Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8
Model Overview
- Model Architecture: Mistral3ForConditionalGeneration
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Activation quantization: INT8
- Weight quantization: INT8
- Intended Use Cases: It is ideal for:
- Fast-response conversational agents.
- Low-latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- Release Date: 04/15/2025
- Version: 1.0
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of Mistral-Small-3.1-24B-Instruct-2503 to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. A combination of the SmoothQuant and GPTQ algorithms is applied for quantization, as implemented in the llm-compressor library.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration
from datasets import load_dataset, interleave_datasets
from PIL import Image
import io
# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
num_text_samples = 1024
num_vision_samples = 1024
max_seq_len = 8192
processor = AutoProcessor.from_pretrained(model_stub)
model = TraceableMistral3ForConditionalGeneration.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
# Text-only data subset
def preprocess_text(example):
input = {
"text": processor.apply_chat_template(
example["messages"],
add_generation_prompt=False,
),
"images": None,
}
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
return tokenized_input
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples))
dst = dst.map(preprocess_text, remove_columns=dst.column_names)
# Text + vision data subset
def preprocess_vision(example):
messages = []
image = None
for message in example["messages"]:
message_content = []
for content in message["content"]:
if content["type"] == "text":
message_content.append({"type": "text", "text": content["text"]})
else:
message_content.append({"type": "image"})
image = Image.open(io.BytesIO(content["image"]))
messages.append(
{
"role": message["role"],
"content": message_content,
}
)
input = {
"text": processor.apply_chat_template(
messages,
add_generation_prompt=False,
),
"images": image,
}
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
return tokenized_input
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples))
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names)
# Interleave subsets
ds = interleave_datasets((dsv, dst))
# Configure the quantization algorithm and scheme
recipe = [
SmoothQuantModifier(
smoothing_strength=0.8,
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"],
],
),
GPTQModifier(
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
sequential_targets=["MistralDecoderLayer"],
dampening_frac=0.01,
targets="Linear",
scheme="W8A8",
),
]
# Define data collator
def data_collator(batch):
import torch
assert len(batch) == 1
collated = {}
for k, v in batch[0].items():
if v is None:
continue
if k == "input_ids":
collated[k] = torch.LongTensor(v)
elif k == "pixel_values":
collated[k] = torch.tensor(v, dtype=torch.bfloat16)
else:
collated[k] = torch.tensor(v)
return collated
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
data_collator=data_collator,
num_calibration_samples=num_text_samples + num_vision_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w8a8"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. Non-coding tasks were evaluated with lm-evaluation-harness, whereas coding tasks were evaluated with a fork of evalplus. vLLM is used as the engine in all cases.
Evaluation details
MMLU
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
ARC Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks arc_challenge \
--num_fewshot 25 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
GSM8k
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks gsm8k \
--num_fewshot 8 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--apply_chat_template\
--batch_size auto
MMLU-pro
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu_pro \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
MMMU
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmmu \
--apply_chat_template\
--batch_size auto
ChartQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks chartqa \
--apply_chat_template\
--batch_size auto
Coding
The commands below can be used for mbpp by simply replacing the dataset name.
Generation
python3 codegen/generate.py \
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2-sanitized
Accuracy
Category | Benchmark | Mistral-Small-3.1-24B-Instruct-2503 | Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 (this model) |
Recovery |
---|---|---|---|---|
OpenLLM v1 | MMLU (5-shot) | 80.67 | 80.40 | 99.7% |
ARC Challenge (25-shot) | 72.78 | 73.46 | 100.9% | |
GSM-8K (5-shot, strict-match) | 65.35 | 70.58 | 108.0% | |
Hellaswag (10-shot) | 83.70 | 82.26 | 98.3% | |
Winogrande (5-shot) | 83.74 | 80.90 | 96.6% | |
TruthfulQA (0-shot, mc2) | 70.62 | 69.15 | 97.9% | |
Average | 76.14 | 76.13 | 100.0% | |
MMLU-Pro (5-shot) | 67.25 | 66.54 | 98.9% | |
GPQA CoT main (5-shot) | 42.63 | 44.64 | 104.7% | |
GPQA CoT diamond (5-shot) | 45.96 | 41.92 | 91.2% | |
Coding | HumanEval pass@1 | 84.70 | 84.20 | 99.4% |
HumanEval+ pass@1 | 79.50 | 81.00 | 101.9% | |
MBPP pass@1 | 71.10 | 72.10 | 101.4% | |
MBPP+ pass@1 | 60.60 | 62.10 | 100.7% | |
Vision | MMMU (0-shot) | 52.11 | 53.11 | 101.9% |
ChartQA (0-shot) | 81.36 | 82.36 | 101.2% |
- Downloads last month
- 833
Model tree for RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503