File size: 2,422 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import re
from ..utils.rc_f1 import CJRCEvaluator
"""
given a target substring. find its all occurances in the string s
return the starting and ending index of every occurance
"""
def __find_substring_starts(s, target):
return [(m.start(), m.end()) for m in re.finditer(target, s)]
"""
compute the reading comprehension F1 scores
hyps and refs are lists of hyposisis and reference strings
"""
def compute_rc_f1(hyps, refs):
scores = 0
for h, r in zip(hyps, refs):
scores += CJRCEvaluator.compute_f1(r, h)
return {'score': scores / len(hyps)}
"""
compute the information extraction F1 scores
hyps and refs are lists of hyposisis and reference strings
entity_types: a set of all possible entity types
"""
def compute_ie_f1(hyps, refs, entity_types):
assert (len(hyps) == len(refs))
scores, abstentions = 0, 0
for h, r in zip(hyps, refs):
h = __extract_entities_pred(h, entity_types)
r = __extract_entities_ref(r)
if r == {}:
scores += 1 if h == {} else 0
continue
if h == {}:
abstentions += 1
intersected = [CJRCEvaluator.compute_f1(r[etype], einstance) for etype, einstance in h.items() if etype in r]
prec = sum(intersected) / len(h) if len(h) > 0 else 0
rec = sum(intersected) / len(r) if len(r) > 0 else 0
# print(prec, rec, intersected)
scores += 2 * prec * rec / (prec + rec + 1e-10)
return {'score': scores / len(hyps), "anstention_rate": abstentions / len(hyps)}
def __extract_entities_ref(ref):
outputs = {}
if ref.strip() == '':
return outputs
for seg in ref.split(';'):
seg = seg.split(':')
outputs[seg[0]] = seg[1]
return outputs
"""
extract entity type and instances from the model prediction
pred: string of model prediction
entity_types: a set of all possible entity types
"""
def __extract_entities_pred(pred, entity_types):
outputs = {}
for etype in entity_types:
occurances = __find_substring_starts(pred, etype)
for start, end in occurances:
if end >= (len(pred) - 2):
continue
if pred[end] == ":" or pred[end] == ":":
einstance = re.split("\n| ", pred[end + 1:].strip())[0].strip()
if einstance != '无' and einstance != '未提及':
outputs[etype] = einstance
return outputs
|