads = np.array(client_var_grads) client_norm_grads = np.array(client_norm_grads) client_stats = (client_mag_grads, client_mean_grads, client_var_grads) dump_norm_stats = self.config.get('dump_norm_stats', False) if dump_norm_stats: with open(os.path.join(self.model_path, 'norm_stats.txt'), 'a', encoding='utf-8') as outF: outF.write('{}\n'.format(json.dumps(list(client_norm_grads)))) # Print the privacy metrics if apply_privacy_metrics: for metric, values in privacy_metrics_stats.items(): if metric == 'Dropped clients': log_metric(metric, sum(values)) else: log_metric(metric, max(values)) if type(adaptive_leakage) is float: values = privacy_metrics_stats['Practical epsilon (Max leakage)'] new_threshold = list(sorted(values))[int(adaptive_leakage*len(values))] print_rank('Updating leakage threshold to {}'.format(new_threshold)) self.config['privacy_metrics_config']['max_allowed_leakage'] = new_threshold # Mark that all clients have been processed end = time.time() self.run_stats['secsPerClientRound'].append(end - begin) begin = end # Log the training loss to tensorboard/AML log_metric('Training loss', sum(self.train_loss)) # Combine payloads self.losses = self.strategy.combine_payloads( worker_trainer=self.worker_trainer, curr_iter=i, num_clients_curr_iter=num_clients_curr_iter, client_stats=client_stats, logger=log_metric, ) # Run a couple of iterations of training data on the server if self.server_trainer is not None: print_rank('Running replay iterations on server') if 'updatable_names' in self.server_trainer_config: set_component_wise_lr( self.worker_trainer.model, self.server_optimizer_config, self.server_trainer_config['updatable_names'] ) self.server_trainer.prepare_iteration(self.worker_trainer.model) self.server_trainer.train_desired_samples(self.server_replay_iterations) self.worker_trainer.model.load_state_dict(self.server_trainer.model.state_dict()) torch.cuda.empty_cache() # Update a sampling scheduler print_rank('Run ss scheduler') self.worker_trainer.run_ss_scheduler() # Run inference and score on val/test depending on the iter. number if ((i+1) % self.val_freq) == 0: eval_list.append("val") if ((i+1) % self.req_freq) == 0 : eval_list.append("test") if len(eval_list)> 0: print_rank('Running {} at itr={}'.format(eval_list,i+1)) self.metrics['worker_trainer'] = self.worker_trainer self.metrics = self.evaluation.run(eval_list, self.metrics, metric_logger=run.log) self.losses = self.evaluation.losses eval_list = [] # Create a schedule for the initial_lr (for the worker) if 'val' in eval_list: run.log('LR for agg. opt.', get_lr(self.worker_trainer.optimizer)) if not (self.losses[0] < self.metrics['best_val_loss']): self.lr_weight *= self.lr_decay_factor print_rank('LOG: Client weight of learning rate {}..'.format(self.lr_weight)) # Backup the current best models self.backup_models(i) # Fall back to the best model if the option is enabled self.fall_back_to_prev_best_status() # Logging the latest best values update_json_log( self.log_path, { 'i': i + 1, 'best_val_loss': float(self.metrics['best_val_loss']), 'best_val_acc': float(self.metrics['best_val_acc']), 'best_test_loss': float(self.metrics['best_test_loss']), 'best_test_acc': float(self.metrics['best_test_acc']), 'weight': float(self.lr_weight), 'num_label_updates': int(self.no_label_updates) }, ) end = time.time() # Aggregate stats self.run_stats['secsPerRoundHousekeeping'].append(end - begin) self.run_stats['secsPerRoundTotal'].append(self.run_stats['secsPerClientRound'][-1] + \ self.run_stats['secsPerRoundHousekeeping'][-1]) log_metric('secsPerRoundTotal', self.run_stats['secsPerRoundTotal'][-1]) if self.do_profiling: log_metric('secsPerClientRound', self.run_stats['secsPerClientRound'][-1]) log_metric('secsPerRoundHousekeeping', self.run_stats['secsPerRoundHousekeeping'][-1]) metrics_for_stats = [ 'secsPerClient', 'secsPerClientTraining', 'secsPerClientFull', 'secsPerClientSetup', 'mpiCosts', ] for metric in metrics_for_stats: log_metric(f'{metric}Mean', np.mean(self.run_stats[metric][-1])) log_metric(f'{metric}Median', np.median(self.run_stats[metric][-1])) log_metric(f'{metric}Max', max(self.run_stats[metric][-1])) for k in self.run_stats: if k in metrics_for_stats: print_rank('{}: {}'.format(k, max(self.run_stats[k][-1])), loglevel=logging.DEBUG) else: print_rank('{}: {}'.format(k, self.run_stats[k][-1]), loglevel=logging.DEBUG) # Log all the metrics for k in metrics_payload: run.log(k, metrics_payload[k]) finally: # perform cleanup even if error was raised above self.terminate_workers(terminate=(not self.do_clustering)) def backup_models(self, i): '''Save the current best models. Save CER model, the best loss model and the best WER model. This occurs at a specified period. Args: i: no. of iterations. ''' # Always save the latest model self.worker_trainer.save( model_path=self.model_path, token='latest', config=self.config['server_config'], ) if (i % self.model_backup_freq) == 0: # save the current best models self.worker_trainer.save( model_path=self.model_path, token='epoch{}'.format(i), config=self.config['server_config'] ) for bodyname in ['best_val_acc', 'best_val_loss', 'best_test_acc']: src_model_path = os.path.join(self.model_path, '{}_model.tar'.format(bodyname)) if os.path.exists(src_model_path): dst_model_path = os.path.join(self.model_path, 'epoch{}_{}_model.tar'.format(i, bodyname)) shutil.copyfile(src_model_path, dst_model_path) print_rank('Saved {}'.format(dst_model_path)) def fall_back_to_prev_best_status(self): '''Go back to the past best status and switch to the recent best model.''' if self.fall_back_to_best_model: print_rank('falling back to model {}'.format(self.best_model_path)) # Save current learning rate tmp_lr = get_lr(self.worker_trainer.optimizer) # Load previous best model self.worker_trainer.load(self.best_model_path, update_lr_scheduler=False, update_ss_scheduler=False) # Update previous learning rate on optimizer for g in self.worker_trainer.optimizer.param_groups: g['lr'] = tmp_lr if self.server_trainer is not None: self.server_trainer.model = self.worker_trainer.model # make sure that the models are in sync def select_server(server_type, config): '''Select a server type using different possible strings. Right now this just returns `OptimizationServer`, but this function could be useful when there are multiple choices of server. Args: server_type (str): indicates server choice. config (dict): config parsed from YAML, passed so that parameters can be used to select a given server. ''' return OptimizationServer
approximate_predict
Predict the cluster label of new points. The returned labels will be those of the original clustering found by ``clusterer``, and therefore are not (necessarily) the cluster labels that would be found by clustering the original data combined with ``points_to_predict``, hence the 'approximate' label. If you simply wish to assign new points to an existing clustering in the 'best' way possible, this is the function to use. If you want to predict how ``points_to_predict`` would cluster with the original data under HDBSCAN the most efficient existing approach is to simply recluster with the new point(s) added to the original dataset. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- labels : array (n_samples,) The predicted labels of the ``points_to_predict`` probabilities : array (n_samples,) The soft cluster scores for each of the ``points_to_predict`` See Also -------- :py:func:`hdbscan.predict.membership_vector` :py:func:`hdbscan.predict.all_points_membership_vectors`
# Support various prediction methods for predicting cluster membership # of new or unseen points. There are several ways to interpret how # to do this correctly, so we provide several methods for # the different use cases that may arise. import numpy as np from sklearn.neighbors import KDTree, BallTree from .dist_metrics import DistanceMetric from ._hdbscan_tree import compute_stability, labelling_at_cut, recurse_leaf_dfs from ._prediction_utils import (get_tree_row_with_child, dist_membership_vector, outlier_membership_vector, prob_in_some_cluster, all_points_dist_membership_vector, all_points_outlier_membership_vector, all_points_prob_in_some_cluster) from warnings import warn class PredictionData(object): """ Extra data that allows for faster prediction if cached. Parameters ---------- data : array (n_samples, n_features) The original data set that was clustered condensed_tree : CondensedTree The condensed tree object created by a clustering min_samples : int The min_samples value used in clustering tree_type : string, optional Which type of space tree to use for core distance computation. One of: * ``kdtree`` * ``balltree`` metric : string, optional The metric used to determine distance for the clustering. This is the metric that will be used for the space tree to determine core distances etc. **kwargs : Any further arguments to the metric. Attributes ---------- raw_data : array (n_samples, n_features) The original data set that was clustered tree : KDTree or BallTree A space partitioning tree that can be queried for nearest neighbors. core_distances : array (n_samples,) The core distances for every point in the original data set. cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. cluster_tree : structured array A version of the condensed tree that only contains clusters, not individual points. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. """ _tree_type_map = {'kdtree': KDTree, 'balltree': BallTree} def _clusters_below(self, cluster): result = [] to_process = [cluster] while to_process: result.extend(to_process) to_process = \ self.cluster_tree['child'][np.in1d(self.cluster_tree['parent'], to_process)] to_process = to_process.tolist() return result def _recurse_leaf_dfs(self, current_node): children = self.cluster_tree[self.cluster_tree['parent'] == current_node]['child'] if len(children) == 0: return [current_node, ] else: return sum( [recurse_leaf_dfs(self.cluster_tree, child) for child in children], []) def __init__(self, data, condensed_tree, min_samples, tree_type='kdtree', metric='euclidean', **kwargs): self.raw_data = data self.tree = self._tree_type_map[tree_type](self.raw_data, metric=metric, **kwargs) self.core_distances = self.tree.query(data, k=min_samples)[0][:, -1] self.dist_metric = DistanceMetric.get_metric(metric, **kwargs) selected_clusters = condensed_tree._select_clusters() # raw_condensed_tree = condensed_tree.to_numpy() raw_condensed_tree = condensed_tree._raw_tree self.cluster_map = {c: n for n, c in enumerate(sorted(list(selected_clusters)))} self.reverse_cluster_map = {n: c for c, n in self.cluster_map.items()} self.cluster_tree = raw_condensed_tree[raw_condensed_tree['child_size'] > 1] self.max_lambdas = {} self.leaf_max_lambdas = {} self.exemplars = [] all_clusters = set(np.hstack([self.cluster_tree['parent'], self.cluster_tree['child']])) for cluster in all_clusters: self.leaf_max_lambdas[cluster] = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == cluster].max() for cluster in selected_clusters: self.max_lambdas[cluster] = \ raw_condensed_tree['lambda_val'][raw_condensed_tree['parent'] == cluster].max() for sub_cluster in self._clusters_below(cluster): self.cluster_map[sub_cluster] = self.cluster_map[cluster] self.max_lambdas[sub_cluster] = self.max_lambdas[cluster] cluster_exemplars = np.array([], dtype=np.int64) for leaf in self._recurse_leaf_dfs(cluster): leaf_max_lambda = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == leaf].max() points = raw_condensed_tree['child'][ (raw_condensed_tree['parent'] == leaf) & (raw_condensed_tree['lambda_val'] == leaf_max_lambda)] cluster_exemplars = np.hstack([cluster_exemplars, points]) self.exemplars.append(self.raw_data[cluster_exemplars]) def _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples): """ Find the nearest mutual reachability neighbor of a point, and compute the associated lambda value for the point, given the mutual reachability distance to a nearest neighbor. Parameters ---------- neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- neighbor : int The index into the full raw data set of the nearest mutual reachability distance neighbor of the point. lambda_ : float The lambda value at which this point joins/merges with `neighbor`. """ neighbor_core_distances = core_distances[neighbor_indices] point_core_distances = neighbor_distances[min_samples] * np.ones( neighbor_indices.shape[0]) mr_distances = np.vstack(( neighbor_core_distances, point_core_distances, neighbor_distances )).max(axis=0) nn_index = mr_distances.argmin() nearest_neighbor = neighbor_indices[nn_index] if mr_distances[nn_index] > 0.0: lambda_ = 1. / mr_distances[nn_index] else: lambda_ = np.finfo(np.double).max return nearest_neighbor, lambda_ def _extend_condensed_tree(tree, neighbor_indices, neighbor_distances, core_distances, min_samples): """ Create a new condensed tree with an additional point added, allowing for computations as if this point had been part of the original tree. Note that this makes as little change to the tree as possible, with no re-optimizing/re-condensing so that the selected clusters remain effectively unchanged. Parameters ---------- tree : structured array The raw format condensed tree to update. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- new_tree : structured array The original tree with an extra row providing the parent cluster and lambda information for a new point given index -1. """ tree_root = tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] <= lambda_: # New point departs with the old new_tree_row = (potential_cluster, -1, 1, neighbor_tree_row['lambda_val']) else: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ tree[tree['child'] == potential_cluster]['lambda_val'] >= lambda_: potential_cluster = tree['parent'][tree['child'] == potential_cluster][0] new_tree_row = (potential_cluster, -1, 1, lambda_) return np.append(tree, new_tree_row) def _find_cluster_and_probability(tree, cluster_tree, neighbor_indices, neighbor_distances, core_distances, cluster_map, max_lambdas, min_samples): """ Return the cluster label (of the original clustering) and membership probability of a new data point. Parameters ---------- tree : CondensedTree The condensed tree associated with the clustering. cluster_tree : structured_array The raw form of the condensed tree with only cluster information (no data on individual points). This is significantly more compact. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. min_samples : int The min_samples value used to generate core distances. """ raw_tree = tree._raw_tree tree_root = cluster_tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(raw_tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] > lambda_: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ cluster_tree['lambda_val'][cluster_tree['child'] == potential_cluster] >= lambda_: potential_cluster = cluster_tree['parent'][cluster_tree['child'] == potential_cluster][0] if potential_cluster in cluster_map: cluster_label = cluster_map[potential_cluster] else: cluster_label = -1 if cluster_label >= 0: max_lambda = max_lambdas[potential_cluster] if max_lambda > 0.0: lambda_ = min(max_lambda, lambda_) prob = (lambda_ / max_lambda) else: prob = 1.0 else: prob = 0.0 return cluster_label, prob # MASKED: approximate_predict function (lines 334-413) def membership_vector(clusterer, points_to_predict): """Predict soft cluster membership. The result produces a vector for each point in ``points_to_predict`` that gives a probability that the given point is a member of a cluster for each of the selected clusters of the ``clusterer``. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array( sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) result = np.empty((points_to_predict.shape[0], clusters.shape[0]), dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): # We need to find where in the tree the new point would go # for the purposes of outlier membership approximation nearest_neighbor, lambda_ = \ _find_neighbor_and_lambda( neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, min_samples) neighbor_tree_row = get_tree_row_with_child( clusterer.condensed_tree_._raw_tree, nearest_neighbor) if neighbor_tree_row['lambda_val'] <= lambda_: lambda_ = neighbor_tree_row['lambda_val'] distance_vec = dist_membership_vector( points_to_predict[i], clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vec = outlier_membership_vector( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0 result[i] /= result[i].sum() result[i] *= prob_in_some_cluster( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) return result def all_points_membership_vectors(clusterer): """Predict soft cluster membership vectors for all points in the original dataset the clusterer was trained on. This function is more efficient by making use of the fact that all points are already in the condensed tree, and processing in bulk. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. This method does not work if the clusterer was trained with ``metric='precomputed'``. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` of the original dataset is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array(sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) all_points = clusterer.prediction_data_.raw_data # When no clusters found, return array of 0's if clusters.size == 0: return np.zeros(all_points.shape[0]) distance_vecs = all_points_dist_membership_vector( all_points, clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vecs = all_points_outlier_membership_vector( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) in_cluster_probs = all_points_prob_in_some_cluster( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result = distance_vecs * outlier_vecs row_sums = result.sum(axis=1) result = result / row_sums[:, np.newaxis] result *= in_cluster_probs[:, np.newaxis] return result
def approximate_predict(clusterer, points_to_predict): """Predict the cluster label of new points. The returned labels will be those of the original clustering found by ``clusterer``, and therefore are not (necessarily) the cluster labels that would be found by clustering the original data combined with ``points_to_predict``, hence the 'approximate' label. If you simply wish to assign new points to an existing clustering in the 'best' way possible, this is the function to use. If you want to predict how ``points_to_predict`` would cluster with the original data under HDBSCAN the most efficient existing approach is to simply recluster with the new point(s) added to the original dataset. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- labels : array (n_samples,) The predicted labels of the ``points_to_predict`` probabilities : array (n_samples,) The soft cluster scores for each of the ``points_to_predict`` See Also -------- :py:func:`hdbscan.predict.membership_vector` :py:func:`hdbscan.predict.all_points_membership_vectors` """ if clusterer.prediction_data_ is None: raise ValueError('Clusterer does not have prediction data!' ' Try fitting with prediction_data=True set,' ' or run generate_prediction_data on the clusterer') points_to_predict = np.asarray(points_to_predict) if points_to_predict.shape[1] != \ clusterer.prediction_data_.raw_data.shape[1]: raise ValueError('New points dimension does not match fit data!') if clusterer.prediction_data_.cluster_tree.shape[0] == 0: warn('Clusterer does not have any defined clusters, new data' ' will be automatically predicted as noise.') labels = -1 * np.ones(points_to_predict.shape[0], dtype=np.int32) probabilities = np.zeros(points_to_predict.shape[0], dtype=np.float32) return labels, probabilities labels = np.empty(points_to_predict.shape[0], dtype=np.int) probabilities = np.empty(points_to_predict.shape[0], dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): label, prob = _find_cluster_and_probability( clusterer.condensed_tree_, clusterer.prediction_data_.cluster_tree, neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, clusterer.prediction_data_.cluster_map, clusterer.prediction_data_.max_lambdas, min_samples ) labels[i] = label probabilities[i] = prob return labels, probabilities
334
413
# Support various prediction methods for predicting cluster membership # of new or unseen points. There are several ways to interpret how # to do this correctly, so we provide several methods for # the different use cases that may arise. import numpy as np from sklearn.neighbors import KDTree, BallTree from .dist_metrics import DistanceMetric from ._hdbscan_tree import compute_stability, labelling_at_cut, recurse_leaf_dfs from ._prediction_utils import (get_tree_row_with_child, dist_membership_vector, outlier_membership_vector, prob_in_some_cluster, all_points_dist_membership_vector, all_points_outlier_membership_vector, all_points_prob_in_some_cluster) from warnings import warn class PredictionData(object): """ Extra data that allows for faster prediction if cached. Parameters ---------- data : array (n_samples, n_features) The original data set that was clustered condensed_tree : CondensedTree The condensed tree object created by a clustering min_samples : int The min_samples value used in clustering tree_type : string, optional Which type of space tree to use for core distance computation. One of: * ``kdtree`` * ``balltree`` metric : string, optional The metric used to determine distance for the clustering. This is the metric that will be used for the space tree to determine core distances etc. **kwargs : Any further arguments to the metric. Attributes ---------- raw_data : array (n_samples, n_features) The original data set that was clustered tree : KDTree or BallTree A space partitioning tree that can be queried for nearest neighbors. core_distances : array (n_samples,) The core distances for every point in the original data set. cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. cluster_tree : structured array A version of the condensed tree that only contains clusters, not individual points. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. """ _tree_type_map = {'kdtree': KDTree, 'balltree': BallTree} def _clusters_below(self, cluster): result = [] to_process = [cluster] while to_process: result.extend(to_process) to_process = \ self.cluster_tree['child'][np.in1d(self.cluster_tree['parent'], to_process)] to_process = to_process.tolist() return result def _recurse_leaf_dfs(self, current_node): children = self.cluster_tree[self.cluster_tree['parent'] == current_node]['child'] if len(children) == 0: return [current_node, ] else: return sum( [recurse_leaf_dfs(self.cluster_tree, child) for child in children], []) def __init__(self, data, condensed_tree, min_samples, tree_type='kdtree', metric='euclidean', **kwargs): self.raw_data = data self.tree = self._tree_type_map[tree_type](self.raw_data, metric=metric, **kwargs) self.core_distances = self.tree.query(data, k=min_samples)[0][:, -1] self.dist_metric = DistanceMetric.get_metric(metric, **kwargs) selected_clusters = condensed_tree._select_clusters() # raw_condensed_tree = condensed_tree.to_numpy() raw_condensed_tree = condensed_tree._raw_tree self.cluster_map = {c: n for n, c in enumerate(sorted(list(selected_clusters)))} self.reverse_cluster_map = {n: c for c, n in self.cluster_map.items()} self.cluster_tree = raw_condensed_tree[raw_condensed_tree['child_size'] > 1] self.max_lambdas = {} self.leaf_max_lambdas = {} self.exemplars = [] all_clusters = set(np.hstack([self.cluster_tree['parent'], self.cluster_tree['child']])) for cluster in all_clusters: self.leaf_max_lambdas[cluster] = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == cluster].max() for cluster in selected_clusters: self.max_lambdas[cluster] = \ raw_condensed_tree['lambda_val'][raw_condensed_tree['parent'] == cluster].max() for sub_cluster in self._clusters_below(cluster): self.cluster_map[sub_cluster] = self.cluster_map[cluster] self.max_lambdas[sub_cluster] = self.max_lambdas[cluster] cluster_exemplars = np.array([], dtype=np.int64) for leaf in self._recurse_leaf_dfs(cluster): leaf_max_lambda = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == leaf].max() points = raw_condensed_tree['child'][ (raw_condensed_tree['parent'] == leaf) & (raw_condensed_tree['lambda_val'] == leaf_max_lambda)] cluster_exemplars = np.hstack([cluster_exemplars, points]) self.exemplars.append(self.raw_data[cluster_exemplars]) def _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples): """ Find the nearest mutual reachability neighbor of a point, and compute the associated lambda value for the point, given the mutual reachability distance to a nearest neighbor. Parameters ---------- neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- neighbor : int The index into the full raw data set of the nearest mutual reachability distance neighbor of the point. lambda_ : float The lambda value at which this point joins/merges with `neighbor`. """ neighbor_core_distances = core_distances[neighbor_indices] point_core_distances = neighbor_distances[min_samples] * np.ones( neighbor_indices.shape[0]) mr_distances = np.vstack(( neighbor_core_distances, point_core_distances, neighbor_distances )).max(axis=0) nn_index = mr_distances.argmin() nearest_neighbor = neighbor_indices[nn_index] if mr_distances[nn_index] > 0.0: lambda_ = 1. / mr_distances[nn_index] else: lambda_ = np.finfo(np.double).max return nearest_neighbor, lambda_ def _extend_condensed_tree(tree, neighbor_indices, neighbor_distances, core_distances, min_samples): """ Create a new condensed tree with an additional point added, allowing for computations as if this point had been part of the original tree. Note that this makes as little change to the tree as possible, with no re-optimizing/re-condensing so that the selected clusters remain effectively unchanged. Parameters ---------- tree : structured array The raw format condensed tree to update. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- new_tree : structured array The original tree with an extra row providing the parent cluster and lambda information for a new point given index -1. """ tree_root = tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] <= lambda_: # New point departs with the old new_tree_row = (potential_cluster, -1, 1, neighbor_tree_row['lambda_val']) else: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ tree[tree['child'] == potential_cluster]['lambda_val'] >= lambda_: potential_cluster = tree['parent'][tree['child'] == potential_cluster][0] new_tree_row = (potential_cluster, -1, 1, lambda_) return np.append(tree, new_tree_row) def _find_cluster_and_probability(tree, cluster_tree, neighbor_indices, neighbor_distances, core_distances, cluster_map, max_lambdas, min_samples): """ Return the cluster label (of the original clustering) and membership probability of a new data point. Parameters ---------- tree : CondensedTree The condensed tree associated with the clustering. cluster_tree : structured_array The raw form of the condensed tree with only cluster information (no data on individual points). This is significantly more compact. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. min_samples : int The min_samples value used to generate core distances. """ raw_tree = tree._raw_tree tree_root = cluster_tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(raw_tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] > lambda_: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ cluster_tree['lambda_val'][cluster_tree['child'] == potential_cluster] >= lambda_: potential_cluster = cluster_tree['parent'][cluster_tree['child'] == potential_cluster][0] if potential_cluster in cluster_map: cluster_label = cluster_map[potential_cluster] else: cluster_label = -1 if cluster_label >= 0: max_lambda = max_lambdas[potential_cluster] if max_lambda > 0.0: lambda_ = min(max_lambda, lambda_) prob = (lambda_ / max_lambda) else: prob = 1.0 else: prob = 0.0 return cluster_label, prob def approximate_predict(clusterer, points_to_predict): """Predict the cluster label of new points. The returned labels will be those of the original clustering found by ``clusterer``, and therefore are not (necessarily) the cluster labels that would be found by clustering the original data combined with ``points_to_predict``, hence the 'approximate' label. If you simply wish to assign new points to an existing clustering in the 'best' way possible, this is the function to use. If you want to predict how ``points_to_predict`` would cluster with the original data under HDBSCAN the most efficient existing approach is to simply recluster with the new point(s) added to the original dataset. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- labels : array (n_samples,) The predicted labels of the ``points_to_predict`` probabilities : array (n_samples,) The soft cluster scores for each of the ``points_to_predict`` See Also -------- :py:func:`hdbscan.predict.membership_vector` :py:func:`hdbscan.predict.all_points_membership_vectors` """ if clusterer.prediction_data_ is None: raise ValueError('Clusterer does not have prediction data!' ' Try fitting with prediction_data=True set,' ' or run generate_prediction_data on the clusterer') points_to_predict = np.asarray(points_to_predict) if points_to_predict.shape[1] != \ clusterer.prediction_data_.raw_data.shape[1]: raise ValueError('New points dimension does not match fit data!') if clusterer.prediction_data_.cluster_tree.shape[0] == 0: warn('Clusterer does not have any defined clusters, new data' ' will be automatically predicted as noise.') labels = -1 * np.ones(points_to_predict.shape[0], dtype=np.int32) probabilities = np.zeros(points_to_predict.shape[0], dtype=np.float32) return labels, probabilities labels = np.empty(points_to_predict.shape[0], dtype=np.int) probabilities = np.empty(points_to_predict.shape[0], dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): label, prob = _find_cluster_and_probability( clusterer.condensed_tree_, clusterer.prediction_data_.cluster_tree, neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, clusterer.prediction_data_.cluster_map, clusterer.prediction_data_.max_lambdas, min_samples ) labels[i] = label probabilities[i] = prob return labels, probabilities def membership_vector(clusterer, points_to_predict): """Predict soft cluster membership. The result produces a vector for each point in ``points_to_predict`` that gives a probability that the given point is a member of a cluster for each of the selected clusters of the ``clusterer``. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array( sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) result = np.empty((points_to_predict.shape[0], clusters.shape[0]), dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): # We need to find where in the tree the new point would go # for the purposes of outlier membership approximation nearest_neighbor, lambda_ = \ _find_neighbor_and_lambda( neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, min_samples) neighbor_tree_row = get_tree_row_with_child( clusterer.condensed_tree_._raw_tree, nearest_neighbor) if neighbor_tree_row['lambda_val'] <= lambda_: lambda_ = neighbor_tree_row['lambda_val'] distance_vec = dist_membership_vector( points_to_predict[i], clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vec = outlier_membership_vector( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0 result[i] /= result[i].sum() result[i] *= prob_in_some_cluster( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) return result def all_points_membership_vectors(clusterer): """Predict soft cluster membership vectors for all points in the original dataset the clusterer was trained on. This function is more efficient by making use of the fact that all points are already in the condensed tree, and processing in bulk. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. This method does not work if the clusterer was trained with ``metric='precomputed'``. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` of the original dataset is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array(sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) all_points = clusterer.prediction_data_.raw_data # When no clusters found, return array of 0's if clusters.size == 0: return np.zeros(all_points.shape[0]) distance_vecs = all_points_dist_membership_vector( all_points, clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vecs = all_points_outlier_membership_vector( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) in_cluster_probs = all_points_prob_in_some_cluster( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result = distance_vecs * outlier_vecs row_sums = result.sum(axis=1) result = result / row_sums[:, np.newaxis] result *= in_cluster_probs[:, np.newaxis] return result
all_points_membership_vectors
Predict soft cluster membership vectors for all points in the original dataset the clusterer was trained on. This function is more efficient by making use of the fact that all points are already in the condensed tree, and processing in bulk. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. This method does not work if the clusterer was trained with ``metric='precomputed'``. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` of the original dataset is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors`
# Support various prediction methods for predicting cluster membership # of new or unseen points. There are several ways to interpret how # to do this correctly, so we provide several methods for # the different use cases that may arise. import numpy as np from sklearn.neighbors import KDTree, BallTree from .dist_metrics import DistanceMetric from ._hdbscan_tree import compute_stability, labelling_at_cut, recurse_leaf_dfs from ._prediction_utils import (get_tree_row_with_child, dist_membership_vector, outlier_membership_vector, prob_in_some_cluster, all_points_dist_membership_vector, all_points_outlier_membership_vector, all_points_prob_in_some_cluster) from warnings import warn class PredictionData(object): """ Extra data that allows for faster prediction if cached. Parameters ---------- data : array (n_samples, n_features) The original data set that was clustered condensed_tree : CondensedTree The condensed tree object created by a clustering min_samples : int The min_samples value used in clustering tree_type : string, optional Which type of space tree to use for core distance computation. One of: * ``kdtree`` * ``balltree`` metric : string, optional The metric used to determine distance for the clustering. This is the metric that will be used for the space tree to determine core distances etc. **kwargs : Any further arguments to the metric. Attributes ---------- raw_data : array (n_samples, n_features) The original data set that was clustered tree : KDTree or BallTree A space partitioning tree that can be queried for nearest neighbors. core_distances : array (n_samples,) The core distances for every point in the original data set. cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. cluster_tree : structured array A version of the condensed tree that only contains clusters, not individual points. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. """ _tree_type_map = {'kdtree': KDTree, 'balltree': BallTree} def _clusters_below(self, cluster): result = [] to_process = [cluster] while to_process: result.extend(to_process) to_process = \ self.cluster_tree['child'][np.in1d(self.cluster_tree['parent'], to_process)] to_process = to_process.tolist() return result def _recurse_leaf_dfs(self, current_node): children = self.cluster_tree[self.cluster_tree['parent'] == current_node]['child'] if len(children) == 0: return [current_node, ] else: return sum( [recurse_leaf_dfs(self.cluster_tree, child) for child in children], []) def __init__(self, data, condensed_tree, min_samples, tree_type='kdtree', metric='euclidean', **kwargs): self.raw_data = data self.tree = self._tree_type_map[tree_type](self.raw_data, metric=metric, **kwargs) self.core_distances = self.tree.query(data, k=min_samples)[0][:, -1] self.dist_metric = DistanceMetric.get_metric(metric, **kwargs) selected_clusters = condensed_tree._select_clusters() # raw_condensed_tree = condensed_tree.to_numpy() raw_condensed_tree = condensed_tree._raw_tree self.cluster_map = {c: n for n, c in enumerate(sorted(list(selected_clusters)))} self.reverse_cluster_map = {n: c for c, n in self.cluster_map.items()} self.cluster_tree = raw_condensed_tree[raw_condensed_tree['child_size'] > 1] self.max_lambdas = {} self.leaf_max_lambdas = {} self.exemplars = [] all_clusters = set(np.hstack([self.cluster_tree['parent'], self.cluster_tree['child']])) for cluster in all_clusters: self.leaf_max_lambdas[cluster] = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == cluster].max() for cluster in selected_clusters: self.max_lambdas[cluster] = \ raw_condensed_tree['lambda_val'][raw_condensed_tree['parent'] == cluster].max() for sub_cluster in self._clusters_below(cluster): self.cluster_map[sub_cluster] = self.cluster_map[cluster] self.max_lambdas[sub_cluster] = self.max_lambdas[cluster] cluster_exemplars = np.array([], dtype=np.int64) for leaf in self._recurse_leaf_dfs(cluster): leaf_max_lambda = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == leaf].max() points = raw_condensed_tree['child'][ (raw_condensed_tree['parent'] == leaf) & (raw_condensed_tree['lambda_val'] == leaf_max_lambda)] cluster_exemplars = np.hstack([cluster_exemplars, points]) self.exemplars.append(self.raw_data[cluster_exemplars]) def _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples): """ Find the nearest mutual reachability neighbor of a point, and compute the associated lambda value for the point, given the mutual reachability distance to a nearest neighbor. Parameters ---------- neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- neighbor : int The index into the full raw data set of the nearest mutual reachability distance neighbor of the point. lambda_ : float The lambda value at which this point joins/merges with `neighbor`. """ neighbor_core_distances = core_distances[neighbor_indices] point_core_distances = neighbor_distances[min_samples] * np.ones( neighbor_indices.shape[0]) mr_distances = np.vstack(( neighbor_core_distances, point_core_distances, neighbor_distances )).max(axis=0) nn_index = mr_distances.argmin() nearest_neighbor = neighbor_indices[nn_index] if mr_distances[nn_index] > 0.0: lambda_ = 1. / mr_distances[nn_index] else: lambda_ = np.finfo(np.double).max return nearest_neighbor, lambda_ def _extend_condensed_tree(tree, neighbor_indices, neighbor_distances, core_distances, min_samples): """ Create a new condensed tree with an additional point added, allowing for computations as if this point had been part of the original tree. Note that this makes as little change to the tree as possible, with no re-optimizing/re-condensing so that the selected clusters remain effectively unchanged. Parameters ---------- tree : structured array The raw format condensed tree to update. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- new_tree : structured array The original tree with an extra row providing the parent cluster and lambda information for a new point given index -1. """ tree_root = tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] <= lambda_: # New point departs with the old new_tree_row = (potential_cluster, -1, 1, neighbor_tree_row['lambda_val']) else: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ tree[tree['child'] == potential_cluster]['lambda_val'] >= lambda_: potential_cluster = tree['parent'][tree['child'] == potential_cluster][0] new_tree_row = (potential_cluster, -1, 1, lambda_) return np.append(tree, new_tree_row) def _find_cluster_and_probability(tree, cluster_tree, neighbor_indices, neighbor_distances, core_distances, cluster_map, max_lambdas, min_samples): """ Return the cluster label (of the original clustering) and membership probability of a new data point. Parameters ---------- tree : CondensedTree The condensed tree associated with the clustering. cluster_tree : structured_array The raw form of the condensed tree with only cluster information (no data on individual points). This is significantly more compact. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. min_samples : int The min_samples value used to generate core distances. """ raw_tree = tree._raw_tree tree_root = cluster_tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(raw_tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] > lambda_: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ cluster_tree['lambda_val'][cluster_tree['child'] == potential_cluster] >= lambda_: potential_cluster = cluster_tree['parent'][cluster_tree['child'] == potential_cluster][0] if potential_cluster in cluster_map: cluster_label = cluster_map[potential_cluster] else: cluster_label = -1 if cluster_label >= 0: max_lambda = max_lambdas[potential_cluster] if max_lambda > 0.0: lambda_ = min(max_lambda, lambda_) prob = (lambda_ / max_lambda) else: prob = 1.0 else: prob = 0.0 return cluster_label, prob def approximate_predict(clusterer, points_to_predict): """Predict the cluster label of new points. The returned labels will be those of the original clustering found by ``clusterer``, and therefore are not (necessarily) the cluster labels that would be found by clustering the original data combined with ``points_to_predict``, hence the 'approximate' label. If you simply wish to assign new points to an existing clustering in the 'best' way possible, this is the function to use. If you want to predict how ``points_to_predict`` would cluster with the original data under HDBSCAN the most efficient existing approach is to simply recluster with the new point(s) added to the original dataset. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- labels : array (n_samples,) The predicted labels of the ``points_to_predict`` probabilities : array (n_samples,) The soft cluster scores for each of the ``points_to_predict`` See Also -------- :py:func:`hdbscan.predict.membership_vector` :py:func:`hdbscan.predict.all_points_membership_vectors` """ if clusterer.prediction_data_ is None: raise ValueError('Clusterer does not have prediction data!' ' Try fitting with prediction_data=True set,' ' or run generate_prediction_data on the clusterer') points_to_predict = np.asarray(points_to_predict) if points_to_predict.shape[1] != \ clusterer.prediction_data_.raw_data.shape[1]: raise ValueError('New points dimension does not match fit data!') if clusterer.prediction_data_.cluster_tree.shape[0] == 0: warn('Clusterer does not have any defined clusters, new data' ' will be automatically predicted as noise.') labels = -1 * np.ones(points_to_predict.shape[0], dtype=np.int32) probabilities = np.zeros(points_to_predict.shape[0], dtype=np.float32) return labels, probabilities labels = np.empty(points_to_predict.shape[0], dtype=np.int) probabilities = np.empty(points_to_predict.shape[0], dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): label, prob = _find_cluster_and_probability( clusterer.condensed_tree_, clusterer.prediction_data_.cluster_tree, neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, clusterer.prediction_data_.cluster_map, clusterer.prediction_data_.max_lambdas, min_samples ) labels[i] = label probabilities[i] = prob return labels, probabilities def membership_vector(clusterer, points_to_predict): """Predict soft cluster membership. The result produces a vector for each point in ``points_to_predict`` that gives a probability that the given point is a member of a cluster for each of the selected clusters of the ``clusterer``. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array( sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) result = np.empty((points_to_predict.shape[0], clusters.shape[0]), dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): # We need to find where in the tree the new point would go # for the purposes of outlier membership approximation nearest_neighbor, lambda_ = \ _find_neighbor_and_lambda( neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, min_samples) neighbor_tree_row = get_tree_row_with_child( clusterer.condensed_tree_._raw_tree, nearest_neighbor) if neighbor_tree_row['lambda_val'] <= lambda_: lambda_ = neighbor_tree_row['lambda_val'] distance_vec = dist_membership_vector( points_to_predict[i], clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vec = outlier_membership_vector( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0 result[i] /= result[i].sum() result[i] *= prob_in_some_cluster( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) return result # MASKED: all_points_membership_vectors function (lines 500-553)
def all_points_membership_vectors(clusterer): """Predict soft cluster membership vectors for all points in the original dataset the clusterer was trained on. This function is more efficient by making use of the fact that all points are already in the condensed tree, and processing in bulk. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. This method does not work if the clusterer was trained with ``metric='precomputed'``. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` of the original dataset is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array(sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) all_points = clusterer.prediction_data_.raw_data # When no clusters found, return array of 0's if clusters.size == 0: return np.zeros(all_points.shape[0]) distance_vecs = all_points_dist_membership_vector( all_points, clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vecs = all_points_outlier_membership_vector( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) in_cluster_probs = all_points_prob_in_some_cluster( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result = distance_vecs * outlier_vecs row_sums = result.sum(axis=1) result = result / row_sums[:, np.newaxis] result *= in_cluster_probs[:, np.newaxis] return result
500
553
# Support various prediction methods for predicting cluster membership # of new or unseen points. There are several ways to interpret how # to do this correctly, so we provide several methods for # the different use cases that may arise. import numpy as np from sklearn.neighbors import KDTree, BallTree from .dist_metrics import DistanceMetric from ._hdbscan_tree import compute_stability, labelling_at_cut, recurse_leaf_dfs from ._prediction_utils import (get_tree_row_with_child, dist_membership_vector, outlier_membership_vector, prob_in_some_cluster, all_points_dist_membership_vector, all_points_outlier_membership_vector, all_points_prob_in_some_cluster) from warnings import warn class PredictionData(object): """ Extra data that allows for faster prediction if cached. Parameters ---------- data : array (n_samples, n_features) The original data set that was clustered condensed_tree : CondensedTree The condensed tree object created by a clustering min_samples : int The min_samples value used in clustering tree_type : string, optional Which type of space tree to use for core distance computation. One of: * ``kdtree`` * ``balltree`` metric : string, optional The metric used to determine distance for the clustering. This is the metric that will be used for the space tree to determine core distances etc. **kwargs : Any further arguments to the metric. Attributes ---------- raw_data : array (n_samples, n_features) The original data set that was clustered tree : KDTree or BallTree A space partitioning tree that can be queried for nearest neighbors. core_distances : array (n_samples,) The core distances for every point in the original data set. cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. cluster_tree : structured array A version of the condensed tree that only contains clusters, not individual points. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. """ _tree_type_map = {'kdtree': KDTree, 'balltree': BallTree} def _clusters_below(self, cluster): result = [] to_process = [cluster] while to_process: result.extend(to_process) to_process = \ self.cluster_tree['child'][np.in1d(self.cluster_tree['parent'], to_process)] to_process = to_process.tolist() return result def _recurse_leaf_dfs(self, current_node): children = self.cluster_tree[self.cluster_tree['parent'] == current_node]['child'] if len(children) == 0: return [current_node, ] else: return sum( [recurse_leaf_dfs(self.cluster_tree, child) for child in children], []) def __init__(self, data, condensed_tree, min_samples, tree_type='kdtree', metric='euclidean', **kwargs): self.raw_data = data self.tree = self._tree_type_map[tree_type](self.raw_data, metric=metric, **kwargs) self.core_distances = self.tree.query(data, k=min_samples)[0][:, -1] self.dist_metric = DistanceMetric.get_metric(metric, **kwargs) selected_clusters = condensed_tree._select_clusters() # raw_condensed_tree = condensed_tree.to_numpy() raw_condensed_tree = condensed_tree._raw_tree self.cluster_map = {c: n for n, c in enumerate(sorted(list(selected_clusters)))} self.reverse_cluster_map = {n: c for c, n in self.cluster_map.items()} self.cluster_tree = raw_condensed_tree[raw_condensed_tree['child_size'] > 1] self.max_lambdas = {} self.leaf_max_lambdas = {} self.exemplars = [] all_clusters = set(np.hstack([self.cluster_tree['parent'], self.cluster_tree['child']])) for cluster in all_clusters: self.leaf_max_lambdas[cluster] = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == cluster].max() for cluster in selected_clusters: self.max_lambdas[cluster] = \ raw_condensed_tree['lambda_val'][raw_condensed_tree['parent'] == cluster].max() for sub_cluster in self._clusters_below(cluster): self.cluster_map[sub_cluster] = self.cluster_map[cluster] self.max_lambdas[sub_cluster] = self.max_lambdas[cluster] cluster_exemplars = np.array([], dtype=np.int64) for leaf in self._recurse_leaf_dfs(cluster): leaf_max_lambda = raw_condensed_tree['lambda_val'][ raw_condensed_tree['parent'] == leaf].max() points = raw_condensed_tree['child'][ (raw_condensed_tree['parent'] == leaf) & (raw_condensed_tree['lambda_val'] == leaf_max_lambda)] cluster_exemplars = np.hstack([cluster_exemplars, points]) self.exemplars.append(self.raw_data[cluster_exemplars]) def _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples): """ Find the nearest mutual reachability neighbor of a point, and compute the associated lambda value for the point, given the mutual reachability distance to a nearest neighbor. Parameters ---------- neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- neighbor : int The index into the full raw data set of the nearest mutual reachability distance neighbor of the point. lambda_ : float The lambda value at which this point joins/merges with `neighbor`. """ neighbor_core_distances = core_distances[neighbor_indices] point_core_distances = neighbor_distances[min_samples] * np.ones( neighbor_indices.shape[0]) mr_distances = np.vstack(( neighbor_core_distances, point_core_distances, neighbor_distances )).max(axis=0) nn_index = mr_distances.argmin() nearest_neighbor = neighbor_indices[nn_index] if mr_distances[nn_index] > 0.0: lambda_ = 1. / mr_distances[nn_index] else: lambda_ = np.finfo(np.double).max return nearest_neighbor, lambda_ def _extend_condensed_tree(tree, neighbor_indices, neighbor_distances, core_distances, min_samples): """ Create a new condensed tree with an additional point added, allowing for computations as if this point had been part of the original tree. Note that this makes as little change to the tree as possible, with no re-optimizing/re-condensing so that the selected clusters remain effectively unchanged. Parameters ---------- tree : structured array The raw format condensed tree to update. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points min_samples : int The min_samples value used to generate core distances. Returns ------- new_tree : structured array The original tree with an extra row providing the parent cluster and lambda information for a new point given index -1. """ tree_root = tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] <= lambda_: # New point departs with the old new_tree_row = (potential_cluster, -1, 1, neighbor_tree_row['lambda_val']) else: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ tree[tree['child'] == potential_cluster]['lambda_val'] >= lambda_: potential_cluster = tree['parent'][tree['child'] == potential_cluster][0] new_tree_row = (potential_cluster, -1, 1, lambda_) return np.append(tree, new_tree_row) def _find_cluster_and_probability(tree, cluster_tree, neighbor_indices, neighbor_distances, core_distances, cluster_map, max_lambdas, min_samples): """ Return the cluster label (of the original clustering) and membership probability of a new data point. Parameters ---------- tree : CondensedTree The condensed tree associated with the clustering. cluster_tree : structured_array The raw form of the condensed tree with only cluster information (no data on individual points). This is significantly more compact. neighbor_indices : array (2 * min_samples, ) An array of raw distance based nearest neighbor indices. neighbor_distances : array (2 * min_samples, ) An array of raw distances to the nearest neighbors. core_distances : array (n_samples, ) An array of core distances for all points cluster_map : dict A dictionary mapping cluster numbers in the condensed tree to labels in the final selected clustering. max_lambdas : dict A dictionary mapping cluster numbers in the condensed tree to the maximum lambda value seen in that cluster. min_samples : int The min_samples value used to generate core distances. """ raw_tree = tree._raw_tree tree_root = cluster_tree['parent'].min() nearest_neighbor, lambda_ = _find_neighbor_and_lambda(neighbor_indices, neighbor_distances, core_distances, min_samples ) neighbor_tree_row = get_tree_row_with_child(raw_tree, nearest_neighbor) potential_cluster = neighbor_tree_row['parent'] if neighbor_tree_row['lambda_val'] > lambda_: # Find appropriate cluster based on lambda of new point while potential_cluster > tree_root and \ cluster_tree['lambda_val'][cluster_tree['child'] == potential_cluster] >= lambda_: potential_cluster = cluster_tree['parent'][cluster_tree['child'] == potential_cluster][0] if potential_cluster in cluster_map: cluster_label = cluster_map[potential_cluster] else: cluster_label = -1 if cluster_label >= 0: max_lambda = max_lambdas[potential_cluster] if max_lambda > 0.0: lambda_ = min(max_lambda, lambda_) prob = (lambda_ / max_lambda) else: prob = 1.0 else: prob = 0.0 return cluster_label, prob def approximate_predict(clusterer, points_to_predict): """Predict the cluster label of new points. The returned labels will be those of the original clustering found by ``clusterer``, and therefore are not (necessarily) the cluster labels that would be found by clustering the original data combined with ``points_to_predict``, hence the 'approximate' label. If you simply wish to assign new points to an existing clustering in the 'best' way possible, this is the function to use. If you want to predict how ``points_to_predict`` would cluster with the original data under HDBSCAN the most efficient existing approach is to simply recluster with the new point(s) added to the original dataset. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- labels : array (n_samples,) The predicted labels of the ``points_to_predict`` probabilities : array (n_samples,) The soft cluster scores for each of the ``points_to_predict`` See Also -------- :py:func:`hdbscan.predict.membership_vector` :py:func:`hdbscan.predict.all_points_membership_vectors` """ if clusterer.prediction_data_ is None: raise ValueError('Clusterer does not have prediction data!' ' Try fitting with prediction_data=True set,' ' or run generate_prediction_data on the clusterer') points_to_predict = np.asarray(points_to_predict) if points_to_predict.shape[1] != \ clusterer.prediction_data_.raw_data.shape[1]: raise ValueError('New points dimension does not match fit data!') if clusterer.prediction_data_.cluster_tree.shape[0] == 0: warn('Clusterer does not have any defined clusters, new data' ' will be automatically predicted as noise.') labels = -1 * np.ones(points_to_predict.shape[0], dtype=np.int32) probabilities = np.zeros(points_to_predict.shape[0], dtype=np.float32) return labels, probabilities labels = np.empty(points_to_predict.shape[0], dtype=np.int) probabilities = np.empty(points_to_predict.shape[0], dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): label, prob = _find_cluster_and_probability( clusterer.condensed_tree_, clusterer.prediction_data_.cluster_tree, neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, clusterer.prediction_data_.cluster_map, clusterer.prediction_data_.max_lambdas, min_samples ) labels[i] = label probabilities[i] = prob return labels, probabilities def membership_vector(clusterer, points_to_predict): """Predict soft cluster membership. The result produces a vector for each point in ``points_to_predict`` that gives a probability that the given point is a member of a cluster for each of the selected clusters of the ``clusterer``. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array( sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) result = np.empty((points_to_predict.shape[0], clusters.shape[0]), dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): # We need to find where in the tree the new point would go # for the purposes of outlier membership approximation nearest_neighbor, lambda_ = \ _find_neighbor_and_lambda( neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, min_samples) neighbor_tree_row = get_tree_row_with_child( clusterer.condensed_tree_._raw_tree, nearest_neighbor) if neighbor_tree_row['lambda_val'] <= lambda_: lambda_ = neighbor_tree_row['lambda_val'] distance_vec = dist_membership_vector( points_to_predict[i], clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vec = outlier_membership_vector( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0 result[i] /= result[i].sum() result[i] *= prob_in_some_cluster( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) return result def all_points_membership_vectors(clusterer): """Predict soft cluster membership vectors for all points in the original dataset the clusterer was trained on. This function is more efficient by making use of the fact that all points are already in the condensed tree, and processing in bulk. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. This method does not work if the clusterer was trained with ``metric='precomputed'``. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` of the original dataset is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ clusters = np.array(sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) all_points = clusterer.prediction_data_.raw_data # When no clusters found, return array of 0's if clusters.size == 0: return np.zeros(all_points.shape[0]) distance_vecs = all_points_dist_membership_vector( all_points, clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vecs = all_points_outlier_membership_vector( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) in_cluster_probs = all_points_prob_in_some_cluster( clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result = distance_vecs * outlier_vecs row_sums = result.sum(axis=1) result = result / row_sums[:, np.newaxis] result *= in_cluster_probs[:, np.newaxis] return result
normalize
Normalize text. Args: text (str): text to be normalized
