NeMo / examples /asr /audio_to_audio /process_audio.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import glob
import json
import os
from dataclasses import dataclass, is_dataclass
from pathlib import Path
from typing import List, Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.models import AudioToAudioModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
"""
Process audio file on a single CPU/GPU. Useful for processing of moderate amounts of audio data.
# Arguments
model_path: path to .nemo checkpoint for an AudioToAudioModel
pretrained_name: name of a pretrained AudioToAudioModel model (from NGC registry)
audio_dir: path to directory with audio files
dataset_manifest: path to dataset JSON manifest file (in NeMo format)
input_channel_selector: list of channels to take from audio files, defaults to `None` and takes all available channels
input_key: key for audio filepath in the manifest file, defaults to `audio_filepath`
output_dir: Directory where processed files will be saved
output_filename: Output filename where manifest pointing to processed files will be written
batch_size: batch size during inference
cuda: Optional int to enable or disable execution of model on certain CUDA device.
amp: Bool to decide if Automatic Mixed Precision should be used during inference
audio_type: Str filetype of the audio. Supported = wav, flac, mp3
overwrite_output: Bool which when set allowes repeated processing runs to overwrite previous results.
# Usage
AudioToAudioModel can be specified by either `model_path` or `pretrained_name`.
Data for processing can be defined with either `audio_dir` or `dataset_manifest`.
Processed audio is saved in `output_dir`, and a manifest for processed files is saved
in `output_filename`.
```
python process_audio.py \
model_path=null \
pretrained_name=null \
audio_dir="" \
dataset_manifest="" \
input_channel_selector=[] \
output_dir="" \
output_filename="" \
batch_size=1 \
cuda=0 \
amp=True
```
"""
@dataclass
class ProcessConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
# Audio configs
input_channel_selector: Optional[List] = None # Union types not supported Optional[Union[List, int]]
input_key: Optional[str] = None # Can be used with a manifest
# General configs
output_dir: Optional[str] = None
output_filename: Optional[str] = None
batch_size: int = 1
num_workers: int = 0
# Override model config
override_config_path: Optional[str] = None # path to a yaml config that will override the internal config file
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
# device anyway, and do inference on CPU only if CUDA device is not found.
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
amp: bool = False
audio_type: str = "wav"
# Recompute model predictions, even if the output folder exists.
overwrite_output: bool = False
@hydra_runner(config_name="ProcessConfig", schema=ProcessConfig)
def main(cfg: ProcessConfig) -> ProcessConfig:
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# setup GPU
if cfg.cuda is None:
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
else:
device = [cfg.cuda]
accelerator = 'gpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
# setup model
if cfg.model_path is not None:
# restore model from .nemo file path
model_cfg = AudioToAudioModel.restore_from(restore_path=cfg.model_path, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath) # type: AudioToAudioModel
logging.info(f"Restoring model : {imported_class.__name__}")
audio_to_audio_model = imported_class.restore_from(
restore_path=cfg.model_path, override_config_path=cfg.override_config_path, map_location=map_location
) # type: AudioToAudioModel
model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
else:
# restore model by name
audio_to_audio_model = AudioToAudioModel.from_pretrained(
model_name=cfg.pretrained_name, map_location=map_location
) # type: AudioToAudioModel
model_name = cfg.pretrained_name
trainer = pl.Trainer(devices=device, accelerator=accelerator)
audio_to_audio_model.set_trainer(trainer)
audio_to_audio_model = audio_to_audio_model.eval()
if cfg.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
else:
# get filenames from manifest
filepaths = []
if os.stat(cfg.dataset_manifest).st_size == 0:
raise RuntimeError(f"The input dataset_manifest {cfg.dataset_manifest} is empty.")
input_key = 'audio_filepath' if cfg.input_key is None else cfg.input_key
manifest_dir = Path(cfg.dataset_manifest).parent
with open(cfg.dataset_manifest, 'r') as f:
for line in f:
item = json.loads(line)
audio_file = Path(item[input_key])
if not audio_file.is_file() and not audio_file.is_absolute():
audio_file = manifest_dir / audio_file
filepaths.append(str(audio_file.absolute()))
logging.info(f"\nProcessing {len(filepaths)} files...\n")
# setup AMP (optional)
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP enabled!\n")
autocast = torch.cuda.amp.autocast
else:
@contextlib.contextmanager
def autocast():
yield
# Compute output filename
if cfg.output_dir is None:
# create default output filename
if cfg.audio_dir is not None:
cfg.output_dir = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + f'_processed_{model_name}'
else:
cfg.output_dir = os.path.dirname(cfg.dataset_manifest) + f'_processed_{model_name}'
# Compute output filename
if cfg.output_filename is None:
# create default output filename
cfg.output_filename = cfg.output_dir.rstrip('/') + '_manifest.json'
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
if not cfg.overwrite_output and os.path.exists(cfg.output_dir):
raise RuntimeError(
f"Previous output found at {cfg.output_dir}, and flag `overwrite_output`"
f"is {cfg.overwrite_output}. Returning without processing."
)
# Process audio
with autocast():
with torch.no_grad():
paths2processed_files = audio_to_audio_model.process(
paths2audio_files=filepaths,
output_dir=cfg.output_dir,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
input_channel_selector=cfg.input_channel_selector,
)
logging.info(f"Finished processing {len(filepaths)} files!")
logging.info(f"Processed audio is available in the output directory: {cfg.output_dir}")
# Prepare new/updated manifest with a new key for processed audio
with open(cfg.output_filename, 'w', encoding='utf-8') as f:
if cfg.dataset_manifest is not None:
with open(cfg.dataset_manifest, 'r') as fr:
for idx, line in enumerate(fr):
item = json.loads(line)
item['processed_audio_filepath'] = paths2processed_files[idx]
f.write(json.dumps(item) + "\n")
else:
for idx, processed_file in enumerate(paths2processed_files):
item = {'processed_audio_filepath': processed_file}
f.write(json.dumps(item) + "\n")
return cfg
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter