File size: 26,515 Bytes
ecc4278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#   small modification to allow negative image embeds


# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from math import ceil
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.models import StableCascadeUNet
from diffusers.schedulers import DDPMWuerstchenScheduler
from diffusers.utils import BaseOutput, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:]

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableCascadePriorPipeline

        >>> prior_pipe = StableCascadePriorPipeline.from_pretrained(
        ...     "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16
        ... ).to("cuda")

        >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
        >>> prior_output = pipe(prompt)
        ```
"""


@dataclass
class StableCascadePriorPipelineOutput(BaseOutput):
    """
    Output class for WuerstchenPriorPipeline.

    Args:
        image_embeddings (`torch.Tensor` or `np.ndarray`)
            Prior image embeddings for text prompt
        prompt_embeds (`torch.Tensor`):
            Text embeddings for the prompt.
        negative_prompt_embeds (`torch.Tensor`):
            Text embeddings for the negative prompt.
    """

    image_embeddings: Union[torch.Tensor, np.ndarray]
    prompt_embeds: Union[torch.Tensor, np.ndarray]
    prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
    negative_prompt_embeds: Union[torch.Tensor, np.ndarray]
    negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]


class StableCascadePriorPipeline_DoE(DiffusionPipeline):
    """
    Pipeline for generating image prior for Stable Cascade.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        prior ([`StableCascadeUNet`]):
            The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder
            ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `image_encoder`.
        image_encoder ([`CLIPVisionModelWithProjection`]):
            Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        scheduler ([`DDPMWuerstchenScheduler`]):
            A scheduler to be used in combination with `prior` to generate image embedding.
        resolution_multiple ('float', *optional*, defaults to 42.67):
            Default resolution for multiple images generated.
    """

    unet_name = "prior"
    text_encoder_name = "text_encoder"
    model_cpu_offload_seq = "image_encoder->text_encoder->prior"
    _optional_components = ["image_encoder", "feature_extractor"]
    _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]

    def __init__(
        self,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModelWithProjection,
        prior: StableCascadeUNet,
        scheduler: DDPMWuerstchenScheduler,
        resolution_multiple: float = 42.67,
        feature_extractor: Optional[CLIPImageProcessor] = None,
        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
    ) -> None:
        super().__init__()
        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            prior=prior,
            scheduler=scheduler,
        )
        self.register_to_config(resolution_multiple=resolution_multiple)

    def prepare_latents(
        self, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler
    ):
        latent_shape = (
            num_images_per_prompt,
            self.prior.config.in_channels,
            ceil(height / self.config.resolution_multiple),
            ceil(width / self.config.resolution_multiple),
        )

        if latents is None:
            latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != latent_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
        s = torch.tensor([0.003])
        clamp_range = [0, 1]
        min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
        var = alphas_cumprod[t]
        var = var.clamp(*clamp_range)
        s, min_var = s.to(var.device), min_var.to(var.device)
        ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return ratio

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,

        height: int = 1024,
        width: int = 1024,
        num_inference_steps: int = 20,
        timesteps: List[float] = None,
        guidance_scale: float = 4.0,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_embeds_pooled: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
        image_embeds: Optional[torch.Tensor] = None,
        negative_image_embeds: Optional[torch.Tensor] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pt",
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to 1024):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 1024):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 60):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 8.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
                `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
                linked to the text `prompt`, usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `decoder_guidance_scale` is less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_embeds_pooled (`torch.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
                input argument.
            image_embeds (`torch.Tensor`, *optional*):
                Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If
                not provided, image embeddings will be generated from `image` input argument if existing.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
                (`np.array`) or `"pt"` (`torch.Tensor`).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
            embeddings.
        """

        # 0. Define commonly used variables
        device = self._execution_device
        dtype = next(self.prior.parameters()).dtype
        self._guidance_scale = guidance_scale

        # 2. caption + images
        image_embeds_pooled = image_embeds.repeat(num_images_per_prompt, 1, 1)
#        uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled)

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            uncond_image_embeds_pooled = negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
            image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0)
            text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds])
            text_encoder_pooled = torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled])
        else:
            image_embeds = image_embeds_pooled
            text_encoder_hidden_states = prompt_embeds
            text_encoder_pooled = prompt_embeds_pooled

        # 4. Prepare and set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latents
        latents = self.prepare_latents(
            height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
        )

        if isinstance(self.scheduler, DDPMWuerstchenScheduler):
            timesteps = timesteps[:-1]

        # 6. Run denoising loop
        if hasattr(self.scheduler, "betas"):
            alphas = 1.0 - self.scheduler.betas
            alphas_cumprod = torch.cumprod(alphas, dim=0)
        else:
            alphas_cumprod = []

        self._num_timesteps = len(timesteps)
        for i, t in enumerate(self.progress_bar(timesteps)):
            if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
                if len(alphas_cumprod) > 0:
                    timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
                    timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
                else:
                    timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
            else:
                timestep_ratio = t.expand(latents.size(0)).to(dtype)

            # 7. Denoise image embeddings
            predicted_image_embedding = self.prior(
                sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
                timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio,
                clip_text_pooled=text_encoder_pooled,
                clip_text=text_encoder_hidden_states,
                clip_img=image_embeds,
                return_dict=False,
            )[0]

