File size: 9,494 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import glob
import json
import os
from dataclasses import dataclass, is_dataclass
from pathlib import Path
from typing import List, Optional

import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf

from nemo.collections.asr.models import AudioToAudioModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils


"""
Process audio file on a single CPU/GPU. Useful for processing of moderate amounts of audio data.

# Arguments
    model_path: path to .nemo checkpoint for an AudioToAudioModel
    pretrained_name: name of a pretrained AudioToAudioModel model (from NGC registry)
    audio_dir: path to directory with audio files
    dataset_manifest: path to dataset JSON manifest file (in NeMo format)

    input_channel_selector: list of channels to take from audio files, defaults to `None` and takes all available channels
    input_key: key for audio filepath in the manifest file, defaults to `audio_filepath`

    output_dir: Directory where processed files will be saved
    output_filename: Output filename where manifest pointing to processed files will be written
    batch_size: batch size during inference

    cuda: Optional int to enable or disable execution of model on certain CUDA device.
    amp: Bool to decide if Automatic Mixed Precision should be used during inference
    audio_type: Str filetype of the audio. Supported = wav, flac, mp3

    overwrite_output: Bool which when set allowes repeated processing runs to overwrite previous results.

# Usage
AudioToAudioModel can be specified by either `model_path` or `pretrained_name`.
Data for processing can be defined with either `audio_dir` or `dataset_manifest`.
Processed audio is saved in `output_dir`, and a manifest for processed files is saved
in `output_filename`.

```
python process_audio.py \
    model_path=null \
    pretrained_name=null \
    audio_dir="" \
    dataset_manifest="" \
    input_channel_selector=[] \
    output_dir="" \
    output_filename="" \
    batch_size=1 \
    cuda=0 \
    amp=True
```
"""


@dataclass
class ProcessConfig:
    # Required configs
    model_path: Optional[str] = None  # Path to a .nemo file
    pretrained_name: Optional[str] = None  # Name of a pretrained model
    audio_dir: Optional[str] = None  # Path to a directory which contains audio files
    dataset_manifest: Optional[str] = None  # Path to dataset's JSON manifest

    # Audio configs
    input_channel_selector: Optional[List] = None  # Union types not supported Optional[Union[List, int]]
    input_key: Optional[str] = None  # Can be used with a manifest

    # General configs
    output_dir: Optional[str] = None
    output_filename: Optional[str] = None
    batch_size: int = 1
    num_workers: int = 0

    # Override model config
    override_config_path: Optional[str] = None  # path to a yaml config that will override the internal config file

    # Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
    # device anyway, and do inference on CPU only if CUDA device is not found.
    # If `cuda` is a negative number, inference will be on CPU only.
    cuda: Optional[int] = None
    amp: bool = False
    audio_type: str = "wav"

    # Recompute model predictions, even if the output folder exists.
    overwrite_output: bool = False


@hydra_runner(config_name="ProcessConfig", schema=ProcessConfig)
def main(cfg: ProcessConfig) -> ProcessConfig:
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if is_dataclass(cfg):
        cfg = OmegaConf.structured(cfg)

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
    if cfg.audio_dir is None and cfg.dataset_manifest is None:
        raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")

    # setup GPU
    if cfg.cuda is None:
        if torch.cuda.is_available():
            device = [0]  # use 0th CUDA device
            accelerator = 'gpu'
        else:
            device = 1
            accelerator = 'cpu'
    else:
        device = [cfg.cuda]
        accelerator = 'gpu'

    map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')

    # setup model
    if cfg.model_path is not None:
        # restore model from .nemo file path
        model_cfg = AudioToAudioModel.restore_from(restore_path=cfg.model_path, return_config=True)
        classpath = model_cfg.target  # original class path
        imported_class = model_utils.import_class_by_path(classpath)  # type: AudioToAudioModel
        logging.info(f"Restoring model : {imported_class.__name__}")
        audio_to_audio_model = imported_class.restore_from(
            restore_path=cfg.model_path, override_config_path=cfg.override_config_path, map_location=map_location
        )  # type: AudioToAudioModel
        model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
    else:
        # restore model by name
        audio_to_audio_model = AudioToAudioModel.from_pretrained(
            model_name=cfg.pretrained_name, map_location=map_location
        )  # type: AudioToAudioModel
        model_name = cfg.pretrained_name

    trainer = pl.Trainer(devices=device, accelerator=accelerator)
    audio_to_audio_model.set_trainer(trainer)
    audio_to_audio_model = audio_to_audio_model.eval()

    if cfg.audio_dir is not None:
        filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
    else:
        # get filenames from manifest
        filepaths = []
        if os.stat(cfg.dataset_manifest).st_size == 0:
            raise RuntimeError(f"The input dataset_manifest {cfg.dataset_manifest} is empty.")

        input_key = 'audio_filepath' if cfg.input_key is None else cfg.input_key
        manifest_dir = Path(cfg.dataset_manifest).parent
        with open(cfg.dataset_manifest, 'r') as f:
            for line in f:
                item = json.loads(line)
                audio_file = Path(item[input_key])
                if not audio_file.is_file() and not audio_file.is_absolute():
                    audio_file = manifest_dir / audio_file
                filepaths.append(str(audio_file.absolute()))

    logging.info(f"\nProcessing {len(filepaths)} files...\n")

    # setup AMP (optional)
    if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
        logging.info("AMP enabled!\n")
        autocast = torch.cuda.amp.autocast
    else:

        @contextlib.contextmanager
        def autocast():
            yield

    # Compute output filename
    if cfg.output_dir is None:
        # create default output filename
        if cfg.audio_dir is not None:
            cfg.output_dir = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + f'_processed_{model_name}'
        else:
            cfg.output_dir = os.path.dirname(cfg.dataset_manifest) + f'_processed_{model_name}'

    # Compute output filename
    if cfg.output_filename is None:
        # create default output filename
        cfg.output_filename = cfg.output_dir.rstrip('/') + '_manifest.json'

    # if transcripts should not be overwritten, and already exists, skip re-transcription step and return
    if not cfg.overwrite_output and os.path.exists(cfg.output_dir):
        raise RuntimeError(
            f"Previous output found at {cfg.output_dir}, and flag `overwrite_output`"
            f"is {cfg.overwrite_output}. Returning without processing."
        )

    # Process audio
    with autocast():
        with torch.no_grad():
            paths2processed_files = audio_to_audio_model.process(
                paths2audio_files=filepaths,
                output_dir=cfg.output_dir,
                batch_size=cfg.batch_size,
                num_workers=cfg.num_workers,
                input_channel_selector=cfg.input_channel_selector,
            )

    logging.info(f"Finished processing {len(filepaths)} files!")
    logging.info(f"Processed audio is available in the output directory: {cfg.output_dir}")

    # Prepare new/updated manifest with a new key for processed audio
    with open(cfg.output_filename, 'w', encoding='utf-8') as f:
        if cfg.dataset_manifest is not None:
            with open(cfg.dataset_manifest, 'r') as fr:
                for idx, line in enumerate(fr):
                    item = json.loads(line)
                    item['processed_audio_filepath'] = paths2processed_files[idx]
                    f.write(json.dumps(item) + "\n")
        else:
            for idx, processed_file in enumerate(paths2processed_files):
                item = {'processed_audio_filepath': processed_file}
                f.write(json.dumps(item) + "\n")

    return cfg


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter