mcdc-test-mistral
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5090
- Perplexity: 1.6636
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Perplexity |
---|---|---|---|---|
1.249 | 0.2632 | 5 | 1.1492 | 3.1557 |
0.8949 | 0.5263 | 10 | 0.9671 | 2.6304 |
0.9403 | 0.7895 | 15 | 0.8533 | 2.3474 |
0.8411 | 1.0526 | 20 | 0.7721 | 2.1643 |
0.5975 | 1.3158 | 25 | 0.7005 | 2.0148 |
0.7067 | 1.5789 | 30 | 0.6430 | 1.9021 |
0.564 | 1.8421 | 35 | 0.5939 | 1.8111 |
0.5615 | 2.1053 | 40 | 0.5566 | 1.7448 |
0.5646 | 2.3684 | 45 | 0.5321 | 1.7025 |
0.4684 | 2.6316 | 50 | 0.5167 | 1.6764 |
0.5739 | 2.8947 | 55 | 0.5090 | 1.6636 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for YildizTekno/mcdc-test-mistral
Base model
mistralai/Mistral-7B-Instruct-v0.2