|
---
|
|
license: apache-2.0
|
|
base_model: albert/albert-base-v2
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- f1
|
|
- precision
|
|
- recall
|
|
model-index:
|
|
- name: classify-clickbait-gpu
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# classify-clickbait-gpu
|
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0130
|
|
- Accuracy: 0.9976
|
|
- F1: 0.9976
|
|
- Precision: 0.9976
|
|
- Recall: 0.9976
|
|
- Accuracy Label Clickbait: 0.9933
|
|
- Accuracy Label Factual: 1.0
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 2
|
|
- total_train_batch_size: 32
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 500
|
|
- num_epochs: 3
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:|
|
|
| 0.0546 | 0.4831 | 100 | 0.0504 | 0.9902 | 0.9902 | 0.9902 | 0.9902 | 0.9866 | 0.9923 |
|
|
| 0.0071 | 0.9662 | 200 | 0.0060 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
|
|
| 0.0008 | 1.4493 | 300 | 0.0088 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | 0.9933 | 1.0 |
|
|
| 0.0006 | 1.9324 | 400 | 0.0310 | 0.9939 | 0.9939 | 0.9939 | 0.9939 | 0.9833 | 1.0 |
|
|
| 0.0007 | 2.4155 | 500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
|
| 0.0009 | 2.8986 | 600 | 0.0079 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.3.0+cu118
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|