            # 8. Check for classifier free guidance and apply it
            if self.do_classifier_free_guidance:
                predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2)
                predicted_image_embedding = torch.lerp(
                    predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale
                )

            # 9. Renoise latents to next timestep
            if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
                timestep_ratio = t
            latents = self.scheduler.step(
                model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator
            ).prev_sample

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

        # Offload all models
        self.maybe_free_model_hooks()

        if output_type == "np":
            latents = latents.cpu().float().numpy()  # float() as bfloat16-> numpy doesnt work
            prompt_embeds = prompt_embeds.cpu().float().numpy()  # float() as bfloat16-> numpy doesnt work
            negative_prompt_embeds = (
                negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None
            )  # float() as bfloat16-> numpy doesnt work

        if not return_dict:
            return (
                latents,
                prompt_embeds,
                prompt_embeds_pooled,
                negative_prompt_embeds,
                negative_prompt_embeds_pooled,
            )

        return StableCascadePriorPipelineOutput(
            image_embeddings=latents,
            prompt_embeds=prompt_embeds,
            prompt_embeds_pooled=prompt_embeds_pooled,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
        )


class StableCascadeDecoderPipeline_DoE(DiffusionPipeline):
    unet_name = "decoder"
    model_cpu_offload_seq = "decoder->vqgan"
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds_pooled",
        "negative_prompt_embeds",
        "image_embeddings",
    ]

    def __init__(
        self,
        decoder: StableCascadeUNet,
        scheduler: DDPMWuerstchenScheduler,
        vqgan: PaellaVQModel,
        latent_dim_scale: float = 10.67,
    ) -> None:
        super().__init__()
        self.register_modules(
            decoder=decoder,
            scheduler=scheduler,
            vqgan=vqgan,
        )
        self.register_to_config(latent_dim_scale=latent_dim_scale)

    def prepare_latents(
        self, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler
    ):
        _, channels, height, width = image_embeddings.shape
        latents_shape = (
            num_images_per_prompt,
            4,
            int(height * self.config.latent_dim_scale),
            int(width * self.config.latent_dim_scale),
        )

        if latents is None:
            latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
        s = torch.tensor([0.003])
        clamp_range = [0, 1]
        min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
        var = alphas_cumprod[t]
        var = var.clamp(*clamp_range)
        s, min_var = s.to(var.device), min_var.to(var.device)
        ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return ratio

    @torch.no_grad()
    def __call__(
        self,
        image_embeddings: Union[torch.Tensor, List[torch.Tensor]],
        prompt: Union[str, List[str]] = None,
        num_inference_steps: int = 10,
        guidance_scale: float = 0.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_embeds_pooled: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
        num_images_per_prompt: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):

        # 0. Define commonly used variables
        device = self._execution_device
        dtype = self.decoder.dtype
        self._guidance_scale = guidance_scale

        # 1. Check inputs. Raise error if not correct
        if isinstance(image_embeddings, list):
            image_embeddings = torch.cat(image_embeddings, dim=0)

        # 2. Encode caption
        # The pooled embeds from the prior are pooled again before being passed to the decoder
        prompt_embeds_pooled = (
            torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled])
            if self.do_classifier_free_guidance
            else prompt_embeds_pooled
        )
        effnet = (
            torch.cat([image_embeddings, torch.zeros_like(image_embeddings)])
            if self.do_classifier_free_guidance
            else image_embeddings
        )

        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latents
        latents = self.prepare_latents(
            image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
        )

        if isinstance(self.scheduler, DDPMWuerstchenScheduler):
            timesteps = timesteps[:-1]

        # 6. Run denoising loop
        if hasattr(self.scheduler, "betas"):
            alphas = 1.0 - self.scheduler.betas
            alphas_cumprod = torch.cumprod(alphas, dim=0)
        else:
            alphas_cumprod = []

        self._num_timesteps = len(timesteps)
        for i, t in enumerate(self.progress_bar(timesteps)):
            if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
                if len(alphas_cumprod) > 0:
                    timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
                    timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
                else:
                    timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
            else:
                timestep_ratio = t.expand(latents.size(0)).to(dtype)

            # 7. Denoise latents
            predicted_latents = self.decoder(
                sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
                timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio,
                clip_text_pooled=prompt_embeds_pooled,
                effnet=effnet,
                return_dict=False,
            )[0]

            # 8. Check for classifier free guidance and apply it
            if self.do_classifier_free_guidance:
                predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2)
                predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)

            # 9. Renoise latents to next timestep
            if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
                timestep_ratio = t
            latents = self.scheduler.step(
                model_output=predicted_latents,
                timestep=timestep_ratio,
                sample=latents,
                generator=generator,
            ).prev_sample

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

        if output_type not in ["pt", "np", "pil", "latent"]:
            raise ValueError(
                f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}"
            )

        if not output_type == "latent":
            # 10. Scale and decode the image latents with vq-vae
            latents = self.vqgan.config.scale_factor * latents
            images = self.vqgan.decode(latents).sample.clamp(0, 1)
            if output_type == "np":
                images = images.permute(0, 2, 3, 1).cpu().float().numpy()  # float() as bfloat16-> numpy doesnt work
            elif output_type == "pil":
                images = images.permute(0, 2, 3, 1).cpu().float().numpy()  # float() as bfloat16-> numpy doesnt work
                images = self.numpy_to_pil(images)
        else:
            images = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return images
        return ImagePipelineOutput(images)