ashimdahal commited on
Commit
d4d9732
·
verified ·
1 Parent(s): 297594b

Add/Update generated README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -199
README.md CHANGED
@@ -1,202 +1,75 @@
 
1
  ---
2
- base_model: microsoft/git-base
3
- library_name: peft
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.14.0
 
1
+
2
  ---
3
+ # Auto-generated fields, verify and update as needed
4
+ license: apache-2.0
5
+ tags:
6
+ - generated-by-script
7
+ - peft # Assume PEFT adapter unless explicitly a full model repo
8
+ - image-captioning # Add more specific task tags if applicable
9
+ base_model:
10
+ - microsoft/git-base # Heuristic guess for decoder, VERIFY MANUALLY
11
  ---
12
 
13
+ # Model: ashimdahal/microsoft-git-base_microsoft-git-base
14
+
15
+ This repository contains model artifacts for a run named `microsoft-git-base_microsoft-git-base`, likely a PEFT adapter.
16
+
17
+ ## Training Source
18
+ This model was trained as part of the project/codebase available at:
19
+ https://github.com/ashimdahal/captioning_image/blob/main
20
+
21
+ ## Base Model Information (Heuristic)
22
+ * **Processor/Vision Encoder (Guessed):** `microsoft/git-base`
23
+ * **Decoder/Language Model (Guessed):** `microsoft/git-base`
24
+
25
+ **⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
26
+
27
+ ## How to Use (Example with PEFT)
28
+
29
+ ```python
30
+ from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
31
+ from peft import PeftModel, PeftConfig
32
+ import torch
33
+
34
+ # --- Configuration ---
35
+ # 1. Specify the EXACT base model identifiers used during training
36
+ # base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID
37
+ # base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
38
+
39
+ # 2. Specify the PEFT adapter repository ID (this repo)
40
+ # adapter_repo_id = "ashimdahal/microsoft-git-base_microsoft-git-base"
41
+
42
+ # --- Load Base Model and Processor ---
43
+ # processor = AutoProcessor.from_pretrained(base_processor_id)
44
+
45
+ # Load the base model (ensure it matches the type used for training)
46
+ # Example for BLIP-2 OPT:
47
+ # base_model = Blip2ForConditionalGeneration.from_pretrained(
48
+ # base_model_id,
49
+ # torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
50
+ # )
51
+ # Or for other model types:
52
+ # base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
53
+
54
+ # --- Load PEFT Adapter ---
55
+ # Load the adapter config and merge the adapter weights into the base model
56
+ # model = PeftModel.from_pretrained(base_model, adapter_repo_id)
57
+ # model = model.merge_and_unload() # Merge weights for inference (optional but often recommended)
58
+ # model.eval() # Set model to evaluation mode
59
+
60
+ # --- Inference Example ---
61
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
62
+ # model.to(device)
63
+ #
64
+ # image = ... # Load your image (e.g., using PIL)
65
+ # text = "a photo of" # Optional prompt start
66
+ #
67
+ # inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
68
+ #
69
+ # generated_ids = model.generate(**inputs, max_new_tokens=50)
70
+ # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
71
+ # print(f"Generated Caption: {{generated_text}}")
72
+
73
+ ```
74
+
75
+ *More model-specific documentation, evaluation results, and usage examples should be added here.*