Add/Update generated README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,75 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.14.0
|
|
|
1 |
+
|
2 |
---
|
3 |
+
# Auto-generated fields, verify and update as needed
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- generated-by-script
|
7 |
+
- peft # Assume PEFT adapter unless explicitly a full model repo
|
8 |
+
- image-captioning # Add more specific task tags if applicable
|
9 |
+
base_model:
|
10 |
+
- microsoft/git-base # Heuristic guess for decoder, VERIFY MANUALLY
|
11 |
---
|
12 |
|
13 |
+
# Model: ashimdahal/microsoft-git-base_microsoft-git-base
|
14 |
+
|
15 |
+
This repository contains model artifacts for a run named `microsoft-git-base_microsoft-git-base`, likely a PEFT adapter.
|
16 |
+
|
17 |
+
## Training Source
|
18 |
+
This model was trained as part of the project/codebase available at:
|
19 |
+
https://github.com/ashimdahal/captioning_image/blob/main
|
20 |
+
|
21 |
+
## Base Model Information (Heuristic)
|
22 |
+
* **Processor/Vision Encoder (Guessed):** `microsoft/git-base`
|
23 |
+
* **Decoder/Language Model (Guessed):** `microsoft/git-base`
|
24 |
+
|
25 |
+
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
26 |
+
|
27 |
+
## How to Use (Example with PEFT)
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
31 |
+
from peft import PeftModel, PeftConfig
|
32 |
+
import torch
|
33 |
+
|
34 |
+
# --- Configuration ---
|
35 |
+
# 1. Specify the EXACT base model identifiers used during training
|
36 |
+
# base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID
|
37 |
+
# base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
38 |
+
|
39 |
+
# 2. Specify the PEFT adapter repository ID (this repo)
|
40 |
+
# adapter_repo_id = "ashimdahal/microsoft-git-base_microsoft-git-base"
|
41 |
+
|
42 |
+
# --- Load Base Model and Processor ---
|
43 |
+
# processor = AutoProcessor.from_pretrained(base_processor_id)
|
44 |
+
|
45 |
+
# Load the base model (ensure it matches the type used for training)
|
46 |
+
# Example for BLIP-2 OPT:
|
47 |
+
# base_model = Blip2ForConditionalGeneration.from_pretrained(
|
48 |
+
# base_model_id,
|
49 |
+
# torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
50 |
+
# )
|
51 |
+
# Or for other model types:
|
52 |
+
# base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
53 |
+
|
54 |
+
# --- Load PEFT Adapter ---
|
55 |
+
# Load the adapter config and merge the adapter weights into the base model
|
56 |
+
# model = PeftModel.from_pretrained(base_model, adapter_repo_id)
|
57 |
+
# model = model.merge_and_unload() # Merge weights for inference (optional but often recommended)
|
58 |
+
# model.eval() # Set model to evaluation mode
|
59 |
+
|
60 |
+
# --- Inference Example ---
|
61 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
62 |
+
# model.to(device)
|
63 |
+
#
|
64 |
+
# image = ... # Load your image (e.g., using PIL)
|
65 |
+
# text = "a photo of" # Optional prompt start
|
66 |
+
#
|
67 |
+
# inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
68 |
+
#
|
69 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=50)
|
70 |
+
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
71 |
+
# print(f"Generated Caption: {{generated_text}}")
|
72 |
+
|
73 |
+
```
|
74 |
+
|
75 |
+
*More model-specific documentation, evaluation results, and usage examples should be added here.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|