File size: 6,507 Bytes
fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f 4d3f1b8 fe76d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
# from cotlet.phon import phonemize
# from g2p_en import G2p
import librosa
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# from text_utils import TextCleaner
np.random.seed(1)
random.seed(1)
# DEFAULT_DICT_PATH = osp.join(osp.dirname(__file__), 'word_index_dict.txt')
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 2048,
"hop_length": 512
}
MEL_PARAMS = {
"n_mels": 128,
"sample_rate":44_100,
"n_fft": 2048,
"win_length": 2048,
"hop_length": 512
}
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
_additions = f"ー()-~_+=0123456789[]<>/%&*#@◌" + chr(860) + chr(861) + chr(862) + chr(863) + chr(864) + chr(865) + chr(866)
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_additions)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print(text)
return indexes
class MelDataset(torch.utils.data.Dataset):
def __init__(self,
data_list,
# dict_path=DEFAULT_DICT_PATH,
sr=44100
):
spect_params = SPECT_PARAMS
mel_params = MEL_PARAMS
_data_list = [l[:-1].split('|') for l in data_list]
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
self.text_cleaner = TextCleaner()
self.sr = sr
self.to_melspec = torchaudio.transforms.MelSpectrogram(sample_rate=44_100,
n_mels=128,
n_fft=2048,
win_length=2048,
hop_length=512)
self.mean, self.std = -4, 4
# self.g2p = hibiki_phon()
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
data = self.data_list[idx]
wave, text_tensor, speaker_id = self._load_tensor(data)
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = self.to_melspec(wave_tensor)
if (text_tensor.size(0)+1) >= (mel_tensor.size(1) // 3):
mel_tensor = F.interpolate(
mel_tensor.unsqueeze(0), size=(text_tensor.size(0)+1)*3, align_corners=False,
mode='linear').squeeze(0)
acoustic_feature = (torch.log(1e-5 + mel_tensor) - self.mean)/self.std
length_feature = acoustic_feature.size(1)
acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
return wave_tensor, acoustic_feature, text_tensor, data[0]
def _load_tensor(self, data):
wave_path, text, speaker_id = data
speaker_id = int(speaker_id)
wave, sr = sf.read(wave_path)
if wave.shape[-1] == 2:
wave = wave[:, 0].squeeze()
if sr != 44100:
wave = librosa.resample(wave, orig_sr=sr, target_sr=44100)
# print(wave_path, sr)
# wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
text = self.text_cleaner(text)
text.insert(0, 0)
text.append(0)
text = torch.LongTensor(text)
return wave, text, speaker_id
class Collater(object):
"""
Args:
return_wave (bool): if true, will return the wave data along with spectrogram.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.return_wave = return_wave
def __call__(self, batch):
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_text_length = max([b[2].shape[0] for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
texts = torch.zeros((batch_size, max_text_length)).long()
input_lengths = torch.zeros(batch_size).long()
output_lengths = torch.zeros(batch_size).long()
paths = ['' for _ in range(batch_size)]
for bid, (_, mel, text, path) in enumerate(batch):
mel_size = mel.size(1)
text_size = text.size(0)
mels[bid, :, :mel_size] = mel
texts[bid, :text_size] = text
input_lengths[bid] = text_size
output_lengths[bid] = mel_size
paths[bid] = path
assert(text_size < (mel_size//2))
if self.return_wave:
waves = [b[0] for b in batch]
return texts, input_lengths, mels, output_lengths, paths, waves
return texts, input_lengths, mels, output_lengths
def build_dataloader(path_list,
validation=False,
batch_size=4,
num_workers=1,
device='cpu',
collate_config={},
dataset_config={}):
dataset = MelDataset(path_list, **dataset_config)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=(not validation),
collate_fn=collate_fn,
pin_memory=(device != 'cpu'))
return data_loader
|