# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from utils import get_model from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models.base import G2PModel from nemo.core.config import hydra_runner from nemo.utils import logging, model_utils from nemo.utils.exp_manager import exp_manager """ This script supports training of G2PModels (for T5G2PModel use g2p_t5.yaml, for CTCG2PModel use either g2p_conformer.yaml or g2p_t5_ctc.yaml) # Training T5G2PModel and evaluation at the end of training: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path= --config-name=) \ model.train_ds.manifest_filepath="" \ model.validation_ds.manifest_filepath="" \ model.test_ds.manifest_filepath="" \ trainer.devices=1 \ do_training=True \ do_testing=True Example of the config file: NeMo/examples/tts/g2p/conf/g2p_t5.yaml # Training Conformer-G2P Model and evaluation at the end of training: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path= --config-name=) \ model.train_ds.manifest_filepath="" \ model.validation_ds.manifest_filepath="" \ model.test_ds.manifest_filepath="" \ model.tokenizer.dir= \ trainer.devices=1 \ do_training=True \ do_testing=True Example of the config file: NeMo/examples/text_processing/g2p/conf/g2p_conformer_ctc.yaml # Run evaluation of the pretrained model: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path= --config-name=) \ pretrained_model="" \ model.test_ds.manifest_filepath="" \ trainer.devices=1 \ do_training=False \ do_testing=True """ @hydra_runner(config_path="conf", config_name="g2p_t5") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) g2p_model = None if cfg.do_training: g2p_model = get_model(cfg, trainer) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(g2p_model) if cfg.do_testing: logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if g2p_model is None: if os.path.exists(cfg.pretrained_model): # restore g2p_model from .nemo file path model_cfg = G2PModel.restore_from(restore_path=cfg.pretrained_model, return_config=True) classpath = model_cfg.target # original class path imported_class = model_utils.import_class_by_path(classpath) logging.info(f"Restoring g2p_model : {imported_class.__name__}") g2p_model = imported_class.restore_from(restore_path=cfg.pretrained_model, map_location=map_location) model_name = os.path.splitext(os.path.basename(cfg.pretrained_model))[0] logging.info(f"Restored {model_name} g2p_model from {cfg.pretrained_model}.") elif cfg.pretrained_model in G2PModel.get_available_model_names(): # restore g2p_model by name g2p_model = G2PModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {G2PModel.list_available_models()}' ) if hasattr(cfg.model, "test_ds") and cfg.model.test_ds.manifest_filepath is not None: g2p_model.setup_multiple_test_data(cfg.model.test_ds) if g2p_model.prepare_test(trainer): trainer.test(g2p_model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter