Text Generation
Transformers
PyTorch
chatts
feature-extraction
conversational
custom_code
xiezhe24 lbourdois commited on
Commit
877dae2
·
verified ·
1 Parent(s): 0506b43

Improve language tag (#11)

Browse files

- Improve language tag (a0b6e3219754a89bcbeff49effa5aece89e465dd)


Co-authored-by: Loïck BOURDOIS <[email protected]>

Files changed (1) hide show
  1. README.md +91 -77
README.md CHANGED
@@ -1,78 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- library_name: transformers
4
- pipeline_tag: text-generation
5
- base_model:
6
- - Qwen/Qwen2.5-14B-Instruct
7
- datasets:
8
- - ChatTSRepo/ChatTS-Training-Dataset
9
- ---
10
-
11
- # [VLDB' 25] ChatTS-14B Model
12
-
13
- <div style="display:flex;justify-content: center">
14
- <a href="https://github.com/NetmanAIOps/ChatTS"><img alt="github" src="https://img.shields.io/badge/Code-GitHub-blue"></a>
15
- <a href="https://arxiv.org/abs/2412.03104"><img alt="preprint" src="https://img.shields.io/static/v1?label=arXiv&amp;message=2412.03104&amp;color=B31B1B&amp;logo=arXiv"></a>
16
- </div>
17
-
18
- **[VLDB' 25] ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning**
19
-
20
- `ChatTS` focuses on **Understanding and Reasoning** about time series, much like what vision/video/audio-MLLMs do.
21
- This repo provides code, datasets and model for `ChatTS`: [ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning](https://arxiv.org/pdf/2412.03104).
22
-
23
- `ChatTS` features native support for multi-variate time series data with any length and range of values. With `ChatTS`, you can easily understand and reason about both the **shape** features and **value** features in the time series.
24
- `ChatTS` can also be integrated into existing LLM pipelines for more time series-related applications, leveraging existing inference frameworks such as `vLLMs`.
25
-
26
- Here is an example of a ChatTS application, which allows users to interact with a LLM to understand and reason about time series data:
27
- ![Chat](figures/chat_example.png)
28
-
29
- [Link to the paper](https://arxiv.org/pdf/2412.03104)
30
-
31
- [Link to the Github repository](https://github.com/NetManAIOps/ChatTS)
32
-
33
- ## Usage
34
- - This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
35
- - An example usage of ChatTS (with `HuggingFace`):
36
- ```python
37
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
38
- import torch
39
- import numpy as np
40
-
41
- # Load the model, tokenizer and processor
42
- model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map="auto", torch_dtype='float16')
43
- tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True)
44
- processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer)
45
- # Create time series and prompts
46
- timeseries = np.sin(np.arange(256) / 10) * 5.0
47
- timeseries[100:] -= 10.0
48
- prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
49
- # Apply Chat Template
50
- prompt = f"<|im_start|>system
51
- You are a helpful assistant.<|im_end|><|im_start|>user
52
- {prompt}<|im_end|><|im_start|>assistant
53
- "
54
- # Convert to tensor
55
- inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
56
- # Model Generate
57
- outputs = model.generate(**inputs, max_new_tokens=300)
58
- print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True))
59
- ```
60
-
61
- ## Reference
62
- - QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
63
- - transformers (https://github.com/huggingface/transformers.git)
64
- - [ChatTS Paper](https://arxiv.org/pdf/2412.03104)
65
-
66
-
67
- ## License
68
- This model is licensed under the [Apache License 2.0](LICENSE).
69
-
70
- ## Cite
71
- ```
72
- @article{xie2024chatts,
73
- title={ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning},
74
- author={Xie, Zhe and Li, Zeyan and He, Xiao and Xu, Longlong and Wen, Xidao and Zhang, Tieying and Chen, Jianjun and Shi, Rui and Pei, Dan},
75
- journal={arXiv preprint arXiv:2412.03104},
76
- year={2024}
77
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ base_model:
6
+ - Qwen/Qwen2.5-14B-Instruct
7
+ datasets:
8
+ - ChatTSRepo/ChatTS-Training-Dataset
9
+ language:
10
+ - zho
11
+ - eng
12
+ - fra
13
+ - spa
14
+ - por
15
+ - deu
16
+ - ita
17
+ - rus
18
+ - jpn
19
+ - kor
20
+ - vie
21
+ - tha
22
+ - ara
23
+ ---
24
+
25
+ # [VLDB' 25] ChatTS-14B Model
26
+
27
+ <div style="display:flex;justify-content: center">
28
+ <a href="https://github.com/NetmanAIOps/ChatTS"><img alt="github" src="https://img.shields.io/badge/Code-GitHub-blue"></a>
29
+ <a href="https://arxiv.org/abs/2412.03104"><img alt="preprint" src="https://img.shields.io/static/v1?label=arXiv&amp;message=2412.03104&amp;color=B31B1B&amp;logo=arXiv"></a>
30
+ </div>
31
+
32
+ **[VLDB' 25] ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning**
33
+
34
+ `ChatTS` focuses on **Understanding and Reasoning** about time series, much like what vision/video/audio-MLLMs do.
35
+ This repo provides code, datasets and model for `ChatTS`: [ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning](https://arxiv.org/pdf/2412.03104).
36
+
37
+ `ChatTS` features native support for multi-variate time series data with any length and range of values. With `ChatTS`, you can easily understand and reason about both the **shape** features and **value** features in the time series.
38
+ `ChatTS` can also be integrated into existing LLM pipelines for more time series-related applications, leveraging existing inference frameworks such as `vLLMs`.
39
+
40
+ Here is an example of a ChatTS application, which allows users to interact with a LLM to understand and reason about time series data:
41
+ ![Chat](figures/chat_example.png)
42
+
43
+ [Link to the paper](https://arxiv.org/pdf/2412.03104)
44
+
45
+ [Link to the Github repository](https://github.com/NetManAIOps/ChatTS)
46
+
47
+ ## Usage
48
+ - This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
49
+ - An example usage of ChatTS (with `HuggingFace`):
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
52
+ import torch
53
+ import numpy as np
54
+
55
+ # Load the model, tokenizer and processor
56
+ model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map="auto", torch_dtype='float16')
57
+ tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True)
58
+ processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer)
59
+ # Create time series and prompts
60
+ timeseries = np.sin(np.arange(256) / 10) * 5.0
61
+ timeseries[100:] -= 10.0
62
+ prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
63
+ # Apply Chat Template
64
+ prompt = f"<|im_start|>system
65
+ You are a helpful assistant.<|im_end|><|im_start|>user
66
+ {prompt}<|im_end|><|im_start|>assistant
67
+ "
68
+ # Convert to tensor
69
+ inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
70
+ # Model Generate
71
+ outputs = model.generate(**inputs, max_new_tokens=300)
72
+ print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True))
73
+ ```
74
+
75
+ ## Reference
76
+ - QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
77
+ - transformers (https://github.com/huggingface/transformers.git)
78
+ - [ChatTS Paper](https://arxiv.org/pdf/2412.03104)
79
+
80
+
81
+ ## License
82
+ This model is licensed under the [Apache License 2.0](LICENSE).
83
+
84
+ ## Cite
85
+ ```
86
+ @article{xie2024chatts,
87
+ title={ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning},
88
+ author={Xie, Zhe and Li, Zeyan and He, Xiao and Xu, Longlong and Wen, Xidao and Zhang, Tieying and Chen, Jianjun and Shi, Rui and Pei, Dan},
89
+ journal={arXiv preprint arXiv:2412.03104},
90
+ year={2024}
91
+ }
92
  ```