File size: 6,507 Bytes
fe76d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d3f1b8
fe76d2f
 
 
4d3f1b8
 
fe76d2f
 
 
 
 
 
 
 
 
 
 
4d3f1b8
 
 
 
fe76d2f
 
4d3f1b8
 
fe76d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d3f1b8
 
fe76d2f
 
4d3f1b8
fe76d2f
 
 
 
 
 
 
4d3f1b8
fe76d2f
4d3f1b8
 
fe76d2f
 
 
 
 
 
 
 
 
4d3f1b8
 
fe76d2f
4d3f1b8
 
 
 
 
fe76d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d3f1b8
fe76d2f
 
 
 
 
 
 
 
 
 
 
4d3f1b8
 
 
 
fe76d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf

import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
# from cotlet.phon import phonemize
# from g2p_en import G2p
import librosa 

import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# from text_utils import TextCleaner
np.random.seed(1)
random.seed(1)
# DEFAULT_DICT_PATH = osp.join(osp.dirname(__file__), 'word_index_dict.txt')

SPECT_PARAMS = {
    "n_fft": 2048,
    "win_length": 2048,
    "hop_length": 512
}
MEL_PARAMS = {
    "n_mels": 128,
    "sample_rate":44_100,
    "n_fft": 2048,
    "win_length": 2048,
    "hop_length": 512
}

    
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” ' 
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
_additions = f"ー()-~_+=0123456789[]<>/%&*#@◌" + chr(860) + chr(861) + chr(862) + chr(863) + chr(864) + chr(865) + chr(866)  
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_additions)



dicts = {}
for i in range(len((symbols))):
    dicts[symbols[i]] = i

class TextCleaner:
    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts
    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError:
                print(text)
        return indexes

    
class MelDataset(torch.utils.data.Dataset):
    def __init__(self,
                 data_list,
                #  dict_path=DEFAULT_DICT_PATH,
                 sr=44100
                ):

        spect_params = SPECT_PARAMS
        mel_params = MEL_PARAMS

        _data_list = [l[:-1].split('|') for l in data_list]
        self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
        self.text_cleaner = TextCleaner()
        self.sr = sr

        self.to_melspec = torchaudio.transforms.MelSpectrogram(sample_rate=44_100, 
                                                               n_mels=128,
                                                               n_fft=2048,
                                                               win_length=2048,
                                                               hop_length=512)
        self.mean, self.std = -4, 4
        
        # self.g2p = hibiki_phon()


    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, idx):
        data = self.data_list[idx]
        wave, text_tensor, speaker_id = self._load_tensor(data)
        wave_tensor = torch.from_numpy(wave).float()
        mel_tensor = self.to_melspec(wave_tensor)

        if (text_tensor.size(0)+1) >= (mel_tensor.size(1) // 3):
            mel_tensor = F.interpolate(
                mel_tensor.unsqueeze(0), size=(text_tensor.size(0)+1)*3, align_corners=False,
                mode='linear').squeeze(0)

        acoustic_feature = (torch.log(1e-5 + mel_tensor) - self.mean)/self.std

        length_feature = acoustic_feature.size(1)
        acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]

        return wave_tensor, acoustic_feature, text_tensor, data[0]


    def _load_tensor(self, data):
        
        wave_path, text, speaker_id = data
        speaker_id = int(speaker_id)
        wave, sr = sf.read(wave_path)
        if wave.shape[-1] == 2:
            wave = wave[:, 0].squeeze()
        if sr != 44100:
            wave = librosa.resample(wave, orig_sr=sr, target_sr=44100)
            # print(wave_path, sr)
            
        # wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
        
        text = self.text_cleaner(text)
        
        text.insert(0, 0)
        text.append(0)
        
        text = torch.LongTensor(text)

        return wave, text, speaker_id



class Collater(object):
    """
    Args:
      return_wave (bool): if true, will return the wave data along with spectrogram. 
    """

    def __init__(self, return_wave=False):
        self.text_pad_index = 0
        self.return_wave = return_wave

    def __call__(self, batch):
        batch_size = len(batch)

        # sort by mel length
        lengths = [b[1].shape[1] for b in batch]
        batch_indexes = np.argsort(lengths)[::-1]
        batch = [batch[bid] for bid in batch_indexes]

        nmels = batch[0][1].size(0)
        max_mel_length = max([b[1].shape[1] for b in batch])
        max_text_length = max([b[2].shape[0] for b in batch])

        mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
        texts = torch.zeros((batch_size, max_text_length)).long()
        input_lengths = torch.zeros(batch_size).long()
        output_lengths = torch.zeros(batch_size).long()
        paths = ['' for _ in range(batch_size)]
        for bid, (_, mel, text, path) in enumerate(batch):
            mel_size = mel.size(1)
            text_size = text.size(0)
            mels[bid, :, :mel_size] = mel
            texts[bid, :text_size] = text
            input_lengths[bid] = text_size
            output_lengths[bid] = mel_size
            paths[bid] = path
            assert(text_size < (mel_size//2))

        if self.return_wave:
            waves = [b[0] for b in batch]
            return texts, input_lengths, mels, output_lengths, paths, waves

        return texts, input_lengths, mels, output_lengths



def build_dataloader(path_list,
                     validation=False,
                     batch_size=4,
                     num_workers=1,
                     device='cpu',
                     collate_config={},
                     dataset_config={}):

    dataset = MelDataset(path_list, **dataset_config)
    collate_fn = Collater(**collate_config)
    data_loader = DataLoader(dataset,
                             batch_size=batch_size,
                             shuffle=(not validation),
                             num_workers=num_workers,
                             drop_last=(not validation),
                             collate_fn=collate_fn,
                             pin_memory=(device != 'cpu'))

    return data_loader