ModernBERT-base trained on GooAQ

This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: cross-encoder/ms-marco-MiniLM-L6-v2
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label
  • Language: en
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("ayushexel/reranker-ms-marco-MiniLM-L6-v2-gooaq-bce-500k")
# Get scores for pairs of texts
pairs = [
    ['what are the 50 state mottos?', '[\'Maine. "Dirigo" (\\u200bI direct)\', \'44. California. "\\u200bEureka" (I have found it) ... \', \'Arizona. "Ditat Deus" (\\u200bGod Enriches) ... \', \'Indiana. "The Crossroads of America" ... \', \'Alaska. "North to the Future" ... \', \'Utah. "Industry" ... \', \'Delaware. "Liberty and Independence" ... \', \'Maryland. "Fatti maschii, parole femine" (Manly deeds womanly words) ... \']'],
    ['what does it mean when you have white pee?', 'A milky quality to your urine is typically caused by your body sending an increase in white blood cells to fight an infection. When these white blood exit your body via your urine, the cells mix, and your urine appears cloudy.'],
    ['what does it mean when you have white pee?', 'White balance (WB) is the process of removing unrealistic color casts, so that objects which appear white in person are rendered white in your photo. Proper camera white balance has to take into account the "color temperature" of a light source, which refers to the relative warmth or coolness of white light.'],
    ['what does it mean when you have white pee?', "['Lower abdominal pain.', 'Pain during urination.', 'Frequent urination.', 'Difficulty urinating or interrupted urine flow.', 'Blood in the urine.', 'Cloudy or abnormally dark-colored urine.']"],
    ['what does it mean when you have white pee?', 'Peeps. ... Peeps are marshmallows sold in the United States and Canada that are shaped into chicks, bunnies, and other animals.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what are the 50 state mottos?',
    [
        '[\'Maine. "Dirigo" (\\u200bI direct)\', \'44. California. "\\u200bEureka" (I have found it) ... \', \'Arizona. "Ditat Deus" (\\u200bGod Enriches) ... \', \'Indiana. "The Crossroads of America" ... \', \'Alaska. "North to the Future" ... \', \'Utah. "Industry" ... \', \'Delaware. "Liberty and Independence" ... \', \'Maryland. "Fatti maschii, parole femine" (Manly deeds womanly words) ... \']',
        'A milky quality to your urine is typically caused by your body sending an increase in white blood cells to fight an infection. When these white blood exit your body via your urine, the cells mix, and your urine appears cloudy.',
        'White balance (WB) is the process of removing unrealistic color casts, so that objects which appear white in person are rendered white in your photo. Proper camera white balance has to take into account the "color temperature" of a light source, which refers to the relative warmth or coolness of white light.',
        "['Lower abdominal pain.', 'Pain during urination.', 'Frequent urination.', 'Difficulty urinating or interrupted urine flow.', 'Blood in the urine.', 'Cloudy or abnormally dark-colored urine.']",
        'Peeps. ... Peeps are marshmallows sold in the United States and Canada that are shaped into chicks, bunnies, and other animals.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.5832 (+0.2028)
mrr@10 0.5818 (+0.2114)
ndcg@10 0.6298 (+0.1971)

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.4501 (-0.0395) 0.3711 (+0.1101) 0.3764 (-0.0432)
mrr@10 0.4371 (-0.0404) 0.5112 (+0.0114) 0.3779 (-0.0488)
ndcg@10 0.5122 (-0.0282) 0.3773 (+0.0523) 0.4386 (-0.0621)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.3992 (+0.0091)
mrr@10 0.4421 (-0.0260)
ndcg@10 0.4427 (-0.0127)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,648,749 training samples
  • Columns: question, answer, and label
  • Approximate statistics based on the first 1000 samples:
    question answer label
    type string string int
    details
    • min: 18 characters
    • mean: 43.54 characters
    • max: 83 characters
    • min: 53 characters
    • mean: 248.29 characters
    • max: 400 characters
    • 0: ~86.10%
    • 1: ~13.90%
  • Samples:
    question answer label
    what are the 50 state mottos? ['Maine. "Dirigo" (\u200bI direct)', '44. California. "\u200bEureka" (I have found it) ... ', 'Arizona. "Ditat Deus" (\u200bGod Enriches) ... ', 'Indiana. "The Crossroads of America" ... ', 'Alaska. "North to the Future" ... ', 'Utah. "Industry" ... ', 'Delaware. "Liberty and Independence" ... ', 'Maryland. "Fatti maschii, parole femine" (Manly deeds womanly words) ... '] 1
    what does it mean when you have white pee? A milky quality to your urine is typically caused by your body sending an increase in white blood cells to fight an infection. When these white blood exit your body via your urine, the cells mix, and your urine appears cloudy. 1
    what does it mean when you have white pee? White balance (WB) is the process of removing unrealistic color casts, so that objects which appear white in person are rendered white in your photo. Proper camera white balance has to take into account the "color temperature" of a light source, which refers to the relative warmth or coolness of white light. 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 7
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 12
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 12
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss gooaq-dev_ndcg@10 NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - 0.5865 (+0.1538) 0.6686 (+0.1282) 0.3930 (+0.0680) 0.7599 (+0.2592) 0.6072 (+0.1518)
0.0006 1 2.0734 - - - - -
0.1122 200 1.4177 - - - - -
0.2245 400 0.7296 - - - - -
0.3367 600 0.6662 - - - - -
0.4489 800 0.6445 - - - - -
0.5612 1000 0.621 0.6176 (+0.1849) 0.5862 (+0.0458) 0.4371 (+0.1121) 0.4987 (-0.0020) 0.5073 (+0.0520)
0.6734 1200 0.6122 - - - - -
0.7856 1400 0.6031 - - - - -
0.8979 1600 0.5944 - - - - -
1.0101 1800 0.5846 - - - - -
1.1223 2000 0.5647 0.6222 (+0.1895) 0.5471 (+0.0066) 0.4028 (+0.0778) 0.4703 (-0.0304) 0.4734 (+0.0180)
1.2346 2200 0.5636 - - - - -
1.3468 2400 0.5587 - - - - -
1.4590 2600 0.5543 - - - - -
1.5713 2800 0.5559 - - - - -
1.6835 3000 0.5496 0.6242 (+0.1915) 0.4842 (-0.0563) 0.3852 (+0.0601) 0.4132 (-0.0874) 0.4275 (-0.0279)
1.7957 3200 0.5426 - - - - -
1.9080 3400 0.5422 - - - - -
2.0202 3600 0.5426 - - - - -
2.1324 3800 0.5311 - - - - -
2.2447 4000 0.5267 0.6291 (+0.1963) 0.5247 (-0.0158) 0.3832 (+0.0581) 0.4469 (-0.0538) 0.4516 (-0.0038)
2.3569 4200 0.526 - - - - -
2.4691 4400 0.5255 - - - - -
2.5814 4600 0.5229 - - - - -
2.6936 4800 0.5206 - - - - -
2.8058 5000 0.5196 0.6298 (+0.1971) 0.5122 (-0.0282) 0.3773 (+0.0523) 0.4386 (-0.0621) 0.4427 (-0.0127)
2.9181 5200 0.5261 - - - - -
-1 -1 - 0.6298 (+0.1971) 0.5122 (-0.0282) 0.3773 (+0.0523) 0.4386 (-0.0621) 0.4427 (-0.0127)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.0
  • Sentence Transformers: 4.0.1
  • Transformers: 4.50.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
6
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ayushexel/reranker-ms-marco-MiniLM-L6-v2-gooaq-bce-500k

Evaluation results