See axolotl config
axolotl version: 0.4.1
# Upload the final model to Huggingface
hub_model_id: byvuong/tinyllama-1.1B_alpaca_2k_lora
# Store the training logs in weights and biases
wandb_entity: byvuong-org
wandb_project: tinyllama-1.1B_alpaca_2k_lora
# The rest of this config stays the same:
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
tinyllama-1.1B_alpaca_2k_lora
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2133
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4613 | 0.0784 | 1 | 1.4899 |
1.385 | 0.2353 | 3 | 1.4862 |
1.3665 | 0.4706 | 6 | 1.4402 |
1.2691 | 0.7059 | 9 | 1.3409 |
1.2269 | 0.9412 | 12 | 1.2944 |
1.2531 | 1.1569 | 15 | 1.2793 |
1.2266 | 1.3922 | 18 | 1.2552 |
1.136 | 1.6275 | 21 | 1.2342 |
1.2704 | 1.8627 | 24 | 1.2297 |
1.1491 | 2.0784 | 27 | 1.2232 |
1.1515 | 2.3137 | 30 | 1.2230 |
1.195 | 2.5490 | 33 | 1.2190 |
1.1126 | 2.7843 | 36 | 1.2178 |
1.1511 | 3.0196 | 39 | 1.2138 |
1.1888 | 3.2353 | 42 | 1.2105 |
1.1008 | 3.4706 | 45 | 1.2118 |
1.1896 | 3.7059 | 48 | 1.2133 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support