Create meldataset.py
Browse files- meldataset.py +202 -0
meldataset.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import soundfile as sf
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torchaudio
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
# from cotlet.phon import phonemize
|
15 |
+
# from g2p_en import G2p
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
import logging
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
logger.setLevel(logging.DEBUG)
|
21 |
+
# from text_utils import TextCleaner
|
22 |
+
np.random.seed(1)
|
23 |
+
random.seed(1)
|
24 |
+
# DEFAULT_DICT_PATH = osp.join(osp.dirname(__file__), 'word_index_dict.txt')
|
25 |
+
|
26 |
+
SPECT_PARAMS = {
|
27 |
+
"n_fft": 2048,
|
28 |
+
"win_length": 2048,
|
29 |
+
"hop_length": 512
|
30 |
+
}
|
31 |
+
MEL_PARAMS = {
|
32 |
+
"n_mels": 128,
|
33 |
+
"sample_rate":44_100,
|
34 |
+
"n_fft": 2048,
|
35 |
+
"win_length": 2048,
|
36 |
+
"hop_length": 512
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
_pad = "$"
|
41 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
42 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
43 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
44 |
+
_additions = f"ー()-~_+=0123456789[]<>/%&*#@◌" + chr(860) + chr(861) + chr(862) + chr(863) + chr(864) + chr(865) + chr(866)
|
45 |
+
# Export all symbols:
|
46 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_additions)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
dicts = {}
|
51 |
+
for i in range(len((symbols))):
|
52 |
+
dicts[symbols[i]] = i
|
53 |
+
|
54 |
+
class TextCleaner:
|
55 |
+
def __init__(self, dummy=None):
|
56 |
+
self.word_index_dictionary = dicts
|
57 |
+
def __call__(self, text):
|
58 |
+
indexes = []
|
59 |
+
for char in text:
|
60 |
+
try:
|
61 |
+
indexes.append(self.word_index_dictionary[char])
|
62 |
+
except KeyError:
|
63 |
+
print(text)
|
64 |
+
return indexes
|
65 |
+
|
66 |
+
class MelDataset(torch.utils.data.Dataset):
|
67 |
+
def __init__(self,
|
68 |
+
data_list,
|
69 |
+
sr=44100,
|
70 |
+
scaling_factor=1.0 # Add scaling_factor parameter
|
71 |
+
):
|
72 |
+
|
73 |
+
spect_params = SPECT_PARAMS
|
74 |
+
mel_params = MEL_PARAMS
|
75 |
+
|
76 |
+
_data_list = [l[:-1].split('|') for l in data_list]
|
77 |
+
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
|
78 |
+
self.text_cleaner = TextCleaner()
|
79 |
+
self.sr = sr
|
80 |
+
|
81 |
+
self.to_melspec = torchaudio.transforms.MelSpectrogram(sample_rate=44_100,
|
82 |
+
n_mels=128,
|
83 |
+
n_fft=2048,
|
84 |
+
win_length=2048,
|
85 |
+
hop_length=512)
|
86 |
+
self.mean, self.std = -4, 4
|
87 |
+
|
88 |
+
# Add the beta-binomial interpolator
|
89 |
+
self.beta_binomial_interpolator = BetaBinomialInterpolator(scaling_factor=scaling_factor)
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
return len(self.data_list)
|
93 |
+
|
94 |
+
def __getitem__(self, idx):
|
95 |
+
data = self.data_list[idx]
|
96 |
+
wave, text_tensor, speaker_id = self._load_tensor(data)
|
97 |
+
wave_tensor = torch.from_numpy(wave).float()
|
98 |
+
mel_tensor = self.to_melspec(wave_tensor)
|
99 |
+
|
100 |
+
if (text_tensor.size(0)+1) >= (mel_tensor.size(1) // 3):
|
101 |
+
mel_tensor = F.interpolate(
|
102 |
+
mel_tensor.unsqueeze(0), size=(text_tensor.size(0)+1)*3, align_corners=False,
|
103 |
+
mode='linear').squeeze(0)
|
104 |
+
|
105 |
+
acoustic_feature = (torch.log(1e-5 + mel_tensor) - self.mean)/self.std
|
106 |
+
|
107 |
+
length_feature = acoustic_feature.size(1)
|
108 |
+
acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
|
109 |
+
|
110 |
+
# Generate attention prior matrix
|
111 |
+
text_len = text_tensor.size(0)
|
112 |
+
mel_len = acoustic_feature.size(1)
|
113 |
+
attn_prior = torch.from_numpy(self.beta_binomial_interpolator(mel_len, text_len)).float()
|
114 |
+
|
115 |
+
return wave_tensor, acoustic_feature, text_tensor, attn_prior, data[0]
|
116 |
+
|
117 |
+
def _load_tensor(self, data):
|
118 |
+
wave_path, text, speaker_id = data
|
119 |
+
speaker_id = int(speaker_id)
|
120 |
+
wave, sr = sf.read(wave_path)
|
121 |
+
if wave.shape[-1] == 2:
|
122 |
+
wave = wave[:, 0].squeeze()
|
123 |
+
if sr != 44100:
|
124 |
+
wave = librosa.resample(wave, orig_sr=sr, target_sr=44100)
|
125 |
+
|
126 |
+
text = self.text_cleaner(text)
|
127 |
+
|
128 |
+
text.insert(0, 0)
|
129 |
+
text.append(0)
|
130 |
+
|
131 |
+
text = torch.LongTensor(text)
|
132 |
+
|
133 |
+
return wave, text, speaker_id
|
134 |
+
|
135 |
+
# Now modify the Collater class to handle the attention prior
|
136 |
+
class Collater(object):
|
137 |
+
def __init__(self, return_wave=False):
|
138 |
+
self.text_pad_index = 0
|
139 |
+
self.return_wave = return_wave
|
140 |
+
|
141 |
+
def __call__(self, batch):
|
142 |
+
batch_size = len(batch)
|
143 |
+
|
144 |
+
# sort by mel length
|
145 |
+
lengths = [b[1].shape[1] for b in batch]
|
146 |
+
batch_indexes = np.argsort(lengths)[::-1]
|
147 |
+
batch = [batch[bid] for bid in batch_indexes]
|
148 |
+
|
149 |
+
nmels = batch[0][1].size(0)
|
150 |
+
max_mel_length = max([b[1].shape[1] for b in batch])
|
151 |
+
max_text_length = max([b[2].shape[0] for b in batch])
|
152 |
+
|
153 |
+
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
|
154 |
+
texts = torch.zeros((batch_size, max_text_length)).long()
|
155 |
+
input_lengths = torch.zeros(batch_size).long()
|
156 |
+
output_lengths = torch.zeros(batch_size).long()
|
157 |
+
|
158 |
+
# Add tensor for attention priors
|
159 |
+
attn_priors = torch.zeros((batch_size, max_mel_length, max_text_length)).float()
|
160 |
+
|
161 |
+
paths = ['' for _ in range(batch_size)]
|
162 |
+
|
163 |
+
for bid, (_, mel, text, attn_prior, path) in enumerate(batch):
|
164 |
+
mel_size = mel.size(1)
|
165 |
+
text_size = text.size(0)
|
166 |
+
mels[bid, :, :mel_size] = mel
|
167 |
+
texts[bid, :text_size] = text
|
168 |
+
input_lengths[bid] = text_size
|
169 |
+
output_lengths[bid] = mel_size
|
170 |
+
|
171 |
+
# Handle attention prior
|
172 |
+
attn_priors[bid, :mel_size, :text_size] = attn_prior
|
173 |
+
|
174 |
+
paths[bid] = path
|
175 |
+
assert(text_size < (mel_size//2))
|
176 |
+
|
177 |
+
if self.return_wave:
|
178 |
+
waves = [b[0] for b in batch]
|
179 |
+
return texts, input_lengths, mels, output_lengths, attn_priors, paths, waves
|
180 |
+
|
181 |
+
return texts, input_lengths, mels, output_lengths, attn_priors
|
182 |
+
|
183 |
+
# Update the build_dataloader function to use the new MelDataset and Collater
|
184 |
+
def build_dataloader(path_list,
|
185 |
+
validation=False,
|
186 |
+
batch_size=4,
|
187 |
+
num_workers=1,
|
188 |
+
device='cpu',
|
189 |
+
collate_config={},
|
190 |
+
dataset_config={}):
|
191 |
+
|
192 |
+
dataset = MelDataset(path_list, **dataset_config)
|
193 |
+
collate_fn = Collater(**collate_config)
|
194 |
+
data_loader = DataLoader(dataset,
|
195 |
+
batch_size=batch_size,
|
196 |
+
shuffle=(not validation),
|
197 |
+
num_workers=num_workers,
|
198 |
+
drop_last=(not validation),
|
199 |
+
collate_fn=collate_fn,
|
200 |
+
pin_memory=(device != 'cpu'))
|
201 |
+
|
202 |
+
return data_loader
|