HDCSHseg_models
This model is a fine-tuned version of nvidia/mit-b0 on the TommyClas/HDCSH_seg dataset. It achieves the following results on the evaluation set:
- Loss: 0.5558
- Mean Iou: 0.3834
- Mean Accuracy: 0.7668
- Overall Accuracy: 0.7668
- Accuracy 背景: nan
- Accuracy 未水化水泥颗粒与高密度c-s-h混合: 0.7668
- Iou 背景: 0.0
- Iou 未水化水泥颗粒与高密度c-s-h混合: 0.7668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 背景 | Accuracy 未水化水泥颗粒与高密度c-s-h混合 | Iou 背景 | Iou 未水化水泥颗粒与高密度c-s-h混合 |
---|---|---|---|---|---|---|---|---|---|---|
0.4717 | 1.0 | 100 | 0.5748 | 0.3844 | 0.7688 | 0.7688 | nan | 0.7688 | 0.0 | 0.7688 |
0.4353 | 2.0 | 200 | 0.5744 | 0.3665 | 0.7330 | 0.7330 | nan | 0.7330 | 0.0 | 0.7330 |
0.4298 | 3.0 | 300 | 0.5576 | 0.4389 | 0.8778 | 0.8778 | nan | 0.8778 | 0.0 | 0.8778 |
0.4229 | 4.0 | 400 | 0.5609 | 0.3817 | 0.7635 | 0.7635 | nan | 0.7635 | 0.0 | 0.7635 |
0.4175 | 5.0 | 500 | 0.5680 | 0.4079 | 0.8158 | 0.8158 | nan | 0.8158 | 0.0 | 0.8158 |
0.4081 | 6.0 | 600 | 0.5563 | 0.3917 | 0.7835 | 0.7835 | nan | 0.7835 | 0.0 | 0.7835 |
0.4002 | 7.0 | 700 | 0.6005 | 0.3144 | 0.6287 | 0.6287 | nan | 0.6287 | 0.0 | 0.6287 |
0.3904 | 8.0 | 800 | 0.5915 | 0.3378 | 0.6757 | 0.6757 | nan | 0.6757 | 0.0 | 0.6757 |
0.3944 | 9.0 | 900 | 0.5991 | 0.3534 | 0.7069 | 0.7069 | nan | 0.7069 | 0.0 | 0.7069 |
0.3805 | 10.0 | 1000 | 0.6093 | 0.3250 | 0.6500 | 0.6500 | nan | 0.6500 | 0.0 | 0.6500 |
0.3813 | 11.0 | 1100 | 0.5965 | 0.3201 | 0.6401 | 0.6401 | nan | 0.6401 | 0.0 | 0.6401 |
0.3685 | 12.0 | 1200 | 0.6125 | 0.3076 | 0.6151 | 0.6151 | nan | 0.6151 | 0.0 | 0.6151 |
0.37 | 13.0 | 1300 | 0.5745 | 0.4050 | 0.8099 | 0.8099 | nan | 0.8099 | 0.0 | 0.8099 |
0.3645 | 14.0 | 1400 | 0.5719 | 0.3685 | 0.7369 | 0.7369 | nan | 0.7369 | 0.0 | 0.7369 |
0.3643 | 15.0 | 1500 | 0.6316 | 0.2919 | 0.5839 | 0.5839 | nan | 0.5839 | 0.0 | 0.5839 |
0.3591 | 16.0 | 1600 | 0.6657 | 0.2730 | 0.5460 | 0.5460 | nan | 0.5460 | 0.0 | 0.5460 |
0.3572 | 17.0 | 1700 | 0.5844 | 0.3909 | 0.7817 | 0.7817 | nan | 0.7817 | 0.0 | 0.7817 |
0.361 | 18.0 | 1800 | 0.6129 | 0.3164 | 0.6328 | 0.6328 | nan | 0.6328 | 0.0 | 0.6328 |
0.3571 | 19.0 | 1900 | 0.5721 | 0.3744 | 0.7488 | 0.7488 | nan | 0.7488 | 0.0 | 0.7488 |
0.3571 | 20.0 | 2000 | 0.5961 | 0.3331 | 0.6662 | 0.6662 | nan | 0.6662 | 0.0 | 0.6662 |
0.356 | 21.0 | 2100 | 0.6015 | 0.3264 | 0.6529 | 0.6529 | nan | 0.6529 | 0.0 | 0.6529 |
