NeMo / examples /tts /g2p /g2p_heteronym_classification_inference.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import dataclass, is_dataclass
from typing import Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.tts.models.g2p_heteronym_classification import HeteronymClassificationModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
"""
This script runs inference with HeteronymClassificationModel
If the input manifest contains target "word_id", evaluation will be also performed.
To prepare dataset, see NeMo/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py
Inference form manifest:
python g2p_heteronym_classification_inference.py \
manifest="<Path to .json manifest>" \
pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \
output_manifest="<Path to .json manifest to save prediction>" \
wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>"
Interactive inference:
python g2p_heteronym_classification_inference.py \
pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \
wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>" # Optional
"""
@dataclass
class TranscriptionConfig:
# Required configs
pretrained_model: str # Path to a .nemo file or Name of a pretrained model
# path to .json manifest inference, if not provided, interactive mode will be enabled
manifest: Optional[str] = None # Path to .json manifest
output_manifest: Optional[
str
] = "predictions.json" # Path to .json manifest to save prediction, will be saved in "pred_text" field
grapheme_field: str = "text_graphemes" # name of the field in .json manifest for input grapheme text
# mapping from wordid predicted by the model to phonemes, e.g.,
# "../../../scripts/tts_dataset_files/wordid_to_ipa-0.7b_nv22.10.tsv"
wordid_to_phonemes_file: Optional[str] = None
# if "word_id" targets are present in the manifest, evaluation will be performed and errors will be saved in errors_file
errors_file: Optional[str] = None # path to a file to save prediction errors
batch_size: int = 32
num_workers: int = 0
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if not cfg.pretrained_model:
raise ValueError(
'To run evaluation and inference script a pre-trained model or .nemo file must be provided.'
f'Choose from {HeteronymClassificationModel.list_available_models()} or "pretrained_model"="your_model.nemo"'
)
logging.info(
'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \
no DDP to obtain accurate results'
)
# setup GPU
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False)
if os.path.exists(cfg.pretrained_model):
model = HeteronymClassificationModel.restore_from(cfg.pretrained_model, map_location=map_location)
elif cfg.pretrained_model in HeteronymClassificationModel.get_available_model_names():
model = HeteronymClassificationModel.from_pretrained(cfg.pretrained_model, map_location=map_location)
else:
raise ValueError(
f'Provide path to the pre-trained .nemo checkpoint or choose from {HeteronymClassificationModel.list_available_models()}'
)
model.set_trainer(trainer)
model = model.eval()
logging.info(f'Config Params: {model._cfg}')
if cfg.manifest is not None:
if not os.path.exists(cfg.manifest):
raise ValueError(f"{cfg.manifest} not found.")
with torch.no_grad():
model.disambiguate_manifest(
manifest=cfg.manifest,
output_manifest=cfg.output_manifest,
grapheme_field=cfg.grapheme_field,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
)
# save predictions to a file
if cfg.errors_file is None:
cfg.errors_file = cfg.output_manifest.replace(".json", "_errors.txt")
save_errors = True
correct = 0
total = 0
with open(cfg.output_manifest, "r", encoding="utf-8") as f_preds, open(
cfg.errors_file, "w", encoding="utf-8"
) as f_errors:
for line in f_preds:
line = json.loads(line)
predictions = line["pred_wordid"]
# run evaluation if target word_id is available in the input manifest
if "word_id" in line:
targets = line["word_id"]
if isinstance(targets, str):
targets = [targets]
for idx, target_ in enumerate(targets):
total += 1
if idx >= len(predictions) or target_ != predictions[idx]:
f_errors.write(f"INPUT: {line[cfg.grapheme_field]}\n")
f_errors.write(f"PRED : {predictions[idx]} -- GT: {target_}\n")
f_errors.write("===========================\n")
else:
correct += 1
else:
save_errors = False
if save_errors:
logging.info(f"Accuracy: {round(correct / total * 100, 2)}% ({total - correct} errors out of {total})")
logging.info(f"Errors saved at {cfg.errors_file}")
else:
logging.info("No 'word_id' values found, skipping evaluation.")
if os.path.exists(cfg.errors_file):
os.remove(cfg.errors_file)
else:
print('Entering interactive mode.')
done = False
while not done:
print('Type "STOP" to exit.')
test_input = input('Input a test input:')
if test_input == "STOP":
done = True
if not done:
with torch.no_grad():
_, sentences = model.disambiguate(
sentences=[test_input],
batch_size=1,
num_workers=cfg.num_workers,
wordid_to_phonemes_file=cfg.wordid_to_phonemes_file,
)
print(sentences[0])
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter