zhaav-gemma3-4B
The alifzl/zhaav-gemma3-4B_q8_0.gguf
model is a Persian specific model, fine tuned based on the Gemma 3 architecture. By utilizing QLoRA’s 4-bit quantization, it reduces computational demands while delivering strong performance in generating and understanding Persian text. Thus it is suitable for running on commodity hardware with no GPUs.
Usage
This model is compatible with both the Hugging Face Transformers library and Ollama.
Running with Ollama
ollama run hf.co/alifzl/zhaav-gemma3-4B:Q8_0
Running with Hugging Face Transformers
Install Dependencies:
pip install git+https://github.com/huggingface/[email protected] accelerate
Load Model and Tokenizer:
from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "alifzl/zhaav-gemma3-4B_q8_0.gguf" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", # Use "cuda" for GPU usage if available torch_dtype=torch.bfloat16, # Alternatively, use torch.float16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ { "role": "user", "content": "تفاوت قهوه موکا با آمریکانو چیه؟" } ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_tensors="pt" ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Data and Fine-Tuning
Training Dataset
Fine-Tuning was made via mshojaei77/Persian_sft dataset, which contains approximately 680k rows of Persian text focused on instruction-following and conversational interactions.
Fine-Tuning
- Method: Supervised Fine-Tuning (SFT) using QLoRA (4-bit quantization)
- Hardware: one T4 GPU
- Software: Utilizes Hugging Face Transformers, with supporting libraries like
peft
for QLoRA andbitsandbytes
for quantization
Evaluation Results
Metric | Value |
---|---|
Avg. | 22.04 |
IFEval (0-Shot) | 43.58 |
BBH (3-Shot) | 31.87 |
MATH Lvl 5 (4-Shot) | 11.10 |
GPQA (0-shot) | 6.49 |
MuSR (0-shot) | 9.49 |
MMLU-PRO (5-shot) | 29.70 |
Future Work
- Additional evaluation metrics and benchmarks
- Expanded documentation and usage examples
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support