0.3535 | 22.0 | 2200 | 0.5709 | 0.3636 | 0.7272 | 0.7272 | nan | 0.7272 | 0.0 | 0.7272 |
0.3511 | 23.0 | 2300 | 0.5912 | 0.3393 | 0.6786 | 0.6786 | nan | 0.6786 | 0.0 | 0.6786 |
0.3512 | 24.0 | 2400 | 0.5624 | 0.3725 | 0.7451 | 0.7451 | nan | 0.7451 | 0.0 | 0.7451 |
0.352 | 25.0 | 2500 | 0.5981 | 0.3490 | 0.6981 | 0.6981 | nan | 0.6981 | 0.0 | 0.6981 |
0.3523 | 26.0 | 2600 | 0.6001 | 0.3504 | 0.7008 | 0.7008 | nan | 0.7008 | 0.0 | 0.7008 |
0.3485 | 27.0 | 2700 | 0.5707 | 0.3596 | 0.7192 | 0.7192 | nan | 0.7192 | 0.0 | 0.7192 |
0.3499 | 28.0 | 2800 | 0.5805 | 0.3538 | 0.7076 | 0.7076 | nan | 0.7076 | 0.0 | 0.7076 |
0.3486 | 29.0 | 2900 | 0.5713 | 0.3630 | 0.7261 | 0.7261 | nan | 0.7261 | 0.0 | 0.7261 |
0.3494 | 30.0 | 3000 | 0.5824 | 0.3648 | 0.7295 | 0.7295 | nan | 0.7295 | 0.0 | 0.7295 |
0.348 | 31.0 | 3100 | 0.5707 | 0.3538 | 0.7076 | 0.7076 | nan | 0.7076 | 0.0 | 0.7076 |
0.3465 | 32.0 | 3200 | 0.5624 | 0.3765 | 0.7530 | 0.7530 | nan | 0.7530 | 0.0 | 0.7530 |
0.3473 | 33.0 | 3300 | 0.5723 | 0.3702 | 0.7405 | 0.7405 | nan | 0.7405 | 0.0 | 0.7405 |
0.3454 | 34.0 | 3400 | 0.5645 | 0.3953 | 0.7907 | 0.7907 | nan | 0.7907 | 0.0 | 0.7907 |
0.3466 | 35.0 | 3500 | 0.5618 | 0.3832 | 0.7663 | 0.7663 | nan | 0.7663 | 0.0 | 0.7663 |
0.3451 | 36.0 | 3600 | 0.5704 | 0.3535 | 0.7070 | 0.7070 | nan | 0.7070 | 0.0 | 0.7070 |
0.3459 | 37.0 | 3700 | 0.5625 | 0.3714 | 0.7427 | 0.7427 | nan | 0.7427 | 0.0 | 0.7427 |
0.345 | 38.0 | 3800 | 0.5720 | 0.3567 | 0.7135 | 0.7135 | nan | 0.7135 | 0.0 | 0.7135 |
0.3448 | 39.0 | 3900 | 0.5719 | 0.3688 | 0.7376 | 0.7376 | nan | 0.7376 | 0.0 | 0.7376 |
0.3444 | 40.0 | 4000 | 0.5646 | 0.3809 | 0.7618 | 0.7618 | nan | 0.7618 | 0.0 | 0.7618 |
0.343 | 41.0 | 4100 | 0.5525 | 0.3833 | 0.7665 | 0.7665 | nan | 0.7665 | 0.0 | 0.7665 |
0.3438 | 42.0 | 4200 | 0.5547 | 0.3888 | 0.7777 | 0.7777 | nan | 0.7777 | 0.0 | 0.7777 |
0.3425 | 43.0 | 4300 | 0.5579 | 0.3811 | 0.7622 | 0.7622 | nan | 0.7622 | 0.0 | 0.7622 |
0.3439 | 44.0 | 4400 | 0.5756 | 0.3577 | 0.7153 | 0.7153 | nan | 0.7153 | 0.0 | 0.7153 |
0.3422 | 45.0 | 4500 | 0.5612 | 0.3775 | 0.7550 | 0.7550 | nan | 0.7550 | 0.0 | 0.7550 |
0.3418 | 46.0 | 4600 | 0.5654 | 0.3783 | 0.7567 | 0.7567 | nan | 0.7567 | 0.0 | 0.7567 |
0.3408 | 47.0 | 4700 | 0.5787 | 0.3764 | 0.7529 | 0.7529 | nan | 0.7529 | 0.0 | 0.7529 |
0.3408 | 48.0 | 4800 | 0.5709 | 0.3717 | 0.7435 | 0.7435 | nan | 0.7435 | 0.0 | 0.7435 |
