NeMo / examples /tts /g2p /g2p_train_and_evaluate.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytorch_lightning as pl
import torch
from utils import get_model
from nemo.collections.common.callbacks import LogEpochTimeCallback
from nemo.collections.tts.models.base import G2PModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
from nemo.utils.exp_manager import exp_manager
"""
This script supports training of G2PModels
(for T5G2PModel use g2p_t5.yaml, for CTCG2PModel use either g2p_conformer.yaml or g2p_t5_ctc.yaml)
# Training T5G2PModel and evaluation at the end of training:
python examples/text_processing/g2p/g2p_train_and_evaluate.py \
# (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \
model.train_ds.manifest_filepath="<Path to manifest file>" \
model.validation_ds.manifest_filepath="<Path to manifest file>" \
model.test_ds.manifest_filepath="<Path to manifest file>" \
trainer.devices=1 \
do_training=True \
do_testing=True
Example of the config file: NeMo/examples/tts/g2p/conf/g2p_t5.yaml
# Training Conformer-G2P Model and evaluation at the end of training:
python examples/text_processing/g2p/g2p_train_and_evaluate.py \
# (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \
model.train_ds.manifest_filepath="<Path to manifest file>" \
model.validation_ds.manifest_filepath="<Path to manifest file>" \
model.test_ds.manifest_filepath="<Path to manifest file>" \
model.tokenizer.dir=<Path to pretrained tokenizer> \
trainer.devices=1 \
do_training=True \
do_testing=True
Example of the config file: NeMo/examples/text_processing/g2p/conf/g2p_conformer_ctc.yaml
# Run evaluation of the pretrained model:
python examples/text_processing/g2p/g2p_train_and_evaluate.py \
# (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \
pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \
model.test_ds.manifest_filepath="<Path to manifest file>" \
trainer.devices=1 \
do_training=False \
do_testing=True
"""
@hydra_runner(config_path="conf", config_name="g2p_t5")
def main(cfg):
trainer = pl.Trainer(**cfg.trainer)
exp_manager(trainer, cfg.get("exp_manager", None))
g2p_model = None
if cfg.do_training:
g2p_model = get_model(cfg, trainer)
lr_logger = pl.callbacks.LearningRateMonitor()
epoch_time_logger = LogEpochTimeCallback()
trainer.callbacks.extend([lr_logger, epoch_time_logger])
trainer.fit(g2p_model)
if cfg.do_testing:
logging.info(
'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \
no DDP to obtain accurate results'
)
# setup GPU
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False)
if g2p_model is None:
if os.path.exists(cfg.pretrained_model):
# restore g2p_model from .nemo file path
model_cfg = G2PModel.restore_from(restore_path=cfg.pretrained_model, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath)
logging.info(f"Restoring g2p_model : {imported_class.__name__}")
g2p_model = imported_class.restore_from(restore_path=cfg.pretrained_model, map_location=map_location)
model_name = os.path.splitext(os.path.basename(cfg.pretrained_model))[0]
logging.info(f"Restored {model_name} g2p_model from {cfg.pretrained_model}.")
elif cfg.pretrained_model in G2PModel.get_available_model_names():
# restore g2p_model by name
g2p_model = G2PModel.from_pretrained(cfg.pretrained_model, map_location=map_location)
else:
raise ValueError(
f'Provide path to the pre-trained .nemo checkpoint or choose from {G2PModel.list_available_models()}'
)
if hasattr(cfg.model, "test_ds") and cfg.model.test_ds.manifest_filepath is not None:
g2p_model.setup_multiple_test_data(cfg.model.test_ds)
if g2p_model.prepare_test(trainer):
trainer.test(g2p_model)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter