ModernBERT-large-roman-urdu-binary

This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3226
  • Accuracy: 0.8832
  • Precision: 0.8841
  • Recall: 0.8857
  • F1: 0.8831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5453 0.9933 112 0.3860 0.8277 0.8311 0.8314 0.8277
1.0577 1.9933 224 0.2918 0.8777 0.8843 0.8731 0.8757
0.6143 2.9933 336 0.3023 0.8876 0.8871 0.8888 0.8874
0.2438 3.9933 448 0.6792 0.8652 0.8714 0.8606 0.8630
0.063 4.9933 560 0.7500 0.8789 0.8817 0.8758 0.8776
0.052 5.9933 672 0.8892 0.8777 0.8832 0.8735 0.8758
0.0005 6.9933 784 0.9423 0.8801 0.8863 0.8758 0.8783
0.0002 7.9933 896 0.8404 0.8752 0.8777 0.8722 0.8738
0.0 8.9933 1008 0.8774 0.8777 0.8823 0.8738 0.8760
0.0 9.9933 1120 0.8828 0.8777 0.8823 0.8738 0.8760

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for callmesan/ModernBERT-large-roman-urdu-binary

Finetuned
(105)
this model