0.343 | 49.0 | 4900 | 0.5771 | 0.3472 | 0.6944 | 0.6944 | nan | 0.6944 | 0.0 | 0.6944 |
0.3395 | 50.0 | 5000 | 0.5552 | 0.3786 | 0.7572 | 0.7572 | nan | 0.7572 | 0.0 | 0.7572 |
0.3394 | 51.0 | 5100 | 0.5626 | 0.3632 | 0.7264 | 0.7264 | nan | 0.7264 | 0.0 | 0.7264 |
0.3396 | 52.0 | 5200 | 0.5580 | 0.3849 | 0.7697 | 0.7697 | nan | 0.7697 | 0.0 | 0.7697 |
0.3396 | 53.0 | 5300 | 0.5599 | 0.3669 | 0.7338 | 0.7338 | nan | 0.7338 | 0.0 | 0.7338 |
0.3397 | 54.0 | 5400 | 0.5610 | 0.3740 | 0.7480 | 0.7480 | nan | 0.7480 | 0.0 | 0.7480 |
0.3385 | 55.0 | 5500 | 0.5594 | 0.3836 | 0.7671 | 0.7671 | nan | 0.7671 | 0.0 | 0.7671 |
0.338 | 56.0 | 5600 | 0.5567 | 0.3940 | 0.7881 | 0.7881 | nan | 0.7881 | 0.0 | 0.7881 |
0.3378 | 57.0 | 5700 | 0.5648 | 0.3753 | 0.7506 | 0.7506 | nan | 0.7506 | 0.0 | 0.7506 |
0.3375 | 58.0 | 5800 | 0.5605 | 0.3795 | 0.7589 | 0.7589 | nan | 0.7589 | 0.0 | 0.7589 |
0.3364 | 59.0 | 5900 | 0.5653 | 0.3839 | 0.7678 | 0.7678 | nan | 0.7678 | 0.0 | 0.7678 |
0.3373 | 60.0 | 6000 | 0.5649 | 0.3989 | 0.7978 | 0.7978 | nan | 0.7978 | 0.0 | 0.7978 |
0.3367 | 61.0 | 6100 | 0.5661 | 0.3809 | 0.7617 | 0.7617 | nan | 0.7617 | 0.0 | 0.7617 |
0.3368 | 62.0 | 6200 | 0.5739 | 0.3818 | 0.7637 | 0.7637 | nan | 0.7637 | 0.0 | 0.7637 |
0.3352 | 63.0 | 6300 | 0.5631 | 0.3965 | 0.7930 | 0.7930 | nan | 0.7930 | 0.0 | 0.7930 |
0.336 | 64.0 | 6400 | 0.5722 | 0.3745 | 0.7490 | 0.7490 | nan | 0.7490 | 0.0 | 0.7490 |
0.3352 | 65.0 | 6500 | 0.5622 | 0.3864 | 0.7728 | 0.7728 | nan | 0.7728 | 0.0 | 0.7728 |
0.3356 | 66.0 | 6600 | 0.5627 | 0.3816 | 0.7631 | 0.7631 | nan | 0.7631 | 0.0 | 0.7631 |
0.3338 | 67.0 | 6700 | 0.5616 | 0.3741 | 0.7483 | 0.7483 | nan | 0.7483 | 0.0 | 0.7483 |
0.3343 | 68.0 | 6800 | 0.5657 | 0.3706 | 0.7412 | 0.7412 | nan | 0.7412 | 0.0 | 0.7412 |
0.3343 | 69.0 | 6900 | 0.5603 | 0.3805 | 0.7610 | 0.7610 | nan | 0.7610 | 0.0 | 0.7610 |
0.3345 | 70.0 | 7000 | 0.5608 | 0.3872 | 0.7744 | 0.7744 | nan | 0.7744 | 0.0 | 0.7744 |
0.3339 | 71.0 | 7100 | 0.5668 | 0.3855 | 0.7710 | 0.7710 | nan | 0.7710 | 0.0 | 0.7710 |
0.3342 | 72.0 | 7200 | 0.5625 | 0.3954 | 0.7909 | 0.7909 | nan | 0.7909 | 0.0 | 0.7909 |
0.3334 | 73.0 | 7300 | 0.5556 | 0.3790 | 0.7579 | 0.7579 | nan | 0.7579 | 0.0 | 0.7579 |
0.3336 | 74.0 | 7400 | 0.5555 | 0.3819 | 0.7639 | 0.7639 | nan | 0.7639 | 0.0 | 0.7639 |
