See axolotl config
axolotl version: 0.8.0.dev0
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: charliemarshalldev/llama3.1_recipes
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: "mistral-finetune"
wandb_log_model: "checkpoint"
gradient_accumulation_steps: 1
micro_batch_size: 12
num_epochs: 5
max_steps: 200
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<eos>"
outputs/
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the charliemarshalldev/llama3.1_recipes dataset. It achieves the following results on the evaluation set:
- Loss: 0.6176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 24
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7656 | 0.0042 | 1 | 1.6935 |
1.3062 | 0.0417 | 10 | 1.1579 |
0.8457 | 0.0833 | 20 | 0.7753 |
0.7208 | 0.125 | 30 | 0.7002 |
0.76 | 0.1667 | 40 | 0.6711 |
0.7155 | 0.2083 | 50 | 0.6548 |
0.6473 | 0.25 | 60 | 0.6454 |
0.6941 | 0.2917 | 70 | 0.6388 |
0.5967 | 0.3333 | 80 | 0.6341 |
0.7105 | 0.375 | 90 | 0.6299 |
0.6686 | 0.4167 | 100 | 0.6271 |
0.6533 | 0.4583 | 110 | 0.6247 |
0.6747 | 0.5 | 120 | 0.6226 |
0.7037 | 0.5417 | 130 | 0.6211 |
0.6796 | 0.5833 | 140 | 0.6198 |
0.6222 | 0.625 | 150 | 0.6190 |
0.6594 | 0.6667 | 160 | 0.6183 |
0.6394 | 0.7083 | 170 | 0.6179 |
0.6463 | 0.75 | 180 | 0.6177 |
0.6557 | 0.7917 | 190 | 0.6176 |
0.642 | 0.8333 | 200 | 0.6176 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for charliemarshalldev/Mistral-7B-Recipes-QLoRA
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3