|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
metrics: |
|
- precision |
|
- recall |
|
base_model: |
|
- Ultralytics/YOLOv8 |
|
pipeline_tag: object-detection |
|
--- |
|
|
|
# YOLO Document Layout Model |
|
|
|
This model is a fine-tuned YOLO detector for document layout analysis, capable of identifying various document elements such as text columns, figures, tables, and other typographical features. |
|
|
|
## Interactive Demo |
|
|
|
Try the model directly in your browser: |
|
|
|
[](https://ashen007-yolo-document-layout-demo.hf.space/?__theme=system) |
|
|
|
## Model Description |
|
|
|
The model is trained to detect and classify 20 different document components, including text structures (TextColumn, List), semantic elements (Title, Header), typographical features (Bold, Italic), and visual components (Figure, Table). |
|
|
|
## Model Detections |
|
|
|
 |
|
|
|
 |
|
|
|
### Training |
|
|
|
The model was fine-tuned using a proprietary dataset of document images. |
|
|
|
## Evaluation Results |
|
|
|
The model's performance was evaluated on a test set with the following metrics: |
|
|
|
| Class | Images | Instances | Precision | Recall | mAP50 | mAP50-95 | |
|
|-------|--------|-----------|-----------|--------|-------|----------| |
|
| **all** | **150** | **1255** | **0.701** | **0.723** | **0.735** | **0.509** | |
|
| Author | 7 | 65 | 0.693 | 0.174 | 0.307 | 0.134 | |
|
| Bigletter | 11 | 11 | 1.000 | 0.900 | 0.976 | 0.563 | |
|
| Bleeding | 9 | 10 | 0.618 | 0.700 | 0.667 | 0.547 | |
|
| Bold | 23 | 77 | 0.679 | 0.753 | 0.798 | 0.395 | |
|
| Caption | 50 | 71 | 0.892 | 0.816 | 0.881 | 0.642 | |
|
| Date | 17 | 57 | 0.927 | 0.666 | 0.728 | 0.386 | |
|
| Figure | 90 | 149 | 0.772 | 0.725 | 0.823 | 0.677 | |
|
| Footnote | 14 | 15 | 0.500 | 0.667 | 0.612 | 0.478 | |
|
| Header | 16 | 16 | 0.560 | 0.717 | 0.664 | 0.476 | |
|
| Italic | 17 | 86 | 0.448 | 0.791 | 0.557 | 0.327 | |
|
| List | 34 | 55 | 0.615 | 0.709 | 0.742 | 0.591 | |
|
| Map | 4 | 4 | 0.606 | 0.750 | 0.656 | 0.599 | |
|
| SubSubTitle | 37 | 97 | 0.627 | 0.520 | 0.599 | 0.300 | |
|
| SubTitle | 54 | 96 | 0.605 | 0.562 | 0.605 | 0.327 | |
|
| Table | 30 | 43 | 0.865 | 0.953 | 0.966 | 0.855 | |
|
| TextColumn | 115 | 323 | 0.831 | 0.913 | 0.933 | 0.811 | |
|
| Title | 47 | 66 | 0.712 | 0.711 | 0.649 | 0.441 | |
|
| Underline | 2 | 4 | 0.681 | 1.000 | 0.995 | 0.665 | |
|
| equations | 4 | 10 | 0.688 | 0.700 | 0.809 | 0.450 | |
|
|
|
### Key Performance Highlights: |
|
|
|
- **Best performing classes**: Table (mAP50: 0.966), TextColumn (mAP50: 0.933), and Caption (mAP50: 0.881) |
|
- **High precision classes**: Bigletter (1.000), Date (0.927), and Caption (0.892) |
|
- **High recall classes**: Underline (1.000), Table (0.953), and TextColumn (0.913) |
|
- **Overall performance**: mAP50 of 0.735 and mAP50-95 of 0.509 across all classes |
|
|
|
## Limitations |
|
|
|
- Lower performance on Author detection (mAP50: 0.307) |
|
- Moderate performance on typographical features like Italic (mAP50: 0.557) |
|
- Limited sample size for some classes (Map, Underline, equations) |