File size: 9,494 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import glob
import json
import os
from dataclasses import dataclass, is_dataclass
from pathlib import Path
from typing import List, Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.models import AudioToAudioModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
"""
Process audio file on a single CPU/GPU. Useful for processing of moderate amounts of audio data.
# Arguments
model_path: path to .nemo checkpoint for an AudioToAudioModel
pretrained_name: name of a pretrained AudioToAudioModel model (from NGC registry)
audio_dir: path to directory with audio files
dataset_manifest: path to dataset JSON manifest file (in NeMo format)
input_channel_selector: list of channels to take from audio files, defaults to `None` and takes all available channels
input_key: key for audio filepath in the manifest file, defaults to `audio_filepath`
output_dir: Directory where processed files will be saved
output_filename: Output filename where manifest pointing to processed files will be written
batch_size: batch size during inference
cuda: Optional int to enable or disable execution of model on certain CUDA device.
amp: Bool to decide if Automatic Mixed Precision should be used during inference
audio_type: Str filetype of the audio. Supported = wav, flac, mp3
overwrite_output: Bool which when set allowes repeated processing runs to overwrite previous results.
# Usage
AudioToAudioModel can be specified by either `model_path` or `pretrained_name`.
Data for processing can be defined with either `audio_dir` or `dataset_manifest`.
Processed audio is saved in `output_dir`, and a manifest for processed files is saved
in `output_filename`.
```
python process_audio.py \
model_path=null \
pretrained_name=null \
audio_dir="" \
dataset_manifest="" \
input_channel_selector=[] \
output_dir="" \
output_filename="" \
batch_size=1 \
cuda=0 \
amp=True
```
"""
@dataclass
class ProcessConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
# Audio configs
input_channel_selector: Optional[List] = None # Union types not supported Optional[Union[List, int]]
input_key: Optional[str] = None # Can be used with a manifest
# General configs
output_dir: Optional[str] = None
output_filename: Optional[str] = None
batch_size: int = 1
num_workers: int = 0
# Override model config
override_config_path: Optional[str] = None # path to a yaml config that will override the internal config file
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
# device anyway, and do inference on CPU only if CUDA device is not found.
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
amp: bool = False
audio_type: str = "wav"
# Recompute model predictions, even if the output folder exists.
overwrite_output: bool = False
@hydra_runner(config_name="ProcessConfig", schema=ProcessConfig)
def main(cfg: ProcessConfig) -> ProcessConfig:
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# setup GPU
if cfg.cuda is None:
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
else:
device = [cfg.cuda]
accelerator = 'gpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
# setup model
if cfg.model_path is not None:
# restore model from .nemo file path
model_cfg = AudioToAudioModel.restore_from(restore_path=cfg.model_path, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath) # type: AudioToAudioModel
logging.info(f"Restoring model : {imported_class.__name__}")
audio_to_audio_model = imported_class.restore_from(
restore_path=cfg.model_path, override_config_path=cfg.override_config_path, map_location=map_location
) # type: AudioToAudioModel
model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
else:
# restore model by name
audio_to_audio_model = AudioToAudioModel.from_pretrained(
model_name=cfg.pretrained_name, map_location=map_location
) # type: AudioToAudioModel
model_name = cfg.pretrained_name
trainer = pl.Trainer(devices=device, accelerator=accelerator)
audio_to_audio_model.set_trainer(trainer)
audio_to_audio_model = audio_to_audio_model.eval()
if cfg.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
else:
# get filenames from manifest
filepaths = []
if os.stat(cfg.dataset_manifest).st_size == 0:
raise RuntimeError(f"The input dataset_manifest {cfg.dataset_manifest} is empty.")
input_key = 'audio_filepath' if cfg.input_key is None else cfg.input_key
manifest_dir = Path(cfg.dataset_manifest).parent
with open(cfg.dataset_manifest, 'r') as f:
for line in f:
item = json.loads(line)
audio_file = Path(item[input_key])
if not audio_file.is_file() and not audio_file.is_absolute():
audio_file = manifest_dir / audio_file
filepaths.append(str(audio_file.absolute()))
logging.info(f"\nProcessing {len(filepaths)} files...\n")
# setup AMP (optional)
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP enabled!\n")
autocast = torch.cuda.amp.autocast
else:
@contextlib.contextmanager
def autocast():
yield
# Compute output filename
if cfg.output_dir is None:
# create default output filename
if cfg.audio_dir is not None:
cfg.output_dir = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + f'_processed_{model_name}'
else:
cfg.output_dir = os.path.dirname(cfg.dataset_manifest) + f'_processed_{model_name}'
# Compute output filename
if cfg.output_filename is None:
# create default output filename
cfg.output_filename = cfg.output_dir.rstrip('/') + '_manifest.json'
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
if not cfg.overwrite_output and os.path.exists(cfg.output_dir):
raise RuntimeError(
f"Previous output found at {cfg.output_dir}, and flag `overwrite_output`"
f"is {cfg.overwrite_output}. Returning without processing."
)
# Process audio
with autocast():
with torch.no_grad():
paths2processed_files = audio_to_audio_model.process(
paths2audio_files=filepaths,
output_dir=cfg.output_dir,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
input_channel_selector=cfg.input_channel_selector,
)
logging.info(f"Finished processing {len(filepaths)} files!")
logging.info(f"Processed audio is available in the output directory: {cfg.output_dir}")
# Prepare new/updated manifest with a new key for processed audio
with open(cfg.output_filename, 'w', encoding='utf-8') as f:
if cfg.dataset_manifest is not None:
with open(cfg.dataset_manifest, 'r') as fr:
for idx, line in enumerate(fr):
item = json.loads(line)
item['processed_audio_filepath'] = paths2processed_files[idx]
f.write(json.dumps(item) + "\n")
else:
for idx, processed_file in enumerate(paths2processed_files):
item = {'processed_audio_filepath': processed_file}
f.write(json.dumps(item) + "\n")
return cfg
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|