import re class Normalizer: """Normalizer return the text replaced with 'repl'. If 'repl' is None, normalization is not applied to the pattern corresponding to 'repl'. Args: url_repl (str): replace all urls in text with this tag_repl (str): replace all tags in text with this emoji_repl (str): replace all emojis in text with this email_repl (str): replace all emails in text with this tel_repl (str): replace all tels in text with this """ def __init__(self, url_repl='[URL]', tag_repl='[TAG]', emoji_repl='[EMOJI]', email_repl='[EMAIL]', tel_repl='[TEL]'): # repls self.url_repl = url_repl self.tag_repl = tag_repl self.emoji_repl = emoji_repl self.email_repl = email_repl self.tel_repl = tel_repl self._normalize = [] self._init_normalize() # MASKED: normalize function (lines 25-34) def _init_normalize(self) -> None: """Initialize normalize function. If 'repl' is None, normalization is not applied to the pattern corresponding to 'repl'. """ if self.url_repl is not None: self._normalize.append((self._url_normalize, self.url_repl)) if self.tag_repl is not None: self._normalize.append((self._tag_normalize, self.tag_repl)) if self.emoji_repl is not None: self._normalize.append((self._emoji_normalize, self.emoji_repl)) if self.email_repl is not None: self._normalize.append((self._email_normalize, self.email_repl)) if self.tel_repl is not None: self._normalize.append((self._tel_normalize, self.tel_repl)) def _url_normalize(self, text: str, repl: str, regex=re.compile(r'(https?|ftp|www)\S+')) -> str: """Return the string obtained by replacing all urls in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all urls in text with 'repl' """ text = regex.sub(repl, text) return text def _tag_normalize(self, text: str, repl: str, regex=re.compile(r'<[^>]*>')) -> str: """Return the string obtained by replacing all HTML tags in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all HTML tags in text with 'repl' """ text = regex.sub(repl, text) return text def _emoji_normalize(self, text: str, repl: str, regex=re.compile(r'\U0001f469\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f468|\U0001f468\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f468|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f469|\U0001f9d1\U0001f3fb\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3ff|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fe|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f468\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\u200d\u2764\u200d\U0001f48b\u200d\U0001f468|\U0001f468\u200d\u2764\u200d\U0001f48b\u200d\U0001f468|\U0001f469\u200d\u2764\u200d\U0001f48b\u200d\U0001f469|\U0001f468\u200d\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f468\u200d\U0001f468\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f467\u200d\U0001f467|\U0001f469\u200d\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f3f4\U000e0067\U000e0062\U000e0065\U000e006e\U000e0067\U000e007f|\U0001f3f4\U000e0067\U000e0062\U000e0073\U000e0063\U000e0074\U000e007f|\U0001f3f4\U000e0067\U000e0062\U000e0077\U000e006c\U000e0073\U000e007f|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f468|\U0001f468\u200d\u2764\ufe0f\u200d\U0001f468|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f469|\U0001f441\ufe0f\u200d\U0001f5e8\ufe0f|\U0001f471\U0001f3fb\u200d\u2642\ufe0f|\U0001f471\U0001f3fc\u200d\u2642\ufe0f|\U0001f471\U0001f3fd\u200d\u2642\ufe0f|\U0001f471\U0001f3fe\u200d\u2642\ufe0f|\U0001f471\U0001f3ff\u200d\u2642\ufe0f|\U0001f471\U0001f3fb\u200d\u2640\ufe0f|\U0001f471\U0001f3fc\u200d\u2640\ufe0f|\U0001f471\U0001f3fd\u200d\u2640\ufe0f|\U0001f471\U0001f3fe\u200d\u2640\ufe0f|\U0001f471\U0001f3ff\u200d\u2640\ufe0f|\U0001f64d\U0001f3fb\u200d\u2642\ufe0f|\U0001f64d\U0001f3fc\u200d\u2642\ufe0f|\U0001f64d\U0001f3fd\u200d\u2642\ufe0f|\U0001f64d\U0001f3fe\u200d\u2642\ufe0f|\U0001f64d\U0001f3ff\u200d\u2642\ufe0f|\U0001f64d\U0001f3fb\u200d\u2640\ufe0f|\U0001f64d\U0001f3fc\u200d\u2640\ufe0f|\U0001f64d\U0001f3fd\u200d\u2640\ufe0f|\U0001f64d\U0001f3fe\u200d\u2640\ufe0f|\U0001f64d\U0001f3ff\u200d\u2640\ufe0f|\U0001f64e\U0001f3fb\u200d\u2642\ufe0f|\U0001f64e\U0001f3fc\u200d\u2642\ufe0f|\U0001f64e\U0001f3fd\u200d\u2642\ufe0f|\U0001f64e\U0001f3fe\u200d\u2642\ufe0f|\U0001f64e\U0001f3ff\u200d\u2642\ufe0f|\U0001f64e\U0001f3fb\u200d\u2640\ufe0f|\U0001f64e\U0001f3fc\u200d\u2640\ufe0f|\U0001f64e\U0001f3fd\u200d\u2640\ufe0f|\U0001f64e\U0001f3fe\u200d\u2640\ufe0f|\U0001f64e\U0001f3ff\u200d\u2640\ufe0f|\U0001f645\U0001f3fb\u200d\u2642\ufe0f|\U0001f645\U0001f3fc\u200d\u2642\ufe0f|\U0001f645\U0001f3fd\u200d\u2642\ufe0f|\U0001f645\U0001f3fe\u200d\u2642\ufe0f|\U0001f645\U0001f3ff\u200d\u2642\ufe0f|\U0001f645\U0001f3fb\u200d\u2640\ufe0f|\U0001f645\U0001f3fc\u200d\u2640\ufe0f|\U0001f645\U0001f3fd\u200d\u2640\ufe0f|\U0001f645\U0001f3fe\u200d\u2640\ufe0f|\U0001f645\U0001f3ff\u200d\u2640\ufe0f|\U0001f646\U0001f3fb\u200d\u2642\ufe0f|\U0001f646\U0001f3fc\u200d\u2642\ufe0f|\U0001f646\U0001f3fd\u200d\u2642\ufe0f|\U0001f646\U0001f3fe\u200d\u2642\ufe0f|\U0001f646\U0001f3ff\u200d\u2642\ufe0f|\U0001f646\U0001f3fb\u200d\u2640\ufe0f|\U0001f646\U0001f3fc\u200d\u2640\ufe0f|\U0001f646\U0001f3fd\u200d\u2640\ufe0f|\U0001f646\U0001f3fe\u200d\u2640\ufe0f|\U0001f646\U0001f3ff\u200d\u2640\ufe0f|\U0001f481\U0001f3fb\u200d\u2642\ufe0f|\U0001f481\U0001f3fc\u200d\u2642\ufe0f|\U0001f481\U0001f3fd\u200d\u2642\ufe0f|\U0001f481\U0001f3fe\u200d\u2642\ufe0f|\U0001f481\U0001f3ff\u200d\u2642\ufe0f|\U0001f481\U0001f3fb\u200d\u2640\ufe0f|\U0001f481\U0001f3fc\u200d\u2640\ufe0f|\U0001f481\U0001f3fd\u200d\u2640\ufe0f|\U0001f481\U0001f3fe\u200d\u2640\ufe0f|\U0001f481\U0001f3ff\u200d\u2640\ufe0f|\U0001f64b\U0001f3fb\u200d\u2642\ufe0f|\U0001f64b\U0001f3fc\u200d\u2642\ufe0f|\U0001f64b\U0001f3fd\u200d\u2642\ufe0f|\U0001f64b\U0001f3fe\u200d\u2642\ufe0f|\U0001f64b\U0001f3ff\u200d\u2642\ufe0f|\U0001f64b\U0001f3fb\u200d\u2640\ufe0f|\U0001f64b\U0001f3fc\u200d\u2640\ufe0f|\U0001f64b\U0001f3fd\u200d\u2640\ufe0f|\U0001f64b\U0001f3fe\u200d\u2640\ufe0f|\U0001f64b\U0001f3ff\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fc\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fd\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fe\u200d\u2642\ufe0f|\U0001f9cf\U0001f3ff\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fc\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fd\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fe\u200d\u2640\ufe0f|\U0001f9cf\U0001f3ff\u200d\u2640\ufe0f|\U0001f647\U0001f3fb\u200d\u2642\ufe0f|\U0001f647\U0001f3fc\u200d\u2642\ufe0f|\U0001f647\U0001f3fd\u200d\u2642\ufe0f|\U0001f647\U0001f3fe\u200d\u2642\ufe0f|\U0001f647\U0001f3ff\u200d\u2642\ufe0f|\U0001f647\U0001f3fb\u200d\u2640\ufe0f|\U0001f647\U0001f3fc\u200d\u2640\ufe0f|\U0001f647\U0001f3fd\u200d\u2640\ufe0f|\U0001f647\U0001f3fe\u200d\u2640\ufe0f|\U0001f647\U0001f3ff\u200d\u2640\ufe0f|\U0001f926\U0001f3fb\u200d\u2642\ufe0f|\U0001f926\U0001f3fc\u200d\u2642\ufe0f|\U0001f926\U0001f3fd\u200d\u2642\ufe0f|\U0001f926\U0001f3fe\u200d\u2642\ufe0f|\U0001f926\U0001f3ff\u200d\u2642\ufe0f|\U0001f926\U0001f3fb\u200d\u2640\ufe0f|\U0001f926\U0001f3fc\u200d\u2640\ufe0f|\U0001f926\U0001f3fd\u200d\u2640\ufe0f|\U0001f926\U0001f3fe\u200d\u2640\ufe0f|\U0001f926\U0001f3ff\u200d\u2640\ufe0f|\U0001f937\U0001f3fb\u200d\u2642\ufe0f|\U0001f937\U0001f3fc\u200d\u2642\ufe0f|\U0001f937\U0001f3fd\u200d\u2642\ufe0f|\U0001f937\U0001f3fe\u200d\u2642\ufe0f|\U0001f937\U0001f3ff\u200d\u2642\ufe0f|\U0001f937\U0001f3fb\u200d\u2640\ufe0f|\U0001f937\U0001f3fc\u200d\u2640\ufe0f|\U0001f937\U0001f3fd\u200d\u2640\ufe0f|\U0001f937\U0001f3fe\u200d\u2640\ufe0f|\U0001f937\U0001f3ff\u200d\u2640\ufe0f|\U0001f468\U0001f3fb\u200d\u2695\ufe0f|\U0001f468\U0001f3fc\u200d\u2695\ufe0f|\U0001f468\U0001f3fd\u200d\u2695\ufe0f|\U0001f468\U0001f3fe\u200d\u2695\ufe0f|\U0001f468\U0001f3ff\u200d\u2695\ufe0f|\U0001f469\U0001f3fb\u200d\u2695\ufe0f|\U0001f469\U0001f3fc\u200d\u2695\ufe0f|\U0001f469\U0001f3fd\u200d\u2695\ufe0f|\U0001f469\U0001f3fe\u200d\u2695\ufe0f|\U0001f469\U0001f3ff\u200d\u2695\ufe0f|\U0001f468\U0001f3fb\u200d\u2696\ufe0f|\U0001f468\U0001f3fc\u200d\u2696\ufe0f|\U0001f468\U0001f3fd\u200d\u2696\ufe0f|\U0001f468\U0001f3fe\u200d\u2696\ufe0f|\U0001f468\U0001f3ff\u200d\u2696\ufe0f|\U0001f469\U0001f3fb\u200d\u2696\ufe0f|\U0001f469\U0001f3fc\u200d\u2696\ufe0f|\U0001f469\U0001f3fd\u200d\u2696\ufe0f|\U0001f469\U0001f3fe\u200d\u2696\ufe0f|\U0001f469\U0001f3ff\u200d\u2696\ufe0f|\U0001f468\U0001f3fb\u200d\u2708\ufe0f|\U0001f468\U0001f3fc\u200d\u2708\ufe0f|\U0001f468\U0001f3fd\u200d\u2708\ufe0f|\U0001f468\U0001f3fe\u200d\u2708\ufe0f|\U0001f468\U0001f3ff\u200d\u2708\ufe0f|\U0001f469\U0001f3fb\u200d\u2708\ufe0f|\U0001f469\U0001f3fc\u200d\u2708\ufe0f|\U0001f469\U0001f3fd\u200d\u2708\ufe0f|\U0001f469\U0001f3fe\u200d\u2708\ufe0f|\U0001f469\U0001f3ff\u200d\u2708\ufe0f|\U0001f46e\U0001f3fb\u200d\u2642\ufe0f|\U0001f46e\U0001f3fc\u200d\u2642\ufe0f|\U0001f46e\U0001f3fd\u200d\u2642\ufe0f|\U0001f46e\U0001f3fe\u200d\u2642\ufe0f|\U0001f46e\U0001f3ff\u200d\u2642\ufe0f|\U0001f46e\U0001f3fb\u200d\u2640\ufe0f|\U0001f46e\U0001f3fc\u200d\u2640\ufe0f|\U0001f46e\U0001f3fd\u200d\u2640\ufe0f|\U0001f46e\U0001f3fe\u200d\u2640\ufe0f|\U0001f46e\U0001f3ff\u200d\u2640\ufe0f|\U0001f575\ufe0f\u200d\u2642\ufe0f|\U0001f575\U0001f3fb\u200d\u2642\ufe0f|\U0001f575\U0001f3fc\u200d\u2642\ufe0f|\U0001f575\U0001f3fd\u200d\u2642\ufe0f|\U0001f575\U0001f3fe\u200d\u2642\ufe0f|\U0001f575\U0001f3ff\u200d\u2642\ufe0f|\U0001f575\ufe0f\u200d\u2640\ufe0f|\U0001f575\U0001f3fb\u200d\u2640\ufe0f|\U0001f575\U0001f3fc\u200d\u2640\ufe0f|\U0001f575\U0001f3fd\u200d\u2640\ufe0f|\U0001f575\U0001f3fe\u200d\u2640\ufe0f|\U0001f575\U0001f3ff\u200d\u2640\ufe0f|\U0001f482\U0001f3fb\u200d\u2642\ufe0f|\U0001f482\U0001f3fc\u200d\u2642\ufe0f|\U0001f482\U0001f3fd\u200d\u2642\ufe0f|\U0001f482\U0001f3fe\u200d\u2642\ufe0f|\U0001f482\U0001f3ff\u200d\u2642\ufe0f|\U0001f482\U0001f3fb\u200d\u2640\ufe0f|\U0001f482\U0001f3fc\u200d\u2640\ufe0f|\U0001f482\U0001f3fd\u200d\u2640\ufe0f|\U0001f482\U0001f3fe\u200d\u2640\ufe0f|\U0001f482\U0001f3ff\u200d\u2640\ufe0f|\U0001f477\U0001f3fb\u200d\u2642\ufe0f|\U0001f477\U0001f3fc\u200d\u2642\ufe0f|\U0001f477\U0001f3fd\u200d\u2642\ufe0f|\U0001f477\U0001f3fe\u200d\u2642\ufe0f|\U0001f477\U0001f3ff\u200d\u2642\ufe0f|\U0001f477\U0001f3fb\u200d\u2640\ufe0f|\U0001f477\U0001f3fc\u200d\u2640\ufe0f|\U0001f477\U0001f3fd\u200d\u2640\ufe0f|\U0001f477\U0001f3fe\u200d\u2640\ufe0f|\U0001f477\U0001f3ff\u200d\u2640\ufe0f|\U0001f473\U0001f3fb\u200d\u2642\ufe0f|\U0001f473\U0001f3fc\u200d\u2642\ufe0f|\U0001f473\U0001f3fd\u200d\u2642\ufe0f|\U0001f473\U0001f3fe\u200d\u2642\ufe0f|\U0001f473\U0001f3ff\u200d\u2642\ufe0f|\U0001f473\U0001f3fb\u200d\u2640\ufe0f|\U0001f473\U0001f3fc\u200d\u2640\ufe0f|\U0001f473\U0001f3fd\u200d\u2640\ufe0f|\U0001f473\U0001f3fe\u200d\u2640\ufe0f|\U0001f473\U0001f3ff\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fc\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fd\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fe\u200d\u2642\ufe0f|\U0001f9b8\U0001f3ff\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fc\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fd\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fe\u200d\u2640\ufe0f|\U0001f9b8\U0001f3ff\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fc\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fd\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fe\u200d\u2642\ufe0f|\U0001f9b9\U0001f3ff\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fc\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fd\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fe\u200d\u2640\ufe0f|\U0001f9b9\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d9\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d9\U0001f3ff\u200d\u2640\ufe0f|\U0001f9da\U0001f3fb\u200d\u2642\ufe0f|\U0001f9da\U0001f3fc\u200d\u2642\ufe0f|\U0001f9da\U0001f3fd\u200d\u2642\ufe0f|\U0001f9da\U0001f3fe\u200d\u2642\ufe0f|\U0001f9da\U0001f3ff\u200d\u2642\ufe0f|\U0001f9da\U0001f3fb\u200d\u2640\ufe0f|\U0001f9da\U0001f3fc\u200d\u2640\ufe0f|\U0001f9da\U0001f3fd\u200d\u2640\ufe0f|\U0001f9da\U0001f3fe\u200d\u2640\ufe0f|\U0001f9da\U0001f3ff\u200d\u2640\ufe0f|\U0001f9db\U0001f3fb\u200d\u2642\ufe0f|\U0001f9db\U0001f3fc\u200d\u2642\ufe0f|\U0001f9db\U0001f3fd\u200d\u2642\ufe0f|\U0001f9db\U0001f3fe\u200d\u2642\ufe0f|\U0001f9db\U0001f3ff\u200d\u2642\ufe0f|\U0001f9db\U0001f3fb\u200d\u2640\ufe0f|\U0001f9db\U0001f3fc\u200d\u2640\ufe0f|\U0001f9db\U0001f3fd\u200d\u2640\ufe0f|\U0001f9db\U0001f3fe\u200d\u2640\ufe0f|\U0001f9db\U0001f3ff\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fc\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fd\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fe\u200d\u2642\ufe0f|\U0001f9dc\U0001f3ff\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fc\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fd\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fe\u200d\u2640\ufe0f|\U0001f9dc\U0001f3ff\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fc\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fd\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fe\u200d\u2642\ufe0f|\U0001f9dd\U0001f3ff\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fc\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fd\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fe\u200d\u2640\ufe0f|\U0001f9dd\U0001f3ff\u200d\u2640\ufe0f|\U0001f486\U0001f3fb\u200d\u2642\ufe0f|\U0001f486\U0001f3fc\u200d\u2642\ufe0f|\U0001f486\U0001f3fd\u200d\u2642\ufe0f|\U0001f486\U0001f3fe\u200d\u2642\ufe0f|\U0001f486\U0001f3ff\u200d\u2642\ufe0f|\U0001f486\U0001f3fb\u200d\u2640\ufe0f|\U0001f486\U0001f3fc\u200d\u2640\ufe0f|\U0001f486\U0001f3fd\u200d\u2640\ufe0f|\U0001f486\U0001f3fe\u200d\u2640\ufe0f|\U0001f486\U0001f3ff\u200d\u2640\ufe0f|\U0001f487\U0001f3fb\u200d\u2642\ufe0f|\U0001f487\U0001f3fc\u200d\u2642\ufe0f|\U0001f487\U0001f3fd\u200d\u2642\ufe0f|\U0001f487\U0001f3fe\u200d\u2642\ufe0f|\U0001f487\U0001f3ff\u200d\u2642\ufe0f|\U0001f487\U0001f3fb\u200d\u2640\ufe0f|\U0001f487\U0001f3fc\u200d\u2640\ufe0f|\U0001f487\U0001f3fd\u200d\u2640\ufe0f|\U0001f487\U0001f3fe\u200d\u2640\ufe0f|\U0001f487\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b6\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b6\U0001f3ff\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fc\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fd\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fe\u200d\u2642\ufe0f|\U0001f9cd\U0001f3ff\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fc\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fd\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fe\u200d\u2640\ufe0f|\U0001f9cd\U0001f3ff\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fc\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fd\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fe\u200d\u2642\ufe0f|\U0001f9ce\U0001f3ff\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fc\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fd\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fe\u200d\u2640\ufe0f|\U0001f9ce\U0001f3ff\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fc\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fd\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fe\u200d\u2642\ufe0f|\U0001f3c3\U0001f3ff\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fc\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fd\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fe\u200d\u2640\ufe0f|\U0001f3c3\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d6\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d6\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d7\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d7\U0001f3ff\u200d\u2640\ufe0f|\U0001f3cc\ufe0f\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fb\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fc\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fd\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fe\u200d\u2642\ufe0f|\U0001f3cc\U0001f3ff\u200d\u2642\ufe0f|\U0001f3cc\ufe0f\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fb\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fc\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fd\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fe\u200d\u2640\ufe0f|\U0001f3cc\U0001f3ff\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fc\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fd\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fe\u200d\u2642\ufe0f|\U0001f3c4\U0001f3ff\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fc\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fd\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fe\u200d\u2640\ufe0f|\U0001f3c4\U0001f3ff\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fc\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fd\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fe\u200d\u2642\ufe0f|\U0001f6a3\U0001f3ff\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fc\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fd\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fe\u200d\u2640\ufe0f|\U0001f6a3\U0001f3ff\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fc\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fd\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fe\u200d\u2642\ufe0f|\U0001f3ca\U0001f3ff\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fc\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fd\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fe\u200d\u2640\ufe0f|\U0001f3ca\U0001f3ff\u200d\u2640\ufe0f|\u26f9\ufe0f\u200d\u2642\ufe0f|\u26f9\U0001f3fb\u200d\u2642\ufe0f|\u26f9\U0001f3fc\u200d\u2642\ufe0f|\u26f9\U0001f3fd\u200d\u2642\ufe0f|\u26f9\U0001f3fe\u200d\u2642\ufe0f|\u26f9\U0001f3ff\u200d\u2642\ufe0f|\u26f9\ufe0f\u200d\u2640\ufe0f|\u26f9\U0001f3fb\u200d\u2640\ufe0f|\u26f9\U0001f3fc\u200d\u2640\ufe0f|\u26f9\U0001f3fd\u200d\u2640\ufe0f|\u26f9\U0001f3fe\u200d\u2640\ufe0f|\u26f9\U0001f3ff\u200d\u2640\ufe0f|\U0001f3cb\ufe0f\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fb\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fc\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fd\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fe\u200d\u2642\ufe0f|\U0001f3cb\U0001f3ff\u200d\u2642\ufe0f|\U0001f3cb\ufe0f\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fb\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fc\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fd\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fe\u200d\u2640\ufe0f|\U0001f3cb\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b4\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b4\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b5\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b5\U0001f3ff\u200d\u2640\ufe0f|\U0001f938\U0001f3fb\u200d\u2642\ufe0f|\U0001f938\U0001f3fc\u200d\u2642\ufe0f|\U0001f938\U0001f3fd\u200d\u2642\ufe0f|\U0001f938\U0001f3fe\u200d\u2642\ufe0f|\U0001f938\U0001f3ff\u200d\u2642\ufe0f|\U0001f938\U0001f3fb\u200d\u2640\ufe0f|\U0001f938\U0001f3fc\u200d\u2640\ufe0f|\U0001f938\U0001f3fd\u200d\u2640\ufe0f|\U0001f938\U0001f3fe\u200d\u2640\ufe0f|\U0001f938\U0001f3ff\u200d\u2640\ufe0f|\U0001f93d\U0001f3fb\u200d\u2642\ufe0f|\U0001f93d\U0001f3fc\u200d\u2642\ufe0f|\U0001f93d\U0001f3fd\u200d\u2642\ufe0f|\U0001f93d\U0001f3fe\u200d\u2642\ufe0f|\U0001f93d\U0001f3ff\u200d\u2642\ufe0f|\U0001f93d\U0001f3fb\u200d\u2640\ufe0f|\U0001f93d\U0001f3fc\u200d\u2640\ufe0f|\U0001f93d\U0001f3fd\u200d\u2640\ufe0f|\U0001f93d\U0001f3fe\u200d\u2640\ufe0f|\U0001f93d\U0001f3ff\u200d\u2640\ufe0f|\U0001f93e\U0001f3fb\u200d\u2642\ufe0f|\U0001f93e\U0001f3fc\u200d\u2642\ufe0f|\U0001f93e\U0001f3fd\u200d\u2642\ufe0f|\U0001f93e\U0001f3fe\u200d\u2642\ufe0f|\U0001f93e\U0001f3ff\u200d\u2642\ufe0f|\U0001f93e\U0001f3fb\u200d\u2640\ufe0f|\U0001f93e\U0001f3fc\u200d\u2640\ufe0f|\U0001f93e\U0001f3fd\u200d\u2640\ufe0f|\U0001f93e\U0001f3fe\u200d\u2640\ufe0f|\U0001f93e\U0001f3ff\u200d\u2640\ufe0f|\U0001f939\U0001f3fb\u200d\u2642\ufe0f|\U0001f939\U0001f3fc\u200d\u2642\ufe0f|\U0001f939\U0001f3fd\u200d\u2642\ufe0f|\U0001f939\U0001f3fe\u200d\u2642\ufe0f|\U0001f939\U0001f3ff\u200d\u2642\ufe0f|\U0001f939\U0001f3fb\u200d\u2640\ufe0f|\U0001f939\U0001f3fc\u200d\u2640\ufe0f|\U0001f939\U0001f3fd\u200d\u2640\ufe0f|\U0001f939\U0001f3fe\u200d\u2640\ufe0f|\U0001f939\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d8\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d8\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d1\u200d\U0001f91d\u200d\U0001f9d1|\U0001f469\u200d\u2764\u200d\U0001f468|\U0001f468\u200d\u2764\u200d\U0001f468|\U0001f469\u200d\u2764\u200d\U0001f469|\U0001f468\u200d\U0001f469\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f467|\U0001f468\u200d\U0001f468\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f467|\U0001f469\u200d\U0001f469\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f467|\U0001f468\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f467\u200d\U0001f467|\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f441\u200d\U0001f5e8\ufe0f|\U0001f441\ufe0f\u200d\U0001f5e8|\U0001f471\u200d\u2642\ufe0f|\U0001f471\U0001f3fb\u200d\u2642|\U0001f471\U0001f3fc\u200d\u2642|\U0001f471\U0001f3fd\u200d\u2642|\U0001f471\U0001f3fe\u200d\u2642|\U0001f471\U0001f3ff\u200d\u2642|\U0001f468\U0001f3fb\u200d\U0001f9b0|\U0001f468\U0001f3fc\u200d\U0001f9b0|\U0001f468\U0001f3fd\u200d\U0001f9b0|\U0001f468\U0001f3fe\u200d\U0001f9b0|\U0001f468\U0001f3ff\u200d\U0001f9b0|\U0001f468\U0001f3fb\u200d\U0001f9b1|\U0001f468\U0001f3fc\u200d\U0001f9b1|\U0001f468\U0001f3fd\u200d\U0001f9b1|\U0001f468\U0001f3fe\u200d\U0001f9b1|\U0001f468\U0001f3ff\u200d\U0001f9b1|\U0001f468\U0001f3fb\u200d\U0001f9b3|\U0001f468\U0001f3fc\u200d\U0001f9b3|\U0001f468\U0001f3fd\u200d\U0001f9b3|\U0001f468\U0001f3fe\u200d\U0001f9b3|\U0001f468\U0001f3ff\u200d\U0001f9b3|\U0001f468\U0001f3fb\u200d\U0001f9b2|\U0001f468\U0001f3fc\u200d\U0001f9b2|\U0001f468\U0001f3fd\u200d\U0001f9b2|\U0001f468\U0001f3fe\u200d\U0001f9b2|\U0001f468\U0001f3ff\u200d\U0001f9b2|\U0001f471\u200d\u2640\ufe0f|\U0001f471\U0001f3fb\u200d\u2640|\U0001f471\U0001f3fc\u200d\u2640|\U0001f471\U0001f3fd\u200d\u2640|\U0001f471\U0001f3fe\u200d\u2640|\U0001f471\U0001f3ff\u200d\u2640|\U0001f469\U0001f3fb\u200d\U0001f9b0|\U0001f469\U0001f3fc\u200d\U0001f9b0|\U0001f469\U0001f3fd\u200d\U0001f9b0|\U0001f469\U0001f3fe\u200d\U0001f9b0|\U0001f469\U0001f3ff\u200d\U0001f9b0|\U0001f469\U0001f3fb\u200d\U0001f9b1|\U0001f469\U0001f3fc\u200d\U0001f9b1|\U0001f469\U0001f3fd\u200d\U0001f9b1|\U0001f469\U0001f3fe\u200d\U0001f9b1|\U0001f469\U0001f3ff\u200d\U0001f9b1|\U0001f469\U0001f3fb\u200d\U0001f9b3|\U0001f469\U0001f3fc\u200d\U0001f9b3|\U0001f469\U0001f3fd\u200d\U0001f9b3|\U0001f469\U0001f3fe\u200d\U0001f9b3|\U0001f469\U0001f3ff\u200d\U0001f9b3|\U0001f469\U0001f3fb\u200d\U0001f9b2|\U0001f469\U0001f3fc\u200d\U0001f9b2|\U0001f469\U0001f3fd\u200d\U0001f9b2|\U0001f469\U0001f3fe\u200d\U0001f9b2|\U0001f469\U0001f3ff\u200d\U0001f9b2|\U0001f64d\u200d\u2642\ufe0f|\U0001f64d\U0001f3fb\u200d\u2642|\U0001f64d\U0001f3fc\u200d\u2642|\U0001f64d\U0001f3fd\u200d\u2642|\U0001f64d\U0001f3fe\u200d\u2642|\U0001f64d\U0001f3ff\u200d\u2642|\U0001f64d\u200d\u2640\ufe0f|\U0001f64d\U0001f3fb\u200d\u2640|\U0001f64d\U0001f3fc\u200d\u2640|\U0001f64d\U0001f3fd\u200d\u2640|\U0001f64d\U0001f3fe\u200d\u2640|\U0001f64d\U0001f3ff\u200d\u2640|\U0001f64e\u200d\u2642\ufe0f|\U0001f64e\U0001f3fb\u200d\u2642|\U0001f64e\U0001f3fc\u200d\u2642|\U0001f64e\U0001f3fd\u200d\u2642|\U0001f64e\U0001f3fe\u200d\u2642|\U0001f64e\U0001f3ff\u200d\u2642|\U0001f64e\u200d\u2640\ufe0f|\U0001f64e\U0001f3fb\u200d\u2640|\U0001f64e\U0001f3fc\u200d\u2640|\U0001f64e\U0001f3fd\u200d\u2640|\U0001f64e\U0001f3fe\u200d\u2640|\U0001f64e\U0001f3ff\u200d\u2640|\U0001f645\u200d\u2642\ufe0f|\U0001f645\U0001f3fb\u200d\u2642|\U0001f645\U0001f3fc\u200d\u2642|\U0001f645\U0001f3fd\u200d\u2642|\U0001f645\U0001f3fe\u200d\u2642|\U0001f645\U0001f3ff\u200d\u2642|\U0001f645\u200d\u2640\ufe0f|\U0001f645\U0001f3fb\u200d\u2640|\U0001f645\U0001f3fc\u200d\u2640|\U0001f645\U0001f3fd\u200d\u2640|\U0001f645\U0001f3fe\u200d\u2640|\U0001f645\U0001f3ff\u200d\u2640|\U0001f646\u200d\u2642\ufe0f|\U0001f646\U0001f3fb\u200d\u2642|\U0001f646\U0001f3fc\u200d\u2642|\U0001f646\U0001f3fd\u200d\u2642|\U0001f646\U0001f3fe\u200d\u2642|\U0001f646\U0001f3ff\u200d\u2642|\U0001f646\u200d\u2640\ufe0f|\U0001f646\U0001f3fb\u200d\u2640|\U0001f646\U0001f3fc\u200d\u2640|\U0001f646\U0001f3fd\u200d\u2640|\U0001f646\U0001f3fe\u200d\u2640|\U0001f646\U0001f3ff\u200d\u2640|\U0001f481\u200d\u2642\ufe0f|\U0001f481\U0001f3fb\u200d\u2642|\U0001f481\U0001f3fc\u200d\u2642|\U0001f481\U0001f3fd\u200d\u2642|\U0001f481\U0001f3fe\u200d\u2642|\U0001f481\U0001f3ff\u200d\u2642|\U0001f481\u200d\u2640\ufe0f|\U0001f481\U0001f3fb\u200d\u2640|\U0001f481\U0001f3fc\u200d\u2640|\U0001f481\U0001f3fd\u200d\u2640|\U0001f481\U0001f3fe\u200d\u2640|\U0001f481\U0001f3ff\u200d\u2640|\U0001f64b\u200d\u2642\ufe0f|\U0001f64b\U0001f3fb\u200d\u2642|\U0001f64b\U0001f3fc\u200d\u2642|\U0001f64b\U0001f3fd\u200d\u2642|\U0001f64b\U0001f3fe\u200d\u2642|\U0001f64b\U0001f3ff\u200d\u2642|\U0001f64b\u200d\u2640\ufe0f|\U0001f64b\U0001f3fb\u200d\u2640|\U0001f64b\U0001f3fc\u200d\u2640|\U0001f64b\U0001f3fd\u200d\u2640|\U0001f64b\U0001f3fe\u200d\u2640|\U0001f64b\U0001f3ff\u200d\u2640|\U0001f9cf\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2642|\U0001f9cf\U0001f3fc\u200d\u2642|\U0001f9cf\U0001f3fd\u200d\u2642|\U0001f9cf\U0001f3fe\u200d\u2642|\U0001f9cf\U0001f3ff\u200d\u2642|\U0001f9cf\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2640|\U0001f9cf\U0001f3fc\u200d\u2640|\U0001f9cf\U0001f3fd\u200d\u2640|\U0001f9cf\U0001f3fe\u200d\u2640|\U0001f9cf\U0001f3ff\u200d\u2640|\U0001f647\u200d\u2642\ufe0f|\U0001f647\U0001f3fb\u200d\u2642|\U0001f647\U0001f3fc\u200d\u2642|\U0001f647\U0001f3fd\u200d\u2642|\U0001f647\U0001f3fe\u200d\u2642|\U0001f647\U0001f3ff\u200d\u2642|\U0001f647\u200d\u2640\ufe0f|\U0001f647\U0001f3fb\u200d\u2640|\U0001f647\U0001f3fc\u200d\u2640|\U0001f647\U0001f3fd\u200d\u2640|\U0001f647\U0001f3fe\u200d\u2640|\U0001f647\U0001f3ff\u200d\u2640|\U0001f926\u200d\u2642\ufe0f|\U0001f926\U0001f3fb\u200d\u2642|\U0001f926\U0001f3fc\u200d\u2642|\U0001f926\U0001f3fd\u200d\u2642|\U0001f926\U0001f3fe\u200d\u2642|\U0001f926\U0001f3ff\u200d\u2642|\U0001f926\u200d\u2640\ufe0f|\U0001f926\U0001f3fb\u200d\u2640|\U0001f926\U0001f3fc\u200d\u2640|\U0001f926\U0001f3fd\u200d\u2640|\U0001f926\U0001f3fe\u200d\u2640|\U0001f926\U0001f3ff\u200d\u2640|\U0001f937\u200d\u2642\ufe0f|\U0001f937\U0001f3fb\u200d\u2642|\U0001f937\U0001f3fc\u200d\u2642|\U0001f937\U0001f3fd\u200d\u2642|\U0001f937\U0001f3fe\u200d\u2642|\U0001f937\U0001f3ff\u200d\u2642|\U0001f937\u200d\u2640\ufe0f|\U0001f937\U0001f3fb\u200d\u2640|\U0001f937\U0001f3fc\u200d\u2640|\U0001f937\U0001f3fd\u200d\u2640|\U0001f937\U0001f3fe\u200d\u2640|\U0001f937\U0001f3ff\u200d\u2640|\U0001f468\u200d\u2695\ufe0f|\U0001f468\U0001f3fb\u200d\u2695|\U0001f468\U0001f3fc\u200d\u2695|\U0001f468\U0001f3fd\u200d\u2695|\U0001f468\U0001f3fe\u200d\u2695|\U0001f468\U0001f3ff\u200d\u2695|\U0001f469\u200d\u2695\ufe0f|\U0001f469\U0001f3fb\u200d\u2695|\U0001f469\U0001f3fc\u200d\u2695|\U0001f469\U0001f3fd\u200d\u2695|\U0001f469\U0001f3fe\u200d\u2695|\U0001f469\U0001f3ff\u200d\u2695|\U0001f468\U0001f3fb\u200d\U0001f393|\U0001f468\U0001f3fc\u200d\U0001f393|\U0001f468\U0001f3fd\u200d\U0001f393|\U0001f468\U0001f3fe\u200d\U0001f393|\U0001f468\U0001f3ff\u200d\U0001f393|\U0001f469\U0001f3fb\u200d\U0001f393|\U0001f469\U0001f3fc\u200d\U0001f393|\U0001f469\U0001f3fd\u200d\U0001f393|\U0001f469\U0001f3fe\u200d\U0001f393|\U0001f469\U0001f3ff\u200d\U0001f393|\U0001f468\U0001f3fb\u200d\U0001f3eb|\U0001f468\U0001f3fc\u200d\U0001f3eb|\U0001f468\U0001f3fd\u200d\U0001f3eb|\U0001f468\U0001f3fe\u200d\U0001f3eb|\U0001f468\U0001f3ff\u200d\U0001f3eb|\U0001f469\U0001f3fb\u200d\U0001f3eb|\U0001f469\U0001f3fc\u200d\U0001f3eb|\U0001f469\U0001f3fd\u200d\U0001f3eb|\U0001f469\U0001f3fe\u200d\U0001f3eb|\U0001f469\U0001f3ff\u200d\U0001f3eb|\U0001f468\u200d\u2696\ufe0f|\U0001f468\U0001f3fb\u200d\u2696|\U0001f468\U0001f3fc\u200d\u2696|\U0001f468\U0001f3fd\u200d\u2696|\U0001f468\U0001f3fe\u200d\u2696|\U0001f468\U0001f3ff\u200d\u2696|\U0001f469\u200d\u2696\ufe0f|\U0001f469\U0001f3fb\u200d\u2696|\U0001f469\U0001f3fc\u200d\u2696|\U0001f469\U0001f3fd\u200d\u2696|\U0001f469\U0001f3fe\u200d\u2696|\U0001f469\U0001f3ff\u200d\u2696|\U0001f468\U0001f3fb\u200d\U0001f33e|\U0001f468\U0001f3fc\u200d\U0001f33e|\U0001f468\U0001f3fd\u200d\U0001f33e|\U0001f468\U0001f3fe\u200d\U0001f33e|\U0001f468\U0001f3ff\u200d\U0001f33e|\U0001f469\U0001f3fb\u200d\U0001f33e|\U0001f469\U0001f3fc\u200d\U0001f33e|\U0001f469\U0001f3fd\u200d\U0001f33e|\U0001f469\U0001f3fe\u200d\U0001f33e|\U0001f469\U0001f3ff\u200d\U0001f33e|\U0001f468\U0001f3fb\u200d\U0001f373|\U0001f468\U0001f3fc\u200d\U0001f373|\U0001f468\U0001f3fd\u200d\U0001f373|\U0001f468\U0001f3fe\u200d\U0001f373|\U0001f468\U0001f3ff\u200d\U0001f373|\U0001f469\U0001f3fb\u200d\U0001f373|\U0001f469\U0001f3fc\u200d\U0001f373|\U0001f469\U0001f3fd\u200d\U0001f373|\U0001f469\U0001f3fe\u200d\U0001f373|\U0001f469\U0001f3ff\u200d\U0001f373|\U0001f468\U0001f3fb\u200d\U0001f527|\U0001f468\U0001f3fc\u200d\U0001f527|\U0001f468\U0001f3fd\u200d\U0001f527|\U0001f468\U0001f3fe\u200d\U0001f527|\U0001f468\U0001f3ff\u200d\U0001f527|\U0001f469\U0001f3fb\u200d\U0001f527|\U0001f469\U0001f3fc\u200d\U0001f527|\U0001f469\U0001f3fd\u200d\U0001f527|\U0001f469\U0001f3fe\u200d\U0001f527|\U0001f469\U0001f3ff\u200d\U0001f527|\U0001f468\U0001f3fb\u200d\U0001f3ed|\U0001f468\U0001f3fc\u200d\U0001f3ed|\U0001f468\U0001f3fd\u200d\U0001f3ed|\U0001f468\U0001f3fe\u200d\U0001f3ed|\U0001f468\U0001f3ff\u200d\U0001f3ed|\U0001f469\U0001f3fb\u200d\U0001f3ed|\U0001f469\U0001f3fc\u200d\U0001f3ed|\U0001f469\U0001f3fd\u200d\U0001f3ed|\U0001f469\U0001f3fe\u200d\U0001f3ed|\U0001f469\U0001f3ff\u200d\U0001f3ed|\U0001f468\U0001f3fb\u200d\U0001f4bc|\U0001f468\U0001f3fc\u200d\U0001f4bc|\U0001f468\U0001f3fd\u200d\U0001f4bc|\U0001f468\U0001f3fe\u200d\U0001f4bc|\U0001f468\U0001f3ff\u200d\U0001f4bc|\U0001f469\U0001f3fb\u200d\U0001f4bc|\U0001f469\U0001f3fc\u200d\U0001f4bc|\U0001f469\U0001f3fd\u200d\U0001f4bc|\U0001f469\U0001f3fe\u200d\U0001f4bc|\U0001f469\U0001f3ff\u200d\U0001f4bc|\U0001f468\U0001f3fb\u200d\U0001f52c|\U0001f468\U0001f3fc\u200d\U0001f52c|\U0001f468\U0001f3fd\u200d\U0001f52c|\U0001f468\U0001f3fe\u200d\U0001f52c|\U0001f468\U0001f3ff\u200d\U0001f52c|\U0001f469\U0001f3fb\u200d\U0001f52c|\U0001f469\U0001f3fc\u200d\U0001f52c|\U0001f469\U0001f3fd\u200d\U0001f52c|\U0001f469\U0001f3fe\u200d\U0001f52c|\U0001f469\U0001f3ff\u200d\U0001f52c|\U0001f468\U0001f3fb\u200d\U0001f4bb|\U0001f468\U0001f3fc\u200d\U0001f4bb|\U0001f468\U0001f3fd\u200d\U0001f4bb|\U0001f468\U0001f3fe\u200d\U0001f4bb|\U0001f468\U0001f3ff\u200d\U0001f4bb|\U0001f469\U0001f3fb\u200d\U0001f4bb|\U0001f469\U0001f3fc\u200d\U0001f4bb|\U0001f469\U0001f3fd\u200d\U0001f4bb|\U0001f469\U0001f3fe\u200d\U0001f4bb|\U0001f469\U0001f3ff\u200d\U0001f4bb|\U0001f468\U0001f3fb\u200d\U0001f3a4|\U0001f468\U0001f3fc\u200d\U0001f3a4|\U0001f468\U0001f3fd\u200d\U0001f3a4|\U0001f468\U0001f3fe\u200d\U0001f3a4|\U0001f468\U0001f3ff\u200d\U0001f3a4|\U0001f469\U0001f3fb\u200d\U0001f3a4|\U0001f469\U0001f3fc\u200d\U0001f3a4|\U0001f469\U0001f3fd\u200d\U0001f3a4|\U0001f469\U0001f3fe\u200d\U0001f3a4|\U0001f469\U0001f3ff\u200d\U0001f3a4|\U0001f468\U0001f3fb\u200d\U0001f3a8|\U0001f468\U0001f3fc\u200d\U0001f3a8|\U0001f468\U0001f3fd\u200d\U0001f3a8|\U0001f468\U0001f3fe\u200d\U0001f3a8|\U0001f468\U0001f3ff\u200d\U0001f3a8|\U0001f469\U0001f3fb\u200d\U0001f3a8|\U0001f469\U0001f3fc\u200d\U0001f3a8|\U0001f469\U0001f3fd\u200d\U0001f3a8|\U0001f469\U0001f3fe\u200d\U0001f3a8|\U0001f469\U0001f3ff\u200d\U0001f3a8|\U0001f468\u200d\u2708\ufe0f|\U0001f468\U0001f3fb\u200d\u2708|\U0001f468\U0001f3fc\u200d\u2708|\U0001f468\U0001f3fd\u200d\u2708|\U0001f468\U0001f3fe\u200d\u2708|\U0001f468\U0001f3ff\u200d\u2708|\U0001f469\u200d\u2708\ufe0f|\U0001f469\U0001f3fb\u200d\u2708|\U0001f469\U0001f3fc\u200d\u2708|\U0001f469\U0001f3fd\u200d\u2708|\U0001f469\U0001f3fe\u200d\u2708|\U0001f469\U0001f3ff\u200d\u2708|\U0001f468\U0001f3fb\u200d\U0001f680|\U0001f468\U0001f3fc\u200d\U0001f680|\U0001f468\U0001f3fd\u200d\U0001f680|\U0001f468\U0001f3fe\u200d\U0001f680|\U0001f468\U0001f3ff\u200d\U0001f680|\U0001f469\U0001f3fb\u200d\U0001f680|\U0001f469\U0001f3fc\u200d\U0001f680|\U0001f469\U0001f3fd\u200d\U0001f680|\U0001f469\U0001f3fe\u200d\U0001f680|\U0001f469\U0001f3ff\u200d\U0001f680|\U0001f468\U0001f3fb\u200d\U0001f692|\U0001f468\U0001f3fc\u200d\U0001f692|\U0001f468\U0001f3fd\u200d\U0001f692|\U0001f468\U0001f3fe\u200d\U0001f692|\U0001f468\U0001f3ff\u200d\U0001f692|\U0001f469\U0001f3fb\u200d\U0001f692|\U0001f469\U0001f3fc\u200d\U0001f692|\U0001f469\U0001f3fd\u200d\U0001f692|\U0001f469\U0001f3fe\u200d\U0001f692|\U0001f469\U0001f3ff\u200d\U0001f692|\U0001f46e\u200d\u2642\ufe0f|\U0001f46e\U0001f3fb\u200d\u2642|\U0001f46e\U0001f3fc\u200d\u2642|\U0001f46e\U0001f3fd\u200d\u2642|\U0001f46e\U0001f3fe\u200d\u2642|\U0001f46e\U0001f3ff\u200d\u2642|\U0001f46e\u200d\u2640\ufe0f|\U0001f46e\U0001f3fb\u200d\u2640|\U0001f46e\U0001f3fc\u200d\u2640|\U0001f46e\U0001f3fd\u200d\u2640|\U0001f46e\U0001f3fe\u200d\u2640|\U0001f46e\U0001f3ff\u200d\u2640|\U0001f575\u200d\u2642\ufe0f|\U0001f575\ufe0f\u200d\u2642|\U0001f575\U0001f3fb\u200d\u2642|\U0001f575\U0001f3fc\u200d\u2642|\U0001f575\U0001f3fd\u200d\u2642|\U0001f575\U0001f3fe\u200d\u2642|\U0001f575\U0001f3ff\u200d\u2642|\U0001f575\u200d\u2640\ufe0f|\U0001f575\ufe0f\u200d\u2640|\U0001f575\U0001f3fb\u200d\u2640|\U0001f575\U0001f3fc\u200d\u2640|\U0001f575\U0001f3fd\u200d\u2640|\U0001f575\U0001f3fe\u200d\u2640|\U0001f575\U0001f3ff\u200d\u2640|\U0001f482\u200d\u2642\ufe0f|\U0001f482\U0001f3fb\u200d\u2642|\U0001f482\U0001f3fc\u200d\u2642|\U0001f482\U0001f3fd\u200d\u2642|\U0001f482\U0001f3fe\u200d\u2642|\U0001f482\U0001f3ff\u200d\u2642|\U0001f482\u200d\u2640\ufe0f|\U0001f482\U0001f3fb\u200d\u2640|\U0001f482\U0001f3fc\u200d\u2640|\U0001f482\U0001f3fd\u200d\u2640|\U0001f482\U0001f3fe\u200d\u2640|\U0001f482\U0001f3ff\u200d\u2640|\U0001f477\u200d\u2642\ufe0f|\U0001f477\U0001f3fb\u200d\u2642|\U0001f477\U0001f3fc\u200d\u2642|\U0001f477\U0001f3fd\u200d\u2642|\U0001f477\U0001f3fe\u200d\u2642|\U0001f477\U0001f3ff\u200d\u2642|\U0001f477\u200d\u2640\ufe0f|\U0001f477\U0001f3fb\u200d\u2640|\U0001f477\U0001f3fc\u200d\u2640|\U0001f477\U0001f3fd\u200d\u2640|\U0001f477\U0001f3fe\u200d\u2640|\U0001f477\U0001f3ff\u200d\u2640|\U0001f473\u200d\u2642\ufe0f|\U0001f473\U0001f3fb\u200d\u2642|\U0001f473\U0001f3fc\u200d\u2642|\U0001f473\U0001f3fd\u200d\u2642|\U0001f473\U0001f3fe\u200d\u2642|\U0001f473\U0001f3ff\u200d\u2642|\U0001f473\u200d\u2640\ufe0f|\U0001f473\U0001f3fb\u200d\u2640|\U0001f473\U0001f3fc\u200d\u2640|\U0001f473\U0001f3fd\u200d\u2640|\U0001f473\U0001f3fe\u200d\u2640|\U0001f473\U0001f3ff\u200d\u2640|\U0001f9b8\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2642|\U0001f9b8\U0001f3fc\u200d\u2642|\U0001f9b8\U0001f3fd\u200d\u2642|\U0001f9b8\U0001f3fe\u200d\u2642|\U0001f9b8\U0001f3ff\u200d\u2642|\U0001f9b8\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2640|\U0001f9b8\U0001f3fc\u200d\u2640|\U0001f9b8\U0001f3fd\u200d\u2640|\U0001f9b8\U0001f3fe\u200d\u2640|\U0001f9b8\U0001f3ff\u200d\u2640|\U0001f9b9\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2642|\U0001f9b9\U0001f3fc\u200d\u2642|\U0001f9b9\U0001f3fd\u200d\u2642|\U0001f9b9\U0001f3fe\u200d\u2642|\U0001f9b9\U0001f3ff\u200d\u2642|\U0001f9b9\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2640|\U0001f9b9\U0001f3fc\u200d\u2640|\U0001f9b9\U0001f3fd\u200d\u2640|\U0001f9b9\U0001f3fe\u200d\u2640|\U0001f9b9\U0001f3ff\u200d\u2640|\U0001f9d9\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2642|\U0001f9d9\U0001f3fc\u200d\u2642|\U0001f9d9\U0001f3fd\u200d\u2642|\U0001f9d9\U0001f3fe\u200d\u2642|\U0001f9d9\U0001f3ff\u200d\u2642|\U0001f9d9\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2640|\U0001f9d9\U0001f3fc\u200d\u2640|\U0001f9d9\U0001f3fd\u200d\u2640|\U0001f9d9\U0001f3fe\u200d\u2640|\U0001f9d9\U0001f3ff\u200d\u2640|\U0001f9da\u200d\u2642\ufe0f|\U0001f9da\U0001f3fb\u200d\u2642|\U0001f9da\U0001f3fc\u200d\u2642|\U0001f9da\U0001f3fd\u200d\u2642|\U0001f9da\U0001f3fe\u200d\u2642|\U0001f9da\U0001f3ff\u200d\u2642|\U0001f9da\u200d\u2640\ufe0f|\U0001f9da\U0001f3fb\u200d\u2640|\U0001f9da\U0001f3fc\u200d\u2640|\U0001f9da\U0001f3fd\u200d\u2640|\U0001f9da\U0001f3fe\u200d\u2640|\U0001f9da\U0001f3ff\u200d\u2640|\U0001f9db\u200d\u2642\ufe0f|\U0001f9db\U0001f3fb\u200d\u2642|\U0001f9db\U0001f3fc\u200d\u2642|\U0001f9db\U0001f3fd\u200d\u2642|\U0001f9db\U0001f3fe\u200d\u2642|\U0001f9db\U0001f3ff\u200d\u2642|\U0001f9db\u200d\u2640\ufe0f|\U0001f9db\U0001f3fb\u200d\u2640|\U0001f9db\U0001f3fc\u200d\u2640|\U0001f9db\U0001f3fd\u200d\u2640|\U0001f9db\U0001f3fe\u200d\u2640|\U0001f9db\U0001f3ff\u200d\u2640|\U0001f9dc\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2642|\U0001f9dc\U0001f3fc\u200d\u2642|\U0001f9dc\U0001f3fd\u200d\u2642|\U0001f9dc\U0001f3fe\u200d\u2642|\U0001f9dc\U0001f3ff\u200d\u2642|\U0001f9dc\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2640|\U0001f9dc\U0001f3fc\u200d\u2640|\U0001f9dc\U0001f3fd\u200d\u2640|\U0001f9dc\U0001f3fe\u200d\u2640|\U0001f9dc\U0001f3ff\u200d\u2640|\U0001f9dd\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2642|\U0001f9dd\U0001f3fc\u200d\u2642|\U0001f9dd\U0001f3fd\u200d\u2642|\U0001f9dd\U0001f3fe\u200d\u2642|\U0001f9dd\U0001f3ff\u200d\u2642|\U0001f9dd\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2640|\U0001f9dd\U0001f3fc\u200d\u2640|\U0001f9dd\U0001f3fd\u200d\u2640|\U0001f9dd\U0001f3fe\u200d\u2640|\U0001f9dd\U0001f3ff\u200d\u2640|\U0001f9de\u200d\u2642\ufe0f|\U0001f9de\u200d\u2640\ufe0f|\U0001f9df\u200d\u2642\ufe0f|\U0001f9df\u200d\u2640\ufe0f|\U0001f486\u200d\u2642\ufe0f|\U0001f486\U0001f3fb\u200d\u2642|\U0001f486\U0001f3fc\u200d\u2642|\U0001f486\U0001f3fd\u200d\u2642|\U0001f486\U0001f3fe\u200d\u2642|\U0001f486\U0001f3ff\u200d\u2642|\U0001f486\u200d\u2640\ufe0f|\U0001f486\U0001f3fb\u200d\u2640|\U0001f486\U0001f3fc\u200d\u2640|\U0001f486\U0001f3fd\u200d\u2640|\U0001f486\U0001f3fe\u200d\u2640|\U0001f486\U0001f3ff\u200d\u2640|\U0001f487\u200d\u2642\ufe0f|\U0001f487\U0001f3fb\u200d\u2642|\U0001f487\U0001f3fc\u200d\u2642|\U0001f487\U0001f3fd\u200d\u2642|\U0001f487\U0001f3fe\u200d\u2642|\U0001f487\U0001f3ff\u200d\u2642|\U0001f487\u200d\u2640\ufe0f|\U0001f487\U0001f3fb\u200d\u2640|\U0001f487\U0001f3fc\u200d\u2640|\U0001f487\U0001f3fd\u200d\u2640|\U0001f487\U0001f3fe\u200d\u2640|\U0001f487\U0001f3ff\u200d\u2640|\U0001f6b6\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2642|\U0001f6b6\U0001f3fc\u200d\u2642|\U0001f6b6\U0001f3fd\u200d\u2642|\U0001f6b6\U0001f3fe\u200d\u2642|\U0001f6b6\U0001f3ff\u200d\u2642|\U0001f6b6\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2640|\U0001f6b6\U0001f3fc\u200d\u2640|\U0001f6b6\U0001f3fd\u200d\u2640|\U0001f6b6\U0001f3fe\u200d\u2640|\U0001f6b6\U0001f3ff\u200d\u2640|\U0001f9cd\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2642|\U0001f9cd\U0001f3fc\u200d\u2642|\U0001f9cd\U0001f3fd\u200d\u2642|\U0001f9cd\U0001f3fe\u200d\u2642|\U0001f9cd\U0001f3ff\u200d\u2642|\U0001f9cd\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2640|\U0001f9cd\U0001f3fc\u200d\u2640|\U0001f9cd\U0001f3fd\u200d\u2640|\U0001f9cd\U0001f3fe\u200d\u2640|\U0001f9cd\U0001f3ff\u200d\u2640|\U0001f9ce\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2642|\U0001f9ce\U0001f3fc\u200d\u2642|\U0001f9ce\U0001f3fd\u200d\u2642|\U0001f9ce\U0001f3fe\u200d\u2642|\U0001f9ce\U0001f3ff\u200d\u2642|\U0001f9ce\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2640|\U0001f9ce\U0001f3fc\u200d\u2640|\U0001f9ce\U0001f3fd\u200d\u2640|\U0001f9ce\U0001f3fe\u200d\u2640|\U0001f9ce\U0001f3ff\u200d\u2640|\U0001f468\U0001f3fb\u200d\U0001f9af|\U0001f468\U0001f3fc\u200d\U0001f9af|\U0001f468\U0001f3fd\u200d\U0001f9af|\U0001f468\U0001f3fe\u200d\U0001f9af|\U0001f468\U0001f3ff\u200d\U0001f9af|\U0001f469\U0001f3fb\u200d\U0001f9af|\U0001f469\U0001f3fc\u200d\U0001f9af|\U0001f469\U0001f3fd\u200d\U0001f9af|\U0001f469\U0001f3fe\u200d\U0001f9af|\U0001f469\U0001f3ff\u200d\U0001f9af|\U0001f468\U0001f3fb\u200d\U0001f9bc|\U0001f468\U0001f3fc\u200d\U0001f9bc|\U0001f468\U0001f3fd\u200d\U0001f9bc|\U0001f468\U0001f3fe\u200d\U0001f9bc|\U0001f468\U0001f3ff\u200d\U0001f9bc|\U0001f469\U0001f3fb\u200d\U0001f9bc|\U0001f469\U0001f3fc\u200d\U0001f9bc|\U0001f469\U0001f3fd\u200d\U0001f9bc|\U0001f469\U0001f3fe\u200d\U0001f9bc|\U0001f469\U0001f3ff\u200d\U0001f9bc|\U0001f468\U0001f3fb\u200d\U0001f9bd|\U0001f468\U0001f3fc\u200d\U0001f9bd|\U0001f468\U0001f3fd\u200d\U0001f9bd|\U0001f468\U0001f3fe\u200d\U0001f9bd|\U0001f468\U0001f3ff\u200d\U0001f9bd|\U0001f469\U0001f3fb\u200d\U0001f9bd|\U0001f469\U0001f3fc\u200d\U0001f9bd|\U0001f469\U0001f3fd\u200d\U0001f9bd|\U0001f469\U0001f3fe\u200d\U0001f9bd|\U0001f469\U0001f3ff\u200d\U0001f9bd|\U0001f3c3\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2642|\U0001f3c3\U0001f3fc\u200d\u2642|\U0001f3c3\U0001f3fd\u200d\u2642|\U0001f3c3\U0001f3fe\u200d\u2642|\U0001f3c3\U0001f3ff\u200d\u2642|\U0001f3c3\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2640|\U0001f3c3\U0001f3fc\u200d\u2640|\U0001f3c3\U0001f3fd\u200d\u2640|\U0001f3c3\U0001f3fe\u200d\u2640|\U0001f3c3\U0001f3ff\u200d\u2640|\U0001f46f\u200d\u2642\ufe0f|\U0001f46f\u200d\u2640\ufe0f|\U0001f9d6\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2642|\U0001f9d6\U0001f3fc\u200d\u2642|\U0001f9d6\U0001f3fd\u200d\u2642|\U0001f9d6\U0001f3fe\u200d\u2642|\U0001f9d6\U0001f3ff\u200d\u2642|\U0001f9d6\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2640|\U0001f9d6\U0001f3fc\u200d\u2640|\U0001f9d6\U0001f3fd\u200d\u2640|\U0001f9d6\U0001f3fe\u200d\u2640|\U0001f9d6\U0001f3ff\u200d\u2640|\U0001f9d7\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2642|\U0001f9d7\U0001f3fc\u200d\u2642|\U0001f9d7\U0001f3fd\u200d\u2642|\U0001f9d7\U0001f3fe\u200d\u2642|\U0001f9d7\U0001f3ff\u200d\u2642|\U0001f9d7\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2640|\U0001f9d7\U0001f3fc\u200d\u2640|\U0001f9d7\U0001f3fd\u200d\u2640|\U0001f9d7\U0001f3fe\u200d\u2640|\U0001f9d7\U0001f3ff\u200d\u2640|\U0001f3cc\u200d\u2642\ufe0f|\U0001f3cc\ufe0f\u200d\u2642|\U0001f3cc\U0001f3fb\u200d\u2642|\U0001f3cc\U0001f3fc\u200d\u2642|\U0001f3cc\U0001f3fd\u200d\u2642|\U0001f3cc\U0001f3fe\u200d\u2642|\U0001f3cc\U0001f3ff\u200d\u2642|\U0001f3cc\u200d\u2640\ufe0f|\U0001f3cc\ufe0f\u200d\u2640|\U0001f3cc\U0001f3fb\u200d\u2640|\U0001f3cc\U0001f3fc\u200d\u2640|\U0001f3cc\U0001f3fd\u200d\u2640|\U0001f3cc\U0001f3fe\u200d\u2640|\U0001f3cc\U0001f3ff\u200d\u2640|\U0001f3c4\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2642|\U0001f3c4\U0001f3fc\u200d\u2642|\U0001f3c4\U0001f3fd\u200d\u2642|\U0001f3c4\U0001f3fe\u200d\u2642|\U0001f3c4\U0001f3ff\u200d\u2642|\U0001f3c4\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2640|\U0001f3c4\U0001f3fc\u200d\u2640|\U0001f3c4\U0001f3fd\u200d\u2640|\U0001f3c4\U0001f3fe\u200d\u2640|\U0001f3c4\U0001f3ff\u200d\u2640|\U0001f6a3\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2642|\U0001f6a3\U0001f3fc\u200d\u2642|\U0001f6a3\U0001f3fd\u200d\u2642|\U0001f6a3\U0001f3fe\u200d\u2642|\U0001f6a3\U0001f3ff\u200d\u2642|\U0001f6a3\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2640|\U0001f6a3\U0001f3fc\u200d\u2640|\U0001f6a3\U0001f3fd\u200d\u2640|\U0001f6a3\U0001f3fe\u200d\u2640|\U0001f6a3\U0001f3ff\u200d\u2640|\U0001f3ca\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2642|\U0001f3ca\U0001f3fc\u200d\u2642|\U0001f3ca\U0001f3fd\u200d\u2642|\U0001f3ca\U0001f3fe\u200d\u2642|\U0001f3ca\U0001f3ff\u200d\u2642|\U0001f3ca\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2640|\U0001f3ca\U0001f3fc\u200d\u2640|\U0001f3ca\U0001f3fd\u200d\u2640|\U0001f3ca\U0001f3fe\u200d\u2640|\U0001f3ca\U0001f3ff\u200d\u2640|\u26f9\u200d\u2642\ufe0f|\u26f9\ufe0f\u200d\u2642|\u26f9\U0001f3fb\u200d\u2642|\u26f9\U0001f3fc\u200d\u2642|\u26f9\U0001f3fd\u200d\u2642|\u26f9\U0001f3fe\u200d\u2642|\u26f9\U0001f3ff\u200d\u2642|\u26f9\u200d\u2640\ufe0f|\u26f9\ufe0f\u200d\u2640|\u26f9\U0001f3fb\u200d\u2640|\u26f9\U0001f3fc\u200d\u2640|\u26f9\U0001f3fd\u200d\u2640|\u26f9\U0001f3fe\u200d\u2640|\u26f9\U0001f3ff\u200d\u2640|\U0001f3cb\u200d\u2642\ufe0f|\U0001f3cb\ufe0f\u200d\u2642|\U0001f3cb\U0001f3fb\u200d\u2642|\U0001f3cb\U0001f3fc\u200d\u2642|\U0001f3cb\U0001f3fd\u200d\u2642|\U0001f3cb\U0001f3fe\u200d\u2642|\U0001f3cb\U0001f3ff\u200d\u2642|\U0001f3cb\u200d\u2640\ufe0f|\U0001f3cb\ufe0f\u200d\u2640|\U0001f3cb\U0001f3fb\u200d\u2640|\U0001f3cb\U0001f3fc\u200d\u2640|\U0001f3cb\U0001f3fd\u200d\u2640|\U0001f3cb\U0001f3fe\u200d\u2640|\U0001f3cb\U0001f3ff\u200d\u2640|\U0001f6b4\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2642|\U0001f6b4\U0001f3fc\u200d\u2642|\U0001f6b4\U0001f3fd\u200d\u2642|\U0001f6b4\U0001f3fe\u200d\u2642|\U0001f6b4\U0001f3ff\u200d\u2642|\U0001f6b4\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2640|\U0001f6b4\U0001f3fc\u200d\u2640|\U0001f6b4\U0001f3fd\u200d\u2640|\U0001f6b4\U0001f3fe\u200d\u2640|\U0001f6b4\U0001f3ff\u200d\u2640|\U0001f6b5\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2642|\U0001f6b5\U0001f3fc\u200d\u2642|\U0001f6b5\U0001f3fd\u200d\u2642|\U0001f6b5\U0001f3fe\u200d\u2642|\U0001f6b5\U0001f3ff\u200d\u2642|\U0001f6b5\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2640|\U0001f6b5\U0001f3fc\u200d\u2640|\U0001f6b5\U0001f3fd\u200d\u2640|\U0001f6b5\U0001f3fe\u200d\u2640|\U0001f6b5\U0001f3ff\u200d\u2640|\U0001f938\u200d\u2642\ufe0f|\U0001f938\U0001f3fb\u200d\u2642|\U0001f938\U0001f3fc\u200d\u2642|\U0001f938\U0001f3fd\u200d\u2642|\U0001f938\U0001f3fe\u200d\u2642|\U0001f938\U0001f3ff\u200d\u2642|\U0001f938\u200d\u2640\ufe0f|\U0001f938\U0001f3fb\u200d\u2640|\U0001f938\U0001f3fc\u200d\u2640|\U0001f938\U0001f3fd\u200d\u2640|\U0001f938\U0001f3fe\u200d\u2640|\U0001f938\U0001f3ff\u200d\u2640|\U0001f93c\u200d\u2642\ufe0f|\U0001f93c\u200d\u2640\ufe0f|\U0001f93d\u200d\u2642\ufe0f|\U0001f93d\U0001f3fb\u200d\u2642|\U0001f93d\U0001f3fc\u200d\u2642|\U0001f93d\U0001f3fd\u200d\u2642|\U0001f93d\U0001f3fe\u200d\u2642|\U0001f93d\U0001f3ff\u200d\u2642|\U0001f93d\u200d\u2640\ufe0f|\U0001f93d\U0001f3fb\u200d\u2640|\U0001f93d\U0001f3fc\u200d\u2640|\U0001f93d\U0001f3fd\u200d\u2640|\U0001f93d\U0001f3fe\u200d\u2640|\U0001f93d\U0001f3ff\u200d\u2640|\U0001f93e\u200d\u2642\ufe0f|\U0001f93e\U0001f3fb\u200d\u2642|\U0001f93e\U0001f3fc\u200d\u2642|\U0001f93e\U0001f3fd\u200d\u2642|\U0001f93e\U0001f3fe\u200d\u2642|\U0001f93e\U0001f3ff\u200d\u2642|\U0001f93e\u200d\u2640\ufe0f|\U0001f93e\U0001f3fb\u200d\u2640|\U0001f93e\U0001f3fc\u200d\u2640|\U0001f93e\U0001f3fd\u200d\u2640|\U0001f93e\U0001f3fe\u200d\u2640|\U0001f93e\U0001f3ff\u200d\u2640|\U0001f939\u200d\u2642\ufe0f|\U0001f939\U0001f3fb\u200d\u2642|\U0001f939\U0001f3fc\u200d\u2642|\U0001f939\U0001f3fd\u200d\u2642|\U0001f939\U0001f3fe\u200d\u2642|\U0001f939\U0001f3ff\u200d\u2642|\U0001f939\u200d\u2640\ufe0f|\U0001f939\U0001f3fb\u200d\u2640|\U0001f939\U0001f3fc\u200d\u2640|\U0001f939\U0001f3fd\u200d\u2640|\U0001f939\U0001f3fe\u200d\u2640|\U0001f939\U0001f3ff\u200d\u2640|\U0001f9d8\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2642|\U0001f9d8\U0001f3fc\u200d\u2642|\U0001f9d8\U0001f3fd\u200d\u2642|\U0001f9d8\U0001f3fe\u200d\u2642|\U0001f9d8\U0001f3ff\u200d\u2642|\U0001f9d8\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2640|\U0001f9d8\U0001f3fc\u200d\u2640|\U0001f9d8\U0001f3fd\u200d\u2640|\U0001f9d8\U0001f3fe\u200d\u2640|\U0001f9d8\U0001f3ff\u200d\u2640|\U0001f3f3\ufe0f\u200d\U0001f308|\U0001f3f4\u200d\u2620\ufe0f|\U0001f441\u200d\U0001f5e8|\U0001f471\u200d\u2642|\U0001f468\u200d\U0001f9b0|\U0001f468\u200d\U0001f9b1|\U0001f468\u200d\U0001f9b3|\U0001f468\u200d\U0001f9b2|\U0001f471\u200d\u2640|\U0001f469\u200d\U0001f9b0|\U0001f469\u200d\U0001f9b1|\U0001f469\u200d\U0001f9b3|\U0001f469\u200d\U0001f9b2|\U0001f64d\u200d\u2642|\U0001f64d\u200d\u2640|\U0001f64e\u200d\u2642|\U0001f64e\u200d\u2640|\U0001f645\u200d\u2642|\U0001f645\u200d\u2640|\U0001f646\u200d\u2642|\U0001f646\u200d\u2640|\U0001f481\u200d\u2642|\U0001f481\u200d\u2640|\U0001f64b\u200d\u2642|\U0001f64b\u200d\u2640|\U0001f9cf\u200d\u2642|\U0001f9cf\u200d\u2640|\U0001f647\u200d\u2642|\U0001f647\u200d\u2640|\U0001f926\u200d\u2642|\U0001f926\u200d\u2640|\U0001f937\u200d\u2642|\U0001f937\u200d\u2640|\U0001f468\u200d\u2695|\U0001f469\u200d\u2695|\U0001f468\u200d\U0001f393|\U0001f469\u200d\U0001f393|\U0001f468\u200d\U0001f3eb|\U0001f469\u200d\U0001f3eb|\U0001f468\u200d\u2696|\U0001f469\u200d\u2696|\U0001f468\u200d\U0001f33e|\U0001f469\u200d\U0001f33e|\U0001f468\u200d\U0001f373|\U0001f469\u200d\U0001f373|\U0001f468\u200d\U0001f527|\U0001f469\u200d\U0001f527|\U0001f468\u200d\U0001f3ed|\U0001f469\u200d\U0001f3ed|\U0001f468\u200d\U0001f4bc|\U0001f469\u200d\U0001f4bc|\U0001f468\u200d\U0001f52c|\U0001f469\u200d\U0001f52c|\U0001f468\u200d\U0001f4bb|\U0001f469\u200d\U0001f4bb|\U0001f468\u200d\U0001f3a4|\U0001f469\u200d\U0001f3a4|\U0001f468\u200d\U0001f3a8|\U0001f469\u200d\U0001f3a8|\U0001f468\u200d\u2708|\U0001f469\u200d\u2708|\U0001f468\u200d\U0001f680|\U0001f469\u200d\U0001f680|\U0001f468\u200d\U0001f692|\U0001f469\u200d\U0001f692|\U0001f46e\u200d\u2642|\U0001f46e\u200d\u2640|\U0001f575\u200d\u2642|\U0001f575\u200d\u2640|\U0001f482\u200d\u2642|\U0001f482\u200d\u2640|\U0001f477\u200d\u2642|\U0001f477\u200d\u2640|\U0001f473\u200d\u2642|\U0001f473\u200d\u2640|\U0001f9b8\u200d\u2642|\U0001f9b8\u200d\u2640|\U0001f9b9\u200d\u2642|\U0001f9b9\u200d\u2640|\U0001f9d9\u200d\u2642|\U0001f9d9\u200d\u2640|\U0001f9da\u200d\u2642|\U0001f9da\u200d\u2640|\U0001f9db\u200d\u2642|\U0001f9db\u200d\u2640|\U0001f9dc\u200d\u2642|\U0001f9dc\u200d\u2640|\U0001f9dd\u200d\u2642|\U0001f9dd\u200d\u2640|\U0001f9de\u200d\u2642|\U0001f9de\u200d\u2640|\U0001f9df\u200d\u2642|\U0001f9df\u200d\u2640|\U0001f486\u200d\u2642|\U0001f486\u200d\u2640|\U0001f487\u200d\u2642|\U0001f487\u200d\u2640|\U0001f6b6\u200d\u2642|\U0001f6b6\u200d\u2640|\U0001f9cd\u200d\u2642|\U0001f9cd\u200d\u2640|\U0001f9ce\u200d\u2642|\U0001f9ce\u200d\u2640|\U0001f468\u200d\U0001f9af|\U0001f469\u200d\U0001f9af|\U0001f468\u200d\U0001f9bc|\U0001f469\u200d\U0001f9bc|\U0001f468\u200d\U0001f9bd|\U0001f469\u200d\U0001f9bd|\U0001f3c3\u200d\u2642|\U0001f3c3\u200d\u2640|\U0001f46f\u200d\u2642|\U0001f46f\u200d\u2640|\U0001f9d6\u200d\u2642|\U0001f9d6\u200d\u2640|\U0001f9d7\u200d\u2642|\U0001f9d7\u200d\u2640|\U0001f3cc\u200d\u2642|\U0001f3cc\u200d\u2640|\U0001f3c4\u200d\u2642|\U0001f3c4\u200d\u2640|\U0001f6a3\u200d\u2642|\U0001f6a3\u200d\u2640|\U0001f3ca\u200d\u2642|\U0001f3ca\u200d\u2640|\u26f9\u200d\u2642|\u26f9\u200d\u2640|\U0001f3cb\u200d\u2642|\U0001f3cb\u200d\u2640|\U0001f6b4\u200d\u2642|\U0001f6b4\u200d\u2640|\U0001f6b5\u200d\u2642|\U0001f6b5\u200d\u2640|\U0001f938\u200d\u2642|\U0001f938\u200d\u2640|\U0001f93c\u200d\u2642|\U0001f93c\u200d\u2640|\U0001f93d\u200d\u2642|\U0001f93d\u200d\u2640|\U0001f93e\u200d\u2642|\U0001f93e\u200d\u2640|\U0001f939\u200d\u2642|\U0001f939\u200d\u2640|\U0001f9d8\u200d\u2642|\U0001f9d8\u200d\u2640|\U0001f468\u200d\U0001f466|\U0001f468\u200d\U0001f467|\U0001f469\u200d\U0001f466|\U0001f469\u200d\U0001f467|\U0001f415\u200d\U0001f9ba|\\#\ufe0f\u20e3|\\*\ufe0f\u20e3|0\ufe0f\u20e3|1\ufe0f\u20e3|2\ufe0f\u20e3|3\ufe0f\u20e3|4\ufe0f\u20e3|5\ufe0f\u20e3|6\ufe0f\u20e3|7\ufe0f\u20e3|8\ufe0f\u20e3|9\ufe0f\u20e3|\U0001f3f3\u200d\U0001f308|\U0001f3f4\u200d\u2620|\u263a\ufe0f|\u2639\ufe0f|\u2620\ufe0f|\u2763\ufe0f|\u2764\ufe0f|\U0001f573\ufe0f|\U0001f5e8\ufe0f|\U0001f5ef\ufe0f|\U0001f44b\U0001f3fb|\U0001f44b\U0001f3fc|\U0001f44b\U0001f3fd|\U0001f44b\U0001f3fe|\U0001f44b\U0001f3ff|\U0001f91a\U0001f3fb|\U0001f91a\U0001f3fc|\U0001f91a\U0001f3fd|\U0001f91a\U0001f3fe|\U0001f91a\U0001f3ff|\U0001f590\ufe0f|\U0001f590\U0001f3fb|\U0001f590\U0001f3fc|\U0001f590\U0001f3fd|\U0001f590\U0001f3fe|\U0001f590\U0001f3ff|\u270b\U0001f3fb|\u270b\U0001f3fc|\u270b\U0001f3fd|\u270b\U0001f3fe|\u270b\U0001f3ff|\U0001f596\U0001f3fb|\U0001f596\U0001f3fc|\U0001f596\U0001f3fd|\U0001f596\U0001f3fe|\U0001f596\U0001f3ff|\U0001f44c\U0001f3fb|\U0001f44c\U0001f3fc|\U0001f44c\U0001f3fd|\U0001f44c\U0001f3fe|\U0001f44c\U0001f3ff|\U0001f90f\U0001f3fb|\U0001f90f\U0001f3fc|\U0001f90f\U0001f3fd|\U0001f90f\U0001f3fe|\U0001f90f\U0001f3ff|\u270c\ufe0f|\u270c\U0001f3fb|\u270c\U0001f3fc|\u270c\U0001f3fd|\u270c\U0001f3fe|\u270c\U0001f3ff|\U0001f91e\U0001f3fb|\U0001f91e\U0001f3fc|\U0001f91e\U0001f3fd|\U0001f91e\U0001f3fe|\U0001f91e\U0001f3ff|\U0001f91f\U0001f3fb|\U0001f91f\U0001f3fc|\U0001f91f\U0001f3fd|\U0001f91f\U0001f3fe|\U0001f91f\U0001f3ff|\U0001f918\U0001f3fb|\U0001f918\U0001f3fc|\U0001f918\U0001f3fd|\U0001f918\U0001f3fe|\U0001f918\U0001f3ff|\U0001f919\U0001f3fb|\U0001f919\U0001f3fc|\U0001f919\U0001f3fd|\U0001f919\U0001f3fe|\U0001f919\U0001f3ff|\U0001f448\U0001f3fb|\U0001f448\U0001f3fc|\U0001f448\U0001f3fd|\U0001f448\U0001f3fe|\U0001f448\U0001f3ff|\U0001f449\U0001f3fb|\U0001f449\U0001f3fc|\U0001f449\U0001f3fd|\U0001f449\U0001f3fe|\U0001f449\U0001f3ff|\U0001f446\U0001f3fb|\U0001f446\U0001f3fc|\U0001f446\U0001f3fd|\U0001f446\U0001f3fe|\U0001f446\U0001f3ff|\U0001f595\U0001f3fb|\U0001f595\U0001f3fc|\U0001f595\U0001f3fd|\U0001f595\U0001f3fe|\U0001f595\U0001f3ff|\U0001f447\U0001f3fb|\U0001f447\U0001f3fc|\U0001f447\U0001f3fd|\U0001f447\U0001f3fe|\U0001f447\U0001f3ff|\u261d\ufe0f|\u261d\U0001f3fb|\u261d\U0001f3fc|\u261d\U0001f3fd|\u261d\U0001f3fe|\u261d\U0001f3ff|\U0001f44d\U0001f3fb|\U0001f44d\U0001f3fc|\U0001f44d\U0001f3fd|\U0001f44d\U0001f3fe|\U0001f44d\U0001f3ff|\U0001f44e\U0001f3fb|\U0001f44e\U0001f3fc|\U0001f44e\U0001f3fd|\U0001f44e\U0001f3fe|\U0001f44e\U0001f3ff|\u270a\U0001f3fb|\u270a\U0001f3fc|\u270a\U0001f3fd|\u270a\U0001f3fe|\u270a\U0001f3ff|\U0001f44a\U0001f3fb|\U0001f44a\U0001f3fc|\U0001f44a\U0001f3fd|\U0001f44a\U0001f3fe|\U0001f44a\U0001f3ff|\U0001f91b\U0001f3fb|\U0001f91b\U0001f3fc|\U0001f91b\U0001f3fd|\U0001f91b\U0001f3fe|\U0001f91b\U0001f3ff|\U0001f91c\U0001f3fb|\U0001f91c\U0001f3fc|\U0001f91c\U0001f3fd|\U0001f91c\U0001f3fe|\U0001f91c\U0001f3ff|\U0001f44f\U0001f3fb|\U0001f44f\U0001f3fc|\U0001f44f\U0001f3fd|\U0001f44f\U0001f3fe|\U0001f44f\U0001f3ff|\U0001f64c\U0001f3fb|\U0001f64c\U0001f3fc|\U0001f64c\U0001f3fd|\U0001f64c\U0001f3fe|\U0001f64c\U0001f3ff|\U0001f450\U0001f3fb|\U0001f450\U0001f3fc|\U0001f450\U0001f3fd|\U0001f450\U0001f3fe|\U0001f450\U0001f3ff|\U0001f932\U0001f3fb|\U0001f932\U0001f3fc|\U0001f932\U0001f3fd|\U0001f932\U0001f3fe|\U0001f932\U0001f3ff|\U0001f64f\U0001f3fb|\U0001f64f\U0001f3fc|\U0001f64f\U0001f3fd|\U0001f64f\U0001f3fe|\U0001f64f\U0001f3ff|\u270d\ufe0f|\u270d\U0001f3fb|\u270d\U0001f3fc|\u270d\U0001f3fd|\u270d\U0001f3fe|\u270d\U0001f3ff|\U0001f485\U0001f3fb|\U0001f485\U0001f3fc|\U0001f485\U0001f3fd|\U0001f485\U0001f3fe|\U0001f485\U0001f3ff|\U0001f933\U0001f3fb|\U0001f933\U0001f3fc|\U0001f933\U0001f3fd|\U0001f933\U0001f3fe|\U0001f933\U0001f3ff|\U0001f4aa\U0001f3fb|\U0001f4aa\U0001f3fc|\U0001f4aa\U0001f3fd|\U0001f4aa\U0001f3fe|\U0001f4aa\U0001f3ff|\U0001f9b5\U0001f3fb|\U0001f9b5\U0001f3fc|\U0001f9b5\U0001f3fd|\U0001f9b5\U0001f3fe|\U0001f9b5\U0001f3ff|\U0001f9b6\U0001f3fb|\U0001f9b6\U0001f3fc|\U0001f9b6\U0001f3fd|\U0001f9b6\U0001f3fe|\U0001f9b6\U0001f3ff|\U0001f442\U0001f3fb|\U0001f442\U0001f3fc|\U0001f442\U0001f3fd|\U0001f442\U0001f3fe|\U0001f442\U0001f3ff|\U0001f9bb\U0001f3fb|\U0001f9bb\U0001f3fc|\U0001f9bb\U0001f3fd|\U0001f9bb\U0001f3fe|\U0001f9bb\U0001f3ff|\U0001f443\U0001f3fb|\U0001f443\U0001f3fc|\U0001f443\U0001f3fd|\U0001f443\U0001f3fe|\U0001f443\U0001f3ff|\U0001f441\ufe0f|\U0001f476\U0001f3fb|\U0001f476\U0001f3fc|\U0001f476\U0001f3fd|\U0001f476\U0001f3fe|\U0001f476\U0001f3ff|\U0001f9d2\U0001f3fb|\U0001f9d2\U0001f3fc|\U0001f9d2\U0001f3fd|\U0001f9d2\U0001f3fe|\U0001f9d2\U0001f3ff|\U0001f466\U0001f3fb|\U0001f466\U0001f3fc|\U0001f466\U0001f3fd|\U0001f466\U0001f3fe|\U0001f466\U0001f3ff|\U0001f467\U0001f3fb|\U0001f467\U0001f3fc|\U0001f467\U0001f3fd|\U0001f467\U0001f3fe|\U0001f467\U0001f3ff|\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff|\U0001f471\U0001f3fb|\U0001f471\U0001f3fc|\U0001f471\U0001f3fd|\U0001f471\U0001f3fe|\U0001f471\U0001f3ff|\U0001f468\U0001f3fb|\U0001f468\U0001f3fc|\U0001f468\U0001f3fd|\U0001f468\U0001f3fe|\U0001f468\U0001f3ff|\U0001f9d4\U0001f3fb|\U0001f9d4\U0001f3fc|\U0001f9d4\U0001f3fd|\U0001f9d4\U0001f3fe|\U0001f9d4\U0001f3ff|\U0001f469\U0001f3fb|\U0001f469\U0001f3fc|\U0001f469\U0001f3fd|\U0001f469\U0001f3fe|\U0001f469\U0001f3ff|\U0001f9d3\U0001f3fb|\U0001f9d3\U0001f3fc|\U0001f9d3\U0001f3fd|\U0001f9d3\U0001f3fe|\U0001f9d3\U0001f3ff|\U0001f474\U0001f3fb|\U0001f474\U0001f3fc|\U0001f474\U0001f3fd|\U0001f474\U0001f3fe|\U0001f474\U0001f3ff|\U0001f475\U0001f3fb|\U0001f475\U0001f3fc|\U0001f475\U0001f3fd|\U0001f475\U0001f3fe|\U0001f475\U0001f3ff|\U0001f64d\U0001f3fb|\U0001f64d\U0001f3fc|\U0001f64d\U0001f3fd|\U0001f64d\U0001f3fe|\U0001f64d\U0001f3ff|\U0001f64e\U0001f3fb|\U0001f64e\U0001f3fc|\U0001f64e\U0001f3fd|\U0001f64e\U0001f3fe|\U0001f64e\U0001f3ff|\U0001f645\U0001f3fb|\U0001f645\U0001f3fc|\U0001f645\U0001f3fd|\U0001f645\U0001f3fe|\U0001f645\U0001f3ff|\U0001f646\U0001f3fb|\U0001f646\U0001f3fc|\U0001f646\U0001f3fd|\U0001f646\U0001f3fe|\U0001f646\U0001f3ff|\U0001f481\U0001f3fb|\U0001f481\U0001f3fc|\U0001f481\U0001f3fd|\U0001f481\U0001f3fe|\U0001f481\U0001f3ff|\U0001f64b\U0001f3fb|\U0001f64b\U0001f3fc|\U0001f64b\U0001f3fd|\U0001f64b\U0001f3fe|\U0001f64b\U0001f3ff|\U0001f9cf\U0001f3fb|\U0001f9cf\U0001f3fc|\U0001f9cf\U0001f3fd|\U0001f9cf\U0001f3fe|\U0001f9cf\U0001f3ff|\U0001f647\U0001f3fb|\U0001f647\U0001f3fc|\U0001f647\U0001f3fd|\U0001f647\U0001f3fe|\U0001f647\U0001f3ff|\U0001f926\U0001f3fb|\U0001f926\U0001f3fc|\U0001f926\U0001f3fd|\U0001f926\U0001f3fe|\U0001f926\U0001f3ff|\U0001f937\U0001f3fb|\U0001f937\U0001f3fc|\U0001f937\U0001f3fd|\U0001f937\U0001f3fe|\U0001f937\U0001f3ff|\U0001f46e\U0001f3fb|\U0001f46e\U0001f3fc|\U0001f46e\U0001f3fd|\U0001f46e\U0001f3fe|\U0001f46e\U0001f3ff|\U0001f575\ufe0f|\U0001f575\U0001f3fb|\U0001f575\U0001f3fc|\U0001f575\U0001f3fd|\U0001f575\U0001f3fe|\U0001f575\U0001f3ff|\U0001f482\U0001f3fb|\U0001f482\U0001f3fc|\U0001f482\U0001f3fd|\U0001f482\U0001f3fe|\U0001f482\U0001f3ff|\U0001f477\U0001f3fb|\U0001f477\U0001f3fc|\U0001f477\U0001f3fd|\U0001f477\U0001f3fe|\U0001f477\U0001f3ff|\U0001f934\U0001f3fb|\U0001f934\U0001f3fc|\U0001f934\U0001f3fd|\U0001f934\U0001f3fe|\U0001f934\U0001f3ff|\U0001f478\U0001f3fb|\U0001f478\U0001f3fc|\U0001f478\U0001f3fd|\U0001f478\U0001f3fe|\U0001f478\U0001f3ff|\U0001f473\U0001f3fb|\U0001f473\U0001f3fc|\U0001f473\U0001f3fd|\U0001f473\U0001f3fe|\U0001f473\U0001f3ff|\U0001f472\U0001f3fb|\U0001f472\U0001f3fc|\U0001f472\U0001f3fd|\U0001f472\U0001f3fe|\U0001f472\U0001f3ff|\U0001f9d5\U0001f3fb|\U0001f9d5\U0001f3fc|\U0001f9d5\U0001f3fd|\U0001f9d5\U0001f3fe|\U0001f9d5\U0001f3ff|\U0001f935\U0001f3fb|\U0001f935\U0001f3fc|\U0001f935\U0001f3fd|\U0001f935\U0001f3fe|\U0001f935\U0001f3ff|\U0001f470\U0001f3fb|\U0001f470\U0001f3fc|\U0001f470\U0001f3fd|\U0001f470\U0001f3fe|\U0001f470\U0001f3ff|\U0001f930\U0001f3fb|\U0001f930\U0001f3fc|\U0001f930\U0001f3fd|\U0001f930\U0001f3fe|\U0001f930\U0001f3ff|\U0001f931\U0001f3fb|\U0001f931\U0001f3fc|\U0001f931\U0001f3fd|\U0001f931\U0001f3fe|\U0001f931\U0001f3ff|\U0001f47c\U0001f3fb|\U0001f47c\U0001f3fc|\U0001f47c\U0001f3fd|\U0001f47c\U0001f3fe|\U0001f47c\U0001f3ff|\U0001f385\U0001f3fb|\U0001f385\U0001f3fc|\U0001f385\U0001f3fd|\U0001f385\U0001f3fe|\U0001f385\U0001f3ff|\U0001f936\U0001f3fb|\U0001f936\U0001f3fc|\U0001f936\U0001f3fd|\U0001f936\U0001f3fe|\U0001f936\U0001f3ff|\U0001f9b8\U0001f3fb|\U0001f9b8\U0001f3fc|\U0001f9b8\U0001f3fd|\U0001f9b8\U0001f3fe|\U0001f9b8\U0001f3ff|\U0001f9b9\U0001f3fb|\U0001f9b9\U0001f3fc|\U0001f9b9\U0001f3fd|\U0001f9b9\U0001f3fe|\U0001f9b9\U0001f3ff|\U0001f9d9\U0001f3fb|\U0001f9d9\U0001f3fc|\U0001f9d9\U0001f3fd|\U0001f9d9\U0001f3fe|\U0001f9d9\U0001f3ff|\U0001f9da\U0001f3fb|\U0001f9da\U0001f3fc|\U0001f9da\U0001f3fd|\U0001f9da\U0001f3fe|\U0001f9da\U0001f3ff|\U0001f9db\U0001f3fb|\U0001f9db\U0001f3fc|\U0001f9db\U0001f3fd|\U0001f9db\U0001f3fe|\U0001f9db\U0001f3ff|\U0001f9dc\U0001f3fb|\U0001f9dc\U0001f3fc|\U0001f9dc\U0001f3fd|\U0001f9dc\U0001f3fe|\U0001f9dc\U0001f3ff|\U0001f9dd\U0001f3fb|\U0001f9dd\U0001f3fc|\U0001f9dd\U0001f3fd|\U0001f9dd\U0001f3fe|\U0001f9dd\U0001f3ff|\U0001f486\U0001f3fb|\U0001f486\U0001f3fc|\U0001f486\U0001f3fd|\U0001f486\U0001f3fe|\U0001f486\U0001f3ff|\U0001f487\U0001f3fb|\U0001f487\U0001f3fc|\U0001f487\U0001f3fd|\U0001f487\U0001f3fe|\U0001f487\U0001f3ff|\U0001f6b6\U0001f3fb|\U0001f6b6\U0001f3fc|\U0001f6b6\U0001f3fd|\U0001f6b6\U0001f3fe|\U0001f6b6\U0001f3ff|\U0001f9cd\U0001f3fb|\U0001f9cd\U0001f3fc|\U0001f9cd\U0001f3fd|\U0001f9cd\U0001f3fe|\U0001f9cd\U0001f3ff|\U0001f9ce\U0001f3fb|\U0001f9ce\U0001f3fc|\U0001f9ce\U0001f3fd|\U0001f9ce\U0001f3fe|\U0001f9ce\U0001f3ff|\U0001f3c3\U0001f3fb|\U0001f3c3\U0001f3fc|\U0001f3c3\U0001f3fd|\U0001f3c3\U0001f3fe|\U0001f3c3\U0001f3ff|\U0001f483\U0001f3fb|\U0001f483\U0001f3fc|\U0001f483\U0001f3fd|\U0001f483\U0001f3fe|\U0001f483\U0001f3ff|\U0001f57a\U0001f3fb|\U0001f57a\U0001f3fc|\U0001f57a\U0001f3fd|\U0001f57a\U0001f3fe|\U0001f57a\U0001f3ff|\U0001f574\ufe0f|\U0001f574\U0001f3fb|\U0001f574\U0001f3fc|\U0001f574\U0001f3fd|\U0001f574\U0001f3fe|\U0001f574\U0001f3ff|\U0001f9d6\U0001f3fb|\U0001f9d6\U0001f3fc|\U0001f9d6\U0001f3fd|\U0001f9d6\U0001f3fe|\U0001f9d6\U0001f3ff|\U0001f9d7\U0001f3fb|\U0001f9d7\U0001f3fc|\U0001f9d7\U0001f3fd|\U0001f9d7\U0001f3fe|\U0001f9d7\U0001f3ff|\U0001f3c7\U0001f3fb|\U0001f3c7\U0001f3fc|\U0001f3c7\U0001f3fd|\U0001f3c7\U0001f3fe|\U0001f3c7\U0001f3ff|\u26f7\ufe0f|\U0001f3c2\U0001f3fb|\U0001f3c2\U0001f3fc|\U0001f3c2\U0001f3fd|\U0001f3c2\U0001f3fe|\U0001f3c2\U0001f3ff|\U0001f3cc\ufe0f|\U0001f3cc\U0001f3fb|\U0001f3cc\U0001f3fc|\U0001f3cc\U0001f3fd|\U0001f3cc\U0001f3fe|\U0001f3cc\U0001f3ff|\U0001f3c4\U0001f3fb|\U0001f3c4\U0001f3fc|\U0001f3c4\U0001f3fd|\U0001f3c4\U0001f3fe|\U0001f3c4\U0001f3ff|\U0001f6a3\U0001f3fb|\U0001f6a3\U0001f3fc|\U0001f6a3\U0001f3fd|\U0001f6a3\U0001f3fe|\U0001f6a3\U0001f3ff|\U0001f3ca\U0001f3fb|\U0001f3ca\U0001f3fc|\U0001f3ca\U0001f3fd|\U0001f3ca\U0001f3fe|\U0001f3ca\U0001f3ff|\u26f9\ufe0f|\u26f9\U0001f3fb|\u26f9\U0001f3fc|\u26f9\U0001f3fd|\u26f9\U0001f3fe|\u26f9\U0001f3ff|\U0001f3cb\ufe0f|\U0001f3cb\U0001f3fb|\U0001f3cb\U0001f3fc|\U0001f3cb\U0001f3fd|\U0001f3cb\U0001f3fe|\U0001f3cb\U0001f3ff|\U0001f6b4\U0001f3fb|\U0001f6b4\U0001f3fc|\U0001f6b4\U0001f3fd|\U0001f6b4\U0001f3fe|\U0001f6b4\U0001f3ff|\U0001f6b5\U0001f3fb|\U0001f6b5\U0001f3fc|\U0001f6b5\U0001f3fd|\U0001f6b5\U0001f3fe|\U0001f6b5\U0001f3ff|\U0001f938\U0001f3fb|\U0001f938\U0001f3fc|\U0001f938\U0001f3fd|\U0001f938\U0001f3fe|\U0001f938\U0001f3ff|\U0001f93d\U0001f3fb|\U0001f93d\U0001f3fc|\U0001f93d\U0001f3fd|\U0001f93d\U0001f3fe|\U0001f93d\U0001f3ff|\U0001f93e\U0001f3fb|\U0001f93e\U0001f3fc|\U0001f93e\U0001f3fd|\U0001f93e\U0001f3fe|\U0001f93e\U0001f3ff|\U0001f939\U0001f3fb|\U0001f939\U0001f3fc|\U0001f939\U0001f3fd|\U0001f939\U0001f3fe|\U0001f939\U0001f3ff|\U0001f9d8\U0001f3fb|\U0001f9d8\U0001f3fc|\U0001f9d8\U0001f3fd|\U0001f9d8\U0001f3fe|\U0001f9d8\U0001f3ff|\U0001f6c0\U0001f3fb|\U0001f6c0\U0001f3fc|\U0001f6c0\U0001f3fd|\U0001f6c0\U0001f3fe|\U0001f6c0\U0001f3ff|\U0001f6cc\U0001f3fb|\U0001f6cc\U0001f3fc|\U0001f6cc\U0001f3fd|\U0001f6cc\U0001f3fe|\U0001f6cc\U0001f3ff|\U0001f46d\U0001f3fb|\U0001f46d\U0001f3fc|\U0001f46d\U0001f3fd|\U0001f46d\U0001f3fe|\U0001f46d\U0001f3ff|\U0001f46b\U0001f3fb|\U0001f46b\U0001f3fc|\U0001f46b\U0001f3fd|\U0001f46b\U0001f3fe|\U0001f46b\U0001f3ff|\U0001f46c\U0001f3fb|\U0001f46c\U0001f3fc|\U0001f46c\U0001f3fd|\U0001f46c\U0001f3fe|\U0001f46c\U0001f3ff|\U0001f5e3\ufe0f|\U0001f43f\ufe0f|\U0001f54a\ufe0f|\U0001f577\ufe0f|\U0001f578\ufe0f|\U0001f3f5\ufe0f|\u2618\ufe0f|\U0001f336\ufe0f|\U0001f37d\ufe0f|\U0001f5fa\ufe0f|\U0001f3d4\ufe0f|\u26f0\ufe0f|\U0001f3d5\ufe0f|\U0001f3d6\ufe0f|\U0001f3dc\ufe0f|\U0001f3dd\ufe0f|\U0001f3de\ufe0f|\U0001f3df\ufe0f|\U0001f3db\ufe0f|\U0001f3d7\ufe0f|\U0001f3d8\ufe0f|\U0001f3da\ufe0f|\u26e9\ufe0f|\U0001f3d9\ufe0f|\u2668\ufe0f|\U0001f3ce\ufe0f|\U0001f3cd\ufe0f|\U0001f6e3\ufe0f|\U0001f6e4\ufe0f|\U0001f6e2\ufe0f|\U0001f6f3\ufe0f|\u26f4\ufe0f|\U0001f6e5\ufe0f|\u2708\ufe0f|\U0001f6e9\ufe0f|\U0001f6f0\ufe0f|\U0001f6ce\ufe0f|\u23f1\ufe0f|\u23f2\ufe0f|\U0001f570\ufe0f|\U0001f321\ufe0f|\u2600\ufe0f|\u2601\ufe0f|\u26c8\ufe0f|\U0001f324\ufe0f|\U0001f325\ufe0f|\U0001f326\ufe0f|\U0001f327\ufe0f|\U0001f328\ufe0f|\U0001f329\ufe0f|\U0001f32a\ufe0f|\U0001f32b\ufe0f|\U0001f32c\ufe0f|\u2602\ufe0f|\u26f1\ufe0f|\u2744\ufe0f|\u2603\ufe0f|\u2604\ufe0f|\U0001f397\ufe0f|\U0001f39f\ufe0f|\U0001f396\ufe0f|\u26f8\ufe0f|\U0001f579\ufe0f|\u2660\ufe0f|\u2665\ufe0f|\u2666\ufe0f|\u2663\ufe0f|\u265f\ufe0f|\U0001f5bc\ufe0f|\U0001f576\ufe0f|\U0001f6cd\ufe0f|\u26d1\ufe0f|\U0001f399\ufe0f|\U0001f39a\ufe0f|\U0001f39b\ufe0f|\u260e\ufe0f|\U0001f5a5\ufe0f|\U0001f5a8\ufe0f|\u2328\ufe0f|\U0001f5b1\ufe0f|\U0001f5b2\ufe0f|\U0001f39e\ufe0f|\U0001f4fd\ufe0f|\U0001f56f\ufe0f|\U0001f5de\ufe0f|\U0001f3f7\ufe0f|\u2709\ufe0f|\U0001f5f3\ufe0f|\u270f\ufe0f|\u2712\ufe0f|\U0001f58b\ufe0f|\U0001f58a\ufe0f|\U0001f58c\ufe0f|\U0001f58d\ufe0f|\U0001f5c2\ufe0f|\U0001f5d2\ufe0f|\U0001f5d3\ufe0f|\U0001f587\ufe0f|\u2702\ufe0f|\U0001f5c3\ufe0f|\U0001f5c4\ufe0f|\U0001f5d1\ufe0f|\U0001f5dd\ufe0f|\u26cf\ufe0f|\u2692\ufe0f|\U0001f6e0\ufe0f|\U0001f5e1\ufe0f|\u2694\ufe0f|\U0001f6e1\ufe0f|\u2699\ufe0f|\U0001f5dc\ufe0f|\u2696\ufe0f|\u26d3\ufe0f|\u2697\ufe0f|\U0001f6cf\ufe0f|\U0001f6cb\ufe0f|\u26b0\ufe0f|\u26b1\ufe0f|\u26a0\ufe0f|\u2622\ufe0f|\u2623\ufe0f|\u2b06\ufe0f|\u2197\ufe0f|\u27a1\ufe0f|\u2198\ufe0f|\u2b07\ufe0f|\u2199\ufe0f|\u2b05\ufe0f|\u2196\ufe0f|\u2195\ufe0f|\u2194\ufe0f|\u21a9\ufe0f|\u21aa\ufe0f|\u2934\ufe0f|\u2935\ufe0f|\u269b\ufe0f|\U0001f549\ufe0f|\u2721\ufe0f|\u2638\ufe0f|\u262f\ufe0f|\u271d\ufe0f|\u2626\ufe0f|\u262a\ufe0f|\u262e\ufe0f|\u25b6\ufe0f|\u23ed\ufe0f|\u23ef\ufe0f|\u25c0\ufe0f|\u23ee\ufe0f|\u23f8\ufe0f|\u23f9\ufe0f|\u23fa\ufe0f|\u23cf\ufe0f|\u2640\ufe0f|\u2642\ufe0f|\u2695\ufe0f|\u267e\ufe0f|\u267b\ufe0f|\u269c\ufe0f|\u2611\ufe0f|\u2714\ufe0f|\u2716\ufe0f|\u303d\ufe0f|\u2733\ufe0f|\u2734\ufe0f|\u2747\ufe0f|\u203c\ufe0f|\u2049\ufe0f|\u3030\ufe0f|\xa9\ufe0f|\xae\ufe0f|\u2122\ufe0f|\\#\u20e3|\\*\u20e3|0\u20e3|1\u20e3|2\u20e3|3\u20e3|4\u20e3|5\u20e3|6\u20e3|7\u20e3|8\u20e3|9\u20e3|\U0001f170\ufe0f|\U0001f171\ufe0f|\u2139\ufe0f|\u24c2\ufe0f|\U0001f17e\ufe0f|\U0001f17f\ufe0f|\U0001f202\ufe0f|\U0001f237\ufe0f|\u3297\ufe0f|\u3299\ufe0f|\u25fc\ufe0f|\u25fb\ufe0f|\u25aa\ufe0f|\u25ab\ufe0f|\U0001f3f3\ufe0f|\U0001f1e6\U0001f1e8|\U0001f1e6\U0001f1e9|\U0001f1e6\U0001f1ea|\U0001f1e6\U0001f1eb|\U0001f1e6\U0001f1ec|\U0001f1e6\U0001f1ee|\U0001f1e6\U0001f1f1|\U0001f1e6\U0001f1f2|\U0001f1e6\U0001f1f4|\U0001f1e6\U0001f1f6|\U0001f1e6\U0001f1f7|\U0001f1e6\U0001f1f8|\U0001f1e6\U0001f1f9|\U0001f1e6\U0001f1fa|\U0001f1e6\U0001f1fc|\U0001f1e6\U0001f1fd|\U0001f1e6\U0001f1ff|\U0001f1e7\U0001f1e6|\U0001f1e7\U0001f1e7|\U0001f1e7\U0001f1e9|\U0001f1e7\U0001f1ea|\U0001f1e7\U0001f1eb|\U0001f1e7\U0001f1ec|\U0001f1e7\U0001f1ed|\U0001f1e7\U0001f1ee|\U0001f1e7\U0001f1ef|\U0001f1e7\U0001f1f1|\U0001f1e7\U0001f1f2|\U0001f1e7\U0001f1f3|\U0001f1e7\U0001f1f4|\U0001f1e7\U0001f1f6|\U0001f1e7\U0001f1f7|\U0001f1e7\U0001f1f8|\U0001f1e7\U0001f1f9|\U0001f1e7\U0001f1fb|\U0001f1e7\U0001f1fc|\U0001f1e7\U0001f1fe|\U0001f1e7\U0001f1ff|\U0001f1e8\U0001f1e6|\U0001f1e8\U0001f1e8|\U0001f1e8\U0001f1e9|\U0001f1e8\U0001f1eb|\U0001f1e8\U0001f1ec|\U0001f1e8\U0001f1ed|\U0001f1e8\U0001f1ee|\U0001f1e8\U0001f1f0|\U0001f1e8\U0001f1f1|\U0001f1e8\U0001f1f2|\U0001f1e8\U0001f1f3|\U0001f1e8\U0001f1f4|\U0001f1e8\U0001f1f5|\U0001f1e8\U0001f1f7|\U0001f1e8\U0001f1fa|\U0001f1e8\U0001f1fb|\U0001f1e8\U0001f1fc|\U0001f1e8\U0001f1fd|\U0001f1e8\U0001f1fe|\U0001f1e8\U0001f1ff|\U0001f1e9\U0001f1ea|\U0001f1e9\U0001f1ec|\U0001f1e9\U0001f1ef|\U0001f1e9\U0001f1f0|\U0001f1e9\U0001f1f2|\U0001f1e9\U0001f1f4|\U0001f1e9\U0001f1ff|\U0001f1ea\U0001f1e6|\U0001f1ea\U0001f1e8|\U0001f1ea\U0001f1ea|\U0001f1ea\U0001f1ec|\U0001f1ea\U0001f1ed|\U0001f1ea\U0001f1f7|\U0001f1ea\U0001f1f8|\U0001f1ea\U0001f1f9|\U0001f1ea\U0001f1fa|\U0001f1eb\U0001f1ee|\U0001f1eb\U0001f1ef|\U0001f1eb\U0001f1f0|\U0001f1eb\U0001f1f2|\U0001f1eb\U0001f1f4|\U0001f1eb\U0001f1f7|\U0001f1ec\U0001f1e6|\U0001f1ec\U0001f1e7|\U0001f1ec\U0001f1e9|\U0001f1ec\U0001f1ea|\U0001f1ec\U0001f1eb|\U0001f1ec\U0001f1ec|\U0001f1ec\U0001f1ed|\U0001f1ec\U0001f1ee|\U0001f1ec\U0001f1f1|\U0001f1ec\U0001f1f2|\U0001f1ec\U0001f1f3|\U0001f1ec\U0001f1f5|\U0001f1ec\U0001f1f6|\U0001f1ec\U0001f1f7|\U0001f1ec\U0001f1f8|\U0001f1ec\U0001f1f9|\U0001f1ec\U0001f1fa|\U0001f1ec\U0001f1fc|\U0001f1ec\U0001f1fe|\U0001f1ed\U0001f1f0|\U0001f1ed\U0001f1f2|\U0001f1ed\U0001f1f3|\U0001f1ed\U0001f1f7|\U0001f1ed\U0001f1f9|\U0001f1ed\U0001f1fa|\U0001f1ee\U0001f1e8|\U0001f1ee\U0001f1e9|\U0001f1ee\U0001f1ea|\U0001f1ee\U0001f1f1|\U0001f1ee\U0001f1f2|\U0001f1ee\U0001f1f3|\U0001f1ee\U0001f1f4|\U0001f1ee\U0001f1f6|\U0001f1ee\U0001f1f7|\U0001f1ee\U0001f1f8|\U0001f1ee\U0001f1f9|\U0001f1ef\U0001f1ea|\U0001f1ef\U0001f1f2|\U0001f1ef\U0001f1f4|\U0001f1ef\U0001f1f5|\U0001f1f0\U0001f1ea|\U0001f1f0\U0001f1ec|\U0001f1f0\U0001f1ed|\U0001f1f0\U0001f1ee|\U0001f1f0\U0001f1f2|\U0001f1f0\U0001f1f3|\U0001f1f0\U0001f1f5|\U0001f1f0\U0001f1f7|\U0001f1f0\U0001f1fc|\U0001f1f0\U0001f1fe|\U0001f1f0\U0001f1ff|\U0001f1f1\U0001f1e6|\U0001f1f1\U0001f1e7|\U0001f1f1\U0001f1e8|\U0001f1f1\U0001f1ee|\U0001f1f1\U0001f1f0|\U0001f1f1\U0001f1f7|\U0001f1f1\U0001f1f8|\U0001f1f1\U0001f1f9|\U0001f1f1\U0001f1fa|\U0001f1f1\U0001f1fb|\U0001f1f1\U0001f1fe|\U0001f1f2\U0001f1e6|\U0001f1f2\U0001f1e8|\U0001f1f2\U0001f1e9|\U0001f1f2\U0001f1ea|\U0001f1f2\U0001f1eb|\U0001f1f2\U0001f1ec|\U0001f1f2\U0001f1ed|\U0001f1f2\U0001f1f0|\U0001f1f2\U0001f1f1|\U0001f1f2\U0001f1f2|\U0001f1f2\U0001f1f3|\U0001f1f2\U0001f1f4|\U0001f1f2\U0001f1f5|\U0001f1f2\U0001f1f6|\U0001f1f2\U0001f1f7|\U0001f1f2\U0001f1f8|\U0001f1f2\U0001f1f9|\U0001f1f2\U0001f1fa|\U0001f1f2\U0001f1fb|\U0001f1f2\U0001f1fc|\U0001f1f2\U0001f1fd|\U0001f1f2\U0001f1fe|\U0001f1f2\U0001f1ff|\U0001f1f3\U0001f1e6|\U0001f1f3\U0001f1e8|\U0001f1f3\U0001f1ea|\U0001f1f3\U0001f1eb|\U0001f1f3\U0001f1ec|\U0001f1f3\U0001f1ee|\U0001f1f3\U0001f1f1|\U0001f1f3\U0001f1f4|\U0001f1f3\U0001f1f5|\U0001f1f3\U0001f1f7|\U0001f1f3\U0001f1fa|\U0001f1f3\U0001f1ff|\U0001f1f4\U0001f1f2|\U0001f1f5\U0001f1e6|\U0001f1f5\U0001f1ea|\U0001f1f5\U0001f1eb|\U0001f1f5\U0001f1ec|\U0001f1f5\U0001f1ed|\U0001f1f5\U0001f1f0|\U0001f1f5\U0001f1f1|\U0001f1f5\U0001f1f2|\U0001f1f5\U0001f1f3|\U0001f1f5\U0001f1f7|\U0001f1f5\U0001f1f8|\U0001f1f5\U0001f1f9|\U0001f1f5\U0001f1fc|\U0001f1f5\U0001f1fe|\U0001f1f6\U0001f1e6|\U0001f1f7\U0001f1ea|\U0001f1f7\U0001f1f4|\U0001f1f7\U0001f1f8|\U0001f1f7\U0001f1fa|\U0001f1f7\U0001f1fc|\U0001f1f8\U0001f1e6|\U0001f1f8\U0001f1e7|\U0001f1f8\U0001f1e8|\U0001f1f8\U0001f1e9|\U0001f1f8\U0001f1ea|\U0001f1f8\U0001f1ec|\U0001f1f8\U0001f1ed|\U0001f1f8\U0001f1ee|\U0001f1f8\U0001f1ef|\U0001f1f8\U0001f1f0|\U0001f1f8\U0001f1f1|\U0001f1f8\U0001f1f2|\U0001f1f8\U0001f1f3|\U0001f1f8\U0001f1f4|\U0001f1f8\U0001f1f7|\U0001f1f8\U0001f1f8|\U0001f1f8\U0001f1f9|\U0001f1f8\U0001f1fb|\U0001f1f8\U0001f1fd|\U0001f1f8\U0001f1fe|\U0001f1f8\U0001f1ff|\U0001f1f9\U0001f1e6|\U0001f1f9\U0001f1e8|\U0001f1f9\U0001f1e9|\U0001f1f9\U0001f1eb|\U0001f1f9\U0001f1ec|\U0001f1f9\U0001f1ed|\U0001f1f9\U0001f1ef|\U0001f1f9\U0001f1f0|\U0001f1f9\U0001f1f1|\U0001f1f9\U0001f1f2|\U0001f1f9\U0001f1f3|\U0001f1f9\U0001f1f4|\U0001f1f9\U0001f1f7|\U0001f1f9\U0001f1f9|\U0001f1f9\U0001f1fb|\U0001f1f9\U0001f1fc|\U0001f1f9\U0001f1ff|\U0001f1fa\U0001f1e6|\U0001f1fa\U0001f1ec|\U0001f1fa\U0001f1f2|\U0001f1fa\U0001f1f3|\U0001f1fa\U0001f1f8|\U0001f1fa\U0001f1fe|\U0001f1fa\U0001f1ff|\U0001f1fb\U0001f1e6|\U0001f1fb\U0001f1e8|\U0001f1fb\U0001f1ea|\U0001f1fb\U0001f1ec|\U0001f1fb\U0001f1ee|\U0001f1fb\U0001f1f3|\U0001f1fb\U0001f1fa|\U0001f1fc\U0001f1eb|\U0001f1fc\U0001f1f8|\U0001f1fd\U0001f1f0|\U0001f1fe\U0001f1ea|\U0001f1fe\U0001f1f9|\U0001f1ff\U0001f1e6|\U0001f1ff\U0001f1f2|\U0001f1ff\U0001f1fc|\U0001f600|\U0001f603|\U0001f604|\U0001f601|\U0001f606|\U0001f605|\U0001f923|\U0001f602|\U0001f642|\U0001f643|\U0001f609|\U0001f60a|\U0001f607|\U0001f970|\U0001f60d|\U0001f929|\U0001f618|\U0001f617|\u263a|\U0001f61a|\U0001f619|\U0001f60b|\U0001f61b|\U0001f61c|\U0001f92a|\U0001f61d|\U0001f911|\U0001f917|\U0001f92d|\U0001f92b|\U0001f914|\U0001f910|\U0001f928|\U0001f610|\U0001f611|\U0001f636|\U0001f60f|\U0001f612|\U0001f644|\U0001f62c|\U0001f925|\U0001f60c|\U0001f614|\U0001f62a|\U0001f924|\U0001f634|\U0001f637|\U0001f912|\U0001f915|\U0001f922|\U0001f92e|\U0001f927|\U0001f975|\U0001f976|\U0001f974|\U0001f635|\U0001f92f|\U0001f920|\U0001f973|\U0001f60e|\U0001f913|\U0001f9d0|\U0001f615|\U0001f61f|\U0001f641|\u2639|\U0001f62e|\U0001f62f|\U0001f632|\U0001f633|\U0001f97a|\U0001f626|\U0001f627|\U0001f628|\U0001f630|\U0001f625|\U0001f622|\U0001f62d|\U0001f631|\U0001f616|\U0001f623|\U0001f61e|\U0001f613|\U0001f629|\U0001f62b|\U0001f971|\U0001f624|\U0001f621|\U0001f620|\U0001f92c|\U0001f608|\U0001f47f|\U0001f480|\u2620|\U0001f4a9|\U0001f921|\U0001f479|\U0001f47a|\U0001f47b|\U0001f47d|\U0001f47e|\U0001f916|\U0001f63a|\U0001f638|\U0001f639|\U0001f63b|\U0001f63c|\U0001f63d|\U0001f640|\U0001f63f|\U0001f63e|\U0001f648|\U0001f649|\U0001f64a|\U0001f48b|\U0001f48c|\U0001f498|\U0001f49d|\U0001f496|\U0001f497|\U0001f493|\U0001f49e|\U0001f495|\U0001f49f|\u2763|\U0001f494|\u2764|\U0001f9e1|\U0001f49b|\U0001f49a|\U0001f499|\U0001f49c|\U0001f90e|\U0001f5a4|\U0001f90d|\U0001f4af|\U0001f4a2|\U0001f4a5|\U0001f4ab|\U0001f4a6|\U0001f4a8|\U0001f573|\U0001f4a3|\U0001f4ac|\U0001f5e8|\U0001f5ef|\U0001f4ad|\U0001f4a4|\U0001f44b|\U0001f91a|\U0001f590|\u270b|\U0001f596|\U0001f44c|\U0001f90f|\u270c|\U0001f91e|\U0001f91f|\U0001f918|\U0001f919|\U0001f448|\U0001f449|\U0001f446|\U0001f595|\U0001f447|\u261d|\U0001f44d|\U0001f44e|\u270a|\U0001f44a|\U0001f91b|\U0001f91c|\U0001f44f|\U0001f64c|\U0001f450|\U0001f932|\U0001f91d|\U0001f64f|\u270d|\U0001f485|\U0001f933|\U0001f4aa|\U0001f9be|\U0001f9bf|\U0001f9b5|\U0001f9b6|\U0001f442|\U0001f9bb|\U0001f443|\U0001f9e0|\U0001f9b7|\U0001f9b4|\U0001f440|\U0001f441|\U0001f445|\U0001f444|\U0001f476|\U0001f9d2|\U0001f466|\U0001f467|\U0001f9d1|\U0001f471|\U0001f468|\U0001f9d4|\U0001f469|\U0001f9d3|\U0001f474|\U0001f475|\U0001f64d|\U0001f64e|\U0001f645|\U0001f646|\U0001f481|\U0001f64b|\U0001f9cf|\U0001f647|\U0001f926|\U0001f937|\U0001f46e|\U0001f575|\U0001f482|\U0001f477|\U0001f934|\U0001f478|\U0001f473|\U0001f472|\U0001f9d5|\U0001f935|\U0001f470|\U0001f930|\U0001f931|\U0001f47c|\U0001f385|\U0001f936|\U0001f9b8|\U0001f9b9|\U0001f9d9|\U0001f9da|\U0001f9db|\U0001f9dc|\U0001f9dd|\U0001f9de|\U0001f9df|\U0001f486|\U0001f487|\U0001f6b6|\U0001f9cd|\U0001f9ce|\U0001f3c3|\U0001f483|\U0001f57a|\U0001f574|\U0001f46f|\U0001f9d6|\U0001f9d7|\U0001f93a|\U0001f3c7|\u26f7|\U0001f3c2|\U0001f3cc|\U0001f3c4|\U0001f6a3|\U0001f3ca|\u26f9|\U0001f3cb|\U0001f6b4|\U0001f6b5|\U0001f938|\U0001f93c|\U0001f93d|\U0001f93e|\U0001f939|\U0001f9d8|\U0001f6c0|\U0001f6cc|\U0001f46d|\U0001f46b|\U0001f46c|\U0001f48f|\U0001f491|\U0001f46a|\U0001f5e3|\U0001f464|\U0001f465|\U0001f463|\U0001f3fb|\U0001f3fc|\U0001f3fd|\U0001f3fe|\U0001f3ff|\U0001f9b0|\U0001f9b1|\U0001f9b3|\U0001f9b2|\U0001f435|\U0001f412|\U0001f98d|\U0001f9a7|\U0001f436|\U0001f415|\U0001f9ae|\U0001f429|\U0001f43a|\U0001f98a|\U0001f99d|\U0001f431|\U0001f408|\U0001f981|\U0001f42f|\U0001f405|\U0001f406|\U0001f434|\U0001f40e|\U0001f984|\U0001f993|\U0001f98c|\U0001f42e|\U0001f402|\U0001f403|\U0001f404|\U0001f437|\U0001f416|\U0001f417|\U0001f43d|\U0001f40f|\U0001f411|\U0001f410|\U0001f42a|\U0001f42b|\U0001f999|\U0001f992|\U0001f418|\U0001f98f|\U0001f99b|\U0001f42d|\U0001f401|\U0001f400|\U0001f439|\U0001f430|\U0001f407|\U0001f43f|\U0001f994|\U0001f987|\U0001f43b|\U0001f428|\U0001f43c|\U0001f9a5|\U0001f9a6|\U0001f9a8|\U0001f998|\U0001f9a1|\U0001f43e|\U0001f983|\U0001f414|\U0001f413|\U0001f423|\U0001f424|\U0001f425|\U0001f426|\U0001f427|\U0001f54a|\U0001f985|\U0001f986|\U0001f9a2|\U0001f989|\U0001f9a9|\U0001f99a|\U0001f99c|\U0001f438|\U0001f40a|\U0001f422|\U0001f98e|\U0001f40d|\U0001f432|\U0001f409|\U0001f995|\U0001f996|\U0001f433|\U0001f40b|\U0001f42c|\U0001f41f|\U0001f420|\U0001f421|\U0001f988|\U0001f419|\U0001f41a|\U0001f40c|\U0001f98b|\U0001f41b|\U0001f41c|\U0001f41d|\U0001f41e|\U0001f997|\U0001f577|\U0001f578|\U0001f982|\U0001f99f|\U0001f9a0|\U0001f490|\U0001f338|\U0001f4ae|\U0001f3f5|\U0001f339|\U0001f940|\U0001f33a|\U0001f33b|\U0001f33c|\U0001f337|\U0001f331|\U0001f332|\U0001f333|\U0001f334|\U0001f335|\U0001f33e|\U0001f33f|\u2618|\U0001f340|\U0001f341|\U0001f342|\U0001f343|\U0001f347|\U0001f348|\U0001f349|\U0001f34a|\U0001f34b|\U0001f34c|\U0001f34d|\U0001f96d|\U0001f34e|\U0001f34f|\U0001f350|\U0001f351|\U0001f352|\U0001f353|\U0001f95d|\U0001f345|\U0001f965|\U0001f951|\U0001f346|\U0001f954|\U0001f955|\U0001f33d|\U0001f336|\U0001f952|\U0001f96c|\U0001f966|\U0001f9c4|\U0001f9c5|\U0001f344|\U0001f95c|\U0001f330|\U0001f35e|\U0001f950|\U0001f956|\U0001f968|\U0001f96f|\U0001f95e|\U0001f9c7|\U0001f9c0|\U0001f356|\U0001f357|\U0001f969|\U0001f953|\U0001f354|\U0001f35f|\U0001f355|\U0001f32d|\U0001f96a|\U0001f32e|\U0001f32f|\U0001f959|\U0001f9c6|\U0001f95a|\U0001f373|\U0001f958|\U0001f372|\U0001f963|\U0001f957|\U0001f37f|\U0001f9c8|\U0001f9c2|\U0001f96b|\U0001f371|\U0001f358|\U0001f359|\U0001f35a|\U0001f35b|\U0001f35c|\U0001f35d|\U0001f360|\U0001f362|\U0001f363|\U0001f364|\U0001f365|\U0001f96e|\U0001f361|\U0001f95f|\U0001f960|\U0001f961|\U0001f980|\U0001f99e|\U0001f990|\U0001f991|\U0001f9aa|\U0001f366|\U0001f367|\U0001f368|\U0001f369|\U0001f36a|\U0001f382|\U0001f370|\U0001f9c1|\U0001f967|\U0001f36b|\U0001f36c|\U0001f36d|\U0001f36e|\U0001f36f|\U0001f37c|\U0001f95b|\u2615|\U0001f375|\U0001f376|\U0001f37e|\U0001f377|\U0001f378|\U0001f379|\U0001f37a|\U0001f37b|\U0001f942|\U0001f943|\U0001f964|\U0001f9c3|\U0001f9c9|\U0001f9ca|\U0001f962|\U0001f37d|\U0001f374|\U0001f944|\U0001f52a|\U0001f3fa|\U0001f30d|\U0001f30e|\U0001f30f|\U0001f310|\U0001f5fa|\U0001f5fe|\U0001f9ed|\U0001f3d4|\u26f0|\U0001f30b|\U0001f5fb|\U0001f3d5|\U0001f3d6|\U0001f3dc|\U0001f3dd|\U0001f3de|\U0001f3df|\U0001f3db|\U0001f3d7|\U0001f9f1|\U0001f3d8|\U0001f3da|\U0001f3e0|\U0001f3e1|\U0001f3e2|\U0001f3e3|\U0001f3e4|\U0001f3e5|\U0001f3e6|\U0001f3e8|\U0001f3e9|\U0001f3ea|\U0001f3eb|\U0001f3ec|\U0001f3ed|\U0001f3ef|\U0001f3f0|\U0001f492|\U0001f5fc|\U0001f5fd|\u26ea|\U0001f54c|\U0001f6d5|\U0001f54d|\u26e9|\U0001f54b|\u26f2|\u26fa|\U0001f301|\U0001f303|\U0001f3d9|\U0001f304|\U0001f305|\U0001f306|\U0001f307|\U0001f309|\u2668|\U0001f3a0|\U0001f3a1|\U0001f3a2|\U0001f488|\U0001f3aa|\U0001f682|\U0001f683|\U0001f684|\U0001f685|\U0001f686|\U0001f687|\U0001f688|\U0001f689|\U0001f68a|\U0001f69d|\U0001f69e|\U0001f68b|\U0001f68c|\U0001f68d|\U0001f68e|\U0001f690|\U0001f691|\U0001f692|\U0001f693|\U0001f694|\U0001f695|\U0001f696|\U0001f697|\U0001f698|\U0001f699|\U0001f69a|\U0001f69b|\U0001f69c|\U0001f3ce|\U0001f3cd|\U0001f6f5|\U0001f9bd|\U0001f9bc|\U0001f6fa|\U0001f6b2|\U0001f6f4|\U0001f6f9|\U0001f68f|\U0001f6e3|\U0001f6e4|\U0001f6e2|\u26fd|\U0001f6a8|\U0001f6a5|\U0001f6a6|\U0001f6d1|\U0001f6a7|\u2693|\u26f5|\U0001f6f6|\U0001f6a4|\U0001f6f3|\u26f4|\U0001f6e5|\U0001f6a2|\u2708|\U0001f6e9|\U0001f6eb|\U0001f6ec|\U0001fa82|\U0001f4ba|\U0001f681|\U0001f69f|\U0001f6a0|\U0001f6a1|\U0001f6f0|\U0001f680|\U0001f6f8|\U0001f6ce|\U0001f9f3|\u231b|\u23f3|\u231a|\u23f0|\u23f1|\u23f2|\U0001f570|\U0001f55b|\U0001f567|\U0001f550|\U0001f55c|\U0001f551|\U0001f55d|\U0001f552|\U0001f55e|\U0001f553|\U0001f55f|\U0001f554|\U0001f560|\U0001f555|\U0001f561|\U0001f556|\U0001f562|\U0001f557|\U0001f563|\U0001f558|\U0001f564|\U0001f559|\U0001f565|\U0001f55a|\U0001f566|\U0001f311|\U0001f312|\U0001f313|\U0001f314|\U0001f315|\U0001f316|\U0001f317|\U0001f318|\U0001f319|\U0001f31a|\U0001f31b|\U0001f31c|\U0001f321|\u2600|\U0001f31d|\U0001f31e|\U0001fa90|\u2b50|\U0001f31f|\U0001f320|\U0001f30c|\u2601|\u26c5|\u26c8|\U0001f324|\U0001f325|\U0001f326|\U0001f327|\U0001f328|\U0001f329|\U0001f32a|\U0001f32b|\U0001f32c|\U0001f300|\U0001f308|\U0001f302|\u2602|\u2614|\u26f1|\u26a1|\u2744|\u2603|\u26c4|\u2604|\U0001f525|\U0001f4a7|\U0001f30a|\U0001f383|\U0001f384|\U0001f386|\U0001f387|\U0001f9e8|\u2728|\U0001f388|\U0001f389|\U0001f38a|\U0001f38b|\U0001f38d|\U0001f38e|\U0001f38f|\U0001f390|\U0001f391|\U0001f9e7|\U0001f380|\U0001f381|\U0001f397|\U0001f39f|\U0001f3ab|\U0001f396|\U0001f3c6|\U0001f3c5|\U0001f947|\U0001f948|\U0001f949|\u26bd|\u26be|\U0001f94e|\U0001f3c0|\U0001f3d0|\U0001f3c8|\U0001f3c9|\U0001f3be|\U0001f94f|\U0001f3b3|\U0001f3cf|\U0001f3d1|\U0001f3d2|\U0001f94d|\U0001f3d3|\U0001f3f8|\U0001f94a|\U0001f94b|\U0001f945|\u26f3|\u26f8|\U0001f3a3|\U0001f93f|\U0001f3bd|\U0001f3bf|\U0001f6f7|\U0001f94c|\U0001f3af|\U0001fa80|\U0001fa81|\U0001f3b1|\U0001f52e|\U0001f9ff|\U0001f3ae|\U0001f579|\U0001f3b0|\U0001f3b2|\U0001f9e9|\U0001f9f8|\u2660|\u2665|\u2666|\u2663|\u265f|\U0001f0cf|\U0001f004|\U0001f3b4|\U0001f3ad|\U0001f5bc|\U0001f3a8|\U0001f9f5|\U0001f9f6|\U0001f453|\U0001f576|\U0001f97d|\U0001f97c|\U0001f9ba|\U0001f454|\U0001f455|\U0001f456|\U0001f9e3|\U0001f9e4|\U0001f9e5|\U0001f9e6|\U0001f457|\U0001f458|\U0001f97b|\U0001fa71|\U0001fa72|\U0001fa73|\U0001f459|\U0001f45a|\U0001f45b|\U0001f45c|\U0001f45d|\U0001f6cd|\U0001f392|\U0001f45e|\U0001f45f|\U0001f97e|\U0001f97f|\U0001f460|\U0001f461|\U0001fa70|\U0001f462|\U0001f451|\U0001f452|\U0001f3a9|\U0001f393|\U0001f9e2|\u26d1|\U0001f4ff|\U0001f484|\U0001f48d|\U0001f48e|\U0001f507|\U0001f508|\U0001f509|\U0001f50a|\U0001f4e2|\U0001f4e3|\U0001f4ef|\U0001f514|\U0001f515|\U0001f3bc|\U0001f3b5|\U0001f3b6|\U0001f399|\U0001f39a|\U0001f39b|\U0001f3a4|\U0001f3a7|\U0001f4fb|\U0001f3b7|\U0001f3b8|\U0001f3b9|\U0001f3ba|\U0001f3bb|\U0001fa95|\U0001f941|\U0001f4f1|\U0001f4f2|\u260e|\U0001f4de|\U0001f4df|\U0001f4e0|\U0001f50b|\U0001f50c|\U0001f4bb|\U0001f5a5|\U0001f5a8|\u2328|\U0001f5b1|\U0001f5b2|\U0001f4bd|\U0001f4be|\U0001f4bf|\U0001f4c0|\U0001f9ee|\U0001f3a5|\U0001f39e|\U0001f4fd|\U0001f3ac|\U0001f4fa|\U0001f4f7|\U0001f4f8|\U0001f4f9|\U0001f4fc|\U0001f50d|\U0001f50e|\U0001f56f|\U0001f4a1|\U0001f526|\U0001f3ee|\U0001fa94|\U0001f4d4|\U0001f4d5|\U0001f4d6|\U0001f4d7|\U0001f4d8|\U0001f4d9|\U0001f4da|\U0001f4d3|\U0001f4d2|\U0001f4c3|\U0001f4dc|\U0001f4c4|\U0001f4f0|\U0001f5de|\U0001f4d1|\U0001f516|\U0001f3f7|\U0001f4b0|\U0001f4b4|\U0001f4b5|\U0001f4b6|\U0001f4b7|\U0001f4b8|\U0001f4b3|\U0001f9fe|\U0001f4b9|\U0001f4b1|\U0001f4b2|\u2709|\U0001f4e7|\U0001f4e8|\U0001f4e9|\U0001f4e4|\U0001f4e5|\U0001f4e6|\U0001f4eb|\U0001f4ea|\U0001f4ec|\U0001f4ed|\U0001f4ee|\U0001f5f3|\u270f|\u2712|\U0001f58b|\U0001f58a|\U0001f58c|\U0001f58d|\U0001f4dd|\U0001f4bc|\U0001f4c1|\U0001f4c2|\U0001f5c2|\U0001f4c5|\U0001f4c6|\U0001f5d2|\U0001f5d3|\U0001f4c7|\U0001f4c8|\U0001f4c9|\U0001f4ca|\U0001f4cb|\U0001f4cc|\U0001f4cd|\U0001f4ce|\U0001f587|\U0001f4cf|\U0001f4d0|\u2702|\U0001f5c3|\U0001f5c4|\U0001f5d1|\U0001f512|\U0001f513|\U0001f50f|\U0001f510|\U0001f511|\U0001f5dd|\U0001f528|\U0001fa93|\u26cf|\u2692|\U0001f6e0|\U0001f5e1|\u2694|\U0001f52b|\U0001f3f9|\U0001f6e1|\U0001f527|\U0001f529|\u2699|\U0001f5dc|\u2696|\U0001f9af|\U0001f517|\u26d3|\U0001f9f0|\U0001f9f2|\u2697|\U0001f9ea|\U0001f9eb|\U0001f9ec|\U0001f52c|\U0001f52d|\U0001f4e1|\U0001f489|\U0001fa78|\U0001f48a|\U0001fa79|\U0001fa7a|\U0001f6aa|\U0001f6cf|\U0001f6cb|\U0001fa91|\U0001f6bd|\U0001f6bf|\U0001f6c1|\U0001fa92|\U0001f9f4|\U0001f9f7|\U0001f9f9|\U0001f9fa|\U0001f9fb|\U0001f9fc|\U0001f9fd|\U0001f9ef|\U0001f6d2|\U0001f6ac|\u26b0|\u26b1|\U0001f5ff|\U0001f3e7|\U0001f6ae|\U0001f6b0|\u267f|\U0001f6b9|\U0001f6ba|\U0001f6bb|\U0001f6bc|\U0001f6be|\U0001f6c2|\U0001f6c3|\U0001f6c4|\U0001f6c5|\u26a0|\U0001f6b8|\u26d4|\U0001f6ab|\U0001f6b3|\U0001f6ad|\U0001f6af|\U0001f6b1|\U0001f6b7|\U0001f4f5|\U0001f51e|\u2622|\u2623|\u2b06|\u2197|\u27a1|\u2198|\u2b07|\u2199|\u2b05|\u2196|\u2195|\u2194|\u21a9|\u21aa|\u2934|\u2935|\U0001f503|\U0001f504|\U0001f519|\U0001f51a|\U0001f51b|\U0001f51c|\U0001f51d|\U0001f6d0|\u269b|\U0001f549|\u2721|\u2638|\u262f|\u271d|\u2626|\u262a|\u262e|\U0001f54e|\U0001f52f|\u2648|\u2649|\u264a|\u264b|\u264c|\u264d|\u264e|\u264f|\u2650|\u2651|\u2652|\u2653|\u26ce|\U0001f500|\U0001f501|\U0001f502|\u25b6|\u23e9|\u23ed|\u23ef|\u25c0|\u23ea|\u23ee|\U0001f53c|\u23eb|\U0001f53d|\u23ec|\u23f8|\u23f9|\u23fa|\u23cf|\U0001f3a6|\U0001f505|\U0001f506|\U0001f4f6|\U0001f4f3|\U0001f4f4|\u2640|\u2642|\u2695|\u267e|\u267b|\u269c|\U0001f531|\U0001f4db|\U0001f530|\u2b55|\u2705|\u2611|\u2714|\u2716|\u274c|\u274e|\u2795|\u2796|\u2797|\u27b0|\u27bf|\u303d|\u2733|\u2734|\u2747|\u203c|\u2049|\u2753|\u2754|\u2755|\u2757|\u3030|\xa9|\xae|\u2122|\U0001f51f|\U0001f520|\U0001f521|\U0001f522|\U0001f523|\U0001f524|\U0001f170|\U0001f18e|\U0001f171|\U0001f191|\U0001f192|\U0001f193|\u2139|\U0001f194|\u24c2|\U0001f195|\U0001f196|\U0001f17e|\U0001f197|\U0001f17f|\U0001f198|\U0001f199|\U0001f19a|\U0001f201|\U0001f202|\U0001f237|\U0001f236|\U0001f22f|\U0001f250|\U0001f239|\U0001f21a|\U0001f232|\U0001f251|\U0001f238|\U0001f234|\U0001f233|\u3297|\u3299|\U0001f23a|\U0001f235|\U0001f534|\U0001f7e0|\U0001f7e1|\U0001f7e2|\U0001f535|\U0001f7e3|\U0001f7e4|\u26ab|\u26aa|\U0001f7e5|\U0001f7e7|\U0001f7e8|\U0001f7e9|\U0001f7e6|\U0001f7ea|\U0001f7eb|\u2b1b|\u2b1c|\u25fc|\u25fb|\u25fe|\u25fd|\u25aa|\u25ab|\U0001f536|\U0001f537|\U0001f538|\U0001f539|\U0001f53a|\U0001f53b|\U0001f4a0|\U0001f518|\U0001f533|\U0001f532|\U0001f3c1|\U0001f6a9|\U0001f38c|\U0001f3f4|\U0001f3f3')) -> str: """Return the string obtained by replacing all emojis in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all emojis in text with 'repl' Reference: akkez/emoji.py: Python emoji regexp / python emoji detection https://gist.github.com/akkez/99ceeae2f13c9d8d9be7df0279e2c438 """ text = regex.sub(repl, text) return text def _email_normalize(self, text: str, repl: str, regex=re.compile(r'[a-zA-Z0-9.!#$%&\'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9.]+')) -> str: """Return the string obtained by replacing all email addresses in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all email addresses in text with 'repl' """ text = regex.sub(repl, text) return text def _tel_normalize(self, text: str, repl: str, regex=re.compile(r'[()+\d.\-]*[ ]?\d{2,4}[-. ]+\d{3,4}[-. ]+\d{3,4}')) -> str: """Return the string obtained by replacing all phone numbers in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all phone numbers in text with 'repl' """ text = regex.sub(repl, text) return text
def normalize(self, text: str) -> str: """Normalize text. Args: text (str): text to be normalized """ for normalize_fn, repl in self._normalize: text = normalize_fn(text, repl) return text
25
34
import re class Normalizer: """Normalizer return the text replaced with 'repl'. If 'repl' is None, normalization is not applied to the pattern corresponding to 'repl'. Args: url_repl (str): replace all urls in text with this tag_repl (str): replace all tags in text with this emoji_repl (str): replace all emojis in text with this email_repl (str): replace all emails in text with this tel_repl (str): replace all tels in text with this """ def __init__(self, url_repl='[URL]', tag_repl='[TAG]', emoji_repl='[EMOJI]', email_repl='[EMAIL]', tel_repl='[TEL]'): # repls self.url_repl = url_repl self.tag_repl = tag_repl self.emoji_repl = emoji_repl self.email_repl = email_repl self.tel_repl = tel_repl self._normalize = [] self._init_normalize() def normalize(self, text: str) -> str: """Normalize text. Args: text (str): text to be normalized """ for normalize_fn, repl in self._normalize: text = normalize_fn(text, repl) return text def _init_normalize(self) -> None: """Initialize normalize function. If 'repl' is None, normalization is not applied to the pattern corresponding to 'repl'. """ if self.url_repl is not None: self._normalize.append((self._url_normalize, self.url_repl)) if self.tag_repl is not None: self._normalize.append((self._tag_normalize, self.tag_repl)) if self.emoji_repl is not None: self._normalize.append((self._emoji_normalize, self.emoji_repl)) if self.email_repl is not None: self._normalize.append((self._email_normalize, self.email_repl)) if self.tel_repl is not None: self._normalize.append((self._tel_normalize, self.tel_repl)) def _url_normalize(self, text: str, repl: str, regex=re.compile(r'(https?|ftp|www)\S+')) -> str: """Return the string obtained by replacing all urls in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all urls in text with 'repl' """ text = regex.sub(repl, text) return text def _tag_normalize(self, text: str, repl: str, regex=re.compile(r'<[^>]*>')) -> str: """Return the string obtained by replacing all HTML tags in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all HTML tags in text with 'repl' """ text = regex.sub(repl, text) return text def _emoji_normalize(self, text: str, repl: str, regex=re.compile(r'\U0001f469\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f468|\U0001f468\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f468|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f48b\u200d\U0001f469|\U0001f9d1\U0001f3fb\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff\u200d\U0001f91d\u200d\U0001f9d1\U0001f3ff|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f469\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fb|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fc|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f469\U0001f3fe|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fb\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3ff|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f469\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f468\U0001f3fc\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fd\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3fe\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fb|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fc|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fd|\U0001f468\U0001f3ff\u200d\U0001f91d\u200d\U0001f468\U0001f3fe|\U0001f469\u200d\u2764\u200d\U0001f48b\u200d\U0001f468|\U0001f468\u200d\u2764\u200d\U0001f48b\u200d\U0001f468|\U0001f469\u200d\u2764\u200d\U0001f48b\u200d\U0001f469|\U0001f468\u200d\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f468\u200d\U0001f468\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f467\u200d\U0001f467|\U0001f469\u200d\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f3f4\U000e0067\U000e0062\U000e0065\U000e006e\U000e0067\U000e007f|\U0001f3f4\U000e0067\U000e0062\U000e0073\U000e0063\U000e0074\U000e007f|\U0001f3f4\U000e0067\U000e0062\U000e0077\U000e006c\U000e0073\U000e007f|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f468|\U0001f468\u200d\u2764\ufe0f\u200d\U0001f468|\U0001f469\u200d\u2764\ufe0f\u200d\U0001f469|\U0001f441\ufe0f\u200d\U0001f5e8\ufe0f|\U0001f471\U0001f3fb\u200d\u2642\ufe0f|\U0001f471\U0001f3fc\u200d\u2642\ufe0f|\U0001f471\U0001f3fd\u200d\u2642\ufe0f|\U0001f471\U0001f3fe\u200d\u2642\ufe0f|\U0001f471\U0001f3ff\u200d\u2642\ufe0f|\U0001f471\U0001f3fb\u200d\u2640\ufe0f|\U0001f471\U0001f3fc\u200d\u2640\ufe0f|\U0001f471\U0001f3fd\u200d\u2640\ufe0f|\U0001f471\U0001f3fe\u200d\u2640\ufe0f|\U0001f471\U0001f3ff\u200d\u2640\ufe0f|\U0001f64d\U0001f3fb\u200d\u2642\ufe0f|\U0001f64d\U0001f3fc\u200d\u2642\ufe0f|\U0001f64d\U0001f3fd\u200d\u2642\ufe0f|\U0001f64d\U0001f3fe\u200d\u2642\ufe0f|\U0001f64d\U0001f3ff\u200d\u2642\ufe0f|\U0001f64d\U0001f3fb\u200d\u2640\ufe0f|\U0001f64d\U0001f3fc\u200d\u2640\ufe0f|\U0001f64d\U0001f3fd\u200d\u2640\ufe0f|\U0001f64d\U0001f3fe\u200d\u2640\ufe0f|\U0001f64d\U0001f3ff\u200d\u2640\ufe0f|\U0001f64e\U0001f3fb\u200d\u2642\ufe0f|\U0001f64e\U0001f3fc\u200d\u2642\ufe0f|\U0001f64e\U0001f3fd\u200d\u2642\ufe0f|\U0001f64e\U0001f3fe\u200d\u2642\ufe0f|\U0001f64e\U0001f3ff\u200d\u2642\ufe0f|\U0001f64e\U0001f3fb\u200d\u2640\ufe0f|\U0001f64e\U0001f3fc\u200d\u2640\ufe0f|\U0001f64e\U0001f3fd\u200d\u2640\ufe0f|\U0001f64e\U0001f3fe\u200d\u2640\ufe0f|\U0001f64e\U0001f3ff\u200d\u2640\ufe0f|\U0001f645\U0001f3fb\u200d\u2642\ufe0f|\U0001f645\U0001f3fc\u200d\u2642\ufe0f|\U0001f645\U0001f3fd\u200d\u2642\ufe0f|\U0001f645\U0001f3fe\u200d\u2642\ufe0f|\U0001f645\U0001f3ff\u200d\u2642\ufe0f|\U0001f645\U0001f3fb\u200d\u2640\ufe0f|\U0001f645\U0001f3fc\u200d\u2640\ufe0f|\U0001f645\U0001f3fd\u200d\u2640\ufe0f|\U0001f645\U0001f3fe\u200d\u2640\ufe0f|\U0001f645\U0001f3ff\u200d\u2640\ufe0f|\U0001f646\U0001f3fb\u200d\u2642\ufe0f|\U0001f646\U0001f3fc\u200d\u2642\ufe0f|\U0001f646\U0001f3fd\u200d\u2642\ufe0f|\U0001f646\U0001f3fe\u200d\u2642\ufe0f|\U0001f646\U0001f3ff\u200d\u2642\ufe0f|\U0001f646\U0001f3fb\u200d\u2640\ufe0f|\U0001f646\U0001f3fc\u200d\u2640\ufe0f|\U0001f646\U0001f3fd\u200d\u2640\ufe0f|\U0001f646\U0001f3fe\u200d\u2640\ufe0f|\U0001f646\U0001f3ff\u200d\u2640\ufe0f|\U0001f481\U0001f3fb\u200d\u2642\ufe0f|\U0001f481\U0001f3fc\u200d\u2642\ufe0f|\U0001f481\U0001f3fd\u200d\u2642\ufe0f|\U0001f481\U0001f3fe\u200d\u2642\ufe0f|\U0001f481\U0001f3ff\u200d\u2642\ufe0f|\U0001f481\U0001f3fb\u200d\u2640\ufe0f|\U0001f481\U0001f3fc\u200d\u2640\ufe0f|\U0001f481\U0001f3fd\u200d\u2640\ufe0f|\U0001f481\U0001f3fe\u200d\u2640\ufe0f|\U0001f481\U0001f3ff\u200d\u2640\ufe0f|\U0001f64b\U0001f3fb\u200d\u2642\ufe0f|\U0001f64b\U0001f3fc\u200d\u2642\ufe0f|\U0001f64b\U0001f3fd\u200d\u2642\ufe0f|\U0001f64b\U0001f3fe\u200d\u2642\ufe0f|\U0001f64b\U0001f3ff\u200d\u2642\ufe0f|\U0001f64b\U0001f3fb\u200d\u2640\ufe0f|\U0001f64b\U0001f3fc\u200d\u2640\ufe0f|\U0001f64b\U0001f3fd\u200d\u2640\ufe0f|\U0001f64b\U0001f3fe\u200d\u2640\ufe0f|\U0001f64b\U0001f3ff\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fc\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fd\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fe\u200d\u2642\ufe0f|\U0001f9cf\U0001f3ff\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fc\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fd\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fe\u200d\u2640\ufe0f|\U0001f9cf\U0001f3ff\u200d\u2640\ufe0f|\U0001f647\U0001f3fb\u200d\u2642\ufe0f|\U0001f647\U0001f3fc\u200d\u2642\ufe0f|\U0001f647\U0001f3fd\u200d\u2642\ufe0f|\U0001f647\U0001f3fe\u200d\u2642\ufe0f|\U0001f647\U0001f3ff\u200d\u2642\ufe0f|\U0001f647\U0001f3fb\u200d\u2640\ufe0f|\U0001f647\U0001f3fc\u200d\u2640\ufe0f|\U0001f647\U0001f3fd\u200d\u2640\ufe0f|\U0001f647\U0001f3fe\u200d\u2640\ufe0f|\U0001f647\U0001f3ff\u200d\u2640\ufe0f|\U0001f926\U0001f3fb\u200d\u2642\ufe0f|\U0001f926\U0001f3fc\u200d\u2642\ufe0f|\U0001f926\U0001f3fd\u200d\u2642\ufe0f|\U0001f926\U0001f3fe\u200d\u2642\ufe0f|\U0001f926\U0001f3ff\u200d\u2642\ufe0f|\U0001f926\U0001f3fb\u200d\u2640\ufe0f|\U0001f926\U0001f3fc\u200d\u2640\ufe0f|\U0001f926\U0001f3fd\u200d\u2640\ufe0f|\U0001f926\U0001f3fe\u200d\u2640\ufe0f|\U0001f926\U0001f3ff\u200d\u2640\ufe0f|\U0001f937\U0001f3fb\u200d\u2642\ufe0f|\U0001f937\U0001f3fc\u200d\u2642\ufe0f|\U0001f937\U0001f3fd\u200d\u2642\ufe0f|\U0001f937\U0001f3fe\u200d\u2642\ufe0f|\U0001f937\U0001f3ff\u200d\u2642\ufe0f|\U0001f937\U0001f3fb\u200d\u2640\ufe0f|\U0001f937\U0001f3fc\u200d\u2640\ufe0f|\U0001f937\U0001f3fd\u200d\u2640\ufe0f|\U0001f937\U0001f3fe\u200d\u2640\ufe0f|\U0001f937\U0001f3ff\u200d\u2640\ufe0f|\U0001f468\U0001f3fb\u200d\u2695\ufe0f|\U0001f468\U0001f3fc\u200d\u2695\ufe0f|\U0001f468\U0001f3fd\u200d\u2695\ufe0f|\U0001f468\U0001f3fe\u200d\u2695\ufe0f|\U0001f468\U0001f3ff\u200d\u2695\ufe0f|\U0001f469\U0001f3fb\u200d\u2695\ufe0f|\U0001f469\U0001f3fc\u200d\u2695\ufe0f|\U0001f469\U0001f3fd\u200d\u2695\ufe0f|\U0001f469\U0001f3fe\u200d\u2695\ufe0f|\U0001f469\U0001f3ff\u200d\u2695\ufe0f|\U0001f468\U0001f3fb\u200d\u2696\ufe0f|\U0001f468\U0001f3fc\u200d\u2696\ufe0f|\U0001f468\U0001f3fd\u200d\u2696\ufe0f|\U0001f468\U0001f3fe\u200d\u2696\ufe0f|\U0001f468\U0001f3ff\u200d\u2696\ufe0f|\U0001f469\U0001f3fb\u200d\u2696\ufe0f|\U0001f469\U0001f3fc\u200d\u2696\ufe0f|\U0001f469\U0001f3fd\u200d\u2696\ufe0f|\U0001f469\U0001f3fe\u200d\u2696\ufe0f|\U0001f469\U0001f3ff\u200d\u2696\ufe0f|\U0001f468\U0001f3fb\u200d\u2708\ufe0f|\U0001f468\U0001f3fc\u200d\u2708\ufe0f|\U0001f468\U0001f3fd\u200d\u2708\ufe0f|\U0001f468\U0001f3fe\u200d\u2708\ufe0f|\U0001f468\U0001f3ff\u200d\u2708\ufe0f|\U0001f469\U0001f3fb\u200d\u2708\ufe0f|\U0001f469\U0001f3fc\u200d\u2708\ufe0f|\U0001f469\U0001f3fd\u200d\u2708\ufe0f|\U0001f469\U0001f3fe\u200d\u2708\ufe0f|\U0001f469\U0001f3ff\u200d\u2708\ufe0f|\U0001f46e\U0001f3fb\u200d\u2642\ufe0f|\U0001f46e\U0001f3fc\u200d\u2642\ufe0f|\U0001f46e\U0001f3fd\u200d\u2642\ufe0f|\U0001f46e\U0001f3fe\u200d\u2642\ufe0f|\U0001f46e\U0001f3ff\u200d\u2642\ufe0f|\U0001f46e\U0001f3fb\u200d\u2640\ufe0f|\U0001f46e\U0001f3fc\u200d\u2640\ufe0f|\U0001f46e\U0001f3fd\u200d\u2640\ufe0f|\U0001f46e\U0001f3fe\u200d\u2640\ufe0f|\U0001f46e\U0001f3ff\u200d\u2640\ufe0f|\U0001f575\ufe0f\u200d\u2642\ufe0f|\U0001f575\U0001f3fb\u200d\u2642\ufe0f|\U0001f575\U0001f3fc\u200d\u2642\ufe0f|\U0001f575\U0001f3fd\u200d\u2642\ufe0f|\U0001f575\U0001f3fe\u200d\u2642\ufe0f|\U0001f575\U0001f3ff\u200d\u2642\ufe0f|\U0001f575\ufe0f\u200d\u2640\ufe0f|\U0001f575\U0001f3fb\u200d\u2640\ufe0f|\U0001f575\U0001f3fc\u200d\u2640\ufe0f|\U0001f575\U0001f3fd\u200d\u2640\ufe0f|\U0001f575\U0001f3fe\u200d\u2640\ufe0f|\U0001f575\U0001f3ff\u200d\u2640\ufe0f|\U0001f482\U0001f3fb\u200d\u2642\ufe0f|\U0001f482\U0001f3fc\u200d\u2642\ufe0f|\U0001f482\U0001f3fd\u200d\u2642\ufe0f|\U0001f482\U0001f3fe\u200d\u2642\ufe0f|\U0001f482\U0001f3ff\u200d\u2642\ufe0f|\U0001f482\U0001f3fb\u200d\u2640\ufe0f|\U0001f482\U0001f3fc\u200d\u2640\ufe0f|\U0001f482\U0001f3fd\u200d\u2640\ufe0f|\U0001f482\U0001f3fe\u200d\u2640\ufe0f|\U0001f482\U0001f3ff\u200d\u2640\ufe0f|\U0001f477\U0001f3fb\u200d\u2642\ufe0f|\U0001f477\U0001f3fc\u200d\u2642\ufe0f|\U0001f477\U0001f3fd\u200d\u2642\ufe0f|\U0001f477\U0001f3fe\u200d\u2642\ufe0f|\U0001f477\U0001f3ff\u200d\u2642\ufe0f|\U0001f477\U0001f3fb\u200d\u2640\ufe0f|\U0001f477\U0001f3fc\u200d\u2640\ufe0f|\U0001f477\U0001f3fd\u200d\u2640\ufe0f|\U0001f477\U0001f3fe\u200d\u2640\ufe0f|\U0001f477\U0001f3ff\u200d\u2640\ufe0f|\U0001f473\U0001f3fb\u200d\u2642\ufe0f|\U0001f473\U0001f3fc\u200d\u2642\ufe0f|\U0001f473\U0001f3fd\u200d\u2642\ufe0f|\U0001f473\U0001f3fe\u200d\u2642\ufe0f|\U0001f473\U0001f3ff\u200d\u2642\ufe0f|\U0001f473\U0001f3fb\u200d\u2640\ufe0f|\U0001f473\U0001f3fc\u200d\u2640\ufe0f|\U0001f473\U0001f3fd\u200d\u2640\ufe0f|\U0001f473\U0001f3fe\u200d\u2640\ufe0f|\U0001f473\U0001f3ff\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fc\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fd\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fe\u200d\u2642\ufe0f|\U0001f9b8\U0001f3ff\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fc\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fd\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fe\u200d\u2640\ufe0f|\U0001f9b8\U0001f3ff\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fc\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fd\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fe\u200d\u2642\ufe0f|\U0001f9b9\U0001f3ff\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fc\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fd\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fe\u200d\u2640\ufe0f|\U0001f9b9\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d9\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d9\U0001f3ff\u200d\u2640\ufe0f|\U0001f9da\U0001f3fb\u200d\u2642\ufe0f|\U0001f9da\U0001f3fc\u200d\u2642\ufe0f|\U0001f9da\U0001f3fd\u200d\u2642\ufe0f|\U0001f9da\U0001f3fe\u200d\u2642\ufe0f|\U0001f9da\U0001f3ff\u200d\u2642\ufe0f|\U0001f9da\U0001f3fb\u200d\u2640\ufe0f|\U0001f9da\U0001f3fc\u200d\u2640\ufe0f|\U0001f9da\U0001f3fd\u200d\u2640\ufe0f|\U0001f9da\U0001f3fe\u200d\u2640\ufe0f|\U0001f9da\U0001f3ff\u200d\u2640\ufe0f|\U0001f9db\U0001f3fb\u200d\u2642\ufe0f|\U0001f9db\U0001f3fc\u200d\u2642\ufe0f|\U0001f9db\U0001f3fd\u200d\u2642\ufe0f|\U0001f9db\U0001f3fe\u200d\u2642\ufe0f|\U0001f9db\U0001f3ff\u200d\u2642\ufe0f|\U0001f9db\U0001f3fb\u200d\u2640\ufe0f|\U0001f9db\U0001f3fc\u200d\u2640\ufe0f|\U0001f9db\U0001f3fd\u200d\u2640\ufe0f|\U0001f9db\U0001f3fe\u200d\u2640\ufe0f|\U0001f9db\U0001f3ff\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fc\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fd\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fe\u200d\u2642\ufe0f|\U0001f9dc\U0001f3ff\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fc\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fd\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fe\u200d\u2640\ufe0f|\U0001f9dc\U0001f3ff\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fc\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fd\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fe\u200d\u2642\ufe0f|\U0001f9dd\U0001f3ff\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fc\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fd\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fe\u200d\u2640\ufe0f|\U0001f9dd\U0001f3ff\u200d\u2640\ufe0f|\U0001f486\U0001f3fb\u200d\u2642\ufe0f|\U0001f486\U0001f3fc\u200d\u2642\ufe0f|\U0001f486\U0001f3fd\u200d\u2642\ufe0f|\U0001f486\U0001f3fe\u200d\u2642\ufe0f|\U0001f486\U0001f3ff\u200d\u2642\ufe0f|\U0001f486\U0001f3fb\u200d\u2640\ufe0f|\U0001f486\U0001f3fc\u200d\u2640\ufe0f|\U0001f486\U0001f3fd\u200d\u2640\ufe0f|\U0001f486\U0001f3fe\u200d\u2640\ufe0f|\U0001f486\U0001f3ff\u200d\u2640\ufe0f|\U0001f487\U0001f3fb\u200d\u2642\ufe0f|\U0001f487\U0001f3fc\u200d\u2642\ufe0f|\U0001f487\U0001f3fd\u200d\u2642\ufe0f|\U0001f487\U0001f3fe\u200d\u2642\ufe0f|\U0001f487\U0001f3ff\u200d\u2642\ufe0f|\U0001f487\U0001f3fb\u200d\u2640\ufe0f|\U0001f487\U0001f3fc\u200d\u2640\ufe0f|\U0001f487\U0001f3fd\u200d\u2640\ufe0f|\U0001f487\U0001f3fe\u200d\u2640\ufe0f|\U0001f487\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b6\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b6\U0001f3ff\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fc\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fd\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fe\u200d\u2642\ufe0f|\U0001f9cd\U0001f3ff\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fc\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fd\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fe\u200d\u2640\ufe0f|\U0001f9cd\U0001f3ff\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fc\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fd\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fe\u200d\u2642\ufe0f|\U0001f9ce\U0001f3ff\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fc\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fd\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fe\u200d\u2640\ufe0f|\U0001f9ce\U0001f3ff\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fc\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fd\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fe\u200d\u2642\ufe0f|\U0001f3c3\U0001f3ff\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fc\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fd\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fe\u200d\u2640\ufe0f|\U0001f3c3\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d6\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d6\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d7\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d7\U0001f3ff\u200d\u2640\ufe0f|\U0001f3cc\ufe0f\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fb\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fc\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fd\u200d\u2642\ufe0f|\U0001f3cc\U0001f3fe\u200d\u2642\ufe0f|\U0001f3cc\U0001f3ff\u200d\u2642\ufe0f|\U0001f3cc\ufe0f\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fb\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fc\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fd\u200d\u2640\ufe0f|\U0001f3cc\U0001f3fe\u200d\u2640\ufe0f|\U0001f3cc\U0001f3ff\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fc\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fd\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fe\u200d\u2642\ufe0f|\U0001f3c4\U0001f3ff\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fc\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fd\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fe\u200d\u2640\ufe0f|\U0001f3c4\U0001f3ff\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fc\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fd\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fe\u200d\u2642\ufe0f|\U0001f6a3\U0001f3ff\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fc\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fd\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fe\u200d\u2640\ufe0f|\U0001f6a3\U0001f3ff\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fc\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fd\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fe\u200d\u2642\ufe0f|\U0001f3ca\U0001f3ff\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fc\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fd\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fe\u200d\u2640\ufe0f|\U0001f3ca\U0001f3ff\u200d\u2640\ufe0f|\u26f9\ufe0f\u200d\u2642\ufe0f|\u26f9\U0001f3fb\u200d\u2642\ufe0f|\u26f9\U0001f3fc\u200d\u2642\ufe0f|\u26f9\U0001f3fd\u200d\u2642\ufe0f|\u26f9\U0001f3fe\u200d\u2642\ufe0f|\u26f9\U0001f3ff\u200d\u2642\ufe0f|\u26f9\ufe0f\u200d\u2640\ufe0f|\u26f9\U0001f3fb\u200d\u2640\ufe0f|\u26f9\U0001f3fc\u200d\u2640\ufe0f|\u26f9\U0001f3fd\u200d\u2640\ufe0f|\u26f9\U0001f3fe\u200d\u2640\ufe0f|\u26f9\U0001f3ff\u200d\u2640\ufe0f|\U0001f3cb\ufe0f\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fb\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fc\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fd\u200d\u2642\ufe0f|\U0001f3cb\U0001f3fe\u200d\u2642\ufe0f|\U0001f3cb\U0001f3ff\u200d\u2642\ufe0f|\U0001f3cb\ufe0f\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fb\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fc\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fd\u200d\u2640\ufe0f|\U0001f3cb\U0001f3fe\u200d\u2640\ufe0f|\U0001f3cb\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b4\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b4\U0001f3ff\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fc\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fd\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fe\u200d\u2642\ufe0f|\U0001f6b5\U0001f3ff\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fc\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fd\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fe\u200d\u2640\ufe0f|\U0001f6b5\U0001f3ff\u200d\u2640\ufe0f|\U0001f938\U0001f3fb\u200d\u2642\ufe0f|\U0001f938\U0001f3fc\u200d\u2642\ufe0f|\U0001f938\U0001f3fd\u200d\u2642\ufe0f|\U0001f938\U0001f3fe\u200d\u2642\ufe0f|\U0001f938\U0001f3ff\u200d\u2642\ufe0f|\U0001f938\U0001f3fb\u200d\u2640\ufe0f|\U0001f938\U0001f3fc\u200d\u2640\ufe0f|\U0001f938\U0001f3fd\u200d\u2640\ufe0f|\U0001f938\U0001f3fe\u200d\u2640\ufe0f|\U0001f938\U0001f3ff\u200d\u2640\ufe0f|\U0001f93d\U0001f3fb\u200d\u2642\ufe0f|\U0001f93d\U0001f3fc\u200d\u2642\ufe0f|\U0001f93d\U0001f3fd\u200d\u2642\ufe0f|\U0001f93d\U0001f3fe\u200d\u2642\ufe0f|\U0001f93d\U0001f3ff\u200d\u2642\ufe0f|\U0001f93d\U0001f3fb\u200d\u2640\ufe0f|\U0001f93d\U0001f3fc\u200d\u2640\ufe0f|\U0001f93d\U0001f3fd\u200d\u2640\ufe0f|\U0001f93d\U0001f3fe\u200d\u2640\ufe0f|\U0001f93d\U0001f3ff\u200d\u2640\ufe0f|\U0001f93e\U0001f3fb\u200d\u2642\ufe0f|\U0001f93e\U0001f3fc\u200d\u2642\ufe0f|\U0001f93e\U0001f3fd\u200d\u2642\ufe0f|\U0001f93e\U0001f3fe\u200d\u2642\ufe0f|\U0001f93e\U0001f3ff\u200d\u2642\ufe0f|\U0001f93e\U0001f3fb\u200d\u2640\ufe0f|\U0001f93e\U0001f3fc\u200d\u2640\ufe0f|\U0001f93e\U0001f3fd\u200d\u2640\ufe0f|\U0001f93e\U0001f3fe\u200d\u2640\ufe0f|\U0001f93e\U0001f3ff\u200d\u2640\ufe0f|\U0001f939\U0001f3fb\u200d\u2642\ufe0f|\U0001f939\U0001f3fc\u200d\u2642\ufe0f|\U0001f939\U0001f3fd\u200d\u2642\ufe0f|\U0001f939\U0001f3fe\u200d\u2642\ufe0f|\U0001f939\U0001f3ff\u200d\u2642\ufe0f|\U0001f939\U0001f3fb\u200d\u2640\ufe0f|\U0001f939\U0001f3fc\u200d\u2640\ufe0f|\U0001f939\U0001f3fd\u200d\u2640\ufe0f|\U0001f939\U0001f3fe\u200d\u2640\ufe0f|\U0001f939\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fc\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fd\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fe\u200d\u2642\ufe0f|\U0001f9d8\U0001f3ff\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fc\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fd\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fe\u200d\u2640\ufe0f|\U0001f9d8\U0001f3ff\u200d\u2640\ufe0f|\U0001f9d1\u200d\U0001f91d\u200d\U0001f9d1|\U0001f469\u200d\u2764\u200d\U0001f468|\U0001f468\u200d\u2764\u200d\U0001f468|\U0001f469\u200d\u2764\u200d\U0001f469|\U0001f468\u200d\U0001f469\u200d\U0001f466|\U0001f468\u200d\U0001f469\u200d\U0001f467|\U0001f468\u200d\U0001f468\u200d\U0001f466|\U0001f468\u200d\U0001f468\u200d\U0001f467|\U0001f469\u200d\U0001f469\u200d\U0001f466|\U0001f469\u200d\U0001f469\u200d\U0001f467|\U0001f468\u200d\U0001f466\u200d\U0001f466|\U0001f468\u200d\U0001f467\u200d\U0001f466|\U0001f468\u200d\U0001f467\u200d\U0001f467|\U0001f469\u200d\U0001f466\u200d\U0001f466|\U0001f469\u200d\U0001f467\u200d\U0001f466|\U0001f469\u200d\U0001f467\u200d\U0001f467|\U0001f441\u200d\U0001f5e8\ufe0f|\U0001f441\ufe0f\u200d\U0001f5e8|\U0001f471\u200d\u2642\ufe0f|\U0001f471\U0001f3fb\u200d\u2642|\U0001f471\U0001f3fc\u200d\u2642|\U0001f471\U0001f3fd\u200d\u2642|\U0001f471\U0001f3fe\u200d\u2642|\U0001f471\U0001f3ff\u200d\u2642|\U0001f468\U0001f3fb\u200d\U0001f9b0|\U0001f468\U0001f3fc\u200d\U0001f9b0|\U0001f468\U0001f3fd\u200d\U0001f9b0|\U0001f468\U0001f3fe\u200d\U0001f9b0|\U0001f468\U0001f3ff\u200d\U0001f9b0|\U0001f468\U0001f3fb\u200d\U0001f9b1|\U0001f468\U0001f3fc\u200d\U0001f9b1|\U0001f468\U0001f3fd\u200d\U0001f9b1|\U0001f468\U0001f3fe\u200d\U0001f9b1|\U0001f468\U0001f3ff\u200d\U0001f9b1|\U0001f468\U0001f3fb\u200d\U0001f9b3|\U0001f468\U0001f3fc\u200d\U0001f9b3|\U0001f468\U0001f3fd\u200d\U0001f9b3|\U0001f468\U0001f3fe\u200d\U0001f9b3|\U0001f468\U0001f3ff\u200d\U0001f9b3|\U0001f468\U0001f3fb\u200d\U0001f9b2|\U0001f468\U0001f3fc\u200d\U0001f9b2|\U0001f468\U0001f3fd\u200d\U0001f9b2|\U0001f468\U0001f3fe\u200d\U0001f9b2|\U0001f468\U0001f3ff\u200d\U0001f9b2|\U0001f471\u200d\u2640\ufe0f|\U0001f471\U0001f3fb\u200d\u2640|\U0001f471\U0001f3fc\u200d\u2640|\U0001f471\U0001f3fd\u200d\u2640|\U0001f471\U0001f3fe\u200d\u2640|\U0001f471\U0001f3ff\u200d\u2640|\U0001f469\U0001f3fb\u200d\U0001f9b0|\U0001f469\U0001f3fc\u200d\U0001f9b0|\U0001f469\U0001f3fd\u200d\U0001f9b0|\U0001f469\U0001f3fe\u200d\U0001f9b0|\U0001f469\U0001f3ff\u200d\U0001f9b0|\U0001f469\U0001f3fb\u200d\U0001f9b1|\U0001f469\U0001f3fc\u200d\U0001f9b1|\U0001f469\U0001f3fd\u200d\U0001f9b1|\U0001f469\U0001f3fe\u200d\U0001f9b1|\U0001f469\U0001f3ff\u200d\U0001f9b1|\U0001f469\U0001f3fb\u200d\U0001f9b3|\U0001f469\U0001f3fc\u200d\U0001f9b3|\U0001f469\U0001f3fd\u200d\U0001f9b3|\U0001f469\U0001f3fe\u200d\U0001f9b3|\U0001f469\U0001f3ff\u200d\U0001f9b3|\U0001f469\U0001f3fb\u200d\U0001f9b2|\U0001f469\U0001f3fc\u200d\U0001f9b2|\U0001f469\U0001f3fd\u200d\U0001f9b2|\U0001f469\U0001f3fe\u200d\U0001f9b2|\U0001f469\U0001f3ff\u200d\U0001f9b2|\U0001f64d\u200d\u2642\ufe0f|\U0001f64d\U0001f3fb\u200d\u2642|\U0001f64d\U0001f3fc\u200d\u2642|\U0001f64d\U0001f3fd\u200d\u2642|\U0001f64d\U0001f3fe\u200d\u2642|\U0001f64d\U0001f3ff\u200d\u2642|\U0001f64d\u200d\u2640\ufe0f|\U0001f64d\U0001f3fb\u200d\u2640|\U0001f64d\U0001f3fc\u200d\u2640|\U0001f64d\U0001f3fd\u200d\u2640|\U0001f64d\U0001f3fe\u200d\u2640|\U0001f64d\U0001f3ff\u200d\u2640|\U0001f64e\u200d\u2642\ufe0f|\U0001f64e\U0001f3fb\u200d\u2642|\U0001f64e\U0001f3fc\u200d\u2642|\U0001f64e\U0001f3fd\u200d\u2642|\U0001f64e\U0001f3fe\u200d\u2642|\U0001f64e\U0001f3ff\u200d\u2642|\U0001f64e\u200d\u2640\ufe0f|\U0001f64e\U0001f3fb\u200d\u2640|\U0001f64e\U0001f3fc\u200d\u2640|\U0001f64e\U0001f3fd\u200d\u2640|\U0001f64e\U0001f3fe\u200d\u2640|\U0001f64e\U0001f3ff\u200d\u2640|\U0001f645\u200d\u2642\ufe0f|\U0001f645\U0001f3fb\u200d\u2642|\U0001f645\U0001f3fc\u200d\u2642|\U0001f645\U0001f3fd\u200d\u2642|\U0001f645\U0001f3fe\u200d\u2642|\U0001f645\U0001f3ff\u200d\u2642|\U0001f645\u200d\u2640\ufe0f|\U0001f645\U0001f3fb\u200d\u2640|\U0001f645\U0001f3fc\u200d\u2640|\U0001f645\U0001f3fd\u200d\u2640|\U0001f645\U0001f3fe\u200d\u2640|\U0001f645\U0001f3ff\u200d\u2640|\U0001f646\u200d\u2642\ufe0f|\U0001f646\U0001f3fb\u200d\u2642|\U0001f646\U0001f3fc\u200d\u2642|\U0001f646\U0001f3fd\u200d\u2642|\U0001f646\U0001f3fe\u200d\u2642|\U0001f646\U0001f3ff\u200d\u2642|\U0001f646\u200d\u2640\ufe0f|\U0001f646\U0001f3fb\u200d\u2640|\U0001f646\U0001f3fc\u200d\u2640|\U0001f646\U0001f3fd\u200d\u2640|\U0001f646\U0001f3fe\u200d\u2640|\U0001f646\U0001f3ff\u200d\u2640|\U0001f481\u200d\u2642\ufe0f|\U0001f481\U0001f3fb\u200d\u2642|\U0001f481\U0001f3fc\u200d\u2642|\U0001f481\U0001f3fd\u200d\u2642|\U0001f481\U0001f3fe\u200d\u2642|\U0001f481\U0001f3ff\u200d\u2642|\U0001f481\u200d\u2640\ufe0f|\U0001f481\U0001f3fb\u200d\u2640|\U0001f481\U0001f3fc\u200d\u2640|\U0001f481\U0001f3fd\u200d\u2640|\U0001f481\U0001f3fe\u200d\u2640|\U0001f481\U0001f3ff\u200d\u2640|\U0001f64b\u200d\u2642\ufe0f|\U0001f64b\U0001f3fb\u200d\u2642|\U0001f64b\U0001f3fc\u200d\u2642|\U0001f64b\U0001f3fd\u200d\u2642|\U0001f64b\U0001f3fe\u200d\u2642|\U0001f64b\U0001f3ff\u200d\u2642|\U0001f64b\u200d\u2640\ufe0f|\U0001f64b\U0001f3fb\u200d\u2640|\U0001f64b\U0001f3fc\u200d\u2640|\U0001f64b\U0001f3fd\u200d\u2640|\U0001f64b\U0001f3fe\u200d\u2640|\U0001f64b\U0001f3ff\u200d\u2640|\U0001f9cf\u200d\u2642\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2642|\U0001f9cf\U0001f3fc\u200d\u2642|\U0001f9cf\U0001f3fd\u200d\u2642|\U0001f9cf\U0001f3fe\u200d\u2642|\U0001f9cf\U0001f3ff\u200d\u2642|\U0001f9cf\u200d\u2640\ufe0f|\U0001f9cf\U0001f3fb\u200d\u2640|\U0001f9cf\U0001f3fc\u200d\u2640|\U0001f9cf\U0001f3fd\u200d\u2640|\U0001f9cf\U0001f3fe\u200d\u2640|\U0001f9cf\U0001f3ff\u200d\u2640|\U0001f647\u200d\u2642\ufe0f|\U0001f647\U0001f3fb\u200d\u2642|\U0001f647\U0001f3fc\u200d\u2642|\U0001f647\U0001f3fd\u200d\u2642|\U0001f647\U0001f3fe\u200d\u2642|\U0001f647\U0001f3ff\u200d\u2642|\U0001f647\u200d\u2640\ufe0f|\U0001f647\U0001f3fb\u200d\u2640|\U0001f647\U0001f3fc\u200d\u2640|\U0001f647\U0001f3fd\u200d\u2640|\U0001f647\U0001f3fe\u200d\u2640|\U0001f647\U0001f3ff\u200d\u2640|\U0001f926\u200d\u2642\ufe0f|\U0001f926\U0001f3fb\u200d\u2642|\U0001f926\U0001f3fc\u200d\u2642|\U0001f926\U0001f3fd\u200d\u2642|\U0001f926\U0001f3fe\u200d\u2642|\U0001f926\U0001f3ff\u200d\u2642|\U0001f926\u200d\u2640\ufe0f|\U0001f926\U0001f3fb\u200d\u2640|\U0001f926\U0001f3fc\u200d\u2640|\U0001f926\U0001f3fd\u200d\u2640|\U0001f926\U0001f3fe\u200d\u2640|\U0001f926\U0001f3ff\u200d\u2640|\U0001f937\u200d\u2642\ufe0f|\U0001f937\U0001f3fb\u200d\u2642|\U0001f937\U0001f3fc\u200d\u2642|\U0001f937\U0001f3fd\u200d\u2642|\U0001f937\U0001f3fe\u200d\u2642|\U0001f937\U0001f3ff\u200d\u2642|\U0001f937\u200d\u2640\ufe0f|\U0001f937\U0001f3fb\u200d\u2640|\U0001f937\U0001f3fc\u200d\u2640|\U0001f937\U0001f3fd\u200d\u2640|\U0001f937\U0001f3fe\u200d\u2640|\U0001f937\U0001f3ff\u200d\u2640|\U0001f468\u200d\u2695\ufe0f|\U0001f468\U0001f3fb\u200d\u2695|\U0001f468\U0001f3fc\u200d\u2695|\U0001f468\U0001f3fd\u200d\u2695|\U0001f468\U0001f3fe\u200d\u2695|\U0001f468\U0001f3ff\u200d\u2695|\U0001f469\u200d\u2695\ufe0f|\U0001f469\U0001f3fb\u200d\u2695|\U0001f469\U0001f3fc\u200d\u2695|\U0001f469\U0001f3fd\u200d\u2695|\U0001f469\U0001f3fe\u200d\u2695|\U0001f469\U0001f3ff\u200d\u2695|\U0001f468\U0001f3fb\u200d\U0001f393|\U0001f468\U0001f3fc\u200d\U0001f393|\U0001f468\U0001f3fd\u200d\U0001f393|\U0001f468\U0001f3fe\u200d\U0001f393|\U0001f468\U0001f3ff\u200d\U0001f393|\U0001f469\U0001f3fb\u200d\U0001f393|\U0001f469\U0001f3fc\u200d\U0001f393|\U0001f469\U0001f3fd\u200d\U0001f393|\U0001f469\U0001f3fe\u200d\U0001f393|\U0001f469\U0001f3ff\u200d\U0001f393|\U0001f468\U0001f3fb\u200d\U0001f3eb|\U0001f468\U0001f3fc\u200d\U0001f3eb|\U0001f468\U0001f3fd\u200d\U0001f3eb|\U0001f468\U0001f3fe\u200d\U0001f3eb|\U0001f468\U0001f3ff\u200d\U0001f3eb|\U0001f469\U0001f3fb\u200d\U0001f3eb|\U0001f469\U0001f3fc\u200d\U0001f3eb|\U0001f469\U0001f3fd\u200d\U0001f3eb|\U0001f469\U0001f3fe\u200d\U0001f3eb|\U0001f469\U0001f3ff\u200d\U0001f3eb|\U0001f468\u200d\u2696\ufe0f|\U0001f468\U0001f3fb\u200d\u2696|\U0001f468\U0001f3fc\u200d\u2696|\U0001f468\U0001f3fd\u200d\u2696|\U0001f468\U0001f3fe\u200d\u2696|\U0001f468\U0001f3ff\u200d\u2696|\U0001f469\u200d\u2696\ufe0f|\U0001f469\U0001f3fb\u200d\u2696|\U0001f469\U0001f3fc\u200d\u2696|\U0001f469\U0001f3fd\u200d\u2696|\U0001f469\U0001f3fe\u200d\u2696|\U0001f469\U0001f3ff\u200d\u2696|\U0001f468\U0001f3fb\u200d\U0001f33e|\U0001f468\U0001f3fc\u200d\U0001f33e|\U0001f468\U0001f3fd\u200d\U0001f33e|\U0001f468\U0001f3fe\u200d\U0001f33e|\U0001f468\U0001f3ff\u200d\U0001f33e|\U0001f469\U0001f3fb\u200d\U0001f33e|\U0001f469\U0001f3fc\u200d\U0001f33e|\U0001f469\U0001f3fd\u200d\U0001f33e|\U0001f469\U0001f3fe\u200d\U0001f33e|\U0001f469\U0001f3ff\u200d\U0001f33e|\U0001f468\U0001f3fb\u200d\U0001f373|\U0001f468\U0001f3fc\u200d\U0001f373|\U0001f468\U0001f3fd\u200d\U0001f373|\U0001f468\U0001f3fe\u200d\U0001f373|\U0001f468\U0001f3ff\u200d\U0001f373|\U0001f469\U0001f3fb\u200d\U0001f373|\U0001f469\U0001f3fc\u200d\U0001f373|\U0001f469\U0001f3fd\u200d\U0001f373|\U0001f469\U0001f3fe\u200d\U0001f373|\U0001f469\U0001f3ff\u200d\U0001f373|\U0001f468\U0001f3fb\u200d\U0001f527|\U0001f468\U0001f3fc\u200d\U0001f527|\U0001f468\U0001f3fd\u200d\U0001f527|\U0001f468\U0001f3fe\u200d\U0001f527|\U0001f468\U0001f3ff\u200d\U0001f527|\U0001f469\U0001f3fb\u200d\U0001f527|\U0001f469\U0001f3fc\u200d\U0001f527|\U0001f469\U0001f3fd\u200d\U0001f527|\U0001f469\U0001f3fe\u200d\U0001f527|\U0001f469\U0001f3ff\u200d\U0001f527|\U0001f468\U0001f3fb\u200d\U0001f3ed|\U0001f468\U0001f3fc\u200d\U0001f3ed|\U0001f468\U0001f3fd\u200d\U0001f3ed|\U0001f468\U0001f3fe\u200d\U0001f3ed|\U0001f468\U0001f3ff\u200d\U0001f3ed|\U0001f469\U0001f3fb\u200d\U0001f3ed|\U0001f469\U0001f3fc\u200d\U0001f3ed|\U0001f469\U0001f3fd\u200d\U0001f3ed|\U0001f469\U0001f3fe\u200d\U0001f3ed|\U0001f469\U0001f3ff\u200d\U0001f3ed|\U0001f468\U0001f3fb\u200d\U0001f4bc|\U0001f468\U0001f3fc\u200d\U0001f4bc|\U0001f468\U0001f3fd\u200d\U0001f4bc|\U0001f468\U0001f3fe\u200d\U0001f4bc|\U0001f468\U0001f3ff\u200d\U0001f4bc|\U0001f469\U0001f3fb\u200d\U0001f4bc|\U0001f469\U0001f3fc\u200d\U0001f4bc|\U0001f469\U0001f3fd\u200d\U0001f4bc|\U0001f469\U0001f3fe\u200d\U0001f4bc|\U0001f469\U0001f3ff\u200d\U0001f4bc|\U0001f468\U0001f3fb\u200d\U0001f52c|\U0001f468\U0001f3fc\u200d\U0001f52c|\U0001f468\U0001f3fd\u200d\U0001f52c|\U0001f468\U0001f3fe\u200d\U0001f52c|\U0001f468\U0001f3ff\u200d\U0001f52c|\U0001f469\U0001f3fb\u200d\U0001f52c|\U0001f469\U0001f3fc\u200d\U0001f52c|\U0001f469\U0001f3fd\u200d\U0001f52c|\U0001f469\U0001f3fe\u200d\U0001f52c|\U0001f469\U0001f3ff\u200d\U0001f52c|\U0001f468\U0001f3fb\u200d\U0001f4bb|\U0001f468\U0001f3fc\u200d\U0001f4bb|\U0001f468\U0001f3fd\u200d\U0001f4bb|\U0001f468\U0001f3fe\u200d\U0001f4bb|\U0001f468\U0001f3ff\u200d\U0001f4bb|\U0001f469\U0001f3fb\u200d\U0001f4bb|\U0001f469\U0001f3fc\u200d\U0001f4bb|\U0001f469\U0001f3fd\u200d\U0001f4bb|\U0001f469\U0001f3fe\u200d\U0001f4bb|\U0001f469\U0001f3ff\u200d\U0001f4bb|\U0001f468\U0001f3fb\u200d\U0001f3a4|\U0001f468\U0001f3fc\u200d\U0001f3a4|\U0001f468\U0001f3fd\u200d\U0001f3a4|\U0001f468\U0001f3fe\u200d\U0001f3a4|\U0001f468\U0001f3ff\u200d\U0001f3a4|\U0001f469\U0001f3fb\u200d\U0001f3a4|\U0001f469\U0001f3fc\u200d\U0001f3a4|\U0001f469\U0001f3fd\u200d\U0001f3a4|\U0001f469\U0001f3fe\u200d\U0001f3a4|\U0001f469\U0001f3ff\u200d\U0001f3a4|\U0001f468\U0001f3fb\u200d\U0001f3a8|\U0001f468\U0001f3fc\u200d\U0001f3a8|\U0001f468\U0001f3fd\u200d\U0001f3a8|\U0001f468\U0001f3fe\u200d\U0001f3a8|\U0001f468\U0001f3ff\u200d\U0001f3a8|\U0001f469\U0001f3fb\u200d\U0001f3a8|\U0001f469\U0001f3fc\u200d\U0001f3a8|\U0001f469\U0001f3fd\u200d\U0001f3a8|\U0001f469\U0001f3fe\u200d\U0001f3a8|\U0001f469\U0001f3ff\u200d\U0001f3a8|\U0001f468\u200d\u2708\ufe0f|\U0001f468\U0001f3fb\u200d\u2708|\U0001f468\U0001f3fc\u200d\u2708|\U0001f468\U0001f3fd\u200d\u2708|\U0001f468\U0001f3fe\u200d\u2708|\U0001f468\U0001f3ff\u200d\u2708|\U0001f469\u200d\u2708\ufe0f|\U0001f469\U0001f3fb\u200d\u2708|\U0001f469\U0001f3fc\u200d\u2708|\U0001f469\U0001f3fd\u200d\u2708|\U0001f469\U0001f3fe\u200d\u2708|\U0001f469\U0001f3ff\u200d\u2708|\U0001f468\U0001f3fb\u200d\U0001f680|\U0001f468\U0001f3fc\u200d\U0001f680|\U0001f468\U0001f3fd\u200d\U0001f680|\U0001f468\U0001f3fe\u200d\U0001f680|\U0001f468\U0001f3ff\u200d\U0001f680|\U0001f469\U0001f3fb\u200d\U0001f680|\U0001f469\U0001f3fc\u200d\U0001f680|\U0001f469\U0001f3fd\u200d\U0001f680|\U0001f469\U0001f3fe\u200d\U0001f680|\U0001f469\U0001f3ff\u200d\U0001f680|\U0001f468\U0001f3fb\u200d\U0001f692|\U0001f468\U0001f3fc\u200d\U0001f692|\U0001f468\U0001f3fd\u200d\U0001f692|\U0001f468\U0001f3fe\u200d\U0001f692|\U0001f468\U0001f3ff\u200d\U0001f692|\U0001f469\U0001f3fb\u200d\U0001f692|\U0001f469\U0001f3fc\u200d\U0001f692|\U0001f469\U0001f3fd\u200d\U0001f692|\U0001f469\U0001f3fe\u200d\U0001f692|\U0001f469\U0001f3ff\u200d\U0001f692|\U0001f46e\u200d\u2642\ufe0f|\U0001f46e\U0001f3fb\u200d\u2642|\U0001f46e\U0001f3fc\u200d\u2642|\U0001f46e\U0001f3fd\u200d\u2642|\U0001f46e\U0001f3fe\u200d\u2642|\U0001f46e\U0001f3ff\u200d\u2642|\U0001f46e\u200d\u2640\ufe0f|\U0001f46e\U0001f3fb\u200d\u2640|\U0001f46e\U0001f3fc\u200d\u2640|\U0001f46e\U0001f3fd\u200d\u2640|\U0001f46e\U0001f3fe\u200d\u2640|\U0001f46e\U0001f3ff\u200d\u2640|\U0001f575\u200d\u2642\ufe0f|\U0001f575\ufe0f\u200d\u2642|\U0001f575\U0001f3fb\u200d\u2642|\U0001f575\U0001f3fc\u200d\u2642|\U0001f575\U0001f3fd\u200d\u2642|\U0001f575\U0001f3fe\u200d\u2642|\U0001f575\U0001f3ff\u200d\u2642|\U0001f575\u200d\u2640\ufe0f|\U0001f575\ufe0f\u200d\u2640|\U0001f575\U0001f3fb\u200d\u2640|\U0001f575\U0001f3fc\u200d\u2640|\U0001f575\U0001f3fd\u200d\u2640|\U0001f575\U0001f3fe\u200d\u2640|\U0001f575\U0001f3ff\u200d\u2640|\U0001f482\u200d\u2642\ufe0f|\U0001f482\U0001f3fb\u200d\u2642|\U0001f482\U0001f3fc\u200d\u2642|\U0001f482\U0001f3fd\u200d\u2642|\U0001f482\U0001f3fe\u200d\u2642|\U0001f482\U0001f3ff\u200d\u2642|\U0001f482\u200d\u2640\ufe0f|\U0001f482\U0001f3fb\u200d\u2640|\U0001f482\U0001f3fc\u200d\u2640|\U0001f482\U0001f3fd\u200d\u2640|\U0001f482\U0001f3fe\u200d\u2640|\U0001f482\U0001f3ff\u200d\u2640|\U0001f477\u200d\u2642\ufe0f|\U0001f477\U0001f3fb\u200d\u2642|\U0001f477\U0001f3fc\u200d\u2642|\U0001f477\U0001f3fd\u200d\u2642|\U0001f477\U0001f3fe\u200d\u2642|\U0001f477\U0001f3ff\u200d\u2642|\U0001f477\u200d\u2640\ufe0f|\U0001f477\U0001f3fb\u200d\u2640|\U0001f477\U0001f3fc\u200d\u2640|\U0001f477\U0001f3fd\u200d\u2640|\U0001f477\U0001f3fe\u200d\u2640|\U0001f477\U0001f3ff\u200d\u2640|\U0001f473\u200d\u2642\ufe0f|\U0001f473\U0001f3fb\u200d\u2642|\U0001f473\U0001f3fc\u200d\u2642|\U0001f473\U0001f3fd\u200d\u2642|\U0001f473\U0001f3fe\u200d\u2642|\U0001f473\U0001f3ff\u200d\u2642|\U0001f473\u200d\u2640\ufe0f|\U0001f473\U0001f3fb\u200d\u2640|\U0001f473\U0001f3fc\u200d\u2640|\U0001f473\U0001f3fd\u200d\u2640|\U0001f473\U0001f3fe\u200d\u2640|\U0001f473\U0001f3ff\u200d\u2640|\U0001f9b8\u200d\u2642\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2642|\U0001f9b8\U0001f3fc\u200d\u2642|\U0001f9b8\U0001f3fd\u200d\u2642|\U0001f9b8\U0001f3fe\u200d\u2642|\U0001f9b8\U0001f3ff\u200d\u2642|\U0001f9b8\u200d\u2640\ufe0f|\U0001f9b8\U0001f3fb\u200d\u2640|\U0001f9b8\U0001f3fc\u200d\u2640|\U0001f9b8\U0001f3fd\u200d\u2640|\U0001f9b8\U0001f3fe\u200d\u2640|\U0001f9b8\U0001f3ff\u200d\u2640|\U0001f9b9\u200d\u2642\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2642|\U0001f9b9\U0001f3fc\u200d\u2642|\U0001f9b9\U0001f3fd\u200d\u2642|\U0001f9b9\U0001f3fe\u200d\u2642|\U0001f9b9\U0001f3ff\u200d\u2642|\U0001f9b9\u200d\u2640\ufe0f|\U0001f9b9\U0001f3fb\u200d\u2640|\U0001f9b9\U0001f3fc\u200d\u2640|\U0001f9b9\U0001f3fd\u200d\u2640|\U0001f9b9\U0001f3fe\u200d\u2640|\U0001f9b9\U0001f3ff\u200d\u2640|\U0001f9d9\u200d\u2642\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2642|\U0001f9d9\U0001f3fc\u200d\u2642|\U0001f9d9\U0001f3fd\u200d\u2642|\U0001f9d9\U0001f3fe\u200d\u2642|\U0001f9d9\U0001f3ff\u200d\u2642|\U0001f9d9\u200d\u2640\ufe0f|\U0001f9d9\U0001f3fb\u200d\u2640|\U0001f9d9\U0001f3fc\u200d\u2640|\U0001f9d9\U0001f3fd\u200d\u2640|\U0001f9d9\U0001f3fe\u200d\u2640|\U0001f9d9\U0001f3ff\u200d\u2640|\U0001f9da\u200d\u2642\ufe0f|\U0001f9da\U0001f3fb\u200d\u2642|\U0001f9da\U0001f3fc\u200d\u2642|\U0001f9da\U0001f3fd\u200d\u2642|\U0001f9da\U0001f3fe\u200d\u2642|\U0001f9da\U0001f3ff\u200d\u2642|\U0001f9da\u200d\u2640\ufe0f|\U0001f9da\U0001f3fb\u200d\u2640|\U0001f9da\U0001f3fc\u200d\u2640|\U0001f9da\U0001f3fd\u200d\u2640|\U0001f9da\U0001f3fe\u200d\u2640|\U0001f9da\U0001f3ff\u200d\u2640|\U0001f9db\u200d\u2642\ufe0f|\U0001f9db\U0001f3fb\u200d\u2642|\U0001f9db\U0001f3fc\u200d\u2642|\U0001f9db\U0001f3fd\u200d\u2642|\U0001f9db\U0001f3fe\u200d\u2642|\U0001f9db\U0001f3ff\u200d\u2642|\U0001f9db\u200d\u2640\ufe0f|\U0001f9db\U0001f3fb\u200d\u2640|\U0001f9db\U0001f3fc\u200d\u2640|\U0001f9db\U0001f3fd\u200d\u2640|\U0001f9db\U0001f3fe\u200d\u2640|\U0001f9db\U0001f3ff\u200d\u2640|\U0001f9dc\u200d\u2642\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2642|\U0001f9dc\U0001f3fc\u200d\u2642|\U0001f9dc\U0001f3fd\u200d\u2642|\U0001f9dc\U0001f3fe\u200d\u2642|\U0001f9dc\U0001f3ff\u200d\u2642|\U0001f9dc\u200d\u2640\ufe0f|\U0001f9dc\U0001f3fb\u200d\u2640|\U0001f9dc\U0001f3fc\u200d\u2640|\U0001f9dc\U0001f3fd\u200d\u2640|\U0001f9dc\U0001f3fe\u200d\u2640|\U0001f9dc\U0001f3ff\u200d\u2640|\U0001f9dd\u200d\u2642\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2642|\U0001f9dd\U0001f3fc\u200d\u2642|\U0001f9dd\U0001f3fd\u200d\u2642|\U0001f9dd\U0001f3fe\u200d\u2642|\U0001f9dd\U0001f3ff\u200d\u2642|\U0001f9dd\u200d\u2640\ufe0f|\U0001f9dd\U0001f3fb\u200d\u2640|\U0001f9dd\U0001f3fc\u200d\u2640|\U0001f9dd\U0001f3fd\u200d\u2640|\U0001f9dd\U0001f3fe\u200d\u2640|\U0001f9dd\U0001f3ff\u200d\u2640|\U0001f9de\u200d\u2642\ufe0f|\U0001f9de\u200d\u2640\ufe0f|\U0001f9df\u200d\u2642\ufe0f|\U0001f9df\u200d\u2640\ufe0f|\U0001f486\u200d\u2642\ufe0f|\U0001f486\U0001f3fb\u200d\u2642|\U0001f486\U0001f3fc\u200d\u2642|\U0001f486\U0001f3fd\u200d\u2642|\U0001f486\U0001f3fe\u200d\u2642|\U0001f486\U0001f3ff\u200d\u2642|\U0001f486\u200d\u2640\ufe0f|\U0001f486\U0001f3fb\u200d\u2640|\U0001f486\U0001f3fc\u200d\u2640|\U0001f486\U0001f3fd\u200d\u2640|\U0001f486\U0001f3fe\u200d\u2640|\U0001f486\U0001f3ff\u200d\u2640|\U0001f487\u200d\u2642\ufe0f|\U0001f487\U0001f3fb\u200d\u2642|\U0001f487\U0001f3fc\u200d\u2642|\U0001f487\U0001f3fd\u200d\u2642|\U0001f487\U0001f3fe\u200d\u2642|\U0001f487\U0001f3ff\u200d\u2642|\U0001f487\u200d\u2640\ufe0f|\U0001f487\U0001f3fb\u200d\u2640|\U0001f487\U0001f3fc\u200d\u2640|\U0001f487\U0001f3fd\u200d\u2640|\U0001f487\U0001f3fe\u200d\u2640|\U0001f487\U0001f3ff\u200d\u2640|\U0001f6b6\u200d\u2642\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2642|\U0001f6b6\U0001f3fc\u200d\u2642|\U0001f6b6\U0001f3fd\u200d\u2642|\U0001f6b6\U0001f3fe\u200d\u2642|\U0001f6b6\U0001f3ff\u200d\u2642|\U0001f6b6\u200d\u2640\ufe0f|\U0001f6b6\U0001f3fb\u200d\u2640|\U0001f6b6\U0001f3fc\u200d\u2640|\U0001f6b6\U0001f3fd\u200d\u2640|\U0001f6b6\U0001f3fe\u200d\u2640|\U0001f6b6\U0001f3ff\u200d\u2640|\U0001f9cd\u200d\u2642\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2642|\U0001f9cd\U0001f3fc\u200d\u2642|\U0001f9cd\U0001f3fd\u200d\u2642|\U0001f9cd\U0001f3fe\u200d\u2642|\U0001f9cd\U0001f3ff\u200d\u2642|\U0001f9cd\u200d\u2640\ufe0f|\U0001f9cd\U0001f3fb\u200d\u2640|\U0001f9cd\U0001f3fc\u200d\u2640|\U0001f9cd\U0001f3fd\u200d\u2640|\U0001f9cd\U0001f3fe\u200d\u2640|\U0001f9cd\U0001f3ff\u200d\u2640|\U0001f9ce\u200d\u2642\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2642|\U0001f9ce\U0001f3fc\u200d\u2642|\U0001f9ce\U0001f3fd\u200d\u2642|\U0001f9ce\U0001f3fe\u200d\u2642|\U0001f9ce\U0001f3ff\u200d\u2642|\U0001f9ce\u200d\u2640\ufe0f|\U0001f9ce\U0001f3fb\u200d\u2640|\U0001f9ce\U0001f3fc\u200d\u2640|\U0001f9ce\U0001f3fd\u200d\u2640|\U0001f9ce\U0001f3fe\u200d\u2640|\U0001f9ce\U0001f3ff\u200d\u2640|\U0001f468\U0001f3fb\u200d\U0001f9af|\U0001f468\U0001f3fc\u200d\U0001f9af|\U0001f468\U0001f3fd\u200d\U0001f9af|\U0001f468\U0001f3fe\u200d\U0001f9af|\U0001f468\U0001f3ff\u200d\U0001f9af|\U0001f469\U0001f3fb\u200d\U0001f9af|\U0001f469\U0001f3fc\u200d\U0001f9af|\U0001f469\U0001f3fd\u200d\U0001f9af|\U0001f469\U0001f3fe\u200d\U0001f9af|\U0001f469\U0001f3ff\u200d\U0001f9af|\U0001f468\U0001f3fb\u200d\U0001f9bc|\U0001f468\U0001f3fc\u200d\U0001f9bc|\U0001f468\U0001f3fd\u200d\U0001f9bc|\U0001f468\U0001f3fe\u200d\U0001f9bc|\U0001f468\U0001f3ff\u200d\U0001f9bc|\U0001f469\U0001f3fb\u200d\U0001f9bc|\U0001f469\U0001f3fc\u200d\U0001f9bc|\U0001f469\U0001f3fd\u200d\U0001f9bc|\U0001f469\U0001f3fe\u200d\U0001f9bc|\U0001f469\U0001f3ff\u200d\U0001f9bc|\U0001f468\U0001f3fb\u200d\U0001f9bd|\U0001f468\U0001f3fc\u200d\U0001f9bd|\U0001f468\U0001f3fd\u200d\U0001f9bd|\U0001f468\U0001f3fe\u200d\U0001f9bd|\U0001f468\U0001f3ff\u200d\U0001f9bd|\U0001f469\U0001f3fb\u200d\U0001f9bd|\U0001f469\U0001f3fc\u200d\U0001f9bd|\U0001f469\U0001f3fd\u200d\U0001f9bd|\U0001f469\U0001f3fe\u200d\U0001f9bd|\U0001f469\U0001f3ff\u200d\U0001f9bd|\U0001f3c3\u200d\u2642\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2642|\U0001f3c3\U0001f3fc\u200d\u2642|\U0001f3c3\U0001f3fd\u200d\u2642|\U0001f3c3\U0001f3fe\u200d\u2642|\U0001f3c3\U0001f3ff\u200d\u2642|\U0001f3c3\u200d\u2640\ufe0f|\U0001f3c3\U0001f3fb\u200d\u2640|\U0001f3c3\U0001f3fc\u200d\u2640|\U0001f3c3\U0001f3fd\u200d\u2640|\U0001f3c3\U0001f3fe\u200d\u2640|\U0001f3c3\U0001f3ff\u200d\u2640|\U0001f46f\u200d\u2642\ufe0f|\U0001f46f\u200d\u2640\ufe0f|\U0001f9d6\u200d\u2642\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2642|\U0001f9d6\U0001f3fc\u200d\u2642|\U0001f9d6\U0001f3fd\u200d\u2642|\U0001f9d6\U0001f3fe\u200d\u2642|\U0001f9d6\U0001f3ff\u200d\u2642|\U0001f9d6\u200d\u2640\ufe0f|\U0001f9d6\U0001f3fb\u200d\u2640|\U0001f9d6\U0001f3fc\u200d\u2640|\U0001f9d6\U0001f3fd\u200d\u2640|\U0001f9d6\U0001f3fe\u200d\u2640|\U0001f9d6\U0001f3ff\u200d\u2640|\U0001f9d7\u200d\u2642\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2642|\U0001f9d7\U0001f3fc\u200d\u2642|\U0001f9d7\U0001f3fd\u200d\u2642|\U0001f9d7\U0001f3fe\u200d\u2642|\U0001f9d7\U0001f3ff\u200d\u2642|\U0001f9d7\u200d\u2640\ufe0f|\U0001f9d7\U0001f3fb\u200d\u2640|\U0001f9d7\U0001f3fc\u200d\u2640|\U0001f9d7\U0001f3fd\u200d\u2640|\U0001f9d7\U0001f3fe\u200d\u2640|\U0001f9d7\U0001f3ff\u200d\u2640|\U0001f3cc\u200d\u2642\ufe0f|\U0001f3cc\ufe0f\u200d\u2642|\U0001f3cc\U0001f3fb\u200d\u2642|\U0001f3cc\U0001f3fc\u200d\u2642|\U0001f3cc\U0001f3fd\u200d\u2642|\U0001f3cc\U0001f3fe\u200d\u2642|\U0001f3cc\U0001f3ff\u200d\u2642|\U0001f3cc\u200d\u2640\ufe0f|\U0001f3cc\ufe0f\u200d\u2640|\U0001f3cc\U0001f3fb\u200d\u2640|\U0001f3cc\U0001f3fc\u200d\u2640|\U0001f3cc\U0001f3fd\u200d\u2640|\U0001f3cc\U0001f3fe\u200d\u2640|\U0001f3cc\U0001f3ff\u200d\u2640|\U0001f3c4\u200d\u2642\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2642|\U0001f3c4\U0001f3fc\u200d\u2642|\U0001f3c4\U0001f3fd\u200d\u2642|\U0001f3c4\U0001f3fe\u200d\u2642|\U0001f3c4\U0001f3ff\u200d\u2642|\U0001f3c4\u200d\u2640\ufe0f|\U0001f3c4\U0001f3fb\u200d\u2640|\U0001f3c4\U0001f3fc\u200d\u2640|\U0001f3c4\U0001f3fd\u200d\u2640|\U0001f3c4\U0001f3fe\u200d\u2640|\U0001f3c4\U0001f3ff\u200d\u2640|\U0001f6a3\u200d\u2642\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2642|\U0001f6a3\U0001f3fc\u200d\u2642|\U0001f6a3\U0001f3fd\u200d\u2642|\U0001f6a3\U0001f3fe\u200d\u2642|\U0001f6a3\U0001f3ff\u200d\u2642|\U0001f6a3\u200d\u2640\ufe0f|\U0001f6a3\U0001f3fb\u200d\u2640|\U0001f6a3\U0001f3fc\u200d\u2640|\U0001f6a3\U0001f3fd\u200d\u2640|\U0001f6a3\U0001f3fe\u200d\u2640|\U0001f6a3\U0001f3ff\u200d\u2640|\U0001f3ca\u200d\u2642\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2642|\U0001f3ca\U0001f3fc\u200d\u2642|\U0001f3ca\U0001f3fd\u200d\u2642|\U0001f3ca\U0001f3fe\u200d\u2642|\U0001f3ca\U0001f3ff\u200d\u2642|\U0001f3ca\u200d\u2640\ufe0f|\U0001f3ca\U0001f3fb\u200d\u2640|\U0001f3ca\U0001f3fc\u200d\u2640|\U0001f3ca\U0001f3fd\u200d\u2640|\U0001f3ca\U0001f3fe\u200d\u2640|\U0001f3ca\U0001f3ff\u200d\u2640|\u26f9\u200d\u2642\ufe0f|\u26f9\ufe0f\u200d\u2642|\u26f9\U0001f3fb\u200d\u2642|\u26f9\U0001f3fc\u200d\u2642|\u26f9\U0001f3fd\u200d\u2642|\u26f9\U0001f3fe\u200d\u2642|\u26f9\U0001f3ff\u200d\u2642|\u26f9\u200d\u2640\ufe0f|\u26f9\ufe0f\u200d\u2640|\u26f9\U0001f3fb\u200d\u2640|\u26f9\U0001f3fc\u200d\u2640|\u26f9\U0001f3fd\u200d\u2640|\u26f9\U0001f3fe\u200d\u2640|\u26f9\U0001f3ff\u200d\u2640|\U0001f3cb\u200d\u2642\ufe0f|\U0001f3cb\ufe0f\u200d\u2642|\U0001f3cb\U0001f3fb\u200d\u2642|\U0001f3cb\U0001f3fc\u200d\u2642|\U0001f3cb\U0001f3fd\u200d\u2642|\U0001f3cb\U0001f3fe\u200d\u2642|\U0001f3cb\U0001f3ff\u200d\u2642|\U0001f3cb\u200d\u2640\ufe0f|\U0001f3cb\ufe0f\u200d\u2640|\U0001f3cb\U0001f3fb\u200d\u2640|\U0001f3cb\U0001f3fc\u200d\u2640|\U0001f3cb\U0001f3fd\u200d\u2640|\U0001f3cb\U0001f3fe\u200d\u2640|\U0001f3cb\U0001f3ff\u200d\u2640|\U0001f6b4\u200d\u2642\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2642|\U0001f6b4\U0001f3fc\u200d\u2642|\U0001f6b4\U0001f3fd\u200d\u2642|\U0001f6b4\U0001f3fe\u200d\u2642|\U0001f6b4\U0001f3ff\u200d\u2642|\U0001f6b4\u200d\u2640\ufe0f|\U0001f6b4\U0001f3fb\u200d\u2640|\U0001f6b4\U0001f3fc\u200d\u2640|\U0001f6b4\U0001f3fd\u200d\u2640|\U0001f6b4\U0001f3fe\u200d\u2640|\U0001f6b4\U0001f3ff\u200d\u2640|\U0001f6b5\u200d\u2642\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2642|\U0001f6b5\U0001f3fc\u200d\u2642|\U0001f6b5\U0001f3fd\u200d\u2642|\U0001f6b5\U0001f3fe\u200d\u2642|\U0001f6b5\U0001f3ff\u200d\u2642|\U0001f6b5\u200d\u2640\ufe0f|\U0001f6b5\U0001f3fb\u200d\u2640|\U0001f6b5\U0001f3fc\u200d\u2640|\U0001f6b5\U0001f3fd\u200d\u2640|\U0001f6b5\U0001f3fe\u200d\u2640|\U0001f6b5\U0001f3ff\u200d\u2640|\U0001f938\u200d\u2642\ufe0f|\U0001f938\U0001f3fb\u200d\u2642|\U0001f938\U0001f3fc\u200d\u2642|\U0001f938\U0001f3fd\u200d\u2642|\U0001f938\U0001f3fe\u200d\u2642|\U0001f938\U0001f3ff\u200d\u2642|\U0001f938\u200d\u2640\ufe0f|\U0001f938\U0001f3fb\u200d\u2640|\U0001f938\U0001f3fc\u200d\u2640|\U0001f938\U0001f3fd\u200d\u2640|\U0001f938\U0001f3fe\u200d\u2640|\U0001f938\U0001f3ff\u200d\u2640|\U0001f93c\u200d\u2642\ufe0f|\U0001f93c\u200d\u2640\ufe0f|\U0001f93d\u200d\u2642\ufe0f|\U0001f93d\U0001f3fb\u200d\u2642|\U0001f93d\U0001f3fc\u200d\u2642|\U0001f93d\U0001f3fd\u200d\u2642|\U0001f93d\U0001f3fe\u200d\u2642|\U0001f93d\U0001f3ff\u200d\u2642|\U0001f93d\u200d\u2640\ufe0f|\U0001f93d\U0001f3fb\u200d\u2640|\U0001f93d\U0001f3fc\u200d\u2640|\U0001f93d\U0001f3fd\u200d\u2640|\U0001f93d\U0001f3fe\u200d\u2640|\U0001f93d\U0001f3ff\u200d\u2640|\U0001f93e\u200d\u2642\ufe0f|\U0001f93e\U0001f3fb\u200d\u2642|\U0001f93e\U0001f3fc\u200d\u2642|\U0001f93e\U0001f3fd\u200d\u2642|\U0001f93e\U0001f3fe\u200d\u2642|\U0001f93e\U0001f3ff\u200d\u2642|\U0001f93e\u200d\u2640\ufe0f|\U0001f93e\U0001f3fb\u200d\u2640|\U0001f93e\U0001f3fc\u200d\u2640|\U0001f93e\U0001f3fd\u200d\u2640|\U0001f93e\U0001f3fe\u200d\u2640|\U0001f93e\U0001f3ff\u200d\u2640|\U0001f939\u200d\u2642\ufe0f|\U0001f939\U0001f3fb\u200d\u2642|\U0001f939\U0001f3fc\u200d\u2642|\U0001f939\U0001f3fd\u200d\u2642|\U0001f939\U0001f3fe\u200d\u2642|\U0001f939\U0001f3ff\u200d\u2642|\U0001f939\u200d\u2640\ufe0f|\U0001f939\U0001f3fb\u200d\u2640|\U0001f939\U0001f3fc\u200d\u2640|\U0001f939\U0001f3fd\u200d\u2640|\U0001f939\U0001f3fe\u200d\u2640|\U0001f939\U0001f3ff\u200d\u2640|\U0001f9d8\u200d\u2642\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2642|\U0001f9d8\U0001f3fc\u200d\u2642|\U0001f9d8\U0001f3fd\u200d\u2642|\U0001f9d8\U0001f3fe\u200d\u2642|\U0001f9d8\U0001f3ff\u200d\u2642|\U0001f9d8\u200d\u2640\ufe0f|\U0001f9d8\U0001f3fb\u200d\u2640|\U0001f9d8\U0001f3fc\u200d\u2640|\U0001f9d8\U0001f3fd\u200d\u2640|\U0001f9d8\U0001f3fe\u200d\u2640|\U0001f9d8\U0001f3ff\u200d\u2640|\U0001f3f3\ufe0f\u200d\U0001f308|\U0001f3f4\u200d\u2620\ufe0f|\U0001f441\u200d\U0001f5e8|\U0001f471\u200d\u2642|\U0001f468\u200d\U0001f9b0|\U0001f468\u200d\U0001f9b1|\U0001f468\u200d\U0001f9b3|\U0001f468\u200d\U0001f9b2|\U0001f471\u200d\u2640|\U0001f469\u200d\U0001f9b0|\U0001f469\u200d\U0001f9b1|\U0001f469\u200d\U0001f9b3|\U0001f469\u200d\U0001f9b2|\U0001f64d\u200d\u2642|\U0001f64d\u200d\u2640|\U0001f64e\u200d\u2642|\U0001f64e\u200d\u2640|\U0001f645\u200d\u2642|\U0001f645\u200d\u2640|\U0001f646\u200d\u2642|\U0001f646\u200d\u2640|\U0001f481\u200d\u2642|\U0001f481\u200d\u2640|\U0001f64b\u200d\u2642|\U0001f64b\u200d\u2640|\U0001f9cf\u200d\u2642|\U0001f9cf\u200d\u2640|\U0001f647\u200d\u2642|\U0001f647\u200d\u2640|\U0001f926\u200d\u2642|\U0001f926\u200d\u2640|\U0001f937\u200d\u2642|\U0001f937\u200d\u2640|\U0001f468\u200d\u2695|\U0001f469\u200d\u2695|\U0001f468\u200d\U0001f393|\U0001f469\u200d\U0001f393|\U0001f468\u200d\U0001f3eb|\U0001f469\u200d\U0001f3eb|\U0001f468\u200d\u2696|\U0001f469\u200d\u2696|\U0001f468\u200d\U0001f33e|\U0001f469\u200d\U0001f33e|\U0001f468\u200d\U0001f373|\U0001f469\u200d\U0001f373|\U0001f468\u200d\U0001f527|\U0001f469\u200d\U0001f527|\U0001f468\u200d\U0001f3ed|\U0001f469\u200d\U0001f3ed|\U0001f468\u200d\U0001f4bc|\U0001f469\u200d\U0001f4bc|\U0001f468\u200d\U0001f52c|\U0001f469\u200d\U0001f52c|\U0001f468\u200d\U0001f4bb|\U0001f469\u200d\U0001f4bb|\U0001f468\u200d\U0001f3a4|\U0001f469\u200d\U0001f3a4|\U0001f468\u200d\U0001f3a8|\U0001f469\u200d\U0001f3a8|\U0001f468\u200d\u2708|\U0001f469\u200d\u2708|\U0001f468\u200d\U0001f680|\U0001f469\u200d\U0001f680|\U0001f468\u200d\U0001f692|\U0001f469\u200d\U0001f692|\U0001f46e\u200d\u2642|\U0001f46e\u200d\u2640|\U0001f575\u200d\u2642|\U0001f575\u200d\u2640|\U0001f482\u200d\u2642|\U0001f482\u200d\u2640|\U0001f477\u200d\u2642|\U0001f477\u200d\u2640|\U0001f473\u200d\u2642|\U0001f473\u200d\u2640|\U0001f9b8\u200d\u2642|\U0001f9b8\u200d\u2640|\U0001f9b9\u200d\u2642|\U0001f9b9\u200d\u2640|\U0001f9d9\u200d\u2642|\U0001f9d9\u200d\u2640|\U0001f9da\u200d\u2642|\U0001f9da\u200d\u2640|\U0001f9db\u200d\u2642|\U0001f9db\u200d\u2640|\U0001f9dc\u200d\u2642|\U0001f9dc\u200d\u2640|\U0001f9dd\u200d\u2642|\U0001f9dd\u200d\u2640|\U0001f9de\u200d\u2642|\U0001f9de\u200d\u2640|\U0001f9df\u200d\u2642|\U0001f9df\u200d\u2640|\U0001f486\u200d\u2642|\U0001f486\u200d\u2640|\U0001f487\u200d\u2642|\U0001f487\u200d\u2640|\U0001f6b6\u200d\u2642|\U0001f6b6\u200d\u2640|\U0001f9cd\u200d\u2642|\U0001f9cd\u200d\u2640|\U0001f9ce\u200d\u2642|\U0001f9ce\u200d\u2640|\U0001f468\u200d\U0001f9af|\U0001f469\u200d\U0001f9af|\U0001f468\u200d\U0001f9bc|\U0001f469\u200d\U0001f9bc|\U0001f468\u200d\U0001f9bd|\U0001f469\u200d\U0001f9bd|\U0001f3c3\u200d\u2642|\U0001f3c3\u200d\u2640|\U0001f46f\u200d\u2642|\U0001f46f\u200d\u2640|\U0001f9d6\u200d\u2642|\U0001f9d6\u200d\u2640|\U0001f9d7\u200d\u2642|\U0001f9d7\u200d\u2640|\U0001f3cc\u200d\u2642|\U0001f3cc\u200d\u2640|\U0001f3c4\u200d\u2642|\U0001f3c4\u200d\u2640|\U0001f6a3\u200d\u2642|\U0001f6a3\u200d\u2640|\U0001f3ca\u200d\u2642|\U0001f3ca\u200d\u2640|\u26f9\u200d\u2642|\u26f9\u200d\u2640|\U0001f3cb\u200d\u2642|\U0001f3cb\u200d\u2640|\U0001f6b4\u200d\u2642|\U0001f6b4\u200d\u2640|\U0001f6b5\u200d\u2642|\U0001f6b5\u200d\u2640|\U0001f938\u200d\u2642|\U0001f938\u200d\u2640|\U0001f93c\u200d\u2642|\U0001f93c\u200d\u2640|\U0001f93d\u200d\u2642|\U0001f93d\u200d\u2640|\U0001f93e\u200d\u2642|\U0001f93e\u200d\u2640|\U0001f939\u200d\u2642|\U0001f939\u200d\u2640|\U0001f9d8\u200d\u2642|\U0001f9d8\u200d\u2640|\U0001f468\u200d\U0001f466|\U0001f468\u200d\U0001f467|\U0001f469\u200d\U0001f466|\U0001f469\u200d\U0001f467|\U0001f415\u200d\U0001f9ba|\\#\ufe0f\u20e3|\\*\ufe0f\u20e3|0\ufe0f\u20e3|1\ufe0f\u20e3|2\ufe0f\u20e3|3\ufe0f\u20e3|4\ufe0f\u20e3|5\ufe0f\u20e3|6\ufe0f\u20e3|7\ufe0f\u20e3|8\ufe0f\u20e3|9\ufe0f\u20e3|\U0001f3f3\u200d\U0001f308|\U0001f3f4\u200d\u2620|\u263a\ufe0f|\u2639\ufe0f|\u2620\ufe0f|\u2763\ufe0f|\u2764\ufe0f|\U0001f573\ufe0f|\U0001f5e8\ufe0f|\U0001f5ef\ufe0f|\U0001f44b\U0001f3fb|\U0001f44b\U0001f3fc|\U0001f44b\U0001f3fd|\U0001f44b\U0001f3fe|\U0001f44b\U0001f3ff|\U0001f91a\U0001f3fb|\U0001f91a\U0001f3fc|\U0001f91a\U0001f3fd|\U0001f91a\U0001f3fe|\U0001f91a\U0001f3ff|\U0001f590\ufe0f|\U0001f590\U0001f3fb|\U0001f590\U0001f3fc|\U0001f590\U0001f3fd|\U0001f590\U0001f3fe|\U0001f590\U0001f3ff|\u270b\U0001f3fb|\u270b\U0001f3fc|\u270b\U0001f3fd|\u270b\U0001f3fe|\u270b\U0001f3ff|\U0001f596\U0001f3fb|\U0001f596\U0001f3fc|\U0001f596\U0001f3fd|\U0001f596\U0001f3fe|\U0001f596\U0001f3ff|\U0001f44c\U0001f3fb|\U0001f44c\U0001f3fc|\U0001f44c\U0001f3fd|\U0001f44c\U0001f3fe|\U0001f44c\U0001f3ff|\U0001f90f\U0001f3fb|\U0001f90f\U0001f3fc|\U0001f90f\U0001f3fd|\U0001f90f\U0001f3fe|\U0001f90f\U0001f3ff|\u270c\ufe0f|\u270c\U0001f3fb|\u270c\U0001f3fc|\u270c\U0001f3fd|\u270c\U0001f3fe|\u270c\U0001f3ff|\U0001f91e\U0001f3fb|\U0001f91e\U0001f3fc|\U0001f91e\U0001f3fd|\U0001f91e\U0001f3fe|\U0001f91e\U0001f3ff|\U0001f91f\U0001f3fb|\U0001f91f\U0001f3fc|\U0001f91f\U0001f3fd|\U0001f91f\U0001f3fe|\U0001f91f\U0001f3ff|\U0001f918\U0001f3fb|\U0001f918\U0001f3fc|\U0001f918\U0001f3fd|\U0001f918\U0001f3fe|\U0001f918\U0001f3ff|\U0001f919\U0001f3fb|\U0001f919\U0001f3fc|\U0001f919\U0001f3fd|\U0001f919\U0001f3fe|\U0001f919\U0001f3ff|\U0001f448\U0001f3fb|\U0001f448\U0001f3fc|\U0001f448\U0001f3fd|\U0001f448\U0001f3fe|\U0001f448\U0001f3ff|\U0001f449\U0001f3fb|\U0001f449\U0001f3fc|\U0001f449\U0001f3fd|\U0001f449\U0001f3fe|\U0001f449\U0001f3ff|\U0001f446\U0001f3fb|\U0001f446\U0001f3fc|\U0001f446\U0001f3fd|\U0001f446\U0001f3fe|\U0001f446\U0001f3ff|\U0001f595\U0001f3fb|\U0001f595\U0001f3fc|\U0001f595\U0001f3fd|\U0001f595\U0001f3fe|\U0001f595\U0001f3ff|\U0001f447\U0001f3fb|\U0001f447\U0001f3fc|\U0001f447\U0001f3fd|\U0001f447\U0001f3fe|\U0001f447\U0001f3ff|\u261d\ufe0f|\u261d\U0001f3fb|\u261d\U0001f3fc|\u261d\U0001f3fd|\u261d\U0001f3fe|\u261d\U0001f3ff|\U0001f44d\U0001f3fb|\U0001f44d\U0001f3fc|\U0001f44d\U0001f3fd|\U0001f44d\U0001f3fe|\U0001f44d\U0001f3ff|\U0001f44e\U0001f3fb|\U0001f44e\U0001f3fc|\U0001f44e\U0001f3fd|\U0001f44e\U0001f3fe|\U0001f44e\U0001f3ff|\u270a\U0001f3fb|\u270a\U0001f3fc|\u270a\U0001f3fd|\u270a\U0001f3fe|\u270a\U0001f3ff|\U0001f44a\U0001f3fb|\U0001f44a\U0001f3fc|\U0001f44a\U0001f3fd|\U0001f44a\U0001f3fe|\U0001f44a\U0001f3ff|\U0001f91b\U0001f3fb|\U0001f91b\U0001f3fc|\U0001f91b\U0001f3fd|\U0001f91b\U0001f3fe|\U0001f91b\U0001f3ff|\U0001f91c\U0001f3fb|\U0001f91c\U0001f3fc|\U0001f91c\U0001f3fd|\U0001f91c\U0001f3fe|\U0001f91c\U0001f3ff|\U0001f44f\U0001f3fb|\U0001f44f\U0001f3fc|\U0001f44f\U0001f3fd|\U0001f44f\U0001f3fe|\U0001f44f\U0001f3ff|\U0001f64c\U0001f3fb|\U0001f64c\U0001f3fc|\U0001f64c\U0001f3fd|\U0001f64c\U0001f3fe|\U0001f64c\U0001f3ff|\U0001f450\U0001f3fb|\U0001f450\U0001f3fc|\U0001f450\U0001f3fd|\U0001f450\U0001f3fe|\U0001f450\U0001f3ff|\U0001f932\U0001f3fb|\U0001f932\U0001f3fc|\U0001f932\U0001f3fd|\U0001f932\U0001f3fe|\U0001f932\U0001f3ff|\U0001f64f\U0001f3fb|\U0001f64f\U0001f3fc|\U0001f64f\U0001f3fd|\U0001f64f\U0001f3fe|\U0001f64f\U0001f3ff|\u270d\ufe0f|\u270d\U0001f3fb|\u270d\U0001f3fc|\u270d\U0001f3fd|\u270d\U0001f3fe|\u270d\U0001f3ff|\U0001f485\U0001f3fb|\U0001f485\U0001f3fc|\U0001f485\U0001f3fd|\U0001f485\U0001f3fe|\U0001f485\U0001f3ff|\U0001f933\U0001f3fb|\U0001f933\U0001f3fc|\U0001f933\U0001f3fd|\U0001f933\U0001f3fe|\U0001f933\U0001f3ff|\U0001f4aa\U0001f3fb|\U0001f4aa\U0001f3fc|\U0001f4aa\U0001f3fd|\U0001f4aa\U0001f3fe|\U0001f4aa\U0001f3ff|\U0001f9b5\U0001f3fb|\U0001f9b5\U0001f3fc|\U0001f9b5\U0001f3fd|\U0001f9b5\U0001f3fe|\U0001f9b5\U0001f3ff|\U0001f9b6\U0001f3fb|\U0001f9b6\U0001f3fc|\U0001f9b6\U0001f3fd|\U0001f9b6\U0001f3fe|\U0001f9b6\U0001f3ff|\U0001f442\U0001f3fb|\U0001f442\U0001f3fc|\U0001f442\U0001f3fd|\U0001f442\U0001f3fe|\U0001f442\U0001f3ff|\U0001f9bb\U0001f3fb|\U0001f9bb\U0001f3fc|\U0001f9bb\U0001f3fd|\U0001f9bb\U0001f3fe|\U0001f9bb\U0001f3ff|\U0001f443\U0001f3fb|\U0001f443\U0001f3fc|\U0001f443\U0001f3fd|\U0001f443\U0001f3fe|\U0001f443\U0001f3ff|\U0001f441\ufe0f|\U0001f476\U0001f3fb|\U0001f476\U0001f3fc|\U0001f476\U0001f3fd|\U0001f476\U0001f3fe|\U0001f476\U0001f3ff|\U0001f9d2\U0001f3fb|\U0001f9d2\U0001f3fc|\U0001f9d2\U0001f3fd|\U0001f9d2\U0001f3fe|\U0001f9d2\U0001f3ff|\U0001f466\U0001f3fb|\U0001f466\U0001f3fc|\U0001f466\U0001f3fd|\U0001f466\U0001f3fe|\U0001f466\U0001f3ff|\U0001f467\U0001f3fb|\U0001f467\U0001f3fc|\U0001f467\U0001f3fd|\U0001f467\U0001f3fe|\U0001f467\U0001f3ff|\U0001f9d1\U0001f3fb|\U0001f9d1\U0001f3fc|\U0001f9d1\U0001f3fd|\U0001f9d1\U0001f3fe|\U0001f9d1\U0001f3ff|\U0001f471\U0001f3fb|\U0001f471\U0001f3fc|\U0001f471\U0001f3fd|\U0001f471\U0001f3fe|\U0001f471\U0001f3ff|\U0001f468\U0001f3fb|\U0001f468\U0001f3fc|\U0001f468\U0001f3fd|\U0001f468\U0001f3fe|\U0001f468\U0001f3ff|\U0001f9d4\U0001f3fb|\U0001f9d4\U0001f3fc|\U0001f9d4\U0001f3fd|\U0001f9d4\U0001f3fe|\U0001f9d4\U0001f3ff|\U0001f469\U0001f3fb|\U0001f469\U0001f3fc|\U0001f469\U0001f3fd|\U0001f469\U0001f3fe|\U0001f469\U0001f3ff|\U0001f9d3\U0001f3fb|\U0001f9d3\U0001f3fc|\U0001f9d3\U0001f3fd|\U0001f9d3\U0001f3fe|\U0001f9d3\U0001f3ff|\U0001f474\U0001f3fb|\U0001f474\U0001f3fc|\U0001f474\U0001f3fd|\U0001f474\U0001f3fe|\U0001f474\U0001f3ff|\U0001f475\U0001f3fb|\U0001f475\U0001f3fc|\U0001f475\U0001f3fd|\U0001f475\U0001f3fe|\U0001f475\U0001f3ff|\U0001f64d\U0001f3fb|\U0001f64d\U0001f3fc|\U0001f64d\U0001f3fd|\U0001f64d\U0001f3fe|\U0001f64d\U0001f3ff|\U0001f64e\U0001f3fb|\U0001f64e\U0001f3fc|\U0001f64e\U0001f3fd|\U0001f64e\U0001f3fe|\U0001f64e\U0001f3ff|\U0001f645\U0001f3fb|\U0001f645\U0001f3fc|\U0001f645\U0001f3fd|\U0001f645\U0001f3fe|\U0001f645\U0001f3ff|\U0001f646\U0001f3fb|\U0001f646\U0001f3fc|\U0001f646\U0001f3fd|\U0001f646\U0001f3fe|\U0001f646\U0001f3ff|\U0001f481\U0001f3fb|\U0001f481\U0001f3fc|\U0001f481\U0001f3fd|\U0001f481\U0001f3fe|\U0001f481\U0001f3ff|\U0001f64b\U0001f3fb|\U0001f64b\U0001f3fc|\U0001f64b\U0001f3fd|\U0001f64b\U0001f3fe|\U0001f64b\U0001f3ff|\U0001f9cf\U0001f3fb|\U0001f9cf\U0001f3fc|\U0001f9cf\U0001f3fd|\U0001f9cf\U0001f3fe|\U0001f9cf\U0001f3ff|\U0001f647\U0001f3fb|\U0001f647\U0001f3fc|\U0001f647\U0001f3fd|\U0001f647\U0001f3fe|\U0001f647\U0001f3ff|\U0001f926\U0001f3fb|\U0001f926\U0001f3fc|\U0001f926\U0001f3fd|\U0001f926\U0001f3fe|\U0001f926\U0001f3ff|\U0001f937\U0001f3fb|\U0001f937\U0001f3fc|\U0001f937\U0001f3fd|\U0001f937\U0001f3fe|\U0001f937\U0001f3ff|\U0001f46e\U0001f3fb|\U0001f46e\U0001f3fc|\U0001f46e\U0001f3fd|\U0001f46e\U0001f3fe|\U0001f46e\U0001f3ff|\U0001f575\ufe0f|\U0001f575\U0001f3fb|\U0001f575\U0001f3fc|\U0001f575\U0001f3fd|\U0001f575\U0001f3fe|\U0001f575\U0001f3ff|\U0001f482\U0001f3fb|\U0001f482\U0001f3fc|\U0001f482\U0001f3fd|\U0001f482\U0001f3fe|\U0001f482\U0001f3ff|\U0001f477\U0001f3fb|\U0001f477\U0001f3fc|\U0001f477\U0001f3fd|\U0001f477\U0001f3fe|\U0001f477\U0001f3ff|\U0001f934\U0001f3fb|\U0001f934\U0001f3fc|\U0001f934\U0001f3fd|\U0001f934\U0001f3fe|\U0001f934\U0001f3ff|\U0001f478\U0001f3fb|\U0001f478\U0001f3fc|\U0001f478\U0001f3fd|\U0001f478\U0001f3fe|\U0001f478\U0001f3ff|\U0001f473\U0001f3fb|\U0001f473\U0001f3fc|\U0001f473\U0001f3fd|\U0001f473\U0001f3fe|\U0001f473\U0001f3ff|\U0001f472\U0001f3fb|\U0001f472\U0001f3fc|\U0001f472\U0001f3fd|\U0001f472\U0001f3fe|\U0001f472\U0001f3ff|\U0001f9d5\U0001f3fb|\U0001f9d5\U0001f3fc|\U0001f9d5\U0001f3fd|\U0001f9d5\U0001f3fe|\U0001f9d5\U0001f3ff|\U0001f935\U0001f3fb|\U0001f935\U0001f3fc|\U0001f935\U0001f3fd|\U0001f935\U0001f3fe|\U0001f935\U0001f3ff|\U0001f470\U0001f3fb|\U0001f470\U0001f3fc|\U0001f470\U0001f3fd|\U0001f470\U0001f3fe|\U0001f470\U0001f3ff|\U0001f930\U0001f3fb|\U0001f930\U0001f3fc|\U0001f930\U0001f3fd|\U0001f930\U0001f3fe|\U0001f930\U0001f3ff|\U0001f931\U0001f3fb|\U0001f931\U0001f3fc|\U0001f931\U0001f3fd|\U0001f931\U0001f3fe|\U0001f931\U0001f3ff|\U0001f47c\U0001f3fb|\U0001f47c\U0001f3fc|\U0001f47c\U0001f3fd|\U0001f47c\U0001f3fe|\U0001f47c\U0001f3ff|\U0001f385\U0001f3fb|\U0001f385\U0001f3fc|\U0001f385\U0001f3fd|\U0001f385\U0001f3fe|\U0001f385\U0001f3ff|\U0001f936\U0001f3fb|\U0001f936\U0001f3fc|\U0001f936\U0001f3fd|\U0001f936\U0001f3fe|\U0001f936\U0001f3ff|\U0001f9b8\U0001f3fb|\U0001f9b8\U0001f3fc|\U0001f9b8\U0001f3fd|\U0001f9b8\U0001f3fe|\U0001f9b8\U0001f3ff|\U0001f9b9\U0001f3fb|\U0001f9b9\U0001f3fc|\U0001f9b9\U0001f3fd|\U0001f9b9\U0001f3fe|\U0001f9b9\U0001f3ff|\U0001f9d9\U0001f3fb|\U0001f9d9\U0001f3fc|\U0001f9d9\U0001f3fd|\U0001f9d9\U0001f3fe|\U0001f9d9\U0001f3ff|\U0001f9da\U0001f3fb|\U0001f9da\U0001f3fc|\U0001f9da\U0001f3fd|\U0001f9da\U0001f3fe|\U0001f9da\U0001f3ff|\U0001f9db\U0001f3fb|\U0001f9db\U0001f3fc|\U0001f9db\U0001f3fd|\U0001f9db\U0001f3fe|\U0001f9db\U0001f3ff|\U0001f9dc\U0001f3fb|\U0001f9dc\U0001f3fc|\U0001f9dc\U0001f3fd|\U0001f9dc\U0001f3fe|\U0001f9dc\U0001f3ff|\U0001f9dd\U0001f3fb|\U0001f9dd\U0001f3fc|\U0001f9dd\U0001f3fd|\U0001f9dd\U0001f3fe|\U0001f9dd\U0001f3ff|\U0001f486\U0001f3fb|\U0001f486\U0001f3fc|\U0001f486\U0001f3fd|\U0001f486\U0001f3fe|\U0001f486\U0001f3ff|\U0001f487\U0001f3fb|\U0001f487\U0001f3fc|\U0001f487\U0001f3fd|\U0001f487\U0001f3fe|\U0001f487\U0001f3ff|\U0001f6b6\U0001f3fb|\U0001f6b6\U0001f3fc|\U0001f6b6\U0001f3fd|\U0001f6b6\U0001f3fe|\U0001f6b6\U0001f3ff|\U0001f9cd\U0001f3fb|\U0001f9cd\U0001f3fc|\U0001f9cd\U0001f3fd|\U0001f9cd\U0001f3fe|\U0001f9cd\U0001f3ff|\U0001f9ce\U0001f3fb|\U0001f9ce\U0001f3fc|\U0001f9ce\U0001f3fd|\U0001f9ce\U0001f3fe|\U0001f9ce\U0001f3ff|\U0001f3c3\U0001f3fb|\U0001f3c3\U0001f3fc|\U0001f3c3\U0001f3fd|\U0001f3c3\U0001f3fe|\U0001f3c3\U0001f3ff|\U0001f483\U0001f3fb|\U0001f483\U0001f3fc|\U0001f483\U0001f3fd|\U0001f483\U0001f3fe|\U0001f483\U0001f3ff|\U0001f57a\U0001f3fb|\U0001f57a\U0001f3fc|\U0001f57a\U0001f3fd|\U0001f57a\U0001f3fe|\U0001f57a\U0001f3ff|\U0001f574\ufe0f|\U0001f574\U0001f3fb|\U0001f574\U0001f3fc|\U0001f574\U0001f3fd|\U0001f574\U0001f3fe|\U0001f574\U0001f3ff|\U0001f9d6\U0001f3fb|\U0001f9d6\U0001f3fc|\U0001f9d6\U0001f3fd|\U0001f9d6\U0001f3fe|\U0001f9d6\U0001f3ff|\U0001f9d7\U0001f3fb|\U0001f9d7\U0001f3fc|\U0001f9d7\U0001f3fd|\U0001f9d7\U0001f3fe|\U0001f9d7\U0001f3ff|\U0001f3c7\U0001f3fb|\U0001f3c7\U0001f3fc|\U0001f3c7\U0001f3fd|\U0001f3c7\U0001f3fe|\U0001f3c7\U0001f3ff|\u26f7\ufe0f|\U0001f3c2\U0001f3fb|\U0001f3c2\U0001f3fc|\U0001f3c2\U0001f3fd|\U0001f3c2\U0001f3fe|\U0001f3c2\U0001f3ff|\U0001f3cc\ufe0f|\U0001f3cc\U0001f3fb|\U0001f3cc\U0001f3fc|\U0001f3cc\U0001f3fd|\U0001f3cc\U0001f3fe|\U0001f3cc\U0001f3ff|\U0001f3c4\U0001f3fb|\U0001f3c4\U0001f3fc|\U0001f3c4\U0001f3fd|\U0001f3c4\U0001f3fe|\U0001f3c4\U0001f3ff|\U0001f6a3\U0001f3fb|\U0001f6a3\U0001f3fc|\U0001f6a3\U0001f3fd|\U0001f6a3\U0001f3fe|\U0001f6a3\U0001f3ff|\U0001f3ca\U0001f3fb|\U0001f3ca\U0001f3fc|\U0001f3ca\U0001f3fd|\U0001f3ca\U0001f3fe|\U0001f3ca\U0001f3ff|\u26f9\ufe0f|\u26f9\U0001f3fb|\u26f9\U0001f3fc|\u26f9\U0001f3fd|\u26f9\U0001f3fe|\u26f9\U0001f3ff|\U0001f3cb\ufe0f|\U0001f3cb\U0001f3fb|\U0001f3cb\U0001f3fc|\U0001f3cb\U0001f3fd|\U0001f3cb\U0001f3fe|\U0001f3cb\U0001f3ff|\U0001f6b4\U0001f3fb|\U0001f6b4\U0001f3fc|\U0001f6b4\U0001f3fd|\U0001f6b4\U0001f3fe|\U0001f6b4\U0001f3ff|\U0001f6b5\U0001f3fb|\U0001f6b5\U0001f3fc|\U0001f6b5\U0001f3fd|\U0001f6b5\U0001f3fe|\U0001f6b5\U0001f3ff|\U0001f938\U0001f3fb|\U0001f938\U0001f3fc|\U0001f938\U0001f3fd|\U0001f938\U0001f3fe|\U0001f938\U0001f3ff|\U0001f93d\U0001f3fb|\U0001f93d\U0001f3fc|\U0001f93d\U0001f3fd|\U0001f93d\U0001f3fe|\U0001f93d\U0001f3ff|\U0001f93e\U0001f3fb|\U0001f93e\U0001f3fc|\U0001f93e\U0001f3fd|\U0001f93e\U0001f3fe|\U0001f93e\U0001f3ff|\U0001f939\U0001f3fb|\U0001f939\U0001f3fc|\U0001f939\U0001f3fd|\U0001f939\U0001f3fe|\U0001f939\U0001f3ff|\U0001f9d8\U0001f3fb|\U0001f9d8\U0001f3fc|\U0001f9d8\U0001f3fd|\U0001f9d8\U0001f3fe|\U0001f9d8\U0001f3ff|\U0001f6c0\U0001f3fb|\U0001f6c0\U0001f3fc|\U0001f6c0\U0001f3fd|\U0001f6c0\U0001f3fe|\U0001f6c0\U0001f3ff|\U0001f6cc\U0001f3fb|\U0001f6cc\U0001f3fc|\U0001f6cc\U0001f3fd|\U0001f6cc\U0001f3fe|\U0001f6cc\U0001f3ff|\U0001f46d\U0001f3fb|\U0001f46d\U0001f3fc|\U0001f46d\U0001f3fd|\U0001f46d\U0001f3fe|\U0001f46d\U0001f3ff|\U0001f46b\U0001f3fb|\U0001f46b\U0001f3fc|\U0001f46b\U0001f3fd|\U0001f46b\U0001f3fe|\U0001f46b\U0001f3ff|\U0001f46c\U0001f3fb|\U0001f46c\U0001f3fc|\U0001f46c\U0001f3fd|\U0001f46c\U0001f3fe|\U0001f46c\U0001f3ff|\U0001f5e3\ufe0f|\U0001f43f\ufe0f|\U0001f54a\ufe0f|\U0001f577\ufe0f|\U0001f578\ufe0f|\U0001f3f5\ufe0f|\u2618\ufe0f|\U0001f336\ufe0f|\U0001f37d\ufe0f|\U0001f5fa\ufe0f|\U0001f3d4\ufe0f|\u26f0\ufe0f|\U0001f3d5\ufe0f|\U0001f3d6\ufe0f|\U0001f3dc\ufe0f|\U0001f3dd\ufe0f|\U0001f3de\ufe0f|\U0001f3df\ufe0f|\U0001f3db\ufe0f|\U0001f3d7\ufe0f|\U0001f3d8\ufe0f|\U0001f3da\ufe0f|\u26e9\ufe0f|\U0001f3d9\ufe0f|\u2668\ufe0f|\U0001f3ce\ufe0f|\U0001f3cd\ufe0f|\U0001f6e3\ufe0f|\U0001f6e4\ufe0f|\U0001f6e2\ufe0f|\U0001f6f3\ufe0f|\u26f4\ufe0f|\U0001f6e5\ufe0f|\u2708\ufe0f|\U0001f6e9\ufe0f|\U0001f6f0\ufe0f|\U0001f6ce\ufe0f|\u23f1\ufe0f|\u23f2\ufe0f|\U0001f570\ufe0f|\U0001f321\ufe0f|\u2600\ufe0f|\u2601\ufe0f|\u26c8\ufe0f|\U0001f324\ufe0f|\U0001f325\ufe0f|\U0001f326\ufe0f|\U0001f327\ufe0f|\U0001f328\ufe0f|\U0001f329\ufe0f|\U0001f32a\ufe0f|\U0001f32b\ufe0f|\U0001f32c\ufe0f|\u2602\ufe0f|\u26f1\ufe0f|\u2744\ufe0f|\u2603\ufe0f|\u2604\ufe0f|\U0001f397\ufe0f|\U0001f39f\ufe0f|\U0001f396\ufe0f|\u26f8\ufe0f|\U0001f579\ufe0f|\u2660\ufe0f|\u2665\ufe0f|\u2666\ufe0f|\u2663\ufe0f|\u265f\ufe0f|\U0001f5bc\ufe0f|\U0001f576\ufe0f|\U0001f6cd\ufe0f|\u26d1\ufe0f|\U0001f399\ufe0f|\U0001f39a\ufe0f|\U0001f39b\ufe0f|\u260e\ufe0f|\U0001f5a5\ufe0f|\U0001f5a8\ufe0f|\u2328\ufe0f|\U0001f5b1\ufe0f|\U0001f5b2\ufe0f|\U0001f39e\ufe0f|\U0001f4fd\ufe0f|\U0001f56f\ufe0f|\U0001f5de\ufe0f|\U0001f3f7\ufe0f|\u2709\ufe0f|\U0001f5f3\ufe0f|\u270f\ufe0f|\u2712\ufe0f|\U0001f58b\ufe0f|\U0001f58a\ufe0f|\U0001f58c\ufe0f|\U0001f58d\ufe0f|\U0001f5c2\ufe0f|\U0001f5d2\ufe0f|\U0001f5d3\ufe0f|\U0001f587\ufe0f|\u2702\ufe0f|\U0001f5c3\ufe0f|\U0001f5c4\ufe0f|\U0001f5d1\ufe0f|\U0001f5dd\ufe0f|\u26cf\ufe0f|\u2692\ufe0f|\U0001f6e0\ufe0f|\U0001f5e1\ufe0f|\u2694\ufe0f|\U0001f6e1\ufe0f|\u2699\ufe0f|\U0001f5dc\ufe0f|\u2696\ufe0f|\u26d3\ufe0f|\u2697\ufe0f|\U0001f6cf\ufe0f|\U0001f6cb\ufe0f|\u26b0\ufe0f|\u26b1\ufe0f|\u26a0\ufe0f|\u2622\ufe0f|\u2623\ufe0f|\u2b06\ufe0f|\u2197\ufe0f|\u27a1\ufe0f|\u2198\ufe0f|\u2b07\ufe0f|\u2199\ufe0f|\u2b05\ufe0f|\u2196\ufe0f|\u2195\ufe0f|\u2194\ufe0f|\u21a9\ufe0f|\u21aa\ufe0f|\u2934\ufe0f|\u2935\ufe0f|\u269b\ufe0f|\U0001f549\ufe0f|\u2721\ufe0f|\u2638\ufe0f|\u262f\ufe0f|\u271d\ufe0f|\u2626\ufe0f|\u262a\ufe0f|\u262e\ufe0f|\u25b6\ufe0f|\u23ed\ufe0f|\u23ef\ufe0f|\u25c0\ufe0f|\u23ee\ufe0f|\u23f8\ufe0f|\u23f9\ufe0f|\u23fa\ufe0f|\u23cf\ufe0f|\u2640\ufe0f|\u2642\ufe0f|\u2695\ufe0f|\u267e\ufe0f|\u267b\ufe0f|\u269c\ufe0f|\u2611\ufe0f|\u2714\ufe0f|\u2716\ufe0f|\u303d\ufe0f|\u2733\ufe0f|\u2734\ufe0f|\u2747\ufe0f|\u203c\ufe0f|\u2049\ufe0f|\u3030\ufe0f|\xa9\ufe0f|\xae\ufe0f|\u2122\ufe0f|\\#\u20e3|\\*\u20e3|0\u20e3|1\u20e3|2\u20e3|3\u20e3|4\u20e3|5\u20e3|6\u20e3|7\u20e3|8\u20e3|9\u20e3|\U0001f170\ufe0f|\U0001f171\ufe0f|\u2139\ufe0f|\u24c2\ufe0f|\U0001f17e\ufe0f|\U0001f17f\ufe0f|\U0001f202\ufe0f|\U0001f237\ufe0f|\u3297\ufe0f|\u3299\ufe0f|\u25fc\ufe0f|\u25fb\ufe0f|\u25aa\ufe0f|\u25ab\ufe0f|\U0001f3f3\ufe0f|\U0001f1e6\U0001f1e8|\U0001f1e6\U0001f1e9|\U0001f1e6\U0001f1ea|\U0001f1e6\U0001f1eb|\U0001f1e6\U0001f1ec|\U0001f1e6\U0001f1ee|\U0001f1e6\U0001f1f1|\U0001f1e6\U0001f1f2|\U0001f1e6\U0001f1f4|\U0001f1e6\U0001f1f6|\U0001f1e6\U0001f1f7|\U0001f1e6\U0001f1f8|\U0001f1e6\U0001f1f9|\U0001f1e6\U0001f1fa|\U0001f1e6\U0001f1fc|\U0001f1e6\U0001f1fd|\U0001f1e6\U0001f1ff|\U0001f1e7\U0001f1e6|\U0001f1e7\U0001f1e7|\U0001f1e7\U0001f1e9|\U0001f1e7\U0001f1ea|\U0001f1e7\U0001f1eb|\U0001f1e7\U0001f1ec|\U0001f1e7\U0001f1ed|\U0001f1e7\U0001f1ee|\U0001f1e7\U0001f1ef|\U0001f1e7\U0001f1f1|\U0001f1e7\U0001f1f2|\U0001f1e7\U0001f1f3|\U0001f1e7\U0001f1f4|\U0001f1e7\U0001f1f6|\U0001f1e7\U0001f1f7|\U0001f1e7\U0001f1f8|\U0001f1e7\U0001f1f9|\U0001f1e7\U0001f1fb|\U0001f1e7\U0001f1fc|\U0001f1e7\U0001f1fe|\U0001f1e7\U0001f1ff|\U0001f1e8\U0001f1e6|\U0001f1e8\U0001f1e8|\U0001f1e8\U0001f1e9|\U0001f1e8\U0001f1eb|\U0001f1e8\U0001f1ec|\U0001f1e8\U0001f1ed|\U0001f1e8\U0001f1ee|\U0001f1e8\U0001f1f0|\U0001f1e8\U0001f1f1|\U0001f1e8\U0001f1f2|\U0001f1e8\U0001f1f3|\U0001f1e8\U0001f1f4|\U0001f1e8\U0001f1f5|\U0001f1e8\U0001f1f7|\U0001f1e8\U0001f1fa|\U0001f1e8\U0001f1fb|\U0001f1e8\U0001f1fc|\U0001f1e8\U0001f1fd|\U0001f1e8\U0001f1fe|\U0001f1e8\U0001f1ff|\U0001f1e9\U0001f1ea|\U0001f1e9\U0001f1ec|\U0001f1e9\U0001f1ef|\U0001f1e9\U0001f1f0|\U0001f1e9\U0001f1f2|\U0001f1e9\U0001f1f4|\U0001f1e9\U0001f1ff|\U0001f1ea\U0001f1e6|\U0001f1ea\U0001f1e8|\U0001f1ea\U0001f1ea|\U0001f1ea\U0001f1ec|\U0001f1ea\U0001f1ed|\U0001f1ea\U0001f1f7|\U0001f1ea\U0001f1f8|\U0001f1ea\U0001f1f9|\U0001f1ea\U0001f1fa|\U0001f1eb\U0001f1ee|\U0001f1eb\U0001f1ef|\U0001f1eb\U0001f1f0|\U0001f1eb\U0001f1f2|\U0001f1eb\U0001f1f4|\U0001f1eb\U0001f1f7|\U0001f1ec\U0001f1e6|\U0001f1ec\U0001f1e7|\U0001f1ec\U0001f1e9|\U0001f1ec\U0001f1ea|\U0001f1ec\U0001f1eb|\U0001f1ec\U0001f1ec|\U0001f1ec\U0001f1ed|\U0001f1ec\U0001f1ee|\U0001f1ec\U0001f1f1|\U0001f1ec\U0001f1f2|\U0001f1ec\U0001f1f3|\U0001f1ec\U0001f1f5|\U0001f1ec\U0001f1f6|\U0001f1ec\U0001f1f7|\U0001f1ec\U0001f1f8|\U0001f1ec\U0001f1f9|\U0001f1ec\U0001f1fa|\U0001f1ec\U0001f1fc|\U0001f1ec\U0001f1fe|\U0001f1ed\U0001f1f0|\U0001f1ed\U0001f1f2|\U0001f1ed\U0001f1f3|\U0001f1ed\U0001f1f7|\U0001f1ed\U0001f1f9|\U0001f1ed\U0001f1fa|\U0001f1ee\U0001f1e8|\U0001f1ee\U0001f1e9|\U0001f1ee\U0001f1ea|\U0001f1ee\U0001f1f1|\U0001f1ee\U0001f1f2|\U0001f1ee\U0001f1f3|\U0001f1ee\U0001f1f4|\U0001f1ee\U0001f1f6|\U0001f1ee\U0001f1f7|\U0001f1ee\U0001f1f8|\U0001f1ee\U0001f1f9|\U0001f1ef\U0001f1ea|\U0001f1ef\U0001f1f2|\U0001f1ef\U0001f1f4|\U0001f1ef\U0001f1f5|\U0001f1f0\U0001f1ea|\U0001f1f0\U0001f1ec|\U0001f1f0\U0001f1ed|\U0001f1f0\U0001f1ee|\U0001f1f0\U0001f1f2|\U0001f1f0\U0001f1f3|\U0001f1f0\U0001f1f5|\U0001f1f0\U0001f1f7|\U0001f1f0\U0001f1fc|\U0001f1f0\U0001f1fe|\U0001f1f0\U0001f1ff|\U0001f1f1\U0001f1e6|\U0001f1f1\U0001f1e7|\U0001f1f1\U0001f1e8|\U0001f1f1\U0001f1ee|\U0001f1f1\U0001f1f0|\U0001f1f1\U0001f1f7|\U0001f1f1\U0001f1f8|\U0001f1f1\U0001f1f9|\U0001f1f1\U0001f1fa|\U0001f1f1\U0001f1fb|\U0001f1f1\U0001f1fe|\U0001f1f2\U0001f1e6|\U0001f1f2\U0001f1e8|\U0001f1f2\U0001f1e9|\U0001f1f2\U0001f1ea|\U0001f1f2\U0001f1eb|\U0001f1f2\U0001f1ec|\U0001f1f2\U0001f1ed|\U0001f1f2\U0001f1f0|\U0001f1f2\U0001f1f1|\U0001f1f2\U0001f1f2|\U0001f1f2\U0001f1f3|\U0001f1f2\U0001f1f4|\U0001f1f2\U0001f1f5|\U0001f1f2\U0001f1f6|\U0001f1f2\U0001f1f7|\U0001f1f2\U0001f1f8|\U0001f1f2\U0001f1f9|\U0001f1f2\U0001f1fa|\U0001f1f2\U0001f1fb|\U0001f1f2\U0001f1fc|\U0001f1f2\U0001f1fd|\U0001f1f2\U0001f1fe|\U0001f1f2\U0001f1ff|\U0001f1f3\U0001f1e6|\U0001f1f3\U0001f1e8|\U0001f1f3\U0001f1ea|\U0001f1f3\U0001f1eb|\U0001f1f3\U0001f1ec|\U0001f1f3\U0001f1ee|\U0001f1f3\U0001f1f1|\U0001f1f3\U0001f1f4|\U0001f1f3\U0001f1f5|\U0001f1f3\U0001f1f7|\U0001f1f3\U0001f1fa|\U0001f1f3\U0001f1ff|\U0001f1f4\U0001f1f2|\U0001f1f5\U0001f1e6|\U0001f1f5\U0001f1ea|\U0001f1f5\U0001f1eb|\U0001f1f5\U0001f1ec|\U0001f1f5\U0001f1ed|\U0001f1f5\U0001f1f0|\U0001f1f5\U0001f1f1|\U0001f1f5\U0001f1f2|\U0001f1f5\U0001f1f3|\U0001f1f5\U0001f1f7|\U0001f1f5\U0001f1f8|\U0001f1f5\U0001f1f9|\U0001f1f5\U0001f1fc|\U0001f1f5\U0001f1fe|\U0001f1f6\U0001f1e6|\U0001f1f7\U0001f1ea|\U0001f1f7\U0001f1f4|\U0001f1f7\U0001f1f8|\U0001f1f7\U0001f1fa|\U0001f1f7\U0001f1fc|\U0001f1f8\U0001f1e6|\U0001f1f8\U0001f1e7|\U0001f1f8\U0001f1e8|\U0001f1f8\U0001f1e9|\U0001f1f8\U0001f1ea|\U0001f1f8\U0001f1ec|\U0001f1f8\U0001f1ed|\U0001f1f8\U0001f1ee|\U0001f1f8\U0001f1ef|\U0001f1f8\U0001f1f0|\U0001f1f8\U0001f1f1|\U0001f1f8\U0001f1f2|\U0001f1f8\U0001f1f3|\U0001f1f8\U0001f1f4|\U0001f1f8\U0001f1f7|\U0001f1f8\U0001f1f8|\U0001f1f8\U0001f1f9|\U0001f1f8\U0001f1fb|\U0001f1f8\U0001f1fd|\U0001f1f8\U0001f1fe|\U0001f1f8\U0001f1ff|\U0001f1f9\U0001f1e6|\U0001f1f9\U0001f1e8|\U0001f1f9\U0001f1e9|\U0001f1f9\U0001f1eb|\U0001f1f9\U0001f1ec|\U0001f1f9\U0001f1ed|\U0001f1f9\U0001f1ef|\U0001f1f9\U0001f1f0|\U0001f1f9\U0001f1f1|\U0001f1f9\U0001f1f2|\U0001f1f9\U0001f1f3|\U0001f1f9\U0001f1f4|\U0001f1f9\U0001f1f7|\U0001f1f9\U0001f1f9|\U0001f1f9\U0001f1fb|\U0001f1f9\U0001f1fc|\U0001f1f9\U0001f1ff|\U0001f1fa\U0001f1e6|\U0001f1fa\U0001f1ec|\U0001f1fa\U0001f1f2|\U0001f1fa\U0001f1f3|\U0001f1fa\U0001f1f8|\U0001f1fa\U0001f1fe|\U0001f1fa\U0001f1ff|\U0001f1fb\U0001f1e6|\U0001f1fb\U0001f1e8|\U0001f1fb\U0001f1ea|\U0001f1fb\U0001f1ec|\U0001f1fb\U0001f1ee|\U0001f1fb\U0001f1f3|\U0001f1fb\U0001f1fa|\U0001f1fc\U0001f1eb|\U0001f1fc\U0001f1f8|\U0001f1fd\U0001f1f0|\U0001f1fe\U0001f1ea|\U0001f1fe\U0001f1f9|\U0001f1ff\U0001f1e6|\U0001f1ff\U0001f1f2|\U0001f1ff\U0001f1fc|\U0001f600|\U0001f603|\U0001f604|\U0001f601|\U0001f606|\U0001f605|\U0001f923|\U0001f602|\U0001f642|\U0001f643|\U0001f609|\U0001f60a|\U0001f607|\U0001f970|\U0001f60d|\U0001f929|\U0001f618|\U0001f617|\u263a|\U0001f61a|\U0001f619|\U0001f60b|\U0001f61b|\U0001f61c|\U0001f92a|\U0001f61d|\U0001f911|\U0001f917|\U0001f92d|\U0001f92b|\U0001f914|\U0001f910|\U0001f928|\U0001f610|\U0001f611|\U0001f636|\U0001f60f|\U0001f612|\U0001f644|\U0001f62c|\U0001f925|\U0001f60c|\U0001f614|\U0001f62a|\U0001f924|\U0001f634|\U0001f637|\U0001f912|\U0001f915|\U0001f922|\U0001f92e|\U0001f927|\U0001f975|\U0001f976|\U0001f974|\U0001f635|\U0001f92f|\U0001f920|\U0001f973|\U0001f60e|\U0001f913|\U0001f9d0|\U0001f615|\U0001f61f|\U0001f641|\u2639|\U0001f62e|\U0001f62f|\U0001f632|\U0001f633|\U0001f97a|\U0001f626|\U0001f627|\U0001f628|\U0001f630|\U0001f625|\U0001f622|\U0001f62d|\U0001f631|\U0001f616|\U0001f623|\U0001f61e|\U0001f613|\U0001f629|\U0001f62b|\U0001f971|\U0001f624|\U0001f621|\U0001f620|\U0001f92c|\U0001f608|\U0001f47f|\U0001f480|\u2620|\U0001f4a9|\U0001f921|\U0001f479|\U0001f47a|\U0001f47b|\U0001f47d|\U0001f47e|\U0001f916|\U0001f63a|\U0001f638|\U0001f639|\U0001f63b|\U0001f63c|\U0001f63d|\U0001f640|\U0001f63f|\U0001f63e|\U0001f648|\U0001f649|\U0001f64a|\U0001f48b|\U0001f48c|\U0001f498|\U0001f49d|\U0001f496|\U0001f497|\U0001f493|\U0001f49e|\U0001f495|\U0001f49f|\u2763|\U0001f494|\u2764|\U0001f9e1|\U0001f49b|\U0001f49a|\U0001f499|\U0001f49c|\U0001f90e|\U0001f5a4|\U0001f90d|\U0001f4af|\U0001f4a2|\U0001f4a5|\U0001f4ab|\U0001f4a6|\U0001f4a8|\U0001f573|\U0001f4a3|\U0001f4ac|\U0001f5e8|\U0001f5ef|\U0001f4ad|\U0001f4a4|\U0001f44b|\U0001f91a|\U0001f590|\u270b|\U0001f596|\U0001f44c|\U0001f90f|\u270c|\U0001f91e|\U0001f91f|\U0001f918|\U0001f919|\U0001f448|\U0001f449|\U0001f446|\U0001f595|\U0001f447|\u261d|\U0001f44d|\U0001f44e|\u270a|\U0001f44a|\U0001f91b|\U0001f91c|\U0001f44f|\U0001f64c|\U0001f450|\U0001f932|\U0001f91d|\U0001f64f|\u270d|\U0001f485|\U0001f933|\U0001f4aa|\U0001f9be|\U0001f9bf|\U0001f9b5|\U0001f9b6|\U0001f442|\U0001f9bb|\U0001f443|\U0001f9e0|\U0001f9b7|\U0001f9b4|\U0001f440|\U0001f441|\U0001f445|\U0001f444|\U0001f476|\U0001f9d2|\U0001f466|\U0001f467|\U0001f9d1|\U0001f471|\U0001f468|\U0001f9d4|\U0001f469|\U0001f9d3|\U0001f474|\U0001f475|\U0001f64d|\U0001f64e|\U0001f645|\U0001f646|\U0001f481|\U0001f64b|\U0001f9cf|\U0001f647|\U0001f926|\U0001f937|\U0001f46e|\U0001f575|\U0001f482|\U0001f477|\U0001f934|\U0001f478|\U0001f473|\U0001f472|\U0001f9d5|\U0001f935|\U0001f470|\U0001f930|\U0001f931|\U0001f47c|\U0001f385|\U0001f936|\U0001f9b8|\U0001f9b9|\U0001f9d9|\U0001f9da|\U0001f9db|\U0001f9dc|\U0001f9dd|\U0001f9de|\U0001f9df|\U0001f486|\U0001f487|\U0001f6b6|\U0001f9cd|\U0001f9ce|\U0001f3c3|\U0001f483|\U0001f57a|\U0001f574|\U0001f46f|\U0001f9d6|\U0001f9d7|\U0001f93a|\U0001f3c7|\u26f7|\U0001f3c2|\U0001f3cc|\U0001f3c4|\U0001f6a3|\U0001f3ca|\u26f9|\U0001f3cb|\U0001f6b4|\U0001f6b5|\U0001f938|\U0001f93c|\U0001f93d|\U0001f93e|\U0001f939|\U0001f9d8|\U0001f6c0|\U0001f6cc|\U0001f46d|\U0001f46b|\U0001f46c|\U0001f48f|\U0001f491|\U0001f46a|\U0001f5e3|\U0001f464|\U0001f465|\U0001f463|\U0001f3fb|\U0001f3fc|\U0001f3fd|\U0001f3fe|\U0001f3ff|\U0001f9b0|\U0001f9b1|\U0001f9b3|\U0001f9b2|\U0001f435|\U0001f412|\U0001f98d|\U0001f9a7|\U0001f436|\U0001f415|\U0001f9ae|\U0001f429|\U0001f43a|\U0001f98a|\U0001f99d|\U0001f431|\U0001f408|\U0001f981|\U0001f42f|\U0001f405|\U0001f406|\U0001f434|\U0001f40e|\U0001f984|\U0001f993|\U0001f98c|\U0001f42e|\U0001f402|\U0001f403|\U0001f404|\U0001f437|\U0001f416|\U0001f417|\U0001f43d|\U0001f40f|\U0001f411|\U0001f410|\U0001f42a|\U0001f42b|\U0001f999|\U0001f992|\U0001f418|\U0001f98f|\U0001f99b|\U0001f42d|\U0001f401|\U0001f400|\U0001f439|\U0001f430|\U0001f407|\U0001f43f|\U0001f994|\U0001f987|\U0001f43b|\U0001f428|\U0001f43c|\U0001f9a5|\U0001f9a6|\U0001f9a8|\U0001f998|\U0001f9a1|\U0001f43e|\U0001f983|\U0001f414|\U0001f413|\U0001f423|\U0001f424|\U0001f425|\U0001f426|\U0001f427|\U0001f54a|\U0001f985|\U0001f986|\U0001f9a2|\U0001f989|\U0001f9a9|\U0001f99a|\U0001f99c|\U0001f438|\U0001f40a|\U0001f422|\U0001f98e|\U0001f40d|\U0001f432|\U0001f409|\U0001f995|\U0001f996|\U0001f433|\U0001f40b|\U0001f42c|\U0001f41f|\U0001f420|\U0001f421|\U0001f988|\U0001f419|\U0001f41a|\U0001f40c|\U0001f98b|\U0001f41b|\U0001f41c|\U0001f41d|\U0001f41e|\U0001f997|\U0001f577|\U0001f578|\U0001f982|\U0001f99f|\U0001f9a0|\U0001f490|\U0001f338|\U0001f4ae|\U0001f3f5|\U0001f339|\U0001f940|\U0001f33a|\U0001f33b|\U0001f33c|\U0001f337|\U0001f331|\U0001f332|\U0001f333|\U0001f334|\U0001f335|\U0001f33e|\U0001f33f|\u2618|\U0001f340|\U0001f341|\U0001f342|\U0001f343|\U0001f347|\U0001f348|\U0001f349|\U0001f34a|\U0001f34b|\U0001f34c|\U0001f34d|\U0001f96d|\U0001f34e|\U0001f34f|\U0001f350|\U0001f351|\U0001f352|\U0001f353|\U0001f95d|\U0001f345|\U0001f965|\U0001f951|\U0001f346|\U0001f954|\U0001f955|\U0001f33d|\U0001f336|\U0001f952|\U0001f96c|\U0001f966|\U0001f9c4|\U0001f9c5|\U0001f344|\U0001f95c|\U0001f330|\U0001f35e|\U0001f950|\U0001f956|\U0001f968|\U0001f96f|\U0001f95e|\U0001f9c7|\U0001f9c0|\U0001f356|\U0001f357|\U0001f969|\U0001f953|\U0001f354|\U0001f35f|\U0001f355|\U0001f32d|\U0001f96a|\U0001f32e|\U0001f32f|\U0001f959|\U0001f9c6|\U0001f95a|\U0001f373|\U0001f958|\U0001f372|\U0001f963|\U0001f957|\U0001f37f|\U0001f9c8|\U0001f9c2|\U0001f96b|\U0001f371|\U0001f358|\U0001f359|\U0001f35a|\U0001f35b|\U0001f35c|\U0001f35d|\U0001f360|\U0001f362|\U0001f363|\U0001f364|\U0001f365|\U0001f96e|\U0001f361|\U0001f95f|\U0001f960|\U0001f961|\U0001f980|\U0001f99e|\U0001f990|\U0001f991|\U0001f9aa|\U0001f366|\U0001f367|\U0001f368|\U0001f369|\U0001f36a|\U0001f382|\U0001f370|\U0001f9c1|\U0001f967|\U0001f36b|\U0001f36c|\U0001f36d|\U0001f36e|\U0001f36f|\U0001f37c|\U0001f95b|\u2615|\U0001f375|\U0001f376|\U0001f37e|\U0001f377|\U0001f378|\U0001f379|\U0001f37a|\U0001f37b|\U0001f942|\U0001f943|\U0001f964|\U0001f9c3|\U0001f9c9|\U0001f9ca|\U0001f962|\U0001f37d|\U0001f374|\U0001f944|\U0001f52a|\U0001f3fa|\U0001f30d|\U0001f30e|\U0001f30f|\U0001f310|\U0001f5fa|\U0001f5fe|\U0001f9ed|\U0001f3d4|\u26f0|\U0001f30b|\U0001f5fb|\U0001f3d5|\U0001f3d6|\U0001f3dc|\U0001f3dd|\U0001f3de|\U0001f3df|\U0001f3db|\U0001f3d7|\U0001f9f1|\U0001f3d8|\U0001f3da|\U0001f3e0|\U0001f3e1|\U0001f3e2|\U0001f3e3|\U0001f3e4|\U0001f3e5|\U0001f3e6|\U0001f3e8|\U0001f3e9|\U0001f3ea|\U0001f3eb|\U0001f3ec|\U0001f3ed|\U0001f3ef|\U0001f3f0|\U0001f492|\U0001f5fc|\U0001f5fd|\u26ea|\U0001f54c|\U0001f6d5|\U0001f54d|\u26e9|\U0001f54b|\u26f2|\u26fa|\U0001f301|\U0001f303|\U0001f3d9|\U0001f304|\U0001f305|\U0001f306|\U0001f307|\U0001f309|\u2668|\U0001f3a0|\U0001f3a1|\U0001f3a2|\U0001f488|\U0001f3aa|\U0001f682|\U0001f683|\U0001f684|\U0001f685|\U0001f686|\U0001f687|\U0001f688|\U0001f689|\U0001f68a|\U0001f69d|\U0001f69e|\U0001f68b|\U0001f68c|\U0001f68d|\U0001f68e|\U0001f690|\U0001f691|\U0001f692|\U0001f693|\U0001f694|\U0001f695|\U0001f696|\U0001f697|\U0001f698|\U0001f699|\U0001f69a|\U0001f69b|\U0001f69c|\U0001f3ce|\U0001f3cd|\U0001f6f5|\U0001f9bd|\U0001f9bc|\U0001f6fa|\U0001f6b2|\U0001f6f4|\U0001f6f9|\U0001f68f|\U0001f6e3|\U0001f6e4|\U0001f6e2|\u26fd|\U0001f6a8|\U0001f6a5|\U0001f6a6|\U0001f6d1|\U0001f6a7|\u2693|\u26f5|\U0001f6f6|\U0001f6a4|\U0001f6f3|\u26f4|\U0001f6e5|\U0001f6a2|\u2708|\U0001f6e9|\U0001f6eb|\U0001f6ec|\U0001fa82|\U0001f4ba|\U0001f681|\U0001f69f|\U0001f6a0|\U0001f6a1|\U0001f6f0|\U0001f680|\U0001f6f8|\U0001f6ce|\U0001f9f3|\u231b|\u23f3|\u231a|\u23f0|\u23f1|\u23f2|\U0001f570|\U0001f55b|\U0001f567|\U0001f550|\U0001f55c|\U0001f551|\U0001f55d|\U0001f552|\U0001f55e|\U0001f553|\U0001f55f|\U0001f554|\U0001f560|\U0001f555|\U0001f561|\U0001f556|\U0001f562|\U0001f557|\U0001f563|\U0001f558|\U0001f564|\U0001f559|\U0001f565|\U0001f55a|\U0001f566|\U0001f311|\U0001f312|\U0001f313|\U0001f314|\U0001f315|\U0001f316|\U0001f317|\U0001f318|\U0001f319|\U0001f31a|\U0001f31b|\U0001f31c|\U0001f321|\u2600|\U0001f31d|\U0001f31e|\U0001fa90|\u2b50|\U0001f31f|\U0001f320|\U0001f30c|\u2601|\u26c5|\u26c8|\U0001f324|\U0001f325|\U0001f326|\U0001f327|\U0001f328|\U0001f329|\U0001f32a|\U0001f32b|\U0001f32c|\U0001f300|\U0001f308|\U0001f302|\u2602|\u2614|\u26f1|\u26a1|\u2744|\u2603|\u26c4|\u2604|\U0001f525|\U0001f4a7|\U0001f30a|\U0001f383|\U0001f384|\U0001f386|\U0001f387|\U0001f9e8|\u2728|\U0001f388|\U0001f389|\U0001f38a|\U0001f38b|\U0001f38d|\U0001f38e|\U0001f38f|\U0001f390|\U0001f391|\U0001f9e7|\U0001f380|\U0001f381|\U0001f397|\U0001f39f|\U0001f3ab|\U0001f396|\U0001f3c6|\U0001f3c5|\U0001f947|\U0001f948|\U0001f949|\u26bd|\u26be|\U0001f94e|\U0001f3c0|\U0001f3d0|\U0001f3c8|\U0001f3c9|\U0001f3be|\U0001f94f|\U0001f3b3|\U0001f3cf|\U0001f3d1|\U0001f3d2|\U0001f94d|\U0001f3d3|\U0001f3f8|\U0001f94a|\U0001f94b|\U0001f945|\u26f3|\u26f8|\U0001f3a3|\U0001f93f|\U0001f3bd|\U0001f3bf|\U0001f6f7|\U0001f94c|\U0001f3af|\U0001fa80|\U0001fa81|\U0001f3b1|\U0001f52e|\U0001f9ff|\U0001f3ae|\U0001f579|\U0001f3b0|\U0001f3b2|\U0001f9e9|\U0001f9f8|\u2660|\u2665|\u2666|\u2663|\u265f|\U0001f0cf|\U0001f004|\U0001f3b4|\U0001f3ad|\U0001f5bc|\U0001f3a8|\U0001f9f5|\U0001f9f6|\U0001f453|\U0001f576|\U0001f97d|\U0001f97c|\U0001f9ba|\U0001f454|\U0001f455|\U0001f456|\U0001f9e3|\U0001f9e4|\U0001f9e5|\U0001f9e6|\U0001f457|\U0001f458|\U0001f97b|\U0001fa71|\U0001fa72|\U0001fa73|\U0001f459|\U0001f45a|\U0001f45b|\U0001f45c|\U0001f45d|\U0001f6cd|\U0001f392|\U0001f45e|\U0001f45f|\U0001f97e|\U0001f97f|\U0001f460|\U0001f461|\U0001fa70|\U0001f462|\U0001f451|\U0001f452|\U0001f3a9|\U0001f393|\U0001f9e2|\u26d1|\U0001f4ff|\U0001f484|\U0001f48d|\U0001f48e|\U0001f507|\U0001f508|\U0001f509|\U0001f50a|\U0001f4e2|\U0001f4e3|\U0001f4ef|\U0001f514|\U0001f515|\U0001f3bc|\U0001f3b5|\U0001f3b6|\U0001f399|\U0001f39a|\U0001f39b|\U0001f3a4|\U0001f3a7|\U0001f4fb|\U0001f3b7|\U0001f3b8|\U0001f3b9|\U0001f3ba|\U0001f3bb|\U0001fa95|\U0001f941|\U0001f4f1|\U0001f4f2|\u260e|\U0001f4de|\U0001f4df|\U0001f4e0|\U0001f50b|\U0001f50c|\U0001f4bb|\U0001f5a5|\U0001f5a8|\u2328|\U0001f5b1|\U0001f5b2|\U0001f4bd|\U0001f4be|\U0001f4bf|\U0001f4c0|\U0001f9ee|\U0001f3a5|\U0001f39e|\U0001f4fd|\U0001f3ac|\U0001f4fa|\U0001f4f7|\U0001f4f8|\U0001f4f9|\U0001f4fc|\U0001f50d|\U0001f50e|\U0001f56f|\U0001f4a1|\U0001f526|\U0001f3ee|\U0001fa94|\U0001f4d4|\U0001f4d5|\U0001f4d6|\U0001f4d7|\U0001f4d8|\U0001f4d9|\U0001f4da|\U0001f4d3|\U0001f4d2|\U0001f4c3|\U0001f4dc|\U0001f4c4|\U0001f4f0|\U0001f5de|\U0001f4d1|\U0001f516|\U0001f3f7|\U0001f4b0|\U0001f4b4|\U0001f4b5|\U0001f4b6|\U0001f4b7|\U0001f4b8|\U0001f4b3|\U0001f9fe|\U0001f4b9|\U0001f4b1|\U0001f4b2|\u2709|\U0001f4e7|\U0001f4e8|\U0001f4e9|\U0001f4e4|\U0001f4e5|\U0001f4e6|\U0001f4eb|\U0001f4ea|\U0001f4ec|\U0001f4ed|\U0001f4ee|\U0001f5f3|\u270f|\u2712|\U0001f58b|\U0001f58a|\U0001f58c|\U0001f58d|\U0001f4dd|\U0001f4bc|\U0001f4c1|\U0001f4c2|\U0001f5c2|\U0001f4c5|\U0001f4c6|\U0001f5d2|\U0001f5d3|\U0001f4c7|\U0001f4c8|\U0001f4c9|\U0001f4ca|\U0001f4cb|\U0001f4cc|\U0001f4cd|\U0001f4ce|\U0001f587|\U0001f4cf|\U0001f4d0|\u2702|\U0001f5c3|\U0001f5c4|\U0001f5d1|\U0001f512|\U0001f513|\U0001f50f|\U0001f510|\U0001f511|\U0001f5dd|\U0001f528|\U0001fa93|\u26cf|\u2692|\U0001f6e0|\U0001f5e1|\u2694|\U0001f52b|\U0001f3f9|\U0001f6e1|\U0001f527|\U0001f529|\u2699|\U0001f5dc|\u2696|\U0001f9af|\U0001f517|\u26d3|\U0001f9f0|\U0001f9f2|\u2697|\U0001f9ea|\U0001f9eb|\U0001f9ec|\U0001f52c|\U0001f52d|\U0001f4e1|\U0001f489|\U0001fa78|\U0001f48a|\U0001fa79|\U0001fa7a|\U0001f6aa|\U0001f6cf|\U0001f6cb|\U0001fa91|\U0001f6bd|\U0001f6bf|\U0001f6c1|\U0001fa92|\U0001f9f4|\U0001f9f7|\U0001f9f9|\U0001f9fa|\U0001f9fb|\U0001f9fc|\U0001f9fd|\U0001f9ef|\U0001f6d2|\U0001f6ac|\u26b0|\u26b1|\U0001f5ff|\U0001f3e7|\U0001f6ae|\U0001f6b0|\u267f|\U0001f6b9|\U0001f6ba|\U0001f6bb|\U0001f6bc|\U0001f6be|\U0001f6c2|\U0001f6c3|\U0001f6c4|\U0001f6c5|\u26a0|\U0001f6b8|\u26d4|\U0001f6ab|\U0001f6b3|\U0001f6ad|\U0001f6af|\U0001f6b1|\U0001f6b7|\U0001f4f5|\U0001f51e|\u2622|\u2623|\u2b06|\u2197|\u27a1|\u2198|\u2b07|\u2199|\u2b05|\u2196|\u2195|\u2194|\u21a9|\u21aa|\u2934|\u2935|\U0001f503|\U0001f504|\U0001f519|\U0001f51a|\U0001f51b|\U0001f51c|\U0001f51d|\U0001f6d0|\u269b|\U0001f549|\u2721|\u2638|\u262f|\u271d|\u2626|\u262a|\u262e|\U0001f54e|\U0001f52f|\u2648|\u2649|\u264a|\u264b|\u264c|\u264d|\u264e|\u264f|\u2650|\u2651|\u2652|\u2653|\u26ce|\U0001f500|\U0001f501|\U0001f502|\u25b6|\u23e9|\u23ed|\u23ef|\u25c0|\u23ea|\u23ee|\U0001f53c|\u23eb|\U0001f53d|\u23ec|\u23f8|\u23f9|\u23fa|\u23cf|\U0001f3a6|\U0001f505|\U0001f506|\U0001f4f6|\U0001f4f3|\U0001f4f4|\u2640|\u2642|\u2695|\u267e|\u267b|\u269c|\U0001f531|\U0001f4db|\U0001f530|\u2b55|\u2705|\u2611|\u2714|\u2716|\u274c|\u274e|\u2795|\u2796|\u2797|\u27b0|\u27bf|\u303d|\u2733|\u2734|\u2747|\u203c|\u2049|\u2753|\u2754|\u2755|\u2757|\u3030|\xa9|\xae|\u2122|\U0001f51f|\U0001f520|\U0001f521|\U0001f522|\U0001f523|\U0001f524|\U0001f170|\U0001f18e|\U0001f171|\U0001f191|\U0001f192|\U0001f193|\u2139|\U0001f194|\u24c2|\U0001f195|\U0001f196|\U0001f17e|\U0001f197|\U0001f17f|\U0001f198|\U0001f199|\U0001f19a|\U0001f201|\U0001f202|\U0001f237|\U0001f236|\U0001f22f|\U0001f250|\U0001f239|\U0001f21a|\U0001f232|\U0001f251|\U0001f238|\U0001f234|\U0001f233|\u3297|\u3299|\U0001f23a|\U0001f235|\U0001f534|\U0001f7e0|\U0001f7e1|\U0001f7e2|\U0001f535|\U0001f7e3|\U0001f7e4|\u26ab|\u26aa|\U0001f7e5|\U0001f7e7|\U0001f7e8|\U0001f7e9|\U0001f7e6|\U0001f7ea|\U0001f7eb|\u2b1b|\u2b1c|\u25fc|\u25fb|\u25fe|\u25fd|\u25aa|\u25ab|\U0001f536|\U0001f537|\U0001f538|\U0001f539|\U0001f53a|\U0001f53b|\U0001f4a0|\U0001f518|\U0001f533|\U0001f532|\U0001f3c1|\U0001f6a9|\U0001f38c|\U0001f3f4|\U0001f3f3')) -> str: """Return the string obtained by replacing all emojis in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all emojis in text with 'repl' Reference: akkez/emoji.py: Python emoji regexp / python emoji detection https://gist.github.com/akkez/99ceeae2f13c9d8d9be7df0279e2c438 """ text = regex.sub(repl, text) return text def _email_normalize(self, text: str, repl: str, regex=re.compile(r'[a-zA-Z0-9.!#$%&\'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9.]+')) -> str: """Return the string obtained by replacing all email addresses in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all email addresses in text with 'repl' """ text = regex.sub(repl, text) return text def _tel_normalize(self, text: str, repl: str, regex=re.compile(r'[()+\d.\-]*[ ]?\d{2,4}[-. ]+\d{3,4}[-. ]+\d{3,4}')) -> str: """Return the string obtained by replacing all phone numbers in 'text' by the replacement 'repl'. Args: text (str): text to be replaced repl (str): replace all phone numbers in text with 'repl' """ text = regex.sub(repl, text) return text
upsert
Expects a file *object*, not a file path. This is important because this has to work for both the management command and the web uploader; the web uploader will pass in in-memory file with no path! Header row is: Title, Group, Task List, Created Date, Due Date, Completed, Created By, Assigned To, Note, Priority
import codecs import csv import datetime import logging from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from todo.models import Task, TaskList log = logging.getLogger(__name__) class CSVImporter: """Core upsert functionality for CSV import, for re-use by `import_csv` management command, web UI and tests. Supplies a detailed log of what was and was not imported at the end. See README for usage notes. """ def __init__(self): self.errors = [] self.upserts = [] self.summaries = [] self.line_count = 0 self.upsert_count = 0 # MASKED: upsert function (lines 26-102) def validate_row(self, row): """Perform data integrity checks and set default values. Returns a valid object for insertion, or False. Errors are stored for later display. Intentionally not broken up into separate validator functions because there are interdpendencies, such as checking for existing `creator` in one place and then using that creator for group membership check in others.""" row_errors = [] # ####################### # Task creator must exist if not row.get("Created By"): msg = f"Missing required task creator." row_errors.append(msg) creator = get_user_model().objects.filter(username=row.get("Created By")).first() if not creator: msg = f"Invalid task creator {row.get('Created By')}" row_errors.append(msg) # ####################### # If specified, Assignee must exist assignee = None # Perfectly valid if row.get("Assigned To"): assigned = get_user_model().objects.filter(username=row.get("Assigned To")) if assigned.exists(): assignee = assigned.first() else: msg = f"Missing or invalid task assignee {row.get('Assigned To')}" row_errors.append(msg) # ####################### # Group must exist try: target_group = Group.objects.get(name=row.get("Group")) except Group.DoesNotExist: msg = f"Could not find group {row.get('Group')}." row_errors.append(msg) target_group = None # ####################### # Task creator must be in the target group if creator and target_group not in creator.groups.all(): msg = f"{creator} is not in group {target_group}" row_errors.append(msg) # ####################### # Assignee must be in the target group if assignee and target_group not in assignee.groups.all(): msg = f"{assignee} is not in group {target_group}" row_errors.append(msg) # ####################### # Task list must exist in the target group try: tasklist = TaskList.objects.get(name=row.get("Task List"), group=target_group) row["Task List"] = tasklist except TaskList.DoesNotExist: msg = f"Task list {row.get('Task List')} in group {target_group} does not exist" row_errors.append(msg) # ####################### # Validate Dates datefields = ["Due Date", "Created Date"] for datefield in datefields: datestring = row.get(datefield) if datestring: valid_date = self.validate_date(datestring) if valid_date: row[datefield] = valid_date else: msg = f"Could not convert {datefield} {datestring} to valid date instance" row_errors.append(msg) # ####################### # Group membership checks have passed row["Created By"] = creator row["Group"] = target_group if assignee: row["Assigned To"] = assignee # Set Completed row["Completed"] = row["Completed"] == "Yes" # ####################### if row_errors: self.errors.append({self.line_count: row_errors}) return False # No errors: return row def validate_date(self, datestring): """Inbound date string from CSV translates to a valid python date.""" try: date_obj = datetime.datetime.strptime(datestring, "%Y-%m-%d") return date_obj except ValueError: return False
def upsert(self, fileobj, as_string_obj=False): """Expects a file *object*, not a file path. This is important because this has to work for both the management command and the web uploader; the web uploader will pass in in-memory file with no path! Header row is: Title, Group, Task List, Created Date, Due Date, Completed, Created By, Assigned To, Note, Priority """ if as_string_obj: # fileobj comes from mgmt command csv_reader = csv.DictReader(fileobj) else: # fileobj comes from browser upload (in-memory) csv_reader = csv.DictReader(codecs.iterdecode(fileobj, "utf-8")) # DI check: Do we have expected header row? header = csv_reader.fieldnames expected = [ "Title", "Group", "Task List", "Created By", "Created Date", "Due Date", "Completed", "Assigned To", "Note", "Priority", ] if header != expected: self.errors.append( f"Inbound data does not have expected columns.\nShould be: {expected}" ) return for row in csv_reader: self.line_count += 1 newrow = self.validate_row(row) if newrow: # newrow at this point is fully validated, and all FK relations exist, # e.g. `newrow.get("Assigned To")`, is a Django User instance. assignee = newrow.get("Assigned To") if newrow.get("Assigned To") else None created_at = ( newrow.get("Created Date") if newrow.get("Created Date") else datetime.datetime.today() ) due_date = newrow.get("Due Date") if newrow.get("Due Date") else None priority = newrow.get("Priority") if newrow.get("Priority") else None obj, created = Task.objects.update_or_create( created_by=newrow.get("Created By"), task_list=newrow.get("Task List"), title=newrow.get("Title"), defaults={ "assigned_to": assignee, "completed": newrow.get("Completed"), "created_at": created_at, "due_date": due_date, "note": newrow.get("Note"), "priority": priority, }, ) self.upsert_count += 1 msg = ( f'Upserted task {obj.id}: "{obj.title}"' f' in list "{obj.task_list}" (group "{obj.task_list.group}")' ) self.upserts.append(msg) self.summaries.append(f"Processed {self.line_count} CSV rows") self.summaries.append(f"Upserted {self.upsert_count} rows") self.summaries.append(f"Skipped {self.line_count - self.upsert_count} rows") return {"summaries": self.summaries, "upserts": self.upserts, "errors": self.errors}
26
102
import codecs import csv import datetime import logging from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from todo.models import Task, TaskList log = logging.getLogger(__name__) class CSVImporter: """Core upsert functionality for CSV import, for re-use by `import_csv` management command, web UI and tests. Supplies a detailed log of what was and was not imported at the end. See README for usage notes. """ def __init__(self): self.errors = [] self.upserts = [] self.summaries = [] self.line_count = 0 self.upsert_count = 0 def upsert(self, fileobj, as_string_obj=False): """Expects a file *object*, not a file path. This is important because this has to work for both the management command and the web uploader; the web uploader will pass in in-memory file with no path! Header row is: Title, Group, Task List, Created Date, Due Date, Completed, Created By, Assigned To, Note, Priority """ if as_string_obj: # fileobj comes from mgmt command csv_reader = csv.DictReader(fileobj) else: # fileobj comes from browser upload (in-memory) csv_reader = csv.DictReader(codecs.iterdecode(fileobj, "utf-8")) # DI check: Do we have expected header row? header = csv_reader.fieldnames expected = [ "Title", "Group", "Task List", "Created By", "Created Date", "Due Date", "Completed", "Assigned To", "Note", "Priority", ] if header != expected: self.errors.append( f"Inbound data does not have expected columns.\nShould be: {expected}" ) return for row in csv_reader: self.line_count += 1 newrow = self.validate_row(row) if newrow: # newrow at this point is fully validated, and all FK relations exist, # e.g. `newrow.get("Assigned To")`, is a Django User instance. assignee = newrow.get("Assigned To") if newrow.get("Assigned To") else None created_at = ( newrow.get("Created Date") if newrow.get("Created Date") else datetime.datetime.today() ) due_date = newrow.get("Due Date") if newrow.get("Due Date") else None priority = newrow.get("Priority") if newrow.get("Priority") else None obj, created = Task.objects.update_or_create( created_by=newrow.get("Created By"), task_list=newrow.get("Task List"), title=newrow.get("Title"), defaults={ "assigned_to": assignee, "completed": newrow.get("Completed"), "created_at": created_at, "due_date": due_date, "note": newrow.get("Note"), "priority": priority, }, ) self.upsert_count += 1 msg = ( f'Upserted task {obj.id}: "{obj.title}"' f' in list "{obj.task_list}" (group "{obj.task_list.group}")' ) self.upserts.append(msg) self.summaries.append(f"Processed {self.line_count} CSV rows") self.summaries.append(f"Upserted {self.upsert_count} rows") self.summaries.append(f"Skipped {self.line_count - self.upsert_count} rows") return {"summaries": self.summaries, "upserts": self.upserts, "errors": self.errors} def validate_row(self, row): """Perform data integrity checks and set default values. Returns a valid object for insertion, or False. Errors are stored for later display. Intentionally not broken up into separate validator functions because there are interdpendencies, such as checking for existing `creator` in one place and then using that creator for group membership check in others.""" row_errors = [] # ####################### # Task creator must exist if not row.get("Created By"): msg = f"Missing required task creator." row_errors.append(msg) creator = get_user_model().objects.filter(username=row.get("Created By")).first() if not creator: msg = f"Invalid task creator {row.get('Created By')}" row_errors.append(msg) # ####################### # If specified, Assignee must exist assignee = None # Perfectly valid if row.get("Assigned To"): assigned = get_user_model().objects.filter(username=row.get("Assigned To")) if assigned.exists(): assignee = assigned.first() else: msg = f"Missing or invalid task assignee {row.get('Assigned To')}" row_errors.append(msg) # ####################### # Group must exist try: target_group = Group.objects.get(name=row.get("Group")) except Group.DoesNotExist: msg = f"Could not find group {row.get('Group')}." row_errors.append(msg) target_group = None # ####################### # Task creator must be in the target group if creator and target_group not in creator.groups.all(): msg = f"{creator} is not in group {target_group}" row_errors.append(msg) # ####################### # Assignee must be in the target group if assignee and target_group not in assignee.groups.all(): msg = f"{assignee} is not in group {target_group}" row_errors.append(msg) # ####################### # Task list must exist in the target group try: tasklist = TaskList.objects.get(name=row.get("Task List"), group=target_group) row["Task List"] = tasklist except TaskList.DoesNotExist: msg = f"Task list {row.get('Task List')} in group {target_group} does not exist" row_errors.append(msg) # ####################### # Validate Dates datefields = ["Due Date", "Created Date"] for datefield in datefields: datestring = row.get(datefield) if datestring: valid_date = self.validate_date(datestring) if valid_date: row[datefield] = valid_date else: msg = f"Could not convert {datefield} {datestring} to valid date instance" row_errors.append(msg) # ####################### # Group membership checks have passed row["Created By"] = creator row["Group"] = target_group if assignee: row["Assigned To"] = assignee # Set Completed row["Completed"] = row["Completed"] == "Yes" # ####################### if row_errors: self.errors.append({self.line_count: row_errors}) return False # No errors: return row def validate_date(self, datestring): """Inbound date string from CSV translates to a valid python date.""" try: date_obj = datetime.datetime.strptime(datestring, "%Y-%m-%d") return date_obj except ValueError: return False
install
Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) # MASKED: install function (lines 44-132) class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook
44
132
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
pretty_repr
Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object.
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node # MASKED: pretty_repr function (lines 587-619) def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str
587
619
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
check_length
Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False.
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty # MASKED: check_length function (lines 311-326) def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True
311
326
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
render
Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object.
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text # MASKED: render function (lines 332-355) @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str
332
355
import builtins import os import sys from array import array from collections import Counter, defaultdict, deque from dataclasses import dataclass, fields, is_dataclass from itertools import islice from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Union, Tuple, ) from rich.highlighter import ReprHighlighter from . import get_console from ._loop import loop_last from ._pick import pick_bool from .abc import RichRenderable from .cells import cell_len from .highlighter import ReprHighlighter from .jupyter import JupyterMixin, JupyterRenderable from .measure import Measurement from .text import Text if TYPE_CHECKING: from .console import ( Console, ConsoleOptions, HighlighterType, JustifyMethod, OverflowMethod, RenderResult, ) def install( console: "Console" = None, overflow: "OverflowMethod" = "ignore", crop: bool = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> None: """Install automatic pretty printing in the Python REPL. Args: console (Console, optional): Console instance or ``None`` to use global console. Defaults to None. overflow (Optional[OverflowMethod], optional): Overflow method. Defaults to "ignore". crop (Optional[bool], optional): Enable cropping of long lines. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False """ from rich import get_console from .console import ConsoleRenderable # needed here to prevent circular import console = console or get_console() assert console is not None def display_hook(value: Any) -> None: """Replacement sys.displayhook which prettifies objects with Rich.""" if value is not None: assert console is not None builtins._ = None # type: ignore console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, ), crop=crop, ) builtins._ = value # type: ignore def ipy_display_hook(value: Any) -> None: # pragma: no cover assert console is not None # always skip rich generated jupyter renderables or None values if isinstance(value, JupyterRenderable) or value is None: return # on jupyter rich display, if using one of the special representations dont use rich if console.is_jupyter and any(attr.startswith("_repr_") for attr in dir(value)): return if hasattr(value, "_repr_mimebundle_"): return # certain renderables should start on a new line if isinstance(value, ConsoleRenderable): console.line() console.print( value if isinstance(value, RichRenderable) else Pretty( value, overflow=overflow, indent_guides=indent_guides, max_length=max_length, max_string=max_string, expand_all=expand_all, margin=12, ), crop=crop, ) try: # pragma: no cover ip = get_ipython() # type: ignore from IPython.core.formatters import BaseFormatter # replace plain text formatter with rich formatter rich_formatter = BaseFormatter() rich_formatter.for_type(object, func=ipy_display_hook) ip.display_formatter.formatters["text/plain"] = rich_formatter except Exception: sys.displayhook = display_hook class Pretty(JupyterMixin): """A rich renderable that pretty prints an object. Args: _object (Any): An object to pretty print. highlighter (HighlighterType, optional): Highlighter object to apply to result, or None for ReprHighlighter. Defaults to None. indent_size (int, optional): Number of spaces in indent. Defaults to 4. justify (JustifyMethod, optional): Justify method, or None for default. Defaults to None. overflow (OverflowMethod, optional): Overflow method, or None for default. Defaults to None. no_wrap (Optional[bool], optional): Disable word wrapping. Defaults to False. indent_guides (bool, optional): Enable indentation guides. Defaults to False. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. expand_all (bool, optional): Expand all containers. Defaults to False. margin (int, optional): Subtrace a margin from width to force containers to expand earlier. Defaults to 0. insert_line (bool, optional): Insert a new line if the output has multiple new lines. Defaults to False. """ def __init__( self, _object: Any, highlighter: "HighlighterType" = None, *, indent_size: int = 4, justify: "JustifyMethod" = None, overflow: Optional["OverflowMethod"] = None, no_wrap: Optional[bool] = False, indent_guides: bool = False, max_length: int = None, max_string: int = None, expand_all: bool = False, margin: int = 0, insert_line: bool = False, ) -> None: self._object = _object self.highlighter = highlighter or ReprHighlighter() self.indent_size = indent_size self.justify = justify self.overflow = overflow self.no_wrap = no_wrap self.indent_guides = indent_guides self.max_length = max_length self.max_string = max_string self.expand_all = expand_all self.margin = margin self.insert_line = insert_line def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": pretty_str = pretty_repr( self._object, max_width=options.max_width - self.margin, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, expand_all=self.expand_all, ) pretty_text = Text( pretty_str, justify=self.justify or options.justify, overflow=self.overflow or options.overflow, no_wrap=pick_bool(self.no_wrap, options.no_wrap), style="pretty", ) pretty_text = ( self.highlighter(pretty_text) if pretty_text else Text( f"{type(self._object)}.__repr__ returned empty string", style="dim italic", ) ) if self.indent_guides and not options.ascii_only: pretty_text = pretty_text.with_indent_guides( self.indent_size, style="repr.indent" ) if self.insert_line and "\n" in pretty_text: yield "" yield pretty_text def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> "Measurement": pretty_str = pretty_repr( self._object, max_width=options.max_width, indent_size=self.indent_size, max_length=self.max_length, max_string=self.max_string, ) text_width = ( max(cell_len(line) for line in pretty_str.splitlines()) if pretty_str else 0 ) return Measurement(text_width, text_width) def _get_braces_for_defaultdict(_object: defaultdict) -> Tuple[str, str, str]: return ( f"defaultdict({_object.default_factory!r}, {{", "})", f"defaultdict({_object.default_factory!r}, {{}})", ) def _get_braces_for_array(_object: array) -> Tuple[str, str, str]: return (f"array({_object.typecode!r}, [", "])", "array({_object.typecode!r})") _BRACES: Dict[type, Callable[[Any], Tuple[str, str, str]]] = { os._Environ: lambda _object: ("environ({", "})", "environ({})"), array: _get_braces_for_array, defaultdict: _get_braces_for_defaultdict, Counter: lambda _object: ("Counter({", "})", "Counter()"), deque: lambda _object: ("deque([", "])", "deque()"), dict: lambda _object: ("{", "}", "{}"), frozenset: lambda _object: ("frozenset({", "})", "frozenset()"), list: lambda _object: ("[", "]", "[]"), set: lambda _object: ("{", "}", "set()"), tuple: lambda _object: ("(", ")", "()"), } _CONTAINERS = tuple(_BRACES.keys()) _MAPPING_CONTAINERS = (dict, os._Environ) def is_expandable(obj: Any) -> bool: """Check if an object may be expanded by pretty print.""" return ( isinstance(obj, _CONTAINERS) or (is_dataclass(obj) and not isinstance(obj, type)) or hasattr(obj, "__rich_repr__") ) @dataclass class Node: """A node in a repr tree. May be atomic or a container.""" key_repr: str = "" value_repr: str = "" open_brace: str = "" close_brace: str = "" empty: str = "" last: bool = False is_tuple: bool = False children: Optional[List["Node"]] = None key_separator = ": " @property def separator(self) -> str: """Get separator between items.""" return "" if self.last else "," def iter_tokens(self) -> Iterable[str]: """Generate tokens for this node.""" if self.key_repr: yield self.key_repr yield self.key_separator if self.value_repr: yield self.value_repr elif self.children is not None: if self.children: yield self.open_brace if self.is_tuple and len(self.children) == 1: yield from self.children[0].iter_tokens() yield "," else: for child in self.children: yield from child.iter_tokens() if not child.last: yield ", " yield self.close_brace else: yield self.empty def check_length(self, start_length: int, max_length: int) -> bool: """Check the length fits within a limit. Args: start_length (int): Starting length of the line (indent, prefix, suffix). max_length (int): Maximum length. Returns: bool: True if the node can be rendered within max length, otherwise False. """ total_length = start_length for token in self.iter_tokens(): total_length += cell_len(token) if total_length > max_length: return False return True def __str__(self) -> str: repr_text = "".join(self.iter_tokens()) return repr_text def render( self, max_width: int = 80, indent_size: int = 4, expand_all: bool = False ) -> str: """Render the node to a pretty repr. Args: max_width (int, optional): Maximum width of the repr. Defaults to 80. indent_size (int, optional): Size of indents. Defaults to 4. expand_all (bool, optional): Expand all levels. Defaults to False. Returns: str: A repr string of the original object. """ lines = [_Line(node=self, is_root=True)] line_no = 0 while line_no < len(lines): line = lines[line_no] if line.expandable and not line.expanded: if expand_all or not line.check_length(max_width): lines[line_no : line_no + 1] = line.expand(indent_size) line_no += 1 repr_str = "\n".join(str(line) for line in lines) return repr_str @dataclass class _Line: """A line in repr output.""" is_root: bool = False node: Optional[Node] = None text: str = "" suffix: str = "" whitespace: str = "" expanded: bool = False @property def expandable(self) -> bool: """Check if the line may be expanded.""" return bool(self.node is not None and self.node.children) def check_length(self, max_length: int) -> bool: """Check this line fits within a given number of cells.""" start_length = ( len(self.whitespace) + cell_len(self.text) + cell_len(self.suffix) ) assert self.node is not None return self.node.check_length(start_length, max_length) def expand(self, indent_size: int) -> Iterable["_Line"]: """Expand this line by adding children on their own line.""" node = self.node assert node is not None whitespace = self.whitespace assert node.children if node.key_repr: yield _Line( text=f"{node.key_repr}{node.key_separator}{node.open_brace}", whitespace=whitespace, ) else: yield _Line(text=node.open_brace, whitespace=whitespace) child_whitespace = self.whitespace + " " * indent_size tuple_of_one = node.is_tuple and len(node.children) == 1 for child in node.children: separator = "," if tuple_of_one else child.separator line = _Line( node=child, whitespace=child_whitespace, suffix=separator, ) yield line yield _Line( text=node.close_brace, whitespace=whitespace, suffix="," if (tuple_of_one and not self.is_root) else node.separator, ) def __str__(self) -> str: return f"{self.whitespace}{self.text}{self.node or ''}{self.suffix}" def traverse(_object: Any, max_length: int = None, max_string: int = None) -> Node: """Traverse object and generate a tree. Args: _object (Any): Object to be traversed. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. Returns: Node: The root of a tree structure which can be used to render a pretty repr. """ def to_repr(obj: Any) -> str: """Get repr string for an object, but catch errors.""" if ( max_string is not None and isinstance(obj, (bytes, str)) and len(obj) > max_string ): truncated = len(obj) - max_string obj_repr = f"{obj[:max_string]!r}+{truncated}" else: try: obj_repr = repr(obj) except Exception as error: obj_repr = f"<repr-error '{error}'>" return obj_repr visited_ids: Set[int] = set() push_visited = visited_ids.add pop_visited = visited_ids.remove def _traverse(obj: Any, root: bool = False) -> Node: """Walk the object depth first.""" obj_type = type(obj) py_version = (sys.version_info.major, sys.version_info.minor) children: List[Node] def iter_rich_args(rich_args) -> Iterable[Union[Any, Tuple[str, Any]]]: for arg in rich_args: if isinstance(arg, tuple): if len(arg) == 3: key, child, default = arg if default == child: continue yield key, child elif len(arg) == 2: key, child = arg yield key, child elif len(arg) == 1: yield arg[0] else: yield arg if hasattr(obj, "__rich_repr__"): args = list(iter_rich_args(obj.__rich_repr__())) if args: children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, arg in loop_last(args): if isinstance(arg, tuple): key, child = arg child_node = _traverse(child) child_node.last = last child_node.key_repr = key child_node.last = last child_node.key_separator = "=" append(child_node) else: child_node = _traverse(arg) child_node.last = last append(child_node) else: node = Node( value_repr=f"{obj.__class__.__name__}()", children=[], last=root ) elif ( is_dataclass(obj) and not isinstance(obj, type) and ( "__create_fn__" in obj.__repr__.__qualname__ or py_version == (3, 6) ) # Check if __repr__ wasn't overriden ): obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) children = [] append = children.append node = Node( open_brace=f"{obj.__class__.__name__}(", close_brace=")", children=children, last=root, ) for last, field in loop_last(fields(obj)): if field.repr: child_node = _traverse(getattr(obj, field.name)) child_node.key_repr = field.name child_node.last = last child_node.key_separator = "=" append(child_node) pop_visited(obj_id) elif obj_type in _CONTAINERS: obj_id = id(obj) if obj_id in visited_ids: # Recursion detected return Node(value_repr="...") push_visited(obj_id) open_brace, close_brace, empty = _BRACES[obj_type](obj) if obj: children = [] node = Node( open_brace=open_brace, close_brace=close_brace, children=children, last=root, ) append = children.append num_items = len(obj) last_item_index = num_items - 1 if isinstance(obj, _MAPPING_CONTAINERS): iter_items = iter(obj.items()) if max_length is not None: iter_items = islice(iter_items, max_length) for index, (key, child) in enumerate(iter_items): child_node = _traverse(child) child_node.key_repr = to_repr(key) child_node.last = index == last_item_index append(child_node) else: iter_values = iter(obj) if max_length is not None: iter_values = islice(iter_values, max_length) for index, child in enumerate(iter_values): child_node = _traverse(child) child_node.last = index == last_item_index append(child_node) if max_length is not None and num_items > max_length: append(Node(value_repr=f"... +{num_items-max_length}", last=True)) else: node = Node(empty=empty, children=[], last=root) pop_visited(obj_id) else: node = Node(value_repr=to_repr(obj), last=root) node.is_tuple = isinstance(obj, tuple) return node node = _traverse(_object, root=True) return node def pretty_repr( _object: Any, *, max_width: int = 80, indent_size: int = 4, max_length: int = None, max_string: int = None, expand_all: bool = False, ) -> str: """Prettify repr string by expanding on to new lines to fit within a given width. Args: _object (Any): Object to repr. max_width (int, optional): Desired maximum width of repr string. Defaults to 80. indent_size (int, optional): Number of spaces to indent. Defaults to 4. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of string before truncating, or None to disable truncating. Defaults to None. expand_all (bool, optional): Expand all containers regardless of available width. Defaults to False. Returns: str: A possibly multi-line representation of the object. """ if isinstance(_object, Node): node = _object else: node = traverse(_object, max_length=max_length, max_string=max_string) repr_str = node.render( max_width=max_width, indent_size=indent_size, expand_all=expand_all ) return repr_str def pprint( _object: Any, *, console: "Console" = None, indent_guides: bool = True, max_length: int = None, max_string: int = None, expand_all: bool = False, ): """A convenience function for pretty printing. Args: _object (Any): Object to pretty print. console (Console, optional): Console instance, or None to use default. Defaults to None. max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. Defaults to None. max_string (int, optional): Maximum length of strings before truncating, or None to disable. Defaults to None. indent_guides (bool, optional): Enable indentation guides. Defaults to True. expand_all (bool, optional): Expand all containers. Defaults to False. """ _console = get_console() if console is None else console _console.print( Pretty( _object, max_length=max_length, max_string=max_string, indent_guides=indent_guides, expand_all=expand_all, overflow="ignore", ), soft_wrap=True, ) if __name__ == "__main__": # pragma: no cover class BrokenRepr: def __repr__(self): 1 / 0 d = defaultdict(int) d["foo"] = 5 data = { "foo": [ 1, "Hello World!", 100.123, 323.232, 432324.0, {5, 6, 7, (1, 2, 3, 4), 8}, ], "bar": frozenset({1, 2, 3}), "defaultdict": defaultdict( list, {"crumble": ["apple", "rhubarb", "butter", "sugar", "flour"]} ), "counter": Counter( [ "apple", "orange", "pear", "kumquat", "kumquat", "durian" * 100, ] ), "atomic": (False, True, None), "Broken": BrokenRepr(), } data["foo"].append(data) # type: ignore from rich import print print(Pretty(data, indent_guides=True, max_string=20))
__init__
Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships)
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ # MASKED: __init__ function (lines 35-94) def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description()
35
94
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description() def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
add_relationship
Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added.
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description() def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] # MASKED: add_relationship function (lines 230-277) ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self
230
277
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description() def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
_forward_entity_paths
Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search.
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description() def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] # MASKED: _forward_entity_paths function (lines 315-339) def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path
315
339
import copy import logging from collections import defaultdict import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_dtype_equal, is_numeric_dtype import featuretools.variable_types.variable as vtypes from featuretools.entityset import deserialize, serialize from featuretools.entityset.entity import Entity from featuretools.entityset.relationship import Relationship, RelationshipPath from featuretools.utils.gen_utils import import_or_raise pd.options.mode.chained_assignment = None # default='warn' logger = logging.getLogger('featuretools.entityset') class EntitySet(object): """ Stores all actual data for a entityset Attributes: id entity_dict relationships time_type Properties: metadata """ def __init__(self, id=None, entities=None, relationships=None): """Creates EntitySet Args: id (str) : Unique identifier to associate with this instance entities (dict[str -> tuple(pd.DataFrame, str, str, dict[str -> Variable])]): dictionary of entities. Entries take the format {entity id -> (dataframe, id column, (time_index), (variable_types), (make_index))}. Note that time_index, variable_types and make_index are optional. relationships (list[(str, str, str, str)]): List of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). Example: .. code-block:: python entities = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", entities, relationships) """ self.id = id self.entity_dict = {} self.relationships = [] self.time_type = None entities = entities or {} relationships = relationships or [] for entity in entities: df = entities[entity][0] index_column = entities[entity][1] time_index = None variable_types = None make_index = None if len(entities[entity]) > 2: time_index = entities[entity][2] if len(entities[entity]) > 3: variable_types = entities[entity][3] if len(entities[entity]) > 4: make_index = entities[entity][4] self.entity_from_dataframe(entity_id=entity, dataframe=df, index=index_column, time_index=time_index, variable_types=variable_types, make_index=make_index) for relationship in relationships: parent_variable = self[relationship[0]][relationship[1]] child_variable = self[relationship[2]][relationship[3]] self.add_relationship(Relationship(parent_variable, child_variable)) self.reset_data_description() def __sizeof__(self): return sum([entity.__sizeof__() for entity in self.entities]) def __dask_tokenize__(self): return (EntitySet, serialize.entityset_to_description(self.metadata)) def __eq__(self, other, deep=False): if len(self.entity_dict) != len(other.entity_dict): return False for eid, e in self.entity_dict.items(): if eid not in other.entity_dict: return False if not e.__eq__(other[eid], deep=deep): return False for r in other.relationships: if r not in other.relationships: return False return True def __ne__(self, other, deep=False): return not self.__eq__(other, deep=deep) def __getitem__(self, entity_id): """Get entity instance from entityset Args: entity_id (str): Id of entity. Returns: :class:`.Entity` : Instance of entity. None if entity doesn't exist. """ if entity_id in self.entity_dict: return self.entity_dict[entity_id] name = self.id or "entity set" raise KeyError('Entity %s does not exist in %s' % (entity_id, name)) @property def entities(self): return list(self.entity_dict.values()) @property def metadata(self): '''Returns the metadata for this EntitySet. The metadata will be recomputed if it does not exist.''' if self._data_description is None: description = serialize.entityset_to_description(self) self._data_description = deserialize.description_to_entityset(description) return self._data_description def reset_data_description(self): self._data_description = None def to_pickle(self, path, compression=None, profile_name=None): '''Write entityset in the pickle format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='pickle', compression=compression, profile_name=profile_name) return self def to_parquet(self, path, engine='auto', compression=None, profile_name=None): '''Write entityset to disk in the parquet format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str): location on disk to write to (will be created as a directory) engine (str) : Name of the engine to use. Possible values are: {'auto', 'pyarrow', 'fastparquet'}. compression (str) : Name of the compression to use. Possible values are: {'snappy', 'gzip', 'brotli', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='parquet', engine=engine, compression=compression, profile_name=profile_name) return self def to_csv(self, path, sep=',', encoding='utf-8', engine='python', compression=None, profile_name=None): '''Write entityset to disk in the csv format, location specified by `path`. Path could be a local path or a S3 path. If writing to S3 a tar archive of files will be written. Args: path (str) : Location on disk to write to (will be created as a directory) sep (str) : String of length 1. Field delimiter for the output file. encoding (str) : A string representing the encoding to use in the output file, defaults to 'utf-8'. engine (str) : Name of the engine to use. Possible values are: {'c', 'python'}. compression (str) : Name of the compression to use. Possible values are: {'gzip', 'bz2', 'zip', 'xz', None}. profile_name (str) : Name of AWS profile to use, False to use an anonymous profile, or None. ''' serialize.write_data_description(self, path, format='csv', index=False, sep=sep, encoding=encoding, engine=engine, compression=compression, profile_name=profile_name) return self def to_dictionary(self): return serialize.entityset_to_description(self) ########################################################################### # Public getter/setter methods ######################################### ########################################################################### def __repr__(self): repr_out = u"Entityset: {}\n".format(self.id) repr_out += u" Entities:" for e in self.entities: if e.df.shape: repr_out += u"\n {} [Rows: {}, Columns: {}]".format( e.id, e.df.shape[0], e.df.shape[1]) else: repr_out += u"\n {} [Rows: None, Columns: None]".format( e.id) repr_out += "\n Relationships:" if len(self.relationships) == 0: repr_out += u"\n No relationships" for r in self.relationships: repr_out += u"\n %s.%s -> %s.%s" % \ (r._child_entity_id, r._child_variable_id, r._parent_entity_id, r._parent_variable_id) return repr_out def add_relationships(self, relationships): """Add multiple new relationships to a entityset Args: relationships (list[Relationship]) : List of new relationships. """ return [self.add_relationship(r) for r in relationships][-1] def add_relationship(self, relationship): """Add a new relationship between entities in the entityset Args: relationship (Relationship) : Instance of new relationship to be added. """ if relationship in self.relationships: logger.warning( "Not adding duplicate relationship: %s", relationship) return self # _operations? # this is a new pair of entities child_e = relationship.child_entity child_v = relationship.child_variable.id parent_e = relationship.parent_entity parent_v = relationship.parent_variable.id if not isinstance(child_e[child_v], vtypes.Id): child_e.convert_variable_type(variable_id=child_v, new_type=vtypes.Id, convert_data=False) if not isinstance(parent_e[parent_v], vtypes.Index): parent_e.convert_variable_type(variable_id=parent_v, new_type=vtypes.Index, convert_data=False) # Empty dataframes (as a result of accessing Entity.metadata) # default to object dtypes for discrete variables, but # indexes/ids default to ints. In this case, we convert # the empty column's type to int if isinstance(child_e.df, pd.DataFrame) and \ (child_e.df.empty and child_e.df[child_v].dtype == object and is_numeric_dtype(parent_e.df[parent_v])): child_e.df[child_v] = pd.Series(name=child_v, dtype=np.int64) parent_dtype = parent_e.df[parent_v].dtype child_dtype = child_e.df[child_v].dtype msg = u"Unable to add relationship because {} in {} is Pandas dtype {}"\ u" and {} in {} is Pandas dtype {}." if not is_dtype_equal(parent_dtype, child_dtype): raise ValueError(msg.format(parent_v, parent_e.id, parent_dtype, child_v, child_e.id, child_dtype)) self.relationships.append(relationship) self.reset_data_description() return self ########################################################################### # Relationship access/helper methods ################################### ########################################################################### def find_forward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all forward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : id of entity to start the search from goal_entity_id (str) : if of entity to find forward path to See Also: :func:`BaseEntitySet.find_backward_paths` """ for sub_entity_id, path in self._forward_entity_paths(start_entity_id): if sub_entity_id == goal_entity_id: yield path def find_backward_paths(self, start_entity_id, goal_entity_id): """ Generator which yields all backward paths between a start and goal entity. Does not include paths which contain cycles. Args: start_entity_id (str) : Id of entity to start the search from. goal_entity_id (str) : Id of entity to find backward path to. See Also: :func:`BaseEntitySet.find_forward_paths` """ for path in self.find_forward_paths(goal_entity_id, start_entity_id): # Reverse path yield path[::-1] def _forward_entity_paths(self, start_entity_id, seen_entities=None): """ Generator which yields the ids of all entities connected through forward relationships, and the path taken to each. An entity will be yielded multiple times if there are multiple paths to it. Implemented using depth first search. """ if seen_entities is None: seen_entities = set() if start_entity_id in seen_entities: return seen_entities.add(start_entity_id) yield start_entity_id, [] for relationship in self.get_forward_relationships(start_entity_id): next_entity = relationship.parent_entity.id # Copy seen entities for each next node to allow multiple paths (but # not cycles). descendants = self._forward_entity_paths(next_entity, seen_entities.copy()) for sub_entity_id, sub_path in descendants: yield sub_entity_id, [relationship] + sub_path def get_forward_entities(self, entity_id, deep=False): """ Get entities that are in a forward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find forward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_forward_relationships(entity_id): parent_eid = relationship.parent_entity.id direct_path = RelationshipPath([(True, relationship)]) yield parent_eid, direct_path if deep: sub_entities = self.get_forward_entities(parent_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_backward_entities(self, entity_id, deep=False): """ Get entities that are in a backward relationship with entity Args: entity_id (str): Id entity of entity to search from. deep (bool): if True, recursively find backward entities. Yields a tuple of (descendent_id, path from entity_id to descendant). """ for relationship in self.get_backward_relationships(entity_id): child_eid = relationship.child_entity.id direct_path = RelationshipPath([(False, relationship)]) yield child_eid, direct_path if deep: sub_entities = self.get_backward_entities(child_eid, deep=True) for sub_eid, path in sub_entities: yield sub_eid, direct_path + path def get_forward_relationships(self, entity_id): """Get relationships where entity "entity_id" is the child Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: List of forward relationships. """ return [r for r in self.relationships if r.child_entity.id == entity_id] def get_backward_relationships(self, entity_id): """ get relationships where entity "entity_id" is the parent. Args: entity_id (str): Id of entity to get relationships for. Returns: list[:class:`.Relationship`]: list of backward relationships """ return [r for r in self.relationships if r.parent_entity.id == entity_id] def has_unique_forward_path(self, start_entity_id, end_entity_id): """ Is the forward path from start to end unique? This will raise if there is no such path. """ paths = self.find_forward_paths(start_entity_id, end_entity_id) next(paths) second_path = next(paths, None) return not second_path ########################################################################### # Entity creation methods ############################################## ########################################################################### def entity_from_dataframe(self, entity_id, dataframe, index=None, variable_types=None, make_index=False, time_index=None, secondary_time_index=None, already_sorted=False): """ Load the data for a specified entity from a Pandas DataFrame. Args: entity_id (str) : Unique id to associate with this entity. dataframe (pandas.DataFrame) : Dataframe containing the data. index (str, optional): Name of the variable used to index the entity. If None, take the first column. variable_types (dict[str -> Variable/str], optional): Keys are of variable ids and values are variable types or type_strings. Used to to initialize an entity's store. make_index (bool, optional) : If True, assume index does not exist as a column in dataframe, and create a new column of that name using integers. Otherwise, assume index exists. time_index (str, optional): Name of the variable containing time data. Type must be in :class:`variables.DateTime` or be able to be cast to datetime (e.g. str, float, or numeric.) secondary_time_index (dict[str -> Variable]): Name of variable containing time data to use a second time index for the entity. already_sorted (bool, optional) : If True, assumes that input dataframe is already sorted by time. Defaults to False. Notes: Will infer variable types from Pandas dtype Example: .. ipython:: python import featuretools as ft import pandas as pd transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "session_id": [1, 2, 1, 3, 4, 5], "amount": [100.40, 20.63, 33.32, 13.12, 67.22, 1.00], "transaction_time": pd.date_range(start="10:00", periods=6, freq="10s"), "fraud": [True, False, True, False, True, True]}) es = ft.EntitySet("example") es.entity_from_dataframe(entity_id="transactions", index="id", time_index="transaction_time", dataframe=transactions_df) es["transactions"] es["transactions"].df """ variable_types = variable_types or {} if time_index is not None and time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (time_index)) if time_index is None: for variable, variable_type in variable_types.items(): if variable_type == vtypes.DatetimeTimeIndex: raise ValueError("DatetimeTimeIndex variable %s must be set using time_index parameter" % (variable)) if len(self.entities) > 0: if not isinstance(dataframe, type(self.entities[0].df)): raise ValueError("All entity dataframes must be of the same type. " "Cannot add entity of type {} to an entityset with existing entities " "of type {}".format(type(dataframe), type(self.entities[0].df))) entity = Entity( entity_id, dataframe, self, variable_types=variable_types, index=index, time_index=time_index, secondary_time_index=secondary_time_index, already_sorted=already_sorted, make_index=make_index) self.entity_dict[entity.id] = entity self.reset_data_description() return self def normalize_entity(self, base_entity_id, new_entity_id, index, additional_variables=None, copy_variables=None, make_time_index=None, make_secondary_time_index=None, new_entity_time_index=None, new_entity_secondary_time_index=None): """Create a new entity and relationship from unique values of an existing variable. Args: base_entity_id (str) : Entity id from which to split. new_entity_id (str): Id of the new entity. index (str): Variable in old entity that will become index of new entity. Relationship will be created across this variable. additional_variables (list[str]): List of variable ids to remove from base_entity and move to new entity. copy_variables (list[str]): List of variable ids to copy from old entity and move to new entity. make_time_index (bool or str, optional): Create time index for new entity based on time index in base_entity, optionally specifying which variable in base_entity to use for time_index. If specified as True without a specific variable, uses the primary time index. Defaults to True if base entity has a time index. make_secondary_time_index (dict[str -> list[str]], optional): Create a secondary time index from key. Values of dictionary are the variables to associate with the secondary time index. Only one secondary time index is allowed. If None, only associate the time index. new_entity_time_index (str, optional): Rename new entity time index. new_entity_secondary_time_index (str, optional): Rename new entity secondary time index. """ base_entity = self.entity_dict[base_entity_id] additional_variables = additional_variables or [] copy_variables = copy_variables or [] # Check base entity to make sure time index is valid if base_entity.time_index is not None: t_index = base_entity[base_entity.time_index] if not isinstance(t_index, (vtypes.NumericTimeIndex, vtypes.DatetimeTimeIndex)): base_error = "Time index '{0}' is not a NumericTimeIndex or DatetimeTimeIndex, but type {1}. Use set_time_index on entity '{2}' to set the time_index." raise TypeError(base_error.format(base_entity.time_index, type(t_index), str(base_entity.id))) if not isinstance(additional_variables, list): raise TypeError("'additional_variables' must be a list, but received type {}" .format(type(additional_variables))) if len(additional_variables) != len(set(additional_variables)): raise ValueError("'additional_variables' contains duplicate variables. All variables must be unique.") if not isinstance(copy_variables, list): raise TypeError("'copy_variables' must be a list, but received type {}" .format(type(copy_variables))) if len(copy_variables) != len(set(copy_variables)): raise ValueError("'copy_variables' contains duplicate variables. All variables must be unique.") for v in additional_variables + copy_variables: if v == index: raise ValueError("Not copying {} as both index and variable".format(v)) for v in additional_variables: if v == base_entity.time_index: raise ValueError("Not moving {} as it is the base time index variable. Perhaps, move the variable to the copy_variables.".format(v)) if isinstance(make_time_index, str): if make_time_index not in base_entity.df.columns: raise ValueError("'make_time_index' must be a variable in the base entity") elif make_time_index not in additional_variables + copy_variables: raise ValueError("'make_time_index' must be specified in 'additional_variables' or 'copy_variables'") if index == base_entity.index: raise ValueError("'index' must be different from the index column of the base entity") transfer_types = {} transfer_types[index] = type(base_entity[index]) for v in additional_variables + copy_variables: if type(base_entity[v]) == vtypes.DatetimeTimeIndex: transfer_types[v] = vtypes.Datetime elif type(base_entity[v]) == vtypes.NumericTimeIndex: transfer_types[v] = vtypes.Numeric else: transfer_types[v] = type(base_entity[v]) # create and add new entity new_entity_df = self[base_entity_id].df.copy() if make_time_index is None and base_entity.time_index is not None: make_time_index = True if isinstance(make_time_index, str): # Set the new time index to make_time_index. base_time_index = make_time_index new_entity_time_index = make_time_index already_sorted = (new_entity_time_index == base_entity.time_index) elif make_time_index: # Create a new time index based on the base entity time index. base_time_index = base_entity.time_index if new_entity_time_index is None: new_entity_time_index = "first_%s_time" % (base_entity.id) already_sorted = True assert base_entity.time_index is not None, \ "Base entity doesn't have time_index defined" if base_time_index not in [v for v in additional_variables]: copy_variables.append(base_time_index) transfer_types[new_entity_time_index] = type(base_entity[base_entity.time_index]) else: new_entity_time_index = None already_sorted = False if new_entity_time_index is not None and new_entity_time_index == index: raise ValueError("time_index and index cannot be the same value, %s" % (new_entity_time_index)) selected_variables = [index] +\ [v for v in additional_variables] +\ [v for v in copy_variables] new_entity_df2 = new_entity_df. \ drop_duplicates(index, keep='first')[selected_variables] if make_time_index: new_entity_df2 = new_entity_df2.rename(columns={base_time_index: new_entity_time_index}) if make_secondary_time_index: assert len(make_secondary_time_index) == 1, "Can only provide 1 secondary time index" secondary_time_index = list(make_secondary_time_index.keys())[0] secondary_variables = [index, secondary_time_index] + list(make_secondary_time_index.values())[0] secondary_df = new_entity_df. \ drop_duplicates(index, keep='last')[secondary_variables] if new_entity_secondary_time_index: secondary_df = secondary_df.rename(columns={secondary_time_index: new_entity_secondary_time_index}) secondary_time_index = new_entity_secondary_time_index else: new_entity_secondary_time_index = secondary_time_index secondary_df = secondary_df.set_index(index) new_entity_df = new_entity_df2.join(secondary_df, on=index) else: new_entity_df = new_entity_df2 base_entity_index = index transfer_types[index] = vtypes.Categorical if make_secondary_time_index: old_ti_name = list(make_secondary_time_index.keys())[0] ti_cols = list(make_secondary_time_index.values())[0] ti_cols = [c if c != old_ti_name else secondary_time_index for c in ti_cols] make_secondary_time_index = {secondary_time_index: ti_cols} self.entity_from_dataframe( new_entity_id, new_entity_df, index, already_sorted=already_sorted, time_index=new_entity_time_index, secondary_time_index=make_secondary_time_index, variable_types=transfer_types) self.entity_dict[base_entity_id].delete_variables(additional_variables) new_entity = self.entity_dict[new_entity_id] base_entity.convert_variable_type(base_entity_index, vtypes.Id, convert_data=False) self.add_relationship(Relationship(new_entity[index], base_entity[base_entity_index])) self.reset_data_description() return self ########################################################################### # Data wrangling methods ############################################### ########################################################################### def concat(self, other, inplace=False): '''Combine entityset with another to create a new entityset with the combined data of both entitysets. ''' assert_string = "Entitysets must have the same entities, relationships"\ ", and variable_ids" assert (self.__eq__(other) and self.relationships == other.relationships), assert_string for entity in self.entities: assert entity.id in other.entity_dict, assert_string assert (len(self[entity.id].variables) == len(other[entity.id].variables)), assert_string other_variable_ids = [o_variable.id for o_variable in other[entity.id].variables] assert (all([variable.id in other_variable_ids for variable in self[entity.id].variables])), assert_string if inplace: combined_es = self else: combined_es = copy.deepcopy(self) has_last_time_index = [] for entity in self.entities: self_df = entity.df other_df = other[entity.id].df combined_df = pd.concat([self_df, other_df]) if entity.created_index == entity.index: columns = [col for col in combined_df.columns if col != entity.index or col != entity.time_index] else: columns = [entity.index] combined_df.drop_duplicates(columns, inplace=True) if entity.time_index: combined_df.sort_values([entity.time_index, entity.index], inplace=True) else: combined_df.sort_index(inplace=True) if (entity.last_time_index is not None or other[entity.id].last_time_index is not None): has_last_time_index.append(entity.id) combined_es[entity.id].update_data(df=combined_df, recalculate_last_time_indexes=False) combined_es.add_last_time_indexes(updated_entities=has_last_time_index) self.reset_data_description() return combined_es ########################################################################### # Indexing methods ############################################### ########################################################################### def add_last_time_indexes(self, updated_entities=None): """ Calculates the last time index values for each entity (the last time an instance or children of that instance were observed). Used when calculating features using training windows Args: updated_entities (list[str]): List of entity ids to update last_time_index for (will update all parents of those entities as well) """ # Generate graph of entities to find leaf entities children = defaultdict(list) # parent --> child mapping child_vars = defaultdict(dict) for r in self.relationships: children[r.parent_entity.id].append(r.child_entity) child_vars[r.parent_entity.id][r.child_entity.id] = r.child_variable updated_entities = updated_entities or [] if updated_entities: # find parents of updated_entities parent_queue = updated_entities[:] parents = set() while len(parent_queue): e = parent_queue.pop(0) if e in parents: continue parents.add(e) for parent_id, _ in self.get_forward_entities(e): parent_queue.append(parent_id) queue = [self[p] for p in parents] to_explore = parents else: to_explore = set([e.id for e in self.entities[:]]) queue = self.entities[:] explored = set() for e in queue: e.last_time_index = None # We will explore children of entities on the queue, # which may not be in the to_explore set. Therefore, # we check whether all elements of to_explore are in # explored, rather than just comparing length while not to_explore.issubset(explored): entity = queue.pop(0) if entity.last_time_index is None: if entity.time_index is not None: lti = entity.df[entity.time_index].copy() if isinstance(entity.df, dd.DataFrame): # The current Dask implementation doesn't set the index of the dataframe # to the entity's index, so we have to do it manually here lti.index = entity.df[entity.index].copy() else: lti = entity.df[entity.index].copy() if isinstance(entity.df, dd.DataFrame): lti.index = entity.df[entity.index].copy() lti = lti.apply(lambda x: None) else: lti[:] = None entity.last_time_index = lti if entity.id in children: child_entities = children[entity.id] # if all children not explored, skip for now if not set([e.id for e in child_entities]).issubset(explored): # Now there is a possibility that a child entity # was not explicitly provided in updated_entities, # and never made it onto the queue. If updated_entities # is None then we just load all entities onto the queue # so we didn't need this logic for e in child_entities: if e.id not in explored and e.id not in [q.id for q in queue]: queue.append(e) queue.append(entity) continue # updated last time from all children for child_e in child_entities: if child_e.last_time_index is None: continue link_var = child_vars[entity.id][child_e.id].id if isinstance(child_e.last_time_index, dd.Series): to_join = child_e.df[link_var] to_join.index = child_e.df[child_e.index] lti_df = child_e.last_time_index.to_frame(name='last_time').join( to_join.to_frame(name=entity.index) ) new_index = lti_df.index.copy() new_index.name = None lti_df.index = new_index lti_df = lti_df.groupby(lti_df[entity.index]).agg('max') lti_df = entity.last_time_index.to_frame(name='last_time_old').join(lti_df) else: lti_df = pd.DataFrame({'last_time': child_e.last_time_index, entity.index: child_e.df[link_var]}) # sort by time and keep only the most recent lti_df.sort_values(['last_time', entity.index], kind="mergesort", inplace=True) lti_df.drop_duplicates(entity.index, keep='last', inplace=True) lti_df.set_index(entity.index, inplace=True) lti_df = lti_df.reindex(entity.last_time_index.index) lti_df['last_time_old'] = entity.last_time_index if not isinstance(lti_df, dd.DataFrame) and lti_df.empty: # Pandas errors out if it tries to do fillna and then max on an empty dataframe lti_df = pd.Series() else: lti_df['last_time'] = lti_df['last_time'].astype('datetime64[ns]') lti_df['last_time_old'] = lti_df['last_time_old'].astype('datetime64[ns]') lti_df = lti_df.fillna(pd.to_datetime('1800-01-01 00:00')).max(axis=1) lti_df = lti_df.replace(pd.to_datetime('1800-01-01 00:00'), pd.NaT) # lti_df = lti_df.apply(lambda x: x.dropna().max(), axis=1) entity.last_time_index = lti_df entity.last_time_index.name = 'last_time' explored.add(entity.id) self.reset_data_description() ########################################################################### # Other ############################################### ########################################################################### def add_interesting_values(self, max_values=5, verbose=False): """Find interesting values for categorical variables, to be used to generate "where" clauses Args: max_values (int) : Maximum number of values per variable to add. verbose (bool) : If True, print summary of interesting values found. Returns: None """ for entity in self.entities: entity.add_interesting_values(max_values=max_values, verbose=verbose) self.reset_data_description() def plot(self, to_file=None): """ Create a UML diagram-ish graph of the EntitySet. Args: to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. """ GRAPHVIZ_ERR_MSG = ('Please install graphviz to plot entity sets.' + ' (See https://docs.featuretools.com/en/stable/getting_started/install.html#installing-graphviz for' + ' details)') graphviz = import_or_raise("graphviz", GRAPHVIZ_ERR_MSG) # Try rendering a dummy graph to see if a working backend is installed try: graphviz.Digraph().pipe() except graphviz.backend.ExecutableNotFound: raise RuntimeError( "To plot entity sets, a graphviz backend is required.\n" + "Install the backend using one of the following commands:\n" + " Mac OS: brew install graphviz\n" + " Linux (Ubuntu): sudo apt-get install graphviz\n" + " Windows: conda install python-graphviz\n" + " For more details visit: https://docs.featuretools.com/en/stable/getting_started/install.html" ) if to_file: # Explicitly cast to str in case a Path object was passed in to_file = str(to_file) split_path = to_file.split('.') if len(split_path) < 2: raise ValueError("Please use a file extension like '.pdf'" + " so that the format can be inferred") format = split_path[-1] valid_formats = graphviz.backend.FORMATS if format not in valid_formats: raise ValueError("Unknown format. Make sure your format is" + " amongst the following: %s" % valid_formats) else: format = None # Initialize a new directed graph graph = graphviz.Digraph(self.id, format=format, graph_attr={'splines': 'ortho'}) # Draw entities for entity in self.entities: variables_string = '\l'.join([var.id + ' : ' + var.type_string # noqa: W605 for var in entity.variables]) nrows = entity.shape[0] label = '{%s (%d row%s)|%s\l}' % (entity.id, nrows, 's' * (nrows > 1), variables_string) # noqa: W605 graph.node(entity.id, shape='record', label=label) # Draw relationships for rel in self.relationships: # Display the key only once if is the same for both related entities if rel._parent_variable_id == rel._child_variable_id: label = rel._parent_variable_id else: label = '%s -> %s' % (rel._parent_variable_id, rel._child_variable_id) graph.edge(rel._child_entity_id, rel._parent_entity_id, xlabel=label) if to_file: # Graphviz always appends the format to the file name, so we need to # remove it manually to avoid file names like 'file_name.pdf.pdf' offset = len(format) + 1 # Add 1 for the dot output_path = to_file[:-offset] graph.render(output_path, cleanup=True) return graph
iterator
If search has occurred and no ordering has occurred, decorate each result with the number of search terms so that it can be sorted by the number of occurrence of terms. In the case of search fields that span model relationships, we cannot accurately match occurrences without some very complicated traversal code, which we won't attempt. So in this case, namely when there are no matches for a result (count=0), and search fields contain relationships (double underscores), we assume one match for one of the fields, and use the average weight of all search fields with relationships.
from __future__ import unicode_literals from future.builtins import int, zip from functools import reduce from operator import ior, iand from string import punctuation from django.core.exceptions import ImproperlyConfigured from django.db.models import Manager, Q, CharField, TextField from django.db.models.loading import get_models from django.db.models.manager import ManagerDescriptor from django.db.models.query import QuerySet from django.contrib.sites.managers import CurrentSiteManager as DjangoCSM from django.utils.timezone import now from django.utils.translation import ugettext_lazy as _ from mezzanine.conf import settings from mezzanine.utils.models import get_model from mezzanine.utils.sites import current_site_id from mezzanine.utils.urls import home_slug class PublishedManager(Manager): """ Provides filter for restricting items returned by status and publish date when the given user is not a staff member. """ def published(self, for_user=None): """ For non-staff users, return items with a published status and whose publish and expiry dates fall before and after the current date when specified. """ from mezzanine.core.models import CONTENT_STATUS_PUBLISHED if for_user is not None and for_user.is_staff: return self.all() return self.filter( Q(publish_date__lte=now()) | Q(publish_date__isnull=True), Q(expiry_date__gte=now()) | Q(expiry_date__isnull=True), Q(status=CONTENT_STATUS_PUBLISHED)) def get_by_natural_key(self, slug): return self.get(slug=slug) def search_fields_to_dict(fields): """ In ``SearchableQuerySet`` and ``SearchableManager``, search fields can either be a sequence, or a dict of fields mapped to weights. This function converts sequences to a dict mapped to even weights, so that we're consistently dealing with a dict of fields mapped to weights, eg: ("title", "content") -> {"title": 1, "content": 1} """ if not fields: return {} try: int(list(dict(fields).values())[0]) except (TypeError, ValueError): fields = dict(zip(fields, [1] * len(fields))) return fields class SearchableQuerySet(QuerySet): """ QuerySet providing main search functionality for ``SearchableManager``. """ def __init__(self, *args, **kwargs): self._search_ordered = False self._search_terms = set() self._search_fields = kwargs.pop("search_fields", {}) super(SearchableQuerySet, self).__init__(*args, **kwargs) def search(self, query, search_fields=None): """ Build a queryset matching words in the given search query, treating quoted terms as exact phrases and taking into account + and - symbols as modifiers controlling which terms to require and exclude. """ # ### DETERMINE FIELDS TO SEARCH ### # Use search_fields arg if given, otherwise use search_fields # initially configured by the manager class. if search_fields: self._search_fields = search_fields_to_dict(search_fields) if not self._search_fields: return self.none() # ### BUILD LIST OF TERMS TO SEARCH FOR ### # Remove extra spaces, put modifiers inside quoted terms. terms = " ".join(query.split()).replace("+ ", "+") \ .replace('+"', '"+') \ .replace("- ", "-") \ .replace('-"', '"-') \ .split('"') # Strip punctuation other than modifiers from terms and create # terms list, first from quoted terms and then remaining words. terms = [("" if t[0:1] not in "+-" else t[0:1]) + t.strip(punctuation) for t in terms[1::2] + "".join(terms[::2]).split()] # Remove stop words from terms that aren't quoted or use # modifiers, since words with these are an explicit part of # the search query. If doing so ends up with an empty term # list, then keep the stop words. terms_no_stopwords = [t for t in terms if t.lower() not in settings.STOP_WORDS] get_positive_terms = lambda terms: [t.lower().strip(punctuation) for t in terms if t[0:1] != "-"] positive_terms = get_positive_terms(terms_no_stopwords) if positive_terms: terms = terms_no_stopwords else: positive_terms = get_positive_terms(terms) # Append positive terms (those without the negative modifier) # to the internal list for sorting when results are iterated. if not positive_terms: return self.none() else: self._search_terms.update(positive_terms) # ### BUILD QUERYSET FILTER ### # Create the queryset combining each set of terms. excluded = [reduce(iand, [~Q(**{"%s__icontains" % f: t[1:]}) for f in self._search_fields.keys()]) for t in terms if t[0:1] == "-"] required = [reduce(ior, [Q(**{"%s__icontains" % f: t[1:]}) for f in self._search_fields.keys()]) for t in terms if t[0:1] == "+"] optional = [reduce(ior, [Q(**{"%s__icontains" % f: t}) for f in self._search_fields.keys()]) for t in terms if t[0:1] not in "+-"] queryset = self if excluded: queryset = queryset.filter(reduce(iand, excluded)) if required: queryset = queryset.filter(reduce(iand, required)) # Optional terms aren't relevant to the filter if there are # terms that are explicitly required. elif optional: queryset = queryset.filter(reduce(ior, optional)) return queryset.distinct() def _clone(self, *args, **kwargs): """ Ensure attributes are copied to subsequent queries. """ for attr in ("_search_terms", "_search_fields", "_search_ordered"): kwargs[attr] = getattr(self, attr) return super(SearchableQuerySet, self)._clone(*args, **kwargs) def order_by(self, *field_names): """ Mark the filter as being ordered if search has occurred. """ if not self._search_ordered: self._search_ordered = len(self._search_terms) > 0 return super(SearchableQuerySet, self).order_by(*field_names) # MASKED: iterator function (lines 161-192) class SearchableManager(Manager): """ Manager providing a chainable queryset. Adapted from http://www.djangosnippets.org/snippets/562/ search method supports spanning across models that subclass the model being used to search. """ def __init__(self, *args, **kwargs): self._search_fields = kwargs.pop("search_fields", {}) super(SearchableManager, self).__init__(*args, **kwargs) def get_search_fields(self): """ Returns the search field names mapped to weights as a dict. Used in ``get_queryset`` below to tell ``SearchableQuerySet`` which search fields to use. Also used by ``DisplayableAdmin`` to populate Django admin's ``search_fields`` attribute. Search fields can be populated via ``SearchableManager.__init__``, which then get stored in ``SearchableManager._search_fields``, which serves as an approach for defining an explicit set of fields to be used. Alternatively and more commonly, ``search_fields`` can be defined on models themselves. In this case, we look at the model and all its base classes, and build up the search fields from all of those, so the search fields are implicitly built up from the inheritence chain. Finally if no search fields have been defined at all, we fall back to any fields that are ``CharField`` or ``TextField`` instances. """ search_fields = self._search_fields.copy() if not search_fields: for cls in reversed(self.model.__mro__): super_fields = getattr(cls, "search_fields", {}) search_fields.update(search_fields_to_dict(super_fields)) if not search_fields: search_fields = [] for f in self.model._meta.fields: if isinstance(f, (CharField, TextField)): search_fields.append(f.name) search_fields = search_fields_to_dict(search_fields) return search_fields def get_queryset(self): search_fields = self.get_search_fields() return SearchableQuerySet(self.model, search_fields=search_fields) def contribute_to_class(self, model, name): """ Django 1.5 explicitly prevents managers being accessed from abstract classes, which is behaviour the search API has relied on for years. Here we reinstate it. """ super(SearchableManager, self).contribute_to_class(model, name) setattr(model, name, ManagerDescriptor(self)) def search(self, *args, **kwargs): """ Proxy to queryset's search method for the manager's model and any models that subclass from this manager's model if the model is abstract. """ if not settings.SEARCH_MODEL_CHOICES: # No choices defined - build a list of leaf models (those # without subclasses) that inherit from Displayable. models = [m for m in get_models() if issubclass(m, self.model)] parents = reduce(ior, [m._meta.get_parent_list() for m in models]) models = [m for m in models if m not in parents] elif getattr(self.model._meta, "abstract", False): # When we're combining model subclasses for an abstract # model (eg Displayable), we only want to use models that # are represented by the ``SEARCH_MODEL_CHOICES`` setting. # Now this setting won't contain an exact list of models # we should use, since it can define superclass models such # as ``Page``, so we check the parent class list of each # model when determining whether a model falls within the # ``SEARCH_MODEL_CHOICES`` setting. search_choices = set() models = set() parents = set() errors = [] for name in settings.SEARCH_MODEL_CHOICES: try: model = get_model(*name.split(".", 1)) except LookupError: errors.append(name) else: search_choices.add(model) if errors: raise ImproperlyConfigured("Could not load the model(s) " "%s defined in the 'SEARCH_MODEL_CHOICES' setting." % ", ".join(errors)) for model in get_models(): # Model is actually a subclasses of what we're # searching (eg Displayabale) is_subclass = issubclass(model, self.model) # Model satisfies the search choices list - either # there are no search choices, model is directly in # search choices, or its parent is. this_parents = set(model._meta.get_parent_list()) in_choices = not search_choices or model in search_choices in_choices = in_choices or this_parents & search_choices if is_subclass and (in_choices or not search_choices): # Add to models we'll seach. Also maintain a parent # set, used below for further refinement of models # list to search. models.add(model) parents.update(this_parents) # Strip out any models that are superclasses of models, # specifically the Page model which will generally be the # superclass for all custom content types, since if we # query the Page model as well, we will get duplicate # results. models -= parents else: models = [self.model] all_results = [] user = kwargs.pop("for_user", None) for model in models: try: queryset = model.objects.published(for_user=user) except AttributeError: queryset = model.objects.get_queryset() all_results.extend(queryset.search(*args, **kwargs)) return sorted(all_results, key=lambda r: r.result_count, reverse=True) class CurrentSiteManager(DjangoCSM): """ Extends Django's site manager to first look up site by ID stored in the request, the session, then domain for the current request (accessible via threadlocals in ``mezzanine.core.request``), the environment variable ``MEZZANINE_SITE_ID`` (which can be used by management commands with the ``--site`` arg, finally falling back to ``settings.SITE_ID`` if none of those match a site. """ def __init__(self, field_name=None, *args, **kwargs): super(DjangoCSM, self).__init__(*args, **kwargs) self.__field_name = field_name self.__is_validated = False def get_queryset(self): if not self.__is_validated: try: # Django <= 1.6 self._validate_field_name() except AttributeError: # Django >= 1.7: will populate "self.__field_name". self._get_field_name() lookup = {self.__field_name + "__id__exact": current_site_id()} return super(DjangoCSM, self).get_queryset().filter(**lookup) class DisplayableManager(CurrentSiteManager, PublishedManager, SearchableManager): """ Manually combines ``CurrentSiteManager``, ``PublishedManager`` and ``SearchableManager`` for the ``Displayable`` model. """ def url_map(self, for_user=None, **kwargs): """ Returns a dictionary of urls mapped to Displayable subclass instances, including a fake homepage instance if none exists. Used in ``mezzanine.core.sitemaps``. """ home = self.model(title=_("Home")) setattr(home, "get_absolute_url", home_slug) items = {home.get_absolute_url(): home} for model in get_models(): if issubclass(model, self.model): for item in (model.objects.published(for_user=for_user) .filter(**kwargs) .exclude(slug__startswith="http://") .exclude(slug__startswith="https://")): items[item.get_absolute_url()] = item return items
def iterator(self): """ If search has occurred and no ordering has occurred, decorate each result with the number of search terms so that it can be sorted by the number of occurrence of terms. In the case of search fields that span model relationships, we cannot accurately match occurrences without some very complicated traversal code, which we won't attempt. So in this case, namely when there are no matches for a result (count=0), and search fields contain relationships (double underscores), we assume one match for one of the fields, and use the average weight of all search fields with relationships. """ results = super(SearchableQuerySet, self).iterator() if self._search_terms and not self._search_ordered: results = list(results) for i, result in enumerate(results): count = 0 related_weights = [] for (field, weight) in self._search_fields.items(): if "__" in field: related_weights.append(weight) for term in self._search_terms: field_value = getattr(result, field, None) if field_value: count += field_value.lower().count(term) * weight if not count and related_weights: count = int(sum(related_weights) / len(related_weights)) results[i].result_count = count return iter(results) return results
161
192
from __future__ import unicode_literals from future.builtins import int, zip from functools import reduce from operator import ior, iand from string import punctuation from django.core.exceptions import ImproperlyConfigured from django.db.models import Manager, Q, CharField, TextField from django.db.models.loading import get_models from django.db.models.manager import ManagerDescriptor from django.db.models.query import QuerySet from django.contrib.sites.managers import CurrentSiteManager as DjangoCSM from django.utils.timezone import now from django.utils.translation import ugettext_lazy as _ from mezzanine.conf import settings from mezzanine.utils.models import get_model from mezzanine.utils.sites import current_site_id from mezzanine.utils.urls import home_slug class PublishedManager(Manager): """ Provides filter for restricting items returned by status and publish date when the given user is not a staff member. """ def published(self, for_user=None): """ For non-staff users, return items with a published status and whose publish and expiry dates fall before and after the current date when specified. """ from mezzanine.core.models import CONTENT_STATUS_PUBLISHED if for_user is not None and for_user.is_staff: return self.all() return self.filter( Q(publish_date__lte=now()) | Q(publish_date__isnull=True), Q(expiry_date__gte=now()) | Q(expiry_date__isnull=True), Q(status=CONTENT_STATUS_PUBLISHED)) def get_by_natural_key(self, slug): return self.get(slug=slug) def search_fields_to_dict(fields): """ In ``SearchableQuerySet`` and ``SearchableManager``, search fields can either be a sequence, or a dict of fields mapped to weights. This function converts sequences to a dict mapped to even weights, so that we're consistently dealing with a dict of fields mapped to weights, eg: ("title", "content") -> {"title": 1, "content": 1} """ if not fields: return {} try: int(list(dict(fields).values())[0]) except (TypeError, ValueError): fields = dict(zip(fields, [1] * len(fields))) return fields class SearchableQuerySet(QuerySet): """ QuerySet providing main search functionality for ``SearchableManager``. """ def __init__(self, *args, **kwargs): self._search_ordered = False self._search_terms = set() self._search_fields = kwargs.pop("search_fields", {}) super(SearchableQuerySet, self).__init__(*args, **kwargs) def search(self, query, search_fields=None): """ Build a queryset matching words in the given search query, treating quoted terms as exact phrases and taking into account + and - symbols as modifiers controlling which terms to require and exclude. """ # ### DETERMINE FIELDS TO SEARCH ### # Use search_fields arg if given, otherwise use search_fields # initially configured by the manager class. if search_fields: self._search_fields = search_fields_to_dict(search_fields) if not self._search_fields: return self.none() # ### BUILD LIST OF TERMS TO SEARCH FOR ### # Remove extra spaces, put modifiers inside quoted terms. terms = " ".join(query.split()).replace("+ ", "+") \ .replace('+"', '"+') \ .replace("- ", "-") \ .replace('-"', '"-') \ .split('"') # Strip punctuation other than modifiers from terms and create # terms list, first from quoted terms and then remaining words. terms = [("" if t[0:1] not in "+-" else t[0:1]) + t.strip(punctuation) for t in terms[1::2] + "".join(terms[::2]).split()] # Remove stop words from terms that aren't quoted or use # modifiers, since words with these are an explicit part of # the search query. If doing so ends up with an empty term # list, then keep the stop words. terms_no_stopwords = [t for t in terms if t.lower() not in settings.STOP_WORDS] get_positive_terms = lambda terms: [t.lower().strip(punctuation) for t in terms if t[0:1] != "-"] positive_terms = get_positive_terms(terms_no_stopwords) if positive_terms: terms = terms_no_stopwords else: positive_terms = get_positive_terms(terms) # Append positive terms (those without the negative modifier) # to the internal list for sorting when results are iterated. if not positive_terms: return self.none() else: self._search_terms.update(positive_terms) # ### BUILD QUERYSET FILTER ### # Create the queryset combining each set of terms. excluded = [reduce(iand, [~Q(**{"%s__icontains" % f: t[1:]}) for f in self._search_fields.keys()]) for t in terms if t[0:1] == "-"] required = [reduce(ior, [Q(**{"%s__icontains" % f: t[1:]}) for f in self._search_fields.keys()]) for t in terms if t[0:1] == "+"] optional = [reduce(ior, [Q(**{"%s__icontains" % f: t}) for f in self._search_fields.keys()]) for t in terms if t[0:1] not in "+-"] queryset = self if excluded: queryset = queryset.filter(reduce(iand, excluded)) if required: queryset = queryset.filter(reduce(iand, required)) # Optional terms aren't relevant to the filter if there are # terms that are explicitly required. elif optional: queryset = queryset.filter(reduce(ior, optional)) return queryset.distinct() def _clone(self, *args, **kwargs): """ Ensure attributes are copied to subsequent queries. """ for attr in ("_search_terms", "_search_fields", "_search_ordered"): kwargs[attr] = getattr(self, attr) return super(SearchableQuerySet, self)._clone(*args, **kwargs) def order_by(self, *field_names): """ Mark the filter as being ordered if search has occurred. """ if not self._search_ordered: self._search_ordered = len(self._search_terms) > 0 return super(SearchableQuerySet, self).order_by(*field_names) def iterator(self): """ If search has occurred and no ordering has occurred, decorate each result with the number of search terms so that it can be sorted by the number of occurrence of terms. In the case of search fields that span model relationships, we cannot accurately match occurrences without some very complicated traversal code, which we won't attempt. So in this case, namely when there are no matches for a result (count=0), and search fields contain relationships (double underscores), we assume one match for one of the fields, and use the average weight of all search fields with relationships. """ results = super(SearchableQuerySet, self).iterator() if self._search_terms and not self._search_ordered: results = list(results) for i, result in enumerate(results): count = 0 related_weights = [] for (field, weight) in self._search_fields.items(): if "__" in field: related_weights.append(weight) for term in self._search_terms: field_value = getattr(result, field, None) if field_value: count += field_value.lower().count(term) * weight if not count and related_weights: count = int(sum(related_weights) / len(related_weights)) results[i].result_count = count return iter(results) return results class SearchableManager(Manager): """ Manager providing a chainable queryset. Adapted from http://www.djangosnippets.org/snippets/562/ search method supports spanning across models that subclass the model being used to search. """ def __init__(self, *args, **kwargs): self._search_fields = kwargs.pop("search_fields", {}) super(SearchableManager, self).__init__(*args, **kwargs) def get_search_fields(self): """ Returns the search field names mapped to weights as a dict. Used in ``get_queryset`` below to tell ``SearchableQuerySet`` which search fields to use. Also used by ``DisplayableAdmin`` to populate Django admin's ``search_fields`` attribute. Search fields can be populated via ``SearchableManager.__init__``, which then get stored in ``SearchableManager._search_fields``, which serves as an approach for defining an explicit set of fields to be used. Alternatively and more commonly, ``search_fields`` can be defined on models themselves. In this case, we look at the model and all its base classes, and build up the search fields from all of those, so the search fields are implicitly built up from the inheritence chain. Finally if no search fields have been defined at all, we fall back to any fields that are ``CharField`` or ``TextField`` instances. """ search_fields = self._search_fields.copy() if not search_fields: for cls in reversed(self.model.__mro__): super_fields = getattr(cls, "search_fields", {}) search_fields.update(search_fields_to_dict(super_fields)) if not search_fields: search_fields = [] for f in self.model._meta.fields: if isinstance(f, (CharField, TextField)): search_fields.append(f.name) search_fields = search_fields_to_dict(search_fields) return search_fields def get_queryset(self): search_fields = self.get_search_fields() return SearchableQuerySet(self.model, search_fields=search_fields) def contribute_to_class(self, model, name): """ Django 1.5 explicitly prevents managers being accessed from abstract classes, which is behaviour the search API has relied on for years. Here we reinstate it. """ super(SearchableManager, self).contribute_to_class(model, name) setattr(model, name, ManagerDescriptor(self)) def search(self, *args, **kwargs): """ Proxy to queryset's search method for the manager's model and any models that subclass from this manager's model if the model is abstract. """ if not settings.SEARCH_MODEL_CHOICES: # No choices defined - build a list of leaf models (those # without subclasses) that inherit from Displayable. models = [m for m in get_models() if issubclass(m, self.model)] parents = reduce(ior, [m._meta.get_parent_list() for m in models]) models = [m for m in models if m not in parents] elif getattr(self.model._meta, "abstract", False): # When we're combining model subclasses for an abstract # model (eg Displayable), we only want to use models that # are represented by the ``SEARCH_MODEL_CHOICES`` setting. # Now this setting won't contain an exact list of models # we should use, since it can define superclass models such # as ``Page``, so we check the parent class list of each # model when determining whether a model falls within the # ``SEARCH_MODEL_CHOICES`` setting. search_choices = set() models = set() parents = set() errors = [] for name in settings.SEARCH_MODEL_CHOICES: try: model = get_model(*name.split(".", 1)) except LookupError: errors.append(name) else: search_choices.add(model) if errors: raise ImproperlyConfigured("Could not load the model(s) " "%s defined in the 'SEARCH_MODEL_CHOICES' setting." % ", ".join(errors)) for model in get_models(): # Model is actually a subclasses of what we're # searching (eg Displayabale) is_subclass = issubclass(model, self.model) # Model satisfies the search choices list - either # there are no search choices, model is directly in # search choices, or its parent is. this_parents = set(model._meta.get_parent_list()) in_choices = not search_choices or model in search_choices in_choices = in_choices or this_parents & search_choices if is_subclass and (in_choices or not search_choices): # Add to models we'll seach. Also maintain a parent # set, used below for further refinement of models # list to search. models.add(model) parents.update(this_parents) # Strip out any models that are superclasses of models, # specifically the Page model which will generally be the # superclass for all custom content types, since if we # query the Page model as well, we will get duplicate # results. models -= parents else: models = [self.model] all_results = [] user = kwargs.pop("for_user", None) for model in models: try: queryset = model.objects.published(for_user=user) except AttributeError: queryset = model.objects.get_queryset() all_results.extend(queryset.search(*args, **kwargs)) return sorted(all_results, key=lambda r: r.result_count, reverse=True) class CurrentSiteManager(DjangoCSM): """ Extends Django's site manager to first look up site by ID stored in the request, the session, then domain for the current request (accessible via threadlocals in ``mezzanine.core.request``), the environment variable ``MEZZANINE_SITE_ID`` (which can be used by management commands with the ``--site`` arg, finally falling back to ``settings.SITE_ID`` if none of those match a site. """ def __init__(self, field_name=None, *args, **kwargs): super(DjangoCSM, self).__init__(*args, **kwargs) self.__field_name = field_name self.__is_validated = False def get_queryset(self): if not self.__is_validated: try: # Django <= 1.6 self._validate_field_name() except AttributeError: # Django >= 1.7: will populate "self.__field_name". self._get_field_name() lookup = {self.__field_name + "__id__exact": current_site_id()} return super(DjangoCSM, self).get_queryset().filter(**lookup) class DisplayableManager(CurrentSiteManager, PublishedManager, SearchableManager): """ Manually combines ``CurrentSiteManager``, ``PublishedManager`` and ``SearchableManager`` for the ``Displayable`` model. """ def url_map(self, for_user=None, **kwargs): """ Returns a dictionary of urls mapped to Displayable subclass instances, including a fake homepage instance if none exists. Used in ``mezzanine.core.sitemaps``. """ home = self.model(title=_("Home")) setattr(home, "get_absolute_url", home_slug) items = {home.get_absolute_url(): home} for model in get_models(): if issubclass(model, self.model): for item in (model.objects.published(for_user=for_user) .filter(**kwargs) .exclude(slug__startswith="http://") .exclude(slug__startswith="https://")): items[item.get_absolute_url()] = item return items
prep
Run all steps to prepare a release. - Tag the commit. - Build the sdist package. - Generate the Markdown changelog to ``changelog.md``. - Bump the version number to the next version.
#!/usr/bin/env python3 """A utility script for automating the beets release process. """ import click import os import re import subprocess from contextlib import contextmanager import datetime BASE = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CHANGELOG = os.path.join(BASE, 'docs', 'changelog.rst') @contextmanager def chdir(d): """A context manager that temporary changes the working directory. """ olddir = os.getcwd() os.chdir(d) yield os.chdir(olddir) @click.group() def release(): pass # Locations (filenames and patterns) of the version number. VERSION_LOCS = [ ( os.path.join(BASE, 'beets', '__init__.py'), [ ( r'__version__\s*=\s*u[\'"]([0-9\.]+)[\'"]', "__version__ = '{version}'", ) ] ), ( os.path.join(BASE, 'docs', 'conf.py'), [ ( r'version\s*=\s*[\'"]([0-9\.]+)[\'"]', "version = '{minor}'", ), ( r'release\s*=\s*[\'"]([0-9\.]+)[\'"]', "release = '{version}'", ), ] ), ( os.path.join(BASE, 'setup.py'), [ ( r'\s*version\s*=\s*[\'"]([0-9\.]+)[\'"]', " version='{version}',", ) ] ), ] GITHUB_USER = 'beetbox' GITHUB_REPO = 'beets' def bump_version(version): """Update the version number in setup.py, docs config, changelog, and root module. """ version_parts = [int(p) for p in version.split('.')] assert len(version_parts) == 3, "invalid version number" minor = '{}.{}'.format(*version_parts) major = '{}'.format(*version_parts) # Replace the version each place where it lives. for filename, locations in VERSION_LOCS: # Read and transform the file. out_lines = [] with open(filename) as f: found = False for line in f: for pattern, template in locations: match = re.match(pattern, line) if match: # Check that this version is actually newer. old_version = match.group(1) old_parts = [int(p) for p in old_version.split('.')] assert version_parts > old_parts, \ "version must be newer than {}".format( old_version ) # Insert the new version. out_lines.append(template.format( version=version, major=major, minor=minor, ) + '\n') found = True break else: # Normal line. out_lines.append(line) if not found: print(f"No pattern found in {filename}") # Write the file back. with open(filename, 'w') as f: f.write(''.join(out_lines)) # Generate bits to insert into changelog. header_line = f'{version} (in development)' header = '\n\n' + header_line + '\n' + '-' * len(header_line) + '\n\n' header += 'Changelog goes here!\n' # Insert into the right place. with open(CHANGELOG) as f: contents = f.read() location = contents.find('\n\n') # First blank line. contents = contents[:location] + header + contents[location:] # Write back. with open(CHANGELOG, 'w') as f: f.write(contents) @release.command() @click.argument('version') def bump(version): """Bump the version number. """ bump_version(version) def get_latest_changelog(): """Extract the first section of the changelog. """ started = False lines = [] with open(CHANGELOG) as f: for line in f: if re.match(r'^--+$', line.strip()): # Section boundary. Start or end. if started: # Remove last line, which is the header of the next # section. del lines[-1] break else: started = True elif started: lines.append(line) return ''.join(lines).strip() def rst2md(text): """Use Pandoc to convert text from ReST to Markdown. """ pandoc = subprocess.Popen( ['pandoc', '--from=rst', '--to=markdown', '--wrap=none'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, _ = pandoc.communicate(text.encode('utf-8')) md = stdout.decode('utf-8').strip() # Fix up odd spacing in lists. return re.sub(r'^- ', '- ', md, flags=re.M) def changelog_as_markdown(): """Get the latest changelog entry as hacked up Markdown. """ rst = get_latest_changelog() # Replace plugin links with plugin names. rst = re.sub(r':doc:`/plugins/(\w+)`', r'``\1``', rst) # References with text. rst = re.sub(r':ref:`([^<]+)(<[^>]+>)`', r'\1', rst) # Other backslashes with verbatim ranges. rst = re.sub(r'(\s)`([^`]+)`([^_])', r'\1``\2``\3', rst) # Command links with command names. rst = re.sub(r':ref:`(\w+)-cmd`', r'``\1``', rst) # Bug numbers. rst = re.sub(r':bug:`(\d+)`', r'#\1', rst) # Users. rst = re.sub(r':user:`(\w+)`', r'@\1', rst) # Convert with Pandoc. md = rst2md(rst) # Restore escaped issue numbers. md = re.sub(r'\\#(\d+)\b', r'#\1', md) return md @release.command() def changelog(): """Get the most recent version's changelog as Markdown. """ print(changelog_as_markdown()) def get_version(index=0): """Read the current version from the changelog. """ with open(CHANGELOG) as f: cur_index = 0 for line in f: match = re.search(r'^\d+\.\d+\.\d+', line) if match: if cur_index == index: return match.group(0) else: cur_index += 1 @release.command() def version(): """Display the current version. """ print(get_version()) @release.command() def datestamp(): """Enter today's date as the release date in the changelog. """ dt = datetime.datetime.now() stamp = '({} {}, {})'.format(dt.strftime('%B'), dt.day, dt.year) marker = '(in development)' lines = [] underline_length = None with open(CHANGELOG) as f: for line in f: if marker in line: # The header line. line = line.replace(marker, stamp) lines.append(line) underline_length = len(line.strip()) elif underline_length: # This is the line after the header. Rewrite the dashes. lines.append('-' * underline_length + '\n') underline_length = None else: lines.append(line) with open(CHANGELOG, 'w') as f: for line in lines: f.write(line) # MASKED: prep function (lines 267-295) @release.command() def publish(): """Unleash a release unto the world. - Push the tag to GitHub. - Upload to PyPI. """ version = get_version(1) # Push to GitHub. with chdir(BASE): subprocess.check_call(['git', 'push']) subprocess.check_call(['git', 'push', '--tags']) # Upload to PyPI. path = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call(['twine', 'upload', path]) @release.command() def ghrelease(): """Create a GitHub release using the `github-release` command-line tool. Reads the changelog to upload from `changelog.md`. Uploads the tarball from the `dist` directory. """ version = get_version(1) tag = 'v' + version # Load the changelog. with open(os.path.join(BASE, 'changelog.md')) as f: cl_md = f.read() # Create the release. subprocess.check_call([ 'github-release', 'release', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', f'{GITHUB_REPO} {version}', '--description', cl_md, ]) # Attach the release tarball. tarball = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call([ 'github-release', 'upload', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', os.path.basename(tarball), '--file', tarball, ]) if __name__ == '__main__': release()
@release.command() def prep(): """Run all steps to prepare a release. - Tag the commit. - Build the sdist package. - Generate the Markdown changelog to ``changelog.md``. - Bump the version number to the next version. """ cur_version = get_version() # Tag. subprocess.check_call(['git', 'tag', f'v{cur_version}']) # Build. with chdir(BASE): subprocess.check_call(['python', 'setup.py', 'sdist']) # Generate Markdown changelog. cl = changelog_as_markdown() with open(os.path.join(BASE, 'changelog.md'), 'w') as f: f.write(cl) # Version number bump. # FIXME It should be possible to specify this as an argument. version_parts = [int(n) for n in cur_version.split('.')] version_parts[-1] += 1 next_version = '.'.join(map(str, version_parts)) bump_version(next_version)
267
295
#!/usr/bin/env python3 """A utility script for automating the beets release process. """ import click import os import re import subprocess from contextlib import contextmanager import datetime BASE = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CHANGELOG = os.path.join(BASE, 'docs', 'changelog.rst') @contextmanager def chdir(d): """A context manager that temporary changes the working directory. """ olddir = os.getcwd() os.chdir(d) yield os.chdir(olddir) @click.group() def release(): pass # Locations (filenames and patterns) of the version number. VERSION_LOCS = [ ( os.path.join(BASE, 'beets', '__init__.py'), [ ( r'__version__\s*=\s*u[\'"]([0-9\.]+)[\'"]', "__version__ = '{version}'", ) ] ), ( os.path.join(BASE, 'docs', 'conf.py'), [ ( r'version\s*=\s*[\'"]([0-9\.]+)[\'"]', "version = '{minor}'", ), ( r'release\s*=\s*[\'"]([0-9\.]+)[\'"]', "release = '{version}'", ), ] ), ( os.path.join(BASE, 'setup.py'), [ ( r'\s*version\s*=\s*[\'"]([0-9\.]+)[\'"]', " version='{version}',", ) ] ), ] GITHUB_USER = 'beetbox' GITHUB_REPO = 'beets' def bump_version(version): """Update the version number in setup.py, docs config, changelog, and root module. """ version_parts = [int(p) for p in version.split('.')] assert len(version_parts) == 3, "invalid version number" minor = '{}.{}'.format(*version_parts) major = '{}'.format(*version_parts) # Replace the version each place where it lives. for filename, locations in VERSION_LOCS: # Read and transform the file. out_lines = [] with open(filename) as f: found = False for line in f: for pattern, template in locations: match = re.match(pattern, line) if match: # Check that this version is actually newer. old_version = match.group(1) old_parts = [int(p) for p in old_version.split('.')] assert version_parts > old_parts, \ "version must be newer than {}".format( old_version ) # Insert the new version. out_lines.append(template.format( version=version, major=major, minor=minor, ) + '\n') found = True break else: # Normal line. out_lines.append(line) if not found: print(f"No pattern found in {filename}") # Write the file back. with open(filename, 'w') as f: f.write(''.join(out_lines)) # Generate bits to insert into changelog. header_line = f'{version} (in development)' header = '\n\n' + header_line + '\n' + '-' * len(header_line) + '\n\n' header += 'Changelog goes here!\n' # Insert into the right place. with open(CHANGELOG) as f: contents = f.read() location = contents.find('\n\n') # First blank line. contents = contents[:location] + header + contents[location:] # Write back. with open(CHANGELOG, 'w') as f: f.write(contents) @release.command() @click.argument('version') def bump(version): """Bump the version number. """ bump_version(version) def get_latest_changelog(): """Extract the first section of the changelog. """ started = False lines = [] with open(CHANGELOG) as f: for line in f: if re.match(r'^--+$', line.strip()): # Section boundary. Start or end. if started: # Remove last line, which is the header of the next # section. del lines[-1] break else: started = True elif started: lines.append(line) return ''.join(lines).strip() def rst2md(text): """Use Pandoc to convert text from ReST to Markdown. """ pandoc = subprocess.Popen( ['pandoc', '--from=rst', '--to=markdown', '--wrap=none'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, _ = pandoc.communicate(text.encode('utf-8')) md = stdout.decode('utf-8').strip() # Fix up odd spacing in lists. return re.sub(r'^- ', '- ', md, flags=re.M) def changelog_as_markdown(): """Get the latest changelog entry as hacked up Markdown. """ rst = get_latest_changelog() # Replace plugin links with plugin names. rst = re.sub(r':doc:`/plugins/(\w+)`', r'``\1``', rst) # References with text. rst = re.sub(r':ref:`([^<]+)(<[^>]+>)`', r'\1', rst) # Other backslashes with verbatim ranges. rst = re.sub(r'(\s)`([^`]+)`([^_])', r'\1``\2``\3', rst) # Command links with command names. rst = re.sub(r':ref:`(\w+)-cmd`', r'``\1``', rst) # Bug numbers. rst = re.sub(r':bug:`(\d+)`', r'#\1', rst) # Users. rst = re.sub(r':user:`(\w+)`', r'@\1', rst) # Convert with Pandoc. md = rst2md(rst) # Restore escaped issue numbers. md = re.sub(r'\\#(\d+)\b', r'#\1', md) return md @release.command() def changelog(): """Get the most recent version's changelog as Markdown. """ print(changelog_as_markdown()) def get_version(index=0): """Read the current version from the changelog. """ with open(CHANGELOG) as f: cur_index = 0 for line in f: match = re.search(r'^\d+\.\d+\.\d+', line) if match: if cur_index == index: return match.group(0) else: cur_index += 1 @release.command() def version(): """Display the current version. """ print(get_version()) @release.command() def datestamp(): """Enter today's date as the release date in the changelog. """ dt = datetime.datetime.now() stamp = '({} {}, {})'.format(dt.strftime('%B'), dt.day, dt.year) marker = '(in development)' lines = [] underline_length = None with open(CHANGELOG) as f: for line in f: if marker in line: # The header line. line = line.replace(marker, stamp) lines.append(line) underline_length = len(line.strip()) elif underline_length: # This is the line after the header. Rewrite the dashes. lines.append('-' * underline_length + '\n') underline_length = None else: lines.append(line) with open(CHANGELOG, 'w') as f: for line in lines: f.write(line) @release.command() def prep(): """Run all steps to prepare a release. - Tag the commit. - Build the sdist package. - Generate the Markdown changelog to ``changelog.md``. - Bump the version number to the next version. """ cur_version = get_version() # Tag. subprocess.check_call(['git', 'tag', f'v{cur_version}']) # Build. with chdir(BASE): subprocess.check_call(['python', 'setup.py', 'sdist']) # Generate Markdown changelog. cl = changelog_as_markdown() with open(os.path.join(BASE, 'changelog.md'), 'w') as f: f.write(cl) # Version number bump. # FIXME It should be possible to specify this as an argument. version_parts = [int(n) for n in cur_version.split('.')] version_parts[-1] += 1 next_version = '.'.join(map(str, version_parts)) bump_version(next_version) @release.command() def publish(): """Unleash a release unto the world. - Push the tag to GitHub. - Upload to PyPI. """ version = get_version(1) # Push to GitHub. with chdir(BASE): subprocess.check_call(['git', 'push']) subprocess.check_call(['git', 'push', '--tags']) # Upload to PyPI. path = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call(['twine', 'upload', path]) @release.command() def ghrelease(): """Create a GitHub release using the `github-release` command-line tool. Reads the changelog to upload from `changelog.md`. Uploads the tarball from the `dist` directory. """ version = get_version(1) tag = 'v' + version # Load the changelog. with open(os.path.join(BASE, 'changelog.md')) as f: cl_md = f.read() # Create the release. subprocess.check_call([ 'github-release', 'release', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', f'{GITHUB_REPO} {version}', '--description', cl_md, ]) # Attach the release tarball. tarball = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call([ 'github-release', 'upload', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', os.path.basename(tarball), '--file', tarball, ]) if __name__ == '__main__': release()
publish
Unleash a release unto the world. - Push the tag to GitHub. - Upload to PyPI.
#!/usr/bin/env python3 """A utility script for automating the beets release process. """ import click import os import re import subprocess from contextlib import contextmanager import datetime BASE = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CHANGELOG = os.path.join(BASE, 'docs', 'changelog.rst') @contextmanager def chdir(d): """A context manager that temporary changes the working directory. """ olddir = os.getcwd() os.chdir(d) yield os.chdir(olddir) @click.group() def release(): pass # Locations (filenames and patterns) of the version number. VERSION_LOCS = [ ( os.path.join(BASE, 'beets', '__init__.py'), [ ( r'__version__\s*=\s*u[\'"]([0-9\.]+)[\'"]', "__version__ = '{version}'", ) ] ), ( os.path.join(BASE, 'docs', 'conf.py'), [ ( r'version\s*=\s*[\'"]([0-9\.]+)[\'"]', "version = '{minor}'", ), ( r'release\s*=\s*[\'"]([0-9\.]+)[\'"]', "release = '{version}'", ), ] ), ( os.path.join(BASE, 'setup.py'), [ ( r'\s*version\s*=\s*[\'"]([0-9\.]+)[\'"]', " version='{version}',", ) ] ), ] GITHUB_USER = 'beetbox' GITHUB_REPO = 'beets' def bump_version(version): """Update the version number in setup.py, docs config, changelog, and root module. """ version_parts = [int(p) for p in version.split('.')] assert len(version_parts) == 3, "invalid version number" minor = '{}.{}'.format(*version_parts) major = '{}'.format(*version_parts) # Replace the version each place where it lives. for filename, locations in VERSION_LOCS: # Read and transform the file. out_lines = [] with open(filename) as f: found = False for line in f: for pattern, template in locations: match = re.match(pattern, line) if match: # Check that this version is actually newer. old_version = match.group(1) old_parts = [int(p) for p in old_version.split('.')] assert version_parts > old_parts, \ "version must be newer than {}".format( old_version ) # Insert the new version. out_lines.append(template.format( version=version, major=major, minor=minor, ) + '\n') found = True break else: # Normal line. out_lines.append(line) if not found: print(f"No pattern found in {filename}") # Write the file back. with open(filename, 'w') as f: f.write(''.join(out_lines)) # Generate bits to insert into changelog. header_line = f'{version} (in development)' header = '\n\n' + header_line + '\n' + '-' * len(header_line) + '\n\n' header += 'Changelog goes here!\n' # Insert into the right place. with open(CHANGELOG) as f: contents = f.read() location = contents.find('\n\n') # First blank line. contents = contents[:location] + header + contents[location:] # Write back. with open(CHANGELOG, 'w') as f: f.write(contents) @release.command() @click.argument('version') def bump(version): """Bump the version number. """ bump_version(version) def get_latest_changelog(): """Extract the first section of the changelog. """ started = False lines = [] with open(CHANGELOG) as f: for line in f: if re.match(r'^--+$', line.strip()): # Section boundary. Start or end. if started: # Remove last line, which is the header of the next # section. del lines[-1] break else: started = True elif started: lines.append(line) return ''.join(lines).strip() def rst2md(text): """Use Pandoc to convert text from ReST to Markdown. """ pandoc = subprocess.Popen( ['pandoc', '--from=rst', '--to=markdown', '--wrap=none'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, _ = pandoc.communicate(text.encode('utf-8')) md = stdout.decode('utf-8').strip() # Fix up odd spacing in lists. return re.sub(r'^- ', '- ', md, flags=re.M) def changelog_as_markdown(): """Get the latest changelog entry as hacked up Markdown. """ rst = get_latest_changelog() # Replace plugin links with plugin names. rst = re.sub(r':doc:`/plugins/(\w+)`', r'``\1``', rst) # References with text. rst = re.sub(r':ref:`([^<]+)(<[^>]+>)`', r'\1', rst) # Other backslashes with verbatim ranges. rst = re.sub(r'(\s)`([^`]+)`([^_])', r'\1``\2``\3', rst) # Command links with command names. rst = re.sub(r':ref:`(\w+)-cmd`', r'``\1``', rst) # Bug numbers. rst = re.sub(r':bug:`(\d+)`', r'#\1', rst) # Users. rst = re.sub(r':user:`(\w+)`', r'@\1', rst) # Convert with Pandoc. md = rst2md(rst) # Restore escaped issue numbers. md = re.sub(r'\\#(\d+)\b', r'#\1', md) return md @release.command() def changelog(): """Get the most recent version's changelog as Markdown. """ print(changelog_as_markdown()) def get_version(index=0): """Read the current version from the changelog. """ with open(CHANGELOG) as f: cur_index = 0 for line in f: match = re.search(r'^\d+\.\d+\.\d+', line) if match: if cur_index == index: return match.group(0) else: cur_index += 1 @release.command() def version(): """Display the current version. """ print(get_version()) @release.command() def datestamp(): """Enter today's date as the release date in the changelog. """ dt = datetime.datetime.now() stamp = '({} {}, {})'.format(dt.strftime('%B'), dt.day, dt.year) marker = '(in development)' lines = [] underline_length = None with open(CHANGELOG) as f: for line in f: if marker in line: # The header line. line = line.replace(marker, stamp) lines.append(line) underline_length = len(line.strip()) elif underline_length: # This is the line after the header. Rewrite the dashes. lines.append('-' * underline_length + '\n') underline_length = None else: lines.append(line) with open(CHANGELOG, 'w') as f: for line in lines: f.write(line) @release.command() def prep(): """Run all steps to prepare a release. - Tag the commit. - Build the sdist package. - Generate the Markdown changelog to ``changelog.md``. - Bump the version number to the next version. """ cur_version = get_version() # Tag. subprocess.check_call(['git', 'tag', f'v{cur_version}']) # Build. with chdir(BASE): subprocess.check_call(['python', 'setup.py', 'sdist']) # Generate Markdown changelog. cl = changelog_as_markdown() with open(os.path.join(BASE, 'changelog.md'), 'w') as f: f.write(cl) # Version number bump. # FIXME It should be possible to specify this as an argument. version_parts = [int(n) for n in cur_version.split('.')] version_parts[-1] += 1 next_version = '.'.join(map(str, version_parts)) bump_version(next_version) # MASKED: publish function (lines 298-314) @release.command() def ghrelease(): """Create a GitHub release using the `github-release` command-line tool. Reads the changelog to upload from `changelog.md`. Uploads the tarball from the `dist` directory. """ version = get_version(1) tag = 'v' + version # Load the changelog. with open(os.path.join(BASE, 'changelog.md')) as f: cl_md = f.read() # Create the release. subprocess.check_call([ 'github-release', 'release', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', f'{GITHUB_REPO} {version}', '--description', cl_md, ]) # Attach the release tarball. tarball = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call([ 'github-release', 'upload', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', os.path.basename(tarball), '--file', tarball, ]) if __name__ == '__main__': release()
@release.command() def publish(): """Unleash a release unto the world. - Push the tag to GitHub. - Upload to PyPI. """ version = get_version(1) # Push to GitHub. with chdir(BASE): subprocess.check_call(['git', 'push']) subprocess.check_call(['git', 'push', '--tags']) # Upload to PyPI. path = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call(['twine', 'upload', path])
298
314
#!/usr/bin/env python3 """A utility script for automating the beets release process. """ import click import os import re import subprocess from contextlib import contextmanager import datetime BASE = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CHANGELOG = os.path.join(BASE, 'docs', 'changelog.rst') @contextmanager def chdir(d): """A context manager that temporary changes the working directory. """ olddir = os.getcwd() os.chdir(d) yield os.chdir(olddir) @click.group() def release(): pass # Locations (filenames and patterns) of the version number. VERSION_LOCS = [ ( os.path.join(BASE, 'beets', '__init__.py'), [ ( r'__version__\s*=\s*u[\'"]([0-9\.]+)[\'"]', "__version__ = '{version}'", ) ] ), ( os.path.join(BASE, 'docs', 'conf.py'), [ ( r'version\s*=\s*[\'"]([0-9\.]+)[\'"]', "version = '{minor}'", ), ( r'release\s*=\s*[\'"]([0-9\.]+)[\'"]', "release = '{version}'", ), ] ), ( os.path.join(BASE, 'setup.py'), [ ( r'\s*version\s*=\s*[\'"]([0-9\.]+)[\'"]', " version='{version}',", ) ] ), ] GITHUB_USER = 'beetbox' GITHUB_REPO = 'beets' def bump_version(version): """Update the version number in setup.py, docs config, changelog, and root module. """ version_parts = [int(p) for p in version.split('.')] assert len(version_parts) == 3, "invalid version number" minor = '{}.{}'.format(*version_parts) major = '{}'.format(*version_parts) # Replace the version each place where it lives. for filename, locations in VERSION_LOCS: # Read and transform the file. out_lines = [] with open(filename) as f: found = False for line in f: for pattern, template in locations: match = re.match(pattern, line) if match: # Check that this version is actually newer. old_version = match.group(1) old_parts = [int(p) for p in old_version.split('.')] assert version_parts > old_parts, \ "version must be newer than {}".format( old_version ) # Insert the new version. out_lines.append(template.format( version=version, major=major, minor=minor, ) + '\n') found = True break else: # Normal line. out_lines.append(line) if not found: print(f"No pattern found in {filename}") # Write the file back. with open(filename, 'w') as f: f.write(''.join(out_lines)) # Generate bits to insert into changelog. header_line = f'{version} (in development)' header = '\n\n' + header_line + '\n' + '-' * len(header_line) + '\n\n' header += 'Changelog goes here!\n' # Insert into the right place. with open(CHANGELOG) as f: contents = f.read() location = contents.find('\n\n') # First blank line. contents = contents[:location] + header + contents[location:] # Write back. with open(CHANGELOG, 'w') as f: f.write(contents) @release.command() @click.argument('version') def bump(version): """Bump the version number. """ bump_version(version) def get_latest_changelog(): """Extract the first section of the changelog. """ started = False lines = [] with open(CHANGELOG) as f: for line in f: if re.match(r'^--+$', line.strip()): # Section boundary. Start or end. if started: # Remove last line, which is the header of the next # section. del lines[-1] break else: started = True elif started: lines.append(line) return ''.join(lines).strip() def rst2md(text): """Use Pandoc to convert text from ReST to Markdown. """ pandoc = subprocess.Popen( ['pandoc', '--from=rst', '--to=markdown', '--wrap=none'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, _ = pandoc.communicate(text.encode('utf-8')) md = stdout.decode('utf-8').strip() # Fix up odd spacing in lists. return re.sub(r'^- ', '- ', md, flags=re.M) def changelog_as_markdown(): """Get the latest changelog entry as hacked up Markdown. """ rst = get_latest_changelog() # Replace plugin links with plugin names. rst = re.sub(r':doc:`/plugins/(\w+)`', r'``\1``', rst) # References with text. rst = re.sub(r':ref:`([^<]+)(<[^>]+>)`', r'\1', rst) # Other backslashes with verbatim ranges. rst = re.sub(r'(\s)`([^`]+)`([^_])', r'\1``\2``\3', rst) # Command links with command names. rst = re.sub(r':ref:`(\w+)-cmd`', r'``\1``', rst) # Bug numbers. rst = re.sub(r':bug:`(\d+)`', r'#\1', rst) # Users. rst = re.sub(r':user:`(\w+)`', r'@\1', rst) # Convert with Pandoc. md = rst2md(rst) # Restore escaped issue numbers. md = re.sub(r'\\#(\d+)\b', r'#\1', md) return md @release.command() def changelog(): """Get the most recent version's changelog as Markdown. """ print(changelog_as_markdown()) def get_version(index=0): """Read the current version from the changelog. """ with open(CHANGELOG) as f: cur_index = 0 for line in f: match = re.search(r'^\d+\.\d+\.\d+', line) if match: if cur_index == index: return match.group(0) else: cur_index += 1 @release.command() def version(): """Display the current version. """ print(get_version()) @release.command() def datestamp(): """Enter today's date as the release date in the changelog. """ dt = datetime.datetime.now() stamp = '({} {}, {})'.format(dt.strftime('%B'), dt.day, dt.year) marker = '(in development)' lines = [] underline_length = None with open(CHANGELOG) as f: for line in f: if marker in line: # The header line. line = line.replace(marker, stamp) lines.append(line) underline_length = len(line.strip()) elif underline_length: # This is the line after the header. Rewrite the dashes. lines.append('-' * underline_length + '\n') underline_length = None else: lines.append(line) with open(CHANGELOG, 'w') as f: for line in lines: f.write(line) @release.command() def prep(): """Run all steps to prepare a release. - Tag the commit. - Build the sdist package. - Generate the Markdown changelog to ``changelog.md``. - Bump the version number to the next version. """ cur_version = get_version() # Tag. subprocess.check_call(['git', 'tag', f'v{cur_version}']) # Build. with chdir(BASE): subprocess.check_call(['python', 'setup.py', 'sdist']) # Generate Markdown changelog. cl = changelog_as_markdown() with open(os.path.join(BASE, 'changelog.md'), 'w') as f: f.write(cl) # Version number bump. # FIXME It should be possible to specify this as an argument. version_parts = [int(n) for n in cur_version.split('.')] version_parts[-1] += 1 next_version = '.'.join(map(str, version_parts)) bump_version(next_version) @release.command() def publish(): """Unleash a release unto the world. - Push the tag to GitHub. - Upload to PyPI. """ version = get_version(1) # Push to GitHub. with chdir(BASE): subprocess.check_call(['git', 'push']) subprocess.check_call(['git', 'push', '--tags']) # Upload to PyPI. path = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call(['twine', 'upload', path]) @release.command() def ghrelease(): """Create a GitHub release using the `github-release` command-line tool. Reads the changelog to upload from `changelog.md`. Uploads the tarball from the `dist` directory. """ version = get_version(1) tag = 'v' + version # Load the changelog. with open(os.path.join(BASE, 'changelog.md')) as f: cl_md = f.read() # Create the release. subprocess.check_call([ 'github-release', 'release', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', f'{GITHUB_REPO} {version}', '--description', cl_md, ]) # Attach the release tarball. tarball = os.path.join(BASE, 'dist', f'beets-{version}.tar.gz') subprocess.check_call([ 'github-release', 'upload', '-u', GITHUB_USER, '-r', GITHUB_REPO, '--tag', tag, '--name', os.path.basename(tarball), '--file', tarball, ]) if __name__ == '__main__': release()
getEtiqueta
Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern # MASKED: getEtiqueta function (lines 7-23) def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2)) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta
7
23
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2)) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
calcularEtiqueta
Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06'
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta # MASKED: calcularEtiqueta function (lines 26-55) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2)) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado)
26
55
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2)) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
convertirA2Hex
Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) # MASKED: convertirA2Hex function (lines 72-89) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2))
72
89
import re from Error import Error4,Error6,Error9 from DataBase import BaseDatos,BdRow from .precompilada import precompilada from typing import Pattern def getEtiqueta(linea:str)->str: """Obtiene el nombre de la captura Args: linea (str): Linea donde se va a buscar la etiqueta Returns: str: Regresa el nombre de la etiqueta """ # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- etiqueta =busqueda.group(2) return etiqueta def calcularEtiqueta(sustraendo:str,minuendo:str)-> str: """Resta la diferencia entre dos PC en hexadecimal sustraendo - minuendo - Si - Sustraendo - minuendo - En caso de error regresa 'e10' operando muy grande Args: sustraendo (str): Ejemplo '0x7' minuendo (str): Ejemplo '0x1' Returns: str: Ejemplo '0x06' """ print(sustraendo) print(minuendo) sustraendo=int(sustraendo,16) minuendo=int(minuendo,16) resultado:int= sustraendo-minuendo print(resultado) if resultado <-127 or 128<resultado: return 'e10' #E10 el salto relativo es muy lejano # Si es negativa elif resultado<0: return convertirA2Hex(resultado) # si es positiva else: return hex(resultado) def bindigits(n:int, bits:int)->str: """Convierte a binario un numero de complemento A2 en caso de negativo, normal en caso de ser positivo Args: n (int): E.g 7 bits (int): eg 3 Returns: str: E.g '001' """ s = bin(n & int("1"*bits, 2))[2:] return ("{0:0>%s}" % (bits)).format(s) def convertirA2Hex(numero:int)-> str: """Convierte un numero decimal a hexadecimal - Si el número es decimal lo convierte a complemento A2 Args: numero (int): Número decimal que se quiere convertir Eg. 07 Returns: str: Eg. 0x07 """ # cuantos bits ocupa el número hexadecimal cuantosBits=(len(hex(numero))-2) *4 # el -2 es 0x, el 4 es porque 1 hex equivale a 4 bits #numero convertido a binario binario=bindigits(numero,cuantosBits) return hex(int(binario, 2)) def precompilarPasada1(numLinea:int,modo:str,linea:str,pc: str)->precompilada: # variables globales # Buscamos el mnemonico pattern='\s+([a-z]{1,5})\s+([a-z]{1,24})' busqueda=re.search(pattern,linea,re.IGNORECASE) # Obtenemos el mnemonico------------------------------- mnemonico =busqueda.group(1) etiqueta=busqueda.group(2) # Consulta a la base de datos------------------------------- consultaBd:BdRow = BaseDatos.bdSearch(mnemonico,6) # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(pc,16) +2) # El más 2 es porque todas las relativos usan 2 bytes # Datos directos-------------------------------------- lineaPrecompilada=precompilada(numLinea,modo,pcActual,consultaBd.opcode,etiqueta,consultaBd.byte) # Datos detivados----------------------------------- lineaPrecompilada.bytesOcupados=consultaBd.byte return lineaPrecompilada def precompilarPasada2(lineaPrecompilada:precompilada,pcEtiqueta:str)->precompilada: # obtenemos el Pc Actual=pc + bytesOcupados pcActual=hex(int(lineaPrecompilada.pcActual,16) ) # El más 2 es porque todas las relativos usan 2 bytes lineaPrecompilada1:precompilada # Calculamos el operando operandoPrecompilado=calcularEtiqueta(pcEtiqueta,pcActual) # Verificamos si el salto relaitvo no es tan grande if operandoPrecompilado=='e10': # en caso de error salto muy lejando lineaPrecompilada1=precompilada(0,'','','','',0) lineaPrecompilada1.error='e10' else: operandoPrecompilado=operandoPrecompilado[2:] # hacer una copia lineaPrecompilada1=precompilada(lineaPrecompilada.numLinea,lineaPrecompilada.modo,hex(int(lineaPrecompilada.pcActual,16)-2),lineaPrecompilada.opcode,operandoPrecompilado,lineaPrecompilada.byte) print(operandoPrecompilado) return lineaPrecompilada1 #return lineaPrecompilada1
award_points
Awards points to user based on an event and the queue. `event` is one of the `REVIEWED_` keys in constants. `status` is one of the `STATUS_` keys in constants.
import datetime from django.conf import settings from django.core.cache import cache from django.db import models from django.db.models import Sum import commonware.log import waffle import amo import mkt.constants.comm as comm from amo.utils import cache_ns_key from mkt.comm.utils import create_comm_note from mkt.site.mail import send_mail_jinja from mkt.site.models import ManagerBase, ModelBase, skip_cache from mkt.tags.models import Tag from mkt.translations.fields import save_signal, TranslatedField from mkt.users.models import UserProfile from mkt.webapps.indexers import WebappIndexer from mkt.webapps.models import Webapp user_log = commonware.log.getLogger('z.users') QUEUE_TARAKO = 'tarako' class CannedResponse(ModelBase): name = TranslatedField() response = TranslatedField(short=False) sort_group = models.CharField(max_length=255) class Meta: db_table = 'cannedresponses' def __unicode__(self): return unicode(self.name) models.signals.pre_save.connect(save_signal, sender=CannedResponse, dispatch_uid='cannedresponses_translations') class EditorSubscription(ModelBase): user = models.ForeignKey(UserProfile) addon = models.ForeignKey(Webapp) class Meta: db_table = 'editor_subscriptions' class ReviewerScore(ModelBase): user = models.ForeignKey(UserProfile, related_name='_reviewer_scores') addon = models.ForeignKey(Webapp, blank=True, null=True, related_name='+') score = models.SmallIntegerField() # For automated point rewards. note_key = models.SmallIntegerField(choices=amo.REVIEWED_CHOICES.items(), default=0) # For manual point rewards with a note. note = models.CharField(max_length=255, blank=True) class Meta: db_table = 'reviewer_scores' ordering = ('-created',) @classmethod def get_key(cls, key=None, invalidate=False): namespace = 'riscore' if not key: # Assuming we're invalidating the namespace. cache_ns_key(namespace, invalidate) return else: # Using cache_ns_key so each cache val is invalidated together. ns_key = cache_ns_key(namespace, invalidate) return '%s:%s' % (ns_key, key) @classmethod def get_event(cls, addon, status, **kwargs): """Return the review event type constant. This is determined by the app type and the queue the addon is currently in (which is determined from the status). Note: We're not using addon.status because this is called after the status has been updated by the reviewer action. """ if addon.is_packaged: if status in amo.WEBAPPS_APPROVED_STATUSES: return amo.REVIEWED_WEBAPP_UPDATE else: # If it's not PUBLIC, assume it's a new submission. return amo.REVIEWED_WEBAPP_PACKAGED else: # It's a hosted app. in_rereview = kwargs.pop('in_rereview', False) if status in amo.WEBAPPS_APPROVED_STATUSES and in_rereview: return amo.REVIEWED_WEBAPP_REREVIEW else: return amo.REVIEWED_WEBAPP_HOSTED # MASKED: award_points function (lines 100-118) @classmethod def award_moderation_points(cls, user, addon, review_id): """Awards points to user based on moderated review.""" event = amo.REVIEWED_APP_REVIEW score = amo.REVIEWED_SCORES.get(event) cls.objects.create(user=user, addon=addon, score=score, note_key=event) cls.get_key(invalidate=True) user_log.info( u'Awarding %s points to user %s for "%s" for review %s' % ( score, user, amo.REVIEWED_CHOICES[event], review_id)) @classmethod def get_total(cls, user): """Returns total points by user.""" key = cls.get_key('get_total:%s' % user.id) val = cache.get(key) if val is not None: return val val = (ReviewerScore.objects.no_cache().filter(user=user) .aggregate(total=Sum('score')) .values())[0] if val is None: val = 0 cache.set(key, val, None) return val @classmethod def get_recent(cls, user, limit=5): """Returns most recent ReviewerScore records.""" key = cls.get_key('get_recent:%s' % user.id) val = cache.get(key) if val is not None: return val val = ReviewerScore.objects.no_cache().filter(user=user) val = list(val[:limit]) cache.set(key, val, None) return val @classmethod def get_performance(cls, user): """Returns sum of reviewer points.""" key = cls.get_key('get_performance:%s' % user.id) val = cache.get(key) if val is not None: return val sql = """ SELECT `reviewer_scores`.*, SUM(`reviewer_scores`.`score`) AS `total` FROM `reviewer_scores` LEFT JOIN `addons` ON (`reviewer_scores`.`addon_id`=`addons`.`id`) WHERE `reviewer_scores`.`user_id` = %s ORDER BY `total` DESC """ with skip_cache(): val = list(ReviewerScore.objects.raw(sql, [user.id])) cache.set(key, val, None) return val @classmethod def get_performance_since(cls, user, since): """ Returns sum of reviewer points since the given datetime. """ key = cls.get_key('get_performance:%s:%s' % (user.id, since.isoformat())) val = cache.get(key) if val is not None: return val sql = """ SELECT `reviewer_scores`.*, SUM(`reviewer_scores`.`score`) AS `total` FROM `reviewer_scores` LEFT JOIN `addons` ON (`reviewer_scores`.`addon_id`=`addons`.`id`) WHERE `reviewer_scores`.`user_id` = %s AND `reviewer_scores`.`created` >= %s ORDER BY `total` DESC """ with skip_cache(): val = list(ReviewerScore.objects.raw(sql, [user.id, since])) cache.set(key, val, 3600) return val @classmethod def _leaderboard_query(cls, since=None, types=None): """ Returns common SQL to leaderboard calls. """ query = (cls.objects .values_list('user__id', 'user__display_name') .annotate(total=Sum('score')) .exclude(user__groups__name__in=('No Reviewer Incentives', 'Staff', 'Admins')) .order_by('-total')) if since is not None: query = query.filter(created__gte=since) if types is not None: query = query.filter(note_key__in=types) return query @classmethod def get_leaderboards(cls, user, days=7, types=None): """Returns leaderboards with ranking for the past given days. This will return a dict of 3 items:: {'leader_top': [...], 'leader_near: [...], 'user_rank': (int)} If the user is not in the leaderboard, or if the user is in the top 5, 'leader_near' will be an empty list and 'leader_top' will contain 5 elements instead of the normal 3. """ key = cls.get_key('get_leaderboards:%s' % user.id) val = cache.get(key) if val is not None: return val week_ago = datetime.date.today() - datetime.timedelta(days=days) leader_top = [] leader_near = [] query = cls._leaderboard_query(since=week_ago, types=types) scores = [] user_rank = 0 in_leaderboard = False for rank, row in enumerate(query, 1): user_id, name, total = row scores.append({ 'user_id': user_id, 'name': name, 'rank': rank, 'total': int(total), }) if user_id == user.id: user_rank = rank in_leaderboard = True if not in_leaderboard: leader_top = scores[:5] else: if user_rank <= 5: # User is in top 5, show top 5. leader_top = scores[:5] else: leader_top = scores[:3] leader_near = [scores[user_rank - 2], scores[user_rank - 1]] try: leader_near.append(scores[user_rank]) except IndexError: pass # User is last on the leaderboard. val = { 'leader_top': leader_top, 'leader_near': leader_near, 'user_rank': user_rank, } cache.set(key, val, None) return val @classmethod def all_users_by_score(cls): """ Returns reviewers ordered by highest total points first. """ query = cls._leaderboard_query() scores = [] for row in query: user_id, name, total = row user_level = len(amo.REVIEWED_LEVELS) - 1 for i, level in enumerate(amo.REVIEWED_LEVELS): if total < level['points']: user_level = i - 1 break # Only show level if it changes. if user_level < 0: level = '' else: level = amo.REVIEWED_LEVELS[user_level]['name'] scores.append({ 'user_id': user_id, 'name': name, 'total': int(total), 'level': level, }) prev = None for score in reversed(scores): if score['level'] == prev: score['level'] = '' else: prev = score['level'] return scores class EscalationQueue(ModelBase): addon = models.ForeignKey(Webapp) class Meta: db_table = 'escalation_queue' class RereviewQueue(ModelBase): addon = models.ForeignKey(Webapp) class Meta: db_table = 'rereview_queue' @classmethod def flag(cls, addon, event, message=None): cls.objects.get_or_create(addon=addon) if message: amo.log(event, addon, addon.current_version, details={'comments': message}) else: amo.log(event, addon, addon.current_version) # TODO: if we ever get rid of ActivityLog for reviewer notes, replace # all flag calls to use the comm constant and not have to use # ACTION_MAP. create_comm_note(addon, addon.current_version, None, message, note_type=comm.ACTION_MAP(event)) def send_tarako_mail(review): if not waffle.switch_is_active('comm-dashboard'): send_mail_jinja( 'Low-memory devices review {passed}'.format( passed='passed' if review.passed else 'failed'), 'reviewers/emails/tarako_review_complete.txt', {'review': review}, recipient_list=[a.email for a in review.app.authors.all()], from_email=settings.MKT_REVIEWERS_EMAIL) def tarako_passed(review): """Add the tarako tag to the app.""" tag = Tag(tag_text='tarako') tag.save_tag(review.app) WebappIndexer.index_ids([review.app.pk]) send_tarako_mail(review) def tarako_failed(review): """Remove the tarako tag from the app.""" tag = Tag(tag_text='tarako') tag.remove_tag(review.app) WebappIndexer.index_ids([review.app.pk]) send_tarako_mail(review) class AdditionalReviewManager(ManagerBase): def unreviewed(self, queue, and_approved=False): query = { 'passed': None, 'queue': queue, } if and_approved: query['app__status__in'] = amo.WEBAPPS_APPROVED_STATUSES return self.get_queryset().no_cache().filter(**query) def latest_for_queue(self, queue): try: return self.get_queryset().filter(queue=queue).latest() except AdditionalReview.DoesNotExist: return None class AdditionalReview(ModelBase): app = models.ForeignKey(Webapp) queue = models.CharField(max_length=30) passed = models.NullBooleanField() review_completed = models.DateTimeField(null=True) comment = models.CharField(null=True, blank=True, max_length=255) reviewer = models.ForeignKey('users.UserProfile', null=True, blank=True) objects = AdditionalReviewManager() class Meta: db_table = 'additional_review' get_latest_by = 'created' @property def pending(self): return self.passed is None @property def failed(self): return self.passed is False def __init__(self, *args, **kwargs): super(AdditionalReview, self).__init__(*args, **kwargs) from mkt.reviewers.utils import log_reviewer_action self.log_reviewer_action = log_reviewer_action def execute_post_review_task(self): """ Call the correct post-review function for the queue. """ # TODO: Pull this function from somewhere based on self.queue. if self.passed is None: raise ValueError('cannot execute post-review task when unreviewed') elif self.passed: tarako_passed(self) action = amo.LOG.PASS_ADDITIONAL_REVIEW else: tarako_failed(self) action = amo.LOG.FAIL_ADDITIONAL_REVIEW self.log_reviewer_action( self.app, self.reviewer, self.comment or '', action, queue=self.queue) def cleanup_queues(sender, instance, **kwargs): RereviewQueue.objects.filter(addon=instance).delete() EscalationQueue.objects.filter(addon=instance).delete() models.signals.post_delete.connect(cleanup_queues, sender=Webapp, dispatch_uid='queue-addon-cleanup')
@classmethod def award_points(cls, user, addon, status, **kwargs): """Awards points to user based on an event and the queue. `event` is one of the `REVIEWED_` keys in constants. `status` is one of the `STATUS_` keys in constants. """ event = cls.get_event(addon, status, **kwargs) score = amo.REVIEWED_SCORES.get(event) if score: cls.objects.create(user=user, addon=addon, score=score, note_key=event) cls.get_key(invalidate=True) user_log.info( (u'Awarding %s points to user %s for "%s" for addon %s' % (score, user, amo.REVIEWED_CHOICES[event], addon.id)) .encode('utf-8')) return score
100
118
import datetime from django.conf import settings from django.core.cache import cache from django.db import models from django.db.models import Sum import commonware.log import waffle import amo import mkt.constants.comm as comm from amo.utils import cache_ns_key from mkt.comm.utils import create_comm_note from mkt.site.mail import send_mail_jinja from mkt.site.models import ManagerBase, ModelBase, skip_cache from mkt.tags.models import Tag from mkt.translations.fields import save_signal, TranslatedField from mkt.users.models import UserProfile from mkt.webapps.indexers import WebappIndexer from mkt.webapps.models import Webapp user_log = commonware.log.getLogger('z.users') QUEUE_TARAKO = 'tarako' class CannedResponse(ModelBase): name = TranslatedField() response = TranslatedField(short=False) sort_group = models.CharField(max_length=255) class Meta: db_table = 'cannedresponses' def __unicode__(self): return unicode(self.name) models.signals.pre_save.connect(save_signal, sender=CannedResponse, dispatch_uid='cannedresponses_translations') class EditorSubscription(ModelBase): user = models.ForeignKey(UserProfile) addon = models.ForeignKey(Webapp) class Meta: db_table = 'editor_subscriptions' class ReviewerScore(ModelBase): user = models.ForeignKey(UserProfile, related_name='_reviewer_scores') addon = models.ForeignKey(Webapp, blank=True, null=True, related_name='+') score = models.SmallIntegerField() # For automated point rewards. note_key = models.SmallIntegerField(choices=amo.REVIEWED_CHOICES.items(), default=0) # For manual point rewards with a note. note = models.CharField(max_length=255, blank=True) class Meta: db_table = 'reviewer_scores' ordering = ('-created',) @classmethod def get_key(cls, key=None, invalidate=False): namespace = 'riscore' if not key: # Assuming we're invalidating the namespace. cache_ns_key(namespace, invalidate) return else: # Using cache_ns_key so each cache val is invalidated together. ns_key = cache_ns_key(namespace, invalidate) return '%s:%s' % (ns_key, key) @classmethod def get_event(cls, addon, status, **kwargs): """Return the review event type constant. This is determined by the app type and the queue the addon is currently in (which is determined from the status). Note: We're not using addon.status because this is called after the status has been updated by the reviewer action. """ if addon.is_packaged: if status in amo.WEBAPPS_APPROVED_STATUSES: return amo.REVIEWED_WEBAPP_UPDATE else: # If it's not PUBLIC, assume it's a new submission. return amo.REVIEWED_WEBAPP_PACKAGED else: # It's a hosted app. in_rereview = kwargs.pop('in_rereview', False) if status in amo.WEBAPPS_APPROVED_STATUSES and in_rereview: return amo.REVIEWED_WEBAPP_REREVIEW else: return amo.REVIEWED_WEBAPP_HOSTED @classmethod def award_points(cls, user, addon, status, **kwargs): """Awards points to user based on an event and the queue. `event` is one of the `REVIEWED_` keys in constants. `status` is one of the `STATUS_` keys in constants. """ event = cls.get_event(addon, status, **kwargs) score = amo.REVIEWED_SCORES.get(event) if score: cls.objects.create(user=user, addon=addon, score=score, note_key=event) cls.get_key(invalidate=True) user_log.info( (u'Awarding %s points to user %s for "%s" for addon %s' % (score, user, amo.REVIEWED_CHOICES[event], addon.id)) .encode('utf-8')) return score @classmethod def award_moderation_points(cls, user, addon, review_id): """Awards points to user based on moderated review.""" event = amo.REVIEWED_APP_REVIEW score = amo.REVIEWED_SCORES.get(event) cls.objects.create(user=user, addon=addon, score=score, note_key=event) cls.get_key(invalidate=True) user_log.info( u'Awarding %s points to user %s for "%s" for review %s' % ( score, user, amo.REVIEWED_CHOICES[event], review_id)) @classmethod def get_total(cls, user): """Returns total points by user.""" key = cls.get_key('get_total:%s' % user.id) val = cache.get(key) if val is not None: return val val = (ReviewerScore.objects.no_cache().filter(user=user) .aggregate(total=Sum('score')) .values())[0] if val is None: val = 0 cache.set(key, val, None) return val @classmethod def get_recent(cls, user, limit=5): """Returns most recent ReviewerScore records.""" key = cls.get_key('get_recent:%s' % user.id) val = cache.get(key) if val is not None: return val val = ReviewerScore.objects.no_cache().filter(user=user) val = list(val[:limit]) cache.set(key, val, None) return val @classmethod def get_performance(cls, user): """Returns sum of reviewer points.""" key = cls.get_key('get_performance:%s' % user.id) val = cache.get(key) if val is not None: return val sql = """ SELECT `reviewer_scores`.*, SUM(`reviewer_scores`.`score`) AS `total` FROM `reviewer_scores` LEFT JOIN `addons` ON (`reviewer_scores`.`addon_id`=`addons`.`id`) WHERE `reviewer_scores`.`user_id` = %s ORDER BY `total` DESC """ with skip_cache(): val = list(ReviewerScore.objects.raw(sql, [user.id])) cache.set(key, val, None) return val @classmethod def get_performance_since(cls, user, since): """ Returns sum of reviewer points since the given datetime. """ key = cls.get_key('get_performance:%s:%s' % (user.id, since.isoformat())) val = cache.get(key) if val is not None: return val sql = """ SELECT `reviewer_scores`.*, SUM(`reviewer_scores`.`score`) AS `total` FROM `reviewer_scores` LEFT JOIN `addons` ON (`reviewer_scores`.`addon_id`=`addons`.`id`) WHERE `reviewer_scores`.`user_id` = %s AND `reviewer_scores`.`created` >= %s ORDER BY `total` DESC """ with skip_cache(): val = list(ReviewerScore.objects.raw(sql, [user.id, since])) cache.set(key, val, 3600) return val @classmethod def _leaderboard_query(cls, since=None, types=None): """ Returns common SQL to leaderboard calls. """ query = (cls.objects .values_list('user__id', 'user__display_name') .annotate(total=Sum('score')) .exclude(user__groups__name__in=('No Reviewer Incentives', 'Staff', 'Admins')) .order_by('-total')) if since is not None: query = query.filter(created__gte=since) if types is not None: query = query.filter(note_key__in=types) return query @classmethod def get_leaderboards(cls, user, days=7, types=None): """Returns leaderboards with ranking for the past given days. This will return a dict of 3 items:: {'leader_top': [...], 'leader_near: [...], 'user_rank': (int)} If the user is not in the leaderboard, or if the user is in the top 5, 'leader_near' will be an empty list and 'leader_top' will contain 5 elements instead of the normal 3. """ key = cls.get_key('get_leaderboards:%s' % user.id) val = cache.get(key) if val is not None: return val week_ago = datetime.date.today() - datetime.timedelta(days=days) leader_top = [] leader_near = [] query = cls._leaderboard_query(since=week_ago, types=types) scores = [] user_rank = 0 in_leaderboard = False for rank, row in enumerate(query, 1): user_id, name, total = row scores.append({ 'user_id': user_id, 'name': name, 'rank': rank, 'total': int(total), }) if user_id == user.id: user_rank = rank in_leaderboard = True if not in_leaderboard: leader_top = scores[:5] else: if user_rank <= 5: # User is in top 5, show top 5. leader_top = scores[:5] else: leader_top = scores[:3] leader_near = [scores[user_rank - 2], scores[user_rank - 1]] try: leader_near.append(scores[user_rank]) except IndexError: pass # User is last on the leaderboard. val = { 'leader_top': leader_top, 'leader_near': leader_near, 'user_rank': user_rank, } cache.set(key, val, None) return val @classmethod def all_users_by_score(cls): """ Returns reviewers ordered by highest total points first. """ query = cls._leaderboard_query() scores = [] for row in query: user_id, name, total = row user_level = len(amo.REVIEWED_LEVELS) - 1 for i, level in enumerate(amo.REVIEWED_LEVELS): if total < level['points']: user_level = i - 1 break # Only show level if it changes. if user_level < 0: level = '' else: level = amo.REVIEWED_LEVELS[user_level]['name'] scores.append({ 'user_id': user_id, 'name': name, 'total': int(total), 'level': level, }) prev = None for score in reversed(scores): if score['level'] == prev: score['level'] = '' else: prev = score['level'] return scores class EscalationQueue(ModelBase): addon = models.ForeignKey(Webapp) class Meta: db_table = 'escalation_queue' class RereviewQueue(ModelBase): addon = models.ForeignKey(Webapp) class Meta: db_table = 'rereview_queue' @classmethod def flag(cls, addon, event, message=None): cls.objects.get_or_create(addon=addon) if message: amo.log(event, addon, addon.current_version, details={'comments': message}) else: amo.log(event, addon, addon.current_version) # TODO: if we ever get rid of ActivityLog for reviewer notes, replace # all flag calls to use the comm constant and not have to use # ACTION_MAP. create_comm_note(addon, addon.current_version, None, message, note_type=comm.ACTION_MAP(event)) def send_tarako_mail(review): if not waffle.switch_is_active('comm-dashboard'): send_mail_jinja( 'Low-memory devices review {passed}'.format( passed='passed' if review.passed else 'failed'), 'reviewers/emails/tarako_review_complete.txt', {'review': review}, recipient_list=[a.email for a in review.app.authors.all()], from_email=settings.MKT_REVIEWERS_EMAIL) def tarako_passed(review): """Add the tarako tag to the app.""" tag = Tag(tag_text='tarako') tag.save_tag(review.app) WebappIndexer.index_ids([review.app.pk]) send_tarako_mail(review) def tarako_failed(review): """Remove the tarako tag from the app.""" tag = Tag(tag_text='tarako') tag.remove_tag(review.app) WebappIndexer.index_ids([review.app.pk]) send_tarako_mail(review) class AdditionalReviewManager(ManagerBase): def unreviewed(self, queue, and_approved=False): query = { 'passed': None, 'queue': queue, } if and_approved: query['app__status__in'] = amo.WEBAPPS_APPROVED_STATUSES return self.get_queryset().no_cache().filter(**query) def latest_for_queue(self, queue): try: return self.get_queryset().filter(queue=queue).latest() except AdditionalReview.DoesNotExist: return None class AdditionalReview(ModelBase): app = models.ForeignKey(Webapp) queue = models.CharField(max_length=30) passed = models.NullBooleanField() review_completed = models.DateTimeField(null=True) comment = models.CharField(null=True, blank=True, max_length=255) reviewer = models.ForeignKey('users.UserProfile', null=True, blank=True) objects = AdditionalReviewManager() class Meta: db_table = 'additional_review' get_latest_by = 'created' @property def pending(self): return self.passed is None @property def failed(self): return self.passed is False def __init__(self, *args, **kwargs): super(AdditionalReview, self).__init__(*args, **kwargs) from mkt.reviewers.utils import log_reviewer_action self.log_reviewer_action = log_reviewer_action def execute_post_review_task(self): """ Call the correct post-review function for the queue. """ # TODO: Pull this function from somewhere based on self.queue. if self.passed is None: raise ValueError('cannot execute post-review task when unreviewed') elif self.passed: tarako_passed(self) action = amo.LOG.PASS_ADDITIONAL_REVIEW else: tarako_failed(self) action = amo.LOG.FAIL_ADDITIONAL_REVIEW self.log_reviewer_action( self.app, self.reviewer, self.comment or '', action, queue=self.queue) def cleanup_queues(sender, instance, **kwargs): RereviewQueue.objects.filter(addon=instance).delete() EscalationQueue.objects.filter(addon=instance).delete() models.signals.post_delete.connect(cleanup_queues, sender=Webapp, dispatch_uid='queue-addon-cleanup')
bgr2ycbcr
bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1]
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) # MASKED: bgr2ycbcr function (lines 217-251) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type)
217
251
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
ycbcr2rgb
bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1]
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' # MASKED: ycbcr2rgb function (lines 289-320) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type)
289
320
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
np2tensor
Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor # MASKED: np2tensor function (lines 420-450) #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img
420
450
""" BasicSR/codes/dataops/common.py (8-Nov-20) https://github.com/victorca25/BasicSR/blob/dev2/codes/dataops/common.py """ import os import math import pickle import random import numpy as np import torch import cv2 import logging import copy from torchvision.utils import make_grid #from dataops.colors import * from .colors import * #from dataops.debug import tmp_vis, describe_numpy, describe_tensor #################### # Files & IO #################### ###################### get image path list ###################### IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dng', '.DNG', '.webp','.npy', '.NPY'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def _get_paths_from_images(path): '''get image path list from image folder''' assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def _get_paths_from_lmdb(dataroot): '''get image path list from lmdb''' import lmdb env = lmdb.open(dataroot, readonly=True, lock=False, readahead=False, meminit=False) keys_cache_file = os.path.join(dataroot, '_keys_cache.p') logger = logging.getLogger('base') if os.path.isfile(keys_cache_file): logger.info('Read lmdb keys from cache: {}'.format(keys_cache_file)) keys = pickle.load(open(keys_cache_file, "rb")) else: with env.begin(write=False) as txn: logger.info('Creating lmdb keys cache: {}'.format(keys_cache_file)) keys = [key.decode('ascii') for key, _ in txn.cursor()] pickle.dump(keys, open(keys_cache_file, 'wb')) paths = sorted([key for key in keys if not key.endswith('.meta')]) return env, paths def get_image_paths(data_type, dataroot): '''get image path list support lmdb or image files''' env, paths = None, None if dataroot is not None: if data_type == 'lmdb': env, paths = _get_paths_from_lmdb(dataroot) elif data_type == 'img': paths = sorted(_get_paths_from_images(dataroot)) else: raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) return env, paths ###################### read images ###################### def _read_lmdb_img(env, path): with env.begin(write=False) as txn: buf = txn.get(path.encode('ascii')) buf_meta = txn.get((path + '.meta').encode('ascii')).decode('ascii') img_flat = np.frombuffer(buf, dtype=np.uint8) H, W, C = [int(s) for s in buf_meta.split(',')] img = img_flat.reshape(H, W, C) return img def read_img(env, path, out_nc=3, fix_channels=True): ''' Reads image using cv2 (rawpy if dng) or from lmdb by default (can also use using PIL instead of cv2) Arguments: out_nc: Desired number of channels fix_channels: changes the images to the desired number of channels Output: Numpy uint8, HWC, BGR, [0,255] by default ''' img = None if env is None: # img if(path[-3:].lower() == 'dng'): # if image is a DNG import rawpy with rawpy.imread(path) as raw: img = raw.postprocess() if(path[-3:].lower() == 'npy'): # if image is a NPY numpy array with open(path, 'rb') as f: img = np.load(f) else: # else, if image can be read by cv2 img = cv2.imread(path, cv2.IMREAD_UNCHANGED) #TODO: add variable detecting if cv2 is not available and try PIL instead # elif: # using PIL instead of OpenCV # img = Image.open(path).convert('RGB') # else: # For other images unrecognized by cv2 # import matplotlib.pyplot as plt # img = (255*plt.imread(path)[:,:,:3]).astype('uint8') else: img = _read_lmdb_img(env, path) # if not img: # raise ValueError(f"Failed to read image: {path}") if fix_channels: img = fix_img_channels(img, out_nc) return img def fix_img_channels(img, out_nc): ''' fix image channels to the expected number ''' # if image has only 2 dimensions, add "channel" dimension (1) if img.ndim == 2: #img = img[..., np.newaxis] #alt #img = np.expand_dims(img, axis=2) img = np.tile(np.expand_dims(img, axis=2), (1, 1, 3)) # special case: properly remove alpha channel if out_nc == 3 and img.shape[2] == 4: img = bgra2rgb(img) # remove all extra channels elif img.shape[2] > out_nc: img = img[:, :, :out_nc] # if alpha is expected, add solid alpha channel elif img.shape[2] == 3 and out_nc == 4: img = np.dstack((img, np.full(img.shape[:-1], 255, dtype=np.uint8))) return img #################### # image processing # process on numpy image #################### def bgra2rgb(img): ''' cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has an issue removing the alpha channel, this gets rid of wrong transparent colors that can harm training ''' if img.shape[2] == 4: #b, g, r, a = cv2.split((img*255).astype(np.uint8)) b, g, r, a = cv2.split((img.astype(np.uint8))) b = cv2.bitwise_and(b, b, mask=a) g = cv2.bitwise_and(g, g, mask=a) r = cv2.bitwise_and(r, r, mask=a) #return cv2.merge([b, g, r]).astype(np.float32)/255. return cv2.merge([b, g, r]) return img def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y # Note: OpenCV uses inverted channels BGR, instead of RGB. # If images are loaded with something other than OpenCV, # check that the channels are in the correct order and use # the alternative conversion functions. #if in_c == 4 and tar_type == 'RGB-A': # BGRA to BGR, remove alpha channel #return [cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) for img in img_list] #return [bgra2rgb(img) for img in img_list] if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'RGB-LAB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_BGR2LAB) for img in img_list] elif in_c == 3 and tar_type == 'LAB-RGB': #RGB to LAB return [cv2.cvtColor(img, cv2.COLOR_LAB2BGR) for img in img_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True, separate=False): '''bgr version of matlab rgb2ycbcr Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion. only_y: only return Y channel separate: if true, will returng the channels as separate images Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # convert if only_y: rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. if separate: rlt = rlt.astype(in_img_type) # y, cb, cr return rlt[:, :, 0], rlt[:, :, 1], rlt[:, :, 2] else: return rlt.astype(in_img_type) ''' def ycbcr2rgb_(img, only_y=True): """same as matlab ycbcr2rgb (Note: this implementation is the original from BasicSR, but appears to be for ycrcb, like cv2) Input: uint8, [0, 255] float, [0, 1] """ in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert # original (for ycrcb): rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] #alternative conversion: # xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) # img_[:, :, [1, 2]] -= 128 # rlt = img_.dot(xform.T) np.putmask(rlt, rlt > 255, 255) np.putmask(rlt, rlt < 0, 0) if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' def ycbcr2rgb(img, only_y=True): ''' bgr version of matlab ycbcr2rgb Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has different parameters to MATLAB color convertion. Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img_ = img.astype(np.float32) if in_img_type != np.uint8: img_ *= 255. # to make ycrcb like cv2 # rlt = rlt[:, :, (0, 2, 1)] # convert mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]]) mat = np.linalg.inv(mat.T) * 255 offset = np.array([[[16, 128, 128]]]) rlt = np.dot((img_ - offset), mat) rlt = np.clip(rlt, 0, 255) ## rlt = np.rint(rlt).astype('uint8') if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) ''' #TODO: TMP RGB version, to check (PIL) def rgb2ycbcr(img_rgb): ## the range of img_rgb should be (0, 1) img_y = 0.257 * img_rgb[:, :, 0] + 0.504 * img_rgb[:, :, 1] + 0.098 * img_rgb[:, :, 2] + 16 / 255.0 img_cb = -0.148 * img_rgb[:, :, 0] - 0.291 * img_rgb[:, :, 1] + 0.439 * img_rgb[:, :, 2] + 128 / 255.0 img_cr = 0.439 * img_rgb[:, :, 0] - 0.368 * img_rgb[:, :, 1] - 0.071 * img_rgb[:, :, 2] + 128 / 255.0 return img_y, img_cb, img_cr #TODO: TMP RGB version, to check (PIL) def ycbcr2rgb(img_ycbcr): ## the range of img_ycbcr should be (0, 1) img_r = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 1.596 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_g = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) - 0.392 * (img_ycbcr[:, :, 1] - 128 / 255.0) - 0.813 * (img_ycbcr[:, :, 2] - 128 / 255.0) img_b = 1.164 * (img_ycbcr[:, :, 0] - 16 / 255.0) + 2.017 * (img_ycbcr[:, :, 1] - 128 / 255.0) img_r = img_r[:, :, np.newaxis] img_g = img_g[:, :, np.newaxis] img_b = img_b[:, :, np.newaxis] img_rgb = np.concatenate((img_r, img_g, img_b), 2) return img_rgb ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img #TODO: this should probably be elsewhere (augmentations.py) def augment(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 #rot90n = rot and random.random() < 0.5 def _augment(img): if hflip: img = np.flip(img, axis=1) #img[:, ::-1, :] if vflip: img = np.flip(img, axis=0) #img[::-1, :, :] #if rot90: img = img.transpose(1, 0, 2) if rot90: img = np.rot90(img, 1) #90 degrees # In PIL: img.transpose(Image.ROTATE_90) #if rot90n: img = np.rot90(img, -1) #-90 degrees return img return [_augment(img) for img in img_list] #################### # Normalization functions #################### #TODO: Could also automatically detect the possible range with min and max, like in def ssim() def denorm(x, min_max=(-1.0, 1.0)): ''' Denormalize from [-1,1] range to [0,1] formula: xi' = (xi - mu)/sigma Example: "out = (x + 1.0) / 2.0" for denorm range (-1,1) to (0,1) for use with proper act in Generator output (ie. tanh) ''' out = (x - min_max[0]) / (min_max[1] - min_max[0]) if isinstance(x, torch.Tensor): return out.clamp(0, 1) elif isinstance(x, np.ndarray): return np.clip(out, 0, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") def norm(x): #Normalize (z-norm) from [0,1] range to [-1,1] out = (x - 0.5) * 2.0 if isinstance(x, torch.Tensor): return out.clamp(-1, 1) elif isinstance(x, np.ndarray): return np.clip(out, -1, 1) else: raise TypeError("Got unexpected object type, expected torch.Tensor or \ np.ndarray") #################### # np and tensor conversions #################### #2tensor def np2tensor(img, bgr2rgb=True, data_range=1., normalize=False, change_range=True, add_batch=True): """ Converts a numpy image array into a Tensor array. Parameters: img (numpy array): the input image numpy array add_batch (bool): choose if new tensor needs batch dimension added """ if not isinstance(img, np.ndarray): #images expected to be uint8 -> 255 raise TypeError("Got unexpected object type, expected np.ndarray") #check how many channels the image has, then condition, like in my BasicSR. ie. RGB, RGBA, Gray #if bgr2rgb: #img = img[:, :, [2, 1, 0]] #BGR to RGB -> in numpy, if using OpenCV, else not needed. Only if image has colors. if change_range: if np.issubdtype(img.dtype, np.integer): info = np.iinfo elif np.issubdtype(img.dtype, np.floating): info = np.finfo img = img*data_range/info(img.dtype).max #uint8 = /255 img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float() #"HWC to CHW" and "numpy to tensor" if bgr2rgb: if img.shape[0] == 3: #RGB #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors. img = bgr_to_rgb(img) elif img.shape[0] == 4: #RGBA #BGR to RGB -> in tensor, if using OpenCV, else not needed. Only if image has colors.) img = bgra_to_rgba(img) if add_batch: img.unsqueeze_(0) # Add fake batch dimension = 1 . squeeze() will remove the dimensions of size 1 if normalize: img = norm(img) return img #2np def tensor2np(img, rgb2bgr=True, remove_batch=True, data_range=255, denormalize=False, change_range=True, imtype=np.uint8): """ Converts a Tensor array into a numpy image array. Parameters: img (tensor): the input image tensor array 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order remove_batch (bool): choose if tensor of shape BCHW needs to be squeezed denormalize (bool): Used to denormalize from [-1,1] range back to [0,1] imtype (type): the desired type of the converted numpy array (np.uint8 default) Output: img (np array): 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) """ if not isinstance(img, torch.Tensor): raise TypeError("Got unexpected object type, expected torch.Tensor") n_dim = img.dim() #TODO: Check: could denormalize here in tensor form instead, but end result is the same img = img.float().cpu() if n_dim == 4 or n_dim == 3: #if n_dim == 4, has to convert to 3 dimensions, either removing batch or by creating a grid if n_dim == 4 and remove_batch: if img.shape[0] > 1: # leave only the first image in the batch img = img[0,...] else: # remove a fake batch dimension img = img.squeeze() # squeeze removes batch and channel of grayscale images (dimensions = 1) if len(img.shape) < 3: #add back the lost channel dimension img = img.unsqueeze(dim=0) # convert images in batch (BCHW) to a grid of all images (C B*H B*W) else: n_img = len(img) img = make_grid(img, nrow=int(math.sqrt(n_img)), normalize=False) if img.shape[0] == 3 and rgb2bgr: #RGB #RGB to BGR -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgb_to_bgr(img).numpy() elif img.shape[0] == 4 and rgb2bgr: #RGBA #RGBA to BGRA -> in tensor, if using OpenCV, else not needed. Only if image has colors. img_np = rgba_to_bgra(img).numpy() else: img_np = img.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # "CHW to HWC" -> # HWC, BGR elif n_dim == 2: img_np = img.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) #if rgb2bgr: #img_np = img_np[[2, 1, 0], :, :] #RGB to BGR -> in numpy, if using OpenCV, else not needed. Only if image has colors. #TODO: Check: could denormalize in the begining in tensor form instead if denormalize: img_np = denorm(img_np) #denormalize if needed if change_range: img_np = np.clip(data_range*img_np,0,data_range).round() #clip to the data_range # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. #has to be in range (0,255) before changing to np.uint8, else np.float32 return img_np.astype(imtype) #################### # Prepare Images #################### # https://github.com/sunreef/BlindSR/blob/master/src/image_utils.py def patchify_tensor(features, patch_size, overlap=10): batch_size, channels, height, width = features.size() effective_patch_size = patch_size - overlap n_patches_height = (height // effective_patch_size) n_patches_width = (width // effective_patch_size) if n_patches_height * effective_patch_size < height: n_patches_height += 1 if n_patches_width * effective_patch_size < width: n_patches_width += 1 patches = [] for b in range(batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, height - patch_size) patch_start_width = min(w * effective_patch_size, width - patch_size) patches.append(features[b:b+1, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size]) return torch.cat(patches, 0) def recompose_tensor(patches, full_height, full_width, overlap=10): batch_size, channels, patch_size, _ = patches.size() effective_patch_size = patch_size - overlap n_patches_height = (full_height // effective_patch_size) n_patches_width = (full_width // effective_patch_size) if n_patches_height * effective_patch_size < full_height: n_patches_height += 1 if n_patches_width * effective_patch_size < full_width: n_patches_width += 1 n_patches = n_patches_height * n_patches_width if batch_size % n_patches != 0: print("Error: The number of patches provided to the recompose function does not match the number of patches in each image.") final_batch_size = batch_size // n_patches blending_in = torch.linspace(0.1, 1.0, overlap) blending_out = torch.linspace(1.0, 0.1, overlap) middle_part = torch.ones(patch_size - 2 * overlap) blending_profile = torch.cat([blending_in, middle_part, blending_out], 0) horizontal_blending = blending_profile[None].repeat(patch_size, 1) vertical_blending = blending_profile[:, None].repeat(1, patch_size) blending_patch = horizontal_blending * vertical_blending blending_image = torch.zeros(1, channels, full_height, full_width) for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) blending_image[0, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += blending_patch[None] recomposed_tensor = torch.zeros(final_batch_size, channels, full_height, full_width) if patches.is_cuda: blending_patch = blending_patch.cuda() blending_image = blending_image.cuda() recomposed_tensor = recomposed_tensor.cuda() patch_index = 0 for b in range(final_batch_size): for h in range(n_patches_height): for w in range(n_patches_width): patch_start_height = min(h * effective_patch_size, full_height - patch_size) patch_start_width = min(w * effective_patch_size, full_width - patch_size) recomposed_tensor[b, :, patch_start_height: patch_start_height + patch_size, patch_start_width: patch_start_width + patch_size] += patches[patch_index] * blending_patch patch_index += 1 recomposed_tensor /= blending_image return recomposed_tensor #TODO: imresize could be an independent file (imresize.py) #################### # Matlab imresize #################### # These next functions are all interpolation methods. x is the distance from the left pixel center def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) def lanczos2(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/2) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 2) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 2)) def lanczos3(x): return (((torch.sin(math.pi*x) * torch.sin(math.pi*x/3) + torch.finfo(torch.float32).eps) / ((math.pi**2 * x**2 / 3) + torch.finfo(torch.float32).eps)) * (torch.abs(x) < 3)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply kernel if (scale < 1) and (antialiasing): weights = scale * kernel(distance_to_center * scale) else: weights = kernel(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) def imresize(img, scale, antialiasing=True, interpolation=None): # The scale should be the same for H and W # input: img: CHW RGB [0,1] # output: CHW RGB [0,1] w/o round in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) return out_2 def imresize_np(img, scale, antialiasing=True, interpolation=None): # Now the scale should be the same for H and W # input: img: Numpy, HWC BGR [0,1] # output: HWC BGR [0,1] w/o round change_range = False if img.max() > 1: img_type = img.dtype if np.issubdtype(img_type, np.integer): info = np.iinfo elif np.issubdtype(img_type, np.floating): info = np.finfo img = img/info(img_type).max change_range = True img = torch.from_numpy(img) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) # Choose interpolation method, each method has the matching kernel size kernel, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0) # set default interpolation method as cubic }.get(interpolation) # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) out_2 = out_2.numpy().clip(0,1) if change_range: out_2 = out_2*info(img_type).max #uint8 = 255 out_2 = out_2.astype(img_type) return out_2 if __name__ == '__main__': # test imresize function # read images img = cv2.imread('test.png') img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # imresize scale = 1 / 4 import time total_time = 0 for i in range(10): start_time = time.time() rlt = imresize(img, scale, antialiasing=True) use_time = time.time() - start_time total_time += use_time print('average time: {}'.format(total_time / 10)) import torchvision.utils torchvision.utils.save_image( (rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, normalize=False)
cookouttray
For those who do finances with cookout trays, we proudly present the command for you Simply type one of the following: cookouttray ctray trayforjay Followed by a monetary value such as (leave off the dollar sign): 20 100 3.14 To have it converted into cookout trays Examples: cookouttray 20 ctray 100 trayforjay 3.14 Clicking the link "Cash to Cookout Tray Converter" in the output will also take you to cookout's website
import concurrent.futures import datetime import io import logging import os import random import time import typing as t import discord import discord.ext.commands as commands from PIL import Image, ImageDraw, ImageSequence, ImageFont import bot.extensions as ext from bot.consts import Colors from bot.messaging.events import Events log = logging.getLogger(__name__) MAX_WALDO_GRID_SIZE = 100 CRAB_LINE_LENGTH = 58 CRAB_COMMAND_COOLDOWN = 3 def pillow_process(args, is_rave, lines_in_text, timestamp): # Open crab.gif and add our font with Image.open('bot/cogs/memes_cog/assets/crab.gif') as im: fnt = ImageFont.truetype('bot/cogs/memes_cog/assets/LemonMilk.otf', 11) # Draw text on each frame of the gif # Gonna be honest I don't quite understand how it works but I got it from the Pillow docs/issues frames = [] for frame in ImageSequence.Iterator(im): d = ImageDraw.Draw(frame) w, h = d.textsize(args, fnt) # draws the text on to the frame. Tries to center horizontally and tries to go as close to the bottom as possible d.text((im.size[0] / 2 - w / 2, im.size[1] - h - (5 * lines_in_text)), args, font=fnt, align='center', stroke_width=bool(is_rave), stroke_fill=Colors.ClemsonOrange, spacing=6) del d b = io.BytesIO() frame.save(b, format='GIF') frame = Image.open(b) frames.append(frame) frames[0].save(f'bot/cogs/memes_cog/assets/out_{timestamp}.gif', save_all=True, append_images=frames[1:]) class MemesCog(commands.Cog): def __init__(self, bot): self.bot = bot @ext.command() @ext.long_help( 'A fun command to generate a pseudo bubblewrap effect in discord' ) @ext.short_help('Creates bubblewrap!') @ext.example('bubblewrap') async def bubblewrap(self, ctx): msg = '' for _ in range(0, 5): for _ in range(0, 10): msg += '||pop!|| ' msg += '\n' await ctx.send(msg) @commands.command() @ext.long_help( 'A fun command to generate a wheres waldo effect in discord, see if you can find him first!' 'Optionally takes a size parameter to make it easier or harder' ) @ext.short_help('Can you find him?') @ext.example(('waldo', 'waldo 10')) async def waldo(self, ctx, size=MAX_WALDO_GRID_SIZE): """ Play Where's Waldo! Usage: <prefix>waldo [size = 100] """ random_start_letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z'] max_waldo_line_size = 6 new_line_waldo_chance = 10 msg = '' count = 0 place = random.randint(0, size) for i in range(size + 1): if i == place: msg += '||`WALDO`|| ' count += 1 else: helper = random.randint(0, len(random_start_letters) - 1) letter = random_start_letters[helper] msg += f'||`{letter}ALDO`|| ' count += 1 new_line = random.randint(0, 100) if new_line < new_line_waldo_chance or count > max_waldo_line_size: msg += '\n' count = 0 await ctx.send(msg) @ext.command() @ext.chainable() @ext.long_help( 'A fun command to spongebob meme text in discord' ) @ext.short_help('sO yOu doNt KnOw wHat tHiS Is?') @ext.example('spongebob hello world') async def spongebob(self, ctx, *, args): """ Spongebob Text """ random.seed(time.time()) args = args.replace('"', "'") result = '' for i in args: helper = random.randint(0, 100) if helper > 60: result += str(i).upper() else: result += str(i).lower() await ctx.send(result) @ext.command(aliases=['rave', '🦀']) @commands.cooldown(1, CRAB_COMMAND_COOLDOWN, commands.BucketType.guild) @ext.long_help( 'A fun command to generate a crab rave gif with specified text overlay' ) @ext.short_help('Generates a crab rave gif') @ext.chainable_input() @ext.example('crab hello from crab world') async def crab(self, ctx, is_rave: t.Optional[bool] = True, *, args='Bottom text\n is dead'): """ Create your own crab rave. Usage: <prefix>crab [is_rave=True] [text=Bottom text\\n is dead] Aliases: rave, 🦀 """ # crab.gif dimensions - 352 by 200 # Immediately grab the timestamp incase of multiple calls in a row timestamp = datetime.datetime.utcnow().microsecond wait_msg = await ctx.send('Generating your gif') args = args.replace('\\', '') # Add new lines for when the text would go out of bounds lines_in_text = 1 while len(args) > (CRAB_LINE_LENGTH * lines_in_text): newline_loc = CRAB_LINE_LENGTH * lines_in_text # I didn't want to add a newline in the middle of a word while not args[newline_loc].isspace(): newline_loc -= 1 if newline_loc == CRAB_LINE_LENGTH * (lines_in_text - 1): newline_loc = CRAB_LINE_LENGTH * lines_in_text break args = f'{args[:newline_loc]} \n{args[newline_loc:]}' lines_in_text += 1 loop = self.bot.loop with concurrent.futures.ProcessPoolExecutor() as pool: pil_args = (args, is_rave, lines_in_text, timestamp) await loop.run_in_executor(pool, pillow_process, *pil_args) # Attach, send, and delete created gif attachment = discord.File(filename=f'out_{timestamp}.gif', fp=f'bot/cogs/memes_cog/assets/out_{timestamp}.gif') msg = await ctx.send(file=attachment) await self.bot.messenger.publish(Events.on_set_deletable, msg=msg, author=ctx.author) await wait_msg.delete() os.remove(f'bot/cogs/memes_cog/assets/out_{timestamp}.gif') # MASKED: cookouttray function (lines 181-211) def setup(bot): bot.add_cog(MemesCog(bot))
@ext.command(hidden=True, aliases=['ctray', 'trayforjay']) async def cookouttray(self, ctx, input): """ For those who do finances with cookout trays, we proudly present the command for you Simply type one of the following: cookouttray ctray trayforjay Followed by a monetary value such as (leave off the dollar sign): 20 100 3.14 To have it converted into cookout trays Examples: cookouttray 20 ctray 100 trayforjay 3.14 Clicking the link "Cash to Cookout Tray Converter" in the output will also take you to cookout's website """ money = round(float(input), 2) output = money / 5 embed = discord.Embed( title='Cash to Cookout Tray Converter', description=f'{ctx.message.author.mention} ${money} is approximately {output} cookout trays', url=f"https://www.fastfoodmenuprices.com/cookout-prices/", color=Colors.ClemsonOrange) await ctx.send(embed=embed)
181
211
import concurrent.futures import datetime import io import logging import os import random import time import typing as t import discord import discord.ext.commands as commands from PIL import Image, ImageDraw, ImageSequence, ImageFont import bot.extensions as ext from bot.consts import Colors from bot.messaging.events import Events log = logging.getLogger(__name__) MAX_WALDO_GRID_SIZE = 100 CRAB_LINE_LENGTH = 58 CRAB_COMMAND_COOLDOWN = 3 def pillow_process(args, is_rave, lines_in_text, timestamp): # Open crab.gif and add our font with Image.open('bot/cogs/memes_cog/assets/crab.gif') as im: fnt = ImageFont.truetype('bot/cogs/memes_cog/assets/LemonMilk.otf', 11) # Draw text on each frame of the gif # Gonna be honest I don't quite understand how it works but I got it from the Pillow docs/issues frames = [] for frame in ImageSequence.Iterator(im): d = ImageDraw.Draw(frame) w, h = d.textsize(args, fnt) # draws the text on to the frame. Tries to center horizontally and tries to go as close to the bottom as possible d.text((im.size[0] / 2 - w / 2, im.size[1] - h - (5 * lines_in_text)), args, font=fnt, align='center', stroke_width=bool(is_rave), stroke_fill=Colors.ClemsonOrange, spacing=6) del d b = io.BytesIO() frame.save(b, format='GIF') frame = Image.open(b) frames.append(frame) frames[0].save(f'bot/cogs/memes_cog/assets/out_{timestamp}.gif', save_all=True, append_images=frames[1:]) class MemesCog(commands.Cog): def __init__(self, bot): self.bot = bot @ext.command() @ext.long_help( 'A fun command to generate a pseudo bubblewrap effect in discord' ) @ext.short_help('Creates bubblewrap!') @ext.example('bubblewrap') async def bubblewrap(self, ctx): msg = '' for _ in range(0, 5): for _ in range(0, 10): msg += '||pop!|| ' msg += '\n' await ctx.send(msg) @commands.command() @ext.long_help( 'A fun command to generate a wheres waldo effect in discord, see if you can find him first!' 'Optionally takes a size parameter to make it easier or harder' ) @ext.short_help('Can you find him?') @ext.example(('waldo', 'waldo 10')) async def waldo(self, ctx, size=MAX_WALDO_GRID_SIZE): """ Play Where's Waldo! Usage: <prefix>waldo [size = 100] """ random_start_letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z'] max_waldo_line_size = 6 new_line_waldo_chance = 10 msg = '' count = 0 place = random.randint(0, size) for i in range(size + 1): if i == place: msg += '||`WALDO`|| ' count += 1 else: helper = random.randint(0, len(random_start_letters) - 1) letter = random_start_letters[helper] msg += f'||`{letter}ALDO`|| ' count += 1 new_line = random.randint(0, 100) if new_line < new_line_waldo_chance or count > max_waldo_line_size: msg += '\n' count = 0 await ctx.send(msg) @ext.command() @ext.chainable() @ext.long_help( 'A fun command to spongebob meme text in discord' ) @ext.short_help('sO yOu doNt KnOw wHat tHiS Is?') @ext.example('spongebob hello world') async def spongebob(self, ctx, *, args): """ Spongebob Text """ random.seed(time.time()) args = args.replace('"', "'") result = '' for i in args: helper = random.randint(0, 100) if helper > 60: result += str(i).upper() else: result += str(i).lower() await ctx.send(result) @ext.command(aliases=['rave', '🦀']) @commands.cooldown(1, CRAB_COMMAND_COOLDOWN, commands.BucketType.guild) @ext.long_help( 'A fun command to generate a crab rave gif with specified text overlay' ) @ext.short_help('Generates a crab rave gif') @ext.chainable_input() @ext.example('crab hello from crab world') async def crab(self, ctx, is_rave: t.Optional[bool] = True, *, args='Bottom text\n is dead'): """ Create your own crab rave. Usage: <prefix>crab [is_rave=True] [text=Bottom text\\n is dead] Aliases: rave, 🦀 """ # crab.gif dimensions - 352 by 200 # Immediately grab the timestamp incase of multiple calls in a row timestamp = datetime.datetime.utcnow().microsecond wait_msg = await ctx.send('Generating your gif') args = args.replace('\\', '') # Add new lines for when the text would go out of bounds lines_in_text = 1 while len(args) > (CRAB_LINE_LENGTH * lines_in_text): newline_loc = CRAB_LINE_LENGTH * lines_in_text # I didn't want to add a newline in the middle of a word while not args[newline_loc].isspace(): newline_loc -= 1 if newline_loc == CRAB_LINE_LENGTH * (lines_in_text - 1): newline_loc = CRAB_LINE_LENGTH * lines_in_text break args = f'{args[:newline_loc]} \n{args[newline_loc:]}' lines_in_text += 1 loop = self.bot.loop with concurrent.futures.ProcessPoolExecutor() as pool: pil_args = (args, is_rave, lines_in_text, timestamp) await loop.run_in_executor(pool, pillow_process, *pil_args) # Attach, send, and delete created gif attachment = discord.File(filename=f'out_{timestamp}.gif', fp=f'bot/cogs/memes_cog/assets/out_{timestamp}.gif') msg = await ctx.send(file=attachment) await self.bot.messenger.publish(Events.on_set_deletable, msg=msg, author=ctx.author) await wait_msg.delete() os.remove(f'bot/cogs/memes_cog/assets/out_{timestamp}.gif') @ext.command(hidden=True, aliases=['ctray', 'trayforjay']) async def cookouttray(self, ctx, input): """ For those who do finances with cookout trays, we proudly present the command for you Simply type one of the following: cookouttray ctray trayforjay Followed by a monetary value such as (leave off the dollar sign): 20 100 3.14 To have it converted into cookout trays Examples: cookouttray 20 ctray 100 trayforjay 3.14 Clicking the link "Cash to Cookout Tray Converter" in the output will also take you to cookout's website """ money = round(float(input), 2) output = money / 5 embed = discord.Embed( title='Cash to Cookout Tray Converter', description=f'{ctx.message.author.mention} ${money} is approximately {output} cookout trays', url=f"https://www.fastfoodmenuprices.com/cookout-prices/", color=Colors.ClemsonOrange) await ctx.send(embed=embed) def setup(bot): bot.add_cog(MemesCog(bot))
_invalid_headers
Verify whether the provided metadata in the URL is also present in the headers :param url: .../file.txt&content-type=app%2Fjson&Signature=.. :param headers: Content-Type=app/json :return: True or False
from __future__ import unicode_literals import io import os import re import sys from botocore.awsrequest import AWSPreparedRequest from moto.core.utils import ( amzn_request_id, str_to_rfc_1123_datetime, py2_strip_unicode_keys, ) from urllib.parse import ( parse_qs, parse_qsl, urlparse, unquote, urlencode, urlunparse, ) import xmltodict from moto.packages.httpretty.core import HTTPrettyRequest from moto.core.responses import _TemplateEnvironmentMixin, ActionAuthenticatorMixin from moto.core.utils import path_url from moto.core import ACCOUNT_ID from moto.settings import S3_IGNORE_SUBDOMAIN_BUCKETNAME from moto.s3bucket_path.utils import ( bucket_name_from_url as bucketpath_bucket_name_from_url, parse_key_name as bucketpath_parse_key_name, is_delete_keys as bucketpath_is_delete_keys, ) from .exceptions import ( BucketAlreadyExists, BucketMustHaveLockeEnabled, DuplicateTagKeys, InvalidContentMD5, InvalidContinuationToken, S3ClientError, MissingBucket, MissingKey, MissingVersion, InvalidMaxPartArgument, InvalidPartOrder, MalformedXML, MalformedACLError, IllegalLocationConstraintException, InvalidNotificationARN, InvalidNotificationEvent, ObjectNotInActiveTierError, NoSystemTags, PreconditionFailed, InvalidRange, LockNotEnabled, ) from .models import ( s3_backend, get_canned_acl, FakeGrantee, FakeGrant, FakeAcl, FakeKey, ) from .utils import ( bucket_name_from_url, clean_key_name, metadata_from_headers, parse_region_from_url, ) from xml.dom import minidom DEFAULT_REGION_NAME = "us-east-1" ACTION_MAP = { "BUCKET": { "HEAD": {"DEFAULT": "HeadBucket",}, "GET": { "uploads": "ListBucketMultipartUploads", "location": "GetBucketLocation", "lifecycle": "GetLifecycleConfiguration", "versioning": "GetBucketVersioning", "policy": "GetBucketPolicy", "website": "GetBucketWebsite", "acl": "GetBucketAcl", "tagging": "GetBucketTagging", "logging": "GetBucketLogging", "cors": "GetBucketCORS", "notification": "GetBucketNotification", "accelerate": "GetAccelerateConfiguration", "versions": "ListBucketVersions", "public_access_block": "GetPublicAccessBlock", "DEFAULT": "ListBucket", }, "PUT": { "lifecycle": "PutLifecycleConfiguration", "versioning": "PutBucketVersioning", "policy": "PutBucketPolicy", "website": "PutBucketWebsite", "acl": "PutBucketAcl", "tagging": "PutBucketTagging", "logging": "PutBucketLogging", "cors": "PutBucketCORS", "notification": "PutBucketNotification", "accelerate": "PutAccelerateConfiguration", "public_access_block": "PutPublicAccessBlock", "DEFAULT": "CreateBucket", }, "DELETE": { "lifecycle": "PutLifecycleConfiguration", "policy": "DeleteBucketPolicy", "website": "DeleteBucketWebsite", "tagging": "PutBucketTagging", "cors": "PutBucketCORS", "public_access_block": "DeletePublicAccessBlock", "DEFAULT": "DeleteBucket", }, }, "KEY": { "HEAD": {"DEFAULT": "HeadObject",}, "GET": { "uploadId": "ListMultipartUploadParts", "acl": "GetObjectAcl", "tagging": "GetObjectTagging", "versionId": "GetObjectVersion", "DEFAULT": "GetObject", }, "PUT": { "acl": "PutObjectAcl", "tagging": "PutObjectTagging", "DEFAULT": "PutObject", }, "DELETE": { "uploadId": "AbortMultipartUpload", "versionId": "DeleteObjectVersion", "DEFAULT": "DeleteObject", }, "POST": { "uploads": "PutObject", "restore": "RestoreObject", "uploadId": "PutObject", }, }, "CONTROL": { "GET": {"publicAccessBlock": "GetPublicAccessBlock"}, "PUT": {"publicAccessBlock": "PutPublicAccessBlock"}, "DELETE": {"publicAccessBlock": "DeletePublicAccessBlock"}, }, } def parse_key_name(pth): # strip the first '/' left by urlparse return pth[1:] if pth.startswith("/") else pth def is_delete_keys(request, path, bucket_name): # GOlang sends a request as url/?delete= (treating it as a normal key=value, even if the value is empty) # Python sends a request as url/?delete (treating it as a flag) # https://github.com/spulec/moto/issues/2937 return ( path == "/?delete" or path == "/?delete=" or (path == "/" and getattr(request, "query_string", "") == "delete") ) class ResponseObject(_TemplateEnvironmentMixin, ActionAuthenticatorMixin): def __init__(self, backend): super(ResponseObject, self).__init__() self.backend = backend self.method = "" self.path = "" self.data = {} self.headers = {} @property def should_autoescape(self): return True def all_buckets(self): self.data["Action"] = "ListAllMyBuckets" self._authenticate_and_authorize_s3_action() # No bucket specified. Listing all buckets all_buckets = self.backend.list_buckets() template = self.response_template(S3_ALL_BUCKETS) return template.render(buckets=all_buckets) def subdomain_based_buckets(self, request): if S3_IGNORE_SUBDOMAIN_BUCKETNAME: return False host = request.headers.get("host", request.headers.get("Host")) if not host: host = urlparse(request.url).netloc if ( not host or host.startswith("localhost") or host.startswith("localstack") or re.match(r"^[^.]+$", host) or re.match(r"^.*\.svc\.cluster\.local:?\d*$", host) ): # Default to path-based buckets for (1) localhost, (2) localstack hosts (e.g. localstack.dev), # (3) local host names that do not contain a "." (e.g., Docker container host names), or # (4) kubernetes host names return False match = re.match(r"^([^\[\]:]+)(:\d+)?$", host) if match: match = re.match( r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}", match.groups()[0] ) if match: return False match = re.match(r"^\[(.+)\](:\d+)?$", host) if match: match = re.match( r"^(((?=.*(::))(?!.*\3.+\3))\3?|[\dA-F]{1,4}:)([\dA-F]{1,4}(\3|:\b)|\2){5}(([\dA-F]{1,4}(\3|:\b|$)|\2){2}|(((2[0-4]|1\d|[1-9])?\d|25[0-5])\.?\b){4})\Z", match.groups()[0], re.IGNORECASE, ) if match: return False path_based = host == "s3.amazonaws.com" or re.match( r"s3[\.\-]([^.]*)\.amazonaws\.com", host ) return not path_based def is_delete_keys(self, request, path, bucket_name): if self.subdomain_based_buckets(request): return is_delete_keys(request, path, bucket_name) else: return bucketpath_is_delete_keys(request, path, bucket_name) def parse_bucket_name_from_url(self, request, url): if self.subdomain_based_buckets(request): return bucket_name_from_url(url) else: return bucketpath_bucket_name_from_url(url) def parse_key_name(self, request, url): if self.subdomain_based_buckets(request): return parse_key_name(url) else: return bucketpath_parse_key_name(url) def ambiguous_response(self, request, full_url, headers): # Depending on which calling format the client is using, we don't know # if this is a bucket or key request so we have to check if self.subdomain_based_buckets(request): return self.key_or_control_response(request, full_url, headers) else: # Using path-based buckets return self.bucket_response(request, full_url, headers) @amzn_request_id def bucket_response(self, request, full_url, headers): self.method = request.method self.path = self._get_path(request) self.headers = request.headers if "host" not in self.headers: self.headers["host"] = urlparse(full_url).netloc try: response = self._bucket_response(request, full_url, headers) except S3ClientError as s3error: response = s3error.code, {}, s3error.description return self._send_response(response) @staticmethod def _send_response(response): if isinstance(response, str): return 200, {}, response.encode("utf-8") else: status_code, headers, response_content = response if not isinstance(response_content, bytes): response_content = response_content.encode("utf-8") return status_code, headers, response_content def _bucket_response(self, request, full_url, headers): querystring = self._get_querystring(full_url) method = request.method region_name = parse_region_from_url(full_url) bucket_name = self.parse_bucket_name_from_url(request, full_url) if not bucket_name: # If no bucket specified, list all buckets return self.all_buckets() self.data["BucketName"] = bucket_name if hasattr(request, "body"): # Boto body = request.body else: # Flask server body = request.data if body is None: body = b"" if isinstance(body, bytes): body = body.decode("utf-8") body = "{0}".format(body).encode("utf-8") if method == "HEAD": return self._bucket_response_head(bucket_name, querystring) elif method == "GET": return self._bucket_response_get(bucket_name, querystring) elif method == "PUT": return self._bucket_response_put( request, body, region_name, bucket_name, querystring ) elif method == "DELETE": return self._bucket_response_delete(body, bucket_name, querystring) elif method == "POST": return self._bucket_response_post(request, body, bucket_name) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) @staticmethod def _get_querystring(full_url): parsed_url = urlparse(full_url) querystring = parse_qs(parsed_url.query, keep_blank_values=True) return querystring def _bucket_response_head(self, bucket_name, querystring): self._set_action("BUCKET", "HEAD", querystring) self._authenticate_and_authorize_s3_action() try: self.backend.head_bucket(bucket_name) except MissingBucket: # Unless we do this, boto3 does not raise ClientError on # HEAD (which the real API responds with), and instead # raises NoSuchBucket, leading to inconsistency in # error response between real and mocked responses. return 404, {}, "" return 200, {}, "" def _bucket_response_get(self, bucket_name, querystring): self._set_action("BUCKET", "GET", querystring) self._authenticate_and_authorize_s3_action() if "object-lock" in querystring: ( lock_enabled, mode, days, years, ) = self.backend.get_object_lock_configuration(bucket_name) template = self.response_template(S3_BUCKET_LOCK_CONFIGURATION) return template.render( lock_enabled=lock_enabled, mode=mode, days=days, years=years, ) if "uploads" in querystring: for unsup in ("delimiter", "max-uploads"): if unsup in querystring: raise NotImplementedError( "Listing multipart uploads with {} has not been implemented yet.".format( unsup ) ) multiparts = list(self.backend.get_all_multiparts(bucket_name).values()) if "prefix" in querystring: prefix = querystring.get("prefix", [None])[0] multiparts = [ upload for upload in multiparts if upload.key_name.startswith(prefix) ] template = self.response_template(S3_ALL_MULTIPARTS) return template.render(bucket_name=bucket_name, uploads=multiparts) elif "location" in querystring: location = self.backend.get_bucket_location(bucket_name) template = self.response_template(S3_BUCKET_LOCATION) # us-east-1 is different - returns a None location if location == DEFAULT_REGION_NAME: location = None return template.render(location=location) elif "lifecycle" in querystring: rules = self.backend.get_bucket_lifecycle(bucket_name) if not rules: template = self.response_template(S3_NO_LIFECYCLE) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_BUCKET_LIFECYCLE_CONFIGURATION) return template.render(rules=rules) elif "versioning" in querystring: versioning = self.backend.get_bucket_versioning(bucket_name) template = self.response_template(S3_BUCKET_GET_VERSIONING) return template.render(status=versioning) elif "policy" in querystring: policy = self.backend.get_bucket_policy(bucket_name) if not policy: template = self.response_template(S3_NO_POLICY) return 404, {}, template.render(bucket_name=bucket_name) return 200, {}, policy elif "website" in querystring: website_configuration = self.backend.get_bucket_website_configuration( bucket_name ) if not website_configuration: template = self.response_template(S3_NO_BUCKET_WEBSITE_CONFIG) return 404, {}, template.render(bucket_name=bucket_name) return 200, {}, website_configuration elif "acl" in querystring: acl = self.backend.get_bucket_acl(bucket_name) template = self.response_template(S3_OBJECT_ACL_RESPONSE) return template.render(acl=acl) elif "tagging" in querystring: tags = self.backend.get_bucket_tagging(bucket_name)["Tags"] # "Special Error" if no tags: if len(tags) == 0: template = self.response_template(S3_NO_BUCKET_TAGGING) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_OBJECT_TAGGING_RESPONSE) return template.render(tags=tags) elif "logging" in querystring: logging = self.backend.get_bucket_logging(bucket_name) if not logging: template = self.response_template(S3_NO_LOGGING_CONFIG) return 200, {}, template.render() template = self.response_template(S3_LOGGING_CONFIG) return 200, {}, template.render(logging=logging) elif "cors" in querystring: cors = self.backend.get_bucket_cors(bucket_name) if len(cors) == 0: template = self.response_template(S3_NO_CORS_CONFIG) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_BUCKET_CORS_RESPONSE) return template.render(cors=cors) elif "notification" in querystring: notification_configuration = self.backend.get_bucket_notification_configuration( bucket_name ) if not notification_configuration: return 200, {}, "" template = self.response_template(S3_GET_BUCKET_NOTIFICATION_CONFIG) return template.render(config=notification_configuration) elif "accelerate" in querystring: bucket = self.backend.get_bucket(bucket_name) if bucket.accelerate_configuration is None: template = self.response_template(S3_BUCKET_ACCELERATE_NOT_SET) return 200, {}, template.render() template = self.response_template(S3_BUCKET_ACCELERATE) return template.render(bucket=bucket) elif "publicAccessBlock" in querystring: public_block_config = self.backend.get_public_access_block(bucket_name) template = self.response_template(S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION) return template.render(public_block_config=public_block_config) elif "versions" in querystring: delimiter = querystring.get("delimiter", [None])[0] encoding_type = querystring.get("encoding-type", [None])[0] key_marker = querystring.get("key-marker", [None])[0] max_keys = querystring.get("max-keys", [None])[0] prefix = querystring.get("prefix", [""])[0] version_id_marker = querystring.get("version-id-marker", [None])[0] bucket = self.backend.get_bucket(bucket_name) ( versions, common_prefixes, delete_markers, ) = self.backend.list_object_versions( bucket_name, delimiter=delimiter, encoding_type=encoding_type, key_marker=key_marker, max_keys=max_keys, version_id_marker=version_id_marker, prefix=prefix, ) key_list = versions template = self.response_template(S3_BUCKET_GET_VERSIONS) return ( 200, {}, template.render( common_prefixes=common_prefixes, key_list=key_list, delete_marker_list=delete_markers, bucket=bucket, prefix=prefix, max_keys=1000, delimiter=delimiter, key_marker=key_marker, is_truncated="false", ), ) elif "encryption" in querystring: encryption = self.backend.get_bucket_encryption(bucket_name) if not encryption: template = self.response_template(S3_NO_ENCRYPTION) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_ENCRYPTION_CONFIG) return 200, {}, template.render(encryption=encryption) elif querystring.get("list-type", [None])[0] == "2": return 200, {}, self._handle_list_objects_v2(bucket_name, querystring) bucket = self.backend.get_bucket(bucket_name) prefix = querystring.get("prefix", [None])[0] if prefix and isinstance(prefix, bytes): prefix = prefix.decode("utf-8") delimiter = querystring.get("delimiter", [None])[0] max_keys = int(querystring.get("max-keys", [1000])[0]) marker = querystring.get("marker", [None])[0] result_keys, result_folders = self.backend.list_objects( bucket, prefix, delimiter ) if marker: result_keys = self._get_results_from_token(result_keys, marker) result_keys, is_truncated, next_marker = self._truncate_result( result_keys, max_keys ) template = self.response_template(S3_BUCKET_GET_RESPONSE) return ( 200, {}, template.render( bucket=bucket, prefix=prefix, delimiter=delimiter, result_keys=result_keys, result_folders=result_folders, is_truncated=is_truncated, next_marker=next_marker, max_keys=max_keys, ), ) def _set_action(self, action_resource_type, method, querystring): action_set = False for action_in_querystring, action in ACTION_MAP[action_resource_type][ method ].items(): if action_in_querystring in querystring: self.data["Action"] = action action_set = True if not action_set: self.data["Action"] = ACTION_MAP[action_resource_type][method]["DEFAULT"] def _handle_list_objects_v2(self, bucket_name, querystring): template = self.response_template(S3_BUCKET_GET_RESPONSE_V2) bucket = self.backend.get_bucket(bucket_name) continuation_token = querystring.get("continuation-token", [None])[0] if continuation_token is not None and continuation_token == "": raise InvalidContinuationToken() prefix = querystring.get("prefix", [None])[0] if prefix and isinstance(prefix, bytes): prefix = prefix.decode("utf-8") delimiter = querystring.get("delimiter", [None])[0] all_keys = self.backend.list_objects_v2(bucket, prefix, delimiter) fetch_owner = querystring.get("fetch-owner", [False])[0] max_keys = int(querystring.get("max-keys", [1000])[0]) start_after = querystring.get("start-after", [None])[0] if continuation_token or start_after: limit = continuation_token or start_after all_keys = self._get_results_from_token(all_keys, limit) truncated_keys, is_truncated, next_continuation_token = self._truncate_result( all_keys, max_keys ) result_keys, result_folders = self._split_truncated_keys(truncated_keys) key_count = len(result_keys) + len(result_folders) return template.render( bucket=bucket, prefix=prefix or "", delimiter=delimiter, key_count=key_count, result_keys=result_keys, result_folders=result_folders, fetch_owner=fetch_owner, max_keys=max_keys, is_truncated=is_truncated, next_continuation_token=next_continuation_token, start_after=None if continuation_token else start_after, ) @staticmethod def _split_truncated_keys(truncated_keys): result_keys = [] result_folders = [] for key in truncated_keys: if isinstance(key, FakeKey): result_keys.append(key) else: result_folders.append(key) return result_keys, result_folders def _get_results_from_token(self, result_keys, token): continuation_index = 0 for key in result_keys: if (key.name if isinstance(key, FakeKey) else key) > token: break continuation_index += 1 return result_keys[continuation_index:] def _truncate_result(self, result_keys, max_keys): if max_keys == 0: result_keys = [] is_truncated = True next_continuation_token = None elif len(result_keys) > max_keys: is_truncated = "true" result_keys = result_keys[:max_keys] item = result_keys[-1] next_continuation_token = item.name if isinstance(item, FakeKey) else item else: is_truncated = "false" next_continuation_token = None return result_keys, is_truncated, next_continuation_token def _body_contains_location_constraint(self, body): if body: try: xmltodict.parse(body)["CreateBucketConfiguration"]["LocationConstraint"] return True except KeyError: pass return False def _create_bucket_configuration_is_empty(self, body): if body: try: create_bucket_configuration = xmltodict.parse(body)[ "CreateBucketConfiguration" ] del create_bucket_configuration["@xmlns"] if len(create_bucket_configuration) == 0: return True except KeyError: pass return False def _parse_pab_config(self, body): parsed_xml = xmltodict.parse(body) parsed_xml["PublicAccessBlockConfiguration"].pop("@xmlns", None) # If Python 2, fix the unicode strings: if sys.version_info[0] < 3: parsed_xml = { "PublicAccessBlockConfiguration": py2_strip_unicode_keys( dict(parsed_xml["PublicAccessBlockConfiguration"]) ) } return parsed_xml def _bucket_response_put( self, request, body, region_name, bucket_name, querystring ): if not request.headers.get("Content-Length"): return 411, {}, "Content-Length required" self._set_action("BUCKET", "PUT", querystring) self._authenticate_and_authorize_s3_action() if "object-lock" in querystring: body_decoded = body.decode() config = self._lock_config_from_xml(body_decoded) if not self.backend.get_bucket(bucket_name).object_lock_enabled: raise BucketMustHaveLockeEnabled self.backend.put_object_lock_configuration( bucket_name, config.get("enabled"), config.get("mode"), config.get("days"), config.get("years"), ) return 200, {}, "" if "versioning" in querystring: ver = re.search("<Status>([A-Za-z]+)</Status>", body.decode()) if ver: self.backend.set_bucket_versioning(bucket_name, ver.group(1)) template = self.response_template(S3_BUCKET_VERSIONING) return template.render(bucket_versioning_status=ver.group(1)) else: return 404, {}, "" elif "lifecycle" in querystring: rules = xmltodict.parse(body)["LifecycleConfiguration"]["Rule"] if not isinstance(rules, list): # If there is only one rule, xmldict returns just the item rules = [rules] self.backend.put_bucket_lifecycle(bucket_name, rules) return "" elif "policy" in querystring: self.backend.put_bucket_policy(bucket_name, body) return "True" elif "acl" in querystring: # Headers are first. If not set, then look at the body (consistent with the documentation): acls = self._acl_from_headers(request.headers) if not acls: acls = self._acl_from_xml(body) self.backend.put_bucket_acl(bucket_name, acls) return "" elif "tagging" in querystring: tagging = self._bucket_tagging_from_xml(body) self.backend.put_bucket_tagging(bucket_name, tagging) return "" elif "website" in querystring: self.backend.set_bucket_website_configuration(bucket_name, body) return "" elif "cors" in querystring: try: self.backend.put_bucket_cors(bucket_name, self._cors_from_xml(body)) return "" except KeyError: raise MalformedXML() elif "logging" in querystring: try: self.backend.put_bucket_logging( bucket_name, self._logging_from_xml(body) ) return "" except KeyError: raise MalformedXML() elif "notification" in querystring: try: self.backend.put_bucket_notification_configuration( bucket_name, self._notification_config_from_xml(body) ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e elif "accelerate" in querystring: try: accelerate_status = self._accelerate_config_from_xml(body) self.backend.put_bucket_accelerate_configuration( bucket_name, accelerate_status ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e elif "publicAccessBlock" in querystring: pab_config = self._parse_pab_config(body) self.backend.put_bucket_public_access_block( bucket_name, pab_config["PublicAccessBlockConfiguration"] ) return "" elif "encryption" in querystring: try: self.backend.put_bucket_encryption( bucket_name, self._encryption_config_from_xml(body) ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e else: # us-east-1, the default AWS region behaves a bit differently # - you should not use it as a location constraint --> it fails # - querying the location constraint returns None # - LocationConstraint has to be specified if outside us-east-1 if ( region_name != DEFAULT_REGION_NAME and not self._body_contains_location_constraint(body) ): raise IllegalLocationConstraintException() if body: if self._create_bucket_configuration_is_empty(body): raise MalformedXML() try: forced_region = xmltodict.parse(body)["CreateBucketConfiguration"][ "LocationConstraint" ] if forced_region == DEFAULT_REGION_NAME: raise S3ClientError( "InvalidLocationConstraint", "The specified location-constraint is not valid", ) else: region_name = forced_region except KeyError: pass try: new_bucket = self.backend.create_bucket(bucket_name, region_name) except BucketAlreadyExists: new_bucket = self.backend.get_bucket(bucket_name) if ( new_bucket.region_name == DEFAULT_REGION_NAME and region_name == DEFAULT_REGION_NAME ): # us-east-1 has different behavior - creating a bucket there is an idempotent operation pass else: template = self.response_template(S3_DUPLICATE_BUCKET_ERROR) return 409, {}, template.render(bucket_name=bucket_name) if "x-amz-acl" in request.headers: # TODO: Support the XML-based ACL format self.backend.put_bucket_acl( bucket_name, self._acl_from_headers(request.headers) ) if ( request.headers.get("x-amz-bucket-object-lock-enabled", "").lower() == "true" ): new_bucket.object_lock_enabled = True new_bucket.versioning_status = "Enabled" template = self.response_template(S3_BUCKET_CREATE_RESPONSE) return 200, {}, template.render(bucket=new_bucket) def _bucket_response_delete(self, body, bucket_name, querystring): self._set_action("BUCKET", "DELETE", querystring) self._authenticate_and_authorize_s3_action() if "policy" in querystring: self.backend.delete_bucket_policy(bucket_name, body) return 204, {}, "" elif "tagging" in querystring: self.backend.delete_bucket_tagging(bucket_name) return 204, {}, "" elif "website" in querystring: self.backend.delete_bucket_website(bucket_name) return 204, {}, "" elif "cors" in querystring: self.backend.delete_bucket_cors(bucket_name) return 204, {}, "" elif "lifecycle" in querystring: self.backend.delete_bucket_lifecycle(bucket_name) return 204, {}, "" elif "publicAccessBlock" in querystring: self.backend.delete_public_access_block(bucket_name) return 204, {}, "" elif "encryption" in querystring: self.backend.delete_bucket_encryption(bucket_name) return 204, {}, "" removed_bucket = self.backend.delete_bucket(bucket_name) if removed_bucket: # Bucket exists template = self.response_template(S3_DELETE_BUCKET_SUCCESS) return 204, {}, template.render(bucket=removed_bucket) else: # Tried to delete a bucket that still has keys template = self.response_template(S3_DELETE_BUCKET_WITH_ITEMS_ERROR) return 409, {}, template.render(bucket=removed_bucket) def _bucket_response_post(self, request, body, bucket_name): response_headers = {} if not request.headers.get("Content-Length"): return 411, {}, "Content-Length required" path = self._get_path(request) if self.is_delete_keys(request, path, bucket_name): self.data["Action"] = "DeleteObject" self._authenticate_and_authorize_s3_action() return self._bucket_response_delete_keys(request, body, bucket_name) self.data["Action"] = "PutObject" self._authenticate_and_authorize_s3_action() # POST to bucket-url should create file from form if hasattr(request, "form"): # Not HTTPretty form = request.form else: # HTTPretty, build new form object body = body.decode() form = dict(parse_qsl(body)) key = form["key"] if "file" in form: f = form["file"] else: fobj = request.files["file"] f = fobj.stream.read() key = key.replace("${filename}", os.path.basename(fobj.filename)) if "success_action_redirect" in form: redirect = form["success_action_redirect"] parts = urlparse(redirect) queryargs = parse_qs(parts.query) queryargs["key"] = key queryargs["bucket"] = bucket_name redirect_queryargs = urlencode(queryargs, doseq=True) newparts = ( parts.scheme, parts.netloc, parts.path, parts.params, redirect_queryargs, parts.fragment, ) fixed_redirect = urlunparse(newparts) response_headers["Location"] = fixed_redirect if "success_action_status" in form: status_code = form["success_action_status"] elif "success_action_redirect" in form: status_code = 303 else: status_code = 204 new_key = self.backend.put_object(bucket_name, key, f) if form.get("acl"): acl = get_canned_acl(form.get("acl")) new_key.set_acl(acl) # Metadata metadata = metadata_from_headers(form) new_key.set_metadata(metadata) return status_code, response_headers, "" @staticmethod def _get_path(request): if isinstance(request, HTTPrettyRequest): path = request.path else: path = ( request.full_path if hasattr(request, "full_path") else path_url(request.url) ) return path def _bucket_response_delete_keys(self, request, body, bucket_name): template = self.response_template(S3_DELETE_KEYS_RESPONSE) body_dict = xmltodict.parse(body, strip_whitespace=False) objects = body_dict["Delete"].get("Object", []) if not isinstance(objects, list): # We expect a list of objects, but when there is a single <Object> node xmltodict does not # return a list. objects = [objects] if len(objects) == 0: raise MalformedXML() deleted_objects = self.backend.delete_objects(bucket_name, objects) error_names = [] return ( 200, {}, template.render(deleted=deleted_objects, delete_errors=error_names), ) def _handle_range_header(self, request, headers, response_content): response_headers = {} length = len(response_content) last = length - 1 _, rspec = request.headers.get("range").split("=") if "," in rspec: raise NotImplementedError("Multiple range specifiers not supported") def toint(i): return int(i) if i else None begin, end = map(toint, rspec.split("-")) if begin is not None: # byte range end = last if end is None else min(end, last) elif end is not None: # suffix byte range begin = length - min(end, length) end = last else: return 400, response_headers, "" if begin < 0 or end > last or begin > min(end, last): raise InvalidRange( actual_size=str(length), range_requested=request.headers.get("range") ) response_headers["content-range"] = "bytes {0}-{1}/{2}".format( begin, end, length ) content = response_content[begin : end + 1] response_headers["content-length"] = len(content) return 206, response_headers, content def _handle_v4_chunk_signatures(self, body, content_length): body_io = io.BytesIO(body) new_body = bytearray(content_length) pos = 0 line = body_io.readline() while line: # https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html#sigv4-chunked-body-definition # str(hex(chunk-size)) + ";chunk-signature=" + signature + \r\n + chunk-data + \r\n chunk_size = int(line[: line.find(b";")].decode("utf8"), 16) new_body[pos : pos + chunk_size] = body_io.read(chunk_size) pos = pos + chunk_size body_io.read(2) # skip trailing \r\n line = body_io.readline() return bytes(new_body) @amzn_request_id def key_or_control_response(self, request, full_url, headers): # Key and Control are lumped in because splitting out the regex is too much of a pain :/ self.method = request.method self.path = self._get_path(request) self.headers = request.headers if "host" not in self.headers: self.headers["host"] = urlparse(full_url).netloc response_headers = {} try: # Is this an S3 control response? if isinstance(request, AWSPreparedRequest) and "s3-control" in request.url: response = self._control_response(request, full_url, headers) else: response = self._key_response(request, full_url, self.headers) except S3ClientError as s3error: response = s3error.code, {}, s3error.description if isinstance(response, str): status_code = 200 response_content = response else: status_code, response_headers, response_content = response if ( status_code == 200 and "range" in request.headers and request.headers["range"] != "" ): try: return self._handle_range_header( request, response_headers, response_content ) except S3ClientError as s3error: return s3error.code, {}, s3error.description return status_code, response_headers, response_content def _control_response(self, request, full_url, headers): parsed_url = urlparse(full_url) query = parse_qs(parsed_url.query, keep_blank_values=True) method = request.method if hasattr(request, "body"): # Boto body = request.body if hasattr(body, "read"): body = body.read() else: # Flask server body = request.data if body is None: body = b"" if method == "GET": return self._control_response_get(request, query, headers) elif method == "PUT": return self._control_response_put(request, body, query, headers) elif method == "DELETE": return self._control_response_delete(request, query, headers) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) def _control_response_get(self, request, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "GET", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: public_block_config = self.backend.get_account_public_access_block( headers["x-amz-account-id"] ) template = self.response_template(S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION) return ( 200, response_headers, template.render(public_block_config=public_block_config), ) raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _control_response_put(self, request, body, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "PUT", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: pab_config = self._parse_pab_config(body) self.backend.put_account_public_access_block( headers["x-amz-account-id"], pab_config["PublicAccessBlockConfiguration"], ) return 200, response_headers, "" raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _control_response_delete(self, request, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "DELETE", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: self.backend.delete_account_public_access_block(headers["x-amz-account-id"]) return 200, response_headers, "" raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _key_response(self, request, full_url, headers): parsed_url = urlparse(full_url) query = parse_qs(parsed_url.query, keep_blank_values=True) method = request.method key_name = self.parse_key_name(request, parsed_url.path) bucket_name = self.parse_bucket_name_from_url(request, full_url) # Because we patch the requests library the boto/boto3 API # requests go through this method but so do # `requests.get("https://bucket-name.s3.amazonaws.com/file-name")` # Here we deny public access to private files by checking the # ACL and checking for the mere presence of an Authorization # header. if "Authorization" not in request.headers: if hasattr(request, "url"): signed_url = "Signature=" in request.url elif hasattr(request, "requestline"): signed_url = "Signature=" in request.path key = self.backend.get_object(bucket_name, key_name) if key: if not key.acl.public_read and not signed_url: return 403, {}, "" elif signed_url: # coming in from requests.get(s3.generate_presigned_url()) if self._invalid_headers(request.url, dict(request.headers)): return 403, {}, S3_INVALID_PRESIGNED_PARAMETERS if hasattr(request, "body"): # Boto body = request.body if hasattr(body, "read"): body = body.read() else: # Flask server body = request.data if not body: # when the data is being passed as a file if request.files: for _, value in request.files.items(): body = value.stream.read() elif hasattr(request, "form"): # Body comes through as part of the form, if no content-type is set on the PUT-request # form = ImmutableMultiDict([('some data 123 321', '')]) form = request.form for k, _ in form.items(): body = k if body is None: body = b"" if ( request.headers.get("x-amz-content-sha256", None) == "STREAMING-AWS4-HMAC-SHA256-PAYLOAD" ): body = self._handle_v4_chunk_signatures( body, int(request.headers["x-amz-decoded-content-length"]) ) if method == "GET": return self._key_response_get( bucket_name, query, key_name, headers=request.headers ) elif method == "PUT": return self._key_response_put( request, body, bucket_name, query, key_name, headers ) elif method == "HEAD": return self._key_response_head( bucket_name, query, key_name, headers=request.headers ) elif method == "DELETE": return self._key_response_delete(headers, bucket_name, query, key_name) elif method == "POST": return self._key_response_post(request, body, bucket_name, query, key_name) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) def _key_response_get(self, bucket_name, query, key_name, headers): self._set_action("KEY", "GET", query) self._authenticate_and_authorize_s3_action() response_headers = {} if query.get("uploadId"): upload_id = query["uploadId"][0] # 0 <= PartNumberMarker <= 2,147,483,647 part_number_marker = int(query.get("part-number-marker", [0])[0]) if not (0 <= part_number_marker <= 2147483647): raise InvalidMaxPartArgument("part-number-marker", 0, 2147483647) # 0 <= MaxParts <= 2,147,483,647 (default is 1,000) max_parts = int(query.get("max-parts", [1000])[0]) if not (0 <= max_parts <= 2147483647): raise InvalidMaxPartArgument("max-parts", 0, 2147483647) parts = self.backend.list_parts( bucket_name, upload_id, part_number_marker=part_number_marker, max_parts=max_parts, ) next_part_number_marker = parts[-1].name + 1 if parts else 0 is_truncated = parts and self.backend.is_truncated( bucket_name, upload_id, next_part_number_marker ) template = self.response_template(S3_MULTIPART_LIST_RESPONSE) return ( 200, response_headers, template.render( bucket_name=bucket_name, key_name=key_name, upload_id=upload_id, is_truncated=str(is_truncated).lower(), max_parts=max_parts, next_part_number_marker=next_part_number_marker, parts=parts, part_number_marker=part_number_marker, ), ) version_id = query.get("versionId", [None])[0] if_modified_since = headers.get("If-Modified-Since", None) if_match = headers.get("If-Match", None) if_none_match = headers.get("If-None-Match", None) if_unmodified_since = headers.get("If-Unmodified-Since", None) key = self.backend.get_object(bucket_name, key_name, version_id=version_id) if key is None and version_id is None: raise MissingKey(key_name) elif key is None: raise MissingVersion() if if_unmodified_since: if_unmodified_since = str_to_rfc_1123_datetime(if_unmodified_since) if key.last_modified > if_unmodified_since: raise PreconditionFailed("If-Unmodified-Since") if if_match and key.etag not in [if_match, '"{0}"'.format(if_match)]: raise PreconditionFailed("If-Match") if if_modified_since: if_modified_since = str_to_rfc_1123_datetime(if_modified_since) if key.last_modified < if_modified_since: return 304, response_headers, "Not Modified" if if_none_match and key.etag == if_none_match: return 304, response_headers, "Not Modified" if "acl" in query: acl = s3_backend.get_object_acl(key) template = self.response_template(S3_OBJECT_ACL_RESPONSE) return 200, response_headers, template.render(acl=acl) if "tagging" in query: tags = self.backend.get_object_tagging(key)["Tags"] template = self.response_template(S3_OBJECT_TAGGING_RESPONSE) return 200, response_headers, template.render(tags=tags) if "legal-hold" in query: legal_hold = self.backend.get_object_legal_hold(key) template = self.response_template(S3_OBJECT_LEGAL_HOLD) return 200, response_headers, template.render(legal_hold=legal_hold) response_headers.update(key.metadata) response_headers.update(key.response_dict) return 200, response_headers, key.value def _key_response_put(self, request, body, bucket_name, query, key_name, headers): self._set_action("KEY", "PUT", query) self._authenticate_and_authorize_s3_action() response_headers = {} if query.get("uploadId") and query.get("partNumber"): upload_id = query["uploadId"][0] part_number = int(query["partNumber"][0]) if "x-amz-copy-source" in request.headers: src = unquote(request.headers.get("x-amz-copy-source")).lstrip("/") src_bucket, src_key = src.split("/", 1) src_key, src_version_id = ( src_key.split("?versionId=") if "?versionId=" in src_key else (src_key, None) ) src_range = request.headers.get("x-amz-copy-source-range", "").split( "bytes=" )[-1] try: start_byte, end_byte = src_range.split("-") start_byte, end_byte = int(start_byte), int(end_byte) except ValueError: start_byte, end_byte = None, None if self.backend.get_object( src_bucket, src_key, version_id=src_version_id ): key = self.backend.copy_part( bucket_name, upload_id, part_number, src_bucket, src_key, src_version_id, start_byte, end_byte, ) else: return 404, response_headers, "" template = self.response_template(S3_MULTIPART_UPLOAD_RESPONSE) response = template.render(part=key) else: key = self.backend.upload_part( bucket_name, upload_id, part_number, body ) response = "" response_headers.update(key.response_dict) return 200, response_headers, response storage_class = request.headers.get("x-amz-storage-class", "STANDARD") encryption = request.headers.get("x-amz-server-side-encryption", None) kms_key_id = request.headers.get( "x-amz-server-side-encryption-aws-kms-key-id", None ) bucket_key_enabled = request.headers.get( "x-amz-server-side-encryption-bucket-key-enabled", None ) if bucket_key_enabled is not None: bucket_key_enabled = str(bucket_key_enabled).lower() bucket = self.backend.get_bucket(bucket_name) lock_enabled = bucket.object_lock_enabled lock_mode = request.headers.get("x-amz-object-lock-mode", None) lock_until = request.headers.get("x-amz-object-lock-retain-until-date", None) legal_hold = request.headers.get("x-amz-object-lock-legal-hold", "OFF") if lock_mode or lock_until or legal_hold == "ON": if not request.headers.get("Content-Md5"): raise InvalidContentMD5 if not lock_enabled: raise LockNotEnabled elif lock_enabled and bucket.has_default_lock: if not request.headers.get("Content-Md5"): raise InvalidContentMD5 lock_until = bucket.default_retention() lock_mode = bucket.default_lock_mode acl = self._acl_from_headers(request.headers) if acl is None: acl = self.backend.get_bucket(bucket_name).acl tagging = self._tagging_from_headers(request.headers) if "retention" in query: if not lock_enabled: raise LockNotEnabled version_id = query.get("VersionId") retention = self._mode_until_from_xml(body) self.backend.put_object_retention( bucket_name, key_name, version_id=version_id, retention=retention ) return 200, response_headers, "" if "legal-hold" in query: if not lock_enabled: raise LockNotEnabled version_id = query.get("VersionId") legal_hold_status = self._legal_hold_status_from_xml(body) self.backend.put_object_legal_hold( bucket_name, key_name, version_id, legal_hold_status ) return 200, response_headers, "" if "acl" in query: self.backend.put_object_acl(bucket_name, key_name, acl) return 200, response_headers, "" if "tagging" in query: if "versionId" in query: version_id = query["versionId"][0] else: version_id = None key = self.backend.get_object(bucket_name, key_name, version_id=version_id) tagging = self._tagging_from_xml(body) self.backend.set_key_tags(key, tagging, key_name) return 200, response_headers, "" if "x-amz-copy-source" in request.headers: # Copy key # you can have a quoted ?version=abc with a version Id, so work on # we need to parse the unquoted string first src_key = request.headers.get("x-amz-copy-source") if isinstance(src_key, bytes): src_key = src_key.decode("utf-8") src_key_parsed = urlparse(src_key) src_bucket, src_key = ( clean_key_name(src_key_parsed.path).lstrip("/").split("/", 1) ) src_version_id = parse_qs(src_key_parsed.query).get("versionId", [None])[0] key = self.backend.get_object( src_bucket, src_key, version_id=src_version_id ) if key is not None: if key.storage_class in ["GLACIER", "DEEP_ARCHIVE"]: if key.response_dict.get( "x-amz-restore" ) is None or 'ongoing-request="true"' in key.response_dict.get( "x-amz-restore" ): raise ObjectNotInActiveTierError(key) self.backend.copy_object( src_bucket, src_key, bucket_name, key_name, storage=storage_class, acl=acl, src_version_id=src_version_id, ) else: return 404, response_headers, "" new_key = self.backend.get_object(bucket_name, key_name) mdirective = request.headers.get("x-amz-metadata-directive") if mdirective is not None and mdirective == "REPLACE": metadata = metadata_from_headers(request.headers) new_key.set_metadata(metadata, replace=True) tdirective = request.headers.get("x-amz-tagging-directive") if tdirective == "REPLACE": tagging = self._tagging_from_headers(request.headers) self.backend.set_key_tags(new_key, tagging) template = self.response_template(S3_OBJECT_COPY_RESPONSE) response_headers.update(new_key.response_dict) return 200, response_headers, template.render(key=new_key) streaming_request = hasattr(request, "streaming") and request.streaming closing_connection = headers.get("connection") == "close" if closing_connection and streaming_request: # Closing the connection of a streaming request. No more data new_key = self.backend.get_object(bucket_name, key_name) elif streaming_request: # Streaming request, more data new_key = self.backend.append_to_key(bucket_name, key_name, body) else: # Initial data new_key = self.backend.put_object( bucket_name, key_name, body, storage=storage_class, encryption=encryption, kms_key_id=kms_key_id, bucket_key_enabled=bucket_key_enabled, lock_mode=lock_mode, lock_legal_status=legal_hold, lock_until=lock_until, ) request.streaming = True metadata = metadata_from_headers(request.headers) metadata.update(metadata_from_headers(query)) new_key.set_metadata(metadata) new_key.set_acl(acl) new_key.website_redirect_location = request.headers.get( "x-amz-website-redirect-location" ) self.backend.set_key_tags(new_key, tagging) response_headers.update(new_key.response_dict) return 200, response_headers, "" def _key_response_head(self, bucket_name, query, key_name, headers): self._set_action("KEY", "HEAD", query) self._authenticate_and_authorize_s3_action() response_headers = {} version_id = query.get("versionId", [None])[0] part_number = query.get("partNumber", [None])[0] if part_number: part_number = int(part_number) if_modified_since = headers.get("If-Modified-Since", None) if_match = headers.get("If-Match", None) if_none_match = headers.get("If-None-Match", None) if_unmodified_since = headers.get("If-Unmodified-Since", None) key = self.backend.head_object( bucket_name, key_name, version_id=version_id, part_number=part_number ) if key: response_headers.update(key.metadata) response_headers.update(key.response_dict) if if_unmodified_since: if_unmodified_since = str_to_rfc_1123_datetime(if_unmodified_since) if key.last_modified > if_unmodified_since: return 412, response_headers, "" if if_match and key.etag != if_match: return 412, response_headers, "" if if_modified_since: if_modified_since = str_to_rfc_1123_datetime(if_modified_since) if key.last_modified < if_modified_since: return 304, response_headers, "Not Modified" if if_none_match and key.etag == if_none_match: return 304, response_headers, "Not Modified" return 200, response_headers, "" else: return 404, response_headers, "" def _lock_config_from_xml(self, xml): response_dict = {"enabled": False, "mode": None, "days": None, "years": None} parsed_xml = xmltodict.parse(xml) enabled = ( parsed_xml["ObjectLockConfiguration"]["ObjectLockEnabled"] == "Enabled" ) response_dict["enabled"] = enabled default_retention = parsed_xml.get("ObjectLockConfiguration").get("Rule") if default_retention: default_retention = default_retention.get("DefaultRetention") mode = default_retention["Mode"] days = int(default_retention.get("Days", 0)) years = int(default_retention.get("Years", 0)) if days and years: raise MalformedXML response_dict["mode"] = mode response_dict["days"] = days response_dict["years"] = years return response_dict def _acl_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not parsed_xml.get("AccessControlPolicy"): raise MalformedACLError() # The owner is needed for some reason... if not parsed_xml["AccessControlPolicy"].get("Owner"): # TODO: Validate that the Owner is actually correct. raise MalformedACLError() # If empty, then no ACLs: if parsed_xml["AccessControlPolicy"].get("AccessControlList") is None: return [] if not parsed_xml["AccessControlPolicy"]["AccessControlList"].get("Grant"): raise MalformedACLError() permissions = ["READ", "WRITE", "READ_ACP", "WRITE_ACP", "FULL_CONTROL"] if not isinstance( parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"], list ): parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"] = [ parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"] ] grants = self._get_grants_from_xml( parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"], MalformedACLError, permissions, ) return FakeAcl(grants) def _get_grants_from_xml(self, grant_list, exception_type, permissions): grants = [] for grant in grant_list: if grant.get("Permission", "") not in permissions: raise exception_type() if grant["Grantee"].get("@xsi:type", "") not in [ "CanonicalUser", "AmazonCustomerByEmail", "Group", ]: raise exception_type() # TODO: Verify that the proper grantee data is supplied based on the type. grants.append( FakeGrant( [ FakeGrantee( id=grant["Grantee"].get("ID", ""), display_name=grant["Grantee"].get("DisplayName", ""), uri=grant["Grantee"].get("URI", ""), ) ], [grant["Permission"]], ) ) return grants def _acl_from_headers(self, headers): canned_acl = headers.get("x-amz-acl", "") if canned_acl: return get_canned_acl(canned_acl) grants = [] for header, value in headers.items(): header = header.lower() if not header.startswith("x-amz-grant-"): continue permission = { "read": "READ", "write": "WRITE", "read-acp": "READ_ACP", "write-acp": "WRITE_ACP", "full-control": "FULL_CONTROL", }[header[len("x-amz-grant-") :]] grantees = [] for key_and_value in value.split(","): key, value = re.match( '([^=]+)="?([^"]+)"?', key_and_value.strip() ).groups() if key.lower() == "id": grantees.append(FakeGrantee(id=value)) else: grantees.append(FakeGrantee(uri=value)) grants.append(FakeGrant(grantees, [permission])) if grants: return FakeAcl(grants) else: return None def _tagging_from_headers(self, headers): tags = {} if headers.get("x-amz-tagging"): parsed_header = parse_qs(headers["x-amz-tagging"], keep_blank_values=True) for tag in parsed_header.items(): tags[tag[0]] = tag[1][0] return tags def _tagging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml, force_list={"Tag": True}) tags = {} for tag in parsed_xml["Tagging"]["TagSet"]["Tag"]: tags[tag["Key"]] = tag["Value"] return tags def _bucket_tagging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) tags = {} # Optional if no tags are being sent: if parsed_xml["Tagging"].get("TagSet"): # If there is only 1 tag, then it's not a list: if not isinstance(parsed_xml["Tagging"]["TagSet"]["Tag"], list): tags[parsed_xml["Tagging"]["TagSet"]["Tag"]["Key"]] = parsed_xml[ "Tagging" ]["TagSet"]["Tag"]["Value"] else: for tag in parsed_xml["Tagging"]["TagSet"]["Tag"]: if tag["Key"] in tags: raise DuplicateTagKeys() tags[tag["Key"]] = tag["Value"] # Verify that "aws:" is not in the tags. If so, then this is a problem: for key, _ in tags.items(): if key.startswith("aws:"): raise NoSystemTags() return tags def _cors_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if isinstance(parsed_xml["CORSConfiguration"]["CORSRule"], list): return [cors for cors in parsed_xml["CORSConfiguration"]["CORSRule"]] return [parsed_xml["CORSConfiguration"]["CORSRule"]] def _mode_until_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) return ( parsed_xml["Retention"]["Mode"], parsed_xml["Retention"]["RetainUntilDate"], ) def _legal_hold_status_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) return parsed_xml["LegalHold"]["Status"] def _encryption_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if ( not parsed_xml["ServerSideEncryptionConfiguration"].get("Rule") or not parsed_xml["ServerSideEncryptionConfiguration"]["Rule"].get( "ApplyServerSideEncryptionByDefault" ) or not parsed_xml["ServerSideEncryptionConfiguration"]["Rule"][ "ApplyServerSideEncryptionByDefault" ].get("SSEAlgorithm") ): raise MalformedXML() return [parsed_xml["ServerSideEncryptionConfiguration"]] def _logging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not parsed_xml["BucketLoggingStatus"].get("LoggingEnabled"): return {} if not parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetBucket"): raise MalformedXML() if not parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetPrefix"): parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetPrefix"] = "" # Get the ACLs: if parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetGrants"): permissions = ["READ", "WRITE", "FULL_CONTROL"] if not isinstance( parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetGrants"][ "Grant" ], list, ): target_grants = self._get_grants_from_xml( [ parsed_xml["BucketLoggingStatus"]["LoggingEnabled"][ "TargetGrants" ]["Grant"] ], MalformedXML, permissions, ) else: target_grants = self._get_grants_from_xml( parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetGrants"][ "Grant" ], MalformedXML, permissions, ) parsed_xml["BucketLoggingStatus"]["LoggingEnabled"][ "TargetGrants" ] = target_grants return parsed_xml["BucketLoggingStatus"]["LoggingEnabled"] def _notification_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not len(parsed_xml["NotificationConfiguration"]): return {} # The types of notifications, and their required fields (apparently lambda is categorized by the API as # "CloudFunction"): notification_fields = [ ("Topic", "sns"), ("Queue", "sqs"), ("CloudFunction", "lambda"), ] event_names = [ "s3:ReducedRedundancyLostObject", "s3:ObjectCreated:*", "s3:ObjectCreated:Put", "s3:ObjectCreated:Post", "s3:ObjectCreated:Copy", "s3:ObjectCreated:CompleteMultipartUpload", "s3:ObjectRemoved:*", "s3:ObjectRemoved:Delete", "s3:ObjectRemoved:DeleteMarkerCreated", ] found_notifications = ( 0 # Tripwire -- if this is not ever set, then there were no notifications ) for name, arn_string in notification_fields: # 1st verify that the proper notification configuration has been passed in (with an ARN that is close # to being correct -- nothing too complex in the ARN logic): the_notification = parsed_xml["NotificationConfiguration"].get( "{}Configuration".format(name) ) if the_notification: found_notifications += 1 if not isinstance(the_notification, list): the_notification = parsed_xml["NotificationConfiguration"][ "{}Configuration".format(name) ] = [the_notification] for n in the_notification: if not n[name].startswith("arn:aws:{}:".format(arn_string)): raise InvalidNotificationARN() # 2nd, verify that the Events list is correct: assert n["Event"] if not isinstance(n["Event"], list): n["Event"] = [n["Event"]] for event in n["Event"]: if event not in event_names: raise InvalidNotificationEvent() # Parse out the filters: if n.get("Filter"): # Error if S3Key is blank: if not n["Filter"]["S3Key"]: raise KeyError() if not isinstance(n["Filter"]["S3Key"]["FilterRule"], list): n["Filter"]["S3Key"]["FilterRule"] = [ n["Filter"]["S3Key"]["FilterRule"] ] for filter_rule in n["Filter"]["S3Key"]["FilterRule"]: assert filter_rule["Name"] in ["suffix", "prefix"] assert filter_rule["Value"] if not found_notifications: return {} return parsed_xml["NotificationConfiguration"] def _accelerate_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) config = parsed_xml["AccelerateConfiguration"] return config["Status"] def _key_response_delete(self, headers, bucket_name, query, key_name): self._set_action("KEY", "DELETE", query) self._authenticate_and_authorize_s3_action() if query.get("uploadId"): upload_id = query["uploadId"][0] self.backend.abort_multipart_upload(bucket_name, upload_id) return 204, {}, "" version_id = query.get("versionId", [None])[0] if "tagging" in query: self.backend.delete_object_tagging( bucket_name, key_name, version_id=version_id ) template = self.response_template(S3_DELETE_KEY_TAGGING_RESPONSE) return 204, {}, template.render(version_id=version_id) bypass = headers.get("X-Amz-Bypass-Governance-Retention") success, response_meta = self.backend.delete_object( bucket_name, key_name, version_id=version_id, bypass=bypass ) response_headers = {} if response_meta is not None: for k in response_meta: response_headers["x-amz-{}".format(k)] = response_meta[k] return 204, response_headers, "" def _complete_multipart_body(self, body): ps = minidom.parseString(body).getElementsByTagName("Part") prev = 0 for p in ps: pn = int(p.getElementsByTagName("PartNumber")[0].firstChild.wholeText) if pn <= prev: raise InvalidPartOrder() yield (pn, p.getElementsByTagName("ETag")[0].firstChild.wholeText) def _key_response_post(self, request, body, bucket_name, query, key_name): self._set_action("KEY", "POST", query) self._authenticate_and_authorize_s3_action() if body == b"" and "uploads" in query: metadata = metadata_from_headers(request.headers) storage_type = request.headers.get("x-amz-storage-class", "STANDARD") multipart_id = self.backend.create_multipart_upload( bucket_name, key_name, metadata, storage_type ) template = self.response_template(S3_MULTIPART_INITIATE_RESPONSE) response = template.render( bucket_name=bucket_name, key_name=key_name, upload_id=multipart_id ) return 200, {}, response if query.get("uploadId"): body = self._complete_multipart_body(body) multipart_id = query["uploadId"][0] multipart, value, etag = self.backend.complete_multipart_upload( bucket_name, multipart_id, body ) if value is None: return 400, {}, "" key = self.backend.put_object( bucket_name, multipart.key_name, value, storage=multipart.storage, etag=etag, multipart=multipart, ) key.set_metadata(multipart.metadata) template = self.response_template(S3_MULTIPART_COMPLETE_RESPONSE) headers = {} if key.version_id: headers["x-amz-version-id"] = key.version_id return ( 200, headers, template.render( bucket_name=bucket_name, key_name=key.name, etag=key.etag ), ) elif "restore" in query: es = minidom.parseString(body).getElementsByTagName("Days") days = es[0].childNodes[0].wholeText key = self.backend.get_object(bucket_name, key_name) r = 202 if key.expiry_date is not None: r = 200 key.restore(int(days)) return r, {}, "" else: raise NotImplementedError( "Method POST had only been implemented for multipart uploads and restore operations, so far" ) # MASKED: _invalid_headers function (lines 1994-2015) S3ResponseInstance = ResponseObject(s3_backend) S3_ALL_BUCKETS = """<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <Owner> <ID>bcaf1ffd86f41161ca5fb16fd081034f</ID> <DisplayName>webfile</DisplayName> </Owner> <Buckets> {% for bucket in buckets %} <Bucket> <Name>{{ bucket.name }}</Name> <CreationDate>{{ bucket.creation_date_ISO8601 }}</CreationDate> </Bucket> {% endfor %} </Buckets> </ListAllMyBucketsResult>""" S3_BUCKET_GET_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} <MaxKeys>{{ max_keys }}</MaxKeys> {% if delimiter %} <Delimiter>{{ delimiter }}</Delimiter> {% endif %} <IsTruncated>{{ is_truncated }}</IsTruncated> {% if next_marker %} <NextMarker>{{ next_marker }}</NextMarker> {% endif %} {% for key in result_keys %} <Contents> <Key>{{ key.name }}</Key> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </Contents> {% endfor %} {% if delimiter %} {% for folder in result_folders %} <CommonPrefixes> <Prefix>{{ folder }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} </ListBucketResult>""" S3_BUCKET_GET_RESPONSE_V2 = """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} <MaxKeys>{{ max_keys }}</MaxKeys> <KeyCount>{{ key_count }}</KeyCount> {% if delimiter %} <Delimiter>{{ delimiter }}</Delimiter> {% endif %} <IsTruncated>{{ is_truncated }}</IsTruncated> {% if next_continuation_token %} <NextContinuationToken>{{ next_continuation_token }}</NextContinuationToken> {% endif %} {% if start_after %} <StartAfter>{{ start_after }}</StartAfter> {% endif %} {% for key in result_keys %} <Contents> <Key>{{ key.name }}</Key> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> {% if fetch_owner %} <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> {% endif %} </Contents> {% endfor %} {% if delimiter %} {% for folder in result_folders %} <CommonPrefixes> <Prefix>{{ folder }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} </ListBucketResult>""" S3_BUCKET_CREATE_RESPONSE = """<CreateBucketResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <CreateBucketResponse> <Bucket>{{ bucket.name }}</Bucket> </CreateBucketResponse> </CreateBucketResponse>""" S3_DELETE_BUCKET_SUCCESS = """<DeleteBucketResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <DeleteBucketResponse> <Code>204</Code> <Description>No Content</Description> </DeleteBucketResponse> </DeleteBucketResponse>""" S3_DELETE_BUCKET_WITH_ITEMS_ERROR = """<?xml version="1.0" encoding="UTF-8"?> <Error><Code>BucketNotEmpty</Code> <Message>The bucket you tried to delete is not empty</Message> <BucketName>{{ bucket.name }}</BucketName> <RequestId>asdfasdfsdafds</RequestId> <HostId>sdfgdsfgdsfgdfsdsfgdfs</HostId> </Error>""" S3_BUCKET_LOCATION = """<?xml version="1.0" encoding="UTF-8"?> <LocationConstraint xmlns="http://s3.amazonaws.com/doc/2006-03-01/">{% if location != None %}{{ location }}{% endif %}</LocationConstraint>""" S3_BUCKET_LIFECYCLE_CONFIGURATION = """<?xml version="1.0" encoding="UTF-8"?> <LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {% for rule in rules %} <Rule> <ID>{{ rule.id }}</ID> {% if rule.filter %} <Filter> {% if rule.filter.prefix != None %} <Prefix>{{ rule.filter.prefix }}</Prefix> {% endif %} {% if rule.filter.tag_key %} <Tag> <Key>{{ rule.filter.tag_key }}</Key> <Value>{{ rule.filter.tag_value }}</Value> </Tag> {% endif %} {% if rule.filter.and_filter %} <And> {% if rule.filter.and_filter.prefix != None %} <Prefix>{{ rule.filter.and_filter.prefix }}</Prefix> {% endif %} {% for key, value in rule.filter.and_filter.tags.items() %} <Tag> <Key>{{ key }}</Key> <Value>{{ value }}</Value> </Tag> {% endfor %} </And> {% endif %} </Filter> {% else %} {% if rule.prefix != None %} <Prefix>{{ rule.prefix }}</Prefix> {% endif %} {% endif %} <Status>{{ rule.status }}</Status> {% if rule.storage_class %} <Transition> {% if rule.transition_days %} <Days>{{ rule.transition_days }}</Days> {% endif %} {% if rule.transition_date %} <Date>{{ rule.transition_date }}</Date> {% endif %} <StorageClass>{{ rule.storage_class }}</StorageClass> </Transition> {% endif %} {% if rule.expiration_days or rule.expiration_date or rule.expired_object_delete_marker %} <Expiration> {% if rule.expiration_days %} <Days>{{ rule.expiration_days }}</Days> {% endif %} {% if rule.expiration_date %} <Date>{{ rule.expiration_date }}</Date> {% endif %} {% if rule.expired_object_delete_marker %} <ExpiredObjectDeleteMarker>{{ rule.expired_object_delete_marker }}</ExpiredObjectDeleteMarker> {% endif %} </Expiration> {% endif %} {% if rule.nvt_noncurrent_days and rule.nvt_storage_class %} <NoncurrentVersionTransition> <NoncurrentDays>{{ rule.nvt_noncurrent_days }}</NoncurrentDays> <StorageClass>{{ rule.nvt_storage_class }}</StorageClass> </NoncurrentVersionTransition> {% endif %} {% if rule.nve_noncurrent_days %} <NoncurrentVersionExpiration> <NoncurrentDays>{{ rule.nve_noncurrent_days }}</NoncurrentDays> </NoncurrentVersionExpiration> {% endif %} {% if rule.aimu_days %} <AbortIncompleteMultipartUpload> <DaysAfterInitiation>{{ rule.aimu_days }}</DaysAfterInitiation> </AbortIncompleteMultipartUpload> {% endif %} </Rule> {% endfor %} </LifecycleConfiguration> """ S3_BUCKET_VERSIONING = """<?xml version="1.0" encoding="UTF-8"?> <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ bucket_versioning_status }}</Status> </VersioningConfiguration> """ S3_BUCKET_GET_VERSIONING = """<?xml version="1.0" encoding="UTF-8"?> {% if status is none %} <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"/> {% else %} <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ status }}</Status> </VersioningConfiguration> {% endif %} """ S3_BUCKET_GET_VERSIONS = """<?xml version="1.0" encoding="UTF-8"?> <ListVersionsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} {% if common_prefixes %} {% for prefix in common_prefixes %} <CommonPrefixes> <Prefix>{{ prefix }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} <Delimiter>{{ delimiter }}</Delimiter> <KeyMarker>{{ key_marker or "" }}</KeyMarker> <MaxKeys>{{ max_keys }}</MaxKeys> <IsTruncated>{{ is_truncated }}</IsTruncated> {% for key in key_list %} <Version> <Key>{{ key.name }}</Key> <VersionId>{% if key.version_id is none %}null{% else %}{{ key.version_id }}{% endif %}</VersionId> <IsLatest>{{ 'true' if key.is_latest else 'false' }}</IsLatest> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </Version> {% endfor %} {% for marker in delete_marker_list %} <DeleteMarker> <Key>{{ marker.name }}</Key> <VersionId>{{ marker.version_id }}</VersionId> <IsLatest>{{ 'true' if marker.is_latest else 'false' }}</IsLatest> <LastModified>{{ marker.last_modified_ISO8601 }}</LastModified> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </DeleteMarker> {% endfor %} </ListVersionsResult> """ S3_DELETE_KEYS_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> {% for k, v in deleted %} <Deleted> <Key>{{k}}</Key> {% if v %}<VersionId>{{v}}</VersionId>{% endif %} </Deleted> {% endfor %} {% for k in delete_errors %} <Error> <Key>{{k}}</Key> </Error> {% endfor %} </DeleteResult>""" S3_DELETE_KEY_TAGGING_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <DeleteObjectTaggingResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <VersionId>{{version_id}}</VersionId> </DeleteObjectTaggingResult> """ S3_OBJECT_ACL_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <AccessControlList> {% for grant in acl.grants %} <Grant> {% for grantee in grant.grantees %} <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="{{ grantee.type }}"> {% if grantee.uri %} <URI>{{ grantee.uri }}</URI> {% endif %} {% if grantee.id %} <ID>{{ grantee.id }}</ID> {% endif %} {% if grantee.display_name %} <DisplayName>{{ grantee.display_name }}</DisplayName> {% endif %} </Grantee> {% endfor %} {% for permission in grant.permissions %} <Permission>{{ permission }}</Permission> {% endfor %} </Grant> {% endfor %} </AccessControlList> </AccessControlPolicy>""" S3_OBJECT_LEGAL_HOLD = """<?xml version="1.0" encoding="UTF-8"?> <LegalHold> <Status>{{ legal_hold }}</Status> </LegalHold> """ S3_OBJECT_TAGGING_RESPONSE = """\ <?xml version="1.0" encoding="UTF-8"?> <Tagging xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <TagSet> {% for tag in tags %} <Tag> <Key>{{ tag.Key }}</Key> <Value>{{ tag.Value }}</Value> </Tag> {% endfor %} </TagSet> </Tagging>""" S3_BUCKET_CORS_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CORSConfiguration> {% for cors in cors %} <CORSRule> {% for origin in cors.allowed_origins %} <AllowedOrigin>{{ origin }}</AllowedOrigin> {% endfor %} {% for method in cors.allowed_methods %} <AllowedMethod>{{ method }}</AllowedMethod> {% endfor %} {% if cors.allowed_headers is not none %} {% for header in cors.allowed_headers %} <AllowedHeader>{{ header }}</AllowedHeader> {% endfor %} {% endif %} {% if cors.exposed_headers is not none %} {% for header in cors.exposed_headers %} <ExposedHeader>{{ header }}</ExposedHeader> {% endfor %} {% endif %} {% if cors.max_age_seconds is not none %} <MaxAgeSeconds>{{ cors.max_age_seconds }}</MaxAgeSeconds> {% endif %} </CORSRule> {% endfor %} </CORSConfiguration> """ S3_OBJECT_COPY_RESPONSE = """\ <CopyObjectResult xmlns="http://doc.s3.amazonaws.com/2006-03-01"> <ETag>{{ key.etag }}</ETag> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> </CopyObjectResult>""" S3_MULTIPART_INITIATE_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <InitiateMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <UploadId>{{ upload_id }}</UploadId> </InitiateMultipartUploadResult>""" S3_MULTIPART_UPLOAD_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CopyPartResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <LastModified>{{ part.last_modified_ISO8601 }}</LastModified> <ETag>{{ part.etag }}</ETag> </CopyPartResult>""" S3_MULTIPART_LIST_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <ListPartsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <UploadId>{{ upload_id }}</UploadId> <StorageClass>STANDARD</StorageClass> <Initiator> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Initiator> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <PartNumberMarker>{{ part_number_marker }}</PartNumberMarker> <NextPartNumberMarker>{{ next_part_number_marker }}</NextPartNumberMarker> <MaxParts>{{ max_parts }}</MaxParts> <IsTruncated>{{ is_truncated }}</IsTruncated> {% for part in parts %} <Part> <PartNumber>{{ part.name }}</PartNumber> <LastModified>{{ part.last_modified_ISO8601 }}</LastModified> <ETag>{{ part.etag }}</ETag> <Size>{{ part.size }}</Size> </Part> {% endfor %} </ListPartsResult>""" S3_MULTIPART_COMPLETE_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CompleteMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Location>http://{{ bucket_name }}.s3.amazonaws.com/{{ key_name }}</Location> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <ETag>{{ etag }}</ETag> </CompleteMultipartUploadResult> """ S3_ALL_MULTIPARTS = ( """<?xml version="1.0" encoding="UTF-8"?> <ListMultipartUploadsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <KeyMarker></KeyMarker> <UploadIdMarker></UploadIdMarker> <MaxUploads>1000</MaxUploads> <IsTruncated>false</IsTruncated> {% for upload in uploads %} <Upload> <Key>{{ upload.key_name }}</Key> <UploadId>{{ upload.id }}</UploadId> <Initiator> <ID>arn:aws:iam::""" + ACCOUNT_ID + """:user/user1-11111a31-17b5-4fb7-9df5-b111111f13de</ID> <DisplayName>user1-11111a31-17b5-4fb7-9df5-b111111f13de</DisplayName> </Initiator> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <StorageClass>STANDARD</StorageClass> <Initiated>2010-11-10T20:48:33.000Z</Initiated> </Upload> {% endfor %} </ListMultipartUploadsResult> """ ) S3_NO_POLICY = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchBucketPolicy</Code> <Message>The bucket policy does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_LIFECYCLE = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchLifecycleConfiguration</Code> <Message>The lifecycle configuration does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_BUCKET_TAGGING = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchTagSet</Code> <Message>The TagSet does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_BUCKET_WEBSITE_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchWebsiteConfiguration</Code> <Message>The specified bucket does not have a website configuration</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_INVALID_CORS_REQUEST = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchWebsiteConfiguration</Code> <Message>The specified bucket does not have a website configuration</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_CORS_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchCORSConfiguration</Code> <Message>The CORS configuration does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_LOGGING_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01"> <LoggingEnabled> <TargetBucket>{{ logging["TargetBucket"] }}</TargetBucket> <TargetPrefix>{{ logging["TargetPrefix"] }}</TargetPrefix> {% if logging.get("TargetGrants") %} <TargetGrants> {% for grant in logging["TargetGrants"] %} <Grant> <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="{{ grant.grantees[0].type }}"> {% if grant.grantees[0].uri %} <URI>{{ grant.grantees[0].uri }}</URI> {% endif %} {% if grant.grantees[0].id %} <ID>{{ grant.grantees[0].id }}</ID> {% endif %} {% if grant.grantees[0].display_name %} <DisplayName>{{ grant.grantees[0].display_name }}</DisplayName> {% endif %} </Grantee> <Permission>{{ grant.permissions[0] }}</Permission> </Grant> {% endfor %} </TargetGrants> {% endif %} </LoggingEnabled> </BucketLoggingStatus> """ S3_NO_LOGGING_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01" /> """ S3_ENCRYPTION_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <ServerSideEncryptionConfiguration xmlns="http://doc.s3.amazonaws.com/2006-03-01"> {% for entry in encryption %} <Rule> <ApplyServerSideEncryptionByDefault> <SSEAlgorithm>{{ entry["Rule"]["ApplyServerSideEncryptionByDefault"]["SSEAlgorithm"] }}</SSEAlgorithm> {% if entry["Rule"]["ApplyServerSideEncryptionByDefault"].get("KMSMasterKeyID") %} <KMSMasterKeyID>{{ entry["Rule"]["ApplyServerSideEncryptionByDefault"]["KMSMasterKeyID"] }}</KMSMasterKeyID> {% endif %} </ApplyServerSideEncryptionByDefault> <BucketKeyEnabled>{{ 'true' if entry["Rule"].get("BucketKeyEnabled") == 'true' else 'false' }}</BucketKeyEnabled> </Rule> {% endfor %} </ServerSideEncryptionConfiguration> """ S3_INVALID_PRESIGNED_PARAMETERS = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>SignatureDoesNotMatch</Code> <Message>The request signature we calculated does not match the signature you provided. Check your key and signing method.</Message> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_ENCRYPTION = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>ServerSideEncryptionConfigurationNotFoundError</Code> <Message>The server side encryption configuration was not found</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_GET_BUCKET_NOTIFICATION_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <NotificationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {% for topic in config.topic %} <TopicConfiguration> <Id>{{ topic.id }}</Id> <Topic>{{ topic.arn }}</Topic> {% for event in topic.events %} <Event>{{ event }}</Event> {% endfor %} {% if topic.filters %} <Filter> <S3Key> {% for rule in topic.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </TopicConfiguration> {% endfor %} {% for queue in config.queue %} <QueueConfiguration> <Id>{{ queue.id }}</Id> <Queue>{{ queue.arn }}</Queue> {% for event in queue.events %} <Event>{{ event }}</Event> {% endfor %} {% if queue.filters %} <Filter> <S3Key> {% for rule in queue.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </QueueConfiguration> {% endfor %} {% for cf in config.cloud_function %} <CloudFunctionConfiguration> <Id>{{ cf.id }}</Id> <CloudFunction>{{ cf.arn }}</CloudFunction> {% for event in cf.events %} <Event>{{ event }}</Event> {% endfor %} {% if cf.filters %} <Filter> <S3Key> {% for rule in cf.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </CloudFunctionConfiguration> {% endfor %} </NotificationConfiguration> """ S3_BUCKET_ACCELERATE = """ <AccelerateConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ bucket.accelerate_configuration }}</Status> </AccelerateConfiguration> """ S3_BUCKET_ACCELERATE_NOT_SET = """ <AccelerateConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"/> """ S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION = """ <PublicAccessBlockConfiguration> <BlockPublicAcls>{{public_block_config.block_public_acls}}</BlockPublicAcls> <IgnorePublicAcls>{{public_block_config.ignore_public_acls}}</IgnorePublicAcls> <BlockPublicPolicy>{{public_block_config.block_public_policy}}</BlockPublicPolicy> <RestrictPublicBuckets>{{public_block_config.restrict_public_buckets}}</RestrictPublicBuckets> </PublicAccessBlockConfiguration> """ S3_BUCKET_LOCK_CONFIGURATION = """ <ObjectLockConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {%if lock_enabled %} <ObjectLockEnabled>Enabled</ObjectLockEnabled> {% else %} <ObjectLockEnabled>Disabled</ObjectLockEnabled> {% endif %} {% if mode %} <Rule> <DefaultRetention> <Mode>{{mode}}</Mode> <Days>{{days}}</Days> <Years>{{years}}</Years> </DefaultRetention> </Rule> {% endif %} </ObjectLockConfiguration> """ S3_DUPLICATE_BUCKET_ERROR = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>BucketAlreadyOwnedByYou</Code> <Message>Your previous request to create the named bucket succeeded and you already own it.</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """
