See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: microsoft/phi-1_5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ecf7f142ab6585de_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ecf7f142ab6585de_train_data.json
type:
field_instruction: content
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
evaluation_strategy: steps
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/4198a6da-7d3a-4fec-8edc-86559239004a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
metric_for_best_model: eval_loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/ecf7f142ab6585de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b662ba6a-4b9d-4ccc-b470-1f1b952f0188
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b662ba6a-4b9d-4ccc-b470-1f1b952f0188
warmup_steps: 20
weight_decay: 0.0
4198a6da-7d3a-4fec-8edc-86559239004a
This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5252
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 3.5206 |
4.053 | 0.0016 | 10 | 3.4192 |
1.6753 | 0.0032 | 20 | 2.4225 |
3.2 | 0.0048 | 30 | 2.2037 |
2.4056 | 0.0064 | 40 | 2.0832 |
0.8712 | 0.0081 | 50 | 2.0928 |
2.4406 | 0.0097 | 60 | 1.9572 |
1.2174 | 0.0113 | 70 | 1.9147 |
2.7408 | 0.0129 | 80 | 1.8816 |
1.9455 | 0.0145 | 90 | 1.8502 |
0.8266 | 0.0161 | 100 | 1.8277 |
2.2578 | 0.0177 | 110 | 1.7903 |
1.0678 | 0.0193 | 120 | 1.7695 |
2.128 | 0.0209 | 130 | 1.7446 |
1.7646 | 0.0226 | 140 | 1.7429 |
0.5958 | 0.0242 | 150 | 1.7290 |
2.3297 | 0.0258 | 160 | 1.6972 |
0.772 | 0.0274 | 170 | 1.6931 |
2.4212 | 0.0290 | 180 | 1.6919 |
1.914 | 0.0306 | 190 | 1.6633 |
0.8855 | 0.0322 | 200 | 1.6642 |
2.1254 | 0.0338 | 210 | 1.6393 |
0.9285 | 0.0354 | 220 | 1.6486 |
2.3201 | 0.0371 | 230 | 1.6257 |
1.7027 | 0.0387 | 240 | 1.6169 |
0.6795 | 0.0403 | 250 | 1.6132 |
2.0956 | 0.0419 | 260 | 1.6020 |
0.822 | 0.0435 | 270 | 1.6078 |
2.4096 | 0.0451 | 280 | 1.5919 |
1.4415 | 0.0467 | 290 | 1.5861 |
0.561 | 0.0483 | 300 | 1.5855 |
2.1833 | 0.0499 | 310 | 1.5695 |
1.0053 | 0.0516 | 320 | 1.5739 |
2.2196 | 0.0532 | 330 | 1.5600 |
1.7903 | 0.0548 | 340 | 1.5633 |
0.5685 | 0.0564 | 350 | 1.5755 |
2.1138 | 0.0580 | 360 | 1.5419 |
0.5894 | 0.0596 | 370 | 1.5549 |
2.311 | 0.0612 | 380 | 1.5468 |
1.6716 | 0.0628 | 390 | 1.5319 |
0.5148 | 0.0644 | 400 | 1.5283 |
1.9299 | 0.0661 | 410 | 1.5329 |
0.6835 | 0.0677 | 420 | 1.5275 |
2.0702 | 0.0693 | 430 | 1.5358 |
1.5531 | 0.0709 | 440 | 1.5142 |
0.513 | 0.0725 | 450 | 1.5285 |
2.1196 | 0.0741 | 460 | 1.5151 |
0.8019 | 0.0757 | 470 | 1.5252 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/4198a6da-7d3a-4fec-8edc-86559239004a
Base model
microsoft/phi-1_5