Add/Update generated README.md
Browse files
README.md
CHANGED
@@ -6,8 +6,9 @@ tags:
|
|
6 |
- generated-by-script
|
7 |
- peft # Assume PEFT adapter unless explicitly a full model repo
|
8 |
- image-captioning # Add more specific task tags if applicable
|
9 |
-
base_model:
|
10 |
-
- microsoft/git-base # Heuristic guess for
|
|
|
11 |
---
|
12 |
|
13 |
# Model: ashimdahal/microsoft-git-base_microsoft-git-base
|
@@ -24,7 +25,7 @@ https://github.com/ashimdahal/captioning_image/blob/main
|
|
24 |
|
25 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
26 |
|
27 |
-
## How to Use (Example with PEFT)
|
28 |
|
29 |
```python
|
30 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
@@ -33,7 +34,7 @@ import torch
|
|
33 |
|
34 |
# --- Configuration ---
|
35 |
# 1. Specify the EXACT base model identifiers used during training
|
36 |
-
|
37 |
base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
38 |
|
39 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
@@ -47,9 +48,11 @@ processor = AutoProcessor.from_pretrained(base_processor_id)
|
|
47 |
base_model = Blip2ForConditionalGeneration.from_pretrained(
|
48 |
base_model_id,
|
49 |
torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
50 |
-
|
51 |
# Or for other model types:
|
52 |
base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
|
|
|
|
53 |
|
54 |
# --- Load PEFT Adapter ---
|
55 |
# Load the adapter config and merge the adapter weights into the base model
|
@@ -60,16 +63,15 @@ model.eval() # Set model to evaluation mode
|
|
60 |
# --- Inference Example ---
|
61 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
62 |
model.to(device)
|
63 |
-
|
64 |
image = ... # Load your image (e.g., using PIL)
|
65 |
text = "a photo of" # Optional prompt start
|
66 |
-
|
67 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
68 |
|
69 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
70 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
71 |
print(f"Generated Caption: {{generated_text}}")
|
72 |
-
|
73 |
```
|
74 |
|
75 |
*More model-specific documentation, evaluation results, and usage examples should be added here.*
|
|
|
6 |
- generated-by-script
|
7 |
- peft # Assume PEFT adapter unless explicitly a full model repo
|
8 |
- image-captioning # Add more specific task tags if applicable
|
9 |
+
base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator
|
10 |
+
# - microsoft/git-base # Heuristic guess for processor, VERIFY MANUALLY
|
11 |
+
# - microsoft/git-base # Heuristic guess for decoder, VERIFY MANUALLY
|
12 |
---
|
13 |
|
14 |
# Model: ashimdahal/microsoft-git-base_microsoft-git-base
|
|
|
25 |
|
26 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
27 |
|
28 |
+
## How to Use (Example with PEFT)
|
29 |
|
30 |
```python
|
31 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
|
|
34 |
|
35 |
# --- Configuration ---
|
36 |
# 1. Specify the EXACT base model identifiers used during training
|
37 |
+
base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID
|
38 |
base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
39 |
|
40 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
|
|
48 |
base_model = Blip2ForConditionalGeneration.from_pretrained(
|
49 |
base_model_id,
|
50 |
torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
51 |
+
)
|
52 |
# Or for other model types:
|
53 |
base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
54 |
+
base_model = AutoModelForCausalLM
|
55 |
+
......
|
56 |
|
57 |
# --- Load PEFT Adapter ---
|
58 |
# Load the adapter config and merge the adapter weights into the base model
|
|
|
63 |
# --- Inference Example ---
|
64 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
model.to(device)
|
66 |
+
|
67 |
image = ... # Load your image (e.g., using PIL)
|
68 |
text = "a photo of" # Optional prompt start
|
69 |
+
|
70 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
71 |
|
72 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
73 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
74 |
print(f"Generated Caption: {{generated_text}}")
|
|
|
75 |
```
|
76 |
|
77 |
*More model-specific documentation, evaluation results, and usage examples should be added here.*
|