def _invalid_headers(self, url, headers): """ Verify whether the provided metadata in the URL is also present in the headers :param url: .../file.txt&content-type=app%2Fjson&Signature=.. :param headers: Content-Type=app/json :return: True or False """ metadata_to_check = { "content-disposition": "Content-Disposition", "content-encoding": "Content-Encoding", "content-language": "Content-Language", "content-length": "Content-Length", "content-md5": "Content-MD5", "content-type": "Content-Type", } for url_key, header_key in metadata_to_check.items(): metadata_in_url = re.search(url_key + "=(.+?)(&.+$|$)", url) if metadata_in_url: url_value = unquote(metadata_in_url.group(1)) if header_key not in headers or (url_value != headers[header_key]): return True return False
1,994
2,015
from __future__ import unicode_literals import io import os import re import sys from botocore.awsrequest import AWSPreparedRequest from moto.core.utils import ( amzn_request_id, str_to_rfc_1123_datetime, py2_strip_unicode_keys, ) from urllib.parse import ( parse_qs, parse_qsl, urlparse, unquote, urlencode, urlunparse, ) import xmltodict from moto.packages.httpretty.core import HTTPrettyRequest from moto.core.responses import _TemplateEnvironmentMixin, ActionAuthenticatorMixin from moto.core.utils import path_url from moto.core import ACCOUNT_ID from moto.settings import S3_IGNORE_SUBDOMAIN_BUCKETNAME from moto.s3bucket_path.utils import ( bucket_name_from_url as bucketpath_bucket_name_from_url, parse_key_name as bucketpath_parse_key_name, is_delete_keys as bucketpath_is_delete_keys, ) from .exceptions import ( BucketAlreadyExists, BucketMustHaveLockeEnabled, DuplicateTagKeys, InvalidContentMD5, InvalidContinuationToken, S3ClientError, MissingBucket, MissingKey, MissingVersion, InvalidMaxPartArgument, InvalidPartOrder, MalformedXML, MalformedACLError, IllegalLocationConstraintException, InvalidNotificationARN, InvalidNotificationEvent, ObjectNotInActiveTierError, NoSystemTags, PreconditionFailed, InvalidRange, LockNotEnabled, ) from .models import ( s3_backend, get_canned_acl, FakeGrantee, FakeGrant, FakeAcl, FakeKey, ) from .utils import ( bucket_name_from_url, clean_key_name, metadata_from_headers, parse_region_from_url, ) from xml.dom import minidom DEFAULT_REGION_NAME = "us-east-1" ACTION_MAP = { "BUCKET": { "HEAD": {"DEFAULT": "HeadBucket",}, "GET": { "uploads": "ListBucketMultipartUploads", "location": "GetBucketLocation", "lifecycle": "GetLifecycleConfiguration", "versioning": "GetBucketVersioning", "policy": "GetBucketPolicy", "website": "GetBucketWebsite", "acl": "GetBucketAcl", "tagging": "GetBucketTagging", "logging": "GetBucketLogging", "cors": "GetBucketCORS", "notification": "GetBucketNotification", "accelerate": "GetAccelerateConfiguration", "versions": "ListBucketVersions", "public_access_block": "GetPublicAccessBlock", "DEFAULT": "ListBucket", }, "PUT": { "lifecycle": "PutLifecycleConfiguration", "versioning": "PutBucketVersioning", "policy": "PutBucketPolicy", "website": "PutBucketWebsite", "acl": "PutBucketAcl", "tagging": "PutBucketTagging", "logging": "PutBucketLogging", "cors": "PutBucketCORS", "notification": "PutBucketNotification", "accelerate": "PutAccelerateConfiguration", "public_access_block": "PutPublicAccessBlock", "DEFAULT": "CreateBucket", }, "DELETE": { "lifecycle": "PutLifecycleConfiguration", "policy": "DeleteBucketPolicy", "website": "DeleteBucketWebsite", "tagging": "PutBucketTagging", "cors": "PutBucketCORS", "public_access_block": "DeletePublicAccessBlock", "DEFAULT": "DeleteBucket", }, }, "KEY": { "HEAD": {"DEFAULT": "HeadObject",}, "GET": { "uploadId": "ListMultipartUploadParts", "acl": "GetObjectAcl", "tagging": "GetObjectTagging", "versionId": "GetObjectVersion", "DEFAULT": "GetObject", }, "PUT": { "acl": "PutObjectAcl", "tagging": "PutObjectTagging", "DEFAULT": "PutObject", }, "DELETE": { "uploadId": "AbortMultipartUpload", "versionId": "DeleteObjectVersion", "DEFAULT": "DeleteObject", }, "POST": { "uploads": "PutObject", "restore": "RestoreObject", "uploadId": "PutObject", }, }, "CONTROL": { "GET": {"publicAccessBlock": "GetPublicAccessBlock"}, "PUT": {"publicAccessBlock": "PutPublicAccessBlock"}, "DELETE": {"publicAccessBlock": "DeletePublicAccessBlock"}, }, } def parse_key_name(pth): # strip the first '/' left by urlparse return pth[1:] if pth.startswith("/") else pth def is_delete_keys(request, path, bucket_name): # GOlang sends a request as url/?delete= (treating it as a normal key=value, even if the value is empty) # Python sends a request as url/?delete (treating it as a flag) # https://github.com/spulec/moto/issues/2937 return ( path == "/?delete" or path == "/?delete=" or (path == "/" and getattr(request, "query_string", "") == "delete") ) class ResponseObject(_TemplateEnvironmentMixin, ActionAuthenticatorMixin): def __init__(self, backend): super(ResponseObject, self).__init__() self.backend = backend self.method = "" self.path = "" self.data = {} self.headers = {} @property def should_autoescape(self): return True def all_buckets(self): self.data["Action"] = "ListAllMyBuckets" self._authenticate_and_authorize_s3_action() # No bucket specified. Listing all buckets all_buckets = self.backend.list_buckets() template = self.response_template(S3_ALL_BUCKETS) return template.render(buckets=all_buckets) def subdomain_based_buckets(self, request): if S3_IGNORE_SUBDOMAIN_BUCKETNAME: return False host = request.headers.get("host", request.headers.get("Host")) if not host: host = urlparse(request.url).netloc if ( not host or host.startswith("localhost") or host.startswith("localstack") or re.match(r"^[^.]+$", host) or re.match(r"^.*\.svc\.cluster\.local:?\d*$", host) ): # Default to path-based buckets for (1) localhost, (2) localstack hosts (e.g. localstack.dev), # (3) local host names that do not contain a "." (e.g., Docker container host names), or # (4) kubernetes host names return False match = re.match(r"^([^\[\]:]+)(:\d+)?$", host) if match: match = re.match( r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}", match.groups()[0] ) if match: return False match = re.match(r"^\[(.+)\](:\d+)?$", host) if match: match = re.match( r"^(((?=.*(::))(?!.*\3.+\3))\3?|[\dA-F]{1,4}:)([\dA-F]{1,4}(\3|:\b)|\2){5}(([\dA-F]{1,4}(\3|:\b|$)|\2){2}|(((2[0-4]|1\d|[1-9])?\d|25[0-5])\.?\b){4})\Z", match.groups()[0], re.IGNORECASE, ) if match: return False path_based = host == "s3.amazonaws.com" or re.match( r"s3[\.\-]([^.]*)\.amazonaws\.com", host ) return not path_based def is_delete_keys(self, request, path, bucket_name): if self.subdomain_based_buckets(request): return is_delete_keys(request, path, bucket_name) else: return bucketpath_is_delete_keys(request, path, bucket_name) def parse_bucket_name_from_url(self, request, url): if self.subdomain_based_buckets(request): return bucket_name_from_url(url) else: return bucketpath_bucket_name_from_url(url) def parse_key_name(self, request, url): if self.subdomain_based_buckets(request): return parse_key_name(url) else: return bucketpath_parse_key_name(url) def ambiguous_response(self, request, full_url, headers): # Depending on which calling format the client is using, we don't know # if this is a bucket or key request so we have to check if self.subdomain_based_buckets(request): return self.key_or_control_response(request, full_url, headers) else: # Using path-based buckets return self.bucket_response(request, full_url, headers) @amzn_request_id def bucket_response(self, request, full_url, headers): self.method = request.method self.path = self._get_path(request) self.headers = request.headers if "host" not in self.headers: self.headers["host"] = urlparse(full_url).netloc try: response = self._bucket_response(request, full_url, headers) except S3ClientError as s3error: response = s3error.code, {}, s3error.description return self._send_response(response) @staticmethod def _send_response(response): if isinstance(response, str): return 200, {}, response.encode("utf-8") else: status_code, headers, response_content = response if not isinstance(response_content, bytes): response_content = response_content.encode("utf-8") return status_code, headers, response_content def _bucket_response(self, request, full_url, headers): querystring = self._get_querystring(full_url) method = request.method region_name = parse_region_from_url(full_url) bucket_name = self.parse_bucket_name_from_url(request, full_url) if not bucket_name: # If no bucket specified, list all buckets return self.all_buckets() self.data["BucketName"] = bucket_name if hasattr(request, "body"): # Boto body = request.body else: # Flask server body = request.data if body is None: body = b"" if isinstance(body, bytes): body = body.decode("utf-8") body = "{0}".format(body).encode("utf-8") if method == "HEAD": return self._bucket_response_head(bucket_name, querystring) elif method == "GET": return self._bucket_response_get(bucket_name, querystring) elif method == "PUT": return self._bucket_response_put( request, body, region_name, bucket_name, querystring ) elif method == "DELETE": return self._bucket_response_delete(body, bucket_name, querystring) elif method == "POST": return self._bucket_response_post(request, body, bucket_name) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) @staticmethod def _get_querystring(full_url): parsed_url = urlparse(full_url) querystring = parse_qs(parsed_url.query, keep_blank_values=True) return querystring def _bucket_response_head(self, bucket_name, querystring): self._set_action("BUCKET", "HEAD", querystring) self._authenticate_and_authorize_s3_action() try: self.backend.head_bucket(bucket_name) except MissingBucket: # Unless we do this, boto3 does not raise ClientError on # HEAD (which the real API responds with), and instead # raises NoSuchBucket, leading to inconsistency in # error response between real and mocked responses. return 404, {}, "" return 200, {}, "" def _bucket_response_get(self, bucket_name, querystring): self._set_action("BUCKET", "GET", querystring) self._authenticate_and_authorize_s3_action() if "object-lock" in querystring: ( lock_enabled, mode, days, years, ) = self.backend.get_object_lock_configuration(bucket_name) template = self.response_template(S3_BUCKET_LOCK_CONFIGURATION) return template.render( lock_enabled=lock_enabled, mode=mode, days=days, years=years, ) if "uploads" in querystring: for unsup in ("delimiter", "max-uploads"): if unsup in querystring: raise NotImplementedError( "Listing multipart uploads with {} has not been implemented yet.".format( unsup ) ) multiparts = list(self.backend.get_all_multiparts(bucket_name).values()) if "prefix" in querystring: prefix = querystring.get("prefix", [None])[0] multiparts = [ upload for upload in multiparts if upload.key_name.startswith(prefix) ] template = self.response_template(S3_ALL_MULTIPARTS) return template.render(bucket_name=bucket_name, uploads=multiparts) elif "location" in querystring: location = self.backend.get_bucket_location(bucket_name) template = self.response_template(S3_BUCKET_LOCATION) # us-east-1 is different - returns a None location if location == DEFAULT_REGION_NAME: location = None return template.render(location=location) elif "lifecycle" in querystring: rules = self.backend.get_bucket_lifecycle(bucket_name) if not rules: template = self.response_template(S3_NO_LIFECYCLE) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_BUCKET_LIFECYCLE_CONFIGURATION) return template.render(rules=rules) elif "versioning" in querystring: versioning = self.backend.get_bucket_versioning(bucket_name) template = self.response_template(S3_BUCKET_GET_VERSIONING) return template.render(status=versioning) elif "policy" in querystring: policy = self.backend.get_bucket_policy(bucket_name) if not policy: template = self.response_template(S3_NO_POLICY) return 404, {}, template.render(bucket_name=bucket_name) return 200, {}, policy elif "website" in querystring: website_configuration = self.backend.get_bucket_website_configuration( bucket_name ) if not website_configuration: template = self.response_template(S3_NO_BUCKET_WEBSITE_CONFIG) return 404, {}, template.render(bucket_name=bucket_name) return 200, {}, website_configuration elif "acl" in querystring: acl = self.backend.get_bucket_acl(bucket_name) template = self.response_template(S3_OBJECT_ACL_RESPONSE) return template.render(acl=acl) elif "tagging" in querystring: tags = self.backend.get_bucket_tagging(bucket_name)["Tags"] # "Special Error" if no tags: if len(tags) == 0: template = self.response_template(S3_NO_BUCKET_TAGGING) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_OBJECT_TAGGING_RESPONSE) return template.render(tags=tags) elif "logging" in querystring: logging = self.backend.get_bucket_logging(bucket_name) if not logging: template = self.response_template(S3_NO_LOGGING_CONFIG) return 200, {}, template.render() template = self.response_template(S3_LOGGING_CONFIG) return 200, {}, template.render(logging=logging) elif "cors" in querystring: cors = self.backend.get_bucket_cors(bucket_name) if len(cors) == 0: template = self.response_template(S3_NO_CORS_CONFIG) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_BUCKET_CORS_RESPONSE) return template.render(cors=cors) elif "notification" in querystring: notification_configuration = self.backend.get_bucket_notification_configuration( bucket_name ) if not notification_configuration: return 200, {}, "" template = self.response_template(S3_GET_BUCKET_NOTIFICATION_CONFIG) return template.render(config=notification_configuration) elif "accelerate" in querystring: bucket = self.backend.get_bucket(bucket_name) if bucket.accelerate_configuration is None: template = self.response_template(S3_BUCKET_ACCELERATE_NOT_SET) return 200, {}, template.render() template = self.response_template(S3_BUCKET_ACCELERATE) return template.render(bucket=bucket) elif "publicAccessBlock" in querystring: public_block_config = self.backend.get_public_access_block(bucket_name) template = self.response_template(S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION) return template.render(public_block_config=public_block_config) elif "versions" in querystring: delimiter = querystring.get("delimiter", [None])[0] encoding_type = querystring.get("encoding-type", [None])[0] key_marker = querystring.get("key-marker", [None])[0] max_keys = querystring.get("max-keys", [None])[0] prefix = querystring.get("prefix", [""])[0] version_id_marker = querystring.get("version-id-marker", [None])[0] bucket = self.backend.get_bucket(bucket_name) ( versions, common_prefixes, delete_markers, ) = self.backend.list_object_versions( bucket_name, delimiter=delimiter, encoding_type=encoding_type, key_marker=key_marker, max_keys=max_keys, version_id_marker=version_id_marker, prefix=prefix, ) key_list = versions template = self.response_template(S3_BUCKET_GET_VERSIONS) return ( 200, {}, template.render( common_prefixes=common_prefixes, key_list=key_list, delete_marker_list=delete_markers, bucket=bucket, prefix=prefix, max_keys=1000, delimiter=delimiter, key_marker=key_marker, is_truncated="false", ), ) elif "encryption" in querystring: encryption = self.backend.get_bucket_encryption(bucket_name) if not encryption: template = self.response_template(S3_NO_ENCRYPTION) return 404, {}, template.render(bucket_name=bucket_name) template = self.response_template(S3_ENCRYPTION_CONFIG) return 200, {}, template.render(encryption=encryption) elif querystring.get("list-type", [None])[0] == "2": return 200, {}, self._handle_list_objects_v2(bucket_name, querystring) bucket = self.backend.get_bucket(bucket_name) prefix = querystring.get("prefix", [None])[0] if prefix and isinstance(prefix, bytes): prefix = prefix.decode("utf-8") delimiter = querystring.get("delimiter", [None])[0] max_keys = int(querystring.get("max-keys", [1000])[0]) marker = querystring.get("marker", [None])[0] result_keys, result_folders = self.backend.list_objects( bucket, prefix, delimiter ) if marker: result_keys = self._get_results_from_token(result_keys, marker) result_keys, is_truncated, next_marker = self._truncate_result( result_keys, max_keys ) template = self.response_template(S3_BUCKET_GET_RESPONSE) return ( 200, {}, template.render( bucket=bucket, prefix=prefix, delimiter=delimiter, result_keys=result_keys, result_folders=result_folders, is_truncated=is_truncated, next_marker=next_marker, max_keys=max_keys, ), ) def _set_action(self, action_resource_type, method, querystring): action_set = False for action_in_querystring, action in ACTION_MAP[action_resource_type][ method ].items(): if action_in_querystring in querystring: self.data["Action"] = action action_set = True if not action_set: self.data["Action"] = ACTION_MAP[action_resource_type][method]["DEFAULT"] def _handle_list_objects_v2(self, bucket_name, querystring): template = self.response_template(S3_BUCKET_GET_RESPONSE_V2) bucket = self.backend.get_bucket(bucket_name) continuation_token = querystring.get("continuation-token", [None])[0] if continuation_token is not None and continuation_token == "": raise InvalidContinuationToken() prefix = querystring.get("prefix", [None])[0] if prefix and isinstance(prefix, bytes): prefix = prefix.decode("utf-8") delimiter = querystring.get("delimiter", [None])[0] all_keys = self.backend.list_objects_v2(bucket, prefix, delimiter) fetch_owner = querystring.get("fetch-owner", [False])[0] max_keys = int(querystring.get("max-keys", [1000])[0]) start_after = querystring.get("start-after", [None])[0] if continuation_token or start_after: limit = continuation_token or start_after all_keys = self._get_results_from_token(all_keys, limit) truncated_keys, is_truncated, next_continuation_token = self._truncate_result( all_keys, max_keys ) result_keys, result_folders = self._split_truncated_keys(truncated_keys) key_count = len(result_keys) + len(result_folders) return template.render( bucket=bucket, prefix=prefix or "", delimiter=delimiter, key_count=key_count, result_keys=result_keys, result_folders=result_folders, fetch_owner=fetch_owner, max_keys=max_keys, is_truncated=is_truncated, next_continuation_token=next_continuation_token, start_after=None if continuation_token else start_after, ) @staticmethod def _split_truncated_keys(truncated_keys): result_keys = [] result_folders = [] for key in truncated_keys: if isinstance(key, FakeKey): result_keys.append(key) else: result_folders.append(key) return result_keys, result_folders def _get_results_from_token(self, result_keys, token): continuation_index = 0 for key in result_keys: if (key.name if isinstance(key, FakeKey) else key) > token: break continuation_index += 1 return result_keys[continuation_index:] def _truncate_result(self, result_keys, max_keys): if max_keys == 0: result_keys = [] is_truncated = True next_continuation_token = None elif len(result_keys) > max_keys: is_truncated = "true" result_keys = result_keys[:max_keys] item = result_keys[-1] next_continuation_token = item.name if isinstance(item, FakeKey) else item else: is_truncated = "false" next_continuation_token = None return result_keys, is_truncated, next_continuation_token def _body_contains_location_constraint(self, body): if body: try: xmltodict.parse(body)["CreateBucketConfiguration"]["LocationConstraint"] return True except KeyError: pass return False def _create_bucket_configuration_is_empty(self, body): if body: try: create_bucket_configuration = xmltodict.parse(body)[ "CreateBucketConfiguration" ] del create_bucket_configuration["@xmlns"] if len(create_bucket_configuration) == 0: return True except KeyError: pass return False def _parse_pab_config(self, body): parsed_xml = xmltodict.parse(body) parsed_xml["PublicAccessBlockConfiguration"].pop("@xmlns", None) # If Python 2, fix the unicode strings: if sys.version_info[0] < 3: parsed_xml = { "PublicAccessBlockConfiguration": py2_strip_unicode_keys( dict(parsed_xml["PublicAccessBlockConfiguration"]) ) } return parsed_xml def _bucket_response_put( self, request, body, region_name, bucket_name, querystring ): if not request.headers.get("Content-Length"): return 411, {}, "Content-Length required" self._set_action("BUCKET", "PUT", querystring) self._authenticate_and_authorize_s3_action() if "object-lock" in querystring: body_decoded = body.decode() config = self._lock_config_from_xml(body_decoded) if not self.backend.get_bucket(bucket_name).object_lock_enabled: raise BucketMustHaveLockeEnabled self.backend.put_object_lock_configuration( bucket_name, config.get("enabled"), config.get("mode"), config.get("days"), config.get("years"), ) return 200, {}, "" if "versioning" in querystring: ver = re.search("<Status>([A-Za-z]+)</Status>", body.decode()) if ver: self.backend.set_bucket_versioning(bucket_name, ver.group(1)) template = self.response_template(S3_BUCKET_VERSIONING) return template.render(bucket_versioning_status=ver.group(1)) else: return 404, {}, "" elif "lifecycle" in querystring: rules = xmltodict.parse(body)["LifecycleConfiguration"]["Rule"] if not isinstance(rules, list): # If there is only one rule, xmldict returns just the item rules = [rules] self.backend.put_bucket_lifecycle(bucket_name, rules) return "" elif "policy" in querystring: self.backend.put_bucket_policy(bucket_name, body) return "True" elif "acl" in querystring: # Headers are first. If not set, then look at the body (consistent with the documentation): acls = self._acl_from_headers(request.headers) if not acls: acls = self._acl_from_xml(body) self.backend.put_bucket_acl(bucket_name, acls) return "" elif "tagging" in querystring: tagging = self._bucket_tagging_from_xml(body) self.backend.put_bucket_tagging(bucket_name, tagging) return "" elif "website" in querystring: self.backend.set_bucket_website_configuration(bucket_name, body) return "" elif "cors" in querystring: try: self.backend.put_bucket_cors(bucket_name, self._cors_from_xml(body)) return "" except KeyError: raise MalformedXML() elif "logging" in querystring: try: self.backend.put_bucket_logging( bucket_name, self._logging_from_xml(body) ) return "" except KeyError: raise MalformedXML() elif "notification" in querystring: try: self.backend.put_bucket_notification_configuration( bucket_name, self._notification_config_from_xml(body) ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e elif "accelerate" in querystring: try: accelerate_status = self._accelerate_config_from_xml(body) self.backend.put_bucket_accelerate_configuration( bucket_name, accelerate_status ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e elif "publicAccessBlock" in querystring: pab_config = self._parse_pab_config(body) self.backend.put_bucket_public_access_block( bucket_name, pab_config["PublicAccessBlockConfiguration"] ) return "" elif "encryption" in querystring: try: self.backend.put_bucket_encryption( bucket_name, self._encryption_config_from_xml(body) ) return "" except KeyError: raise MalformedXML() except Exception as e: raise e else: # us-east-1, the default AWS region behaves a bit differently # - you should not use it as a location constraint --> it fails # - querying the location constraint returns None # - LocationConstraint has to be specified if outside us-east-1 if ( region_name != DEFAULT_REGION_NAME and not self._body_contains_location_constraint(body) ): raise IllegalLocationConstraintException() if body: if self._create_bucket_configuration_is_empty(body): raise MalformedXML() try: forced_region = xmltodict.parse(body)["CreateBucketConfiguration"][ "LocationConstraint" ] if forced_region == DEFAULT_REGION_NAME: raise S3ClientError( "InvalidLocationConstraint", "The specified location-constraint is not valid", ) else: region_name = forced_region except KeyError: pass try: new_bucket = self.backend.create_bucket(bucket_name, region_name) except BucketAlreadyExists: new_bucket = self.backend.get_bucket(bucket_name) if ( new_bucket.region_name == DEFAULT_REGION_NAME and region_name == DEFAULT_REGION_NAME ): # us-east-1 has different behavior - creating a bucket there is an idempotent operation pass else: template = self.response_template(S3_DUPLICATE_BUCKET_ERROR) return 409, {}, template.render(bucket_name=bucket_name) if "x-amz-acl" in request.headers: # TODO: Support the XML-based ACL format self.backend.put_bucket_acl( bucket_name, self._acl_from_headers(request.headers) ) if ( request.headers.get("x-amz-bucket-object-lock-enabled", "").lower() == "true" ): new_bucket.object_lock_enabled = True new_bucket.versioning_status = "Enabled" template = self.response_template(S3_BUCKET_CREATE_RESPONSE) return 200, {}, template.render(bucket=new_bucket) def _bucket_response_delete(self, body, bucket_name, querystring): self._set_action("BUCKET", "DELETE", querystring) self._authenticate_and_authorize_s3_action() if "policy" in querystring: self.backend.delete_bucket_policy(bucket_name, body) return 204, {}, "" elif "tagging" in querystring: self.backend.delete_bucket_tagging(bucket_name) return 204, {}, "" elif "website" in querystring: self.backend.delete_bucket_website(bucket_name) return 204, {}, "" elif "cors" in querystring: self.backend.delete_bucket_cors(bucket_name) return 204, {}, "" elif "lifecycle" in querystring: self.backend.delete_bucket_lifecycle(bucket_name) return 204, {}, "" elif "publicAccessBlock" in querystring: self.backend.delete_public_access_block(bucket_name) return 204, {}, "" elif "encryption" in querystring: self.backend.delete_bucket_encryption(bucket_name) return 204, {}, "" removed_bucket = self.backend.delete_bucket(bucket_name) if removed_bucket: # Bucket exists template = self.response_template(S3_DELETE_BUCKET_SUCCESS) return 204, {}, template.render(bucket=removed_bucket) else: # Tried to delete a bucket that still has keys template = self.response_template(S3_DELETE_BUCKET_WITH_ITEMS_ERROR) return 409, {}, template.render(bucket=removed_bucket) def _bucket_response_post(self, request, body, bucket_name): response_headers = {} if not request.headers.get("Content-Length"): return 411, {}, "Content-Length required" path = self._get_path(request) if self.is_delete_keys(request, path, bucket_name): self.data["Action"] = "DeleteObject" self._authenticate_and_authorize_s3_action() return self._bucket_response_delete_keys(request, body, bucket_name) self.data["Action"] = "PutObject" self._authenticate_and_authorize_s3_action() # POST to bucket-url should create file from form if hasattr(request, "form"): # Not HTTPretty form = request.form else: # HTTPretty, build new form object body = body.decode() form = dict(parse_qsl(body)) key = form["key"] if "file" in form: f = form["file"] else: fobj = request.files["file"] f = fobj.stream.read() key = key.replace("${filename}", os.path.basename(fobj.filename)) if "success_action_redirect" in form: redirect = form["success_action_redirect"] parts = urlparse(redirect) queryargs = parse_qs(parts.query) queryargs["key"] = key queryargs["bucket"] = bucket_name redirect_queryargs = urlencode(queryargs, doseq=True) newparts = ( parts.scheme, parts.netloc, parts.path, parts.params, redirect_queryargs, parts.fragment, ) fixed_redirect = urlunparse(newparts) response_headers["Location"] = fixed_redirect if "success_action_status" in form: status_code = form["success_action_status"] elif "success_action_redirect" in form: status_code = 303 else: status_code = 204 new_key = self.backend.put_object(bucket_name, key, f) if form.get("acl"): acl = get_canned_acl(form.get("acl")) new_key.set_acl(acl) # Metadata metadata = metadata_from_headers(form) new_key.set_metadata(metadata) return status_code, response_headers, "" @staticmethod def _get_path(request): if isinstance(request, HTTPrettyRequest): path = request.path else: path = ( request.full_path if hasattr(request, "full_path") else path_url(request.url) ) return path def _bucket_response_delete_keys(self, request, body, bucket_name): template = self.response_template(S3_DELETE_KEYS_RESPONSE) body_dict = xmltodict.parse(body, strip_whitespace=False) objects = body_dict["Delete"].get("Object", []) if not isinstance(objects, list): # We expect a list of objects, but when there is a single <Object> node xmltodict does not # return a list. objects = [objects] if len(objects) == 0: raise MalformedXML() deleted_objects = self.backend.delete_objects(bucket_name, objects) error_names = [] return ( 200, {}, template.render(deleted=deleted_objects, delete_errors=error_names), ) def _handle_range_header(self, request, headers, response_content): response_headers = {} length = len(response_content) last = length - 1 _, rspec = request.headers.get("range").split("=") if "," in rspec: raise NotImplementedError("Multiple range specifiers not supported") def toint(i): return int(i) if i else None begin, end = map(toint, rspec.split("-")) if begin is not None: # byte range end = last if end is None else min(end, last) elif end is not None: # suffix byte range begin = length - min(end, length) end = last else: return 400, response_headers, "" if begin < 0 or end > last or begin > min(end, last): raise InvalidRange( actual_size=str(length), range_requested=request.headers.get("range") ) response_headers["content-range"] = "bytes {0}-{1}/{2}".format( begin, end, length ) content = response_content[begin : end + 1] response_headers["content-length"] = len(content) return 206, response_headers, content def _handle_v4_chunk_signatures(self, body, content_length): body_io = io.BytesIO(body) new_body = bytearray(content_length) pos = 0 line = body_io.readline() while line: # https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html#sigv4-chunked-body-definition # str(hex(chunk-size)) + ";chunk-signature=" + signature + \r\n + chunk-data + \r\n chunk_size = int(line[: line.find(b";")].decode("utf8"), 16) new_body[pos : pos + chunk_size] = body_io.read(chunk_size) pos = pos + chunk_size body_io.read(2) # skip trailing \r\n line = body_io.readline() return bytes(new_body) @amzn_request_id def key_or_control_response(self, request, full_url, headers): # Key and Control are lumped in because splitting out the regex is too much of a pain :/ self.method = request.method self.path = self._get_path(request) self.headers = request.headers if "host" not in self.headers: self.headers["host"] = urlparse(full_url).netloc response_headers = {} try: # Is this an S3 control response? if isinstance(request, AWSPreparedRequest) and "s3-control" in request.url: response = self._control_response(request, full_url, headers) else: response = self._key_response(request, full_url, self.headers) except S3ClientError as s3error: response = s3error.code, {}, s3error.description if isinstance(response, str): status_code = 200 response_content = response else: status_code, response_headers, response_content = response if ( status_code == 200 and "range" in request.headers and request.headers["range"] != "" ): try: return self._handle_range_header( request, response_headers, response_content ) except S3ClientError as s3error: return s3error.code, {}, s3error.description return status_code, response_headers, response_content def _control_response(self, request, full_url, headers): parsed_url = urlparse(full_url) query = parse_qs(parsed_url.query, keep_blank_values=True) method = request.method if hasattr(request, "body"): # Boto body = request.body if hasattr(body, "read"): body = body.read() else: # Flask server body = request.data if body is None: body = b"" if method == "GET": return self._control_response_get(request, query, headers) elif method == "PUT": return self._control_response_put(request, body, query, headers) elif method == "DELETE": return self._control_response_delete(request, query, headers) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) def _control_response_get(self, request, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "GET", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: public_block_config = self.backend.get_account_public_access_block( headers["x-amz-account-id"] ) template = self.response_template(S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION) return ( 200, response_headers, template.render(public_block_config=public_block_config), ) raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _control_response_put(self, request, body, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "PUT", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: pab_config = self._parse_pab_config(body) self.backend.put_account_public_access_block( headers["x-amz-account-id"], pab_config["PublicAccessBlockConfiguration"], ) return 200, response_headers, "" raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _control_response_delete(self, request, query, headers): action = self.path.split("?")[0].split("/")[ -1 ] # Gets the action out of the URL sans query params. self._set_action("CONTROL", "DELETE", action) self._authenticate_and_authorize_s3_action() response_headers = {} if "publicAccessBlock" in action: self.backend.delete_account_public_access_block(headers["x-amz-account-id"]) return 200, response_headers, "" raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format(action) ) def _key_response(self, request, full_url, headers): parsed_url = urlparse(full_url) query = parse_qs(parsed_url.query, keep_blank_values=True) method = request.method key_name = self.parse_key_name(request, parsed_url.path) bucket_name = self.parse_bucket_name_from_url(request, full_url) # Because we patch the requests library the boto/boto3 API # requests go through this method but so do # `requests.get("https://bucket-name.s3.amazonaws.com/file-name")` # Here we deny public access to private files by checking the # ACL and checking for the mere presence of an Authorization # header. if "Authorization" not in request.headers: if hasattr(request, "url"): signed_url = "Signature=" in request.url elif hasattr(request, "requestline"): signed_url = "Signature=" in request.path key = self.backend.get_object(bucket_name, key_name) if key: if not key.acl.public_read and not signed_url: return 403, {}, "" elif signed_url: # coming in from requests.get(s3.generate_presigned_url()) if self._invalid_headers(request.url, dict(request.headers)): return 403, {}, S3_INVALID_PRESIGNED_PARAMETERS if hasattr(request, "body"): # Boto body = request.body if hasattr(body, "read"): body = body.read() else: # Flask server body = request.data if not body: # when the data is being passed as a file if request.files: for _, value in request.files.items(): body = value.stream.read() elif hasattr(request, "form"): # Body comes through as part of the form, if no content-type is set on the PUT-request # form = ImmutableMultiDict([('some data 123 321', '')]) form = request.form for k, _ in form.items(): body = k if body is None: body = b"" if ( request.headers.get("x-amz-content-sha256", None) == "STREAMING-AWS4-HMAC-SHA256-PAYLOAD" ): body = self._handle_v4_chunk_signatures( body, int(request.headers["x-amz-decoded-content-length"]) ) if method == "GET": return self._key_response_get( bucket_name, query, key_name, headers=request.headers ) elif method == "PUT": return self._key_response_put( request, body, bucket_name, query, key_name, headers ) elif method == "HEAD": return self._key_response_head( bucket_name, query, key_name, headers=request.headers ) elif method == "DELETE": return self._key_response_delete(headers, bucket_name, query, key_name) elif method == "POST": return self._key_response_post(request, body, bucket_name, query, key_name) else: raise NotImplementedError( "Method {0} has not been implemented in the S3 backend yet".format( method ) ) def _key_response_get(self, bucket_name, query, key_name, headers): self._set_action("KEY", "GET", query) self._authenticate_and_authorize_s3_action() response_headers = {} if query.get("uploadId"): upload_id = query["uploadId"][0] # 0 <= PartNumberMarker <= 2,147,483,647 part_number_marker = int(query.get("part-number-marker", [0])[0]) if not (0 <= part_number_marker <= 2147483647): raise InvalidMaxPartArgument("part-number-marker", 0, 2147483647) # 0 <= MaxParts <= 2,147,483,647 (default is 1,000) max_parts = int(query.get("max-parts", [1000])[0]) if not (0 <= max_parts <= 2147483647): raise InvalidMaxPartArgument("max-parts", 0, 2147483647) parts = self.backend.list_parts( bucket_name, upload_id, part_number_marker=part_number_marker, max_parts=max_parts, ) next_part_number_marker = parts[-1].name + 1 if parts else 0 is_truncated = parts and self.backend.is_truncated( bucket_name, upload_id, next_part_number_marker ) template = self.response_template(S3_MULTIPART_LIST_RESPONSE) return ( 200, response_headers, template.render( bucket_name=bucket_name, key_name=key_name, upload_id=upload_id, is_truncated=str(is_truncated).lower(), max_parts=max_parts, next_part_number_marker=next_part_number_marker, parts=parts, part_number_marker=part_number_marker, ), ) version_id = query.get("versionId", [None])[0] if_modified_since = headers.get("If-Modified-Since", None) if_match = headers.get("If-Match", None) if_none_match = headers.get("If-None-Match", None) if_unmodified_since = headers.get("If-Unmodified-Since", None) key = self.backend.get_object(bucket_name, key_name, version_id=version_id) if key is None and version_id is None: raise MissingKey(key_name) elif key is None: raise MissingVersion() if if_unmodified_since: if_unmodified_since = str_to_rfc_1123_datetime(if_unmodified_since) if key.last_modified > if_unmodified_since: raise PreconditionFailed("If-Unmodified-Since") if if_match and key.etag not in [if_match, '"{0}"'.format(if_match)]: raise PreconditionFailed("If-Match") if if_modified_since: if_modified_since = str_to_rfc_1123_datetime(if_modified_since) if key.last_modified < if_modified_since: return 304, response_headers, "Not Modified" if if_none_match and key.etag == if_none_match: return 304, response_headers, "Not Modified" if "acl" in query: acl = s3_backend.get_object_acl(key) template = self.response_template(S3_OBJECT_ACL_RESPONSE) return 200, response_headers, template.render(acl=acl) if "tagging" in query: tags = self.backend.get_object_tagging(key)["Tags"] template = self.response_template(S3_OBJECT_TAGGING_RESPONSE) return 200, response_headers, template.render(tags=tags) if "legal-hold" in query: legal_hold = self.backend.get_object_legal_hold(key) template = self.response_template(S3_OBJECT_LEGAL_HOLD) return 200, response_headers, template.render(legal_hold=legal_hold) response_headers.update(key.metadata) response_headers.update(key.response_dict) return 200, response_headers, key.value def _key_response_put(self, request, body, bucket_name, query, key_name, headers): self._set_action("KEY", "PUT", query) self._authenticate_and_authorize_s3_action() response_headers = {} if query.get("uploadId") and query.get("partNumber"): upload_id = query["uploadId"][0] part_number = int(query["partNumber"][0]) if "x-amz-copy-source" in request.headers: src = unquote(request.headers.get("x-amz-copy-source")).lstrip("/") src_bucket, src_key = src.split("/", 1) src_key, src_version_id = ( src_key.split("?versionId=") if "?versionId=" in src_key else (src_key, None) ) src_range = request.headers.get("x-amz-copy-source-range", "").split( "bytes=" )[-1] try: start_byte, end_byte = src_range.split("-") start_byte, end_byte = int(start_byte), int(end_byte) except ValueError: start_byte, end_byte = None, None if self.backend.get_object( src_bucket, src_key, version_id=src_version_id ): key = self.backend.copy_part( bucket_name, upload_id, part_number, src_bucket, src_key, src_version_id, start_byte, end_byte, ) else: return 404, response_headers, "" template = self.response_template(S3_MULTIPART_UPLOAD_RESPONSE) response = template.render(part=key) else: key = self.backend.upload_part( bucket_name, upload_id, part_number, body ) response = "" response_headers.update(key.response_dict) return 200, response_headers, response storage_class = request.headers.get("x-amz-storage-class", "STANDARD") encryption = request.headers.get("x-amz-server-side-encryption", None) kms_key_id = request.headers.get( "x-amz-server-side-encryption-aws-kms-key-id", None ) bucket_key_enabled = request.headers.get( "x-amz-server-side-encryption-bucket-key-enabled", None ) if bucket_key_enabled is not None: bucket_key_enabled = str(bucket_key_enabled).lower() bucket = self.backend.get_bucket(bucket_name) lock_enabled = bucket.object_lock_enabled lock_mode = request.headers.get("x-amz-object-lock-mode", None) lock_until = request.headers.get("x-amz-object-lock-retain-until-date", None) legal_hold = request.headers.get("x-amz-object-lock-legal-hold", "OFF") if lock_mode or lock_until or legal_hold == "ON": if not request.headers.get("Content-Md5"): raise InvalidContentMD5 if not lock_enabled: raise LockNotEnabled elif lock_enabled and bucket.has_default_lock: if not request.headers.get("Content-Md5"): raise InvalidContentMD5 lock_until = bucket.default_retention() lock_mode = bucket.default_lock_mode acl = self._acl_from_headers(request.headers) if acl is None: acl = self.backend.get_bucket(bucket_name).acl tagging = self._tagging_from_headers(request.headers) if "retention" in query: if not lock_enabled: raise LockNotEnabled version_id = query.get("VersionId") retention = self._mode_until_from_xml(body) self.backend.put_object_retention( bucket_name, key_name, version_id=version_id, retention=retention ) return 200, response_headers, "" if "legal-hold" in query: if not lock_enabled: raise LockNotEnabled version_id = query.get("VersionId") legal_hold_status = self._legal_hold_status_from_xml(body) self.backend.put_object_legal_hold( bucket_name, key_name, version_id, legal_hold_status ) return 200, response_headers, "" if "acl" in query: self.backend.put_object_acl(bucket_name, key_name, acl) return 200, response_headers, "" if "tagging" in query: if "versionId" in query: version_id = query["versionId"][0] else: version_id = None key = self.backend.get_object(bucket_name, key_name, version_id=version_id) tagging = self._tagging_from_xml(body) self.backend.set_key_tags(key, tagging, key_name) return 200, response_headers, "" if "x-amz-copy-source" in request.headers: # Copy key # you can have a quoted ?version=abc with a version Id, so work on # we need to parse the unquoted string first src_key = request.headers.get("x-amz-copy-source") if isinstance(src_key, bytes): src_key = src_key.decode("utf-8") src_key_parsed = urlparse(src_key) src_bucket, src_key = ( clean_key_name(src_key_parsed.path).lstrip("/").split("/", 1) ) src_version_id = parse_qs(src_key_parsed.query).get("versionId", [None])[0] key = self.backend.get_object( src_bucket, src_key, version_id=src_version_id ) if key is not None: if key.storage_class in ["GLACIER", "DEEP_ARCHIVE"]: if key.response_dict.get( "x-amz-restore" ) is None or 'ongoing-request="true"' in key.response_dict.get( "x-amz-restore" ): raise ObjectNotInActiveTierError(key) self.backend.copy_object( src_bucket, src_key, bucket_name, key_name, storage=storage_class, acl=acl, src_version_id=src_version_id, ) else: return 404, response_headers, "" new_key = self.backend.get_object(bucket_name, key_name) mdirective = request.headers.get("x-amz-metadata-directive") if mdirective is not None and mdirective == "REPLACE": metadata = metadata_from_headers(request.headers) new_key.set_metadata(metadata, replace=True) tdirective = request.headers.get("x-amz-tagging-directive") if tdirective == "REPLACE": tagging = self._tagging_from_headers(request.headers) self.backend.set_key_tags(new_key, tagging) template = self.response_template(S3_OBJECT_COPY_RESPONSE) response_headers.update(new_key.response_dict) return 200, response_headers, template.render(key=new_key) streaming_request = hasattr(request, "streaming") and request.streaming closing_connection = headers.get("connection") == "close" if closing_connection and streaming_request: # Closing the connection of a streaming request. No more data new_key = self.backend.get_object(bucket_name, key_name) elif streaming_request: # Streaming request, more data new_key = self.backend.append_to_key(bucket_name, key_name, body) else: # Initial data new_key = self.backend.put_object( bucket_name, key_name, body, storage=storage_class, encryption=encryption, kms_key_id=kms_key_id, bucket_key_enabled=bucket_key_enabled, lock_mode=lock_mode, lock_legal_status=legal_hold, lock_until=lock_until, ) request.streaming = True metadata = metadata_from_headers(request.headers) metadata.update(metadata_from_headers(query)) new_key.set_metadata(metadata) new_key.set_acl(acl) new_key.website_redirect_location = request.headers.get( "x-amz-website-redirect-location" ) self.backend.set_key_tags(new_key, tagging) response_headers.update(new_key.response_dict) return 200, response_headers, "" def _key_response_head(self, bucket_name, query, key_name, headers): self._set_action("KEY", "HEAD", query) self._authenticate_and_authorize_s3_action() response_headers = {} version_id = query.get("versionId", [None])[0] part_number = query.get("partNumber", [None])[0] if part_number: part_number = int(part_number) if_modified_since = headers.get("If-Modified-Since", None) if_match = headers.get("If-Match", None) if_none_match = headers.get("If-None-Match", None) if_unmodified_since = headers.get("If-Unmodified-Since", None) key = self.backend.head_object( bucket_name, key_name, version_id=version_id, part_number=part_number ) if key: response_headers.update(key.metadata) response_headers.update(key.response_dict) if if_unmodified_since: if_unmodified_since = str_to_rfc_1123_datetime(if_unmodified_since) if key.last_modified > if_unmodified_since: return 412, response_headers, "" if if_match and key.etag != if_match: return 412, response_headers, "" if if_modified_since: if_modified_since = str_to_rfc_1123_datetime(if_modified_since) if key.last_modified < if_modified_since: return 304, response_headers, "Not Modified" if if_none_match and key.etag == if_none_match: return 304, response_headers, "Not Modified" return 200, response_headers, "" else: return 404, response_headers, "" def _lock_config_from_xml(self, xml): response_dict = {"enabled": False, "mode": None, "days": None, "years": None} parsed_xml = xmltodict.parse(xml) enabled = ( parsed_xml["ObjectLockConfiguration"]["ObjectLockEnabled"] == "Enabled" ) response_dict["enabled"] = enabled default_retention = parsed_xml.get("ObjectLockConfiguration").get("Rule") if default_retention: default_retention = default_retention.get("DefaultRetention") mode = default_retention["Mode"] days = int(default_retention.get("Days", 0)) years = int(default_retention.get("Years", 0)) if days and years: raise MalformedXML response_dict["mode"] = mode response_dict["days"] = days response_dict["years"] = years return response_dict def _acl_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not parsed_xml.get("AccessControlPolicy"): raise MalformedACLError() # The owner is needed for some reason... if not parsed_xml["AccessControlPolicy"].get("Owner"): # TODO: Validate that the Owner is actually correct. raise MalformedACLError() # If empty, then no ACLs: if parsed_xml["AccessControlPolicy"].get("AccessControlList") is None: return [] if not parsed_xml["AccessControlPolicy"]["AccessControlList"].get("Grant"): raise MalformedACLError() permissions = ["READ", "WRITE", "READ_ACP", "WRITE_ACP", "FULL_CONTROL"] if not isinstance( parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"], list ): parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"] = [ parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"] ] grants = self._get_grants_from_xml( parsed_xml["AccessControlPolicy"]["AccessControlList"]["Grant"], MalformedACLError, permissions, ) return FakeAcl(grants) def _get_grants_from_xml(self, grant_list, exception_type, permissions): grants = [] for grant in grant_list: if grant.get("Permission", "") not in permissions: raise exception_type() if grant["Grantee"].get("@xsi:type", "") not in [ "CanonicalUser", "AmazonCustomerByEmail", "Group", ]: raise exception_type() # TODO: Verify that the proper grantee data is supplied based on the type. grants.append( FakeGrant( [ FakeGrantee( id=grant["Grantee"].get("ID", ""), display_name=grant["Grantee"].get("DisplayName", ""), uri=grant["Grantee"].get("URI", ""), ) ], [grant["Permission"]], ) ) return grants def _acl_from_headers(self, headers): canned_acl = headers.get("x-amz-acl", "") if canned_acl: return get_canned_acl(canned_acl) grants = [] for header, value in headers.items(): header = header.lower() if not header.startswith("x-amz-grant-"): continue permission = { "read": "READ", "write": "WRITE", "read-acp": "READ_ACP", "write-acp": "WRITE_ACP", "full-control": "FULL_CONTROL", }[header[len("x-amz-grant-") :]] grantees = [] for key_and_value in value.split(","): key, value = re.match( '([^=]+)="?([^"]+)"?', key_and_value.strip() ).groups() if key.lower() == "id": grantees.append(FakeGrantee(id=value)) else: grantees.append(FakeGrantee(uri=value)) grants.append(FakeGrant(grantees, [permission])) if grants: return FakeAcl(grants) else: return None def _tagging_from_headers(self, headers): tags = {} if headers.get("x-amz-tagging"): parsed_header = parse_qs(headers["x-amz-tagging"], keep_blank_values=True) for tag in parsed_header.items(): tags[tag[0]] = tag[1][0] return tags def _tagging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml, force_list={"Tag": True}) tags = {} for tag in parsed_xml["Tagging"]["TagSet"]["Tag"]: tags[tag["Key"]] = tag["Value"] return tags def _bucket_tagging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) tags = {} # Optional if no tags are being sent: if parsed_xml["Tagging"].get("TagSet"): # If there is only 1 tag, then it's not a list: if not isinstance(parsed_xml["Tagging"]["TagSet"]["Tag"], list): tags[parsed_xml["Tagging"]["TagSet"]["Tag"]["Key"]] = parsed_xml[ "Tagging" ]["TagSet"]["Tag"]["Value"] else: for tag in parsed_xml["Tagging"]["TagSet"]["Tag"]: if tag["Key"] in tags: raise DuplicateTagKeys() tags[tag["Key"]] = tag["Value"] # Verify that "aws:" is not in the tags. If so, then this is a problem: for key, _ in tags.items(): if key.startswith("aws:"): raise NoSystemTags() return tags def _cors_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if isinstance(parsed_xml["CORSConfiguration"]["CORSRule"], list): return [cors for cors in parsed_xml["CORSConfiguration"]["CORSRule"]] return [parsed_xml["CORSConfiguration"]["CORSRule"]] def _mode_until_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) return ( parsed_xml["Retention"]["Mode"], parsed_xml["Retention"]["RetainUntilDate"], ) def _legal_hold_status_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) return parsed_xml["LegalHold"]["Status"] def _encryption_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if ( not parsed_xml["ServerSideEncryptionConfiguration"].get("Rule") or not parsed_xml["ServerSideEncryptionConfiguration"]["Rule"].get( "ApplyServerSideEncryptionByDefault" ) or not parsed_xml["ServerSideEncryptionConfiguration"]["Rule"][ "ApplyServerSideEncryptionByDefault" ].get("SSEAlgorithm") ): raise MalformedXML() return [parsed_xml["ServerSideEncryptionConfiguration"]] def _logging_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not parsed_xml["BucketLoggingStatus"].get("LoggingEnabled"): return {} if not parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetBucket"): raise MalformedXML() if not parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetPrefix"): parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetPrefix"] = "" # Get the ACLs: if parsed_xml["BucketLoggingStatus"]["LoggingEnabled"].get("TargetGrants"): permissions = ["READ", "WRITE", "FULL_CONTROL"] if not isinstance( parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetGrants"][ "Grant" ], list, ): target_grants = self._get_grants_from_xml( [ parsed_xml["BucketLoggingStatus"]["LoggingEnabled"][ "TargetGrants" ]["Grant"] ], MalformedXML, permissions, ) else: target_grants = self._get_grants_from_xml( parsed_xml["BucketLoggingStatus"]["LoggingEnabled"]["TargetGrants"][ "Grant" ], MalformedXML, permissions, ) parsed_xml["BucketLoggingStatus"]["LoggingEnabled"][ "TargetGrants" ] = target_grants return parsed_xml["BucketLoggingStatus"]["LoggingEnabled"] def _notification_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) if not len(parsed_xml["NotificationConfiguration"]): return {} # The types of notifications, and their required fields (apparently lambda is categorized by the API as # "CloudFunction"): notification_fields = [ ("Topic", "sns"), ("Queue", "sqs"), ("CloudFunction", "lambda"), ] event_names = [ "s3:ReducedRedundancyLostObject", "s3:ObjectCreated:*", "s3:ObjectCreated:Put", "s3:ObjectCreated:Post", "s3:ObjectCreated:Copy", "s3:ObjectCreated:CompleteMultipartUpload", "s3:ObjectRemoved:*", "s3:ObjectRemoved:Delete", "s3:ObjectRemoved:DeleteMarkerCreated", ] found_notifications = ( 0 # Tripwire -- if this is not ever set, then there were no notifications ) for name, arn_string in notification_fields: # 1st verify that the proper notification configuration has been passed in (with an ARN that is close # to being correct -- nothing too complex in the ARN logic): the_notification = parsed_xml["NotificationConfiguration"].get( "{}Configuration".format(name) ) if the_notification: found_notifications += 1 if not isinstance(the_notification, list): the_notification = parsed_xml["NotificationConfiguration"][ "{}Configuration".format(name) ] = [the_notification] for n in the_notification: if not n[name].startswith("arn:aws:{}:".format(arn_string)): raise InvalidNotificationARN() # 2nd, verify that the Events list is correct: assert n["Event"] if not isinstance(n["Event"], list): n["Event"] = [n["Event"]] for event in n["Event"]: if event not in event_names: raise InvalidNotificationEvent() # Parse out the filters: if n.get("Filter"): # Error if S3Key is blank: if not n["Filter"]["S3Key"]: raise KeyError() if not isinstance(n["Filter"]["S3Key"]["FilterRule"], list): n["Filter"]["S3Key"]["FilterRule"] = [ n["Filter"]["S3Key"]["FilterRule"] ] for filter_rule in n["Filter"]["S3Key"]["FilterRule"]: assert filter_rule["Name"] in ["suffix", "prefix"] assert filter_rule["Value"] if not found_notifications: return {} return parsed_xml["NotificationConfiguration"] def _accelerate_config_from_xml(self, xml): parsed_xml = xmltodict.parse(xml) config = parsed_xml["AccelerateConfiguration"] return config["Status"] def _key_response_delete(self, headers, bucket_name, query, key_name): self._set_action("KEY", "DELETE", query) self._authenticate_and_authorize_s3_action() if query.get("uploadId"): upload_id = query["uploadId"][0] self.backend.abort_multipart_upload(bucket_name, upload_id) return 204, {}, "" version_id = query.get("versionId", [None])[0] if "tagging" in query: self.backend.delete_object_tagging( bucket_name, key_name, version_id=version_id ) template = self.response_template(S3_DELETE_KEY_TAGGING_RESPONSE) return 204, {}, template.render(version_id=version_id) bypass = headers.get("X-Amz-Bypass-Governance-Retention") success, response_meta = self.backend.delete_object( bucket_name, key_name, version_id=version_id, bypass=bypass ) response_headers = {} if response_meta is not None: for k in response_meta: response_headers["x-amz-{}".format(k)] = response_meta[k] return 204, response_headers, "" def _complete_multipart_body(self, body): ps = minidom.parseString(body).getElementsByTagName("Part") prev = 0 for p in ps: pn = int(p.getElementsByTagName("PartNumber")[0].firstChild.wholeText) if pn <= prev: raise InvalidPartOrder() yield (pn, p.getElementsByTagName("ETag")[0].firstChild.wholeText) def _key_response_post(self, request, body, bucket_name, query, key_name): self._set_action("KEY", "POST", query) self._authenticate_and_authorize_s3_action() if body == b"" and "uploads" in query: metadata = metadata_from_headers(request.headers) storage_type = request.headers.get("x-amz-storage-class", "STANDARD") multipart_id = self.backend.create_multipart_upload( bucket_name, key_name, metadata, storage_type ) template = self.response_template(S3_MULTIPART_INITIATE_RESPONSE) response = template.render( bucket_name=bucket_name, key_name=key_name, upload_id=multipart_id ) return 200, {}, response if query.get("uploadId"): body = self._complete_multipart_body(body) multipart_id = query["uploadId"][0] multipart, value, etag = self.backend.complete_multipart_upload( bucket_name, multipart_id, body ) if value is None: return 400, {}, "" key = self.backend.put_object( bucket_name, multipart.key_name, value, storage=multipart.storage, etag=etag, multipart=multipart, ) key.set_metadata(multipart.metadata) template = self.response_template(S3_MULTIPART_COMPLETE_RESPONSE) headers = {} if key.version_id: headers["x-amz-version-id"] = key.version_id return ( 200, headers, template.render( bucket_name=bucket_name, key_name=key.name, etag=key.etag ), ) elif "restore" in query: es = minidom.parseString(body).getElementsByTagName("Days") days = es[0].childNodes[0].wholeText key = self.backend.get_object(bucket_name, key_name) r = 202 if key.expiry_date is not None: r = 200 key.restore(int(days)) return r, {}, "" else: raise NotImplementedError( "Method POST had only been implemented for multipart uploads and restore operations, so far" ) def _invalid_headers(self, url, headers): """ Verify whether the provided metadata in the URL is also present in the headers :param url: .../file.txt&content-type=app%2Fjson&Signature=.. :param headers: Content-Type=app/json :return: True or False """ metadata_to_check = { "content-disposition": "Content-Disposition", "content-encoding": "Content-Encoding", "content-language": "Content-Language", "content-length": "Content-Length", "content-md5": "Content-MD5", "content-type": "Content-Type", } for url_key, header_key in metadata_to_check.items(): metadata_in_url = re.search(url_key + "=(.+?)(&.+$|$)", url) if metadata_in_url: url_value = unquote(metadata_in_url.group(1)) if header_key not in headers or (url_value != headers[header_key]): return True return False S3ResponseInstance = ResponseObject(s3_backend) S3_ALL_BUCKETS = """<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <Owner> <ID>bcaf1ffd86f41161ca5fb16fd081034f</ID> <DisplayName>webfile</DisplayName> </Owner> <Buckets> {% for bucket in buckets %} <Bucket> <Name>{{ bucket.name }}</Name> <CreationDate>{{ bucket.creation_date_ISO8601 }}</CreationDate> </Bucket> {% endfor %} </Buckets> </ListAllMyBucketsResult>""" S3_BUCKET_GET_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} <MaxKeys>{{ max_keys }}</MaxKeys> {% if delimiter %} <Delimiter>{{ delimiter }}</Delimiter> {% endif %} <IsTruncated>{{ is_truncated }}</IsTruncated> {% if next_marker %} <NextMarker>{{ next_marker }}</NextMarker> {% endif %} {% for key in result_keys %} <Contents> <Key>{{ key.name }}</Key> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </Contents> {% endfor %} {% if delimiter %} {% for folder in result_folders %} <CommonPrefixes> <Prefix>{{ folder }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} </ListBucketResult>""" S3_BUCKET_GET_RESPONSE_V2 = """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} <MaxKeys>{{ max_keys }}</MaxKeys> <KeyCount>{{ key_count }}</KeyCount> {% if delimiter %} <Delimiter>{{ delimiter }}</Delimiter> {% endif %} <IsTruncated>{{ is_truncated }}</IsTruncated> {% if next_continuation_token %} <NextContinuationToken>{{ next_continuation_token }}</NextContinuationToken> {% endif %} {% if start_after %} <StartAfter>{{ start_after }}</StartAfter> {% endif %} {% for key in result_keys %} <Contents> <Key>{{ key.name }}</Key> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> {% if fetch_owner %} <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> {% endif %} </Contents> {% endfor %} {% if delimiter %} {% for folder in result_folders %} <CommonPrefixes> <Prefix>{{ folder }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} </ListBucketResult>""" S3_BUCKET_CREATE_RESPONSE = """<CreateBucketResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <CreateBucketResponse> <Bucket>{{ bucket.name }}</Bucket> </CreateBucketResponse> </CreateBucketResponse>""" S3_DELETE_BUCKET_SUCCESS = """<DeleteBucketResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <DeleteBucketResponse> <Code>204</Code> <Description>No Content</Description> </DeleteBucketResponse> </DeleteBucketResponse>""" S3_DELETE_BUCKET_WITH_ITEMS_ERROR = """<?xml version="1.0" encoding="UTF-8"?> <Error><Code>BucketNotEmpty</Code> <Message>The bucket you tried to delete is not empty</Message> <BucketName>{{ bucket.name }}</BucketName> <RequestId>asdfasdfsdafds</RequestId> <HostId>sdfgdsfgdsfgdfsdsfgdfs</HostId> </Error>""" S3_BUCKET_LOCATION = """<?xml version="1.0" encoding="UTF-8"?> <LocationConstraint xmlns="http://s3.amazonaws.com/doc/2006-03-01/">{% if location != None %}{{ location }}{% endif %}</LocationConstraint>""" S3_BUCKET_LIFECYCLE_CONFIGURATION = """<?xml version="1.0" encoding="UTF-8"?> <LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {% for rule in rules %} <Rule> <ID>{{ rule.id }}</ID> {% if rule.filter %} <Filter> {% if rule.filter.prefix != None %} <Prefix>{{ rule.filter.prefix }}</Prefix> {% endif %} {% if rule.filter.tag_key %} <Tag> <Key>{{ rule.filter.tag_key }}</Key> <Value>{{ rule.filter.tag_value }}</Value> </Tag> {% endif %} {% if rule.filter.and_filter %} <And> {% if rule.filter.and_filter.prefix != None %} <Prefix>{{ rule.filter.and_filter.prefix }}</Prefix> {% endif %} {% for key, value in rule.filter.and_filter.tags.items() %} <Tag> <Key>{{ key }}</Key> <Value>{{ value }}</Value> </Tag> {% endfor %} </And> {% endif %} </Filter> {% else %} {% if rule.prefix != None %} <Prefix>{{ rule.prefix }}</Prefix> {% endif %} {% endif %} <Status>{{ rule.status }}</Status> {% if rule.storage_class %} <Transition> {% if rule.transition_days %} <Days>{{ rule.transition_days }}</Days> {% endif %} {% if rule.transition_date %} <Date>{{ rule.transition_date }}</Date> {% endif %} <StorageClass>{{ rule.storage_class }}</StorageClass> </Transition> {% endif %} {% if rule.expiration_days or rule.expiration_date or rule.expired_object_delete_marker %} <Expiration> {% if rule.expiration_days %} <Days>{{ rule.expiration_days }}</Days> {% endif %} {% if rule.expiration_date %} <Date>{{ rule.expiration_date }}</Date> {% endif %} {% if rule.expired_object_delete_marker %} <ExpiredObjectDeleteMarker>{{ rule.expired_object_delete_marker }}</ExpiredObjectDeleteMarker> {% endif %} </Expiration> {% endif %} {% if rule.nvt_noncurrent_days and rule.nvt_storage_class %} <NoncurrentVersionTransition> <NoncurrentDays>{{ rule.nvt_noncurrent_days }}</NoncurrentDays> <StorageClass>{{ rule.nvt_storage_class }}</StorageClass> </NoncurrentVersionTransition> {% endif %} {% if rule.nve_noncurrent_days %} <NoncurrentVersionExpiration> <NoncurrentDays>{{ rule.nve_noncurrent_days }}</NoncurrentDays> </NoncurrentVersionExpiration> {% endif %} {% if rule.aimu_days %} <AbortIncompleteMultipartUpload> <DaysAfterInitiation>{{ rule.aimu_days }}</DaysAfterInitiation> </AbortIncompleteMultipartUpload> {% endif %} </Rule> {% endfor %} </LifecycleConfiguration> """ S3_BUCKET_VERSIONING = """<?xml version="1.0" encoding="UTF-8"?> <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ bucket_versioning_status }}</Status> </VersioningConfiguration> """ S3_BUCKET_GET_VERSIONING = """<?xml version="1.0" encoding="UTF-8"?> {% if status is none %} <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"/> {% else %} <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ status }}</Status> </VersioningConfiguration> {% endif %} """ S3_BUCKET_GET_VERSIONS = """<?xml version="1.0" encoding="UTF-8"?> <ListVersionsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <Name>{{ bucket.name }}</Name> {% if prefix != None %} <Prefix>{{ prefix }}</Prefix> {% endif %} {% if common_prefixes %} {% for prefix in common_prefixes %} <CommonPrefixes> <Prefix>{{ prefix }}</Prefix> </CommonPrefixes> {% endfor %} {% endif %} <Delimiter>{{ delimiter }}</Delimiter> <KeyMarker>{{ key_marker or "" }}</KeyMarker> <MaxKeys>{{ max_keys }}</MaxKeys> <IsTruncated>{{ is_truncated }}</IsTruncated> {% for key in key_list %} <Version> <Key>{{ key.name }}</Key> <VersionId>{% if key.version_id is none %}null{% else %}{{ key.version_id }}{% endif %}</VersionId> <IsLatest>{{ 'true' if key.is_latest else 'false' }}</IsLatest> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> <ETag>{{ key.etag }}</ETag> <Size>{{ key.size }}</Size> <StorageClass>{{ key.storage_class }}</StorageClass> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </Version> {% endfor %} {% for marker in delete_marker_list %} <DeleteMarker> <Key>{{ marker.name }}</Key> <VersionId>{{ marker.version_id }}</VersionId> <IsLatest>{{ 'true' if marker.is_latest else 'false' }}</IsLatest> <LastModified>{{ marker.last_modified_ISO8601 }}</LastModified> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> </DeleteMarker> {% endfor %} </ListVersionsResult> """ S3_DELETE_KEYS_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> {% for k, v in deleted %} <Deleted> <Key>{{k}}</Key> {% if v %}<VersionId>{{v}}</VersionId>{% endif %} </Deleted> {% endfor %} {% for k in delete_errors %} <Error> <Key>{{k}}</Key> </Error> {% endfor %} </DeleteResult>""" S3_DELETE_KEY_TAGGING_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <DeleteObjectTaggingResult xmlns="http://s3.amazonaws.com/doc/2006-03-01"> <VersionId>{{version_id}}</VersionId> </DeleteObjectTaggingResult> """ S3_OBJECT_ACL_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <AccessControlList> {% for grant in acl.grants %} <Grant> {% for grantee in grant.grantees %} <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="{{ grantee.type }}"> {% if grantee.uri %} <URI>{{ grantee.uri }}</URI> {% endif %} {% if grantee.id %} <ID>{{ grantee.id }}</ID> {% endif %} {% if grantee.display_name %} <DisplayName>{{ grantee.display_name }}</DisplayName> {% endif %} </Grantee> {% endfor %} {% for permission in grant.permissions %} <Permission>{{ permission }}</Permission> {% endfor %} </Grant> {% endfor %} </AccessControlList> </AccessControlPolicy>""" S3_OBJECT_LEGAL_HOLD = """<?xml version="1.0" encoding="UTF-8"?> <LegalHold> <Status>{{ legal_hold }}</Status> </LegalHold> """ S3_OBJECT_TAGGING_RESPONSE = """\ <?xml version="1.0" encoding="UTF-8"?> <Tagging xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <TagSet> {% for tag in tags %} <Tag> <Key>{{ tag.Key }}</Key> <Value>{{ tag.Value }}</Value> </Tag> {% endfor %} </TagSet> </Tagging>""" S3_BUCKET_CORS_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CORSConfiguration> {% for cors in cors %} <CORSRule> {% for origin in cors.allowed_origins %} <AllowedOrigin>{{ origin }}</AllowedOrigin> {% endfor %} {% for method in cors.allowed_methods %} <AllowedMethod>{{ method }}</AllowedMethod> {% endfor %} {% if cors.allowed_headers is not none %} {% for header in cors.allowed_headers %} <AllowedHeader>{{ header }}</AllowedHeader> {% endfor %} {% endif %} {% if cors.exposed_headers is not none %} {% for header in cors.exposed_headers %} <ExposedHeader>{{ header }}</ExposedHeader> {% endfor %} {% endif %} {% if cors.max_age_seconds is not none %} <MaxAgeSeconds>{{ cors.max_age_seconds }}</MaxAgeSeconds> {% endif %} </CORSRule> {% endfor %} </CORSConfiguration> """ S3_OBJECT_COPY_RESPONSE = """\ <CopyObjectResult xmlns="http://doc.s3.amazonaws.com/2006-03-01"> <ETag>{{ key.etag }}</ETag> <LastModified>{{ key.last_modified_ISO8601 }}</LastModified> </CopyObjectResult>""" S3_MULTIPART_INITIATE_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <InitiateMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <UploadId>{{ upload_id }}</UploadId> </InitiateMultipartUploadResult>""" S3_MULTIPART_UPLOAD_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CopyPartResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <LastModified>{{ part.last_modified_ISO8601 }}</LastModified> <ETag>{{ part.etag }}</ETag> </CopyPartResult>""" S3_MULTIPART_LIST_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <ListPartsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <UploadId>{{ upload_id }}</UploadId> <StorageClass>STANDARD</StorageClass> <Initiator> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Initiator> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <PartNumberMarker>{{ part_number_marker }}</PartNumberMarker> <NextPartNumberMarker>{{ next_part_number_marker }}</NextPartNumberMarker> <MaxParts>{{ max_parts }}</MaxParts> <IsTruncated>{{ is_truncated }}</IsTruncated> {% for part in parts %} <Part> <PartNumber>{{ part.name }}</PartNumber> <LastModified>{{ part.last_modified_ISO8601 }}</LastModified> <ETag>{{ part.etag }}</ETag> <Size>{{ part.size }}</Size> </Part> {% endfor %} </ListPartsResult>""" S3_MULTIPART_COMPLETE_RESPONSE = """<?xml version="1.0" encoding="UTF-8"?> <CompleteMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Location>http://{{ bucket_name }}.s3.amazonaws.com/{{ key_name }}</Location> <Bucket>{{ bucket_name }}</Bucket> <Key>{{ key_name }}</Key> <ETag>{{ etag }}</ETag> </CompleteMultipartUploadResult> """ S3_ALL_MULTIPARTS = ( """<?xml version="1.0" encoding="UTF-8"?> <ListMultipartUploadsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Bucket>{{ bucket_name }}</Bucket> <KeyMarker></KeyMarker> <UploadIdMarker></UploadIdMarker> <MaxUploads>1000</MaxUploads> <IsTruncated>false</IsTruncated> {% for upload in uploads %} <Upload> <Key>{{ upload.key_name }}</Key> <UploadId>{{ upload.id }}</UploadId> <Initiator> <ID>arn:aws:iam::""" + ACCOUNT_ID + """:user/user1-11111a31-17b5-4fb7-9df5-b111111f13de</ID> <DisplayName>user1-11111a31-17b5-4fb7-9df5-b111111f13de</DisplayName> </Initiator> <Owner> <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID> <DisplayName>webfile</DisplayName> </Owner> <StorageClass>STANDARD</StorageClass> <Initiated>2010-11-10T20:48:33.000Z</Initiated> </Upload> {% endfor %} </ListMultipartUploadsResult> """ ) S3_NO_POLICY = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchBucketPolicy</Code> <Message>The bucket policy does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_LIFECYCLE = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchLifecycleConfiguration</Code> <Message>The lifecycle configuration does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_BUCKET_TAGGING = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchTagSet</Code> <Message>The TagSet does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_BUCKET_WEBSITE_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchWebsiteConfiguration</Code> <Message>The specified bucket does not have a website configuration</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_INVALID_CORS_REQUEST = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchWebsiteConfiguration</Code> <Message>The specified bucket does not have a website configuration</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_CORS_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>NoSuchCORSConfiguration</Code> <Message>The CORS configuration does not exist</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_LOGGING_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01"> <LoggingEnabled> <TargetBucket>{{ logging["TargetBucket"] }}</TargetBucket> <TargetPrefix>{{ logging["TargetPrefix"] }}</TargetPrefix> {% if logging.get("TargetGrants") %} <TargetGrants> {% for grant in logging["TargetGrants"] %} <Grant> <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="{{ grant.grantees[0].type }}"> {% if grant.grantees[0].uri %} <URI>{{ grant.grantees[0].uri }}</URI> {% endif %} {% if grant.grantees[0].id %} <ID>{{ grant.grantees[0].id }}</ID> {% endif %} {% if grant.grantees[0].display_name %} <DisplayName>{{ grant.grantees[0].display_name }}</DisplayName> {% endif %} </Grantee> <Permission>{{ grant.permissions[0] }}</Permission> </Grant> {% endfor %} </TargetGrants> {% endif %} </LoggingEnabled> </BucketLoggingStatus> """ S3_NO_LOGGING_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01" /> """ S3_ENCRYPTION_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <ServerSideEncryptionConfiguration xmlns="http://doc.s3.amazonaws.com/2006-03-01"> {% for entry in encryption %} <Rule> <ApplyServerSideEncryptionByDefault> <SSEAlgorithm>{{ entry["Rule"]["ApplyServerSideEncryptionByDefault"]["SSEAlgorithm"] }}</SSEAlgorithm> {% if entry["Rule"]["ApplyServerSideEncryptionByDefault"].get("KMSMasterKeyID") %} <KMSMasterKeyID>{{ entry["Rule"]["ApplyServerSideEncryptionByDefault"]["KMSMasterKeyID"] }}</KMSMasterKeyID> {% endif %} </ApplyServerSideEncryptionByDefault> <BucketKeyEnabled>{{ 'true' if entry["Rule"].get("BucketKeyEnabled") == 'true' else 'false' }}</BucketKeyEnabled> </Rule> {% endfor %} </ServerSideEncryptionConfiguration> """ S3_INVALID_PRESIGNED_PARAMETERS = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>SignatureDoesNotMatch</Code> <Message>The request signature we calculated does not match the signature you provided. Check your key and signing method.</Message> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_NO_ENCRYPTION = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>ServerSideEncryptionConfigurationNotFoundError</Code> <Message>The server side encryption configuration was not found</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>0D68A23BB2E2215B</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """ S3_GET_BUCKET_NOTIFICATION_CONFIG = """<?xml version="1.0" encoding="UTF-8"?> <NotificationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {% for topic in config.topic %} <TopicConfiguration> <Id>{{ topic.id }}</Id> <Topic>{{ topic.arn }}</Topic> {% for event in topic.events %} <Event>{{ event }}</Event> {% endfor %} {% if topic.filters %} <Filter> <S3Key> {% for rule in topic.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </TopicConfiguration> {% endfor %} {% for queue in config.queue %} <QueueConfiguration> <Id>{{ queue.id }}</Id> <Queue>{{ queue.arn }}</Queue> {% for event in queue.events %} <Event>{{ event }}</Event> {% endfor %} {% if queue.filters %} <Filter> <S3Key> {% for rule in queue.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </QueueConfiguration> {% endfor %} {% for cf in config.cloud_function %} <CloudFunctionConfiguration> <Id>{{ cf.id }}</Id> <CloudFunction>{{ cf.arn }}</CloudFunction> {% for event in cf.events %} <Event>{{ event }}</Event> {% endfor %} {% if cf.filters %} <Filter> <S3Key> {% for rule in cf.filters["S3Key"]["FilterRule"] %} <FilterRule> <Name>{{ rule["Name"] }}</Name> <Value>{{ rule["Value"] }}</Value> </FilterRule> {% endfor %} </S3Key> </Filter> {% endif %} </CloudFunctionConfiguration> {% endfor %} </NotificationConfiguration> """ S3_BUCKET_ACCELERATE = """ <AccelerateConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Status>{{ bucket.accelerate_configuration }}</Status> </AccelerateConfiguration> """ S3_BUCKET_ACCELERATE_NOT_SET = """ <AccelerateConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"/> """ S3_PUBLIC_ACCESS_BLOCK_CONFIGURATION = """ <PublicAccessBlockConfiguration> <BlockPublicAcls>{{public_block_config.block_public_acls}}</BlockPublicAcls> <IgnorePublicAcls>{{public_block_config.ignore_public_acls}}</IgnorePublicAcls> <BlockPublicPolicy>{{public_block_config.block_public_policy}}</BlockPublicPolicy> <RestrictPublicBuckets>{{public_block_config.restrict_public_buckets}}</RestrictPublicBuckets> </PublicAccessBlockConfiguration> """ S3_BUCKET_LOCK_CONFIGURATION = """ <ObjectLockConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> {%if lock_enabled %} <ObjectLockEnabled>Enabled</ObjectLockEnabled> {% else %} <ObjectLockEnabled>Disabled</ObjectLockEnabled> {% endif %} {% if mode %} <Rule> <DefaultRetention> <Mode>{{mode}}</Mode> <Days>{{days}}</Days> <Years>{{years}}</Years> </DefaultRetention> </Rule> {% endif %} </ObjectLockConfiguration> """ S3_DUPLICATE_BUCKET_ERROR = """<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>BucketAlreadyOwnedByYou</Code> <Message>Your previous request to create the named bucket succeeded and you already own it.</Message> <BucketName>{{ bucket_name }}</BucketName> <RequestId>44425877V1D0A2F9</RequestId> <HostId>9Gjjt1m+cjU4OPvX9O9/8RuvnG41MRb/18Oux2o5H5MY7ISNTlXN+Dz9IG62/ILVxhAGI0qyPfg=</HostId> </Error> """
__init__
Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated.
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" # MASKED: __init__ function (lines 42-73) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending)
42
73
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
__init__
q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient.
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ # MASKED: __init__ function (lines 104-131) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f)
104
131
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
forward
Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`.
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) # MASKED: forward function (lines 133-151) class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
@concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei
133
151
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
__init__
q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function.
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ # MASKED: __init__ function (lines 172-210) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline)
172
210
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)