|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from math import ceil |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.models import StableCascadeUNet |
|
from diffusers.schedulers import DDPMWuerstchenScheduler |
|
from diffusers.utils import BaseOutput, logging, replace_example_docstring |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableCascadePriorPipeline |
|
|
|
>>> prior_pipe = StableCascadePriorPipeline.from_pretrained( |
|
... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16 |
|
... ).to("cuda") |
|
|
|
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" |
|
>>> prior_output = pipe(prompt) |
|
``` |
|
""" |
|
|
|
|
|
@dataclass |
|
class StableCascadePriorPipelineOutput(BaseOutput): |
|
""" |
|
Output class for WuerstchenPriorPipeline. |
|
|
|
Args: |
|
image_embeddings (`torch.Tensor` or `np.ndarray`) |
|
Prior image embeddings for text prompt |
|
prompt_embeds (`torch.Tensor`): |
|
Text embeddings for the prompt. |
|
negative_prompt_embeds (`torch.Tensor`): |
|
Text embeddings for the negative prompt. |
|
""" |
|
|
|
image_embeddings: Union[torch.Tensor, np.ndarray] |
|
prompt_embeds: Union[torch.Tensor, np.ndarray] |
|
prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] |
|
negative_prompt_embeds: Union[torch.Tensor, np.ndarray] |
|
negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] |
|
|
|
|
|
class StableCascadePriorPipeline_DoE(DiffusionPipeline): |
|
""" |
|
Pipeline for generating image prior for Stable Cascade. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
prior ([`StableCascadeUNet`]): |
|
The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder |
|
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `image_encoder`. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
scheduler ([`DDPMWuerstchenScheduler`]): |
|
A scheduler to be used in combination with `prior` to generate image embedding. |
|
resolution_multiple ('float', *optional*, defaults to 42.67): |
|
Default resolution for multiple images generated. |
|
""" |
|
|
|
unet_name = "prior" |
|
text_encoder_name = "text_encoder" |
|
model_cpu_offload_seq = "image_encoder->text_encoder->prior" |
|
_optional_components = ["image_encoder", "feature_extractor"] |
|
_callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModelWithProjection, |
|
prior: StableCascadeUNet, |
|
scheduler: DDPMWuerstchenScheduler, |
|
resolution_multiple: float = 42.67, |
|
feature_extractor: Optional[CLIPImageProcessor] = None, |
|
image_encoder: Optional[CLIPVisionModelWithProjection] = None, |
|
) -> None: |
|
super().__init__() |
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
prior=prior, |
|
scheduler=scheduler, |
|
) |
|
self.register_to_config(resolution_multiple=resolution_multiple) |
|
|
|
def prepare_latents( |
|
self, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler |
|
): |
|
latent_shape = ( |
|
num_images_per_prompt, |
|
self.prior.config.in_channels, |
|
ceil(height / self.config.resolution_multiple), |
|
ceil(width / self.config.resolution_multiple), |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != latent_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
def get_timestep_ratio_conditioning(self, t, alphas_cumprod): |
|
s = torch.tensor([0.003]) |
|
clamp_range = [0, 1] |
|
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 |
|
var = alphas_cumprod[t] |
|
var = var.clamp(*clamp_range) |
|
s, min_var = s.to(var.device), min_var.to(var.device) |
|
ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s |
|
return ratio |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
|
|
height: int = 1024, |
|
width: int = 1024, |
|
num_inference_steps: int = 20, |
|
timesteps: List[float] = None, |
|
guidance_scale: float = 4.0, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_embeds_pooled: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
negative_image_embeds: Optional[torch.Tensor] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pt", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to 1024): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 1024): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 60): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 8.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting |
|
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely |
|
linked to the text `prompt`, usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `decoder_guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
prompt_embeds_pooled (`torch.Tensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` |
|
input argument. |
|
image_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If |
|
not provided, image embeddings will be generated from `image` input argument if existing. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image |
|
embeddings. |
|
""" |
|
|
|
|
|
device = self._execution_device |
|
dtype = next(self.prior.parameters()).dtype |
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
image_embeds_pooled = image_embeds.repeat(num_images_per_prompt, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
uncond_image_embeds_pooled = negative_image_embeds.repeat(num_images_per_prompt, 1, 1) |
|
image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) |
|
text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds]) |
|
text_encoder_pooled = torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) |
|
else: |
|
image_embeds = image_embeds_pooled |
|
text_encoder_hidden_states = prompt_embeds |
|
text_encoder_pooled = prompt_embeds_pooled |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
latents = self.prepare_latents( |
|
height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler |
|
) |
|
|
|
if isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
timesteps = timesteps[:-1] |
|
|
|
|
|
if hasattr(self.scheduler, "betas"): |
|
alphas = 1.0 - self.scheduler.betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
else: |
|
alphas_cumprod = [] |
|
|
|
