metadata
license: apache-2.0
datasets:
- huuuyeah/meetingbank
language:
- en
metrics:
- rouge
base_model:
- google/bigbird-pegasus-large-bigpatent
pipeline_tag: summarization
library_name: transformers
MeetingScript
A BigBird‐Pegasus model fine‑tuned for meeting transcription summarization on the MeetingBank dataset.
📦 Model Files
- Weights & config:
pytorch_model.bin
,config.json
- Tokenizer:
tokenizer.json
,tokenizer_config.json
,merges.txt
,special_tokens_map.json
- Generation defaults:
generation_config.json
🔗 Hub: https://github.com/kevin0437/Meeting_scripts
Model Description
MeetingScript is a sequence‑to‑sequence model based on
google/bigbird-pegasus-large-bigpatent
and fine‑tuned on the MeetingBank corpus of meeting transcripts paired with human‐written summaries.
It is designed to take long meeting transcripts (up to 4096 tokens) and produce concise, coherent summaries.
Evaluation Results
Evaluated on the held‑out test split of MeetingBank (≈ 600 transcripts), using beam search (4 beams, max_length=600):
Metric | F1 Score (%) |
---|---|
ROUGE‑1 | 51.5556 |
ROUGE‑2 | 38.5378 |
ROUGE‑L | 48.0786 |
ROUGE‑Lsum | 48.0142 |
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
# 1) Load from the Hub
tokenizer = AutoTokenizer.from_pretrained("Shaelois/MeetingScript")
model = AutoModelForSeq2SeqLM.from_pretrained("Shaelois/MeetingScript")
# 2) Summarize a long transcript
transcript = """
Alice: Good morning everyone, let’s get started…
Bob: I updated the design mockups…
… (thousands of words) …
"""
inputs = tokenizer(
transcript,
max_length=4096,
truncation=True,
return_tensors="pt"
).to("cuda")
summary_ids = model.generate(
**inputs,
num_beams=4,
max_length=150,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("📝 Summary:", summary)
Training Data
Dataset: MeetingBank Splits: Train (5000+), Validation (600+), Test (600+) Preprocessing: Sliding‑window chunking for sequences > 4096 tokens