Important Links

📖Github | 🤖ModelScope | 🌐XiYan-SQL | 🌕析言GBI | 💻Modelscope Space

Introduction

We are excited to release the XiYanSQL-QwenCoder-2504 version, our latest SQL generation model. This version continues to optimize upon the previous version, delivering enhanced performance.

  • Our model incorporates important explorations combining fine-tuning and GRPO training, leveraging the post-training strategies of GRPO without a thinking process, achieving both efficiency and accuracy in SQL generation.
  • It demonstrates impressive performance and supports multiple dialects, ready to use out of the box.
  • Improved generalization capabilities, excelling on different dialects and out-of-domain datasets.

In this evaluation, we have also added a real-world SQL benchmark (the DW test set), which serves as an important internal evaluation baseline. This test set includes thousands of complex queries from real scenarios in both PostgreSQL and MySQL dialects, effectively reflecting the model's performance across multiple dialects and out-of-domain data.

Model Downloads

Model Download Latest
XiYanSQL-QwenCoder-3B 🤗HuggingFace 🤖Modelscope
XiYanSQL-QwenCoder-7B 🤗HuggingFace 🤖Modelscope
XiYanSQL-QwenCoder-14B 🤗HuggingFace 🤖Modelscope
XiYanSQL-QwenCoder-32B 🤗HuggingFace 🤖Modelscope

Performance

The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects.

Model name Size BIRD Dev@M-Schema BIRD Dev@DDL Spider Test@M-Schema Spider Test@DDL DW PostgreSQL@M-Schema DW MySQL@M-Schema
GPT-4o-0806 UNK 58.47% 54.82% 82.89% 78.45% 46.79% 57.77%
GPT-4.1-0414 UNK 59.39% 54.11% 84.45% 79.86% 54.29% 63.18%
Claude3.5-sonnet-1022 UNK 53.32% 50.46% 76.27% 73.04% 55.22% 52.84%
Claude3.7-sonnet UNK 54.82% 49.22% 78.04% 74.66% 53.23% 54.61%
Gemini-1.5-Pro UNK 61.34% 57.89% 85.11% 84.00% 52.78% 62.78%
DeepSeek-V2.5-1210 236B 55.74% 55.61% 82.08% 80.57% 45.74% 52.18%
DeepSeek-V3 685B 59.58% 56.71% 81.52% 79.91% 52.56% 55.95%
DeepSeek-R1 685B 58.15% 55.61% 80.72% 78.85% 60.56% 62.00%
DeepSeek-R1-Distill-Qwen-32B 32B 50.65% 48.31% 78.65% 77.33% 37.22% 44.72%
Deepseek-Coder-33B-Instruct 33B 47.52% 44.72% 72.39% 62.0% 31.48% 36.17%
OmniSQL-32B 32B 60.37% 55.87% 85.16% 83.19% 38.19% 42.34%
XiYanSQL-QwenCoder-3B-2502 3B 53.52% 52.54% 83.34% 79.10% 34.75% 35.62%
XiYanSQL-QwenCoder-3B-2504 3B 55.08% 52.09% 84.10% 80.57% 36.65% 37.63%
XiYanSQL-QwenCoder-7B-2502 7B 59.65% 56.32% 84.15% 80.01% 39.38% 42.10%
XiYanSQL-QwenCoder-7B-2504 7B 62.13% 57.43% 85.97% 82.48% 42.08% 44.67%
XiYanSQL-QwenCoder-14B-2502 14B 63.23% 60.10% 85.31% 82.84% 38.51% 41.62%
XiYanSQL-QwenCoder-14B-2504 14B 65.32% 60.17% 86.82% 83.75% 40.52% 44.60%
XiYanSQL-QwenCoder-32B-2412 32B 67.07% 63.04% 88.39% 85.46% 45.07% 52.84%
XiYanSQL-QwenCoder-32B-2504 32B 67.14% 62.26% 89.20% 86.17% 53.52% 57.74%

Quickstart with Transformers and vLLM

Here is a simple code snippet for quickly using XiYanSQL-QwenCoder model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our M-Schema format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.

Requirements

  • transformers >= 4.37.0
  • vllm >= 0.7.2

Prompt Template

nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}

【数据库schema】
{db_schema}

【参考信息】
{evidence}

【用户问题】
{question}

```sql"""

Inference with Transformers

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]

text = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=1024,
    temperature=0.1,
    top_p=0.8,
    do_sample=True,
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Inference with vLLM

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
llm = LLM(model=model_path, tensor_parallel_size=8)
tokenizer = AutoTokenizer.from_pretrained(model_path)
sampling_params = SamplingParams(
    n=1,
    temperature=0.1,
    max_tokens=1024
)

## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params=sampling_params)
response = outputs[0].outputs[0].text

Acknowledgments

If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!

Downloads last month
171
Safetensors
Model size
32.8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for XGenerationLab/XiYanSQL-QwenCoder-32B-2504

Adapter
(1)
this model
Quantizations
1 model

Collection including XGenerationLab/XiYanSQL-QwenCoder-32B-2504