File size: 7,551 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
from dataclasses import dataclass, is_dataclass
from typing import Optional

import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf

from nemo.collections.tts.models.g2p_heteronym_classification import HeteronymClassificationModel
from nemo.core.config import hydra_runner
from nemo.utils import logging

"""
This script runs inference with HeteronymClassificationModel
If the input manifest contains target "word_id", evaluation will be also performed.

To prepare dataset, see NeMo/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py

Inference form manifest:

python g2p_heteronym_classification_inference.py \
    manifest="<Path to .json manifest>" \
    pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \
    output_manifest="<Path to .json manifest to save prediction>" \
    wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>"

Interactive inference:

python g2p_heteronym_classification_inference.py \
    pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \
    wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>" # Optional
        
"""


@dataclass
class TranscriptionConfig:
    # Required configs
    pretrained_model: str  # Path to a .nemo file or Name of a pretrained model

    # path to .json manifest inference, if not provided, interactive mode will be enabled
    manifest: Optional[str] = None  # Path to .json manifest
    output_manifest: Optional[
        str
    ] = "predictions.json"  # Path to .json manifest to save prediction, will be saved in "pred_text" field
    grapheme_field: str = "text_graphemes"  # name of the field in .json manifest for input grapheme text

    # mapping from wordid predicted by the model to phonemes, e.g.,
    # "../../../scripts/tts_dataset_files/wordid_to_ipa-0.7b_nv22.10.tsv"
    wordid_to_phonemes_file: Optional[str] = None

    # if "word_id" targets are present in the manifest, evaluation will be performed and errors will be saved in errors_file
    errors_file: Optional[str] = None  # path to a file to save prediction errors
    batch_size: int = 32
    num_workers: int = 0


@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if is_dataclass(cfg):
        cfg = OmegaConf.structured(cfg)

    if not cfg.pretrained_model:
        raise ValueError(
            'To run evaluation and inference script a pre-trained model or .nemo file must be provided.'
            f'Choose from {HeteronymClassificationModel.list_available_models()} or "pretrained_model"="your_model.nemo"'
        )

    logging.info(
        'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \
			no DDP to obtain accurate results'
    )

    # setup GPU
    if torch.cuda.is_available():
        device = [0]  # use 0th CUDA device
        accelerator = 'gpu'
    else:
        device = 1
        accelerator = 'cpu'

    map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
    trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False)

    if os.path.exists(cfg.pretrained_model):
        model = HeteronymClassificationModel.restore_from(cfg.pretrained_model, map_location=map_location)
    elif cfg.pretrained_model in HeteronymClassificationModel.get_available_model_names():
        model = HeteronymClassificationModel.from_pretrained(cfg.pretrained_model, map_location=map_location)
    else:
        raise ValueError(
            f'Provide path to the pre-trained .nemo checkpoint or choose from {HeteronymClassificationModel.list_available_models()}'
        )
    model.set_trainer(trainer)
    model = model.eval()

    logging.info(f'Config Params: {model._cfg}')

    if cfg.manifest is not None:
        if not os.path.exists(cfg.manifest):
            raise ValueError(f"{cfg.manifest} not found.")
        with torch.no_grad():
            model.disambiguate_manifest(
                manifest=cfg.manifest,
                output_manifest=cfg.output_manifest,
                grapheme_field=cfg.grapheme_field,
                batch_size=cfg.batch_size,
                num_workers=cfg.num_workers,
            )

        # save predictions to a file
        if cfg.errors_file is None:
            cfg.errors_file = cfg.output_manifest.replace(".json", "_errors.txt")

        save_errors = True
        correct = 0
        total = 0
        with open(cfg.output_manifest, "r", encoding="utf-8") as f_preds, open(
            cfg.errors_file, "w", encoding="utf-8"
        ) as f_errors:
            for line in f_preds:
                line = json.loads(line)
                predictions = line["pred_wordid"]
                # run evaluation if target word_id is available in the input manifest
                if "word_id" in line:
                    targets = line["word_id"]
                    if isinstance(targets, str):
                        targets = [targets]
                    for idx, target_ in enumerate(targets):
                        total += 1
                        if idx >= len(predictions) or target_ != predictions[idx]:
                            f_errors.write(f"INPUT: {line[cfg.grapheme_field]}\n")
                            f_errors.write(f"PRED : {predictions[idx]} -- GT: {target_}\n")
                            f_errors.write("===========================\n")
                        else:
                            correct += 1
                else:
                    save_errors = False
        if save_errors:
            logging.info(f"Accuracy: {round(correct / total * 100, 2)}% ({total - correct} errors out of {total})")
            logging.info(f"Errors saved at {cfg.errors_file}")
        else:
            logging.info("No 'word_id' values found, skipping evaluation.")
            if os.path.exists(cfg.errors_file):
                os.remove(cfg.errors_file)
    else:
        print('Entering interactive mode.')
        done = False
        while not done:
            print('Type "STOP" to exit.')
            test_input = input('Input a test input:')
            if test_input == "STOP":
                done = True
            if not done:
                with torch.no_grad():
                    _, sentences = model.disambiguate(
                        sentences=[test_input],
                        batch_size=1,
                        num_workers=cfg.num_workers,
                        wordid_to_phonemes_file=cfg.wordid_to_phonemes_file,
                    )
                    print(sentences[0])


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter