Cross-lingual Vocabulary Adaptation for Inference Speeups
Collection
Collection of models for "An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Language Model Inference"
•
113 items
•
Updated
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/bloom-1b1-lapt-ja"
)
tokenizer = AutoTokenizer.from_pretrained(
"bigscience/bloom-1b1"
)
# w/ GPU
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/bloom-1b1-lapt-ja",
device_map="auto",
load_in_8bit=True,
)
@article{yamaguchi2024empirical,
title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
journal={ArXiv},
year={2024},
volume={abs/2402.10712},
url={https://arxiv.org/abs/2402.10712}
}
For more details, please visit https://github.com/gucci-j/llm-cva