Add/Update generated README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ https://github.com/ashimdahal/captioning_image/blob/main
|
|
24 |
|
25 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
26 |
|
27 |
-
## How to Use (Example with PEFT)
|
28 |
|
29 |
```python
|
30 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
@@ -34,41 +34,41 @@ import torch
|
|
34 |
# --- Configuration ---
|
35 |
# 1. Specify the EXACT base model identifiers used during training
|
36 |
# base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID
|
37 |
-
|
38 |
|
39 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
40 |
-
|
41 |
|
42 |
# --- Load Base Model and Processor ---
|
43 |
-
|
44 |
|
45 |
# Load the base model (ensure it matches the type used for training)
|
46 |
# Example for BLIP-2 OPT:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
# Or for other model types:
|
52 |
-
|
53 |
|
54 |
# --- Load PEFT Adapter ---
|
55 |
# Load the adapter config and merge the adapter weights into the base model
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
# --- Inference Example ---
|
61 |
-
|
62 |
-
|
63 |
#
|
64 |
-
|
65 |
-
|
66 |
#
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
```
|
74 |
|
|
|
24 |
|
25 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
26 |
|
27 |
+
## How to Use (Example with PEFT)::: This is generated by script and not verified manually so proceed with caution
|
28 |
|
29 |
```python
|
30 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
|
|
34 |
# --- Configuration ---
|
35 |
# 1. Specify the EXACT base model identifiers used during training
|
36 |
# base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID
|
37 |
+
base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
38 |
|
39 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
40 |
+
adapter_repo_id = "ashimdahal/microsoft-git-base_microsoft-git-base"
|
41 |
|
42 |
# --- Load Base Model and Processor ---
|
43 |
+
processor = AutoProcessor.from_pretrained(base_processor_id)
|
44 |
|
45 |
# Load the base model (ensure it matches the type used for training)
|
46 |
# Example for BLIP-2 OPT:
|
47 |
+
base_model = Blip2ForConditionalGeneration.from_pretrained(
|
48 |
+
base_model_id,
|
49 |
+
torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
50 |
+
)
|
51 |
# Or for other model types:
|
52 |
+
base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
53 |
|
54 |
# --- Load PEFT Adapter ---
|
55 |
# Load the adapter config and merge the adapter weights into the base model
|
56 |
+
model = PeftModel.from_pretrained(base_model, adapter_repo_id)
|
57 |
+
model = model.merge_and_unload() # Merge weights for inference (optional but often recommended)
|
58 |
+
model.eval() # Set model to evaluation mode
|
59 |
|
60 |
# --- Inference Example ---
|
61 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
62 |
+
model.to(device)
|
63 |
#
|
64 |
+
image = ... # Load your image (e.g., using PIL)
|
65 |
+
text = "a photo of" # Optional prompt start
|
66 |
#
|
67 |
+
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
68 |
+
|
69 |
+
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
70 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
71 |
+
print(f"Generated Caption: {{generated_text}}")
|
72 |
|
73 |
```
|
74 |
|