π§ TinyLLaMA-1.1B LoRA Fine-tuned on SciQ Dataset
This is a TinyLLaMA-1.1B model fine-tuned using LoRA (Low-Rank Adaptation) on the SciQ multiple-choice question answering dataset. It uses 4-bit quantization via bitsandbytes
to reduce memory usage and improve inference efficiency.
π§ͺ Use Cases
This model is suitable for:
- Educational QA bots
- MCQ-style reasoning
- Lightweight inference on constrained hardware (e.g., GPUs with <8GB VRAM)
π οΈ Training Details
- Base Model:
TinyLlama/TinyLlama-1.1B-Chat-v1.0
- Dataset:
allenai/sciq
(Science QA) - Method: Parameter-Efficient Fine-Tuning using LoRA
- Quantization: 4-bit using
bitsandbytes
- Framework: π€ Transformers + PEFT + Datasets
𧬠Model Architecture
- Model: Causal Language Model
- Fine-tuned layers:
q_proj
,v_proj
(via LoRA) - Quantization: 4-bit (bnb config)
π Evaluation
- Accuracy: 100% on a 1000-sample SciQ subset
- Eval Loss: ~0.19
π‘ How to Use
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("TechyCode/tinyllama-sciq-lora")
tokenizer = AutoTokenizer.from_pretrained("TechyCode/tinyllama-sciq-lora")
prompt = """Question: What is the boiling point of water?\nChoices:\nA. 50Β°C\nB. 75Β°C\nC. 90Β°C\nD. 100Β°C\nAnswer:"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
π License
This model is released under the MIT License.
π Credits
FineTuned By - Uditanshu Pandey
Linkedin - UditanshuPandey
GitHub - UditanshuPandey
Based on - TinyLLaMA-1.1B-Chat-v1.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support