|
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, d_model, n_heads):
|
|
super(MultiHeadAttention, self).__init__()
|
|
|
|
self.d_model = d_model
|
|
self.n_heads = n_heads
|
|
|
|
assert d_model % self.n_heads == 0
|
|
self.head_dim = d_model // n_heads
|
|
|
|
self.query = nn.Linear(d_model, d_model)
|
|
self.key = nn.Linear(d_model, d_model)
|
|
self.value = nn.Linear(d_model, d_model)
|
|
|
|
self.fc_out = nn.Linear(d_model, d_model)
|
|
|
|
def forward(self, query, key, value, mask=None):
|
|
N = query.shape[0]
|
|
Q = self.query(query)
|
|
K = self.key(key)
|
|
V = self.value(value)
|
|
|
|
Q = Q.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)
|
|
K = K.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)
|
|
V = V.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
|
energy = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|
|
|
if mask is not None:
|
|
energy = energy.masked_fill(mask == 0, float('-1e20'))
|
|
|
|
attention = torch.softmax(energy, dim=-1)
|
|
out = torch.matmul(attention, V)
|
|
|
|
out = out.transpose(1, 2).contiguous().view(N, -1, self.n_heads * self.head_dim)
|
|
out = self.fc_out(out)
|
|
|
|
return out
|
|
|