metadata
license: cc-by-nc-nd-4.0
datasets:
- ajibawa-2023/Python-Code-23k-ShareGPT
language:
- en
tags:
- code
Large Language Models (LLMs) are good with code generations. Sometimes LLMs do make mistakes in code generation. How about if they can give detailed explanation along with the code.
This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around 23000+ set of codes. Each set having 2 conversations.
This data was generated using GPT-3.5, GPT-4 etc. This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation.
I have released the data.
This is a full fine tuned model. Links for quantized models are given below.