Wandb Model Name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr1.953e-03_bs16_ti61035_mlr1e-5

This model is part of the StepLaw-N_1.0B-D_1.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 2048
  • Feed-forward network size (FFN): 8192
  • Attention heads: 16
  • Layers: 16
  • Parameter count: 1.1B

Training Parameters

  • Learning rate (lr): 1.953e-03
  • Batch size (bs): 32768
  • Training iterations: 61035
  • Training tokens (D): 2.0B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.953e-03 and batch size 32768 for 61035 iterations, using a total of 2.0B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_1.0B-D_1.0B-LR1.953e-03-BS32768"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
5
Safetensors
Model size
1.34B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including StepLaw/StepLaw-N_1.0B-D_1.0B-LR1.953e-03-BS32768