Built with Axolotl

See axolotl config

axolotl version: 0.5.2

adapter: lora
auto_find_batch_size: true
base_model: microsoft/phi-1_5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ecf7f142ab6585de_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ecf7f142ab6585de_train_data.json
  type:
    field_instruction: content
    field_output: title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
evaluation_strategy: steps
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/4198a6da-7d3a-4fec-8edc-86559239004a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
metric_for_best_model: eval_loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/ecf7f142ab6585de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
save_total_limit: 1
sequence_len: 2048
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b662ba6a-4b9d-4ccc-b470-1f1b952f0188
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b662ba6a-4b9d-4ccc-b470-1f1b952f0188
warmup_steps: 20
weight_decay: 0.0

4198a6da-7d3a-4fec-8edc-86559239004a

This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5252

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 3.5206
4.053 0.0016 10 3.4192
1.6753 0.0032 20 2.4225
3.2 0.0048 30 2.2037
2.4056 0.0064 40 2.0832
0.8712 0.0081 50 2.0928
2.4406 0.0097 60 1.9572
1.2174 0.0113 70 1.9147
2.7408 0.0129 80 1.8816
1.9455 0.0145 90 1.8502
0.8266 0.0161 100 1.8277
2.2578 0.0177 110 1.7903
1.0678 0.0193 120 1.7695
2.128 0.0209 130 1.7446
1.7646 0.0226 140 1.7429
0.5958 0.0242 150 1.7290
2.3297 0.0258 160 1.6972
0.772 0.0274 170 1.6931
2.4212 0.0290 180 1.6919
1.914 0.0306 190 1.6633
0.8855 0.0322 200 1.6642
2.1254 0.0338 210 1.6393
0.9285 0.0354 220 1.6486
2.3201 0.0371 230 1.6257
1.7027 0.0387 240 1.6169
0.6795 0.0403 250 1.6132
2.0956 0.0419 260 1.6020
0.822 0.0435 270 1.6078
2.4096 0.0451 280 1.5919
1.4415 0.0467 290 1.5861
0.561 0.0483 300 1.5855
2.1833 0.0499 310 1.5695
1.0053 0.0516 320 1.5739
2.2196 0.0532 330 1.5600
1.7903 0.0548 340 1.5633
0.5685 0.0564 350 1.5755
2.1138 0.0580 360 1.5419
0.5894 0.0596 370 1.5549
2.311 0.0612 380 1.5468
1.6716 0.0628 390 1.5319
0.5148 0.0644 400 1.5283
1.9299 0.0661 410 1.5329
0.6835 0.0677 420 1.5275
2.0702 0.0693 430 1.5358
1.5531 0.0709 440 1.5142
0.513 0.0725 450 1.5285
2.1196 0.0741 460 1.5151
0.8019 0.0757 470 1.5252

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PhoenixB/4198a6da-7d3a-4fec-8edc-86559239004a

Base model

microsoft/phi-1_5
Adapter
(435)
this model