0.3341 | 75.0 | 7500 | 0.5574 | 0.3782 | 0.7563 | 0.7563 | nan | 0.7563 | 0.0 | 0.7563 |
0.3326 | 76.0 | 7600 | 0.5628 | 0.3701 | 0.7401 | 0.7401 | nan | 0.7401 | 0.0 | 0.7401 |
0.3325 | 77.0 | 7700 | 0.5575 | 0.3818 | 0.7635 | 0.7635 | nan | 0.7635 | 0.0 | 0.7635 |
0.3333 | 78.0 | 7800 | 0.5515 | 0.3835 | 0.7670 | 0.7670 | nan | 0.7670 | 0.0 | 0.7670 |
0.3327 | 79.0 | 7900 | 0.5540 | 0.3776 | 0.7552 | 0.7552 | nan | 0.7552 | 0.0 | 0.7552 |
0.332 | 80.0 | 8000 | 0.5584 | 0.3852 | 0.7705 | 0.7705 | nan | 0.7705 | 0.0 | 0.7705 |
0.3322 | 81.0 | 8100 | 0.5616 | 0.3770 | 0.7540 | 0.7540 | nan | 0.7540 | 0.0 | 0.7540 |
0.3316 | 82.0 | 8200 | 0.5555 | 0.3793 | 0.7585 | 0.7585 | nan | 0.7585 | 0.0 | 0.7585 |
0.3325 | 83.0 | 8300 | 0.5567 | 0.3809 | 0.7618 | 0.7618 | nan | 0.7618 | 0.0 | 0.7618 |
0.3321 | 84.0 | 8400 | 0.5557 | 0.3803 | 0.7606 | 0.7606 | nan | 0.7606 | 0.0 | 0.7606 |
0.3314 | 85.0 | 8500 | 0.5545 | 0.3776 | 0.7553 | 0.7553 | nan | 0.7553 | 0.0 | 0.7553 |
0.3315 | 86.0 | 8600 | 0.5552 | 0.3805 | 0.7610 | 0.7610 | nan | 0.7610 | 0.0 | 0.7610 |
0.3313 | 87.0 | 8700 | 0.5550 | 0.3751 | 0.7501 | 0.7501 | nan | 0.7501 | 0.0 | 0.7501 |
0.3308 | 88.0 | 8800 | 0.5552 | 0.3839 | 0.7678 | 0.7678 | nan | 0.7678 | 0.0 | 0.7678 |
0.3315 | 89.0 | 8900 | 0.5547 | 0.3799 | 0.7598 | 0.7598 | nan | 0.7598 | 0.0 | 0.7598 |
0.3312 | 90.0 | 9000 | 0.5567 | 0.3771 | 0.7543 | 0.7543 | nan | 0.7543 | 0.0 | 0.7543 |
0.3314 | 91.0 | 9100 | 0.5536 | 0.3798 | 0.7597 | 0.7597 | nan | 0.7597 | 0.0 | 0.7597 |
0.3312 | 92.0 | 9200 | 0.5550 | 0.3789 | 0.7578 | 0.7578 | nan | 0.7578 | 0.0 | 0.7578 |
0.3308 | 93.0 | 9300 | 0.5555 | 0.3798 | 0.7596 | 0.7596 | nan | 0.7596 | 0.0 | 0.7596 |
0.3301 | 94.0 | 9400 | 0.5590 | 0.3784 | 0.7568 | 0.7568 | nan | 0.7568 | 0.0 | 0.7568 |
0.3306 | 95.0 | 9500 | 0.5563 | 0.3831 | 0.7662 | 0.7662 | nan | 0.7662 | 0.0 | 0.7662 |
0.3312 | 96.0 | 9600 | 0.5599 | 0.3758 | 0.7517 | 0.7517 | nan | 0.7517 | 0.0 | 0.7517 |
0.3309 | 97.0 | 9700 | 0.5552 | 0.3832 | 0.7663 | 0.7663 | nan | 0.7663 | 0.0 | 0.7663 |
0.331 | 98.0 | 9800 | 0.5558 | 0.3867 | 0.7734 | 0.7734 | nan | 0.7734 | 0.0 | 0.7734 |
0.3306 | 99.0 | 9900 | 0.5550 | 0.3849 | 0.7698 | 0.7698 | nan | 0.7698 | 0.0 | 0.7698 |
0.3307 | 100.0 | 10000 | 0.5558 | 0.3834 | 0.7668 | 0.7668 | nan | 0.7668 | 0.0 | 0.7668 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TommyClas/HDCSHseg_models
Base model
nvidia/mit-b0