|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
tags: |
|
- multimodal |
|
pipeline_tag: video-text-to-text |
|
base_model: Qwen/Qwen2.5-VL-7B-Instruct |
|
--- |
|
|
|
|
|
# π‘ VideoChat-R1_7B |
|
|
|
[\[π GitHub\]](https://github.com/OpenGVLab/VideoChat-R1) |
|
[\[π Tech Report\]](https://arxiv.org/pdf/2504.06958) |
|
|
|
|
|
## π How to use the model |
|
|
|
We provide a simple installation example below: |
|
``` |
|
pip install transformers |
|
pip install qwen_vl_utils |
|
``` |
|
Then you could use our model: |
|
```python |
|
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
model_path = "OpenGVLab/VideoChat-R1_7B" |
|
# default: Load the model on the available device(s) |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_path, torch_dtype="auto", device_map="auto", |
|
attn_implementation="flash_attention_2" |
|
) |
|
|
|
# default processer |
|
processor = AutoProcessor.from_pretrained(model_path) |
|
|
|
video_path = "your_video.mp4" |
|
question = "Where is the final cup containing the object?" |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "video", |
|
"video": video_path, |
|
"max_pixels": 460800, |
|
"nframes": 32 |
|
}, |
|
{"type": "text", "text": f"""{question} |
|
Provide your final answer within the <answer> </answer> tags. |
|
"""}, |
|
], |
|
} |
|
] |
|
|
|
|
|
|
|
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time. |
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
**video_kwargs, |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference |
|
generated_ids = model.generate(**inputs, max_new_tokens=512) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
|
|
## βοΈ Citation |
|
|
|
```bibtex |
|
|
|
@article{li2025videochatr1, |
|
title={VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning}, |
|
author={Li, Xinhao and Yan, Ziang and Meng, Desen and Dong, Lu and Zeng, Xiangyu and He, Yinan and Wang, Yali and Qiao, Yu and Wang, Yi and Wang, Limin}, |
|
journal={arXiv preprint arXiv:2504.06958}, |
|
year={2025} |
|
} |
|
``` |