|
import re |
|
from ..utils.rc_f1 import CJRCEvaluator |
|
|
|
|
|
""" |
|
given a target substring. find its all occurances in the string s |
|
return the starting and ending index of every occurance |
|
""" |
|
|
|
|
|
def __find_substring_starts(s, target): |
|
return [(m.start(), m.end()) for m in re.finditer(target, s)] |
|
|
|
|
|
""" |
|
compute the reading comprehension F1 scores |
|
hyps and refs are lists of hyposisis and reference strings |
|
""" |
|
|
|
|
|
def compute_rc_f1(hyps, refs): |
|
scores = 0 |
|
for h, r in zip(hyps, refs): |
|
scores += CJRCEvaluator.compute_f1(r, h) |
|
return {'score': scores / len(hyps)} |
|
|
|
|
|
""" |
|
compute the information extraction F1 scores |
|
hyps and refs are lists of hyposisis and reference strings |
|
entity_types: a set of all possible entity types |
|
""" |
|
|
|
|
|
def compute_ie_f1(hyps, refs, entity_types): |
|
assert (len(hyps) == len(refs)) |
|
scores, abstentions = 0, 0 |
|
for h, r in zip(hyps, refs): |
|
h = __extract_entities_pred(h, entity_types) |
|
r = __extract_entities_ref(r) |
|
if r == {}: |
|
scores += 1 if h == {} else 0 |
|
continue |
|
if h == {}: |
|
abstentions += 1 |
|
intersected = [CJRCEvaluator.compute_f1(r[etype], einstance) for etype, einstance in h.items() if etype in r] |
|
prec = sum(intersected) / len(h) if len(h) > 0 else 0 |
|
rec = sum(intersected) / len(r) if len(r) > 0 else 0 |
|
|
|
scores += 2 * prec * rec / (prec + rec + 1e-10) |
|
return {'score': scores / len(hyps), "anstention_rate": abstentions / len(hyps)} |
|
|
|
|
|
def __extract_entities_ref(ref): |
|
outputs = {} |
|
if ref.strip() == '': |
|
return outputs |
|
for seg in ref.split(';'): |
|
seg = seg.split(':') |
|
outputs[seg[0]] = seg[1] |
|
return outputs |
|
|
|
|
|
""" |
|
extract entity type and instances from the model prediction |
|
pred: string of model prediction |
|
entity_types: a set of all possible entity types |
|
""" |
|
|
|
|
|
def __extract_entities_pred(pred, entity_types): |
|
outputs = {} |
|
for etype in entity_types: |
|
occurances = __find_substring_starts(pred, etype) |
|
for start, end in occurances: |
|
if end >= (len(pred) - 2): |
|
continue |
|
if pred[end] == ":" or pred[end] == ":": |
|
einstance = re.split("\n| ", pred[end + 1:].strip())[0].strip() |
|
if einstance != '无' and einstance != '未提及': |
|
outputs[etype] = einstance |
|
return outputs |
|
|