self._num_timesteps = len(timesteps) |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
if len(alphas_cumprod) > 0: |
|
timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) |
|
timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) |
|
else: |
|
timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) |
|
else: |
|
timestep_ratio = t.expand(latents.size(0)).to(dtype) |
|
|
|
|
|
predicted_image_embedding = self.prior( |
|
sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, |
|
timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, |
|
clip_text_pooled=text_encoder_pooled, |
|
clip_text=text_encoder_hidden_states, |
|
clip_img=image_embeds, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = torch.lerp( |
|
predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale |
|
) |
|
|
|
|
|
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
timestep_ratio = t |
|
latents = self.scheduler.step( |
|
model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator |
|
).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if output_type == "np": |
|
latents = latents.cpu().float().numpy() |
|
prompt_embeds = prompt_embeds.cpu().float().numpy() |
|
negative_prompt_embeds = ( |
|
negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None |
|
) |
|
|
|
if not return_dict: |
|
return ( |
|
latents, |
|
prompt_embeds, |
|
prompt_embeds_pooled, |
|
negative_prompt_embeds, |
|
negative_prompt_embeds_pooled, |
|
) |
|
|
|
return StableCascadePriorPipelineOutput( |
|
image_embeddings=latents, |
|
prompt_embeds=prompt_embeds, |
|
prompt_embeds_pooled=prompt_embeds_pooled, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, |
|
) |
|
|
|
|
|
class StableCascadeDecoderPipeline_DoE(DiffusionPipeline): |
|
unet_name = "decoder" |
|
model_cpu_offload_seq = "decoder->vqgan" |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds_pooled", |
|
"negative_prompt_embeds", |
|
"image_embeddings", |
|
] |
|
|
|
def __init__( |
|
self, |
|
decoder: StableCascadeUNet, |
|
scheduler: DDPMWuerstchenScheduler, |
|
vqgan: PaellaVQModel, |
|
latent_dim_scale: float = 10.67, |
|
) -> None: |
|
super().__init__() |
|
self.register_modules( |
|
decoder=decoder, |
|
scheduler=scheduler, |
|
vqgan=vqgan, |
|
) |
|
self.register_to_config(latent_dim_scale=latent_dim_scale) |
|
|
|
def prepare_latents( |
|
self, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler |
|
): |
|
_, channels, height, width = image_embeddings.shape |
|
latents_shape = ( |
|
num_images_per_prompt, |
|
4, |
|
int(height * self.config.latent_dim_scale), |
|
int(width * self.config.latent_dim_scale), |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
def get_timestep_ratio_conditioning(self, t, alphas_cumprod): |
|
s = torch.tensor([0.003]) |
|
clamp_range = [0, 1] |
|
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 |
|
var = alphas_cumprod[t] |
|
var = var.clamp(*clamp_range) |
|
s, min_var = s.to(var.device), min_var.to(var.device) |
|
ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s |
|
return ratio |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image_embeddings: Union[torch.Tensor, List[torch.Tensor]], |
|
prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 10, |
|
guidance_scale: float = 0.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_embeds_pooled: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
): |
|
|
|
|
|
device = self._execution_device |
|
dtype = self.decoder.dtype |
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
if isinstance(image_embeddings, list): |
|
image_embeddings = torch.cat(image_embeddings, dim=0) |
|
|
|
|
|
|
|
prompt_embeds_pooled = ( |
|
torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) |
|
if self.do_classifier_free_guidance |
|
else prompt_embeds_pooled |
|
) |
|
effnet = ( |
|
torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) |
|
if self.do_classifier_free_guidance |
|
else image_embeddings |
|
) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
latents = self.prepare_latents( |
|
image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler |
|
) |
|
|
|
if isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
timesteps = timesteps[:-1] |
|
|
|
|
|
if hasattr(self.scheduler, "betas"): |
|
alphas = 1.0 - self.scheduler.betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
else: |
|
alphas_cumprod = [] |
|
|
|
self._num_timesteps = len(timesteps) |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
if len(alphas_cumprod) > 0: |
|
timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) |
|
timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) |
|
else: |
|
timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) |
|
else: |
|
timestep_ratio = t.expand(latents.size(0)).to(dtype) |
|
|
|
|
|
predicted_latents = self.decoder( |
|
sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, |
|
timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, |
|
clip_text_pooled=prompt_embeds_pooled, |
|
effnet=effnet, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) |
|
predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) |
|
|
|
|
|
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): |
|
timestep_ratio = t |
|
latents = self.scheduler.step( |
|
model_output=predicted_latents, |
|
timestep=timestep_ratio, |
|
sample=latents, |
|
generator=generator, |
|
).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
if output_type not in ["pt", "np", "pil", "latent"]: |
|
raise ValueError( |
|
f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" |
|
) |
|
|
|
if not output_type == "latent": |
|
|
|
latents = self.vqgan.config.scale_factor * latents |
|
images = self.vqgan.decode(latents).sample.clamp(0, 1) |
|
if output_type == "np": |
|
images = images.permute(0, 2, 3, 1).cpu().float().numpy() |
|
elif output_type == "pil": |
|
images = images.permute(0, 2, 3, 1).cpu().float().numpy() |
|
images = self.numpy_to_pil(images) |
|
else: |
|
images = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return images |
|
return ImagePipelineOutput(images) |
|
|